| 1 | // This file defines tests for various GGML ops and backends. |
| 2 | // For the forward pass it asserts that the results of multiple backends computing the same GGML ops are consistent. |
| 3 | // For the backward pass it asserts that the gradients from backpropagation are consistent |
| 4 | // with the gradients obtained via the method of finite differences ("grad" mode, this is optional). |
| 5 | // It is also possible to check the performance ("perf" mode). |
| 6 | // |
| 7 | // this file has three sections: Section 1 does general setup, section 2 defines the GGML ops to be tested, |
| 8 | // and section 3 defines which tests to run. |
| 9 | // Quick start for adding a new GGML op: Go to section 2 and create a struct that inherits from test_case, |
| 10 | // then go to section 3 and add an instantiation of your struct. |
| 11 | |
| 12 | |
| 13 | // ############################## |
| 14 | // ## Section 1: General Setup ## |
| 15 | // ############################## |
| 16 | |
| 17 | |
| 18 | #include <ggml.h> |
| 19 | #include <ggml-alloc.h> |
| 20 | #include <ggml-backend.h> |
| 21 | #include <ggml-cpp.h> |
| 22 | |
| 23 | #include <algorithm> |
| 24 | #include <array> |
| 25 | #include <cfloat> |
| 26 | #include <cinttypes> |
| 27 | #include <cstdarg> |
| 28 | #include <cstdint> |
| 29 | #include <cstdio> |
| 30 | #include <cstdlib> |
| 31 | #include <cstring> |
| 32 | #include <ctime> |
| 33 | #include <future> |
| 34 | #include <memory> |
| 35 | #include <random> |
| 36 | #include <regex> |
| 37 | #include <set> |
| 38 | #include <string> |
| 39 | #include <string_view> |
| 40 | #include <thread> |
| 41 | #include <vector> |
| 42 | |
| 43 | static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) { |
| 44 | size_t nels = ggml_nelements(tensor); |
| 45 | std::vector<float> data(nels); |
| 46 | { |
| 47 | // parallel initialization |
| 48 | static const size_t n_threads = std::thread::hardware_concurrency(); |
| 49 | // static RNG initialization (revisit if n_threads stops being constant) |
| 50 | static std::vector<std::default_random_engine> generators = []() { |
| 51 | std::random_device rd; |
| 52 | std::vector<std::default_random_engine> vec; |
| 53 | vec.reserve(n: n_threads); |
| 54 | //for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(1234 + i); } // fixed seed |
| 55 | for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(args: rd()); } |
| 56 | return vec; |
| 57 | }(); |
| 58 | |
| 59 | auto init_thread = [&](size_t ith, size_t start, size_t end) { |
| 60 | std::uniform_real_distribution<float> distribution(min, max); |
| 61 | auto & gen = generators[ith]; |
| 62 | for (size_t i = start; i < end; i++) { |
| 63 | data[i] = distribution(gen); |
| 64 | } |
| 65 | }; |
| 66 | |
| 67 | std::vector<std::future<void>> tasks; |
| 68 | tasks.reserve(n: n_threads); |
| 69 | for (size_t i = 0; i < n_threads; i++) { |
| 70 | size_t start = i*nels/n_threads; |
| 71 | size_t end = (i+1)*nels/n_threads; |
| 72 | tasks.push_back(x: std::async(policy: std::launch::async, fn&: init_thread, args&: i, args&: start, args&: end)); |
| 73 | } |
| 74 | for (auto & t : tasks) { |
| 75 | t.get(); |
| 76 | } |
| 77 | } |
| 78 | |
| 79 | if (tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_I32) { |
| 80 | ggml_backend_tensor_set(tensor, data: data.data(), offset: 0, size: nels * sizeof(float)); |
| 81 | } else if (ggml_is_quantized(type: tensor->type) || tensor->type == GGML_TYPE_F16 || tensor->type == GGML_TYPE_BF16) { |
| 82 | GGML_ASSERT(nels % ggml_blck_size(tensor->type) == 0); |
| 83 | |
| 84 | // dummy importance matrix |
| 85 | std::vector<float> imatrix(tensor->ne[0], 1.0f); |
| 86 | const float * im = imatrix.data(); |
| 87 | if (!ggml_quantize_requires_imatrix(type: tensor->type)) { |
| 88 | // when the imatrix is optional, we want to test both quantization with and without imatrix |
| 89 | // use one of the random numbers to decide |
| 90 | if (data[0] > 0.5f*(min + max)) { |
| 91 | im = nullptr; |
| 92 | } |
| 93 | } |
| 94 | |
| 95 | std::vector<uint8_t> dataq(ggml_row_size(type: tensor->type, ne: nels)); |
| 96 | { |
| 97 | // parallel quantization by block |
| 98 | size_t blck_size = ggml_blck_size(type: tensor->type); |
| 99 | size_t n_blocks = nels / blck_size; |
| 100 | |
| 101 | auto quantize_thread = [&](size_t start, size_t end) { |
| 102 | ggml_quantize_chunk(type: tensor->type, src: data.data(), dst: dataq.data(), |
| 103 | start: start * blck_size, nrows: end - start, n_per_row: blck_size, imatrix: im); |
| 104 | }; |
| 105 | |
| 106 | const size_t min_blocks_per_thread = 1; |
| 107 | const size_t n_threads = std::min<size_t>(a: std::thread::hardware_concurrency()/2, |
| 108 | b: std::max<size_t>(a: 1, b: n_blocks / min_blocks_per_thread)); |
| 109 | std::vector<std::future<void>> tasks; |
| 110 | tasks.reserve(n: n_threads); |
| 111 | for (size_t i = 0; i < n_threads; i++) { |
| 112 | size_t start = i*n_blocks/n_threads; |
| 113 | size_t end = (i+1)*n_blocks/n_threads; |
| 114 | tasks.push_back(x: std::async(policy: std::launch::async, fn&: quantize_thread, args&: start, args&: end)); |
| 115 | } |
| 116 | for (auto & t : tasks) { |
| 117 | t.get(); |
| 118 | } |
| 119 | } |
| 120 | ggml_backend_tensor_set(tensor, data: dataq.data(), offset: 0, size: dataq.size()); |
| 121 | } else if (tensor->type == GGML_TYPE_I8 || tensor->type == GGML_TYPE_I16 || tensor->type == GGML_TYPE_I32) { |
| 122 | // This is going to create some weird integers though. |
| 123 | ggml_backend_tensor_set(tensor, data: data.data(), offset: 0, size: ggml_nbytes(tensor)); |
| 124 | } else if (tensor->type == GGML_TYPE_I64) { |
| 125 | // Integers with a size of 8 bytes can be set by mirroring the float data, the specific values are again not really meaningful. |
| 126 | const size_t nbytes_half = ggml_nbytes(tensor)/2; |
| 127 | ggml_backend_tensor_set(tensor, data: data.data(), offset: 0*nbytes_half, size: nbytes_half); |
| 128 | ggml_backend_tensor_set(tensor, data: data.data(), offset: 1*nbytes_half, size: nbytes_half); |
| 129 | } else { |
| 130 | GGML_ABORT("fatal error" ); |
| 131 | } |
| 132 | } |
| 133 | |
| 134 | // generate an F16 mask where certain blocks are randomly masked with -INF value |
| 135 | static void init_tensor_kq_mask(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) { |
| 136 | GGML_ASSERT(tensor->type == GGML_TYPE_F16); |
| 137 | |
| 138 | GGML_TENSOR_LOCALS( int32_t, ne, tensor, ne); |
| 139 | |
| 140 | std::vector<float> data_f32(ne0*ne1*ne2*ne3); |
| 141 | std::vector<ggml_fp16_t> data_f16(ne0*ne1*ne2*ne3); |
| 142 | |
| 143 | std::random_device rd; |
| 144 | std::mt19937 gen(rd()); |
| 145 | std::uniform_real_distribution<float> dis(min, max); |
| 146 | |
| 147 | for (size_t i = 0; i < data_f32.size(); i++) { |
| 148 | data_f32[i] = dis(gen); |
| 149 | } |
| 150 | |
| 151 | // block size |
| 152 | const int blck0 = 128; |
| 153 | const int blck1 = 64; |
| 154 | |
| 155 | // number of INF blocks |
| 156 | const int n_inf_blocks = 0.1*(ne0*ne1*ne2*ne3)/(blck0*blck1); |
| 157 | |
| 158 | for (int b = 0; b < n_inf_blocks; b++) { |
| 159 | const int p3 = (rd() % ne3); |
| 160 | const int p2 = (rd() % ne2); |
| 161 | const int p1 = (rd() % ne1); |
| 162 | const int p0 = (rd() % ne0); |
| 163 | |
| 164 | for (int i1 = 0; i1 < blck1 && p1 + i1 < ne1; i1++) { |
| 165 | const int idx = p3*ne2*ne1*ne0 + p2*ne1*ne0 + (p1 + i1)*ne0 + p0; |
| 166 | |
| 167 | for (int i0 = 0; i0 < blck0 && p0 + i0 < ne0; i0++) { |
| 168 | data_f32[idx + i0] = -INFINITY; |
| 169 | } |
| 170 | } |
| 171 | } |
| 172 | |
| 173 | ggml_fp32_to_fp16_row(data_f32.data(), data_f16.data(), ne0*ne1*ne2*ne3); |
| 174 | |
| 175 | ggml_backend_tensor_set(tensor, data: data_f16.data(), offset: 0, size: data_f16.size()*sizeof(ggml_fp16_t)); |
| 176 | } |
| 177 | |
| 178 | static std::vector<float> tensor_to_float(const ggml_tensor * t) { |
| 179 | std::vector<float> tv; |
| 180 | tv.reserve(n: ggml_nelements(tensor: t)); |
| 181 | |
| 182 | std::vector<uint8_t> buf(ggml_nbytes(tensor: t)); |
| 183 | ggml_backend_tensor_get(tensor: t, data: buf.data(), offset: 0, size: ggml_nbytes(tensor: t)); |
| 184 | |
| 185 | const auto * tt = ggml_get_type_traits(type: t->type); |
| 186 | size_t bs = ggml_blck_size(type: t->type); |
| 187 | std::vector<float> vq(ggml_blck_size(type: t->type)); |
| 188 | bool quantized = ggml_is_quantized(type: t->type); |
| 189 | |
| 190 | // access elements by index to avoid gaps in views |
| 191 | for (int64_t i3 = 0; i3 < t->ne[3]; i3++) { |
| 192 | for (int64_t i2 = 0; i2 < t->ne[2]; i2++) { |
| 193 | for (int64_t i1 = 0; i1 < t->ne[1]; i1++) { |
| 194 | for (int64_t i0 = 0; i0 < t->ne[0]; i0 += bs) { |
| 195 | size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0/bs*t->nb[0]; |
| 196 | if (t->type == GGML_TYPE_F16) { |
| 197 | tv.push_back(x: ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i])); |
| 198 | } else if (t->type == GGML_TYPE_BF16) { |
| 199 | tv.push_back(x: ggml_bf16_to_fp32(*(ggml_bf16_t*)&buf[i])); |
| 200 | } else if (t->type == GGML_TYPE_F32) { |
| 201 | tv.push_back(x: *(float *) &buf[i]); |
| 202 | } else if (t->type == GGML_TYPE_I64) { |
| 203 | tv.push_back(x: (float)*(int64_t *) &buf[i]); |
| 204 | } else if (t->type == GGML_TYPE_I32) { |
| 205 | tv.push_back(x: (float)*(int32_t *) &buf[i]); |
| 206 | } else if (t->type == GGML_TYPE_I16) { |
| 207 | tv.push_back(x: (float)*(int16_t *) &buf[i]); |
| 208 | } else if (t->type == GGML_TYPE_I8) { |
| 209 | tv.push_back(x: (float)*(int8_t *) &buf[i]); |
| 210 | } else if (quantized) { |
| 211 | tt->to_float(&buf[i], vq.data(), bs); |
| 212 | tv.insert(position: tv.end(), first: vq.begin(), last: vq.end()); |
| 213 | } else { |
| 214 | GGML_ABORT("fatal error" ); |
| 215 | } |
| 216 | } |
| 217 | } |
| 218 | } |
| 219 | } |
| 220 | |
| 221 | return tv; |
| 222 | } |
| 223 | |
| 224 | // normalized mean squared error = mse(a, b) / mse(a, 0) |
| 225 | static double nmse(const float * a, const float * b, size_t n) { |
| 226 | double mse_a_b = 0.0; |
| 227 | double mse_a_0 = 0.0; |
| 228 | |
| 229 | for (size_t i = 0; i < n; i++) { |
| 230 | float a_i = a[i]; |
| 231 | float b_i = b[i]; |
| 232 | |
| 233 | mse_a_b += (a_i - b_i) * (a_i - b_i); |
| 234 | mse_a_0 += a_i * a_i; |
| 235 | } |
| 236 | |
| 237 | return mse_a_b / mse_a_0; |
| 238 | } |
| 239 | |
| 240 | // maximum absolute asymmetry between a and b |
| 241 | // asymmetry: (a - b) / (a + b) |
| 242 | // This is more stable than relative error if one of the values fluctuates towards zero. |
| 243 | // n: number of values to compare. |
| 244 | // expected_vals: optional vector of expected values for a. If expected_vals is not empty, filter out all comparisons where |
| 245 | // a does not match any of the expected values. Needed for noncontinuous gradients where the numerical calculation can fail. |
| 246 | static double mean_abs_asymm(const float * a, const float * b, const size_t n, const std::vector<float> & expected_vals) { |
| 247 | double sum = 0.0f; |
| 248 | |
| 249 | size_t nvalid = 0; |
| 250 | for (size_t i = 0; i < n; i++) { |
| 251 | if (!expected_vals.empty()) { |
| 252 | bool matches_any = false; |
| 253 | for (const float & ev : expected_vals) { |
| 254 | if (fabsf(x: a[i] - ev) < 1e-3f) { |
| 255 | matches_any = true; |
| 256 | break; |
| 257 | } |
| 258 | } |
| 259 | if (!matches_any) { |
| 260 | continue; |
| 261 | } |
| 262 | } |
| 263 | |
| 264 | const float asymm = (a[i] - b[i]) / (a[i] + b[i]); |
| 265 | |
| 266 | sum += fabsf(x: asymm); |
| 267 | nvalid++; |
| 268 | } |
| 269 | |
| 270 | return sum/nvalid; |
| 271 | } |
| 272 | |
| 273 | // utils for printing the variables of the test cases |
| 274 | |
| 275 | template<typename T> |
| 276 | static std::string var_to_str(const T & x) { |
| 277 | return std::to_string(x); |
| 278 | } |
| 279 | |
| 280 | template<typename T, size_t N> |
| 281 | static std::string var_to_str(const T (&x)[N]) { |
| 282 | std::string s = "[" ; |
| 283 | for (size_t i = 0; i < N; i++) { |
| 284 | if (i > 0) { |
| 285 | s += "," ; |
| 286 | } |
| 287 | s += var_to_str(x[i]); |
| 288 | } |
| 289 | s += "]" ; |
| 290 | return s; |
| 291 | } |
| 292 | |
| 293 | template<typename T, size_t N> |
| 294 | static std::string var_to_str(const std::array<T, N> & x) { |
| 295 | std::string s = "[" ; |
| 296 | for (size_t i = 0; i < N; i++) { |
| 297 | if (i > 0) { |
| 298 | s += "," ; |
| 299 | } |
| 300 | s += var_to_str(x[i]); |
| 301 | } |
| 302 | s += "]" ; |
| 303 | return s; |
| 304 | } |
| 305 | |
| 306 | static std::string var_to_str(ggml_type type) { |
| 307 | return ggml_type_name(type); |
| 308 | } |
| 309 | |
| 310 | static std::string var_to_str(ggml_prec prec) { |
| 311 | return prec == GGML_PREC_F32 ? "f32" : "def" ; |
| 312 | } |
| 313 | |
| 314 | static std::string var_to_str(ggml_op_pool pool) { |
| 315 | switch (pool) { |
| 316 | case GGML_OP_POOL_AVG: return "avg" ; |
| 317 | case GGML_OP_POOL_MAX: return "max" ; |
| 318 | default: return std::to_string(val: pool); |
| 319 | } |
| 320 | } |
| 321 | |
| 322 | static std::string var_to_str(ggml_scale_mode mode) { |
| 323 | switch (mode) { |
| 324 | case GGML_SCALE_MODE_NEAREST: return "nearest" ; |
| 325 | case GGML_SCALE_MODE_BILINEAR: return "bilinear" ; |
| 326 | default: return std::to_string(val: mode); |
| 327 | } |
| 328 | } |
| 329 | |
| 330 | #define VAR_TO_STR(x) (#x "=" + var_to_str(x)) |
| 331 | |
| 332 | #define VARS_TO_STR1(a) VAR_TO_STR(a) |
| 333 | #define VARS_TO_STR2(a, b) VAR_TO_STR(a) + "," + VAR_TO_STR(b) |
| 334 | #define VARS_TO_STR3(a, b, c) VAR_TO_STR(a) + "," + VARS_TO_STR2(b, c) |
| 335 | #define VARS_TO_STR4(a, b, c, d) VAR_TO_STR(a) + "," + VARS_TO_STR3(b, c, d) |
| 336 | #define VARS_TO_STR5(a, b, c, d, e) VAR_TO_STR(a) + "," + VARS_TO_STR4(b, c, d, e) |
| 337 | #define VARS_TO_STR6(a, b, c, d, e, f) VAR_TO_STR(a) + "," + VARS_TO_STR5(b, c, d, e, f) |
| 338 | #define VARS_TO_STR7(a, b, c, d, e, f, g) VAR_TO_STR(a) + "," + VARS_TO_STR6(b, c, d, e, f, g) |
| 339 | #define VARS_TO_STR8(a, b, c, d, e, f, g, h) VAR_TO_STR(a) + "," + VARS_TO_STR7(b, c, d, e, f, g, h) |
| 340 | #define VARS_TO_STR9(a, b, c, d, e, f, g, h, i) VAR_TO_STR(a) + "," + VARS_TO_STR8(b, c, d, e, f, g, h, i) |
| 341 | #define VARS_TO_STR10(a, b, c, d, e, f, g, h, i, j) VAR_TO_STR(a) + "," + VARS_TO_STR9(b, c, d, e, f, g, h, i, j) |
| 342 | #define VARS_TO_STR11(a, b, c, d, e, f, g, h, i, j, k) VAR_TO_STR(a) + "," + VARS_TO_STR10(b, c, d, e, f, g, h, i, j, k) |
| 343 | #define VARS_TO_STR12(a, b, c, d, e, f, g, h, i, j, k, l) VAR_TO_STR(a) + "," + VARS_TO_STR11(b, c, d, e, f, g, h, i, j, k, l) |
| 344 | #define VARS_TO_STR13(a, b, c, d, e, f, g, h, i, j, k, l, m) VAR_TO_STR(a) + "," + VARS_TO_STR12(b, c, d, e, f, g, h, i, j, k, l, m) |
| 345 | #define VARS_TO_STR14(a, b, c, d, e, f, g, h, i, j, k, l, m, n) VAR_TO_STR(a) + "," + VARS_TO_STR13(b, c, d, e, f, g, h, i, j, k, l, m, n) |
| 346 | #define VARS_TO_STR15(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) VAR_TO_STR(a) + "," + VARS_TO_STR14(b, c, d, e, f, g, h, i, j, k, l, m, n, o) |
| 347 | #define VARS_TO_STR16(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) VAR_TO_STR(a) + "," + VARS_TO_STR15(b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) |
| 348 | |
| 349 | #ifdef GGML_USE_SYCL |
| 350 | static bool inline _isinf(float f) { |
| 351 | return (*(uint32_t *)&f & 0x7fffffff) == 0x7f800000; |
| 352 | } |
| 353 | #else |
| 354 | static bool inline _isinf(float f) { return std::isinf(x: f); } |
| 355 | #endif |
| 356 | |
| 357 | // accept FLT_MAX as infinity |
| 358 | static bool isinf_or_max(float f) { |
| 359 | return _isinf(f) || f == FLT_MAX || f == -FLT_MAX; |
| 360 | } |
| 361 | |
| 362 | static bool ggml_is_view_op(enum ggml_op op) { |
| 363 | return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE; |
| 364 | } |
| 365 | |
| 366 | enum test_mode { |
| 367 | MODE_TEST, |
| 368 | MODE_PERF, |
| 369 | MODE_GRAD, |
| 370 | MODE_SUPPORT, |
| 371 | }; |
| 372 | |
| 373 | // Output format support similar to llama-bench |
| 374 | enum output_formats { CONSOLE, SQL, CSV }; |
| 375 | |
| 376 | static const char * output_format_str(output_formats format) { |
| 377 | switch (format) { |
| 378 | case CONSOLE: |
| 379 | return "console" ; |
| 380 | case SQL: |
| 381 | return "sql" ; |
| 382 | case CSV: |
| 383 | return "csv" ; |
| 384 | default: |
| 385 | GGML_ABORT("invalid output format" ); |
| 386 | } |
| 387 | } |
| 388 | |
| 389 | static bool output_format_from_str(const std::string & s, output_formats & format) { |
| 390 | if (s == "console" ) { |
| 391 | format = CONSOLE; |
| 392 | } else if (s == "sql" ) { |
| 393 | format = SQL; |
| 394 | } else if (s == "csv" ) { |
| 395 | format = CSV; |
| 396 | } else { |
| 397 | return false; |
| 398 | } |
| 399 | return true; |
| 400 | } |
| 401 | |
| 402 | // Test result structure for SQL output |
| 403 | struct test_result { |
| 404 | std::string test_time; |
| 405 | std::string build_commit; |
| 406 | std::string backend_name; |
| 407 | std::string op_name; |
| 408 | std::string op_params; |
| 409 | std::string test_mode; |
| 410 | bool supported; |
| 411 | bool passed; |
| 412 | std::string error_message; |
| 413 | double time_us; |
| 414 | double flops; |
| 415 | double bandwidth_gb_s; |
| 416 | size_t memory_kb; |
| 417 | int n_runs; |
| 418 | std::string device_description; |
| 419 | std::string backend_reg_name; |
| 420 | |
| 421 | test_result() { |
| 422 | // Initialize with default values |
| 423 | time_us = 0.0; |
| 424 | flops = 0.0; |
| 425 | bandwidth_gb_s = 0.0; |
| 426 | memory_kb = 0; |
| 427 | n_runs = 0; |
| 428 | supported = false; |
| 429 | passed = false; |
| 430 | |
| 431 | // Set test time |
| 432 | time_t t = time(NULL); |
| 433 | char buf[32]; |
| 434 | std::strftime(s: buf, maxsize: sizeof(buf), format: "%FT%TZ" , tp: gmtime(timer: &t)); |
| 435 | test_time = buf; |
| 436 | |
| 437 | // Set build info |
| 438 | build_commit = ggml_commit(); |
| 439 | } |
| 440 | |
| 441 | test_result(const std::string & backend_name, const std::string & op_name, const std::string & op_params, |
| 442 | const std::string & test_mode, bool supported, bool passed, const std::string & error_message = "" , |
| 443 | double time_us = 0.0, double flops = 0.0, double bandwidth_gb_s = 0.0, size_t memory_kb = 0, |
| 444 | int n_runs = 0, const std::string & device_description = "" , const std::string & backend_reg_name = "" ) : |
| 445 | backend_name(backend_name), |
| 446 | op_name(op_name), |
| 447 | op_params(op_params), |
| 448 | test_mode(test_mode), |
| 449 | supported(supported), |
| 450 | passed(passed), |
| 451 | error_message(error_message), |
| 452 | time_us(time_us), |
| 453 | flops(flops), |
| 454 | bandwidth_gb_s(bandwidth_gb_s), |
| 455 | memory_kb(memory_kb), |
| 456 | n_runs(n_runs), |
| 457 | device_description(device_description), |
| 458 | backend_reg_name(backend_reg_name) { |
| 459 | // Set test time |
| 460 | time_t t = time(NULL); |
| 461 | char buf[32]; |
| 462 | std::strftime(s: buf, maxsize: sizeof(buf), format: "%FT%TZ" , tp: gmtime(timer: &t)); |
| 463 | test_time = buf; |
| 464 | |
| 465 | // Set build info |
| 466 | build_commit = ggml_commit(); |
| 467 | } |
| 468 | |
| 469 | static const std::vector<std::string> & get_fields() { |
| 470 | static const std::vector<std::string> fields = { |
| 471 | "test_time" , "build_commit" , "backend_name" , "op_name" , "op_params" , "test_mode" , "supported" , |
| 472 | "passed" , "error_message" , "time_us" , "flops" , "bandwidth_gb_s" , "memory_kb" , "n_runs" , |
| 473 | "device_description" , "backend_reg_name" |
| 474 | }; |
| 475 | return fields; |
| 476 | } |
| 477 | |
| 478 | enum field_type { STRING, BOOL, INT, FLOAT }; |
| 479 | |
| 480 | static field_type get_field_type(const std::string & field) { |
| 481 | if (field == "supported" || field == "passed" ) { |
| 482 | return BOOL; |
| 483 | } |
| 484 | if (field == "memory_kb" || field == "n_runs" ) { |
| 485 | return INT; |
| 486 | } |
| 487 | if (field == "time_us" || field == "flops" || field == "bandwidth_gb_s" ) { |
| 488 | return FLOAT; |
| 489 | } |
| 490 | return STRING; |
| 491 | } |
| 492 | |
| 493 | std::vector<std::string> get_values() const { |
| 494 | return { test_time, |
| 495 | build_commit, |
| 496 | backend_name, |
| 497 | op_name, |
| 498 | op_params, |
| 499 | test_mode, |
| 500 | std::to_string(val: supported), |
| 501 | std::to_string(val: passed), |
| 502 | error_message, |
| 503 | std::to_string(val: time_us), |
| 504 | std::to_string(val: flops), |
| 505 | std::to_string(val: bandwidth_gb_s), |
| 506 | std::to_string(val: memory_kb), |
| 507 | std::to_string(val: n_runs), |
| 508 | device_description, |
| 509 | backend_reg_name }; |
| 510 | } |
| 511 | }; |
| 512 | |
| 513 | // Printer classes for different output formats |
| 514 | enum class test_status_t { NOT_SUPPORTED, OK, FAIL, SKIPPED }; |
| 515 | |
| 516 | struct test_operation_info { |
| 517 | std::string op_name; |
| 518 | std::string op_params; |
| 519 | std::string backend_name; |
| 520 | test_status_t status = test_status_t::OK; |
| 521 | std::string failure_reason; |
| 522 | |
| 523 | // Additional information fields that were previously in separate structs |
| 524 | std::string error_component; |
| 525 | std::string error_details; |
| 526 | |
| 527 | // Gradient info |
| 528 | int64_t gradient_index = -1; |
| 529 | std::string gradient_param_name; |
| 530 | float gradient_value = 0.0f; |
| 531 | |
| 532 | // MAA error info |
| 533 | double maa_error = 0.0; |
| 534 | double maa_threshold = 0.0; |
| 535 | |
| 536 | // Flags for different types of information |
| 537 | bool has_error = false; |
| 538 | bool has_gradient_info = false; |
| 539 | bool has_maa_error = false; |
| 540 | bool is_compare_failure = false; |
| 541 | bool is_large_tensor_skip = false; |
| 542 | |
| 543 | test_operation_info() = default; |
| 544 | |
| 545 | test_operation_info(const std::string & op_name, const std::string & op_params, const std::string & backend_name, |
| 546 | test_status_t status = test_status_t::OK, const std::string & failure_reason = "" ) : |
| 547 | op_name(op_name), |
| 548 | op_params(op_params), |
| 549 | backend_name(backend_name), |
| 550 | status(status), |
| 551 | failure_reason(failure_reason) {} |
| 552 | |
| 553 | // Set error information |
| 554 | void set_error(const std::string & component, const std::string & details) { |
| 555 | has_error = true; |
| 556 | error_component = component; |
| 557 | error_details = details; |
| 558 | if (status == test_status_t::OK) { |
| 559 | status = test_status_t::FAIL; |
| 560 | } |
| 561 | } |
| 562 | |
| 563 | // Set gradient information |
| 564 | void set_gradient_info(int64_t index, const std::string & param_name, float value) { |
| 565 | has_gradient_info = true; |
| 566 | gradient_index = index; |
| 567 | gradient_param_name = param_name; |
| 568 | gradient_value = value; |
| 569 | if (status == test_status_t::OK) { |
| 570 | status = test_status_t::FAIL; |
| 571 | } |
| 572 | } |
| 573 | |
| 574 | // Set MAA error information |
| 575 | void set_maa_error(double error, double threshold) { |
| 576 | has_maa_error = true; |
| 577 | maa_error = error; |
| 578 | maa_threshold = threshold; |
| 579 | if (status == test_status_t::OK) { |
| 580 | status = test_status_t::FAIL; |
| 581 | } |
| 582 | } |
| 583 | |
| 584 | // Set compare failure |
| 585 | void set_compare_failure() { |
| 586 | is_compare_failure = true; |
| 587 | if (status == test_status_t::OK) { |
| 588 | status = test_status_t::FAIL; |
| 589 | } |
| 590 | } |
| 591 | |
| 592 | // Set large tensor skip |
| 593 | void set_large_tensor_skip() { is_large_tensor_skip = true; } |
| 594 | }; |
| 595 | |
| 596 | struct test_summary_info { |
| 597 | size_t tests_passed; |
| 598 | size_t tests_total; |
| 599 | bool is_backend_summary = false; // true for backend summary, false for test summary |
| 600 | |
| 601 | test_summary_info() = default; |
| 602 | |
| 603 | test_summary_info(size_t tests_passed, size_t tests_total, bool is_backend_summary = false) : |
| 604 | tests_passed(tests_passed), |
| 605 | tests_total(tests_total), |
| 606 | is_backend_summary(is_backend_summary) {} |
| 607 | }; |
| 608 | |
| 609 | struct testing_start_info { |
| 610 | size_t device_count; |
| 611 | |
| 612 | testing_start_info() = default; |
| 613 | |
| 614 | testing_start_info(size_t device_count) : device_count(device_count) {} |
| 615 | }; |
| 616 | |
| 617 | struct backend_init_info { |
| 618 | size_t device_index; |
| 619 | size_t total_devices; |
| 620 | std::string device_name; |
| 621 | bool skipped = false; |
| 622 | std::string skip_reason; |
| 623 | std::string description; |
| 624 | size_t memory_total_mb = 0; |
| 625 | size_t memory_free_mb = 0; |
| 626 | bool has_memory_info = false; |
| 627 | |
| 628 | backend_init_info() = default; |
| 629 | |
| 630 | backend_init_info(size_t device_index, size_t total_devices, const std::string & device_name, bool skipped = false, |
| 631 | const std::string & skip_reason = "" , const std::string & description = "" , |
| 632 | size_t memory_total_mb = 0, size_t memory_free_mb = 0, bool has_memory_info = false) : |
| 633 | device_index(device_index), |
| 634 | total_devices(total_devices), |
| 635 | device_name(device_name), |
| 636 | skipped(skipped), |
| 637 | skip_reason(skip_reason), |
| 638 | description(description), |
| 639 | memory_total_mb(memory_total_mb), |
| 640 | memory_free_mb(memory_free_mb), |
| 641 | has_memory_info(has_memory_info) {} |
| 642 | }; |
| 643 | |
| 644 | struct backend_status_info { |
| 645 | std::string backend_name; |
| 646 | test_status_t status; |
| 647 | |
| 648 | backend_status_info() = default; |
| 649 | |
| 650 | backend_status_info(const std::string & backend_name, test_status_t status) : |
| 651 | backend_name(backend_name), |
| 652 | status(status) {} |
| 653 | }; |
| 654 | |
| 655 | struct overall_summary_info { |
| 656 | size_t backends_passed; |
| 657 | size_t backends_total; |
| 658 | bool all_passed; |
| 659 | |
| 660 | overall_summary_info() = default; |
| 661 | |
| 662 | overall_summary_info(size_t backends_passed, size_t backends_total, bool all_passed) : |
| 663 | backends_passed(backends_passed), |
| 664 | backends_total(backends_total), |
| 665 | all_passed(all_passed) {} |
| 666 | }; |
| 667 | |
| 668 | struct printer { |
| 669 | virtual ~printer() {} |
| 670 | |
| 671 | FILE * fout = stdout; |
| 672 | |
| 673 | virtual void () {} |
| 674 | |
| 675 | virtual void print_test_result(const test_result & result) = 0; |
| 676 | |
| 677 | virtual void () {} |
| 678 | |
| 679 | virtual void print_operation(const test_operation_info & info) { (void) info; } |
| 680 | |
| 681 | virtual void print_summary(const test_summary_info & info) { (void) info; } |
| 682 | |
| 683 | virtual void print_testing_start(const testing_start_info & info) { (void) info; } |
| 684 | |
| 685 | virtual void print_backend_init(const backend_init_info & info) { (void) info; } |
| 686 | |
| 687 | virtual void print_backend_status(const backend_status_info & info) { (void) info; } |
| 688 | |
| 689 | virtual void print_overall_summary(const overall_summary_info & info) { (void) info; } |
| 690 | |
| 691 | virtual void print_failed_tests(const std::vector<std::string> & failed_tests) { (void) failed_tests; } |
| 692 | }; |
| 693 | |
| 694 | struct console_printer : public printer { |
| 695 | void print_test_result(const test_result & result) override { |
| 696 | if (result.test_mode == "test" ) { |
| 697 | print_test_console(result); |
| 698 | } else if (result.test_mode == "perf" ) { |
| 699 | print_perf_console(result); |
| 700 | } else if (result.test_mode == "support" ) { |
| 701 | print_support_console(result); |
| 702 | } |
| 703 | } |
| 704 | |
| 705 | void print_operation(const test_operation_info & info) override { |
| 706 | printf(format: " %s(%s): " , info.op_name.c_str(), info.op_params.c_str()); |
| 707 | fflush(stdout); |
| 708 | |
| 709 | // Handle large tensor skip first |
| 710 | if (info.is_large_tensor_skip) { |
| 711 | printf(format: "skipping large tensors for speed \n" ); |
| 712 | return; |
| 713 | } |
| 714 | |
| 715 | // Handle not supported status |
| 716 | if (info.status == test_status_t::NOT_SUPPORTED) { |
| 717 | if (!info.failure_reason.empty()) { |
| 718 | printf(format: "not supported [%s]\n" , info.failure_reason.c_str()); |
| 719 | } else { |
| 720 | printf(format: "not supported [%s]\n" , info.backend_name.c_str()); |
| 721 | } |
| 722 | return; |
| 723 | } |
| 724 | |
| 725 | // Handle errors and additional information |
| 726 | if (info.has_error) { |
| 727 | if (info.error_component == "allocation" ) { |
| 728 | fprintf(stderr, format: "failed to allocate tensors [%s] " , info.backend_name.c_str()); |
| 729 | } else if (info.error_component == "backend" ) { |
| 730 | fprintf(stderr, format: " Failed to initialize %s backend\n" , info.backend_name.c_str()); |
| 731 | } else { |
| 732 | fprintf(stderr, format: "Error in %s: %s\n" , info.error_component.c_str(), info.error_details.c_str()); |
| 733 | } |
| 734 | } |
| 735 | |
| 736 | // Handle gradient info |
| 737 | if (info.has_gradient_info) { |
| 738 | printf(format: "[%s] nonfinite gradient at index %" PRId64 " (%s=%f) " , info.op_name.c_str(), info.gradient_index, |
| 739 | info.gradient_param_name.c_str(), info.gradient_value); |
| 740 | } |
| 741 | |
| 742 | // Handle MAA error |
| 743 | if (info.has_maa_error) { |
| 744 | printf(format: "[%s] MAA = %.9f > %.9f " , info.op_name.c_str(), info.maa_error, info.maa_threshold); |
| 745 | } |
| 746 | |
| 747 | // Handle compare failure |
| 748 | if (info.is_compare_failure) { |
| 749 | printf(format: "compare failed " ); |
| 750 | } |
| 751 | |
| 752 | // Print final status |
| 753 | if (info.status == test_status_t::OK) { |
| 754 | printf(format: "\033[1;32mOK\033[0m\n" ); |
| 755 | } else { |
| 756 | printf(format: "\033[1;31mFAIL\033[0m\n" ); |
| 757 | } |
| 758 | } |
| 759 | |
| 760 | void print_summary(const test_summary_info & info) override { |
| 761 | if (info.is_backend_summary) { |
| 762 | printf(format: "%zu/%zu backends passed\n" , info.tests_passed, info.tests_total); |
| 763 | } else { |
| 764 | printf(format: " %zu/%zu tests passed\n" , info.tests_passed, info.tests_total); |
| 765 | } |
| 766 | } |
| 767 | |
| 768 | void print_backend_status(const backend_status_info & info) override { |
| 769 | printf(format: " Backend %s: " , info.backend_name.c_str()); |
| 770 | if (info.status == test_status_t::OK) { |
| 771 | printf(format: "\033[1;32mOK\033[0m\n" ); |
| 772 | } else { |
| 773 | printf(format: "\033[1;31mFAIL\033[0m\n" ); |
| 774 | } |
| 775 | } |
| 776 | |
| 777 | void print_testing_start(const testing_start_info & info) override { |
| 778 | printf(format: "Testing %zu devices\n\n" , info.device_count); |
| 779 | } |
| 780 | |
| 781 | void print_backend_init(const backend_init_info & info) override { |
| 782 | printf(format: "Backend %zu/%zu: %s\n" , info.device_index + 1, info.total_devices, info.device_name.c_str()); |
| 783 | |
| 784 | if (info.skipped) { |
| 785 | printf(format: " %s\n" , info.skip_reason.c_str()); |
| 786 | return; |
| 787 | } |
| 788 | |
| 789 | if (!info.description.empty()) { |
| 790 | printf(format: " Device description: %s\n" , info.description.c_str()); |
| 791 | } |
| 792 | |
| 793 | if (info.has_memory_info) { |
| 794 | printf(format: " Device memory: %zu MB (%zu MB free)\n" , info.memory_total_mb, info.memory_free_mb); |
| 795 | } |
| 796 | |
| 797 | printf(format: "\n" ); |
| 798 | } |
| 799 | |
| 800 | void print_overall_summary(const overall_summary_info & info) override { |
| 801 | printf(format: "%zu/%zu backends passed\n" , info.backends_passed, info.backends_total); |
| 802 | if (info.all_passed) { |
| 803 | printf(format: "\033[1;32mOK\033[0m\n" ); |
| 804 | } else { |
| 805 | printf(format: "\033[1;31mFAIL\033[0m\n" ); |
| 806 | } |
| 807 | } |
| 808 | |
| 809 | void print_failed_tests(const std::vector<std::string> & failed_tests) override { |
| 810 | if (failed_tests.empty()) { |
| 811 | return; |
| 812 | } |
| 813 | |
| 814 | printf(format: "\nFailing tests:\n" ); |
| 815 | for (const auto & test_name : failed_tests) { |
| 816 | printf(format: " %s\n" , test_name.c_str()); |
| 817 | } |
| 818 | } |
| 819 | |
| 820 | private: |
| 821 | void print_test_console(const test_result & result) { |
| 822 | printf(format: " %s(%s): " , result.op_name.c_str(), result.op_params.c_str()); |
| 823 | fflush(stdout); |
| 824 | |
| 825 | if (!result.supported) { |
| 826 | printf(format: "not supported [%s] " , result.backend_name.c_str()); |
| 827 | printf(format: "\n" ); |
| 828 | return; |
| 829 | } |
| 830 | |
| 831 | if (result.passed) { |
| 832 | printf(format: "\033[1;32mOK\033[0m\n" ); |
| 833 | } else { |
| 834 | printf(format: "\033[1;31mFAIL\033[0m\n" ); |
| 835 | } |
| 836 | } |
| 837 | |
| 838 | void print_perf_console(const test_result & result) { |
| 839 | int len = printf(format: " %s(%s): " , result.op_name.c_str(), result.op_params.c_str()); |
| 840 | fflush(stdout); |
| 841 | |
| 842 | if (!result.supported) { |
| 843 | printf(format: "not supported\n" ); |
| 844 | return; |
| 845 | } |
| 846 | |
| 847 | // align while also leaving some margin for variations in parameters |
| 848 | int align = 8; |
| 849 | int last = (len + align - 1) / align * align; |
| 850 | if (last - len < 5) { |
| 851 | last += align; |
| 852 | } |
| 853 | printf(format: "%*s" , last - len, "" ); |
| 854 | |
| 855 | printf(format: " %8d runs - %8.2f us/run - " , result.n_runs, result.time_us); |
| 856 | |
| 857 | if (result.flops > 0) { |
| 858 | auto format_flops = [](double flops) -> std::string { |
| 859 | char buf[256]; |
| 860 | if (flops >= 1e12) { |
| 861 | snprintf(s: buf, maxlen: sizeof(buf), format: "%6.2f TFLOP" , flops / 1e12); |
| 862 | } else if (flops >= 1e9) { |
| 863 | snprintf(s: buf, maxlen: sizeof(buf), format: "%6.2f GFLOP" , flops / 1e9); |
| 864 | } else if (flops >= 1e6) { |
| 865 | snprintf(s: buf, maxlen: sizeof(buf), format: "%6.2f MFLOP" , flops / 1e6); |
| 866 | } else { |
| 867 | snprintf(s: buf, maxlen: sizeof(buf), format: "%6.2f kFLOP" , flops / 1e3); |
| 868 | } |
| 869 | return buf; |
| 870 | }; |
| 871 | uint64_t op_flops_per_run = result.flops * result.time_us / 1e6; |
| 872 | printf(format: "%s/run - \033[1;34m%sS\033[0m" , format_flops(op_flops_per_run).c_str(), |
| 873 | format_flops(result.flops).c_str()); |
| 874 | } else { |
| 875 | printf(format: "%8zu kB/run - \033[1;34m%7.2f GB/s\033[0m" , result.memory_kb, result.bandwidth_gb_s); |
| 876 | } |
| 877 | printf(format: "\n" ); |
| 878 | } |
| 879 | |
| 880 | void print_support_console(const test_result & result) { |
| 881 | printf(format: " %s(%s): " , result.op_name.c_str(), result.op_params.c_str()); |
| 882 | fflush(stdout); |
| 883 | |
| 884 | if (result.supported) { |
| 885 | printf(format: "\033[1;32mSUPPORTED\033[0m\n" ); |
| 886 | } else { |
| 887 | printf(format: "\033[1;31mNOT SUPPORTED\033[0m\n" ); |
| 888 | } |
| 889 | } |
| 890 | }; |
| 891 | |
| 892 | struct sql_printer : public printer { |
| 893 | static std::string get_sql_field_type(const std::string & field) { |
| 894 | switch (test_result::get_field_type(field)) { |
| 895 | case test_result::STRING: |
| 896 | return "TEXT" ; |
| 897 | case test_result::BOOL: |
| 898 | case test_result::INT: |
| 899 | return "INTEGER" ; |
| 900 | case test_result::FLOAT: |
| 901 | return "REAL" ; |
| 902 | default: |
| 903 | GGML_ABORT("invalid field type" ); |
| 904 | } |
| 905 | } |
| 906 | |
| 907 | void () override { |
| 908 | std::vector<std::string> fields = test_result::get_fields(); |
| 909 | fprintf(stream: fout, format: "CREATE TABLE IF NOT EXISTS test_backend_ops (\n" ); |
| 910 | for (size_t i = 0; i < fields.size(); i++) { |
| 911 | fprintf(stream: fout, format: " %s %s%s\n" , fields[i].c_str(), get_sql_field_type(field: fields[i]).c_str(), |
| 912 | i < fields.size() - 1 ? "," : "" ); |
| 913 | } |
| 914 | fprintf(stream: fout, format: ");\n\n" ); |
| 915 | } |
| 916 | |
| 917 | void print_test_result(const test_result & result) override { |
| 918 | fprintf(stream: fout, format: "INSERT INTO test_backend_ops (" ); |
| 919 | std::vector<std::string> fields = test_result::get_fields(); |
| 920 | for (size_t i = 0; i < fields.size(); i++) { |
| 921 | fprintf(stream: fout, format: "%s%s" , fields[i].c_str(), i < fields.size() - 1 ? ", " : "" ); |
| 922 | } |
| 923 | fprintf(stream: fout, format: ") VALUES (" ); |
| 924 | std::vector<std::string> values = result.get_values(); |
| 925 | for (size_t i = 0; i < values.size(); i++) { |
| 926 | fprintf(stream: fout, format: "'%s'%s" , values[i].c_str(), i < values.size() - 1 ? ", " : "" ); |
| 927 | } |
| 928 | fprintf(stream: fout, format: ");\n" ); |
| 929 | } |
| 930 | }; |
| 931 | |
| 932 | struct csv_printer : public printer { |
| 933 | void () override { |
| 934 | |
| 935 | std::vector<std::string> fields = test_result::get_fields(); |
| 936 | std::vector<std::string> fields_csv = get_fields_csv(); |
| 937 | for (size_t i = 0; i < fields.size(); i++) { |
| 938 | if (std::find(first: std::begin(cont&: fields_csv), last: std::end(cont&: fields_csv), val: fields[i]) == std::end(cont&: fields_csv)) { |
| 939 | continue; |
| 940 | } |
| 941 | printf(format: "\"%s\"%s" , fields[i].c_str(), i < fields.size() - 1 ? "," : "" ); |
| 942 | } |
| 943 | printf(format: "\n" ); |
| 944 | } |
| 945 | |
| 946 | void print_test_result(const test_result & result) override { |
| 947 | |
| 948 | std::vector<std::string> values = result.get_values(); |
| 949 | std::vector<std::string> fields = test_result::get_fields(); |
| 950 | std::vector<std::string> fields_csv = get_fields_csv(); |
| 951 | |
| 952 | for (size_t i = 0; i < values.size(); i++) { |
| 953 | |
| 954 | if (std::find(first: std::begin(cont&: fields_csv), last: std::end(cont&: fields_csv), val: fields[i]) == std::end(cont&: fields_csv)) { |
| 955 | continue; |
| 956 | } |
| 957 | |
| 958 | // Escape quotes and wrap in quotes for CSV |
| 959 | std::string escaped_value = values[i]; |
| 960 | size_t pos = 0; |
| 961 | while ((pos = escaped_value.find(s: "\"" , pos: pos)) != std::string::npos) { |
| 962 | escaped_value.replace(pos: pos, n1: 1, s: "\"\"" ); |
| 963 | pos += 2; |
| 964 | } |
| 965 | printf(format: "\"%s\"%s" , escaped_value.c_str(), i < values.size() - 1 ? "," : "" ); |
| 966 | } |
| 967 | printf(format: "\n" ); |
| 968 | } |
| 969 | |
| 970 | static std::vector<std::string> get_fields_csv() { |
| 971 | return { |
| 972 | "op_name" , |
| 973 | "op_params" , |
| 974 | "supported" , |
| 975 | "error_message" , |
| 976 | "test_mode" , |
| 977 | "backend_reg_name" , |
| 978 | "backend_name" , |
| 979 | }; |
| 980 | } |
| 981 | |
| 982 | }; |
| 983 | |
| 984 | static std::unique_ptr<printer> create_printer(output_formats format) { |
| 985 | switch (format) { |
| 986 | case CONSOLE: |
| 987 | return std::make_unique<console_printer>(); |
| 988 | case SQL: |
| 989 | return std::make_unique<sql_printer>(); |
| 990 | case CSV: |
| 991 | return std::make_unique<csv_printer>(); |
| 992 | } |
| 993 | GGML_ABORT("invalid output format" ); |
| 994 | } |
| 995 | |
| 996 | struct test_case { |
| 997 | virtual ~test_case() {} |
| 998 | |
| 999 | virtual std::string op_desc(ggml_tensor * t) { |
| 1000 | return ggml_op_desc(t); |
| 1001 | } |
| 1002 | |
| 1003 | virtual std::string vars() { |
| 1004 | return "" ; |
| 1005 | } |
| 1006 | |
| 1007 | virtual ggml_tensor * build_graph(ggml_context * ctx) = 0; |
| 1008 | |
| 1009 | virtual double max_nmse_err() { |
| 1010 | return 1e-7; |
| 1011 | } |
| 1012 | |
| 1013 | virtual double max_maa_err() { |
| 1014 | return 1e-4; |
| 1015 | } |
| 1016 | |
| 1017 | virtual float grad_eps() { |
| 1018 | return 1e-1f; |
| 1019 | } |
| 1020 | |
| 1021 | // If false, estimate gradient with 2 points, neglects 3rd order derivative and higher. |
| 1022 | // If true, estimate gradient with 4 points, neglects 5th order derivative and higher. |
| 1023 | virtual bool grad_precise() { |
| 1024 | return false; |
| 1025 | } |
| 1026 | |
| 1027 | // Skip gradient checks if total number of gradients to be checked is larger than this (to speed up the tests). |
| 1028 | virtual int64_t grad_nmax() { |
| 1029 | return 10000; |
| 1030 | } |
| 1031 | |
| 1032 | // No effect if empty. |
| 1033 | // If not empty, skip all gradient checks where the numerical result does not match any of the values. |
| 1034 | // Needed for dealing with noncontinuous gradients (e.g. ReLU) where estimation using finite differences is unreliable. |
| 1035 | virtual std::vector<float> grad_expect() { |
| 1036 | return {}; |
| 1037 | } |
| 1038 | |
| 1039 | virtual void initialize_tensors(ggml_context * ctx) { |
| 1040 | for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, tensor: t)) { |
| 1041 | init_tensor_uniform(tensor: t); |
| 1042 | } |
| 1043 | } |
| 1044 | |
| 1045 | virtual size_t op_size(ggml_tensor * t) { |
| 1046 | size_t size = ggml_nbytes(tensor: t); |
| 1047 | // add source tensors |
| 1048 | for (int i = 0; i < GGML_MAX_SRC; i++) { |
| 1049 | if (t->src[i] != NULL) { |
| 1050 | size += ggml_nbytes(tensor: t->src[i]); |
| 1051 | } |
| 1052 | } |
| 1053 | return size; |
| 1054 | } |
| 1055 | |
| 1056 | virtual uint64_t op_flops(ggml_tensor * t) { |
| 1057 | GGML_UNUSED(t); |
| 1058 | return 0; |
| 1059 | } |
| 1060 | |
| 1061 | virtual bool run_whole_graph() { return false; } |
| 1062 | |
| 1063 | ggml_cgraph * gf = nullptr; |
| 1064 | ggml_cgraph * gb = nullptr; |
| 1065 | |
| 1066 | static const int sentinel_size = 1024; |
| 1067 | |
| 1068 | test_mode mode; |
| 1069 | |
| 1070 | std::vector<ggml_tensor *> sentinels; |
| 1071 | |
| 1072 | std::string current_op_name; |
| 1073 | |
| 1074 | void add_sentinel(ggml_context * ctx) { |
| 1075 | if (mode == MODE_PERF || mode == MODE_GRAD || mode == MODE_SUPPORT) { |
| 1076 | return; |
| 1077 | } |
| 1078 | ggml_tensor * sentinel = ::ggml_new_tensor_1d(ctx, type: GGML_TYPE_F32, ne0: sentinel_size); |
| 1079 | ggml_format_name(tensor: sentinel, fmt: "sent_%zu" , sentinels.size()); |
| 1080 | sentinels.push_back(x: sentinel); |
| 1081 | } |
| 1082 | |
| 1083 | // hijack ggml_new_tensor to add sentinels after each tensor to check for overflows in the backend |
| 1084 | |
| 1085 | ggml_tensor * ggml_new_tensor(ggml_context * ctx, ggml_type type, int n_dims, const int64_t * ne) { |
| 1086 | ggml_tensor * t = ::ggml_new_tensor(ctx, type, n_dims, ne); |
| 1087 | add_sentinel(ctx); |
| 1088 | return t; |
| 1089 | } |
| 1090 | |
| 1091 | ggml_tensor * ggml_new_tensor_1d(ggml_context * ctx, ggml_type type, int64_t ne0) { |
| 1092 | ggml_tensor * t = ::ggml_new_tensor_1d(ctx, type, ne0); |
| 1093 | add_sentinel(ctx); |
| 1094 | return t; |
| 1095 | } |
| 1096 | |
| 1097 | ggml_tensor * ggml_new_tensor_2d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1) { |
| 1098 | ggml_tensor * t = ::ggml_new_tensor_2d(ctx, type, ne0, ne1); |
| 1099 | add_sentinel(ctx); |
| 1100 | return t; |
| 1101 | } |
| 1102 | |
| 1103 | ggml_tensor * ggml_new_tensor_3d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2) { |
| 1104 | ggml_tensor * t = ::ggml_new_tensor_3d(ctx, type, ne0, ne1, ne2); |
| 1105 | add_sentinel(ctx); |
| 1106 | return t; |
| 1107 | } |
| 1108 | |
| 1109 | ggml_tensor * ggml_new_tensor_4d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) { |
| 1110 | ggml_tensor * t = ::ggml_new_tensor_4d(ctx, type, ne0, ne1, ne2, ne3); |
| 1111 | add_sentinel(ctx); |
| 1112 | return t; |
| 1113 | } |
| 1114 | |
| 1115 | // Checks an op against the test filter, which is a comma separated list of OP names or specific variations |
| 1116 | bool matches_filter(ggml_tensor * op, const char * op_names_filter) { |
| 1117 | if (op_names_filter) { |
| 1118 | const auto op_name = op_desc(t: op); |
| 1119 | const auto op_full_name = op_name + "(" + vars() + ")" ; |
| 1120 | std::string_view filter(op_names_filter); |
| 1121 | while (!filter.empty()) { |
| 1122 | auto comma_pos = filter.find_first_of(c: ','); |
| 1123 | const auto lparen_pos = filter.find_first_of(c: '('); |
| 1124 | if (lparen_pos < comma_pos) { |
| 1125 | auto rparen_pos = filter.find_first_of(c: ')'); |
| 1126 | comma_pos = filter.find_first_of(c: ',', pos: rparen_pos); |
| 1127 | const auto op_filter = filter.substr(pos: 0, n: comma_pos); |
| 1128 | if (op_filter == op_full_name) { |
| 1129 | return true; |
| 1130 | } |
| 1131 | } else { |
| 1132 | const auto op_filter = filter.substr(pos: 0, n: comma_pos); |
| 1133 | if (op_filter == op_name) { |
| 1134 | return true; |
| 1135 | } |
| 1136 | } |
| 1137 | filter = comma_pos != std::string_view::npos ? filter.substr(pos: comma_pos + 1) : "" ; |
| 1138 | } |
| 1139 | return false; |
| 1140 | } else { |
| 1141 | return true; |
| 1142 | } |
| 1143 | } |
| 1144 | |
| 1145 | test_status_t eval(ggml_backend_t backend1, |
| 1146 | ggml_backend_t backend2, |
| 1147 | const char * op_names_filter, |
| 1148 | printer * output_printer) { |
| 1149 | mode = MODE_TEST; |
| 1150 | |
| 1151 | ggml_init_params params = { |
| 1152 | /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(), |
| 1153 | /* .mem_base = */ NULL, |
| 1154 | /* .no_alloc = */ true, |
| 1155 | }; |
| 1156 | ggml_context * ctx = ggml_init(params); |
| 1157 | GGML_ASSERT(ctx); |
| 1158 | |
| 1159 | gf = ggml_new_graph(ctx); |
| 1160 | |
| 1161 | // pre-graph sentinel |
| 1162 | add_sentinel(ctx); |
| 1163 | |
| 1164 | ggml_tensor * out = build_graph(ctx); |
| 1165 | current_op_name = op_desc(t: out); |
| 1166 | |
| 1167 | if (!matches_filter(op: out, op_names_filter)) { |
| 1168 | //printf(" %s: skipping\n", op_desc(out).c_str()); |
| 1169 | ggml_free(ctx); |
| 1170 | return test_status_t::SKIPPED; |
| 1171 | } |
| 1172 | |
| 1173 | // check if the backends support the ops |
| 1174 | bool supported = true; |
| 1175 | for (ggml_backend_t backend : {backend1, backend2}) { |
| 1176 | for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, tensor: t)) { |
| 1177 | if (!ggml_backend_supports_op(backend, op: t)) { |
| 1178 | supported = false; |
| 1179 | break; |
| 1180 | } |
| 1181 | } |
| 1182 | } |
| 1183 | |
| 1184 | if (!supported) { |
| 1185 | // Create test result for unsupported operation |
| 1186 | test_result result(ggml_backend_name(backend: backend1), current_op_name, vars(), "test" , |
| 1187 | false, false, "not supported" ); |
| 1188 | |
| 1189 | if (output_printer) { |
| 1190 | output_printer->print_test_result(result); |
| 1191 | } |
| 1192 | |
| 1193 | ggml_free(ctx); |
| 1194 | return test_status_t::NOT_SUPPORTED; |
| 1195 | } |
| 1196 | |
| 1197 | // post-graph sentinel |
| 1198 | add_sentinel(ctx); |
| 1199 | |
| 1200 | // allocate |
| 1201 | ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend: backend1); |
| 1202 | |
| 1203 | if (buf == NULL) { |
| 1204 | printf(format: "failed to allocate tensors [%s] " , ggml_backend_name(backend: backend1)); |
| 1205 | ggml_free(ctx); |
| 1206 | return test_status_t::FAIL; |
| 1207 | } |
| 1208 | |
| 1209 | // build graph |
| 1210 | ggml_build_forward_expand(cgraph: gf, tensor: out); |
| 1211 | |
| 1212 | // add sentinels as graph nodes so that they are checked in the callback |
| 1213 | for (ggml_tensor * sentinel : sentinels) { |
| 1214 | ggml_graph_add_node(cgraph: gf, tensor: sentinel); |
| 1215 | } |
| 1216 | |
| 1217 | // randomize tensors |
| 1218 | initialize_tensors(ctx); |
| 1219 | |
| 1220 | // compare |
| 1221 | struct callback_userdata { |
| 1222 | bool ok; |
| 1223 | double max_err; |
| 1224 | ggml_backend_t backend1; |
| 1225 | ggml_backend_t backend2; |
| 1226 | }; |
| 1227 | |
| 1228 | callback_userdata ud { |
| 1229 | .ok: true, |
| 1230 | .max_err: max_nmse_err(), |
| 1231 | .backend1: backend1, |
| 1232 | .backend2: backend2 |
| 1233 | }; |
| 1234 | |
| 1235 | auto callback = [](int index, ggml_tensor * t1, ggml_tensor * t2, void * user_data) -> bool { |
| 1236 | callback_userdata * ud = (callback_userdata *) user_data; |
| 1237 | const char * bn1 = ggml_backend_name(backend: ud->backend1); |
| 1238 | const char * bn2 = ggml_backend_name(backend: ud->backend2); |
| 1239 | |
| 1240 | if (t1->op == GGML_OP_NONE) { |
| 1241 | // sentinels must be unchanged |
| 1242 | std::vector<uint8_t> t1_data(ggml_nbytes(tensor: t1)); |
| 1243 | std::vector<uint8_t> t2_data(ggml_nbytes(tensor: t2)); |
| 1244 | ggml_backend_tensor_get(tensor: t1, data: t1_data.data(), offset: 0, size: ggml_nbytes(tensor: t1)); |
| 1245 | ggml_backend_tensor_get(tensor: t2, data: t2_data.data(), offset: 0, size: ggml_nbytes(tensor: t2)); |
| 1246 | |
| 1247 | if (memcmp(s1: t1_data.data(), s2: t2_data.data(), n: ggml_nbytes(tensor: t1)) != 0) { |
| 1248 | printf(format: "sentinel mismatch: %s " , t1->name); |
| 1249 | ud->ok = false; |
| 1250 | return true; |
| 1251 | } |
| 1252 | } |
| 1253 | |
| 1254 | std::vector<float> f1 = tensor_to_float(t: t1); |
| 1255 | std::vector<float> f2 = tensor_to_float(t: t2); |
| 1256 | |
| 1257 | for (size_t i = 0; i < f1.size(); i++) { |
| 1258 | // check for nans |
| 1259 | if (std::isnan(x: f1[i]) || std::isnan(x: f2[i])) { |
| 1260 | printf(format: "[%s] NaN at index %zu (%s=%f %s=%f) " , ggml_op_desc(t: t1), i, bn1, f1[i], bn2, f2[i]); |
| 1261 | ud->ok = false; |
| 1262 | return true; |
| 1263 | } |
| 1264 | // check for infs: both must be inf of the same sign, or both must be finite |
| 1265 | if (isinf_or_max(f: f1[i]) || isinf_or_max(f: f2[i])) { |
| 1266 | if (isinf_or_max(f: f1[i]) && isinf_or_max(f: f2[i])) { |
| 1267 | if (std::signbit(x: f1[i]) != std::signbit(x: f2[i])) { |
| 1268 | printf(format: "[%s] inf sign mismatch: %s=%f %s=%f " , ggml_op_desc(t: t1), bn1, f1[i], bn2, f2[i]); |
| 1269 | ud->ok = false; |
| 1270 | return true; |
| 1271 | } |
| 1272 | } else { |
| 1273 | printf(format: "[%s] inf mismatch: %s=%f %s=%f " , ggml_op_desc(t: t1), bn1, f1[i], bn2, f2[i]); |
| 1274 | ud->ok = false; |
| 1275 | return true; |
| 1276 | } |
| 1277 | } |
| 1278 | } |
| 1279 | |
| 1280 | double err = nmse(a: f1.data(), b: f2.data(), n: f1.size()); |
| 1281 | if (err > ud->max_err) { |
| 1282 | printf(format: "[%s] NMSE = %.9f > %.9f " , ggml_op_desc(t: t1), err, ud->max_err); |
| 1283 | //for (int i = 0; i < (int) f1.size(); i++) { |
| 1284 | // printf("%5d %9.6f %9.6f, diff = %9.6f\n", i, f1[i], f2[i], f1[i] - f2[i]); |
| 1285 | //} |
| 1286 | //printf("\n"); |
| 1287 | //exit(1); |
| 1288 | ud->ok = false; |
| 1289 | } |
| 1290 | return true; |
| 1291 | |
| 1292 | GGML_UNUSED(index); |
| 1293 | }; |
| 1294 | |
| 1295 | const bool cmp_ok = ggml_backend_compare_graph_backend(backend1, backend2, graph: gf, callback, user_data: &ud, test_node: run_whole_graph() ? out : nullptr); |
| 1296 | |
| 1297 | ggml_backend_buffer_free(buffer: buf); |
| 1298 | |
| 1299 | ggml_free(ctx); |
| 1300 | |
| 1301 | // Create test result |
| 1302 | bool test_passed = ud.ok && cmp_ok; |
| 1303 | std::string error_msg = test_passed ? "" : (!cmp_ok ? "compare failed" : "test failed" ); |
| 1304 | test_result result(ggml_backend_name(backend: backend1), current_op_name, vars(), "test" , supported, test_passed, |
| 1305 | error_msg); |
| 1306 | |
| 1307 | if (output_printer) { |
| 1308 | output_printer->print_test_result(result); |
| 1309 | } |
| 1310 | |
| 1311 | return test_passed ? test_status_t::OK : test_status_t::FAIL; |
| 1312 | } |
| 1313 | |
| 1314 | bool eval_perf(ggml_backend_t backend, const char * op_names_filter, printer * output_printer) { |
| 1315 | mode = MODE_PERF; |
| 1316 | |
| 1317 | static const size_t graph_nodes = 8192; |
| 1318 | |
| 1319 | ggml_init_params params = { |
| 1320 | /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(size: graph_nodes, grads: false), |
| 1321 | /* .mem_base = */ NULL, |
| 1322 | /* .no_alloc = */ true, |
| 1323 | }; |
| 1324 | ggml_context_ptr ctx(ggml_init(params)); // smart ptr |
| 1325 | GGML_ASSERT(ctx); |
| 1326 | |
| 1327 | ggml_tensor * out = build_graph(ctx: ctx.get()); |
| 1328 | current_op_name = op_desc(t: out); |
| 1329 | if (!matches_filter(op: out, op_names_filter)) { |
| 1330 | //printf(" %s: skipping\n", op_desc(out).c_str()); |
| 1331 | return true; |
| 1332 | } |
| 1333 | |
| 1334 | if (!ggml_backend_supports_op(backend, op: out)) { |
| 1335 | // Create test result for unsupported performance test |
| 1336 | test_result result(ggml_backend_name(backend), current_op_name, vars(), "perf" , false, false, |
| 1337 | "not supported" ); |
| 1338 | |
| 1339 | output_printer->print_test_result(result); |
| 1340 | |
| 1341 | return true; |
| 1342 | } |
| 1343 | |
| 1344 | // allocate |
| 1345 | ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx: ctx.get(), backend)); // smart ptr |
| 1346 | |
| 1347 | if (buf == NULL) { |
| 1348 | printf(format: "failed to allocate tensors\n" ); |
| 1349 | return false; |
| 1350 | } |
| 1351 | |
| 1352 | // randomize tensors |
| 1353 | initialize_tensors(ctx: ctx.get()); |
| 1354 | |
| 1355 | // build graph |
| 1356 | ggml_cgraph * gf = ggml_new_graph_custom(ctx: ctx.get(), size: graph_nodes, grads: false); |
| 1357 | ggml_build_forward_expand(cgraph: gf, tensor: out); |
| 1358 | |
| 1359 | // warmup run |
| 1360 | ggml_status status = ggml_backend_graph_compute(backend, cgraph: gf); |
| 1361 | if (status != GGML_STATUS_SUCCESS) { |
| 1362 | fprintf(stderr, format: "%s: ggml_backend_graph_compute failed. status=%s \n" , __func__, ggml_status_to_string(status)); |
| 1363 | return false; |
| 1364 | } |
| 1365 | |
| 1366 | // determine number of runs |
| 1367 | int n_runs; |
| 1368 | bool is_cpu = ggml_backend_dev_type(device: ggml_backend_get_device(backend)) == GGML_BACKEND_DEVICE_TYPE_CPU; |
| 1369 | if (op_flops(t: out) > 0) { |
| 1370 | // based on flops |
| 1371 | const uint64_t GFLOP = 1000 * 1000 * 1000; |
| 1372 | const uint64_t target_flops_cpu = 8ULL * GFLOP; |
| 1373 | const uint64_t target_flops_gpu = 100ULL * GFLOP; |
| 1374 | uint64_t target_flops = is_cpu ? target_flops_cpu : target_flops_gpu; |
| 1375 | n_runs = std::min<int>(a: ggml_graph_size(cgraph: gf) - ggml_graph_n_nodes(cgraph: gf), b: target_flops / op_flops(t: out)) + 1; |
| 1376 | } else { |
| 1377 | // based on memory size |
| 1378 | const size_t GB = 1ULL << 30; |
| 1379 | const size_t target_size_cpu = 8 * GB; |
| 1380 | const size_t target_size_gpu = 32 * GB; |
| 1381 | size_t target_size = is_cpu ? target_size_cpu : target_size_gpu; |
| 1382 | n_runs = std::min<int>(a: ggml_graph_size(cgraph: gf) - ggml_graph_n_nodes(cgraph: gf), b: target_size / op_size(t: out)) + 1; |
| 1383 | } |
| 1384 | |
| 1385 | // duplicate the op |
| 1386 | for (int i = 1; i < n_runs; i++) { |
| 1387 | ggml_graph_add_node(cgraph: gf, tensor: out); |
| 1388 | } |
| 1389 | |
| 1390 | // calculate memory |
| 1391 | size_t mem = n_runs * op_size(t: out); |
| 1392 | auto tensor_op_size = [](ggml_tensor * t) { |
| 1393 | size_t size = ggml_nbytes(tensor: t); |
| 1394 | // add source tensors |
| 1395 | for (int i = 0; i < GGML_MAX_SRC; i++) { |
| 1396 | if (t->src[i] != NULL) { |
| 1397 | size += ggml_nbytes(tensor: t->src[i]); |
| 1398 | } |
| 1399 | } |
| 1400 | return size; |
| 1401 | }; |
| 1402 | for (int i = 0; i < ggml_graph_n_nodes(cgraph: gf); ++i) { |
| 1403 | if (ggml_is_view_op(op: ggml_graph_node(cgraph: gf, i)->op) || ggml_graph_node(cgraph: gf, i) == out) { |
| 1404 | continue; |
| 1405 | } |
| 1406 | mem += tensor_op_size(ggml_graph_node(cgraph: gf, i)); |
| 1407 | } |
| 1408 | |
| 1409 | // run |
| 1410 | int64_t total_time_us = 0; |
| 1411 | int64_t total_mem = 0; |
| 1412 | int total_runs = 0; |
| 1413 | do { |
| 1414 | int64_t start_time = ggml_time_us(); |
| 1415 | ggml_status status = ggml_backend_graph_compute(backend, cgraph: gf); |
| 1416 | if (status != GGML_STATUS_SUCCESS) { |
| 1417 | fprintf(stderr, format: "%s: ggml_backend_graph_compute failed. status=%s \n" , __func__, ggml_status_to_string(status)); |
| 1418 | return false; |
| 1419 | } |
| 1420 | int64_t end_time = ggml_time_us(); |
| 1421 | |
| 1422 | total_time_us += end_time - start_time; |
| 1423 | total_mem += mem; |
| 1424 | total_runs += n_runs; |
| 1425 | } while (total_time_us < 1000*1000); // run for at least 1 second |
| 1426 | |
| 1427 | // Create test result |
| 1428 | double avg_time_us = (double) total_time_us / total_runs; |
| 1429 | double calculated_flops = (op_flops(t: out) > 0) ? (op_flops(t: out) * total_runs) / (total_time_us / 1e6) : 0.0; |
| 1430 | double calculated_bandwidth = |
| 1431 | (op_flops(t: out) == 0) ? total_mem / (total_time_us / 1e6) / 1024.0 / 1024.0 / 1024.0 : 0.0; |
| 1432 | size_t calculated_memory_kb = op_size(t: out) / 1024; |
| 1433 | |
| 1434 | test_result result(ggml_backend_name(backend), current_op_name, vars(), "perf" , true, true, "" , avg_time_us, |
| 1435 | calculated_flops, calculated_bandwidth, calculated_memory_kb, total_runs); |
| 1436 | |
| 1437 | if (output_printer) { |
| 1438 | output_printer->print_test_result(result); |
| 1439 | } |
| 1440 | |
| 1441 | return true; |
| 1442 | } |
| 1443 | |
| 1444 | bool eval_support(ggml_backend_t backend, const char * op_names_filter, printer * output_printer) { |
| 1445 | mode = MODE_SUPPORT; |
| 1446 | |
| 1447 | static const size_t graph_nodes = 8192; |
| 1448 | |
| 1449 | ggml_init_params params = { |
| 1450 | /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(size: graph_nodes, grads: false), |
| 1451 | /* .mem_base = */ NULL, |
| 1452 | /* .no_alloc = */ true, |
| 1453 | }; |
| 1454 | ggml_context_ptr ctx(ggml_init(params)); // smart ptr |
| 1455 | GGML_ASSERT(ctx); |
| 1456 | |
| 1457 | gf = ggml_new_graph_custom(ctx: ctx.get(), size: graph_nodes, grads: false); |
| 1458 | |
| 1459 | ggml_tensor * out = build_graph(ctx: ctx.get()); |
| 1460 | current_op_name = op_desc(t: out); |
| 1461 | |
| 1462 | if (!matches_filter(op: out, op_names_filter)) { |
| 1463 | return true; |
| 1464 | } |
| 1465 | |
| 1466 | bool supported = ggml_backend_supports_op(backend, op: out); |
| 1467 | |
| 1468 | std::string device_desc = ggml_backend_dev_description(device: ggml_backend_get_device(backend)); |
| 1469 | std::string backend_reg_name = ggml_backend_reg_name(reg: ggml_backend_dev_backend_reg(device: ggml_backend_get_device(backend))); |
| 1470 | |
| 1471 | test_result result(ggml_backend_name(backend), current_op_name, vars(), "support" , supported, supported, |
| 1472 | supported ? "yes" : "no" , 0.0, 0.0, 0.0, 0, 0, device_desc, backend_reg_name); |
| 1473 | |
| 1474 | output_printer->print_test_result(result); |
| 1475 | |
| 1476 | return true; |
| 1477 | } |
| 1478 | |
| 1479 | bool eval_grad(ggml_backend_t backend, const char * op_names_filter, printer * output_printer) { |
| 1480 | mode = MODE_GRAD; |
| 1481 | const std::vector<float> expect = grad_expect(); |
| 1482 | |
| 1483 | ggml_init_params params = { |
| 1484 | /* .mem_size = */ ggml_tensor_overhead()*128 + 2*ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, grads: true), |
| 1485 | /* .mem_base = */ NULL, |
| 1486 | /* .no_alloc = */ true, |
| 1487 | }; |
| 1488 | ggml_context_ptr ctx(ggml_init(params)); // smart ptr |
| 1489 | GGML_ASSERT(ctx); |
| 1490 | |
| 1491 | gf = ggml_new_graph_custom(ctx: ctx.get(), GGML_DEFAULT_GRAPH_SIZE, grads: true); |
| 1492 | gb = ggml_new_graph_custom(ctx: ctx.get(), GGML_DEFAULT_GRAPH_SIZE, grads: true); |
| 1493 | |
| 1494 | ggml_tensor * out = build_graph(ctx: ctx.get()); |
| 1495 | |
| 1496 | if (!matches_filter(op: out, op_names_filter) || out->op == GGML_OP_OPT_STEP_ADAMW) { |
| 1497 | return true; |
| 1498 | } |
| 1499 | |
| 1500 | if (out->type != GGML_TYPE_F32) { |
| 1501 | output_printer->print_operation(info: test_operation_info(op_desc(t: out), vars(), ggml_backend_name(backend), |
| 1502 | test_status_t::NOT_SUPPORTED, |
| 1503 | out->name + std::string("->type != FP32" ))); |
| 1504 | return true; |
| 1505 | } |
| 1506 | |
| 1507 | // Print operation info first |
| 1508 | output_printer->print_operation(info: test_operation_info(op_desc(t: out), vars(), ggml_backend_name(backend))); |
| 1509 | |
| 1510 | // check if the backend supports the ops |
| 1511 | bool supported = true; |
| 1512 | bool any_params = false; |
| 1513 | std::string failure_reason; |
| 1514 | |
| 1515 | for (ggml_tensor * t = ggml_get_first_tensor(ctx: ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx: ctx.get(), tensor: t)) { |
| 1516 | if (!ggml_backend_supports_op(backend, op: t)) { |
| 1517 | supported = false; |
| 1518 | failure_reason = ggml_backend_name(backend); |
| 1519 | break; |
| 1520 | } |
| 1521 | if ((t->flags & GGML_TENSOR_FLAG_PARAM)) { |
| 1522 | any_params = true; |
| 1523 | if (t->type != GGML_TYPE_F32) { |
| 1524 | supported = false; |
| 1525 | failure_reason = std::string(t->name) + "->type != FP32" ; |
| 1526 | break; |
| 1527 | } |
| 1528 | } |
| 1529 | } |
| 1530 | if (!any_params) { |
| 1531 | supported = false; |
| 1532 | failure_reason = op_desc(t: out); |
| 1533 | } |
| 1534 | |
| 1535 | if (!supported) { |
| 1536 | output_printer->print_operation(info: test_operation_info(op_desc(t: out), vars(), ggml_backend_name(backend), |
| 1537 | test_status_t::NOT_SUPPORTED, failure_reason)); |
| 1538 | return true; |
| 1539 | } |
| 1540 | |
| 1541 | int64_t ngrads = 0; |
| 1542 | for (ggml_tensor * t = ggml_get_first_tensor(ctx: ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx: ctx.get(), tensor: t)) { |
| 1543 | if (t->flags & GGML_TENSOR_FLAG_PARAM) { |
| 1544 | ngrads += ggml_nelements(tensor: t); |
| 1545 | } |
| 1546 | } |
| 1547 | if (ngrads > grad_nmax()) { |
| 1548 | test_operation_info info(op_desc(t: out), vars(), ggml_backend_name(backend)); |
| 1549 | info.set_large_tensor_skip(); |
| 1550 | output_printer->print_operation(info); |
| 1551 | return true; |
| 1552 | } |
| 1553 | |
| 1554 | |
| 1555 | if (!ggml_is_scalar(tensor: out)) { |
| 1556 | out = ggml_sum(ctx: ctx.get(), a: out); |
| 1557 | ggml_set_name(tensor: out, name: "sum_of_out" ); |
| 1558 | } |
| 1559 | ggml_set_loss(tensor: out); |
| 1560 | |
| 1561 | ggml_build_forward_expand(cgraph: gf, tensor: out); |
| 1562 | ggml_graph_cpy(src: gf, dst: gb); |
| 1563 | ggml_build_backward_expand(ctx: ctx.get(), cgraph: gb, grad_accs: nullptr); |
| 1564 | if (expect.size() != 1 || expect[0] != 0.0f) { |
| 1565 | GGML_ASSERT(ggml_graph_n_nodes(gb) > ggml_graph_n_nodes(gf)); |
| 1566 | for (ggml_tensor * t = ggml_get_first_tensor(ctx: ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx: ctx.get(), tensor: t)) { |
| 1567 | GGML_ASSERT(!(t->flags & GGML_TENSOR_FLAG_PARAM) || ggml_graph_get_grad(gb, t)->op != GGML_OP_NONE); |
| 1568 | } |
| 1569 | } |
| 1570 | |
| 1571 | for (ggml_tensor * t = ggml_get_first_tensor(ctx: ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx: ctx.get(), tensor: t)) { |
| 1572 | if (!ggml_backend_supports_op(backend, op: t)) { |
| 1573 | output_printer->print_operation(info: test_operation_info(op_desc(t: out), vars(), ggml_backend_name(backend), |
| 1574 | test_status_t::NOT_SUPPORTED, |
| 1575 | ggml_backend_name(backend))); |
| 1576 | supported = false; |
| 1577 | break; |
| 1578 | } |
| 1579 | if ((t->flags & GGML_TENSOR_FLAG_PARAM) && t->type != GGML_TYPE_F32) { |
| 1580 | output_printer->print_operation(info: test_operation_info(op_desc(t: out), vars(), ggml_backend_name(backend), |
| 1581 | test_status_t::NOT_SUPPORTED, |
| 1582 | std::string(t->name) + "->type != FP32" )); |
| 1583 | supported = false; |
| 1584 | break; |
| 1585 | } |
| 1586 | } |
| 1587 | if (!supported) { |
| 1588 | return true; |
| 1589 | } |
| 1590 | |
| 1591 | // allocate |
| 1592 | ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx: ctx.get(), backend)); // smart ptr |
| 1593 | if (buf == NULL) { |
| 1594 | test_operation_info info(op_desc(t: out), vars(), ggml_backend_name(backend)); |
| 1595 | info.set_error(component: "allocation" , details: "" ); |
| 1596 | output_printer->print_operation(info); |
| 1597 | return false; |
| 1598 | } |
| 1599 | |
| 1600 | initialize_tensors(ctx: ctx.get()); // Randomizes all tensors (including gradients). |
| 1601 | ggml_graph_reset(cgraph: gb); // Sets gradients to 1 if loss, 0 otherwise. |
| 1602 | |
| 1603 | ggml_status status = ggml_backend_graph_compute(backend, cgraph: gf); |
| 1604 | if (status != GGML_STATUS_SUCCESS) { |
| 1605 | fprintf(stderr, format: "%s: ggml_backend_graph_compute failed. status=%s \n" , __func__, ggml_status_to_string(status)); |
| 1606 | return false; |
| 1607 | } |
| 1608 | status = ggml_backend_graph_compute(backend, cgraph: gb); |
| 1609 | if (status != GGML_STATUS_SUCCESS) { |
| 1610 | fprintf(stderr, format: "%s: ggml_backend_graph_compute failed. status=%s \n" , __func__, ggml_status_to_string(status)); |
| 1611 | return false; |
| 1612 | } |
| 1613 | |
| 1614 | bool ok = true; |
| 1615 | for (struct ggml_tensor * t = ggml_get_first_tensor(ctx: ctx.get()); t != nullptr; t = ggml_get_next_tensor(ctx: ctx.get(), tensor: t)) { |
| 1616 | if (!(t->flags & GGML_TENSOR_FLAG_PARAM)) { |
| 1617 | continue; |
| 1618 | } |
| 1619 | |
| 1620 | const char * bn = ggml_backend_name(backend); |
| 1621 | const int64_t ne = ggml_nelements(tensor: t); |
| 1622 | |
| 1623 | std::vector<float> ga; |
| 1624 | struct ggml_tensor * grad = ggml_graph_get_grad(cgraph: gb, node: t); |
| 1625 | if (grad) { |
| 1626 | ga = tensor_to_float(t: grad); |
| 1627 | } else { |
| 1628 | ga.resize(new_size: ne); // default value is 0.0f |
| 1629 | } |
| 1630 | |
| 1631 | for (int64_t i = 0; i < ne; ++i) { // gradient algebraic |
| 1632 | // check for nans |
| 1633 | if (!std::isfinite(x: ga[i])) { |
| 1634 | test_operation_info info(op_desc(t: out), vars(), ggml_backend_name(backend)); |
| 1635 | info.set_gradient_info(index: i, param_name: bn, value: ga[i]); |
| 1636 | output_printer->print_operation(info); |
| 1637 | ok = false; |
| 1638 | break; |
| 1639 | } |
| 1640 | } |
| 1641 | if (!ok) { |
| 1642 | break; |
| 1643 | } |
| 1644 | |
| 1645 | std::vector<float> gn(ne); // gradient numeric |
| 1646 | GGML_ASSERT(ga.size() == gn.size()); |
| 1647 | |
| 1648 | std::vector<float> x0 = tensor_to_float(t); // original t data |
| 1649 | GGML_ASSERT(ggml_is_scalar(out)); |
| 1650 | GGML_ASSERT(out->type == GGML_TYPE_F32); |
| 1651 | |
| 1652 | const float eps = grad_eps(); |
| 1653 | for (int64_t i = 0; i < ne; ++i) { |
| 1654 | const float xiu = x0[i] + 1.0f*eps; // x, index i, up |
| 1655 | const float xiuh = x0[i] + 0.5f*eps; // x, index i, up half |
| 1656 | const float xidh = x0[i] - 0.5f*eps; // x, index i, down half |
| 1657 | const float xid = x0[i] - 1.0f*eps; // x, index i, down |
| 1658 | |
| 1659 | float fu, fuh, fdh, fd; // output values for xiu, xiuh, xid, xidh |
| 1660 | |
| 1661 | ggml_backend_tensor_set(tensor: t, data: &xiu, offset: i*sizeof(float), size: sizeof(float)); |
| 1662 | status = ggml_backend_graph_compute(backend, cgraph: gf); |
| 1663 | if (status != GGML_STATUS_SUCCESS) { |
| 1664 | fprintf(stderr, format: "%s: ggml_backend_graph_compute failed. status=%s \n" , __func__, ggml_status_to_string(status)); |
| 1665 | return false; |
| 1666 | } |
| 1667 | ggml_backend_tensor_get(tensor: out, data: &fu, offset: 0, size: ggml_nbytes(tensor: out)); |
| 1668 | |
| 1669 | ggml_backend_tensor_set(tensor: t, data: &xid, offset: i*sizeof(float), size: sizeof(float)); |
| 1670 | status = ggml_backend_graph_compute(backend, cgraph: gf); |
| 1671 | if (status != GGML_STATUS_SUCCESS) { |
| 1672 | fprintf(stderr, format: "%s: ggml_backend_graph_compute failed. status=%s \n" , __func__, ggml_status_to_string(status)); |
| 1673 | return false; |
| 1674 | } |
| 1675 | ggml_backend_tensor_get(tensor: out, data: &fd, offset: 0, size: ggml_nbytes(tensor: out)); |
| 1676 | |
| 1677 | if (grad_precise()) { |
| 1678 | ggml_backend_tensor_set(tensor: t, data: &xiuh, offset: i*sizeof(float), size: sizeof(float)); |
| 1679 | status = ggml_backend_graph_compute(backend, cgraph: gf); |
| 1680 | if (status != GGML_STATUS_SUCCESS) { |
| 1681 | fprintf(stderr, format: "%s: ggml_backend_graph_compute failed. status=%s \n" , __func__, ggml_status_to_string(status)); |
| 1682 | return false; |
| 1683 | } |
| 1684 | ggml_backend_tensor_get(tensor: out, data: &fuh, offset: 0, size: ggml_nbytes(tensor: out)); |
| 1685 | |
| 1686 | ggml_backend_tensor_set(tensor: t, data: &xidh, offset: i*sizeof(float), size: sizeof(float)); |
| 1687 | status = ggml_backend_graph_compute(backend, cgraph: gf); |
| 1688 | if (status != GGML_STATUS_SUCCESS) { |
| 1689 | fprintf(stderr, format: "%s: ggml_backend_graph_compute failed. status=%s \n" , __func__, ggml_status_to_string(status)); |
| 1690 | return false; |
| 1691 | } |
| 1692 | ggml_backend_tensor_get(tensor: out, data: &fdh, offset: 0, size: ggml_nbytes(tensor: out)); |
| 1693 | |
| 1694 | gn[i] = (8.0*(double)fuh + (double)fd - (8.0*(double)fdh + (double)fu)) / (6.0*(double)eps); |
| 1695 | } else { |
| 1696 | gn[i] = (fu - fd) / (2.0f*eps); |
| 1697 | } |
| 1698 | |
| 1699 | ggml_backend_tensor_set(tensor: t, data: x0.data(), offset: 0, size: ggml_nbytes(tensor: t)); |
| 1700 | } |
| 1701 | |
| 1702 | const double err = mean_abs_asymm(a: gn.data(), b: ga.data(), n: gn.size(), expected_vals: expect); |
| 1703 | if (err > max_maa_err()) { |
| 1704 | test_operation_info info(op_desc(t: out), vars(), ggml_backend_name(backend)); |
| 1705 | info.set_maa_error(error: err, threshold: max_maa_err()); |
| 1706 | output_printer->print_operation(info); |
| 1707 | ok = false; |
| 1708 | break; |
| 1709 | } |
| 1710 | if (!ok) { |
| 1711 | break; |
| 1712 | } |
| 1713 | } |
| 1714 | |
| 1715 | // Create final test result |
| 1716 | test_operation_info final_info(op_desc(t: out), vars(), ggml_backend_name(backend)); |
| 1717 | if (!ok) { |
| 1718 | final_info.set_compare_failure(); |
| 1719 | } |
| 1720 | final_info.status = ok ? test_status_t::OK : test_status_t::FAIL; |
| 1721 | output_printer->print_operation(info: final_info); |
| 1722 | |
| 1723 | if (ok) { |
| 1724 | return true; |
| 1725 | } |
| 1726 | |
| 1727 | return false; |
| 1728 | } |
| 1729 | }; |
| 1730 | |
| 1731 | |
| 1732 | // ################################### |
| 1733 | // ## Section 2: GGML Op Defintions ## |
| 1734 | // ################################### |
| 1735 | |
| 1736 | |
| 1737 | // The following is an example showing the bare minimum for creating a test for a GGML op. |
| 1738 | |
| 1739 | // GGML_OP_EXAMPLE |
| 1740 | struct test_example : public test_case { |
| 1741 | // Always define these 2 or variants thereof: |
| 1742 | const ggml_type type; // The type of the input tensors. |
| 1743 | const std::array<int64_t, 4> ne; // The shape of the input tensors. |
| 1744 | // For some ops it's necessary to define multiple types or shapes for the inputs. |
| 1745 | // Or they may need additional parameters. |
| 1746 | |
| 1747 | // Put all parameters needed to fully define the test into one of the VARS_TO_STR macros. |
| 1748 | // In most cases these are just the properties of the struct that you defined above. |
| 1749 | // This is needed for info prints. |
| 1750 | std::string vars() override { |
| 1751 | return VARS_TO_STR2(type, ne); |
| 1752 | } |
| 1753 | |
| 1754 | // Define a constructor for the struct. |
| 1755 | // In most cases it will be sufficient to have the same arguments as the struct has properties |
| 1756 | // and just use initializer lists. |
| 1757 | test_example(ggml_type type = GGML_TYPE_F32, |
| 1758 | std::array<int64_t, 4> ne = {10, 5, 4, 3}) |
| 1759 | : type(type), ne(ne) {} |
| 1760 | |
| 1761 | // Define how a simple GGML compute graph can be constructed for the new GGML op. |
| 1762 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 1763 | // Step 1: create input tensors that don't depend on any other tensors: |
| 1764 | ggml_tensor * a = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 1765 | ggml_set_name(tensor: a, name: "a" ); // Setting names is optional but it's useful for debugging. |
| 1766 | |
| 1767 | ggml_tensor * b = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 1768 | ggml_set_name(tensor: b, name: "b" ); |
| 1769 | |
| 1770 | // Step 2: use the op that you want to test in the GGML compute graph. |
| 1771 | ggml_tensor * out = ggml_add(ctx, a, b); // For this example we're just doing a simple addition. |
| 1772 | ggml_set_name(tensor: out, name: "out" ); |
| 1773 | |
| 1774 | // Step 3: return the output tensor. |
| 1775 | return out; |
| 1776 | } |
| 1777 | // In order to also check the gradients for your op, add calls like ggml_set_param(a) |
| 1778 | // immediately after you create the tensors. |
| 1779 | // This is optional and only makes sense if a backward pass has actually been implemented for the new op. |
| 1780 | }; |
| 1781 | |
| 1782 | |
| 1783 | // GGML_OP_UNARY |
| 1784 | struct test_unary : public test_case { |
| 1785 | const ggml_unary_op op; |
| 1786 | const ggml_type type; |
| 1787 | const std::array<int64_t, 4> ne_a; |
| 1788 | int v; // view (1 : non-contiguous a) |
| 1789 | |
| 1790 | std::string vars() override { |
| 1791 | return VARS_TO_STR3(type, ne_a, v); |
| 1792 | } |
| 1793 | |
| 1794 | test_unary(ggml_unary_op op, |
| 1795 | ggml_type type = GGML_TYPE_F32, |
| 1796 | std::array<int64_t, 4> ne_a = {128, 2, 2, 2}, |
| 1797 | int v = 0) |
| 1798 | : op(op), type(type), ne_a(ne_a), v(v) {} |
| 1799 | |
| 1800 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 1801 | const bool grad_supported = op == GGML_UNARY_OP_ABS || op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_NEG || |
| 1802 | op == GGML_UNARY_OP_STEP || op == GGML_UNARY_OP_RELU || op == GGML_UNARY_OP_SILU; |
| 1803 | |
| 1804 | ggml_tensor * a; |
| 1805 | if (v & 1) { |
| 1806 | auto ne = ne_a; ne[0] *= 3; |
| 1807 | a = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 1808 | if (grad_supported) { |
| 1809 | ggml_set_param(tensor: a); |
| 1810 | } |
| 1811 | ggml_set_name(tensor: a, name: "a" ); |
| 1812 | |
| 1813 | a = ggml_view_4d(ctx, a, ne0: ne_a[0], ne1: ne_a[1], ne2: ne_a[2], ne3: ne_a[3], nb1: a->nb[1], nb2: a->nb[2], nb3: a->nb[3], offset: 0); |
| 1814 | ggml_set_name(tensor: a, name: "view_of_a" ); |
| 1815 | } else { |
| 1816 | a = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne_a.data()); |
| 1817 | if (grad_supported) { |
| 1818 | ggml_set_param(tensor: a); |
| 1819 | } |
| 1820 | ggml_set_name(tensor: a, name: "a" ); |
| 1821 | } |
| 1822 | |
| 1823 | ggml_tensor * out = ggml_unary(ctx, a, op); |
| 1824 | ggml_set_name(tensor: out, name: "out" ); |
| 1825 | |
| 1826 | return out; |
| 1827 | } |
| 1828 | |
| 1829 | void initialize_tensors(ggml_context * ctx) override { |
| 1830 | for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, tensor: t)) { |
| 1831 | // test extended range of values to check for NaNs in GELU |
| 1832 | init_tensor_uniform(tensor: t, min: -150.f, max: 150.f); |
| 1833 | } |
| 1834 | } |
| 1835 | |
| 1836 | float grad_eps() override { |
| 1837 | return 15.0f; |
| 1838 | } |
| 1839 | |
| 1840 | std::vector<float> grad_expect() override { |
| 1841 | if (op == GGML_UNARY_OP_ABS) { |
| 1842 | return {-1.0f, 1.0f}; |
| 1843 | } |
| 1844 | if (op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_STEP) { |
| 1845 | return {0.0f}; |
| 1846 | } |
| 1847 | if (op == GGML_UNARY_OP_RELU) { |
| 1848 | return {0.0f, 1.0f}; |
| 1849 | } |
| 1850 | return {}; |
| 1851 | } |
| 1852 | |
| 1853 | }; |
| 1854 | |
| 1855 | // GGML_OP_GLU |
| 1856 | struct test_glu : public test_case { |
| 1857 | const ggml_glu_op op; |
| 1858 | const ggml_type type; |
| 1859 | const std::array<int64_t, 4> ne_a; |
| 1860 | int v; // view (1 : non-contiguous a) |
| 1861 | bool swapped; |
| 1862 | |
| 1863 | std::string vars() override { |
| 1864 | return VARS_TO_STR4(type, ne_a, v, swapped); |
| 1865 | } |
| 1866 | |
| 1867 | test_glu(ggml_glu_op op, |
| 1868 | ggml_type type = GGML_TYPE_F32, |
| 1869 | std::array<int64_t, 4> ne_a = {128, 2, 2, 2}, |
| 1870 | int v = 0, |
| 1871 | bool swapped = false) |
| 1872 | : op(op), type(type), ne_a(ne_a), v(v), swapped(swapped) {} |
| 1873 | |
| 1874 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 1875 | ggml_tensor * a; |
| 1876 | if (v & 1) { |
| 1877 | auto ne = ne_a; ne[0] *= 3; |
| 1878 | a = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 1879 | ggml_set_name(tensor: a, name: "a" ); |
| 1880 | |
| 1881 | a = ggml_view_4d(ctx, a, ne0: ne_a[0], ne1: ne_a[1], ne2: ne_a[2], ne3: ne_a[3], nb1: a->nb[1], nb2: a->nb[2], nb3: a->nb[3], offset: 0); |
| 1882 | ggml_set_name(tensor: a, name: "view_of_a" ); |
| 1883 | } else { |
| 1884 | a = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne_a.data()); |
| 1885 | ggml_set_name(tensor: a, name: "a" ); |
| 1886 | } |
| 1887 | |
| 1888 | ggml_tensor * out = ggml_glu(ctx, a, op, swapped); |
| 1889 | ggml_set_name(tensor: out, name: "out" ); |
| 1890 | |
| 1891 | return out; |
| 1892 | } |
| 1893 | |
| 1894 | void initialize_tensors(ggml_context * ctx) override { |
| 1895 | for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, tensor: t)) { |
| 1896 | // test extended range of values to check for NaNs in GELU |
| 1897 | init_tensor_uniform(tensor: t, min: -150.f, max: 150.f); |
| 1898 | } |
| 1899 | } |
| 1900 | }; |
| 1901 | |
| 1902 | struct test_glu_split : public test_case { |
| 1903 | const ggml_glu_op op; |
| 1904 | const ggml_type type; |
| 1905 | const std::array<int64_t, 4> ne_a; |
| 1906 | int v; // view (1 : non-contiguous a) |
| 1907 | |
| 1908 | std::string vars() override { |
| 1909 | return VARS_TO_STR3(type, ne_a, v) + ",split" ; |
| 1910 | } |
| 1911 | |
| 1912 | test_glu_split(ggml_glu_op op, |
| 1913 | ggml_type type = GGML_TYPE_F32, |
| 1914 | std::array<int64_t, 4> ne_a = {128, 2, 2, 2}, |
| 1915 | int v = 0) |
| 1916 | : op(op), type(type), ne_a(ne_a), v(v) {} |
| 1917 | |
| 1918 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 1919 | ggml_tensor * a; |
| 1920 | ggml_tensor * b; |
| 1921 | if (v & 1) { |
| 1922 | auto ne = ne_a; ne[0] *= 3; |
| 1923 | a = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 1924 | ggml_set_param(tensor: a); |
| 1925 | ggml_set_name(tensor: a, name: "a" ); |
| 1926 | |
| 1927 | a = ggml_view_4d(ctx, a, ne0: ne_a[0], ne1: ne_a[1], ne2: ne_a[2], ne3: ne_a[3], nb1: a->nb[1], nb2: a->nb[2], nb3: a->nb[3], offset: 0); |
| 1928 | ggml_set_name(tensor: a, name: "view_of_a" ); |
| 1929 | |
| 1930 | b = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 1931 | ggml_set_param(tensor: b); |
| 1932 | ggml_set_name(tensor: b, name: "b" ); |
| 1933 | |
| 1934 | b = ggml_view_4d(ctx, a: b, ne0: ne_a[0], ne1: ne_a[1], ne2: ne_a[2], ne3: ne_a[3], nb1: b->nb[1], nb2: b->nb[2], nb3: b->nb[3], offset: 0); |
| 1935 | ggml_set_name(tensor: a, name: "view_of_b" ); |
| 1936 | } else { |
| 1937 | a = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne_a.data()); |
| 1938 | ggml_set_param(tensor: a); |
| 1939 | ggml_set_name(tensor: a, name: "a" ); |
| 1940 | |
| 1941 | b = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne_a.data()); |
| 1942 | ggml_set_param(tensor: b); |
| 1943 | ggml_set_name(tensor: b, name: "b" ); |
| 1944 | } |
| 1945 | |
| 1946 | ggml_tensor * out = ggml_glu_split(ctx, a, b, op); |
| 1947 | ggml_set_name(tensor: out, name: "out" ); |
| 1948 | |
| 1949 | return out; |
| 1950 | } |
| 1951 | |
| 1952 | void initialize_tensors(ggml_context * ctx) override { |
| 1953 | for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, tensor: t)) { |
| 1954 | // test extended range of values to check for NaNs in GELU |
| 1955 | init_tensor_uniform(tensor: t, min: -150.f, max: 150.f); |
| 1956 | } |
| 1957 | } |
| 1958 | }; |
| 1959 | |
| 1960 | struct test_swiglu_oai : public test_case { |
| 1961 | const ggml_type type; |
| 1962 | const std::array<int64_t, 4> ne_a; |
| 1963 | int v; // view (1 : non-contiguous a) |
| 1964 | float alpha; |
| 1965 | float limit; |
| 1966 | |
| 1967 | std::string vars() override { |
| 1968 | return VARS_TO_STR5(type, ne_a, v, alpha, limit); |
| 1969 | } |
| 1970 | |
| 1971 | test_swiglu_oai(ggml_type type = GGML_TYPE_F32, |
| 1972 | std::array<int64_t, 4> ne_a = {128, 2, 2, 2}, |
| 1973 | int v = 0, |
| 1974 | float alpha = 1.702f, |
| 1975 | float limit = 7.0f) |
| 1976 | : type(type), ne_a(ne_a), v(v), alpha(alpha), limit(limit) {} |
| 1977 | |
| 1978 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 1979 | ggml_tensor * a; |
| 1980 | ggml_tensor * b; |
| 1981 | if (v & 1) { |
| 1982 | auto ne = ne_a; ne[0] *= 3; |
| 1983 | a = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 1984 | ggml_set_param(tensor: a); |
| 1985 | ggml_set_name(tensor: a, name: "a" ); |
| 1986 | |
| 1987 | a = ggml_view_4d(ctx, a, ne0: ne_a[0], ne1: ne_a[1], ne2: ne_a[2], ne3: ne_a[3], nb1: a->nb[1], nb2: a->nb[2], nb3: a->nb[3], offset: 0); |
| 1988 | ggml_set_name(tensor: a, name: "view_of_a" ); |
| 1989 | |
| 1990 | b = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 1991 | ggml_set_param(tensor: b); |
| 1992 | ggml_set_name(tensor: b, name: "b" ); |
| 1993 | |
| 1994 | b = ggml_view_4d(ctx, a: b, ne0: ne_a[0], ne1: ne_a[1], ne2: ne_a[2], ne3: ne_a[3], nb1: b->nb[1], nb2: b->nb[2], nb3: b->nb[3], offset: 0); |
| 1995 | ggml_set_name(tensor: a, name: "view_of_b" ); |
| 1996 | } else { |
| 1997 | a = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne_a.data()); |
| 1998 | ggml_set_param(tensor: a); |
| 1999 | ggml_set_name(tensor: a, name: "a" ); |
| 2000 | |
| 2001 | b = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne_a.data()); |
| 2002 | ggml_set_param(tensor: b); |
| 2003 | ggml_set_name(tensor: b, name: "b" ); |
| 2004 | } |
| 2005 | |
| 2006 | ggml_tensor * out = ggml_swiglu_oai(ctx, a, b, alpha, limit); |
| 2007 | ggml_set_name(tensor: out, name: "out" ); |
| 2008 | |
| 2009 | return out; |
| 2010 | } |
| 2011 | |
| 2012 | void initialize_tensors(ggml_context * ctx) override { |
| 2013 | for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, tensor: t)) { |
| 2014 | // test extended range of values to check for NaNs in GELU |
| 2015 | init_tensor_uniform(tensor: t, min: -150.f, max: 150.f); |
| 2016 | } |
| 2017 | } |
| 2018 | }; |
| 2019 | |
| 2020 | // GGML_OP_GET_ROWS |
| 2021 | struct test_get_rows : public test_case { |
| 2022 | const ggml_type type; |
| 2023 | const int n; // cols |
| 2024 | const int m; // rows |
| 2025 | const int r; // rows to get |
| 2026 | const int be1; // batch size |
| 2027 | const int be2; // batch size |
| 2028 | const bool v; // view (non-contiguous src1) |
| 2029 | |
| 2030 | std::string vars() override { |
| 2031 | return VARS_TO_STR7(type, n, m, r, be1, be2, v); |
| 2032 | } |
| 2033 | |
| 2034 | test_get_rows(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int be1 = 1, int be2 = 1, bool v = false) |
| 2035 | : type(type), n(n), m(m), r(r), be1(be1), be2(be2), v(v) {} |
| 2036 | |
| 2037 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 2038 | ggml_tensor * in = ggml_new_tensor_4d(ctx, type, ne0: n, ne1: m, ne2: be1, ne3: be2); |
| 2039 | ggml_set_name(tensor: in, name: "in" ); |
| 2040 | |
| 2041 | ggml_tensor * rows = ggml_new_tensor_3d(ctx, type: GGML_TYPE_I32, ne0: r, ne1: be1, ne2: be2); |
| 2042 | ggml_set_name(tensor: rows, name: "rows" ); |
| 2043 | if (v) { |
| 2044 | rows = ggml_view_3d(ctx, a: rows, ne0: r/2, ne1: be1, ne2: be2, nb1: rows->nb[1], nb2: rows->nb[2], offset: 0); |
| 2045 | ggml_set_name(tensor: rows, name: "view_of_rows" ); |
| 2046 | } |
| 2047 | |
| 2048 | const bool grad_supported = ggml_is_matrix(tensor: in) && ggml_is_vector(tensor: rows); |
| 2049 | if (grad_supported) { |
| 2050 | ggml_set_param(tensor: in); |
| 2051 | // rows is a constant input -> no gradients |
| 2052 | } |
| 2053 | |
| 2054 | ggml_tensor * out = ggml_get_rows(ctx, a: in, b: rows); |
| 2055 | ggml_set_name(tensor: out, name: "out" ); |
| 2056 | |
| 2057 | return out; |
| 2058 | } |
| 2059 | |
| 2060 | void initialize_tensors(ggml_context * ctx) override { |
| 2061 | for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, tensor: t)) { |
| 2062 | if (t->type == GGML_TYPE_I32) { |
| 2063 | if (ggml_is_view_op(op: t->op)) { continue; } |
| 2064 | // rows |
| 2065 | std::vector<int> data(r*be1*be2); |
| 2066 | for (int i = 0; i < r*be1*be2; i++) { |
| 2067 | data[i] = rand() % m; |
| 2068 | } |
| 2069 | ggml_backend_tensor_set(tensor: t, data: data.data(), offset: 0, size: r * be1 * be2 * sizeof(int)); |
| 2070 | } else { |
| 2071 | init_tensor_uniform(tensor: t); |
| 2072 | } |
| 2073 | } |
| 2074 | } |
| 2075 | }; |
| 2076 | |
| 2077 | // GGML_OP_GET_ROWS_BACK |
| 2078 | struct test_get_rows_back : public test_case { |
| 2079 | const ggml_type type; |
| 2080 | const int n; // cols |
| 2081 | const int m; // rows |
| 2082 | const int r; // rows to get |
| 2083 | const int b; // batch size |
| 2084 | const bool v; // view (non-contiguous src1) |
| 2085 | |
| 2086 | std::string vars() override { |
| 2087 | return VARS_TO_STR6(type, n, m, r, b, v); |
| 2088 | } |
| 2089 | |
| 2090 | test_get_rows_back(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false) |
| 2091 | : type(type), n(n), m(m), r(r), b(b), v(v) {} |
| 2092 | |
| 2093 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 2094 | ggml_tensor * in_forward = ggml_new_tensor_3d(ctx, type, ne0: n, ne1: m, ne2: b); |
| 2095 | ggml_set_name(tensor: in_forward, name: "in_forward" ); |
| 2096 | |
| 2097 | ggml_tensor * rows = ggml_new_tensor_2d(ctx, type: GGML_TYPE_I32, ne0: r, ne1: b); |
| 2098 | ggml_set_name(tensor: rows, name: "rows" ); |
| 2099 | if (v) { |
| 2100 | rows = ggml_view_2d(ctx, a: rows, ne0: r/2, ne1: b, nb1: rows->nb[1], offset: 0); |
| 2101 | ggml_set_name(tensor: rows, name: "view_of_rows" ); |
| 2102 | } |
| 2103 | |
| 2104 | ggml_tensor * grad = ggml_new_tensor_3d(ctx, type, ne0: n, ne1: r, ne2: b); |
| 2105 | ggml_set_name(tensor: grad, name: "grad" ); |
| 2106 | |
| 2107 | ggml_tensor * out = ggml_get_rows_back(ctx, a: grad, b: rows, c: in_forward); |
| 2108 | ggml_set_name(tensor: out, name: "out" ); |
| 2109 | |
| 2110 | return out; |
| 2111 | } |
| 2112 | |
| 2113 | void initialize_tensors(ggml_context * ctx) override { |
| 2114 | for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, tensor: t)) { |
| 2115 | if (t->type == GGML_TYPE_I32) { |
| 2116 | if (ggml_is_view_op(op: t->op)) { continue; } |
| 2117 | // rows |
| 2118 | std::vector<int> data(r*b); |
| 2119 | for (int i = 0; i < r*b; i++) { |
| 2120 | data[i] = rand() % m; |
| 2121 | } |
| 2122 | ggml_backend_tensor_set(tensor: t, data: data.data(), offset: 0, size: r * b * sizeof(int)); |
| 2123 | } else { |
| 2124 | init_tensor_uniform(tensor: t); |
| 2125 | } |
| 2126 | } |
| 2127 | } |
| 2128 | }; |
| 2129 | |
| 2130 | static void init_set_rows_row_ids(ggml_tensor * t, int num_rows) { |
| 2131 | std::random_device rd; |
| 2132 | std::default_random_engine rng(rd()); |
| 2133 | for (int i2 = 0; i2 < t->ne[2]; i2++) { |
| 2134 | for (int i1 = 0; i1 < t->ne[1]; i1++) { |
| 2135 | // generate a shuffled subset of row indices |
| 2136 | std::vector<int64_t> data(num_rows); |
| 2137 | for (int i = 0; i < num_rows; i++) { |
| 2138 | data[i] = i; |
| 2139 | } |
| 2140 | std::shuffle(first: data.begin(), last: data.end(), g&: rng); |
| 2141 | data.resize(new_size: t->ne[0]); |
| 2142 | |
| 2143 | const size_t offs = i1*t->nb[1] + i2*t->nb[2]; |
| 2144 | if (t->type == GGML_TYPE_I32) { |
| 2145 | // TODO: Make a template or something |
| 2146 | std::vector<int32_t> data_i32(t->ne[0]); |
| 2147 | for (int i = 0; i < t->ne[0]; i++) { |
| 2148 | data_i32[i] = static_cast<int32_t>(data[i]); |
| 2149 | } |
| 2150 | ggml_backend_tensor_set(tensor: t, data: data_i32.data(), offset: offs, size: t->ne[0]*sizeof(int32_t)); |
| 2151 | } else { |
| 2152 | ggml_backend_tensor_set(tensor: t, data: data.data(), offset: offs, size: t->ne[0]*sizeof(int64_t)); |
| 2153 | } |
| 2154 | } |
| 2155 | } |
| 2156 | } |
| 2157 | |
| 2158 | // GGML_OP_SET_ROWS |
| 2159 | struct test_set_rows : public test_case { |
| 2160 | const ggml_type type; |
| 2161 | const ggml_type type_idx; |
| 2162 | const std::array<int64_t, 4> ne; |
| 2163 | const std::array<int, 2> nr23; // broadcast only dims 2 and 3 |
| 2164 | const int r; // rows to set |
| 2165 | const bool v; // view (non-contiguous src1) |
| 2166 | |
| 2167 | std::string vars() override { |
| 2168 | return VARS_TO_STR6(type, type_idx, ne, nr23, r, v); |
| 2169 | } |
| 2170 | |
| 2171 | test_set_rows(ggml_type type, |
| 2172 | ggml_type type_idx, |
| 2173 | std::array<int64_t, 4> ne, |
| 2174 | std::array<int, 2> nr23, |
| 2175 | int r, bool v = false) |
| 2176 | : type(type), type_idx(type_idx), ne(ne), nr23(nr23), r(r), v(v) {} |
| 2177 | |
| 2178 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 2179 | ggml_tensor * dst = ggml_new_tensor_4d(ctx, type, ne0: ne[0], ne1: ne[1], ne2: ne[2]*nr23[0], ne3: ne[3]*nr23[1]); |
| 2180 | ggml_set_name(tensor: dst, name: "dst" ); |
| 2181 | |
| 2182 | ggml_tensor * src = ggml_new_tensor_4d(ctx, type: GGML_TYPE_F32, ne0: ne[0], ne1: r, ne2: ne[2]*nr23[0], ne3: ne[3]*nr23[1]); |
| 2183 | ggml_set_name(tensor: src, name: "src" ); |
| 2184 | |
| 2185 | ggml_tensor * row_idxs = ggml_new_tensor_3d(ctx, type: type_idx, ne0: r, ne1: ne[2], ne2: ne[3]); |
| 2186 | ggml_set_name(tensor: row_idxs, name: "row_idxs" ); |
| 2187 | |
| 2188 | if (v) { |
| 2189 | src = ggml_view_4d(ctx, a: src, ne0: ne[0], ne1: r/2, ne2: ne[2]*nr23[0], ne3: ne[3]*nr23[1], nb1: src->nb[1], nb2: src->nb[2], nb3: src->nb[3], offset: 0); |
| 2190 | row_idxs = ggml_view_3d(ctx, a: row_idxs, ne0: r/2, ne1: ne[2], ne2: ne[3], nb1: row_idxs->nb[1], nb2: row_idxs->nb[2], offset: 0); |
| 2191 | ggml_set_name(tensor: row_idxs, name: "view_of_rows" ); |
| 2192 | } |
| 2193 | |
| 2194 | ggml_tensor * out = ggml_set_rows(ctx, a: dst, b: src, c: row_idxs); |
| 2195 | ggml_set_name(tensor: out, name: "out" ); |
| 2196 | |
| 2197 | return out; |
| 2198 | } |
| 2199 | |
| 2200 | void initialize_tensors(ggml_context * ctx) override { |
| 2201 | for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, tensor: t)) { |
| 2202 | if (t->type == GGML_TYPE_I64 || t->type == GGML_TYPE_I32) { |
| 2203 | if (ggml_is_view_op(op: t->op)) { |
| 2204 | continue; |
| 2205 | } |
| 2206 | |
| 2207 | init_set_rows_row_ids(t, num_rows: ne[1]); |
| 2208 | } else { |
| 2209 | init_tensor_uniform(tensor: t); |
| 2210 | } |
| 2211 | } |
| 2212 | } |
| 2213 | |
| 2214 | double max_nmse_err() override { |
| 2215 | if (type == GGML_TYPE_Q4_0 || type == GGML_TYPE_Q4_1 || type == GGML_TYPE_IQ4_NL || |
| 2216 | type == GGML_TYPE_Q5_0 || type == GGML_TYPE_Q5_1 || type == GGML_TYPE_Q8_0) { |
| 2217 | // estimate what the max nmse error would be if one quantized value is |
| 2218 | // off by one. The test values are distributed in [-1,1], so it'll be |
| 2219 | // roughly (2.0 / 2^bits)^2, divided by the mean square value of the reference, |
| 2220 | // which is roughly 0.25 times the number of elements. |
| 2221 | double err_estimate = 1.0f/8.0f; |
| 2222 | if (type == GGML_TYPE_Q5_0 || type == GGML_TYPE_Q5_1) { |
| 2223 | err_estimate /= 2.0f; |
| 2224 | } |
| 2225 | if (type == GGML_TYPE_Q8_0) { |
| 2226 | err_estimate /= 8.0f; |
| 2227 | } |
| 2228 | err_estimate *= err_estimate; |
| 2229 | err_estimate /= 0.25f*float(ne[0] * r * ne[2]*nr23[0] * ne[3]*nr23[1]); |
| 2230 | return err_estimate; |
| 2231 | } |
| 2232 | return 1e-7; |
| 2233 | } |
| 2234 | }; |
| 2235 | |
| 2236 | // GGML_OP_ROPE + GGML_OP_VIEW + GGML_OP_SET_ROWS |
| 2237 | struct test_rope_set_rows : public test_case { |
| 2238 | const ggml_type type; |
| 2239 | const ggml_type type_idx; |
| 2240 | const std::array<int64_t, 4> ne; |
| 2241 | int mode; |
| 2242 | |
| 2243 | std::string vars() override { |
| 2244 | return VARS_TO_STR4(type, type_idx, ne, mode); |
| 2245 | } |
| 2246 | |
| 2247 | std::string op_desc(ggml_tensor * t) override { |
| 2248 | GGML_UNUSED(t); |
| 2249 | return "ROPE_SET_ROWS" ; |
| 2250 | } |
| 2251 | |
| 2252 | bool run_whole_graph() override { return true; } |
| 2253 | |
| 2254 | test_rope_set_rows(ggml_type type, |
| 2255 | ggml_type type_idx, |
| 2256 | std::array<int64_t, 4> ne, |
| 2257 | int mode) |
| 2258 | : type(type), type_idx(type_idx), ne(ne), mode(mode) {} |
| 2259 | |
| 2260 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 2261 | ggml_tensor * src = ggml_new_tensor_4d(ctx, type: GGML_TYPE_F32, ne0: ne[0], ne1: ne[1], ne2: ne[2], ne3: 1); |
| 2262 | ggml_set_name(tensor: src, name: "src" ); |
| 2263 | |
| 2264 | ggml_tensor * pos = ggml_new_tensor_1d(ctx, type: GGML_TYPE_I32, ne0: ne[2]); |
| 2265 | |
| 2266 | ggml_tensor * rope = ggml_rope(ctx, a: src, b: pos, n_dims: ne[0], mode); |
| 2267 | |
| 2268 | ggml_tensor * view = ggml_view_2d(ctx, a: rope, ne0: ne[0] * ne[1], ne1: ne[2], nb1: rope->nb[2], offset: 0); |
| 2269 | |
| 2270 | ggml_tensor * dst = ggml_new_tensor_4d(ctx, type, ne0: ne[0] * ne[1], ne1: ne[2] * ne[3], ne2: 1, ne3: 1); |
| 2271 | ggml_set_name(tensor: dst, name: "dst" ); |
| 2272 | |
| 2273 | ggml_tensor * row_idxs = ggml_new_tensor_3d(ctx, type: type_idx, ne0: ne[2], ne1: 1, ne2: 1); |
| 2274 | ggml_set_name(tensor: row_idxs, name: "row_idxs" ); |
| 2275 | |
| 2276 | ggml_tensor * out = ggml_set_rows(ctx, a: dst, b: view, c: row_idxs); |
| 2277 | ggml_set_name(tensor: out, name: "out" ); |
| 2278 | |
| 2279 | return out; |
| 2280 | } |
| 2281 | |
| 2282 | void initialize_tensors(ggml_context * ctx) override { |
| 2283 | for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, tensor: t)) { |
| 2284 | if (t->type == GGML_TYPE_I64 || t->type == GGML_TYPE_I32) { |
| 2285 | if (ggml_is_view_op(op: t->op)) { |
| 2286 | continue; |
| 2287 | } |
| 2288 | |
| 2289 | init_set_rows_row_ids(t, num_rows: ne[2]); |
| 2290 | } else { |
| 2291 | init_tensor_uniform(tensor: t); |
| 2292 | } |
| 2293 | } |
| 2294 | } |
| 2295 | }; |
| 2296 | |
| 2297 | // GGML_OP_RMS_NORM + GGML_OP_MUL + GGML_OP_ROPE (+ GGML_OP_VIEW + GGML_OP_SET_ROWS) |
| 2298 | struct test_rms_norm_mul_rope : public test_case { |
| 2299 | const std::array<int64_t, 4> ne; |
| 2300 | const float eps; |
| 2301 | const bool multi_add; // test a sequence of adds feeding into rms_norm |
| 2302 | const bool set_rows; |
| 2303 | int mode; |
| 2304 | |
| 2305 | std::string op_desc(ggml_tensor * t) override { |
| 2306 | GGML_UNUSED(t); |
| 2307 | return "RMS_NORM_MUL_ROPE" ; |
| 2308 | } |
| 2309 | |
| 2310 | bool run_whole_graph() override { return true; } |
| 2311 | |
| 2312 | std::string vars() override { |
| 2313 | return VARS_TO_STR5(ne, eps, multi_add, set_rows, mode); |
| 2314 | } |
| 2315 | |
| 2316 | test_rms_norm_mul_rope(std::array<int64_t, 4> ne, float eps = 1e-6f, bool multi_add = false, |
| 2317 | bool set_rows = false, int mode = GGML_ROPE_TYPE_NORMAL) |
| 2318 | : ne(ne), eps(eps), multi_add(multi_add), set_rows(set_rows), mode(mode) {} |
| 2319 | |
| 2320 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 2321 | ggml_tensor * a = ggml_new_tensor_4d(ctx, type: GGML_TYPE_F32, ne0: ne[0], ne1: ne[1], ne2: ne[2], ne3: 1); |
| 2322 | ggml_tensor * b = ggml_new_tensor_4d(ctx, type: GGML_TYPE_F32, ne0: ne[0], ne1: ne[1], ne2: ne[2], ne3: 1); |
| 2323 | ggml_tensor * c = ggml_new_tensor_4d(ctx, type: GGML_TYPE_F32, ne0: ne[0], ne1: ne[1], ne2: ne[2], ne3: 1); |
| 2324 | |
| 2325 | if (multi_add) { |
| 2326 | a = ggml_add(ctx, a: ggml_add(ctx, a, b), b: c); |
| 2327 | } |
| 2328 | |
| 2329 | a = ggml_mul(ctx, a: ggml_rms_norm(ctx, a, eps), b); |
| 2330 | |
| 2331 | ggml_tensor * pos = ggml_new_tensor_1d(ctx, type: GGML_TYPE_I32, ne0: ne[2]); |
| 2332 | |
| 2333 | ggml_tensor * rope = ggml_rope(ctx, a, b: pos, n_dims: ne[0], mode); |
| 2334 | |
| 2335 | ggml_tensor * out; |
| 2336 | |
| 2337 | if (set_rows) { |
| 2338 | ggml_tensor * view = ggml_view_2d(ctx, a: rope, ne0: ne[0] * ne[1], ne1: ne[2], nb1: rope->nb[2], offset: 0); |
| 2339 | |
| 2340 | ggml_tensor * dst = ggml_new_tensor_4d(ctx, type: GGML_TYPE_F16, ne0: ne[0] * ne[1], ne1: ne[2] * ne[3], ne2: 1, ne3: 1); |
| 2341 | ggml_set_name(tensor: dst, name: "dst" ); |
| 2342 | |
| 2343 | ggml_tensor * row_idxs = ggml_new_tensor_3d(ctx, type: GGML_TYPE_I64, ne0: ne[2], ne1: 1, ne2: 1); |
| 2344 | ggml_set_name(tensor: row_idxs, name: "row_idxs" ); |
| 2345 | |
| 2346 | out = ggml_set_rows(ctx, a: dst, b: view, c: row_idxs); |
| 2347 | ggml_set_name(tensor: out, name: "out" ); |
| 2348 | } else { |
| 2349 | out = rope; |
| 2350 | } |
| 2351 | |
| 2352 | return out; |
| 2353 | } |
| 2354 | |
| 2355 | void initialize_tensors(ggml_context * ctx) override { |
| 2356 | for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, tensor: t)) { |
| 2357 | if (t->type == GGML_TYPE_I64 || t->type == GGML_TYPE_I32) { |
| 2358 | if (ggml_is_view_op(op: t->op)) { |
| 2359 | continue; |
| 2360 | } |
| 2361 | |
| 2362 | init_set_rows_row_ids(t, num_rows: ne[2]); |
| 2363 | } else { |
| 2364 | init_tensor_uniform(tensor: t); |
| 2365 | } |
| 2366 | } |
| 2367 | } |
| 2368 | }; |
| 2369 | |
| 2370 | // GGML_OP_ARGMAX |
| 2371 | struct test_argmax : public test_case { |
| 2372 | const ggml_type type; |
| 2373 | const std::array<int64_t, 4> ne; |
| 2374 | |
| 2375 | std::string vars() override { |
| 2376 | return VARS_TO_STR2(type, ne); |
| 2377 | } |
| 2378 | |
| 2379 | test_argmax(ggml_type type = GGML_TYPE_F32, |
| 2380 | std::array<int64_t, 4> ne = {10, 100, 1, 1}) |
| 2381 | : type(type), ne(ne) {} |
| 2382 | |
| 2383 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 2384 | ggml_tensor * a = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 2385 | ggml_set_name(tensor: a, name: "a" ); |
| 2386 | |
| 2387 | ggml_tensor * out = ggml_argmax(ctx, a); |
| 2388 | ggml_set_name(tensor: out, name: "out" ); |
| 2389 | |
| 2390 | return out; |
| 2391 | } |
| 2392 | |
| 2393 | void initialize_tensors(ggml_context * ctx) override { |
| 2394 | std::random_device rd; |
| 2395 | std::default_random_engine rng(rd()); |
| 2396 | for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, tensor: t)) { |
| 2397 | if (t->type == GGML_TYPE_F32) { |
| 2398 | // initialize with unique values to avoid ties |
| 2399 | for (int64_t r = 0; r < ggml_nrows(tensor: t); r++) { |
| 2400 | std::vector<float> data(t->ne[0]); |
| 2401 | for (int i = 0; i < t->ne[0]; i++) { |
| 2402 | data[i] = i; |
| 2403 | } |
| 2404 | std::shuffle(first: data.begin(), last: data.end(), g&: rng); |
| 2405 | ggml_backend_tensor_set(tensor: t, data: data.data(), offset: r * t->nb[1], size: t->ne[0] * sizeof(float)); |
| 2406 | } |
| 2407 | } else { |
| 2408 | init_tensor_uniform(tensor: t); |
| 2409 | } |
| 2410 | } |
| 2411 | } |
| 2412 | |
| 2413 | double max_nmse_err() override { |
| 2414 | return 0.0; |
| 2415 | } |
| 2416 | }; |
| 2417 | |
| 2418 | // GGML_OP_COUNT_EQUAL |
| 2419 | struct test_count_equal : public test_case { |
| 2420 | const ggml_type type; |
| 2421 | const std::array<int64_t, 4> ne; |
| 2422 | |
| 2423 | std::string vars() override { |
| 2424 | return VARS_TO_STR2(type, ne); |
| 2425 | } |
| 2426 | |
| 2427 | test_count_equal(ggml_type type = GGML_TYPE_F32, |
| 2428 | std::array<int64_t, 4> ne = {4, 500, 1, 1}) |
| 2429 | : type(type), ne(ne) {} |
| 2430 | |
| 2431 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 2432 | ggml_tensor * a = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 2433 | ggml_set_name(tensor: a, name: "a" ); |
| 2434 | |
| 2435 | ggml_tensor * a_argmax = ggml_argmax(ctx, a); |
| 2436 | ggml_set_name(tensor: a_argmax, name: "a_argmax" ); |
| 2437 | |
| 2438 | ggml_tensor * b = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 2439 | ggml_set_name(tensor: b, name: "b" ); |
| 2440 | |
| 2441 | ggml_tensor * b_argmax = ggml_argmax(ctx, a: b); |
| 2442 | ggml_set_name(tensor: b_argmax, name: "b_argmax" ); |
| 2443 | |
| 2444 | ggml_tensor * out = ggml_count_equal(ctx, a: a_argmax, b: b_argmax); |
| 2445 | ggml_set_name(tensor: out, name: "out" ); |
| 2446 | |
| 2447 | return out; |
| 2448 | } |
| 2449 | |
| 2450 | double max_nmse_err() override { |
| 2451 | return 0.0; |
| 2452 | } |
| 2453 | |
| 2454 | void initialize_tensors(ggml_context * ctx) override { |
| 2455 | std::random_device rd; |
| 2456 | std::default_random_engine rng(rd()); |
| 2457 | for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, tensor: t)) { |
| 2458 | if (t->type == GGML_TYPE_F32) { |
| 2459 | // initialize with unique values to avoid ties |
| 2460 | for (int64_t r = 0; r < ggml_nrows(tensor: t); r++) { |
| 2461 | std::vector<float> data(t->ne[0]); |
| 2462 | for (int i = 0; i < t->ne[0]; i++) { |
| 2463 | data[i] = i; |
| 2464 | } |
| 2465 | std::shuffle(first: data.begin(), last: data.end(), g&: rng); |
| 2466 | ggml_backend_tensor_set(tensor: t, data: data.data(), offset: r * t->nb[1], size: t->ne[0] * sizeof(float)); |
| 2467 | } |
| 2468 | } else { |
| 2469 | init_tensor_uniform(tensor: t); |
| 2470 | } |
| 2471 | } |
| 2472 | } |
| 2473 | }; |
| 2474 | |
| 2475 | // GGML_OP_REPEAT |
| 2476 | struct test_repeat : public test_case { |
| 2477 | const ggml_type type; |
| 2478 | const std::array<int64_t, 4> ne; |
| 2479 | const std::array<int, 4> nr; |
| 2480 | |
| 2481 | std::string vars() override { |
| 2482 | return VARS_TO_STR3(type, ne, nr); |
| 2483 | } |
| 2484 | |
| 2485 | size_t op_size(ggml_tensor * t) override { |
| 2486 | return ggml_nbytes(tensor: t) * 2; |
| 2487 | } |
| 2488 | |
| 2489 | test_repeat(ggml_type type = GGML_TYPE_F32, |
| 2490 | std::array<int64_t, 4> ne = {10, 5, 4, 3}, |
| 2491 | std::array<int, 4> nr = {2, 2, 2, 2}) |
| 2492 | : type(type), ne(ne), nr(nr) {} |
| 2493 | |
| 2494 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 2495 | ggml_tensor * target = ggml_new_tensor_4d(ctx, type, ne0: ne[0]*nr[0], ne1: ne[1]*nr[1], ne2: ne[2]*nr[2], ne3: ne[3]*nr[3]); |
| 2496 | ggml_set_name(tensor: target, name: "target" ); |
| 2497 | |
| 2498 | ggml_tensor * src = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 2499 | ggml_set_param(tensor: src); |
| 2500 | ggml_set_name(tensor: src, name: "src" ); |
| 2501 | |
| 2502 | ggml_tensor * out = ggml_repeat(ctx, a: src, b: target); |
| 2503 | ggml_set_name(tensor: out, name: "out" ); |
| 2504 | |
| 2505 | return out; |
| 2506 | } |
| 2507 | }; |
| 2508 | |
| 2509 | // GGML_OP_REPEAT_BACK |
| 2510 | struct test_repeat_back : public test_case { |
| 2511 | const ggml_type type; |
| 2512 | const std::array<int64_t, 4> ne; |
| 2513 | const std::array<int, 4> nr; |
| 2514 | const bool v; // whether src is a noncontiguous view |
| 2515 | |
| 2516 | std::string vars() override { |
| 2517 | return VARS_TO_STR4(type, ne, nr, v); |
| 2518 | } |
| 2519 | |
| 2520 | size_t op_size(ggml_tensor * t) override { |
| 2521 | return ggml_nbytes(tensor: t) * 2; |
| 2522 | } |
| 2523 | |
| 2524 | test_repeat_back(ggml_type type = GGML_TYPE_F32, |
| 2525 | std::array<int64_t, 4> ne = {8, 6, 4, 2}, |
| 2526 | std::array<int, 4> nr = {2, 2, 2, 2}, |
| 2527 | bool v = false) |
| 2528 | : type(type), ne(ne), nr(nr), v(v) {} |
| 2529 | |
| 2530 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 2531 | ggml_tensor * src = ggml_new_tensor_4d(ctx, type, ne0: ne[0]*nr[0], ne1: ne[1]*nr[1], ne2: ne[2]*nr[2], ne3: ne[3]*nr[3]); |
| 2532 | ggml_set_name(tensor: src, name: "src" ); |
| 2533 | |
| 2534 | if (v) { |
| 2535 | GGML_ASSERT(ne[0] % 2 == 0); |
| 2536 | GGML_ASSERT(ne[1] % 2 == 0); |
| 2537 | GGML_ASSERT(ne[2] % 2 == 0); |
| 2538 | GGML_ASSERT(ne[3] % 2 == 0); |
| 2539 | GGML_ASSERT(nr[0] % 2 == 0 || nr[0] == 1); |
| 2540 | GGML_ASSERT(nr[1] % 2 == 0 || nr[1] == 1); |
| 2541 | GGML_ASSERT(nr[2] % 2 == 0 || nr[2] == 1); |
| 2542 | GGML_ASSERT(nr[3] % 2 == 0 || nr[3] == 1); |
| 2543 | |
| 2544 | const int64_t ne00 = nr[0] == 1 ? src->ne[0] : src->ne[0] / 2; |
| 2545 | const int64_t ne01 = nr[1] == 1 ? src->ne[1] : src->ne[1] / 2; |
| 2546 | const int64_t ne02 = nr[2] == 1 ? src->ne[2] : src->ne[2] / 2; |
| 2547 | const int64_t ne03 = nr[3] == 1 ? src->ne[3] : src->ne[3] / 2; |
| 2548 | |
| 2549 | src = ggml_view_4d(ctx, a: src, ne0: ne00, ne1: ne01, ne2: ne02, ne3: ne03, nb1: src->nb[1], nb2: src->nb[2], nb3: src->nb[3], offset: 0); |
| 2550 | } |
| 2551 | |
| 2552 | ggml_tensor * target = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 2553 | ggml_set_name(tensor: target, name: "target" ); |
| 2554 | |
| 2555 | ggml_tensor * out = ggml_repeat_back(ctx, a: src, b: target); |
| 2556 | ggml_set_name(tensor: out, name: "out" ); |
| 2557 | |
| 2558 | return out; |
| 2559 | } |
| 2560 | }; |
| 2561 | |
| 2562 | // GGML_OP_DUP |
| 2563 | struct test_dup : public test_case { |
| 2564 | const ggml_type type; |
| 2565 | const std::array<int64_t, 4> ne; |
| 2566 | const std::array<int64_t, 4> permute; |
| 2567 | bool _use_permute; |
| 2568 | |
| 2569 | std::string vars() override { |
| 2570 | std::string v = VARS_TO_STR2(type, ne); |
| 2571 | if (_use_permute) v += "," + VAR_TO_STR(permute); |
| 2572 | return v; |
| 2573 | } |
| 2574 | |
| 2575 | test_dup(ggml_type type = GGML_TYPE_F32, |
| 2576 | std::array<int64_t, 4> ne = {10, 10, 20, 1}, |
| 2577 | std::array<int64_t, 4> permute = {0, 0, 0, 0}) |
| 2578 | : type(type), ne(ne), permute(permute), |
| 2579 | _use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {} |
| 2580 | |
| 2581 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 2582 | ggml_tensor * src = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 2583 | ggml_set_param(tensor: src); |
| 2584 | ggml_set_name(tensor: src, name: "src" ); |
| 2585 | |
| 2586 | if (_use_permute) { |
| 2587 | src = ggml_permute(ctx, a: src, axis0: permute[0], axis1: permute[1], axis2: permute[2], axis3: permute[3]); |
| 2588 | ggml_set_name(tensor: src, name: "src_permuted" ); |
| 2589 | } |
| 2590 | |
| 2591 | ggml_tensor * out = ggml_dup(ctx, a: src); |
| 2592 | ggml_set_name(tensor: out, name: "out" ); |
| 2593 | |
| 2594 | return out; |
| 2595 | } |
| 2596 | }; |
| 2597 | |
| 2598 | // GGML_OP_SET |
| 2599 | struct test_set : public test_case { |
| 2600 | const ggml_type type_src; |
| 2601 | const ggml_type type_dst; |
| 2602 | const std::array<int64_t, 4> ne; |
| 2603 | const int dim; |
| 2604 | |
| 2605 | std::string vars() override { |
| 2606 | return VARS_TO_STR4(type_src, type_dst, ne, dim); |
| 2607 | } |
| 2608 | |
| 2609 | size_t op_size(ggml_tensor * t) override { |
| 2610 | return ggml_nbytes(tensor: t) + ggml_nbytes(tensor: t->src[0]); |
| 2611 | } |
| 2612 | |
| 2613 | test_set(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32, |
| 2614 | std::array<int64_t, 4> ne = {6, 5, 4, 3}, int dim = 1) |
| 2615 | : type_src(type_src), type_dst(type_dst), ne(ne), dim(dim) {} |
| 2616 | |
| 2617 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 2618 | ggml_tensor * src = ggml_new_tensor(ctx, type: type_src, n_dims: 4, ne: ne.data()); |
| 2619 | ggml_set_param(tensor: src); |
| 2620 | ggml_set_name(tensor: src, name: "src" ); |
| 2621 | |
| 2622 | auto ne_dst = ne; |
| 2623 | for (int i = 0; i < dim; ++i) { |
| 2624 | ne_dst[i] *= 2; |
| 2625 | } |
| 2626 | ggml_tensor* dst = ggml_new_tensor(ctx, type: type_dst, n_dims: 4, ne: ne_dst.data()); |
| 2627 | ggml_set_param(tensor: dst); |
| 2628 | ggml_set_name(tensor: dst, name: "dst" ); |
| 2629 | |
| 2630 | size_t offset = 0; |
| 2631 | for (int i = 0; i < dim; ++i) { |
| 2632 | offset += ((ne_dst[i] - ne[i])/2)*dst->nb[i]; |
| 2633 | } |
| 2634 | ggml_tensor * out = ggml_set(ctx, a: dst, b: src, |
| 2635 | // The backward pass requires setting a contiguous region: |
| 2636 | nb1: src->nb[1], nb2: src->nb[2], nb3: src->nb[3], offset); |
| 2637 | ggml_set_name(tensor: out, name: "out" ); |
| 2638 | |
| 2639 | return out; |
| 2640 | } |
| 2641 | }; |
| 2642 | |
| 2643 | // GGML_OP_CPY |
| 2644 | struct test_cpy : public test_case { |
| 2645 | const ggml_type type_src; |
| 2646 | const ggml_type type_dst; |
| 2647 | const std::array<int64_t, 4> ne; |
| 2648 | const std::array<int64_t, 4> permute_src; |
| 2649 | const std::array<int64_t, 4> permute_dst; |
| 2650 | bool _src_use_permute; |
| 2651 | bool _dst_use_permute; |
| 2652 | bool _src_transpose; |
| 2653 | |
| 2654 | std::string vars() override { |
| 2655 | return VARS_TO_STR6(type_src, type_dst, ne, permute_src, permute_dst, _src_transpose); |
| 2656 | } |
| 2657 | |
| 2658 | double max_nmse_err() override { |
| 2659 | if (type_src == type_dst) { |
| 2660 | return 0.0; |
| 2661 | } |
| 2662 | if (type_dst == GGML_TYPE_Q4_0 || type_dst == GGML_TYPE_Q4_1 || type_dst == GGML_TYPE_IQ4_NL || |
| 2663 | type_dst == GGML_TYPE_Q5_0 || type_dst == GGML_TYPE_Q5_1 || type_dst == GGML_TYPE_Q8_0) { |
| 2664 | // estimate what the max nmse error would be if one quantized value is |
| 2665 | // off by one. The test values are distributed in [-150,150], so it'll be |
| 2666 | // roughly (150*2.0 / 2^bits)^2, divided by the mean square value of the reference, |
| 2667 | // which is roughly 0.25*150^2 times the number of elements. |
| 2668 | double err_estimate = 1.0f/8.0f * 150.0f; |
| 2669 | if (type_dst == GGML_TYPE_IQ4_NL) { |
| 2670 | // iq4_nl values are a bit more spread out |
| 2671 | err_estimate *= 2.0f; |
| 2672 | } |
| 2673 | if (type_dst == GGML_TYPE_Q5_0 || type_dst == GGML_TYPE_Q5_1) { |
| 2674 | err_estimate /= 2.0f; |
| 2675 | } |
| 2676 | if (type_dst == GGML_TYPE_Q8_0) { |
| 2677 | err_estimate /= 8.0f; |
| 2678 | } |
| 2679 | err_estimate *= err_estimate; |
| 2680 | err_estimate /= (150.0f*150.0f*0.25f)*float(ne[0] * ne[1] * ne[2] * ne[3]); |
| 2681 | return err_estimate; |
| 2682 | } |
| 2683 | return 1e-6; |
| 2684 | } |
| 2685 | |
| 2686 | size_t op_size(ggml_tensor * t) override { |
| 2687 | return ggml_nbytes(tensor: t) + ggml_nbytes(tensor: t->src[0]); |
| 2688 | } |
| 2689 | |
| 2690 | test_cpy(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32, |
| 2691 | std::array<int64_t, 4> ne = {10, 10, 10, 1}, |
| 2692 | std::array<int64_t, 4> permute_src = {0, 0, 0, 0}, |
| 2693 | std::array<int64_t, 4> permute_dst = {0, 0, 0, 0}, |
| 2694 | bool transpose_src = false) |
| 2695 | : type_src(type_src), type_dst(type_dst), ne(ne), permute_src(permute_src), permute_dst(permute_dst), |
| 2696 | _src_use_permute(permute_src[0] + permute_src[1] + permute_src[2] + permute_src[3] > 0), |
| 2697 | _dst_use_permute(permute_dst[0] + permute_dst[1] + permute_dst[2] + permute_dst[3] > 0), |
| 2698 | _src_transpose(transpose_src){} |
| 2699 | |
| 2700 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 2701 | ggml_tensor * src = ggml_new_tensor(ctx, type: type_src, n_dims: 4, ne: ne.data()); |
| 2702 | ggml_set_param(tensor: src); |
| 2703 | ggml_set_name(tensor: src, name: "src" ); |
| 2704 | |
| 2705 | if (_src_use_permute) { |
| 2706 | src = ggml_permute(ctx, a: src, axis0: permute_src[0], axis1: permute_src[1], axis2: permute_src[2], axis3: permute_src[3]); |
| 2707 | ggml_set_name(tensor: src, name: "src_permuted" ); |
| 2708 | } |
| 2709 | |
| 2710 | if (_src_transpose) { |
| 2711 | src = ggml_transpose(ctx, a: src); |
| 2712 | ggml_set_name(tensor: src, name: "src_transposed" ); |
| 2713 | } |
| 2714 | |
| 2715 | ggml_tensor * dst = ggml_new_tensor(ctx, type: type_dst, n_dims: 4, ne: src->ne); |
| 2716 | ggml_set_name(tensor: dst, name: "dst" ); |
| 2717 | |
| 2718 | if (_dst_use_permute) { |
| 2719 | dst = ggml_permute(ctx, a: dst, axis0: permute_dst[0], axis1: permute_dst[1], axis2: permute_dst[2], axis3: permute_dst[3]); |
| 2720 | ggml_set_name(tensor: dst, name: "dst_permuted" ); |
| 2721 | } |
| 2722 | |
| 2723 | ggml_tensor * out = ggml_cpy(ctx, a: src, b: dst); |
| 2724 | ggml_set_name(tensor: out, name: "out" ); |
| 2725 | |
| 2726 | return out; |
| 2727 | } |
| 2728 | |
| 2729 | void initialize_tensors(ggml_context * ctx) override { |
| 2730 | for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, tensor: t)) { |
| 2731 | // test extended range of values to check if casting between f32 and i32 is consistent |
| 2732 | init_tensor_uniform(tensor: t, min: -150.f, max: 150.f); |
| 2733 | } |
| 2734 | } |
| 2735 | }; |
| 2736 | |
| 2737 | // GGML_OP_CONT |
| 2738 | struct test_cont : public test_case { |
| 2739 | const ggml_type type; |
| 2740 | const std::array<int64_t, 4> ne; |
| 2741 | |
| 2742 | std::string vars() override { |
| 2743 | return VARS_TO_STR2(type, ne); |
| 2744 | } |
| 2745 | |
| 2746 | test_cont(ggml_type type = GGML_TYPE_F32, |
| 2747 | std::array<int64_t, 4> ne = {10, 10, 10, 1}) |
| 2748 | : type(type), ne(ne) {} |
| 2749 | |
| 2750 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 2751 | ggml_tensor * src = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 2752 | ggml_set_param(tensor: src); |
| 2753 | ggml_set_name(tensor: src, name: "src" ); |
| 2754 | |
| 2755 | src = ggml_transpose(ctx, a: src); |
| 2756 | ggml_set_name(tensor: src, name: "src_transposed" ); |
| 2757 | |
| 2758 | ggml_tensor * out = ggml_cont(ctx, a: src); |
| 2759 | ggml_set_name(tensor: out, name: "out" ); |
| 2760 | |
| 2761 | return out; |
| 2762 | } |
| 2763 | }; |
| 2764 | |
| 2765 | // GGML_OP_ADD |
| 2766 | // GGML_OP_SUB |
| 2767 | // GGML_OP_MUL |
| 2768 | // GGML_OP_DIV |
| 2769 | struct test_bin_bcast : public test_case { |
| 2770 | using op_t = ggml_tensor * (*) (ggml_context *, ggml_tensor *, ggml_tensor *); |
| 2771 | op_t op; |
| 2772 | const ggml_type type; |
| 2773 | const std::array<int64_t, 4> ne; |
| 2774 | const std::array<int, 4> nr; |
| 2775 | int nf; // number of fused ops, nf == 1 -> single op (no fusion) |
| 2776 | |
| 2777 | bool run_whole_graph() override { return true; } |
| 2778 | |
| 2779 | std::string vars() override { |
| 2780 | return VARS_TO_STR4(type, ne, nr, nf); |
| 2781 | } |
| 2782 | |
| 2783 | size_t op_size(ggml_tensor * t) override { |
| 2784 | return ggml_nbytes(tensor: t) * 3; |
| 2785 | } |
| 2786 | |
| 2787 | test_bin_bcast(op_t op, ggml_type type = GGML_TYPE_F32, |
| 2788 | std::array<int64_t, 4> ne = {10, 10, 1, 1}, |
| 2789 | std::array<int, 4> nr = {1, 2, 1, 1}, |
| 2790 | int nf = 1) |
| 2791 | : op(op), type(type), ne(ne), nr(nr), nf(nf) {} |
| 2792 | |
| 2793 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 2794 | GGML_ASSERT(nf <= 16); |
| 2795 | |
| 2796 | ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne0: ne[0]*nr[0], ne1: ne[1]*nr[1], ne2: ne[2]*nr[2], ne3: ne[3]*nr[3]); |
| 2797 | ggml_set_name(tensor: a, name: "a" ); |
| 2798 | |
| 2799 | ggml_tensor * b[16]; |
| 2800 | for (int i = 0; i < nf; ++i) { |
| 2801 | b[i] = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 2802 | ggml_set_name(tensor: b[i], name: (std::string("b" ) + std::to_string(val: i)).c_str()); |
| 2803 | } |
| 2804 | |
| 2805 | // The backward pass supports broadcasting only for GGML_ADD: |
| 2806 | const bool grad_supported = op == ggml_add && ggml_are_same_shape(t0: a, t1: b[0]) && nf == 1; |
| 2807 | if (grad_supported) { |
| 2808 | ggml_set_param(tensor: a); |
| 2809 | ggml_set_param(tensor: b[0]); |
| 2810 | } |
| 2811 | |
| 2812 | ggml_tensor * out = a; |
| 2813 | |
| 2814 | for (int i = 0; i < nf; ++i) { |
| 2815 | out = op(ctx, out, b[i]); |
| 2816 | } |
| 2817 | |
| 2818 | ggml_set_name(tensor: out, name: "out" ); |
| 2819 | |
| 2820 | return out; |
| 2821 | } |
| 2822 | |
| 2823 | void initialize_tensors(ggml_context * ctx) override { |
| 2824 | for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, tensor: t)) { |
| 2825 | if (op == ggml_mul || op == ggml_div) { |
| 2826 | // MUL and DIV have numerical issues around zero: |
| 2827 | init_tensor_uniform(tensor: t, min: 0.9f, max: 1.1f); |
| 2828 | } else { |
| 2829 | init_tensor_uniform(tensor: t); |
| 2830 | } |
| 2831 | } |
| 2832 | } |
| 2833 | |
| 2834 | float grad_eps() override { |
| 2835 | return 0.1f * (op == ggml_mul ? ne[0]*ne[1]*ne[2]*ne[3] : 1); |
| 2836 | } |
| 2837 | |
| 2838 | bool grad_precise() override { |
| 2839 | return op == ggml_div; |
| 2840 | } |
| 2841 | |
| 2842 | double max_maa_err() override { |
| 2843 | return op == ggml_add ? 1e-4 : 1e-3; |
| 2844 | } |
| 2845 | }; |
| 2846 | |
| 2847 | // GGML_OP_ADD_ID |
| 2848 | struct test_add_id : public test_case { |
| 2849 | const ggml_type type_a; |
| 2850 | const ggml_type type_b; |
| 2851 | const int64_t n_embd; |
| 2852 | const int64_t n_experts; |
| 2853 | const int64_t n_experts_used; |
| 2854 | const int64_t n_token; |
| 2855 | |
| 2856 | std::string vars() override { |
| 2857 | return VARS_TO_STR6(type_a, type_b, n_embd, n_experts, n_experts_used, n_token); |
| 2858 | } |
| 2859 | |
| 2860 | size_t op_size(ggml_tensor * t) override { |
| 2861 | return ggml_nbytes(tensor: t) + ggml_nbytes(tensor: t->src[0]) + ggml_nbytes(tensor: t->src[2]); |
| 2862 | } |
| 2863 | |
| 2864 | test_add_id(ggml_type type_a = GGML_TYPE_F32, |
| 2865 | ggml_type type_b = GGML_TYPE_F32, |
| 2866 | int64_t n_embd = 128, |
| 2867 | int64_t n_experts = 16, |
| 2868 | int64_t n_experts_used = 8, |
| 2869 | int64_t n_token = 10) |
| 2870 | : type_a(type_a), type_b(type_b), n_embd(n_embd), |
| 2871 | n_experts(n_experts), n_experts_used(n_experts_used), n_token(n_token) {} |
| 2872 | |
| 2873 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 2874 | ggml_tensor * a = ggml_new_tensor_3d(ctx, type: type_a, ne0: n_embd, ne1: n_experts_used, ne2: n_token); |
| 2875 | ggml_tensor * b = ggml_new_tensor_2d(ctx, type: type_b, ne0: n_embd, ne1: n_experts); |
| 2876 | ggml_tensor * ids = ggml_new_tensor_2d(ctx, type: GGML_TYPE_I32, ne0: n_experts, ne1: n_token); |
| 2877 | if (n_experts_used != n_experts) { |
| 2878 | ids = ggml_view_2d(ctx, a: ids, ne0: n_experts_used, ne1: n_token, nb1: ids->nb[1], offset: 0); |
| 2879 | ggml_set_name(tensor: ids, name: "view_of_ids" ); |
| 2880 | } |
| 2881 | |
| 2882 | ggml_tensor * out = ggml_add_id(ctx, a, b, ids); |
| 2883 | ggml_set_name(tensor: out, name: "out" ); |
| 2884 | return out; |
| 2885 | } |
| 2886 | |
| 2887 | void initialize_tensors(ggml_context * ctx) override { |
| 2888 | for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, tensor: t)) { |
| 2889 | if (t->type == GGML_TYPE_I32) { |
| 2890 | if (ggml_is_view_op(op: t->op)) { continue; } |
| 2891 | std::random_device rd; |
| 2892 | std::default_random_engine rng(rd()); |
| 2893 | // ids |
| 2894 | for (int64_t r = 0; r < ggml_nrows(tensor: t); r++) { |
| 2895 | std::vector<int32_t> data(t->ne[0]); |
| 2896 | for (int i = 0; i < t->ne[0]; i++) { |
| 2897 | data[i] = i % n_experts; |
| 2898 | } |
| 2899 | std::shuffle(first: data.begin(), last: data.end(), g&: rng); |
| 2900 | ggml_backend_tensor_set(tensor: t, data: data.data(), offset: r * t->nb[1], size: t->ne[0] * sizeof(int32_t)); |
| 2901 | } |
| 2902 | } else { |
| 2903 | init_tensor_uniform(tensor: t); |
| 2904 | } |
| 2905 | } |
| 2906 | } |
| 2907 | }; |
| 2908 | |
| 2909 | // GGML_OP_ADD1 |
| 2910 | struct test_add1 : public test_case { |
| 2911 | const ggml_type type; |
| 2912 | const std::array<int64_t, 4> ne; |
| 2913 | |
| 2914 | std::string vars() override { |
| 2915 | return VARS_TO_STR2(type, ne); |
| 2916 | } |
| 2917 | |
| 2918 | test_add1(ggml_type type = GGML_TYPE_F32, |
| 2919 | std::array<int64_t, 4> ne = {10, 5, 4, 3}) |
| 2920 | : type(type), ne(ne) {} |
| 2921 | |
| 2922 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 2923 | ggml_tensor * a = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 2924 | ggml_set_param(tensor: a); |
| 2925 | ggml_set_name(tensor: a, name: "a" ); |
| 2926 | |
| 2927 | ggml_tensor * b = ggml_new_tensor_1d(ctx, type, ne0: 1); |
| 2928 | // ggml_set_param(b); // TODO: implement |
| 2929 | ggml_set_name(tensor: b, name: "b" ); |
| 2930 | |
| 2931 | ggml_tensor * out = ggml_add1(ctx, a, b); |
| 2932 | ggml_set_name(tensor: out, name: "out" ); |
| 2933 | |
| 2934 | return out; |
| 2935 | } |
| 2936 | |
| 2937 | float grad_eps() override { |
| 2938 | return 0.1f * ne[0]*ne[1]*ne[2]*ne[3]; |
| 2939 | } |
| 2940 | }; |
| 2941 | |
| 2942 | // GGML_OP_SCALE |
| 2943 | struct test_scale : public test_case { |
| 2944 | const ggml_type type; |
| 2945 | const std::array<int64_t, 4> ne; |
| 2946 | float scale; |
| 2947 | float bias; |
| 2948 | bool inplace; |
| 2949 | |
| 2950 | std::string vars() override { |
| 2951 | return VARS_TO_STR5(type, ne, scale, bias, inplace); |
| 2952 | } |
| 2953 | |
| 2954 | test_scale(ggml_type type = GGML_TYPE_F32, |
| 2955 | std::array<int64_t, 4> ne = {10, 10, 10, 10}, |
| 2956 | float scale = 2.0f, |
| 2957 | float bias = 0.0f, |
| 2958 | bool inplace = false) |
| 2959 | : type(type), ne(ne), scale(scale), bias(bias), inplace(inplace) {} |
| 2960 | |
| 2961 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 2962 | ggml_tensor * a = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 2963 | ggml_set_param(tensor: a); |
| 2964 | ggml_set_name(tensor: a, name: "a" ); |
| 2965 | |
| 2966 | ggml_tensor * out; |
| 2967 | if (inplace) { |
| 2968 | out = ggml_scale_bias_inplace(ctx, a, s: scale, b: bias); |
| 2969 | } else { |
| 2970 | out = ggml_scale_bias(ctx, a, s: scale, b: bias); |
| 2971 | } |
| 2972 | ggml_set_name(tensor: out, name: "out" ); |
| 2973 | |
| 2974 | return out; |
| 2975 | } |
| 2976 | }; |
| 2977 | |
| 2978 | // GGML_OP_SCALE + GGML_UNARY_OP_TANH + GGML_OP_SCALE |
| 2979 | struct test_softcap : public test_case { |
| 2980 | const ggml_type type; |
| 2981 | const std::array<int64_t, 4> ne; |
| 2982 | float softcap; |
| 2983 | |
| 2984 | std::string op_desc(ggml_tensor * t) override { |
| 2985 | GGML_UNUSED(t); |
| 2986 | return "SOFTCAP" ; |
| 2987 | } |
| 2988 | |
| 2989 | bool run_whole_graph() override { return true; } |
| 2990 | |
| 2991 | std::string vars() override { |
| 2992 | return VARS_TO_STR3(type, ne, softcap); |
| 2993 | } |
| 2994 | |
| 2995 | test_softcap(ggml_type type = GGML_TYPE_F32, |
| 2996 | std::array<int64_t, 4> ne = {10, 10, 10, 10}, |
| 2997 | float softcap = 30.0f) |
| 2998 | : type(type), ne(ne), softcap(softcap) {} |
| 2999 | |
| 3000 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 3001 | ggml_tensor * a = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 3002 | |
| 3003 | ggml_set_param(tensor: a); |
| 3004 | ggml_set_name(tensor: a, name: "a" ); |
| 3005 | |
| 3006 | ggml_tensor * out = ggml_scale(ctx, a: ggml_tanh(ctx, a: ggml_scale(ctx, a, s: 1.0f / softcap)), s: softcap); |
| 3007 | ggml_set_name(tensor: out, name: "out" ); |
| 3008 | |
| 3009 | return out; |
| 3010 | } |
| 3011 | }; |
| 3012 | |
| 3013 | // GGML_OP_SILU_BACK |
| 3014 | struct test_silu_back : public test_case { |
| 3015 | const ggml_type type; |
| 3016 | const std::array<int64_t, 4> ne; |
| 3017 | float eps; |
| 3018 | |
| 3019 | std::string vars() override { |
| 3020 | return VARS_TO_STR3(type, ne, eps); |
| 3021 | } |
| 3022 | |
| 3023 | test_silu_back(ggml_type type = GGML_TYPE_F32, |
| 3024 | std::array<int64_t, 4> ne = {64, 5, 4, 3}, |
| 3025 | float eps = 1e-6f) |
| 3026 | : type(type), ne(ne), eps(eps) {} |
| 3027 | |
| 3028 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 3029 | ggml_tensor * a = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 3030 | ggml_set_name(tensor: a, name: "a" ); |
| 3031 | |
| 3032 | ggml_tensor * grad = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 3033 | ggml_set_name(tensor: grad, name: "grad" ); |
| 3034 | |
| 3035 | ggml_tensor * out = ggml_silu_back(ctx, a, b: grad); |
| 3036 | ggml_set_name(tensor: out, name: "out" ); |
| 3037 | |
| 3038 | return out; |
| 3039 | } |
| 3040 | |
| 3041 | bool grad_precise() override { |
| 3042 | return true; |
| 3043 | } |
| 3044 | }; |
| 3045 | |
| 3046 | // GGML_OP_NORM |
| 3047 | struct test_norm : public test_case { |
| 3048 | const ggml_type type; |
| 3049 | const std::array<int64_t, 4> ne; |
| 3050 | const bool v; // whether a is a non-contiguous view |
| 3051 | const float eps; |
| 3052 | |
| 3053 | std::string vars() override { |
| 3054 | return VARS_TO_STR4(type, ne, v, eps); |
| 3055 | } |
| 3056 | |
| 3057 | test_norm(ggml_type type = GGML_TYPE_F32, |
| 3058 | std::array<int64_t, 4> ne = {64, 5, 4, 3}, |
| 3059 | bool v = false, |
| 3060 | float eps = 1e-6f) |
| 3061 | : type(type), ne(ne), v(v), eps(eps) {} |
| 3062 | |
| 3063 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 3064 | ggml_tensor * a = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 3065 | ggml_set_name(tensor: a, name: "a" ); |
| 3066 | |
| 3067 | if (v) { |
| 3068 | a = ggml_view_4d(ctx, a, ne0: a->ne[0]/2, ne1: a->ne[1]/2, ne2: a->ne[2]/2, ne3: a->ne[3]/2, nb1: a->nb[1], nb2: a->nb[2], nb3: a->nb[3], offset: 0); |
| 3069 | ggml_set_name(tensor: a, name: "view of a" ); |
| 3070 | } |
| 3071 | |
| 3072 | ggml_tensor * out = ggml_norm(ctx, a, eps); |
| 3073 | ggml_set_name(tensor: out, name: "out" ); |
| 3074 | |
| 3075 | return out; |
| 3076 | } |
| 3077 | }; |
| 3078 | |
| 3079 | // GGML_OP_NORM + GGML_OP_MUL + GGML_OP_ADD |
| 3080 | struct test_norm_mul_add : public test_case { |
| 3081 | const ggml_type type; |
| 3082 | const std::array<int64_t, 4> ne; |
| 3083 | float eps; |
| 3084 | const bool broadcast; |
| 3085 | |
| 3086 | std::string op_desc(ggml_tensor * t) override { |
| 3087 | GGML_UNUSED(t); |
| 3088 | return "NORM_MUL_ADD" ; |
| 3089 | } |
| 3090 | |
| 3091 | bool run_whole_graph() override { return true; } |
| 3092 | |
| 3093 | std::string vars() override { |
| 3094 | return VARS_TO_STR4(type, ne, eps, broadcast); |
| 3095 | } |
| 3096 | |
| 3097 | test_norm_mul_add(ggml_type type = GGML_TYPE_F32, |
| 3098 | std::array<int64_t, 4> ne = {128, 2, 1, 1}, |
| 3099 | float eps = 1e-5f, |
| 3100 | bool broadcast = false) |
| 3101 | : type(type), ne(ne), eps(eps), broadcast(broadcast) {} |
| 3102 | |
| 3103 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 3104 | std::array<int64_t, 4> broadcast_dims = {ne[0], ne[1] * 2, ne[2] * 2, ne[3] * 2}; |
| 3105 | |
| 3106 | ggml_tensor * a = ggml_new_tensor(ctx, type, n_dims: 4, ne: broadcast ? broadcast_dims.data() : ne.data()); |
| 3107 | ggml_tensor * w = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 3108 | ggml_tensor * b = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 3109 | ggml_set_param(tensor: a); ggml_set_param(tensor: w); ggml_set_param(tensor: b); |
| 3110 | ggml_set_name(tensor: a, name: "a" ); ggml_set_name(tensor: w, name: "w" ); ggml_set_name(tensor: b, name: "b" ); |
| 3111 | |
| 3112 | // Use a, w and b early to avoid OP_NONE in graph |
| 3113 | a = ggml_add(ctx, a: ggml_add(ctx, a, b: w), b); |
| 3114 | |
| 3115 | ggml_tensor * n = ggml_norm(ctx, a, eps); |
| 3116 | ggml_tensor * m = ggml_mul(ctx, a: n, b: w); |
| 3117 | ggml_tensor * out = ggml_add(ctx, a: m, b); |
| 3118 | ggml_set_name(tensor: out, name: "out" ); |
| 3119 | return out; |
| 3120 | } |
| 3121 | }; |
| 3122 | // GGML_OP_RMS_NORM |
| 3123 | struct test_rms_norm : public test_case { |
| 3124 | const ggml_type type; |
| 3125 | const std::array<int64_t, 4> ne; |
| 3126 | const bool v; // whether a is a non-contiguous view |
| 3127 | const float eps; |
| 3128 | const bool inplace; // whether to do the operation inplace |
| 3129 | |
| 3130 | std::string vars() override { |
| 3131 | return VARS_TO_STR5(type, ne, v, eps, inplace); |
| 3132 | } |
| 3133 | |
| 3134 | test_rms_norm(ggml_type type = GGML_TYPE_F32, |
| 3135 | std::array<int64_t, 4> ne = {64, 5, 4, 3}, |
| 3136 | bool v = false, |
| 3137 | float eps = 1e-6f, |
| 3138 | bool inplace = false) |
| 3139 | : type(type), ne(ne), v(v), eps(eps), inplace(inplace) {} |
| 3140 | |
| 3141 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 3142 | ggml_tensor * a = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 3143 | ggml_set_param(tensor: a); |
| 3144 | ggml_set_name(tensor: a, name: "a" ); |
| 3145 | |
| 3146 | if (v) { |
| 3147 | a = ggml_view_4d(ctx, a, ne0: a->ne[0]/2, ne1: a->ne[1]/2, ne2: a->ne[2]/2, ne3: a->ne[3]/2, nb1: a->nb[1], nb2: a->nb[2], nb3: a->nb[3], offset: 0); |
| 3148 | ggml_set_name(tensor: a, name: "view of a" ); |
| 3149 | } |
| 3150 | |
| 3151 | ggml_tensor * out; |
| 3152 | if (inplace) { |
| 3153 | out = ggml_rms_norm_inplace(ctx, a, eps); |
| 3154 | } else { |
| 3155 | out = ggml_rms_norm(ctx, a, eps); |
| 3156 | } |
| 3157 | ggml_set_name(tensor: out, name: "out" ); |
| 3158 | |
| 3159 | return out; |
| 3160 | } |
| 3161 | |
| 3162 | void initialize_tensors(ggml_context * ctx) override { |
| 3163 | for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, tensor: t)) { |
| 3164 | init_tensor_uniform(tensor: t, min: -10.f, max: 10.f); |
| 3165 | } |
| 3166 | } |
| 3167 | |
| 3168 | float grad_eps() override { |
| 3169 | return 1.0f; |
| 3170 | } |
| 3171 | |
| 3172 | bool grad_precise() override { |
| 3173 | return true; |
| 3174 | } |
| 3175 | }; |
| 3176 | |
| 3177 | // GGML_OP_RMS_NORM_BACK |
| 3178 | struct test_rms_norm_back : public test_case { |
| 3179 | const ggml_type type; |
| 3180 | const std::array<int64_t, 4> ne; |
| 3181 | const float eps; |
| 3182 | |
| 3183 | std::string vars() override { |
| 3184 | return VARS_TO_STR3(type, ne, eps); |
| 3185 | } |
| 3186 | |
| 3187 | test_rms_norm_back(ggml_type type = GGML_TYPE_F32, |
| 3188 | std::array<int64_t, 4> ne = {64, 5, 4, 3}, |
| 3189 | float eps = 1e-6f) |
| 3190 | : type(type), ne(ne), eps(eps) {} |
| 3191 | |
| 3192 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 3193 | ggml_tensor * a = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 3194 | ggml_set_name(tensor: a, name: "a" ); |
| 3195 | |
| 3196 | ggml_tensor * b = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 3197 | ggml_set_name(tensor: b, name: "b" ); |
| 3198 | |
| 3199 | ggml_tensor * out = ggml_rms_norm_back(ctx, a, b, eps); |
| 3200 | ggml_set_name(tensor: out, name: "out" ); |
| 3201 | |
| 3202 | return out; |
| 3203 | } |
| 3204 | |
| 3205 | void initialize_tensors(ggml_context * ctx) override { |
| 3206 | for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, tensor: t)) { |
| 3207 | init_tensor_uniform(tensor: t, min: -10.f, max: 10.f); |
| 3208 | } |
| 3209 | } |
| 3210 | }; |
| 3211 | |
| 3212 | // GGML_OP_RMS_NORM + GGML_OP_MUL + GGML_OP_ADD |
| 3213 | struct test_rms_norm_mul_add : public test_case { |
| 3214 | const ggml_type type; |
| 3215 | const std::array<int64_t, 4> ne; |
| 3216 | const float eps; |
| 3217 | const bool broadcast; |
| 3218 | const bool multi_add; // test a sequence of adds feeding into rms_norm |
| 3219 | |
| 3220 | std::string op_desc(ggml_tensor * t) override { |
| 3221 | GGML_UNUSED(t); |
| 3222 | return "RMS_NORM_MUL_ADD" ; |
| 3223 | } |
| 3224 | |
| 3225 | bool run_whole_graph() override { return true; } |
| 3226 | |
| 3227 | std::string vars() override { |
| 3228 | return VARS_TO_STR5(type, ne, eps, broadcast, multi_add); |
| 3229 | } |
| 3230 | |
| 3231 | test_rms_norm_mul_add(ggml_type type = GGML_TYPE_F32, |
| 3232 | std::array<int64_t, 4> ne = {64, 5, 4, 3}, |
| 3233 | float eps = 1e-6f, bool broadcast = false, bool multi_add = false) |
| 3234 | : type(type), ne(ne), eps(eps), broadcast(broadcast), multi_add(multi_add) {} |
| 3235 | |
| 3236 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 3237 | std::array<int64_t, 4> broadcast_dims = {ne[0]*2, ne[1]*3, ne[2]*3, ne[3]*4}; |
| 3238 | |
| 3239 | ggml_tensor * a = ggml_new_tensor(ctx, type, n_dims: 4, ne: broadcast ? broadcast_dims.data() : ne.data()); |
| 3240 | ggml_tensor * b = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 3241 | ggml_tensor * c = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 3242 | |
| 3243 | ggml_set_param(tensor: a); |
| 3244 | ggml_set_name(tensor: a, name: "a" ); |
| 3245 | ggml_set_param(tensor: b); |
| 3246 | ggml_set_name(tensor: b, name: "b" ); |
| 3247 | ggml_set_param(tensor: c); |
| 3248 | ggml_set_name(tensor: c, name: "c" ); |
| 3249 | |
| 3250 | // Use a, b and c early, so we don't end up with an OP_NONE between rms_norm and mul |
| 3251 | a = ggml_add(ctx, a: ggml_add(ctx, a, b), b: c); |
| 3252 | if (multi_add) { |
| 3253 | a = ggml_add(ctx, a: ggml_add(ctx, a, b), b: c); |
| 3254 | } |
| 3255 | ggml_tensor * out = ggml_add(ctx, a: ggml_mul(ctx, a: ggml_rms_norm(ctx, a, eps), b), b: c); |
| 3256 | ggml_set_name(tensor: out, name: "out" ); |
| 3257 | |
| 3258 | return out; |
| 3259 | } |
| 3260 | |
| 3261 | void initialize_tensors(ggml_context * ctx) override { |
| 3262 | for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, tensor: t)) { |
| 3263 | init_tensor_uniform(tensor: t, min: -10.f, max: 10.f); |
| 3264 | } |
| 3265 | } |
| 3266 | |
| 3267 | float grad_eps() override { |
| 3268 | return 1.0f; |
| 3269 | } |
| 3270 | |
| 3271 | bool grad_precise() override { |
| 3272 | return true; |
| 3273 | } |
| 3274 | }; |
| 3275 | |
| 3276 | // GGML_OP_SSM_CONV |
| 3277 | struct test_ssm_conv : public test_case { |
| 3278 | const ggml_type type; |
| 3279 | const std::array<int64_t, 4> ne_a; |
| 3280 | const std::array<int64_t, 4> ne_b; |
| 3281 | |
| 3282 | std::string vars() override { |
| 3283 | return VARS_TO_STR3(type, ne_a, ne_b); |
| 3284 | } |
| 3285 | |
| 3286 | test_ssm_conv(ggml_type type = GGML_TYPE_F32, |
| 3287 | std::array<int64_t, 4> ne_a = {10, 10, 10, 1}, |
| 3288 | std::array<int64_t, 4> ne_b = {3, 3, 1, 1}) |
| 3289 | : type(type), ne_a(ne_a), ne_b(ne_b) {} |
| 3290 | |
| 3291 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 3292 | ggml_tensor * a = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne_a.data()); |
| 3293 | ggml_tensor * b = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne_b.data()); |
| 3294 | ggml_tensor * out = ggml_ssm_conv(ctx, sx: a, c: b); |
| 3295 | return out; |
| 3296 | } |
| 3297 | }; |
| 3298 | |
| 3299 | // GGML_OP_SSM_SCAN |
| 3300 | struct test_ssm_scan : public test_case { |
| 3301 | const ggml_type type; |
| 3302 | |
| 3303 | const int64_t d_state; |
| 3304 | const int64_t head_dim; |
| 3305 | const int64_t n_head; |
| 3306 | const int64_t n_group; |
| 3307 | const int64_t n_seq_tokens; |
| 3308 | const int64_t n_seqs; |
| 3309 | |
| 3310 | std::string vars() override { |
| 3311 | return VARS_TO_STR7(type, d_state, head_dim, n_head, n_group, n_seq_tokens, n_seqs); |
| 3312 | } |
| 3313 | |
| 3314 | test_ssm_scan(ggml_type type = GGML_TYPE_F32, |
| 3315 | int64_t d_state = 32, |
| 3316 | int64_t head_dim = 1, // non-zero for Mamba-2 |
| 3317 | int64_t n_head = 32, |
| 3318 | int64_t n_group = 1, |
| 3319 | int64_t n_seq_tokens = 32, |
| 3320 | int64_t n_seqs = 32) |
| 3321 | : type(type), d_state(d_state), head_dim(head_dim), n_head(n_head), n_group(n_group), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {} |
| 3322 | |
| 3323 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 3324 | ggml_tensor * s = ggml_new_tensor_4d(ctx, type, ne0: d_state, ne1: head_dim, ne2: n_head, ne3: n_seqs); |
| 3325 | ggml_tensor * x = ggml_new_tensor_4d(ctx, type, ne0: head_dim, ne1: n_head, ne2: n_seq_tokens, ne3: n_seqs); |
| 3326 | ggml_tensor * dt = ggml_new_tensor_3d(ctx, type, ne0: n_head, ne1: n_seq_tokens, ne2: n_seqs); |
| 3327 | ggml_tensor * A = ggml_new_tensor_2d(ctx, type, ne0: (head_dim > 1) ? 1 : d_state, ne1: n_head); |
| 3328 | ggml_tensor * B = ggml_new_tensor_4d(ctx, type, ne0: d_state, ne1: n_group, ne2: n_seq_tokens, ne3: n_seqs); |
| 3329 | ggml_tensor * C = ggml_new_tensor_4d(ctx, type, ne0: d_state, ne1: n_group, ne2: n_seq_tokens, ne3: n_seqs); |
| 3330 | ggml_tensor * ids = ggml_new_tensor_1d(ctx, type: GGML_TYPE_I32, ne0: n_seqs); |
| 3331 | ggml_tensor * out = ggml_ssm_scan(ctx, s, x, dt, A, B, C, ids); |
| 3332 | return out; |
| 3333 | } |
| 3334 | |
| 3335 | // similar to test_mul_mat_id |
| 3336 | void initialize_tensors(ggml_context * ctx) override { |
| 3337 | std::random_device rd; |
| 3338 | std::default_random_engine rng(rd()); |
| 3339 | for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, tensor: t)) { |
| 3340 | if (t->type == GGML_TYPE_I32) { |
| 3341 | if (ggml_is_view_op(op: t->op)) { continue; } |
| 3342 | // ids |
| 3343 | for (int64_t r = 0; r < ggml_nrows(tensor: t); r++) { |
| 3344 | std::vector<int32_t> data(t->ne[0]); |
| 3345 | for (int i = 0; i < t->ne[0]; i++) { |
| 3346 | data[i] = i; |
| 3347 | } |
| 3348 | std::shuffle(first: data.begin(), last: data.end(), g&: rng); |
| 3349 | ggml_backend_tensor_set(tensor: t, data: data.data(), offset: r * t->nb[1], size: t->ne[0] * sizeof(int32_t)); |
| 3350 | } |
| 3351 | } else { |
| 3352 | init_tensor_uniform(tensor: t); |
| 3353 | } |
| 3354 | } |
| 3355 | } |
| 3356 | }; |
| 3357 | |
| 3358 | // GGML_OP_RWKV_WKV6 |
| 3359 | struct test_rwkv_wkv6 : public test_case { |
| 3360 | const ggml_type type; |
| 3361 | |
| 3362 | const int64_t head_count; |
| 3363 | const int64_t head_size; |
| 3364 | const int64_t n_seq_tokens; |
| 3365 | const int64_t n_seqs; |
| 3366 | |
| 3367 | std::string vars() override { |
| 3368 | return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs); |
| 3369 | } |
| 3370 | |
| 3371 | test_rwkv_wkv6(ggml_type type = GGML_TYPE_F32, |
| 3372 | int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32) |
| 3373 | : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {} |
| 3374 | |
| 3375 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 3376 | const int64_t n_tokens = n_seq_tokens * n_seqs; |
| 3377 | ggml_tensor * r = ggml_new_tensor(ctx, type, n_dims: 3, ne: std::vector<int64_t>{ head_size, head_count, n_tokens }.data()); |
| 3378 | ggml_tensor * k = ggml_new_tensor(ctx, type, n_dims: 3, ne: std::vector<int64_t>{ head_size, head_count, n_tokens }.data()); |
| 3379 | ggml_tensor * v = ggml_new_tensor(ctx, type, n_dims: 3, ne: std::vector<int64_t>{ head_size, head_count, n_tokens }.data()); |
| 3380 | ggml_tensor * tf = ggml_new_tensor(ctx, type, n_dims: 2, ne: std::vector<int64_t>{ head_size, head_count }.data()); |
| 3381 | ggml_tensor * td = ggml_new_tensor(ctx, type, n_dims: 3, ne: std::vector<int64_t>{ head_size, head_count, n_tokens }.data()); |
| 3382 | ggml_tensor * s = ggml_new_tensor(ctx, type, n_dims: 2, ne: std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data()); |
| 3383 | ggml_tensor * out = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, state: s); |
| 3384 | return out; |
| 3385 | } |
| 3386 | }; |
| 3387 | |
| 3388 | // GGML_OP_GATED_LINEAR_ATTN |
| 3389 | struct test_gla : public test_case { |
| 3390 | const ggml_type type; |
| 3391 | |
| 3392 | const int64_t head_count; |
| 3393 | const int64_t head_size; |
| 3394 | const int64_t n_seq_tokens; |
| 3395 | const int64_t n_seqs; |
| 3396 | |
| 3397 | std::string vars() override { |
| 3398 | return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs); |
| 3399 | } |
| 3400 | |
| 3401 | test_gla(ggml_type type = GGML_TYPE_F32, |
| 3402 | int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32) |
| 3403 | : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {} |
| 3404 | |
| 3405 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 3406 | const int64_t n_tokens = n_seq_tokens * n_seqs; |
| 3407 | ggml_tensor * q = ggml_new_tensor(ctx, type, n_dims: 3, ne: std::vector<int64_t>{ head_size, head_count, n_tokens }.data()); |
| 3408 | ggml_tensor * k = ggml_new_tensor(ctx, type, n_dims: 3, ne: std::vector<int64_t>{ head_size, head_count, n_tokens }.data()); |
| 3409 | ggml_tensor * v = ggml_new_tensor(ctx, type, n_dims: 3, ne: std::vector<int64_t>{ head_size, head_count, n_tokens }.data()); |
| 3410 | ggml_tensor * g = ggml_new_tensor(ctx, type, n_dims: 3, ne: std::vector<int64_t>{ head_size, head_count, n_tokens }.data()); |
| 3411 | ggml_tensor * s = ggml_new_tensor(ctx, type, n_dims: 2, ne: std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data()); |
| 3412 | ggml_tensor * out = ggml_gated_linear_attn(ctx, k, v, q, g, state: s, scale: pow(x: head_size, y: -0.5)); |
| 3413 | return out; |
| 3414 | } |
| 3415 | }; |
| 3416 | |
| 3417 | // GGML_OP_RWKV_WKV7 |
| 3418 | struct test_rwkv_wkv7 : public test_case { |
| 3419 | const ggml_type type; |
| 3420 | |
| 3421 | const int64_t head_count; |
| 3422 | const int64_t head_size; |
| 3423 | const int64_t n_seq_tokens; |
| 3424 | const int64_t n_seqs; |
| 3425 | |
| 3426 | std::string vars() override { |
| 3427 | return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs); |
| 3428 | } |
| 3429 | |
| 3430 | test_rwkv_wkv7(ggml_type type = GGML_TYPE_F32, |
| 3431 | int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32) |
| 3432 | : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {} |
| 3433 | |
| 3434 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 3435 | const int64_t n_tokens = n_seq_tokens * n_seqs; |
| 3436 | ggml_tensor * r = ggml_new_tensor(ctx, type, n_dims: 3, ne: std::vector<int64_t>{ head_size, head_count, n_tokens }.data()); |
| 3437 | ggml_tensor * w = ggml_new_tensor(ctx, type, n_dims: 3, ne: std::vector<int64_t>{ head_size, head_count, n_tokens }.data()); |
| 3438 | ggml_tensor * k = ggml_new_tensor(ctx, type, n_dims: 3, ne: std::vector<int64_t>{ head_size, head_count, n_tokens }.data()); |
| 3439 | ggml_tensor * v = ggml_new_tensor(ctx, type, n_dims: 3, ne: std::vector<int64_t>{ head_size, head_count, n_tokens }.data()); |
| 3440 | ggml_tensor * a = ggml_new_tensor(ctx, type, n_dims: 3, ne: std::vector<int64_t>{ head_size, head_count, n_tokens }.data()); |
| 3441 | ggml_tensor * b = ggml_new_tensor(ctx, type, n_dims: 3, ne: std::vector<int64_t>{ head_size, head_count, n_tokens }.data()); |
| 3442 | // Outputs may become NaN with long seqlen without these normalization |
| 3443 | a = ggml_l2_norm(ctx, a, eps: 1e-7F); |
| 3444 | b = ggml_l2_norm(ctx, a: b, eps: 1e-7F); |
| 3445 | ggml_tensor * s = ggml_new_tensor(ctx, type, n_dims: 2, ne: std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data()); |
| 3446 | ggml_tensor * out = ggml_rwkv_wkv7(ctx, r, w, k, v, a, b, state: s); |
| 3447 | return out; |
| 3448 | } |
| 3449 | }; |
| 3450 | |
| 3451 | // GGML_OP_MUL_MAT |
| 3452 | struct test_mul_mat : public test_case { |
| 3453 | const ggml_type type_a; |
| 3454 | const ggml_type type_b; |
| 3455 | const int64_t m; |
| 3456 | const int64_t n; |
| 3457 | const int64_t k; |
| 3458 | const std::array<int64_t, 2> bs; // dims 3 and 4 |
| 3459 | const std::array<int64_t, 2> nr; // repeat in dims 3 and 4 |
| 3460 | const std::array<int64_t, 4> per; // permutation of dimensions |
| 3461 | const int64_t k_v; // size of k in memory, resulting in a non-contiguous view for k_v > k, no view for k_v == 0 |
| 3462 | const uint32_t o; // number of outputs |
| 3463 | |
| 3464 | std::string vars() override { |
| 3465 | return VARS_TO_STR10(type_a, type_b, m, n, k, bs, nr, per, k_v, o); |
| 3466 | } |
| 3467 | |
| 3468 | double max_nmse_err() override { |
| 3469 | return 5e-4; |
| 3470 | } |
| 3471 | |
| 3472 | int64_t grad_nmax() override { |
| 3473 | return 20000; |
| 3474 | } |
| 3475 | |
| 3476 | uint64_t op_flops(ggml_tensor * t) override { |
| 3477 | GGML_UNUSED(t); |
| 3478 | return 2 * m * n * k * bs[0] * nr[0] * bs[1] * nr[1]; |
| 3479 | } |
| 3480 | |
| 3481 | test_mul_mat(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32, |
| 3482 | int64_t m = 32, int64_t n = 32, int64_t k = 32, |
| 3483 | std::array<int64_t, 2> bs = {10, 10}, |
| 3484 | std::array<int64_t, 2> nr = {2, 2}, |
| 3485 | std::array<int64_t, 4> per = {0, 1, 2, 3}, |
| 3486 | int64_t k_v = 0, uint32_t o = 1) |
| 3487 | : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), per(per), k_v(k_v), o(o) {} |
| 3488 | |
| 3489 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 3490 | // C^T = A * B^T: (k, m) * (k, n) => (m, n) |
| 3491 | ggml_tensor * a; |
| 3492 | ggml_tensor * b; |
| 3493 | |
| 3494 | const int npermuted = (per[0] != 0) + (per[1] != 1) + (per[2] != 2) + (per[3] != 3); |
| 3495 | if (npermuted > 0) { |
| 3496 | GGML_ASSERT(npermuted == 2); |
| 3497 | GGML_ASSERT(k_v == 0); // not handled |
| 3498 | GGML_ASSERT(!ggml_is_quantized(type_a) || per[0] == 0); |
| 3499 | GGML_ASSERT(!ggml_is_quantized(type_b) || per[0] == 0); |
| 3500 | |
| 3501 | // Create tensors with the permuted dimensions, then permute them back to the dimensions given by m,n,k. |
| 3502 | const int64_t ne_a[4] = {k, m, bs[0], bs[1]}; |
| 3503 | const int64_t ne_b[4] = {k, n, bs[0]*nr[0], bs[1]*nr[1]}; |
| 3504 | |
| 3505 | a = ggml_new_tensor_4d(ctx, type: type_a, ne0: ne_a[per[0]], ne1: ne_a[per[1]], ne2: ne_a[per[2]], ne3: ne_a[per[3]]); |
| 3506 | b = ggml_new_tensor_4d(ctx, type: type_b, ne0: ne_b[per[0]], ne1: ne_b[per[1]], ne2: ne_b[per[2]], ne3: ne_b[per[3]]); |
| 3507 | if (!ggml_is_quantized(type: type_a)) { |
| 3508 | if (bs[1] == 1 && nr[1] == 1) { |
| 3509 | ggml_set_param(tensor: a); |
| 3510 | } |
| 3511 | ggml_set_param(tensor: b); |
| 3512 | } |
| 3513 | ggml_set_name(tensor: a, name: "a" ); |
| 3514 | ggml_set_name(tensor: b, name: "b" ); |
| 3515 | |
| 3516 | a = ggml_permute(ctx, a, axis0: per[0], axis1: per[1], axis2: per[2], axis3: per[3]); |
| 3517 | b = ggml_permute(ctx, a: b, axis0: per[0], axis1: per[1], axis2: per[2], axis3: per[3]); |
| 3518 | ggml_set_name(tensor: a, name: "a_permuted" ); |
| 3519 | ggml_set_name(tensor: b, name: "b_permuted" ); |
| 3520 | } else { |
| 3521 | const int64_t k_physical = k_v == 0 ? k : k_v; |
| 3522 | a = ggml_new_tensor_4d(ctx, type: type_a, ne0: k_physical, ne1: m, ne2: bs[0], ne3: bs[1]); |
| 3523 | b = ggml_new_tensor_4d(ctx, type: type_b, ne0: k_physical, ne1: n, ne2: bs[0]*nr[0], ne3: bs[1]*nr[1]); |
| 3524 | |
| 3525 | if (!ggml_is_quantized(type: type_a)) { |
| 3526 | if (bs[1] == 1 && nr[1] == 1) { |
| 3527 | ggml_set_param(tensor: a); |
| 3528 | } |
| 3529 | ggml_set_param(tensor: b); |
| 3530 | } |
| 3531 | |
| 3532 | if (k_v != 0) { |
| 3533 | GGML_ASSERT(k_v > k); |
| 3534 | a = ggml_view_4d(ctx, a, ne0: k, ne1: m, ne2: bs[0], ne3: bs[1], nb1: a->nb[1], nb2: a->nb[2], nb3: a->nb[3], offset: 0); |
| 3535 | b = ggml_view_4d(ctx, a: b, ne0: k, ne1: n, ne2: bs[0]*nr[0], ne3: bs[1]*nr[1], nb1: b->nb[1], nb2: b->nb[2], nb3: b->nb[3], offset: 0); |
| 3536 | } |
| 3537 | ggml_set_name(tensor: a, name: "a" ); |
| 3538 | ggml_set_name(tensor: b, name: "b" ); |
| 3539 | } |
| 3540 | |
| 3541 | ggml_tensor * out = ggml_mul_mat(ctx, a, b); |
| 3542 | ggml_set_name(tensor: out, name: "out" ); |
| 3543 | for (uint32_t i = 1; i < o; ++i) { |
| 3544 | ggml_tensor * out2 = ggml_mul_mat(ctx, a, b); |
| 3545 | ggml_set_name(tensor: out2, name: "out2" ); |
| 3546 | out = ggml_add(ctx, a: out, b: out2); |
| 3547 | } |
| 3548 | |
| 3549 | return out; |
| 3550 | } |
| 3551 | |
| 3552 | bool run_whole_graph() override { return o > 1; } |
| 3553 | |
| 3554 | std::string op_desc(ggml_tensor * t) override { |
| 3555 | GGML_UNUSED(t); |
| 3556 | return ggml_op_name(op: GGML_OP_MUL_MAT); |
| 3557 | } |
| 3558 | }; |
| 3559 | |
| 3560 | // GGML_OP_MUL_MAT_ID |
| 3561 | struct test_mul_mat_id : public test_case { |
| 3562 | const ggml_type type_a; |
| 3563 | const ggml_type type_b; |
| 3564 | const int n_mats; |
| 3565 | const int n_used; |
| 3566 | const bool b; // broadcast b matrix |
| 3567 | const int64_t m; |
| 3568 | const int64_t n; |
| 3569 | const int64_t k; |
| 3570 | const uint32_t o; // number of outputs |
| 3571 | |
| 3572 | std::string vars() override { |
| 3573 | return VARS_TO_STR9(type_a, type_b, n_mats, n_used, b, m, n, k, o); |
| 3574 | } |
| 3575 | |
| 3576 | double max_nmse_err() override { |
| 3577 | return 5e-4; |
| 3578 | } |
| 3579 | |
| 3580 | uint64_t op_flops(ggml_tensor * t) override { |
| 3581 | GGML_UNUSED(t); |
| 3582 | return 2 * m * k * n * n_used; |
| 3583 | } |
| 3584 | |
| 3585 | test_mul_mat_id(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32, |
| 3586 | int n_mats = 8, int n_used = 2, bool b = false, |
| 3587 | int64_t m = 32, int64_t n = 32, int64_t k = 32, uint32_t o = 1) |
| 3588 | : type_a(type_a), type_b(type_b), n_mats(n_mats), n_used(n_used), b(b), |
| 3589 | m(m), n(n), k(k), o(o) { |
| 3590 | GGML_ASSERT(n_used <= n_mats); |
| 3591 | } |
| 3592 | |
| 3593 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 3594 | // C^T = A * B^T: (k, m) * (k, n) => (m, n) |
| 3595 | ggml_tensor * as = ggml_new_tensor_3d(ctx, type: type_a, ne0: k, ne1: m, ne2: n_mats); |
| 3596 | ggml_set_name(tensor: as, name: "as" ); |
| 3597 | |
| 3598 | ggml_tensor * ids = ggml_new_tensor_2d(ctx, type: GGML_TYPE_I32, ne0: n_mats, ne1: n); |
| 3599 | ggml_set_name(tensor: ids, name: "ids" ); |
| 3600 | if (n_used != n_mats) { |
| 3601 | ids = ggml_view_2d(ctx, a: ids, ne0: n_used, ne1: n, nb1: ids->nb[1], offset: 0); |
| 3602 | ggml_set_name(tensor: ids, name: "view_of_ids" ); |
| 3603 | } |
| 3604 | |
| 3605 | ggml_tensor * b = ggml_new_tensor_3d(ctx, type: type_b, ne0: k, ne1: this->b ? 1 : n_used, ne2: n); |
| 3606 | ggml_set_name(tensor: b, name: "b" ); |
| 3607 | |
| 3608 | ggml_tensor * out = ggml_mul_mat_id(ctx, as, b, ids); |
| 3609 | ggml_set_name(tensor: out, name: "out" ); |
| 3610 | |
| 3611 | for (uint32_t i = 1; i < o; ++i) { |
| 3612 | ggml_tensor * a2 = ggml_new_tensor_3d(ctx, type: type_a, ne0: k, ne1: m, ne2: n_mats); |
| 3613 | ggml_tensor * out2 = ggml_mul_mat_id(ctx, as: a2, b, ids); |
| 3614 | ggml_set_name(tensor: out2, name: "out2" ); |
| 3615 | out = ggml_add(ctx, a: out, b: out2); |
| 3616 | } |
| 3617 | |
| 3618 | return out; |
| 3619 | } |
| 3620 | |
| 3621 | void initialize_tensors(ggml_context * ctx) override { |
| 3622 | for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, tensor: t)) { |
| 3623 | if (t->type == GGML_TYPE_I32) { |
| 3624 | if (ggml_is_view_op(op: t->op)) { continue; } |
| 3625 | std::random_device rd; |
| 3626 | std::default_random_engine rng(rd()); |
| 3627 | // ids |
| 3628 | for (int64_t r = 0; r < ggml_nrows(tensor: t); r++) { |
| 3629 | std::vector<int32_t> data(t->ne[0]); |
| 3630 | for (int i = 0; i < t->ne[0]; i++) { |
| 3631 | data[i] = i % n_mats; |
| 3632 | } |
| 3633 | std::shuffle(first: data.begin(), last: data.end(), g&: rng); |
| 3634 | ggml_backend_tensor_set(tensor: t, data: data.data(), offset: r * t->nb[1], size: t->ne[0] * sizeof(int32_t)); |
| 3635 | } |
| 3636 | } else { |
| 3637 | init_tensor_uniform(tensor: t); |
| 3638 | } |
| 3639 | } |
| 3640 | } |
| 3641 | |
| 3642 | bool run_whole_graph() override { return o > 1; } |
| 3643 | |
| 3644 | std::string op_desc(ggml_tensor * t) override { |
| 3645 | GGML_UNUSED(t); |
| 3646 | return ggml_op_name(op: GGML_OP_MUL_MAT_ID); |
| 3647 | } |
| 3648 | }; |
| 3649 | |
| 3650 | // GGML_OP_OUT_PROD |
| 3651 | struct test_out_prod : public test_case { |
| 3652 | const ggml_type type_a; |
| 3653 | const ggml_type type_b; |
| 3654 | const int64_t m; |
| 3655 | const int64_t n; |
| 3656 | const int64_t k; |
| 3657 | const std::array<int64_t, 2> bs; // dims 3 and 4 |
| 3658 | const std::array<int64_t, 2> nr; // repeat in dims 3 and 4 |
| 3659 | const bool trans_b; |
| 3660 | |
| 3661 | std::string vars() override { |
| 3662 | return VARS_TO_STR8(type_a, type_b, m, n, k, bs, nr, trans_b); |
| 3663 | } |
| 3664 | |
| 3665 | double max_nmse_err() override { |
| 3666 | return 5e-4; |
| 3667 | } |
| 3668 | |
| 3669 | test_out_prod(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32, |
| 3670 | int64_t m = 32, int64_t n = 32, int64_t k = 32, |
| 3671 | std::array<int64_t, 2> bs = {10, 10}, |
| 3672 | std::array<int64_t, 2> nr = {2, 2}, |
| 3673 | bool trans_b = false) |
| 3674 | : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), trans_b(trans_b) {} |
| 3675 | |
| 3676 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 3677 | ggml_tensor * a = ggml_new_tensor_4d(ctx, type: type_a, ne0: m, ne1: k, ne2: bs[0], ne3: bs[1]); |
| 3678 | ggml_set_name(tensor: a, name: "a" ); |
| 3679 | |
| 3680 | ggml_tensor * b; |
| 3681 | if (trans_b) { |
| 3682 | b = ggml_new_tensor_4d(ctx, type: type_b, ne0: k, ne1: n, ne2: bs[0]*nr[0], ne3: bs[1]*nr[1]); |
| 3683 | b = ggml_transpose(ctx, a: b); |
| 3684 | } else { |
| 3685 | b = ggml_new_tensor_4d(ctx, type: type_b, ne0: n, ne1: k, ne2: bs[0]*nr[0], ne3: bs[1]*nr[1]); |
| 3686 | } |
| 3687 | ggml_set_name(tensor: b, name: "b" ); |
| 3688 | |
| 3689 | ggml_tensor * out = ggml_out_prod(ctx, a, b); |
| 3690 | ggml_set_name(tensor: out, name: "out" ); |
| 3691 | |
| 3692 | return out; |
| 3693 | } |
| 3694 | }; |
| 3695 | |
| 3696 | // GGML_OP_SQR |
| 3697 | struct test_sqr : public test_case { |
| 3698 | const ggml_type type; |
| 3699 | const std::array<int64_t, 4> ne; |
| 3700 | |
| 3701 | std::string vars() override { |
| 3702 | return VARS_TO_STR2(type, ne); |
| 3703 | } |
| 3704 | |
| 3705 | test_sqr(ggml_type type = GGML_TYPE_F32, |
| 3706 | std::array<int64_t, 4> ne = {10, 5, 4, 3}) |
| 3707 | : type(type), ne(ne) {} |
| 3708 | |
| 3709 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 3710 | ggml_tensor * a = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 3711 | ggml_set_param(tensor: a); |
| 3712 | ggml_set_name(tensor: a, name: "a" ); |
| 3713 | |
| 3714 | ggml_tensor * out = ggml_sqr(ctx, a); |
| 3715 | ggml_set_name(tensor: out, name: "out" ); |
| 3716 | |
| 3717 | return out; |
| 3718 | } |
| 3719 | |
| 3720 | float grad_eps() override { |
| 3721 | return 0.1f * 0.25f*ne[0]*ne[1]*ne[2]*ne[3]; // 10% of expected value of sum. |
| 3722 | } |
| 3723 | }; |
| 3724 | |
| 3725 | // GGML_OP_SQRT |
| 3726 | struct test_sqrt : public test_case { |
| 3727 | const ggml_type type; |
| 3728 | const std::array<int64_t, 4> ne; |
| 3729 | |
| 3730 | std::string vars() override { |
| 3731 | return VARS_TO_STR2(type, ne); |
| 3732 | } |
| 3733 | |
| 3734 | test_sqrt(ggml_type type = GGML_TYPE_F32, |
| 3735 | std::array<int64_t, 4> ne = {10, 3, 3, 2}) |
| 3736 | : type(type), ne(ne) {} |
| 3737 | |
| 3738 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 3739 | ggml_tensor * a = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 3740 | ggml_set_param(tensor: a); |
| 3741 | ggml_set_name(tensor: a, name: "a" ); |
| 3742 | |
| 3743 | ggml_tensor * out = ggml_sqrt(ctx, a); |
| 3744 | ggml_set_name(tensor: out, name: "out" ); |
| 3745 | |
| 3746 | return out; |
| 3747 | } |
| 3748 | |
| 3749 | void initialize_tensors(ggml_context * ctx) override { |
| 3750 | // fill with positive values |
| 3751 | for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, tensor: t)) { |
| 3752 | init_tensor_uniform(tensor: t, min: 50.0f, max: 100.0f); |
| 3753 | } |
| 3754 | } |
| 3755 | |
| 3756 | float grad_eps() override { |
| 3757 | return 20.0f; |
| 3758 | } |
| 3759 | |
| 3760 | bool grad_precise() override { |
| 3761 | return true; |
| 3762 | } |
| 3763 | }; |
| 3764 | |
| 3765 | // GGML_OP_LOG |
| 3766 | struct test_log : public test_case { |
| 3767 | const ggml_type type; |
| 3768 | const std::array<int64_t, 4> ne; |
| 3769 | |
| 3770 | std::string vars() override { |
| 3771 | return VARS_TO_STR2(type, ne); |
| 3772 | } |
| 3773 | |
| 3774 | test_log(ggml_type type = GGML_TYPE_F32, |
| 3775 | std::array<int64_t, 4> ne = {10, 5, 4, 3}) |
| 3776 | : type(type), ne(ne) {} |
| 3777 | |
| 3778 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 3779 | ggml_tensor * a = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 3780 | ggml_set_param(tensor: a); |
| 3781 | ggml_set_name(tensor: a, name: "a" ); |
| 3782 | |
| 3783 | ggml_tensor * out = ggml_log(ctx, a); |
| 3784 | ggml_set_name(tensor: out, name: "out" ); |
| 3785 | |
| 3786 | return out; |
| 3787 | } |
| 3788 | |
| 3789 | void initialize_tensors(ggml_context * ctx) override { |
| 3790 | for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, tensor: t)) { |
| 3791 | // log(1) == 0, cluster values there to keep the sum low for better precision in the backward pass: |
| 3792 | init_tensor_uniform(tensor: t, min: 0.9f, max: 1.1f); |
| 3793 | } |
| 3794 | } |
| 3795 | |
| 3796 | bool grad_precise() override { |
| 3797 | return true; |
| 3798 | } |
| 3799 | }; |
| 3800 | |
| 3801 | // GGML_OP_SIN |
| 3802 | struct test_sin : public test_case { |
| 3803 | const ggml_type type; |
| 3804 | const std::array<int64_t, 4> ne; |
| 3805 | |
| 3806 | std::string vars() override { |
| 3807 | return VARS_TO_STR2(type, ne); |
| 3808 | } |
| 3809 | |
| 3810 | test_sin(ggml_type type = GGML_TYPE_F32, |
| 3811 | std::array<int64_t, 4> ne = {10, 2, 2, 2}) |
| 3812 | : type(type), ne(ne) {} |
| 3813 | |
| 3814 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 3815 | ggml_tensor * a = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 3816 | ggml_set_param(tensor: a); |
| 3817 | ggml_set_name(tensor: a, name: "a" ); |
| 3818 | |
| 3819 | ggml_tensor * out = ggml_sin(ctx, a); |
| 3820 | ggml_set_name(tensor: out, name: "out" ); |
| 3821 | |
| 3822 | return out; |
| 3823 | } |
| 3824 | |
| 3825 | void initialize_tensors(ggml_context * ctx) override { |
| 3826 | for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, tensor: t)) { |
| 3827 | init_tensor_uniform(tensor: t, min: -6.5f, max: 6.5f); // Covers interval [-2*pi, 2*pi]. |
| 3828 | } |
| 3829 | } |
| 3830 | |
| 3831 | double max_maa_err() override { |
| 3832 | return 1e-3; |
| 3833 | } |
| 3834 | |
| 3835 | float grad_eps() override { |
| 3836 | return 0.2f; |
| 3837 | } |
| 3838 | |
| 3839 | bool grad_precise() override { |
| 3840 | return true; |
| 3841 | } |
| 3842 | }; |
| 3843 | |
| 3844 | // GGML_OP_COS |
| 3845 | struct test_cos : public test_case { |
| 3846 | const ggml_type type; |
| 3847 | const std::array<int64_t, 4> ne; |
| 3848 | |
| 3849 | std::string vars() override { |
| 3850 | return VARS_TO_STR2(type, ne); |
| 3851 | } |
| 3852 | |
| 3853 | test_cos(ggml_type type = GGML_TYPE_F32, |
| 3854 | std::array<int64_t, 4> ne = {10, 2, 2, 2}) |
| 3855 | : type(type), ne(ne) {} |
| 3856 | |
| 3857 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 3858 | ggml_tensor * a = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 3859 | ggml_set_param(tensor: a); |
| 3860 | ggml_set_name(tensor: a, name: "a" ); |
| 3861 | |
| 3862 | ggml_tensor * out = ggml_cos(ctx, a); |
| 3863 | ggml_set_name(tensor: out, name: "out" ); |
| 3864 | |
| 3865 | return out; |
| 3866 | } |
| 3867 | |
| 3868 | void initialize_tensors(ggml_context * ctx) override { |
| 3869 | for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, tensor: t)) { |
| 3870 | init_tensor_uniform(tensor: t, min: -6.5f, max: 6.5f); // Covers interval [-2*pi, 2*pi]. |
| 3871 | } |
| 3872 | } |
| 3873 | |
| 3874 | double max_maa_err() override { |
| 3875 | return 1e-3; |
| 3876 | } |
| 3877 | |
| 3878 | float grad_eps() override { |
| 3879 | return 0.2f; |
| 3880 | } |
| 3881 | |
| 3882 | bool grad_precise() override { |
| 3883 | return true; |
| 3884 | } |
| 3885 | }; |
| 3886 | |
| 3887 | // GGML_OP_CLAMP |
| 3888 | struct test_clamp : public test_case { |
| 3889 | const ggml_type type; |
| 3890 | const std::array<int64_t, 4> ne; |
| 3891 | float min; |
| 3892 | float max; |
| 3893 | |
| 3894 | std::string vars() override { |
| 3895 | return VARS_TO_STR4(type, ne, min, max); |
| 3896 | } |
| 3897 | |
| 3898 | test_clamp(ggml_type type = GGML_TYPE_F32, |
| 3899 | std::array<int64_t, 4> ne = {10, 5, 4, 3}, |
| 3900 | float min = -0.5f, float max = 0.5f) |
| 3901 | : type(type), ne(ne), min(min), max(max) {} |
| 3902 | |
| 3903 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 3904 | ggml_tensor * a = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 3905 | ggml_set_name(tensor: a, name: "a" ); |
| 3906 | |
| 3907 | ggml_tensor * out = ggml_clamp(ctx, a, min, max); |
| 3908 | ggml_set_name(tensor: out, name: "out" ); |
| 3909 | |
| 3910 | return out; |
| 3911 | } |
| 3912 | |
| 3913 | float grad_eps() override { |
| 3914 | return 1e-2f; |
| 3915 | } |
| 3916 | |
| 3917 | std::vector<float> grad_expect() override { |
| 3918 | return {0.0f, 1.0f}; |
| 3919 | } |
| 3920 | }; |
| 3921 | |
| 3922 | // GGML_OP_FLOOR |
| 3923 | struct test_floor : public test_case { |
| 3924 | const ggml_type type; |
| 3925 | const std::array<int64_t, 4> ne; |
| 3926 | |
| 3927 | std::string vars() override { |
| 3928 | return VARS_TO_STR2(type, ne); |
| 3929 | } |
| 3930 | |
| 3931 | test_floor(ggml_type type = GGML_TYPE_F32, |
| 3932 | std::array<int64_t, 4> ne = {10, 2, 2, 2}) |
| 3933 | : type(type), ne(ne) {} |
| 3934 | |
| 3935 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 3936 | ggml_tensor * a = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 3937 | ggml_set_param(tensor: a); |
| 3938 | ggml_set_name(tensor: a, name: "a" ); |
| 3939 | |
| 3940 | ggml_tensor * out = ggml_floor(ctx, a); |
| 3941 | ggml_set_name(tensor: out, name: "out" ); |
| 3942 | |
| 3943 | return out; |
| 3944 | } |
| 3945 | |
| 3946 | void initialize_tensors(ggml_context * ctx) override { |
| 3947 | for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, tensor: t)) { |
| 3948 | init_tensor_uniform(tensor: t, min: -10.0f, max: 10.0f); |
| 3949 | } |
| 3950 | } |
| 3951 | }; |
| 3952 | |
| 3953 | // GGML_OP_CEIL |
| 3954 | struct test_ceil : public test_case { |
| 3955 | const ggml_type type; |
| 3956 | const std::array<int64_t, 4> ne; |
| 3957 | |
| 3958 | std::string vars() override { |
| 3959 | return VARS_TO_STR2(type, ne); |
| 3960 | } |
| 3961 | |
| 3962 | test_ceil(ggml_type type = GGML_TYPE_F32, |
| 3963 | std::array<int64_t, 4> ne = {10, 2, 2, 2}) |
| 3964 | : type(type), ne(ne) {} |
| 3965 | |
| 3966 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 3967 | ggml_tensor * a = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 3968 | ggml_set_param(tensor: a); |
| 3969 | ggml_set_name(tensor: a, name: "a" ); |
| 3970 | |
| 3971 | ggml_tensor * out = ggml_ceil(ctx, a); |
| 3972 | ggml_set_name(tensor: out, name: "out" ); |
| 3973 | |
| 3974 | return out; |
| 3975 | } |
| 3976 | |
| 3977 | void initialize_tensors(ggml_context * ctx) override { |
| 3978 | for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, tensor: t)) { |
| 3979 | init_tensor_uniform(tensor: t, min: -10.0f, max: 10.0f); |
| 3980 | } |
| 3981 | } |
| 3982 | }; |
| 3983 | |
| 3984 | // GGML_OP_ROUND |
| 3985 | struct test_round : public test_case { |
| 3986 | const ggml_type type; |
| 3987 | const std::array<int64_t, 4> ne; |
| 3988 | |
| 3989 | std::string vars() override { |
| 3990 | return VARS_TO_STR2(type, ne); |
| 3991 | } |
| 3992 | |
| 3993 | test_round(ggml_type type = GGML_TYPE_F32, |
| 3994 | std::array<int64_t, 4> ne = {10, 2, 2, 2}) |
| 3995 | : type(type), ne(ne) {} |
| 3996 | |
| 3997 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 3998 | ggml_tensor * a = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 3999 | ggml_set_param(tensor: a); |
| 4000 | ggml_set_name(tensor: a, name: "a" ); |
| 4001 | |
| 4002 | ggml_tensor * out = ggml_round(ctx, a); |
| 4003 | ggml_set_name(tensor: out, name: "out" ); |
| 4004 | |
| 4005 | return out; |
| 4006 | } |
| 4007 | |
| 4008 | void initialize_tensors(ggml_context * ctx) override { |
| 4009 | for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, tensor: t)) { |
| 4010 | init_tensor_uniform(tensor: t, min: -10.0f, max: 10.0f); |
| 4011 | } |
| 4012 | } |
| 4013 | }; |
| 4014 | |
| 4015 | // GGML_OP_TRUNC |
| 4016 | struct test_trunc : public test_case { |
| 4017 | const ggml_type type; |
| 4018 | const std::array<int64_t, 4> ne; |
| 4019 | |
| 4020 | std::string vars() override { |
| 4021 | return VARS_TO_STR2(type, ne); |
| 4022 | } |
| 4023 | |
| 4024 | test_trunc(ggml_type type = GGML_TYPE_F32, |
| 4025 | std::array<int64_t, 4> ne = {10, 2, 2, 2}) |
| 4026 | : type(type), ne(ne) {} |
| 4027 | |
| 4028 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 4029 | ggml_tensor * a = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 4030 | ggml_set_param(tensor: a); |
| 4031 | ggml_set_name(tensor: a, name: "a" ); |
| 4032 | |
| 4033 | ggml_tensor * out = ggml_trunc(ctx, a); |
| 4034 | ggml_set_name(tensor: out, name: "out" ); |
| 4035 | |
| 4036 | return out; |
| 4037 | } |
| 4038 | |
| 4039 | void initialize_tensors(ggml_context * ctx) override { |
| 4040 | for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, tensor: t)) { |
| 4041 | init_tensor_uniform(tensor: t, min: -10.0f, max: 10.0f); |
| 4042 | } |
| 4043 | } |
| 4044 | }; |
| 4045 | |
| 4046 | // GGML_OP_DIAG_MASK_INF |
| 4047 | struct test_diag_mask_inf : public test_case { |
| 4048 | const ggml_type type; |
| 4049 | const std::array<int64_t, 4> ne; |
| 4050 | const int n_past; |
| 4051 | |
| 4052 | std::string vars() override { |
| 4053 | return VARS_TO_STR3(type, ne, n_past); |
| 4054 | } |
| 4055 | |
| 4056 | test_diag_mask_inf(ggml_type type = GGML_TYPE_F32, |
| 4057 | std::array<int64_t, 4> ne = {10, 10, 3, 2}, |
| 4058 | int n_past = 5) |
| 4059 | : type(type), ne(ne), n_past(n_past) {} |
| 4060 | |
| 4061 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 4062 | ggml_tensor * a = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 4063 | ggml_set_param(tensor: a); |
| 4064 | ggml_set_name(tensor: a, name: "a" ); |
| 4065 | |
| 4066 | ggml_tensor * out = ggml_diag_mask_inf(ctx, a, n_past); |
| 4067 | ggml_set_name(tensor: out, name: "out" ); |
| 4068 | |
| 4069 | return out; |
| 4070 | } |
| 4071 | }; |
| 4072 | |
| 4073 | // GGML_OP_SOFT_MAX |
| 4074 | struct test_soft_max : public test_case { |
| 4075 | const ggml_type type; |
| 4076 | const std::array<int64_t, 4> ne; |
| 4077 | const bool mask; |
| 4078 | const bool sinks; |
| 4079 | const ggml_type m_prec; |
| 4080 | const std::array<int64_t, 2> nr23; // broadcast only dims 2 and 3 |
| 4081 | const float scale; |
| 4082 | const float max_bias; |
| 4083 | const bool inplace; |
| 4084 | |
| 4085 | std::string vars() override { |
| 4086 | return VARS_TO_STR9(type, ne, mask, sinks, m_prec, nr23, scale, max_bias, inplace); |
| 4087 | } |
| 4088 | |
| 4089 | // the 1024 test with bias occasionally fails: |
| 4090 | // SOFT_MAX(type=f32,ne=[1024,16,1,1],mask=1,scale=1.000000,max_bias=8.000000): [SOFT_MAX] NMSE = 0.000000103 > 0.000000100 FAIL |
| 4091 | virtual double max_nmse_err() override { |
| 4092 | return 1e-6; |
| 4093 | } |
| 4094 | |
| 4095 | test_soft_max(ggml_type type = GGML_TYPE_F32, |
| 4096 | std::array<int64_t, 4> ne = {10, 5, 4, 3}, |
| 4097 | bool mask = false, |
| 4098 | bool sinks = false, |
| 4099 | ggml_type m_prec = GGML_TYPE_F32, |
| 4100 | std::array<int64_t, 2> nr23 = {1, 1}, |
| 4101 | float scale = 1.0f, |
| 4102 | float max_bias = 0.0f, |
| 4103 | bool inplace = false) |
| 4104 | : type(type), ne(ne), mask(mask), sinks(sinks), m_prec(m_prec), nr23(nr23), scale(scale), max_bias(max_bias), inplace(inplace) {} |
| 4105 | |
| 4106 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 4107 | ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne0: ne[0], ne1: ne[1], ne2: ne[2]*nr23[0], ne3: ne[3]*nr23[1]); |
| 4108 | ggml_set_param(tensor: a); |
| 4109 | ggml_set_name(tensor: a, name: "a" ); |
| 4110 | |
| 4111 | ggml_tensor * mask = nullptr; |
| 4112 | if (this->mask) { |
| 4113 | mask = ggml_new_tensor_4d(ctx, type: m_prec, ne0: ne[0], ne1: ne[1], ne2: ne[2], ne3: ne[3]); |
| 4114 | ggml_set_name(tensor: mask, name: "mask" ); |
| 4115 | } |
| 4116 | |
| 4117 | ggml_tensor * sinks = nullptr; |
| 4118 | if (this->sinks) { |
| 4119 | sinks = ggml_new_tensor_1d(ctx, type: GGML_TYPE_F32, ne0: ne[2]*nr23[0]); |
| 4120 | ggml_set_name(tensor: sinks, name: "sinks" ); |
| 4121 | } |
| 4122 | |
| 4123 | ggml_tensor * out; |
| 4124 | if (inplace) { |
| 4125 | out = ggml_soft_max_ext_inplace(ctx, a, mask, scale, max_bias); |
| 4126 | } else { |
| 4127 | out = ggml_soft_max_ext(ctx, a, mask, scale, max_bias); |
| 4128 | } |
| 4129 | ggml_soft_max_add_sinks(a: out, sinks); |
| 4130 | ggml_set_name(tensor: out, name: "out" ); |
| 4131 | |
| 4132 | return out; |
| 4133 | } |
| 4134 | |
| 4135 | bool grad_precise() override { |
| 4136 | return true; |
| 4137 | } |
| 4138 | }; |
| 4139 | |
| 4140 | // GGML_OP_SOFT_MAX_BACK |
| 4141 | struct test_soft_max_back : public test_case { |
| 4142 | const ggml_type type; |
| 4143 | const std::array<int64_t, 4> ne; |
| 4144 | const float scale; |
| 4145 | const float max_bias; |
| 4146 | |
| 4147 | std::string vars() override { |
| 4148 | return VARS_TO_STR4(type, ne, scale, max_bias); |
| 4149 | } |
| 4150 | |
| 4151 | test_soft_max_back(ggml_type type = GGML_TYPE_F32, |
| 4152 | std::array<int64_t, 4> ne = {10, 5, 4, 3}, |
| 4153 | float scale = 1.0f, |
| 4154 | float max_bias = 0.0f) |
| 4155 | : type(type), ne(ne), scale(scale), max_bias(max_bias) {} |
| 4156 | |
| 4157 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 4158 | ggml_tensor * a = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 4159 | ggml_set_name(tensor: a, name: "a" ); |
| 4160 | |
| 4161 | ggml_tensor * b = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 4162 | ggml_set_name(tensor: a, name: "a" ); |
| 4163 | |
| 4164 | ggml_tensor * out = ggml_soft_max_ext_back(ctx, a, b, scale, max_bias); |
| 4165 | ggml_set_name(tensor: out, name: "out" ); |
| 4166 | |
| 4167 | return out; |
| 4168 | } |
| 4169 | }; |
| 4170 | |
| 4171 | // GGML_OP_ROPE + GGML_OP_ROPE_BACK |
| 4172 | struct test_rope : public test_case { |
| 4173 | const ggml_type type; |
| 4174 | const std::array<int64_t, 4> ne_a; |
| 4175 | int n_dims; |
| 4176 | int mode; |
| 4177 | int n_ctx; // used to generate positions |
| 4178 | float fs; // freq_scale |
| 4179 | float ef; // ext_factor |
| 4180 | float af; // attn_factor |
| 4181 | bool ff; |
| 4182 | int v; // view (1 : non-contiguous a) |
| 4183 | bool forward; |
| 4184 | bool inplace; |
| 4185 | |
| 4186 | std::string vars() override { |
| 4187 | // forward can be inferred from the op, does not need to be printed |
| 4188 | return VARS_TO_STR11(type, ne_a, n_dims, mode, n_ctx, fs, ef, af, ff, v, inplace); |
| 4189 | } |
| 4190 | |
| 4191 | test_rope(ggml_type type = GGML_TYPE_F32, |
| 4192 | std::array<int64_t, 4> ne_a = {10, 5, 3, 1}, |
| 4193 | int n_dims = 10, int mode = GGML_ROPE_TYPE_NORMAL, int n_ctx = 512, float fs = 1.0f, |
| 4194 | float ef = 0.0f, float af = 0.0f, bool ff = false, int v = 0, bool forward = true, bool inplace = false) |
| 4195 | : type(type), ne_a(ne_a), n_dims(n_dims), mode(mode), n_ctx(n_ctx), fs(fs), ef(ef), af(af), ff(ff), v(v), forward(forward), inplace(inplace) {} |
| 4196 | |
| 4197 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 4198 | ggml_tensor * a; |
| 4199 | if (v & 1) { |
| 4200 | auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3; |
| 4201 | a = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 4202 | if (forward) { |
| 4203 | ggml_set_param(tensor: a); |
| 4204 | } |
| 4205 | ggml_set_name(tensor: a, name: "a" ); |
| 4206 | |
| 4207 | a = ggml_view_4d(ctx, a, ne0: ne_a[0], ne1: ne_a[1], ne2: ne_a[2], ne3: ne_a[3], nb1: a->nb[1], nb2: a->nb[2], nb3: a->nb[3], offset: 0); |
| 4208 | ggml_set_name(tensor: a, name: "view_of_a" ); |
| 4209 | } else { |
| 4210 | a = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne_a.data()); |
| 4211 | if (forward) { |
| 4212 | ggml_set_param(tensor: a); |
| 4213 | } |
| 4214 | ggml_set_name(tensor: a, name: "a" ); |
| 4215 | } |
| 4216 | |
| 4217 | const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE; |
| 4218 | const bool is_vision = mode == GGML_ROPE_TYPE_VISION; |
| 4219 | |
| 4220 | ggml_tensor * pos; |
| 4221 | if (is_mrope || is_vision) { |
| 4222 | pos = ggml_new_tensor_1d(ctx, type: GGML_TYPE_I32, ne0: ne_a[2] * 4); |
| 4223 | } else { |
| 4224 | pos = ggml_new_tensor_1d(ctx, type: GGML_TYPE_I32, ne0: ne_a[2]); |
| 4225 | } |
| 4226 | ggml_set_name(tensor: pos, name: "pos" ); |
| 4227 | |
| 4228 | ggml_tensor * freq = nullptr; |
| 4229 | if (ff) { |
| 4230 | freq = ggml_new_tensor_1d(ctx, type: GGML_TYPE_F32, ne0: n_dims/2); |
| 4231 | ggml_set_name(tensor: freq, name: "freq" ); |
| 4232 | } |
| 4233 | |
| 4234 | ggml_tensor * out; |
| 4235 | if (is_mrope) { |
| 4236 | if (is_vision) { |
| 4237 | GGML_ASSERT(n_dims/4 > 0); |
| 4238 | int rope_sections[4] = {n_dims/4, n_dims/4, 0, 0}; // Vision-RoPE only use first two dimension for image (x, y) coordinate |
| 4239 | if (forward) { |
| 4240 | if (inplace) { |
| 4241 | out = ggml_rope_multi_inplace(ctx, a, b: pos, c: freq, n_dims: n_dims/2, sections: rope_sections, mode, n_ctx_orig: 0, freq_base: 10000.0f, freq_scale: fs, ext_factor: ef, attn_factor: af, beta_fast: 1.0f, beta_slow: 1.0f); |
| 4242 | } else { |
| 4243 | out = ggml_rope_multi(ctx, a, b: pos, c: freq, n_dims: n_dims/2, sections: rope_sections, mode, n_ctx_orig: 0, freq_base: 10000.0f, freq_scale: fs, ext_factor: ef, attn_factor: af, beta_fast: 1.0f, beta_slow: 1.0f); |
| 4244 | } |
| 4245 | } else { |
| 4246 | out = ggml_rope_multi_back(ctx, a, b: pos, c: freq, n_dims: n_dims/2, sections: rope_sections, mode, n_ctx_orig: 0, freq_base: 10000.0f, freq_scale: fs, ext_factor: ef, attn_factor: af, beta_fast: 1.0f, beta_slow: 1.0f); |
| 4247 | } |
| 4248 | } else { |
| 4249 | GGML_ASSERT(n_dims/3 > 0); |
| 4250 | int rope_sections[4] = {n_dims/3, n_dims/3, n_dims/3, 0}; |
| 4251 | if (forward) { |
| 4252 | if (inplace) { |
| 4253 | out = ggml_rope_multi_inplace(ctx, a, b: pos, c: freq, n_dims, sections: rope_sections, mode, n_ctx_orig: 0, freq_base: 10000.0f, freq_scale: fs, ext_factor: ef, attn_factor: af, beta_fast: 1.0f, beta_slow: 1.0f); |
| 4254 | } else { |
| 4255 | out = ggml_rope_multi(ctx, a, b: pos, c: freq, n_dims, sections: rope_sections, mode, n_ctx_orig: 0, freq_base: 10000.0f, freq_scale: fs, ext_factor: ef, attn_factor: af, beta_fast: 1.0f, beta_slow: 1.0f); |
| 4256 | } |
| 4257 | } else { |
| 4258 | out = ggml_rope_multi_back(ctx, a, b: pos, c: freq, n_dims, sections: rope_sections, mode, n_ctx_orig: 0, freq_base: 10000.0f, freq_scale: fs, ext_factor: ef, attn_factor: af, beta_fast: 1.0f, beta_slow: 1.0f); |
| 4259 | } |
| 4260 | } |
| 4261 | } else { |
| 4262 | if (forward) { |
| 4263 | if (inplace) { |
| 4264 | out = ggml_rope_ext_inplace(ctx, a, b: pos, c: freq, n_dims, mode, n_ctx_orig: 0, freq_base: 10000.0f, freq_scale: fs, ext_factor: ef, attn_factor: af, beta_fast: 1.0f, beta_slow: 1.0f); |
| 4265 | } else { |
| 4266 | out = ggml_rope_ext(ctx, a, b: pos, c: freq, n_dims, mode, n_ctx_orig: 0, freq_base: 10000.0f, freq_scale: fs, ext_factor: ef, attn_factor: af, beta_fast: 1.0f, beta_slow: 1.0f); |
| 4267 | } |
| 4268 | } else { |
| 4269 | out = ggml_rope_ext_back(ctx, a, b: pos, c: freq, n_dims, mode, n_ctx_orig: 0, freq_base: 10000.0f, freq_scale: fs, ext_factor: ef, attn_factor: af, beta_fast: 1.0f, beta_slow: 1.0f); |
| 4270 | } |
| 4271 | |
| 4272 | // TODO: add test with a non-contiguous view as input ; this case is needed for build_rope_2d in clip.cpp |
| 4273 | } |
| 4274 | ggml_set_name(tensor: out, name: "out" ); |
| 4275 | |
| 4276 | return out; |
| 4277 | } |
| 4278 | |
| 4279 | void initialize_tensors(ggml_context * ctx) override { |
| 4280 | for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, tensor: t)) { |
| 4281 | if (t->type == GGML_TYPE_I32) { |
| 4282 | // pos |
| 4283 | const int num_pos_ids = (mode & GGML_ROPE_TYPE_MROPE) ? ne_a[2] * 4 : ne_a[2]; |
| 4284 | std::vector<int> data(num_pos_ids); |
| 4285 | for (int i = 0; i < num_pos_ids; i++) { |
| 4286 | data[i] = rand() % n_ctx; |
| 4287 | } |
| 4288 | ggml_backend_tensor_set(tensor: t, data: data.data(), offset: 0, size: num_pos_ids * sizeof(int)); |
| 4289 | } else { |
| 4290 | if (t->ne[0] == n_dims/2) { |
| 4291 | // frequency factors in the range [0.9f, 1.1f] |
| 4292 | init_tensor_uniform(tensor: t, min: 0.9f, max: 1.1f); |
| 4293 | } else { |
| 4294 | init_tensor_uniform(tensor: t); |
| 4295 | } |
| 4296 | } |
| 4297 | } |
| 4298 | } |
| 4299 | |
| 4300 | double max_maa_err() override { |
| 4301 | return 1e-3; |
| 4302 | } |
| 4303 | |
| 4304 | bool grad_precise() override { |
| 4305 | return true; |
| 4306 | } |
| 4307 | }; |
| 4308 | |
| 4309 | // GGML_OP_POOL2D |
| 4310 | struct test_pool2d : public test_case { |
| 4311 | enum ggml_op_pool pool_type; |
| 4312 | const ggml_type type_input; |
| 4313 | const std::array<int64_t, 4> ne_input; |
| 4314 | // kernel size |
| 4315 | const int k0; |
| 4316 | const int k1; |
| 4317 | // stride |
| 4318 | const int s0; |
| 4319 | const int s1; |
| 4320 | // padding |
| 4321 | const int p0; |
| 4322 | const int p1; |
| 4323 | |
| 4324 | std::string vars() override { |
| 4325 | return VARS_TO_STR9(pool_type, type_input, ne_input, k0, k1, s0, s1, p0, p1); |
| 4326 | } |
| 4327 | |
| 4328 | test_pool2d(ggml_op_pool pool_type = GGML_OP_POOL_AVG, |
| 4329 | ggml_type type_input = GGML_TYPE_F32, |
| 4330 | std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1] |
| 4331 | int k0 = 3, int k1 = 3, |
| 4332 | int s0 = 1, int s1 = 1, |
| 4333 | int p0 = 1, int p1 = 1) |
| 4334 | : pool_type(pool_type), type_input(type_input), ne_input(ne_input), k0(k0), k1(k1), s0(s0), s1(s1), p0(p0), p1(p1) {} |
| 4335 | |
| 4336 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 4337 | ggml_tensor * input = ggml_new_tensor(ctx, type: type_input, n_dims: 4, ne: ne_input.data()); |
| 4338 | ggml_set_param(tensor: input); |
| 4339 | ggml_set_name(tensor: input, name: "input" ); |
| 4340 | |
| 4341 | ggml_tensor * out = ggml_pool_2d(ctx, a: input, op: pool_type, k0, k1, s0, s1, p0, p1); |
| 4342 | ggml_set_name(tensor: out, name: "out" ); |
| 4343 | |
| 4344 | return out; |
| 4345 | } |
| 4346 | }; |
| 4347 | |
| 4348 | // GGML_OP_CONV_TRANSPOSE_1D |
| 4349 | struct test_conv_transpose_1d : public test_case { |
| 4350 | const std::array<int64_t, 4> ne_input; |
| 4351 | const std::array<int64_t, 4> ne_kernel; |
| 4352 | |
| 4353 | const int s0; // stride |
| 4354 | const int p0; // padding |
| 4355 | const int d0; // dilation |
| 4356 | |
| 4357 | std::string vars() override { |
| 4358 | return VARS_TO_STR5(ne_input, ne_kernel, s0, p0, d0); |
| 4359 | } |
| 4360 | |
| 4361 | test_conv_transpose_1d(std::array<int64_t, 4> ne_input = {197, 32, 1, 1}, // [input_width, input_channels, 1 /* assert in cpu kernel*/, 1 (should be batch)] |
| 4362 | std::array<int64_t, 4> ne_kernel = {16, 32, 32, 1}, // [kernel_width, output_channels, input_channels, 1 (should be batch)] |
| 4363 | int s0 = 1, int p0 = 0, int d0 = 1) |
| 4364 | : ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), p0(p0), d0(d0) {} |
| 4365 | |
| 4366 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 4367 | ggml_tensor * input = ggml_new_tensor(ctx, type: GGML_TYPE_F32, n_dims: 4, ne: ne_input.data()); |
| 4368 | ggml_set_name(tensor: input, name: "input" ); |
| 4369 | |
| 4370 | ggml_tensor * kernel = ggml_new_tensor(ctx, type: GGML_TYPE_F32, n_dims: 4, ne: ne_kernel.data()); |
| 4371 | ggml_set_name(tensor: kernel, name: "kernel" ); |
| 4372 | |
| 4373 | ggml_tensor * out = ggml_conv_transpose_1d(ctx, a: kernel, b: input, s0, p0, d0); |
| 4374 | ggml_set_name(tensor: out, name: "out" ); |
| 4375 | |
| 4376 | return out; |
| 4377 | } |
| 4378 | }; |
| 4379 | |
| 4380 | // GGML_OP_CONV_TRANSPOSE_2D |
| 4381 | struct test_conv_transpose_2d : public test_case { |
| 4382 | const std::array<int64_t, 4> ne_input; |
| 4383 | const std::array<int64_t, 4> ne_kernel; |
| 4384 | const int stride; |
| 4385 | |
| 4386 | std::string vars() override { |
| 4387 | return VARS_TO_STR3(ne_input, ne_kernel, stride); |
| 4388 | } |
| 4389 | |
| 4390 | double max_nmse_err() override { |
| 4391 | return 5e-4; // The default 1e-7 is too small for Vulkan. |
| 4392 | } |
| 4393 | |
| 4394 | test_conv_transpose_2d(std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1] |
| 4395 | std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1] |
| 4396 | int stride = 1) |
| 4397 | : ne_input(ne_input), ne_kernel(ne_kernel), stride(stride){} |
| 4398 | |
| 4399 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 4400 | ggml_tensor * input = ggml_new_tensor(ctx, type: GGML_TYPE_F32, n_dims: 4, ne: ne_input.data()); |
| 4401 | ggml_set_name(tensor: input, name: "input" ); |
| 4402 | |
| 4403 | ggml_tensor * kernel = ggml_new_tensor(ctx, type: GGML_TYPE_F16, n_dims: 4, ne: ne_kernel.data()); |
| 4404 | ggml_set_name(tensor: kernel, name: "kernel" ); |
| 4405 | |
| 4406 | ggml_tensor * out = ggml_conv_transpose_2d_p0(ctx, a: kernel, b: input, stride); |
| 4407 | ggml_set_name(tensor: out, name: "out" ); |
| 4408 | |
| 4409 | return out; |
| 4410 | } |
| 4411 | }; |
| 4412 | |
| 4413 | // GGML_OP_IM2COL |
| 4414 | struct test_im2col : public test_case { |
| 4415 | const ggml_type type_input; |
| 4416 | const ggml_type type_kernel; |
| 4417 | const ggml_type dst_type; |
| 4418 | const std::array<int64_t, 4> ne_input; |
| 4419 | const std::array<int64_t, 4> ne_kernel; |
| 4420 | // stride |
| 4421 | const int s0; |
| 4422 | const int s1; |
| 4423 | // padding |
| 4424 | const int p0; |
| 4425 | const int p1; |
| 4426 | // dilation |
| 4427 | const int d0; |
| 4428 | const int d1; |
| 4429 | // mode |
| 4430 | const bool is_2D; |
| 4431 | |
| 4432 | std::string vars() override { |
| 4433 | return VARS_TO_STR12(type_input, type_kernel, dst_type, ne_input, ne_kernel, s0, s1, p0, p1, d0, d1, is_2D); |
| 4434 | } |
| 4435 | |
| 4436 | test_im2col(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32, |
| 4437 | std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1] |
| 4438 | std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1] |
| 4439 | int s0 = 1, int s1 = 1, |
| 4440 | int p0 = 1, int p1 = 1, |
| 4441 | int d0 = 1, int d1 = 1, |
| 4442 | bool is_2D = true) |
| 4443 | : type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), p0(p0), p1(p1), d0(d0), d1(d1), is_2D(is_2D) {} |
| 4444 | |
| 4445 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 4446 | ggml_tensor * input = ggml_new_tensor(ctx, type: type_input, n_dims: 4, ne: ne_input.data()); |
| 4447 | ggml_set_param(tensor: input); |
| 4448 | ggml_set_name(tensor: input, name: "input" ); |
| 4449 | |
| 4450 | ggml_tensor * kernel = ggml_new_tensor(ctx, type: type_kernel, n_dims: 4, ne: ne_kernel.data()); |
| 4451 | ggml_set_name(tensor: kernel, name: "kernel" ); |
| 4452 | |
| 4453 | ggml_tensor * out = ggml_im2col(ctx, a: kernel, b: input, s0, s1, p0, p1, d0, d1, is_2D, dst_type); |
| 4454 | ggml_set_name(tensor: out, name: "out" ); |
| 4455 | |
| 4456 | return out; |
| 4457 | } |
| 4458 | }; |
| 4459 | |
| 4460 | // GGML_OP_IM2COL_3D |
| 4461 | struct test_im2col_3d : public test_case { |
| 4462 | const ggml_type type_input; |
| 4463 | const ggml_type type_kernel; |
| 4464 | const ggml_type dst_type; |
| 4465 | const std::array<int64_t, 4> ne_input; |
| 4466 | const std::array<int64_t, 4> ne_kernel; |
| 4467 | // stride |
| 4468 | const int s0; |
| 4469 | const int s1; |
| 4470 | const int s2; |
| 4471 | // padding |
| 4472 | const int p0; |
| 4473 | const int p1; |
| 4474 | const int p2; |
| 4475 | // dilation |
| 4476 | const int d0; |
| 4477 | const int d1; |
| 4478 | const int d2; |
| 4479 | |
| 4480 | const int64_t IC; |
| 4481 | const bool v; |
| 4482 | |
| 4483 | std::string vars() override { |
| 4484 | return VARS_TO_STR16(type_input, type_kernel, dst_type, ne_input, ne_kernel, IC, s0, s1, s2, p0, p1, p2, d0, d1, d2, v); |
| 4485 | } |
| 4486 | |
| 4487 | test_im2col_3d(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32, |
| 4488 | std::array<int64_t, 4> ne_input = {10, 10, 10, 9}, // [OC*IC, KD, KH, KW] |
| 4489 | std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [N*IC, ID, IH, IW] |
| 4490 | int64_t IC = 3, |
| 4491 | int s0 = 1, int s1 = 1, int s2 = 1, |
| 4492 | int p0 = 1, int p1 = 1, int p2 = 1, |
| 4493 | int d0 = 1, int d1 = 1, int d2 = 1, |
| 4494 | bool v = false) |
| 4495 | : type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), s2(s2), p0(p0), p1(p1), p2(p2), d0(d0), d1(d1), d2(d2), IC(IC), v(v) {} |
| 4496 | |
| 4497 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 4498 | ggml_tensor * input = ggml_new_tensor(ctx, type: type_input, n_dims: 4, ne: ne_input.data()); |
| 4499 | ggml_set_param(tensor: input); |
| 4500 | ggml_set_name(tensor: input, name: "input" ); |
| 4501 | |
| 4502 | if (v) { |
| 4503 | input = ggml_view_4d(ctx, a: input, ne0: ne_input[0] - 2, ne1: ne_input[1] - 2, ne2: ne_input[2] - 2, ne3: ne_input[3] - 2, nb1: input->nb[1], nb2: input->nb[2], nb3: input->nb[3], offset: 0); |
| 4504 | ggml_set_name(tensor: input, name: "view_of_input" ); |
| 4505 | } |
| 4506 | |
| 4507 | ggml_tensor * kernel = ggml_new_tensor(ctx, type: type_kernel, n_dims: 4, ne: ne_kernel.data()); |
| 4508 | ggml_set_name(tensor: kernel, name: "kernel" ); |
| 4509 | |
| 4510 | ggml_tensor * out = ggml_im2col_3d(ctx, a: kernel, b: input, IC, s0, s1, s2, p0, p1, p2, d0, d1, d2, dst_type); |
| 4511 | ggml_set_name(tensor: out, name: "out" ); |
| 4512 | |
| 4513 | return out; |
| 4514 | } |
| 4515 | }; |
| 4516 | |
| 4517 | // CONV_2D |
| 4518 | struct test_conv_2d : public test_case { |
| 4519 | const std::array<int64_t, 4> ne_input; |
| 4520 | const std::array<int64_t, 4> ne_kernel; |
| 4521 | const ggml_type type_kernel; |
| 4522 | const int stride0; |
| 4523 | const int stride1; |
| 4524 | const int padding0; |
| 4525 | const int padding1; |
| 4526 | const int dilation0; |
| 4527 | const int dilation1; |
| 4528 | // Whether the inputs are contiguous in the channel dim or the width dim |
| 4529 | const bool cwhn; |
| 4530 | |
| 4531 | // If true, the direct CONV_2D will be used in the graph, otherwise it |
| 4532 | // uses ggml_conv_2d: |
| 4533 | // * if the program is called with -o CONV_2D_DIRECT_IMPL, the |
| 4534 | // CONV_2D graph will be built, while |
| 4535 | // * if the program is called with -o CONV_2D_INDIRECT_IMPL, the |
| 4536 | // IM2COL -> MUL_MM graph will be built. |
| 4537 | |
| 4538 | std::string vars() override { |
| 4539 | return VARS_TO_STR10(ne_input, ne_kernel, type_kernel, stride0, stride1, padding0, padding1, dilation0, dilation1, cwhn); |
| 4540 | } |
| 4541 | |
| 4542 | double max_nmse_err() override { |
| 4543 | return 5e-4; |
| 4544 | } |
| 4545 | |
| 4546 | uint64_t op_flops(ggml_tensor * t) override { |
| 4547 | GGML_UNUSED(t); |
| 4548 | // Just counting matmul costs: |
| 4549 | // KxCRS @ CRSxNPQ = KxNPQ --> KxNPQx(CRS+CRS-1) flops |
| 4550 | |
| 4551 | // Copied from ggml.c: int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) |
| 4552 | auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t { |
| 4553 | return (ins + 2 * p - d * (ks - 1) - 1) / s + 1; |
| 4554 | }; |
| 4555 | |
| 4556 | int64_t W = ne_input[0]; |
| 4557 | int64_t H = ne_input[1]; |
| 4558 | int64_t KW = ne_kernel[0]; |
| 4559 | int64_t KH = ne_kernel[1]; |
| 4560 | int64_t Cin = ne_kernel[2]; |
| 4561 | int64_t Cout = ne_kernel[3]; |
| 4562 | int64_t N = ne_input[3]; |
| 4563 | int64_t OH = calc_conv_output_size(H, KH, stride0, padding0, dilation0); |
| 4564 | int64_t OW = calc_conv_output_size(W, KW, stride0, padding0, dilation0); |
| 4565 | |
| 4566 | int64_t K = Cout; |
| 4567 | int64_t CRS = Cin * KH * KW; |
| 4568 | int64_t NPQ = N * OH * OW; |
| 4569 | |
| 4570 | return K * NPQ * (2 * CRS - 1); |
| 4571 | } |
| 4572 | |
| 4573 | test_conv_2d(std::array<int64_t, 4> ne_input = { 64, 64, 16, 1 }, |
| 4574 | std::array<int64_t, 4> ne_kernel = { 3, 3, 1, 16 }, ggml_type type_kernel = GGML_TYPE_F32, int stride0 = 1, |
| 4575 | int stride1 = 1, int padding0 = 0, int padding1 = 0, int dilation0 = 1, int dilation1 = 1, bool cwhn = false) : |
| 4576 | ne_input(ne_input), |
| 4577 | ne_kernel(ne_kernel), |
| 4578 | type_kernel(type_kernel), |
| 4579 | stride0(stride0), |
| 4580 | stride1(stride1), |
| 4581 | padding0(padding0), |
| 4582 | padding1(padding1), |
| 4583 | dilation0(dilation0), |
| 4584 | dilation1(dilation1), |
| 4585 | cwhn(cwhn) {} |
| 4586 | |
| 4587 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 4588 | ggml_tensor * input = ggml_new_tensor(ctx, type: GGML_TYPE_F32, n_dims: 4, ne: ne_input.data()); |
| 4589 | ggml_set_name(tensor: input, name: "input" ); |
| 4590 | |
| 4591 | ggml_tensor * kernel = ggml_new_tensor(ctx, type: type_kernel, n_dims: 4, ne: ne_kernel.data()); |
| 4592 | ggml_set_name(tensor: kernel, name: "kernel" ); |
| 4593 | |
| 4594 | if (cwhn) { |
| 4595 | // change memory layout to channel-most-contiguous (CWHN), |
| 4596 | // then permute it back so NE matches the original input |
| 4597 | input = ggml_cont(ctx, a: ggml_permute(ctx, a: input, axis0: 1, axis1: 2, axis2: 0, axis3: 3)); |
| 4598 | input = ggml_permute(ctx, a: input, axis0: 2, axis1: 0, axis2: 1, axis3: 3); |
| 4599 | kernel = ggml_cont(ctx, a: ggml_permute(ctx, a: kernel, axis0: 2, axis1: 3, axis2: 1, axis3: 0)); |
| 4600 | kernel = ggml_permute(ctx, a: kernel, axis0: 3, axis1: 2, axis2: 0, axis3: 1); |
| 4601 | } |
| 4602 | |
| 4603 | ggml_tensor * out = |
| 4604 | ggml_conv_2d_direct(ctx, a: kernel, b: input, s0: stride0, s1: stride1, p0: padding0, p1: padding1, d0: dilation0, d1: dilation1); |
| 4605 | ggml_set_name(tensor: out, name: "out" ); |
| 4606 | return out; |
| 4607 | } |
| 4608 | }; |
| 4609 | |
| 4610 | // GGML_OP_CONV_2D_DW |
| 4611 | struct test_conv_2d_dw : public test_case { |
| 4612 | const std::array<int64_t, 4> ne_input; |
| 4613 | const std::array<int64_t, 4> ne_kernel; |
| 4614 | const int stride; |
| 4615 | const int padding; |
| 4616 | const int dilation; |
| 4617 | const bool cwhn; |
| 4618 | |
| 4619 | std::string vars() override { |
| 4620 | return VARS_TO_STR6(ne_input, ne_kernel, stride, padding, dilation, cwhn); |
| 4621 | } |
| 4622 | |
| 4623 | test_conv_2d_dw(std::array<int64_t, 4> ne_input = {64, 64, 16, 1}, |
| 4624 | std::array<int64_t, 4> ne_kernel = {3, 3, 1, 16}, |
| 4625 | int stride = 1, int padding = 0, int dilation = 1, bool cwhn = false) |
| 4626 | : ne_input(ne_input), ne_kernel(ne_kernel), stride(stride), padding(padding), dilation(dilation), cwhn(cwhn) {} |
| 4627 | |
| 4628 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 4629 | ggml_tensor * input = ggml_new_tensor(ctx, type: GGML_TYPE_F32, n_dims: 4, ne: ne_input.data()); |
| 4630 | ggml_set_name(tensor: input, name: "input" ); |
| 4631 | |
| 4632 | ggml_tensor * kernel = ggml_new_tensor(ctx, type: GGML_TYPE_F32, n_dims: 4, ne: ne_kernel.data()); |
| 4633 | ggml_set_name(tensor: kernel, name: "kernel" ); |
| 4634 | |
| 4635 | if (cwhn) { |
| 4636 | // change memory layout to channel-most-contiguous (CWHN), |
| 4637 | // then permute it back so NE matches the original input |
| 4638 | input = ggml_cont(ctx, a: ggml_permute(ctx, a: input, axis0: 1, axis1: 2, axis2: 0, axis3: 3)); |
| 4639 | input = ggml_permute(ctx, a: input, axis0: 2, axis1: 0, axis2: 1, axis3: 3); |
| 4640 | kernel = ggml_cont(ctx, a: ggml_permute(ctx, a: kernel, axis0: 2, axis1: 3, axis2: 1, axis3: 0)); |
| 4641 | kernel = ggml_permute(ctx, a: kernel, axis0: 3, axis1: 2, axis2: 0, axis3: 1); |
| 4642 | } |
| 4643 | |
| 4644 | ggml_tensor * out = ggml_conv_2d_dw_direct( |
| 4645 | ctx, a: kernel, b: input, |
| 4646 | stride0: stride, stride1: stride, pad0: padding, pad1: padding, dilation0: dilation, dilation1: dilation); |
| 4647 | ggml_set_name(tensor: out, name: "out" ); |
| 4648 | return out; |
| 4649 | } |
| 4650 | }; |
| 4651 | |
| 4652 | // GGML_OP_CONV_3D |
| 4653 | struct test_conv_3d : public test_case { |
| 4654 | // Logical 5D dimensions |
| 4655 | const int64_t N, IC, ID, IH, IW; |
| 4656 | const int64_t OC, KD, KH, KW; |
| 4657 | // Conv params |
| 4658 | const int s0, s1, s2; |
| 4659 | const int p0, p1, p2; |
| 4660 | const int d0, d1, d2; |
| 4661 | // Types |
| 4662 | const ggml_type type_kernel; |
| 4663 | |
| 4664 | std::string op_desc(ggml_tensor * t) override { |
| 4665 | GGML_UNUSED(t); |
| 4666 | return "CONV_3D" ; |
| 4667 | } |
| 4668 | |
| 4669 | std::string vars() override { |
| 4670 | return VARS_TO_STR11(N, IC, ID, IH, IW, OC, KD, KH, KW, s0, s1) + "," + |
| 4671 | VARS_TO_STR8(s2, p0, p1, p2, d0, d1, d2, type_kernel); |
| 4672 | } |
| 4673 | |
| 4674 | double max_nmse_err() override { |
| 4675 | return 5e-4; |
| 4676 | } |
| 4677 | |
| 4678 | uint64_t op_flops(ggml_tensor * t) override { |
| 4679 | GGML_UNUSED(t); |
| 4680 | auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t { |
| 4681 | return (ins + 2 * p - d * (ks - 1) - 1) / s + 1; |
| 4682 | }; |
| 4683 | const int64_t OD = calc_conv_output_size(ID, KD, s2, p2, d2); |
| 4684 | const int64_t OH = calc_conv_output_size(IH, KH, s1, p1, d1); |
| 4685 | const int64_t OW = calc_conv_output_size(IW, KW, s0, p0, d0); |
| 4686 | |
| 4687 | return (uint64_t)N * OC * OD * OH * OW * (2 * IC * KD * KH * KW - 1); |
| 4688 | } |
| 4689 | |
| 4690 | test_conv_3d( |
| 4691 | int64_t N, int64_t IC, int64_t ID, int64_t IH, int64_t IW, |
| 4692 | int64_t OC, int64_t KD, int64_t KH, int64_t KW, |
| 4693 | int s0, int s1, int s2, |
| 4694 | int p0, int p1, int p2, |
| 4695 | int d0, int d1, int d2, |
| 4696 | ggml_type type_kernel |
| 4697 | ) : N(N), IC(IC), ID(ID), IH(IH), IW(IW), |
| 4698 | OC(OC), KD(KD), KH(KH), KW(KW), |
| 4699 | s0(s0), s1(s1), s2(s2), |
| 4700 | p0(p0), p1(p1), p2(p2), |
| 4701 | d0(d0), d1(d1), d2(d2), |
| 4702 | type_kernel(type_kernel) {} |
| 4703 | |
| 4704 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 4705 | // GGML input tensor is packed as [W, H, D, C*N] |
| 4706 | const int64_t ne_input[] = {IW, IH, ID, IC * N}; |
| 4707 | ggml_tensor * input = ggml_new_tensor(ctx, type: GGML_TYPE_F32, n_dims: 4, ne: ne_input); |
| 4708 | ggml_set_name(tensor: input, name: "input" ); |
| 4709 | |
| 4710 | // GGML kernel tensor is packed as [KW, KH, KD, IC*OC] |
| 4711 | const int64_t ne_kernel[] = {KW, KH, KD, IC * OC}; |
| 4712 | ggml_tensor * kernel = ggml_new_tensor(ctx, type: type_kernel, n_dims: 4, ne: ne_kernel); |
| 4713 | ggml_set_name(tensor: kernel, name: "kernel" ); |
| 4714 | |
| 4715 | ggml_tensor * out = ggml_conv_3d_direct(ctx, a: kernel, b: input, s0, s1, s2, p0, p1, p2, d0, d1, d2, n_channels: (int)IC, n_batch: (int)N, n_channels_out: (int)OC); |
| 4716 | ggml_set_name(tensor: out, name: "out" ); |
| 4717 | return out; |
| 4718 | } |
| 4719 | }; |
| 4720 | |
| 4721 | // GGML_OP_CONCAT |
| 4722 | struct test_concat : public test_case { |
| 4723 | const ggml_type type; |
| 4724 | const std::array<int64_t, 4> ne_a; |
| 4725 | const int64_t ne_b_d; |
| 4726 | const int dim; |
| 4727 | const int v; // view (1 << 0: non-cont a, 1 << 1: non-cont b) |
| 4728 | |
| 4729 | std::string vars() override { |
| 4730 | return VARS_TO_STR5(type, ne_a, ne_b_d, dim, v); |
| 4731 | } |
| 4732 | |
| 4733 | test_concat(ggml_type type = GGML_TYPE_F32, |
| 4734 | std::array<int64_t, 4> ne_a = {10, 5, 5, 5}, |
| 4735 | int64_t ne_b_d = 5, |
| 4736 | int dim = 2, int v = 0) |
| 4737 | : type(type), ne_a(ne_a), ne_b_d(ne_b_d), dim(dim), v(v) {} |
| 4738 | |
| 4739 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 4740 | auto ne_b = ne_a; |
| 4741 | ne_b[dim] = ne_b_d; |
| 4742 | ggml_tensor * a; |
| 4743 | if (v & 1) { |
| 4744 | auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3; |
| 4745 | a = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 4746 | ggml_set_name(tensor: a, name: "a" ); |
| 4747 | |
| 4748 | a = ggml_view_4d(ctx, a, ne0: ne_a[0], ne1: ne_a[1], ne2: ne_a[2], ne3: ne_a[3], nb1: a->nb[1], nb2: a->nb[2], nb3: a->nb[3], offset: 0); |
| 4749 | ggml_set_name(tensor: a, name: "view_of_a" ); |
| 4750 | } else { |
| 4751 | a = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne_a.data()); |
| 4752 | ggml_set_name(tensor: a, name: "a" ); |
| 4753 | } |
| 4754 | ggml_tensor * b; |
| 4755 | if (v & 2) { |
| 4756 | auto ne = ne_b; ne[0] *= 3; ne[1] *= 2; ne[2] *= 4; |
| 4757 | b = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 4758 | ggml_set_name(tensor: b, name: "b" ); |
| 4759 | |
| 4760 | b = ggml_view_4d(ctx, a: b, ne0: ne_b[0], ne1: ne_b[1], ne2: ne_b[2], ne3: ne_b[3], nb1: b->nb[1], nb2: b->nb[2], nb3: b->nb[3], offset: 0); |
| 4761 | ggml_set_name(tensor: b, name: "view_of_b" ); |
| 4762 | } else { |
| 4763 | b = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne_b.data()); |
| 4764 | ggml_set_name(tensor: b, name: "b" ); |
| 4765 | } |
| 4766 | |
| 4767 | ggml_tensor * out = ggml_concat(ctx, a, b, dim); |
| 4768 | ggml_set_name(tensor: out, name: "out" ); |
| 4769 | |
| 4770 | return out; |
| 4771 | } |
| 4772 | }; |
| 4773 | |
| 4774 | // GGML_OP_ARGSORT |
| 4775 | struct test_argsort : public test_case { |
| 4776 | const ggml_type type; |
| 4777 | const std::array<int64_t, 4> ne; |
| 4778 | ggml_sort_order order; |
| 4779 | |
| 4780 | std::string vars() override { |
| 4781 | return VARS_TO_STR3(type, ne, order); |
| 4782 | } |
| 4783 | |
| 4784 | test_argsort(ggml_type type = GGML_TYPE_F32, |
| 4785 | std::array<int64_t, 4> ne = {16, 10, 10, 10}, |
| 4786 | ggml_sort_order order = GGML_SORT_ORDER_ASC) |
| 4787 | : type(type), ne(ne), order(order) {} |
| 4788 | |
| 4789 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 4790 | ggml_tensor * a = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 4791 | ggml_set_name(tensor: a, name: "a" ); |
| 4792 | |
| 4793 | ggml_tensor * out = ggml_argsort(ctx, a, order); |
| 4794 | ggml_set_name(tensor: out, name: "out" ); |
| 4795 | |
| 4796 | return out; |
| 4797 | } |
| 4798 | |
| 4799 | void initialize_tensors(ggml_context * ctx) override { |
| 4800 | std::random_device rd; |
| 4801 | std::default_random_engine rng(rd()); |
| 4802 | for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, tensor: t)) { |
| 4803 | if (t->type == GGML_TYPE_I32) { |
| 4804 | // indices |
| 4805 | std::vector<int> data(ggml_nelements(tensor: t)); |
| 4806 | for (int i = 0; i < ggml_nelements(tensor: t); i++) { |
| 4807 | data[i] = rand(); |
| 4808 | } |
| 4809 | std::shuffle(first: data.begin(), last: data.end(), g&: rng); |
| 4810 | ggml_backend_tensor_set(tensor: t, data: data.data(), offset: 0, size: ne[0]*ne[1]*ne[2]*ne[3] * sizeof(int)); |
| 4811 | } else if (t->type == GGML_TYPE_F32) { |
| 4812 | // initialize with unique values to avoid ties |
| 4813 | for (int64_t r = 0; r < ggml_nrows(tensor: t); r++) { |
| 4814 | std::vector<float> data(t->ne[0]); |
| 4815 | for (int i = 0; i < t->ne[0]; i++) { |
| 4816 | data[i] = i; |
| 4817 | } |
| 4818 | std::shuffle(first: data.begin(), last: data.end(), g&: rng); |
| 4819 | ggml_backend_tensor_set(tensor: t, data: data.data(), offset: r * t->nb[1], size: t->ne[0] * sizeof(float)); |
| 4820 | } |
| 4821 | } else { |
| 4822 | GGML_ABORT("fatal error" ); |
| 4823 | } |
| 4824 | } |
| 4825 | } |
| 4826 | }; |
| 4827 | |
| 4828 | struct test_topk_moe: public test_case { |
| 4829 | const std::array<int64_t, 4> ne; |
| 4830 | const int n_expert_used; |
| 4831 | const bool with_norm; |
| 4832 | const bool delayed_softmax; |
| 4833 | |
| 4834 | test_topk_moe(std::array<int64_t, 4> ne = { 10, 5, 1, 1 }, |
| 4835 | int n_expert_used = 1, |
| 4836 | bool with_norm = false, |
| 4837 | bool delayed_softmax = false) : |
| 4838 | ne(ne), |
| 4839 | n_expert_used(n_expert_used), |
| 4840 | with_norm(with_norm), |
| 4841 | delayed_softmax(delayed_softmax) { |
| 4842 | GGML_ASSERT(n_expert_used <= ne[0]); |
| 4843 | GGML_ASSERT(!(with_norm && delayed_softmax)); |
| 4844 | } |
| 4845 | |
| 4846 | std::string vars() override { return VARS_TO_STR4(ne, n_expert_used, with_norm, delayed_softmax); } |
| 4847 | |
| 4848 | std::string op_desc(ggml_tensor * t) override { |
| 4849 | GGML_UNUSED(t); |
| 4850 | return "TOPK_MOE" ; |
| 4851 | } |
| 4852 | |
| 4853 | bool run_whole_graph() override { return true; } |
| 4854 | |
| 4855 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 4856 | const int n_expert = ne[0]; |
| 4857 | const int n_tokens = ne[1]; |
| 4858 | |
| 4859 | ggml_tensor * logits = ggml_new_tensor(ctx, type: GGML_TYPE_F32, n_dims: 4, ne: ne.data()); |
| 4860 | ggml_tensor * probs = delayed_softmax ? logits : ggml_soft_max(ctx, a: logits); |
| 4861 | ggml_tensor * selected_experts = ggml_top_k(ctx, a: probs, k: n_expert_used); // [n_expert_used, n_tokens] |
| 4862 | |
| 4863 | ggml_tensor * out = ggml_get_rows(ctx, a: ggml_reshape_3d(ctx, a: probs, ne0: 1, ne1: n_expert, ne2: n_tokens), b: selected_experts); // [1, n_expert_used, n_tokens] |
| 4864 | |
| 4865 | if (delayed_softmax) { |
| 4866 | out = ggml_reshape_2d(ctx, a: out, ne0: n_expert_used, ne1: n_tokens); |
| 4867 | out = ggml_soft_max(ctx, a: out); // [n_expert_used, n_tokens] |
| 4868 | out = ggml_reshape_3d(ctx, a: out, ne0: 1, ne1: n_expert_used, ne2: n_tokens); |
| 4869 | } |
| 4870 | |
| 4871 | if (with_norm) { |
| 4872 | out = ggml_reshape_2d(ctx, a: out, ne0: n_expert_used, ne1: n_tokens); |
| 4873 | ggml_tensor * weights_sum = ggml_sum_rows(ctx, a: out); // [1, n_tokens] |
| 4874 | |
| 4875 | weights_sum = ggml_clamp(ctx, a: weights_sum, min: 6.103515625e-5, INFINITY); |
| 4876 | out = ggml_div(ctx, a: out, b: weights_sum); // [n_expert_used, n_tokens] |
| 4877 | out = ggml_reshape_3d(ctx, a: out, ne0: 1, ne1: n_expert_used, ne2: n_tokens); |
| 4878 | } |
| 4879 | |
| 4880 | ggml_set_name(tensor: out, name: "out" ); |
| 4881 | return out; |
| 4882 | } |
| 4883 | }; |
| 4884 | |
| 4885 | struct test_mul_mat_vec_fusion : public test_case { |
| 4886 | const ggml_type type; |
| 4887 | const ggml_glu_op glu_op; |
| 4888 | const int64_t m; |
| 4889 | const int64_t n; |
| 4890 | const int64_t k; |
| 4891 | const bool use_id; |
| 4892 | const int n_mats; |
| 4893 | const int n_used; |
| 4894 | const bool b; // broadcast b matrix (only for use_id) |
| 4895 | const bool with_bias; |
| 4896 | const bool with_gate; |
| 4897 | |
| 4898 | test_mul_mat_vec_fusion(ggml_type type, ggml_glu_op op, int64_t m, int64_t n, int64_t k, |
| 4899 | bool use_id = false, int n_mats = 1, int n_used = 1, bool b = false, bool with_bias = false, bool with_gate = true) |
| 4900 | : type(type), glu_op(op), m(m), n(n), k(k), use_id(use_id), n_mats(n_mats), n_used(n_used), b(b), with_bias(with_bias), with_gate(with_gate) { |
| 4901 | if (use_id) { |
| 4902 | GGML_ASSERT(n_used <= n_mats); |
| 4903 | } |
| 4904 | } |
| 4905 | |
| 4906 | std::string vars() override { |
| 4907 | return VARS_TO_STR11(type, glu_op, m, n, k, use_id, n_mats, n_used, b, with_bias, with_gate); |
| 4908 | } |
| 4909 | |
| 4910 | std::string op_desc(ggml_tensor * t) override { |
| 4911 | GGML_UNUSED(t); |
| 4912 | return "MUL_MAT_VEC_FUSION" ; |
| 4913 | } |
| 4914 | |
| 4915 | bool run_whole_graph() override { return true; } |
| 4916 | |
| 4917 | ggml_tensor * build_gate(ggml_context * ctx, ggml_tensor * ffn_gate, ggml_tensor * ffn_up) { |
| 4918 | ggml_tensor * out = nullptr; |
| 4919 | if (with_gate) { |
| 4920 | if (glu_op == GGML_GLU_OP_SWIGLU_OAI) { |
| 4921 | constexpr float alpha = 1.702f; |
| 4922 | constexpr float limit = 7.0f; |
| 4923 | out = ggml_swiglu_oai(ctx, a: ffn_gate, b: ffn_up, alpha, limit); |
| 4924 | } else { |
| 4925 | out = ggml_glu_split(ctx, a: ffn_gate, b: ffn_up, op: glu_op); |
| 4926 | } |
| 4927 | } |
| 4928 | return out; |
| 4929 | } |
| 4930 | |
| 4931 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 4932 | if (!use_id) { |
| 4933 | const int channels = 4; |
| 4934 | const int samples = 2; |
| 4935 | std::array<int64_t, 4> ne = { k, m, channels, samples }; |
| 4936 | std::array<int64_t, 4> ne0 = { k, n, channels, samples }; |
| 4937 | |
| 4938 | ggml_tensor * cur = ggml_new_tensor(ctx, type: GGML_TYPE_F32, n_dims: 4, ne: ne.data()); |
| 4939 | ggml_tensor * gate = with_gate ? ggml_new_tensor(ctx, type, n_dims: 4, ne: ne0.data()) : nullptr; |
| 4940 | ggml_tensor * up = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne0.data()); |
| 4941 | |
| 4942 | ggml_tensor * ffn_up = ggml_mul_mat(ctx, a: up, b: cur); |
| 4943 | if (with_bias) { |
| 4944 | std::array<int64_t, 4> bias_ne = { ffn_up->ne[0], 1, channels, samples }; |
| 4945 | ggml_tensor * up_bias = ggml_new_tensor(ctx, type: GGML_TYPE_F32, n_dims: 4, ne: bias_ne.data()); |
| 4946 | ffn_up = ggml_add(ctx, a: ffn_up, b: up_bias); |
| 4947 | } |
| 4948 | |
| 4949 | ggml_tensor * ffn_gate = with_gate ? ggml_mul_mat(ctx, a: gate, b: cur) : nullptr; |
| 4950 | if (with_bias && with_gate) { |
| 4951 | std::array<int64_t, 4> bias_ne = { ffn_gate->ne[0], 1, channels, samples }; |
| 4952 | ggml_tensor * gate_bias = ggml_new_tensor(ctx, type: GGML_TYPE_F32, n_dims: 4, ne: bias_ne.data()); |
| 4953 | ffn_gate = ggml_add(ctx, a: ffn_gate, b: gate_bias); |
| 4954 | } |
| 4955 | |
| 4956 | ggml_tensor * out = with_gate ? build_gate(ctx, ffn_gate, ffn_up) : ffn_up; |
| 4957 | ggml_set_name(tensor: out, name: "out" ); |
| 4958 | return out; |
| 4959 | } else { |
| 4960 | ggml_tensor * gates = ggml_new_tensor_3d(ctx, type, ne0: k, ne1: n, ne2: n_mats); |
| 4961 | ggml_tensor * ups = ggml_new_tensor_3d(ctx, type, ne0: k, ne1: n, ne2: n_mats); |
| 4962 | ggml_tensor * ids = ggml_new_tensor_2d(ctx, type: GGML_TYPE_I32, ne0: n_mats, ne1: m); |
| 4963 | |
| 4964 | if (n_used != n_mats) { |
| 4965 | ids = ggml_view_2d(ctx, a: ids, ne0: n_used, ne1: m, nb1: ids->nb[1], offset: 0); |
| 4966 | } |
| 4967 | |
| 4968 | ggml_tensor * cur = ggml_new_tensor_3d(ctx, type: GGML_TYPE_F32, ne0: k, ne1: this->b ? 1 : n_used, ne2: m); |
| 4969 | ggml_set_name(tensor: cur, name: "cur" ); |
| 4970 | |
| 4971 | ggml_tensor * ffn_up = ggml_mul_mat_id(ctx, as: ups, b: cur, ids); |
| 4972 | if (with_bias) { |
| 4973 | ggml_tensor * up_bias_param = ggml_new_tensor_2d(ctx, type: GGML_TYPE_F32, ne0: ffn_up->ne[0], ne1: n_mats); |
| 4974 | ffn_up = ggml_add_id(ctx, a: ffn_up, b: up_bias_param, ids); |
| 4975 | } |
| 4976 | |
| 4977 | ggml_tensor * ffn_gate = with_gate? ggml_mul_mat_id(ctx, as: gates, b: cur, ids) : nullptr; |
| 4978 | if (with_bias && with_gate) { |
| 4979 | ggml_tensor * gate_bias_param = ggml_new_tensor_2d(ctx, type: GGML_TYPE_F32, ne0: ffn_gate->ne[0], ne1: n_mats); |
| 4980 | ffn_gate = ggml_add_id(ctx, a: ffn_gate, b: gate_bias_param, ids); |
| 4981 | } |
| 4982 | |
| 4983 | ggml_tensor * out = with_gate ? build_gate(ctx, ffn_gate, ffn_up) : ffn_up; |
| 4984 | ggml_set_name(tensor: out, name: "out" ); |
| 4985 | return out; |
| 4986 | } |
| 4987 | } |
| 4988 | |
| 4989 | void initialize_tensors(ggml_context * ctx) override { |
| 4990 | if (!use_id) { |
| 4991 | for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, tensor: t)) { |
| 4992 | init_tensor_uniform(tensor: t); |
| 4993 | } |
| 4994 | } else { |
| 4995 | std::random_device rd; |
| 4996 | std::default_random_engine rng(rd()); |
| 4997 | for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, tensor: t)) { |
| 4998 | if (t->type == GGML_TYPE_I32) { |
| 4999 | if (ggml_is_view_op(op: t->op)) { continue; } |
| 5000 | // ids |
| 5001 | for (int64_t r = 0; r < ggml_nrows(tensor: t); r++) { |
| 5002 | std::vector<int32_t> data(t->ne[0]); |
| 5003 | for (int i = 0; i < t->ne[0]; i++) { |
| 5004 | data[i] = i % n_mats; |
| 5005 | } |
| 5006 | std::shuffle(first: data.begin(), last: data.end(), g&: rng); |
| 5007 | ggml_backend_tensor_set(tensor: t, data: data.data(), offset: r * t->nb[1], size: t->ne[0] * sizeof(int32_t)); |
| 5008 | } |
| 5009 | } else { |
| 5010 | init_tensor_uniform(tensor: t); |
| 5011 | } |
| 5012 | } |
| 5013 | } |
| 5014 | } |
| 5015 | |
| 5016 | double max_nmse_err() override { |
| 5017 | return 5e-3; |
| 5018 | } |
| 5019 | }; |
| 5020 | |
| 5021 | // GGML_OP_SUM |
| 5022 | struct test_sum : public test_case { |
| 5023 | const ggml_type type; |
| 5024 | const std::array<int64_t, 4> ne; |
| 5025 | const std::array<int64_t, 4> permute; |
| 5026 | bool _use_permute; |
| 5027 | |
| 5028 | std::string vars() override { |
| 5029 | std::string v = VARS_TO_STR2(type, ne); |
| 5030 | if (_use_permute) v += "," + VAR_TO_STR(permute); |
| 5031 | return v; |
| 5032 | } |
| 5033 | |
| 5034 | test_sum(ggml_type type = GGML_TYPE_F32, |
| 5035 | std::array<int64_t, 4> ne = {10, 5, 4, 3}, |
| 5036 | std::array<int64_t, 4> permute = {0, 0, 0, 0}) |
| 5037 | : type(type), ne(ne), permute(permute), |
| 5038 | _use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {} |
| 5039 | |
| 5040 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 5041 | ggml_tensor * a = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 5042 | ggml_set_param(tensor: a); |
| 5043 | ggml_set_name(tensor: a, name: "a" ); |
| 5044 | |
| 5045 | if (_use_permute) { |
| 5046 | a = ggml_permute(ctx, a, axis0: permute[0], axis1: permute[1], axis2: permute[2], axis3: permute[3]); |
| 5047 | ggml_set_name(tensor: a, name: "a_permuted" ); |
| 5048 | } |
| 5049 | |
| 5050 | ggml_tensor * out = ggml_sum(ctx, a); |
| 5051 | ggml_set_name(tensor: out, name: "out" ); |
| 5052 | |
| 5053 | return out; |
| 5054 | } |
| 5055 | |
| 5056 | float grad_eps() override { |
| 5057 | return 0.1f * sqrtf(x: ne[0]*ne[1]*ne[2]*ne[3]); |
| 5058 | } |
| 5059 | }; |
| 5060 | |
| 5061 | // GGML_OP_SUM_ROWS |
| 5062 | struct test_sum_rows : public test_case { |
| 5063 | const ggml_type type; |
| 5064 | const std::array<int64_t, 4> ne; |
| 5065 | const bool permute; |
| 5066 | const bool slice; |
| 5067 | |
| 5068 | std::string vars() override { |
| 5069 | return VARS_TO_STR4(type, ne, permute, slice); |
| 5070 | } |
| 5071 | |
| 5072 | test_sum_rows(ggml_type type = GGML_TYPE_F32, |
| 5073 | std::array<int64_t, 4> ne = {10, 5, 4, 3}, |
| 5074 | bool permute = false, bool slice = false) |
| 5075 | : type(type), ne(ne), permute(permute), slice(slice) {} |
| 5076 | |
| 5077 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 5078 | ggml_tensor * a = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 5079 | ggml_set_param(tensor: a); |
| 5080 | ggml_set_name(tensor: a, name: "a" ); |
| 5081 | |
| 5082 | if (slice) { |
| 5083 | a = ggml_view_4d(ctx, a, |
| 5084 | ne0: ne[0], ne1: ne[1], ne2: ne[2] / 2, ne3: ne[3] - 1, |
| 5085 | nb1: a->nb[1], nb2: a->nb[2] * 2, nb3: a->nb[3], /*offset=*/a->nb[3]); |
| 5086 | } |
| 5087 | if (permute) { |
| 5088 | a = ggml_permute(ctx, a, axis0: 0, axis1: 2, axis2: 3, axis3: 1); |
| 5089 | } |
| 5090 | |
| 5091 | ggml_tensor * out = ggml_sum_rows(ctx, a); |
| 5092 | ggml_set_name(tensor: out, name: "out" ); |
| 5093 | |
| 5094 | return out; |
| 5095 | } |
| 5096 | }; |
| 5097 | |
| 5098 | // GGML_OP_MEAN |
| 5099 | struct test_mean : public test_case { |
| 5100 | const ggml_type type; |
| 5101 | const std::array<int64_t, 4> ne; |
| 5102 | |
| 5103 | std::string vars() override { |
| 5104 | return VARS_TO_STR2(type, ne); |
| 5105 | } |
| 5106 | |
| 5107 | test_mean(ggml_type type = GGML_TYPE_F32, |
| 5108 | std::array<int64_t, 4> ne = {10, 5, 4, 3}) |
| 5109 | : type(type), ne(ne) {} |
| 5110 | |
| 5111 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 5112 | ggml_tensor * a = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 5113 | ggml_set_param(tensor: a); |
| 5114 | ggml_set_name(tensor: a, name: "a" ); |
| 5115 | |
| 5116 | ggml_tensor * out = ggml_mean(ctx, a); |
| 5117 | ggml_set_name(tensor: out, name: "out" ); |
| 5118 | |
| 5119 | return out; |
| 5120 | } |
| 5121 | |
| 5122 | float grad_eps() override { |
| 5123 | return 0.1f * ne[0]*ne[1]*ne[2]*ne[3]; |
| 5124 | } |
| 5125 | }; |
| 5126 | |
| 5127 | // GGML_OP_UPSCALE |
| 5128 | struct test_upscale : public test_case { |
| 5129 | const ggml_type type; |
| 5130 | const std::array<int64_t, 4> ne; |
| 5131 | const int32_t scale_factor; |
| 5132 | const bool transpose; |
| 5133 | const ggml_scale_mode mode; |
| 5134 | |
| 5135 | std::string vars() override { |
| 5136 | return VARS_TO_STR5(type, ne, scale_factor, mode, transpose); |
| 5137 | } |
| 5138 | |
| 5139 | test_upscale(ggml_type type = GGML_TYPE_F32, |
| 5140 | std::array<int64_t, 4> ne = {512, 512, 3, 1}, |
| 5141 | int32_t scale_factor = 2, ggml_scale_mode mode = GGML_SCALE_MODE_NEAREST, bool transpose = false) |
| 5142 | : type(type), ne(ne), scale_factor(scale_factor), transpose(transpose), mode(mode) {} |
| 5143 | |
| 5144 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 5145 | ggml_tensor * a = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 5146 | ggml_set_name(tensor: a, name: "a" ); |
| 5147 | |
| 5148 | if (transpose) { |
| 5149 | a = ggml_transpose(ctx, a); |
| 5150 | ggml_set_name(tensor: a, name: "a_transposed" ); |
| 5151 | } |
| 5152 | |
| 5153 | ggml_tensor * out = ggml_upscale(ctx, a, scale_factor, mode); |
| 5154 | ggml_set_name(tensor: out, name: "out" ); |
| 5155 | |
| 5156 | return out; |
| 5157 | } |
| 5158 | }; |
| 5159 | |
| 5160 | // GGML_OP_UPSCALE (via ggml_interpolate) |
| 5161 | struct test_interpolate : public test_case { |
| 5162 | const ggml_type type; |
| 5163 | const std::array<int64_t, 4> ne; |
| 5164 | const std::array<int64_t, 4> ne_tgt; |
| 5165 | const uint32_t mode = GGML_SCALE_MODE_NEAREST; |
| 5166 | |
| 5167 | std::string vars() override { |
| 5168 | return VARS_TO_STR4(type, ne, ne_tgt, mode); |
| 5169 | } |
| 5170 | |
| 5171 | test_interpolate(ggml_type type = GGML_TYPE_F32, |
| 5172 | std::array<int64_t, 4> ne = {2, 5, 7, 11}, |
| 5173 | std::array<int64_t, 4> ne_tgt = {5, 7, 11, 13}, |
| 5174 | uint32_t mode = GGML_SCALE_MODE_NEAREST) |
| 5175 | : type(type), ne(ne), ne_tgt(ne_tgt), mode(mode) {} |
| 5176 | |
| 5177 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 5178 | ggml_tensor * a = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 5179 | ggml_set_name(tensor: a, name: "a" ); |
| 5180 | |
| 5181 | ggml_tensor * out = ggml_interpolate(ctx, a, ne0: ne_tgt[0], ne1: ne_tgt[1],ne2: ne_tgt[2], ne3: ne_tgt[3], mode); |
| 5182 | ggml_set_name(tensor: out, name: "out" ); |
| 5183 | |
| 5184 | return out; |
| 5185 | } |
| 5186 | }; |
| 5187 | |
| 5188 | // GGML_OP_GROUP_NORM |
| 5189 | struct test_group_norm : public test_case { |
| 5190 | const ggml_type type; |
| 5191 | const std::array<int64_t, 4> ne; |
| 5192 | const int32_t num_groups; |
| 5193 | const float eps; |
| 5194 | |
| 5195 | std::string vars() override { |
| 5196 | return VARS_TO_STR4(type, ne, num_groups, eps); |
| 5197 | } |
| 5198 | |
| 5199 | test_group_norm(ggml_type type = GGML_TYPE_F32, |
| 5200 | std::array<int64_t, 4> ne = {64, 64, 320, 1}, |
| 5201 | int32_t num_groups = 32, |
| 5202 | float eps = 1e-6f) |
| 5203 | : type(type), ne(ne), num_groups(num_groups), eps(eps) {} |
| 5204 | |
| 5205 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 5206 | ggml_tensor * a = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 5207 | ggml_set_name(tensor: a, name: "a" ); |
| 5208 | |
| 5209 | ggml_tensor * out = ggml_group_norm(ctx, a, n_groups: num_groups, eps); |
| 5210 | ggml_set_name(tensor: out, name: "out" ); |
| 5211 | |
| 5212 | return out; |
| 5213 | } |
| 5214 | }; |
| 5215 | |
| 5216 | // GGML_OP_GROUP_NORM + GGML_OP_MUL + GGML_OP_ADD |
| 5217 | struct test_group_norm_mul_add : public test_case { |
| 5218 | const ggml_type type; |
| 5219 | const std::array<int64_t, 4> ne; |
| 5220 | int num_groups; |
| 5221 | float eps; |
| 5222 | |
| 5223 | std::string op_desc(ggml_tensor * t) override { |
| 5224 | GGML_UNUSED(t); |
| 5225 | return "GROUP_NORM_MUL_ADD" ; |
| 5226 | } |
| 5227 | |
| 5228 | bool run_whole_graph() override { return true; } |
| 5229 | |
| 5230 | std::string vars() override { |
| 5231 | return VARS_TO_STR4(type, ne, num_groups, eps); |
| 5232 | } |
| 5233 | |
| 5234 | test_group_norm_mul_add(ggml_type type = GGML_TYPE_F32, |
| 5235 | std::array<int64_t, 4> ne = {128, 1, 1, 1}, |
| 5236 | int num_groups = 4, |
| 5237 | float eps = 1e-5f) |
| 5238 | : type(type), ne(ne), num_groups(num_groups), eps(eps) {} |
| 5239 | |
| 5240 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 5241 | ggml_tensor * a = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 5242 | ggml_tensor * w = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 5243 | ggml_tensor * b = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 5244 | ggml_set_param(tensor: a); ggml_set_param(tensor: w); ggml_set_param(tensor: b); |
| 5245 | ggml_set_name(tensor: a, name: "a" ); ggml_set_name(tensor: w, name: "w" ); ggml_set_name(tensor: b, name: "b" ); |
| 5246 | ggml_tensor * n = ggml_group_norm(ctx, a, n_groups: num_groups, eps); |
| 5247 | ggml_tensor * m = ggml_mul(ctx, a: n, b: w); |
| 5248 | ggml_tensor * out = ggml_add(ctx, a: m, b); |
| 5249 | ggml_set_name(tensor: out, name: "out" ); |
| 5250 | return out; |
| 5251 | } |
| 5252 | }; |
| 5253 | |
| 5254 | // GGML_OP_L2_NORM |
| 5255 | struct test_l2_norm : public test_case { |
| 5256 | const ggml_type type; |
| 5257 | const std::array<int64_t, 4> ne; |
| 5258 | const float eps; |
| 5259 | |
| 5260 | std::string vars() override { |
| 5261 | return VARS_TO_STR2(type, ne); |
| 5262 | } |
| 5263 | |
| 5264 | test_l2_norm(ggml_type type = GGML_TYPE_F32, |
| 5265 | std::array<int64_t, 4> ne = {64, 64, 320, 1}, |
| 5266 | float eps = 1e-12f) |
| 5267 | : type(type), ne(ne), eps(eps) {} |
| 5268 | |
| 5269 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 5270 | ggml_tensor * a = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 5271 | ggml_set_name(tensor: a, name: "a" ); |
| 5272 | |
| 5273 | ggml_tensor * out = ggml_l2_norm(ctx, a, eps); |
| 5274 | ggml_set_name(tensor: out, name: "out" ); |
| 5275 | |
| 5276 | return out; |
| 5277 | } |
| 5278 | }; |
| 5279 | |
| 5280 | // GGML_OP_ACC |
| 5281 | struct test_acc : public test_case { |
| 5282 | const ggml_type type; |
| 5283 | const std::array<int64_t, 4> ne_a; |
| 5284 | const std::array<int64_t, 4> ne_b; |
| 5285 | |
| 5286 | std::string vars() override { |
| 5287 | return VARS_TO_STR3(type, ne_a, ne_b); |
| 5288 | } |
| 5289 | |
| 5290 | test_acc(ggml_type type = GGML_TYPE_F32, |
| 5291 | std::array<int64_t, 4> ne_a = {256, 17, 1, 1}, |
| 5292 | std::array<int64_t, 4> ne_b = {256, 16, 1, 1}) |
| 5293 | : type(type), ne_a(ne_a), ne_b(ne_b) {} |
| 5294 | |
| 5295 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 5296 | ggml_tensor * a = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne_a.data()); |
| 5297 | ggml_set_param(tensor: a); |
| 5298 | ggml_set_name(tensor: a, name: "a" ); |
| 5299 | |
| 5300 | ggml_tensor * b = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne_b.data()); |
| 5301 | ggml_set_param(tensor: b); |
| 5302 | ggml_set_name(tensor: b, name: "b" ); |
| 5303 | |
| 5304 | ggml_tensor * out = ggml_acc(ctx, a, b, nb1: a->nb[1], nb2: a->nb[2], nb3: a->nb[3], offset: b->nb[1]); |
| 5305 | ggml_set_name(tensor: out, name: "out" ); |
| 5306 | |
| 5307 | return out; |
| 5308 | } |
| 5309 | }; |
| 5310 | |
| 5311 | // GGML_OP_PAD |
| 5312 | struct test_pad : public test_case { |
| 5313 | const ggml_type type; |
| 5314 | const std::array<int64_t, 4> ne_a; |
| 5315 | const int pad_0; |
| 5316 | const int pad_1; |
| 5317 | |
| 5318 | std::string vars() override { |
| 5319 | return VARS_TO_STR4(type, ne_a, pad_0, pad_1); |
| 5320 | } |
| 5321 | |
| 5322 | test_pad(ggml_type type = GGML_TYPE_F32, |
| 5323 | std::array<int64_t, 4> ne_a = {512, 512, 1, 1}, |
| 5324 | int pad_0 = 1, int pad_1 = 1) |
| 5325 | : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {} |
| 5326 | |
| 5327 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 5328 | ggml_tensor * a = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne_a.data()); |
| 5329 | ggml_set_name(tensor: a, name: "a" ); |
| 5330 | |
| 5331 | ggml_tensor * out = ggml_pad(ctx, a, p0: pad_0, p1: pad_1, p2: 0, p3: 0); |
| 5332 | ggml_set_name(tensor: out, name: "out" ); |
| 5333 | |
| 5334 | return out; |
| 5335 | } |
| 5336 | }; |
| 5337 | |
| 5338 | struct test_pad_ext : public test_case { |
| 5339 | const ggml_type type; |
| 5340 | const std::array<int64_t, 4> ne_a; |
| 5341 | const int lp0; |
| 5342 | const int rp0; |
| 5343 | const int lp1; |
| 5344 | const int rp1; |
| 5345 | const int lp2; |
| 5346 | const int rp2; |
| 5347 | const int lp3; |
| 5348 | const int rp3; |
| 5349 | const bool v; |
| 5350 | |
| 5351 | std::string vars() override { |
| 5352 | return VARS_TO_STR11(type, ne_a, lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3, v); |
| 5353 | } |
| 5354 | |
| 5355 | test_pad_ext(ggml_type type = GGML_TYPE_F32, |
| 5356 | std::array<int64_t, 4> ne_a = {512, 512, 3, 1}, |
| 5357 | int lp0 = 1, int rp0 = 1, int lp1 = 1, int rp1 = 1, |
| 5358 | int lp2 = 1, int rp2 = 1, int lp3 = 1, int rp3 = 1, |
| 5359 | bool v = false) |
| 5360 | : type(type), ne_a(ne_a), lp0(lp0), rp0(rp0), lp1(lp1), rp1(rp1), lp2(lp2), rp2(rp2), lp3(lp3), rp3(rp3), v(v) {} |
| 5361 | |
| 5362 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 5363 | ggml_tensor * a = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne_a.data()); |
| 5364 | ggml_set_name(tensor: a, name: "a" ); |
| 5365 | |
| 5366 | if (v) { |
| 5367 | a = ggml_view_4d(ctx, a, ne0: (a->ne[0] + 1) / 2, ne1: (a->ne[1] + 1) / 2, ne2: (a->ne[2] + 1) / 2, ne3: (a->ne[3] + 1) / 2, nb1: a->nb[1], nb2: a->nb[2], nb3: a->nb[3], offset: 0); |
| 5368 | ggml_set_name(tensor: a, name: "view of a" ); |
| 5369 | } |
| 5370 | |
| 5371 | ggml_tensor * out = ggml_pad_ext(ctx, a, lp0, rp0, lp1, rp1, lp2, rp2, lp3, rp3); |
| 5372 | ggml_set_name(tensor: out, name: "out" ); |
| 5373 | |
| 5374 | return out; |
| 5375 | } |
| 5376 | }; |
| 5377 | |
| 5378 | // GGML_OP_PAD_REFLECT_1D |
| 5379 | struct test_pad_reflect_1d : public test_case { |
| 5380 | const ggml_type type; |
| 5381 | const std::array<int64_t, 4> ne_a; |
| 5382 | const int pad_0; |
| 5383 | const int pad_1; |
| 5384 | |
| 5385 | std::string vars() override { |
| 5386 | return VARS_TO_STR4(type, ne_a, pad_0, pad_1); |
| 5387 | } |
| 5388 | |
| 5389 | test_pad_reflect_1d(ggml_type type = GGML_TYPE_F32, |
| 5390 | std::array<int64_t, 4> ne_a = {512, 34, 2, 1}, |
| 5391 | int pad_0 = 10, int pad_1 = 9) |
| 5392 | : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {} |
| 5393 | |
| 5394 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 5395 | ggml_tensor * a = ggml_new_tensor(ctx, type, n_dims: 2, ne: ne_a.data()); |
| 5396 | ggml_set_name(tensor: a, name: "a" ); |
| 5397 | |
| 5398 | ggml_tensor * out = ggml_pad_reflect_1d(ctx, a, p0: pad_0, p1: pad_1); |
| 5399 | ggml_set_name(tensor: out, name: "out" ); |
| 5400 | |
| 5401 | return out; |
| 5402 | } |
| 5403 | }; |
| 5404 | |
| 5405 | // GGML_OP_ROLL |
| 5406 | struct test_roll : public test_case { |
| 5407 | const int shift0; |
| 5408 | const int shift1; |
| 5409 | const int shift3; |
| 5410 | const int shift4; |
| 5411 | |
| 5412 | std::string vars() override { |
| 5413 | return VARS_TO_STR4(shift0, shift1, shift3, shift4); |
| 5414 | } |
| 5415 | |
| 5416 | test_roll(int shift0 = 3, int shift1 = -2, int shift3 = 1, int shift4 = -1) |
| 5417 | : shift0(shift0), shift1(shift1), shift3(shift3), shift4(shift4) {} |
| 5418 | |
| 5419 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 5420 | int64_t ne[4] = {10, 5, 4, 3}; |
| 5421 | ggml_tensor * a = ggml_new_tensor(ctx, type: GGML_TYPE_F32, n_dims: 4, ne); |
| 5422 | ggml_set_name(tensor: a, name: "a" ); |
| 5423 | |
| 5424 | ggml_tensor * out = ggml_roll(ctx, a, shift0, shift1, shift2: shift3, shift3: shift4); |
| 5425 | ggml_set_name(tensor: out, name: "out" ); |
| 5426 | |
| 5427 | return out; |
| 5428 | } |
| 5429 | }; |
| 5430 | |
| 5431 | // GGML_OP_ARANGE |
| 5432 | struct test_arange : public test_case { |
| 5433 | const ggml_type type; |
| 5434 | const float start; |
| 5435 | const float stop; |
| 5436 | const float step; |
| 5437 | |
| 5438 | std::string vars() override { |
| 5439 | return VARS_TO_STR4(type, start, stop, step); |
| 5440 | } |
| 5441 | |
| 5442 | test_arange(ggml_type type = GGML_TYPE_F32, |
| 5443 | float start = 0.f, float stop = 10.f, float step = 1.f) |
| 5444 | : type(type), start(start), stop(stop), step(step) {} |
| 5445 | |
| 5446 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 5447 | ggml_tensor * out = ggml_arange(ctx, start, stop, step); |
| 5448 | ggml_set_name(tensor: out, name: "out" ); |
| 5449 | |
| 5450 | return out; |
| 5451 | } |
| 5452 | }; |
| 5453 | |
| 5454 | // GGML_OP_TIMESTEP_EMBEDDING |
| 5455 | struct test_timestep_embedding : public test_case { |
| 5456 | const ggml_type type; |
| 5457 | const std::array<int64_t, 4> ne_a; |
| 5458 | const int dim; |
| 5459 | const int max_period; |
| 5460 | |
| 5461 | std::string vars() override { |
| 5462 | return VARS_TO_STR4(type, ne_a, dim, max_period); |
| 5463 | } |
| 5464 | |
| 5465 | test_timestep_embedding(ggml_type type = GGML_TYPE_F32, |
| 5466 | std::array<int64_t, 4> ne_a = {2, 1, 1, 1}, |
| 5467 | int dim = 320, int max_period=10000) |
| 5468 | : type(type), ne_a(ne_a), dim(dim), max_period(max_period) {} |
| 5469 | |
| 5470 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 5471 | ggml_tensor * a = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne_a.data()); |
| 5472 | ggml_set_name(tensor: a, name: "a" ); |
| 5473 | |
| 5474 | ggml_tensor * out = ggml_timestep_embedding(ctx, timesteps: a, dim, max_period); |
| 5475 | ggml_set_name(tensor: out, name: "out" ); |
| 5476 | |
| 5477 | return out; |
| 5478 | } |
| 5479 | }; |
| 5480 | |
| 5481 | // GGML_OP_LEAKY_RELU |
| 5482 | struct test_leaky_relu : public test_case { |
| 5483 | const ggml_type type; |
| 5484 | const std::array<int64_t, 4> ne_a; |
| 5485 | const float negative_slope; |
| 5486 | |
| 5487 | std::string vars() override { |
| 5488 | return VARS_TO_STR3(type, ne_a, negative_slope); |
| 5489 | } |
| 5490 | |
| 5491 | test_leaky_relu(ggml_type type = GGML_TYPE_F32, |
| 5492 | std::array<int64_t, 4> ne_a = {10, 5, 4, 3}, |
| 5493 | float negative_slope = 0.1f) |
| 5494 | : type(type), ne_a(ne_a), negative_slope(negative_slope) {} |
| 5495 | |
| 5496 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 5497 | ggml_tensor * a = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne_a.data()); |
| 5498 | ggml_set_name(tensor: a, name: "a" ); |
| 5499 | |
| 5500 | ggml_tensor * out = ggml_leaky_relu(ctx, a, negative_slope, inplace: true); |
| 5501 | ggml_set_name(tensor: out, name: "out" ); |
| 5502 | |
| 5503 | return out; |
| 5504 | } |
| 5505 | }; |
| 5506 | |
| 5507 | // GGML_OP_FLASH_ATTN_EXT |
| 5508 | struct test_flash_attn_ext : public test_case { |
| 5509 | const int64_t hsk; // K head size |
| 5510 | const int64_t hsv; // V head size |
| 5511 | const int64_t nh; // num heads |
| 5512 | const std::array<int64_t, 2> nr23; // repeat in dim 2 and 3, tests for grouped-query attention |
| 5513 | const int64_t kv; // kv size |
| 5514 | const int64_t nb; // batch size |
| 5515 | |
| 5516 | const bool mask; // use mask |
| 5517 | const bool sinks; // use sinks |
| 5518 | |
| 5519 | const float max_bias; // ALiBi |
| 5520 | const float logit_softcap; // Gemma 2 |
| 5521 | |
| 5522 | const ggml_prec prec; |
| 5523 | const ggml_type type_KV; |
| 5524 | std::array<int32_t, 4> permute; |
| 5525 | |
| 5526 | std::string vars() override { |
| 5527 | return VARS_TO_STR13(hsk, hsv, nh, nr23, kv, nb, mask, sinks, max_bias, logit_softcap, prec, type_KV, permute); |
| 5528 | } |
| 5529 | |
| 5530 | double max_nmse_err() override { |
| 5531 | return 5e-4; |
| 5532 | } |
| 5533 | |
| 5534 | uint64_t op_flops(ggml_tensor * t) override { |
| 5535 | GGML_UNUSED(t); |
| 5536 | // Just counting matmul costs: |
| 5537 | // Q*K^T is nb x hsk x kv, P*V is nb x kv x hsv, per head |
| 5538 | return (2 * nh*nr23[0] * nb * (hsk + hsv) * kv)*nr23[1]; |
| 5539 | } |
| 5540 | |
| 5541 | test_flash_attn_ext(int64_t hsk = 128, int64_t hsv = 128, int64_t nh = 32, std::array<int64_t, 2> nr23 = {1, 1}, int64_t kv = 96, int64_t nb = 8, |
| 5542 | bool mask = true, bool sinks = false, float max_bias = 0.0f, float logit_softcap = 0.0f, ggml_prec prec = GGML_PREC_F32, |
| 5543 | ggml_type type_KV = GGML_TYPE_F16, std::array<int32_t, 4> permute = {0, 1, 2, 3}) |
| 5544 | : hsk(hsk), hsv(hsv), nh(nh), nr23(nr23), kv(kv), nb(nb), mask(mask), sinks(sinks), max_bias(max_bias), logit_softcap(logit_softcap), prec(prec), type_KV(type_KV), permute(permute) {} |
| 5545 | |
| 5546 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 5547 | const int64_t hsk_padded = GGML_PAD(hsk, ggml_blck_size(type_KV)); |
| 5548 | const int64_t hsv_padded = GGML_PAD(hsv, ggml_blck_size(type_KV)); |
| 5549 | |
| 5550 | auto const &create_permuted = [&](ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3, bool is_view) -> ggml_tensor * { |
| 5551 | int64_t ne[4] = {ne0, ne1, ne2, ne3}; |
| 5552 | int64_t ne_perm[4]; |
| 5553 | for (int i = 0; i < 4; ++i) { |
| 5554 | ne_perm[permute[i]] = ne[i]; |
| 5555 | } |
| 5556 | ggml_tensor * t; |
| 5557 | if (is_view) { |
| 5558 | ggml_tensor * t0 = ggml_new_tensor_4d(ctx, type, ne0: ne_perm[0], ne1: 2*ne_perm[1], ne2: ne_perm[2], ne3: ne_perm[3]); |
| 5559 | t = ggml_view_4d(ctx, a: t0, ne0: ne_perm[0], ne1: ne_perm[1], ne2: ne_perm[2], ne3: ne_perm[3], nb1: t0->nb[1], nb2: t0->nb[2], nb3: t0->nb[3], offset: 0); |
| 5560 | } else { |
| 5561 | t = ggml_new_tensor_4d(ctx, type, ne0: ne_perm[0], ne1: ne_perm[1], ne2: ne_perm[2], ne3: ne_perm[3]); |
| 5562 | } |
| 5563 | if (permute != std::array<int32_t, 4>{0, 1, 2, 3}) { |
| 5564 | t = ggml_permute(ctx, a: t, axis0: permute[0], axis1: permute[1], axis2: permute[2], axis3: permute[3]); |
| 5565 | } |
| 5566 | return t; |
| 5567 | }; |
| 5568 | |
| 5569 | ggml_tensor * q = create_permuted(GGML_TYPE_F32, hsk_padded, nb, nh*nr23[0], nr23[1], false); |
| 5570 | ggml_set_name(tensor: q, name: "q" ); |
| 5571 | |
| 5572 | ggml_tensor * k = create_permuted(type_KV, hsk_padded, kv, nh, nr23[1], true); // the K tensor is usually a view of the K cache |
| 5573 | ggml_set_name(tensor: k, name: "k" ); |
| 5574 | |
| 5575 | ggml_tensor * v = create_permuted(type_KV, hsv_padded, kv, nh, nr23[1], true); // the V tensor is usually a view of the V cache |
| 5576 | ggml_set_name(tensor: v, name: "v" ); |
| 5577 | |
| 5578 | ggml_tensor * m = nullptr; |
| 5579 | if (mask) { |
| 5580 | m = ggml_new_tensor_4d(ctx, type: GGML_TYPE_F16, ne0: kv, GGML_PAD(nb, GGML_KQ_MASK_PAD), ne2: 1, ne3: nr23[1]); |
| 5581 | ggml_set_name(tensor: m, name: "m" ); |
| 5582 | } |
| 5583 | |
| 5584 | ggml_tensor * s = nullptr; |
| 5585 | if (sinks) { |
| 5586 | s = ggml_new_tensor_1d(ctx, type: GGML_TYPE_F32, ne0: q->ne[2]); |
| 5587 | ggml_set_name(tensor: s, name: "s" ); |
| 5588 | } |
| 5589 | |
| 5590 | ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, mask: m, scale: 1.0f/sqrtf(x: hsk), max_bias, logit_softcap); |
| 5591 | ggml_flash_attn_ext_add_sinks(a: out, sinks: s); |
| 5592 | ggml_flash_attn_ext_set_prec (a: out, prec); |
| 5593 | ggml_set_name(tensor: out, name: "out" ); |
| 5594 | |
| 5595 | return out; |
| 5596 | } |
| 5597 | |
| 5598 | void initialize_tensors(ggml_context * ctx) override { |
| 5599 | for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, tensor: t)) { |
| 5600 | if (strcmp(s1: t->name, s2: "s" ) == 0) { |
| 5601 | // make the sink values more noticable in order to trigger a test failure when the implementation is wrong |
| 5602 | init_tensor_uniform(tensor: t, min: -10.0f, max: 10.0f); |
| 5603 | } else if (strcmp(s1: t->name, s2: "m" ) == 0) { |
| 5604 | init_tensor_kq_mask(tensor: t); |
| 5605 | } else { |
| 5606 | init_tensor_uniform(tensor: t); |
| 5607 | } |
| 5608 | } |
| 5609 | } |
| 5610 | |
| 5611 | bool grad_precise() override { |
| 5612 | return true; |
| 5613 | } |
| 5614 | }; |
| 5615 | |
| 5616 | // GGML_OP_CROSS_ENTROPY_LOSS |
| 5617 | struct test_cross_entropy_loss : public test_case { |
| 5618 | const ggml_type type; |
| 5619 | const std::array<int64_t, 4> ne; |
| 5620 | |
| 5621 | std::string vars() override { |
| 5622 | return VARS_TO_STR2(type, ne); |
| 5623 | } |
| 5624 | |
| 5625 | test_cross_entropy_loss(ggml_type type = GGML_TYPE_F32, |
| 5626 | std::array<int64_t, 4> ne = {10, 5, 4, 3}) |
| 5627 | : type(type), ne(ne) {} |
| 5628 | |
| 5629 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 5630 | ggml_tensor * logits = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 5631 | ggml_set_param(tensor: logits); |
| 5632 | ggml_set_name(tensor: logits, name: "logits" ); |
| 5633 | |
| 5634 | ggml_tensor * labels = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 5635 | // The labels are assumed to be constant -> no gradients. |
| 5636 | ggml_set_name(tensor: labels, name: "labels" ); |
| 5637 | |
| 5638 | // Ensure labels add up to 1: |
| 5639 | labels = ggml_soft_max(ctx, a: labels); |
| 5640 | ggml_set_name(tensor: labels, name: "labels_normalized" ); |
| 5641 | |
| 5642 | ggml_tensor * out = ggml_cross_entropy_loss(ctx, a: logits, b: labels); |
| 5643 | ggml_set_name(tensor: out, name: "out" ); |
| 5644 | |
| 5645 | return out; |
| 5646 | } |
| 5647 | |
| 5648 | void initialize_tensors(ggml_context * ctx) override { |
| 5649 | // For larger abs. diffs between logits softmax is more linear, therefore more precise num. gradients. |
| 5650 | for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, tensor: t)) { |
| 5651 | init_tensor_uniform(tensor: t, min: -100.0f, max: 100.0f); |
| 5652 | } |
| 5653 | } |
| 5654 | |
| 5655 | float grad_eps() override { |
| 5656 | return 1.0f; |
| 5657 | } |
| 5658 | |
| 5659 | bool grad_precise() override { |
| 5660 | return true; |
| 5661 | } |
| 5662 | }; |
| 5663 | |
| 5664 | // GGML_OP_CROSS_ENTROPY_LOSS_BACK |
| 5665 | struct test_cross_entropy_loss_back : public test_case { |
| 5666 | const ggml_type type; |
| 5667 | const std::array<int64_t, 4> ne; |
| 5668 | |
| 5669 | std::string vars() override { |
| 5670 | return VARS_TO_STR2(type, ne); |
| 5671 | } |
| 5672 | |
| 5673 | test_cross_entropy_loss_back(ggml_type type = GGML_TYPE_F32, |
| 5674 | std::array<int64_t, 4> ne = {10, 5, 4, 3}) |
| 5675 | : type(type), ne(ne) {} |
| 5676 | |
| 5677 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 5678 | ggml_tensor * grad = ggml_new_tensor_1d(ctx, type: GGML_TYPE_F32, ne0: 1); |
| 5679 | ggml_set_name(tensor: grad, name: "grad" ); |
| 5680 | |
| 5681 | ggml_tensor * logits = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 5682 | ggml_set_name(tensor: logits, name: "logits" ); |
| 5683 | |
| 5684 | ggml_tensor * labels = ggml_new_tensor(ctx, type, n_dims: 4, ne: ne.data()); |
| 5685 | ggml_set_name(tensor: labels, name: "labels" ); |
| 5686 | |
| 5687 | // Ensure labels add up to 1: |
| 5688 | labels = ggml_soft_max(ctx, a: labels); |
| 5689 | ggml_set_name(tensor: labels, name: "labels_normalized" ); |
| 5690 | |
| 5691 | ggml_tensor * out = ggml_cross_entropy_loss_back(ctx, a: grad, b: logits, c: labels); |
| 5692 | ggml_set_name(tensor: out, name: "out" ); |
| 5693 | |
| 5694 | return out; |
| 5695 | } |
| 5696 | }; |
| 5697 | |
| 5698 | // GGML_OP_OPT_STEP_ADAMW |
| 5699 | struct test_opt_step_adamw : public test_case { |
| 5700 | const ggml_type type; |
| 5701 | const std::array<int64_t, 4> ne; |
| 5702 | |
| 5703 | std::string vars() override { |
| 5704 | return VARS_TO_STR2(type, ne); |
| 5705 | } |
| 5706 | |
| 5707 | test_opt_step_adamw(ggml_type type = GGML_TYPE_F32, |
| 5708 | std::array<int64_t, 4> ne = {10, 5, 4, 3}) |
| 5709 | : type(type), ne(ne) {} |
| 5710 | |
| 5711 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 5712 | ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne0: ne[0], ne1: ne[1], ne2: ne[2], ne3: ne[3]); |
| 5713 | ggml_set_param(tensor: a); // Despite tensor a having gradients the output tensor will not. |
| 5714 | ggml_set_name(tensor: a, name: "a" ); |
| 5715 | |
| 5716 | ggml_tensor * grad = ggml_new_tensor_4d(ctx, type, ne0: ne[0], ne1: ne[1], ne2: ne[2], ne3: ne[3]); |
| 5717 | ggml_set_name(tensor: grad, name: "grad" ); |
| 5718 | |
| 5719 | ggml_tensor * grad_m = ggml_new_tensor_4d(ctx, type, ne0: ne[0], ne1: ne[1], ne2: ne[2], ne3: ne[3]); |
| 5720 | ggml_set_name(tensor: grad_m, name: "grad_m" ); |
| 5721 | |
| 5722 | ggml_tensor * grad_v = ggml_new_tensor_4d(ctx, type, ne0: ne[0], ne1: ne[1], ne2: ne[2], ne3: ne[3]); |
| 5723 | ggml_set_name(tensor: grad_v, name: "grad_v" ); |
| 5724 | |
| 5725 | ggml_tensor * adamw_params = ggml_new_tensor_1d(ctx, type: GGML_TYPE_F32, ne0: 7); |
| 5726 | ggml_set_name(tensor: adamw_params, name: "adamw_params" ); |
| 5727 | |
| 5728 | ggml_tensor * out = ggml_opt_step_adamw(ctx, a, grad, m: grad_m, v: grad_v, adamw_params); |
| 5729 | ggml_set_name(tensor: out, name: "out" ); |
| 5730 | |
| 5731 | return out; |
| 5732 | } |
| 5733 | |
| 5734 | void initialize_tensors(ggml_context * ctx) override { |
| 5735 | for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, tensor: t)) { |
| 5736 | init_tensor_uniform(tensor: t, min: 0.0f, max: 1.0f); // grad_v and adamw_params need non-negative values. |
| 5737 | } |
| 5738 | } |
| 5739 | |
| 5740 | bool grad_precise() override { |
| 5741 | return true; |
| 5742 | } |
| 5743 | }; |
| 5744 | |
| 5745 | struct test_opt_step_sgd : public test_case { |
| 5746 | const ggml_type type; |
| 5747 | const std::array<int64_t, 4> ne; |
| 5748 | |
| 5749 | std::string vars() override { return VARS_TO_STR2(type, ne); } |
| 5750 | |
| 5751 | test_opt_step_sgd(ggml_type type = GGML_TYPE_F32, |
| 5752 | std::array<int64_t, 4> ne = { 10, 5, 4, 3 }) |
| 5753 | : type(type), ne(ne) {} |
| 5754 | |
| 5755 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 5756 | ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne0: ne[0], ne1: ne[1], ne2: ne[2], ne3: ne[3]); |
| 5757 | ggml_set_param(tensor: a); // Despite tensor a having gradients the output tensor will not. |
| 5758 | ggml_set_name(tensor: a, name: "a" ); |
| 5759 | |
| 5760 | ggml_tensor * grad = ggml_new_tensor_4d(ctx, type, ne0: ne[0], ne1: ne[1], ne2: ne[2], ne3: ne[3]); |
| 5761 | ggml_set_name(tensor: grad, name: "grad" ); |
| 5762 | |
| 5763 | ggml_tensor * sgd_params = ggml_new_tensor_1d(ctx, type: GGML_TYPE_F32, ne0: 2); |
| 5764 | ggml_set_name(tensor: sgd_params, name: "sgd_params" ); |
| 5765 | |
| 5766 | ggml_tensor * out = ggml_opt_step_sgd(ctx, a, grad, sgd_params); |
| 5767 | |
| 5768 | ggml_set_name(tensor: out, name: "out" ); |
| 5769 | |
| 5770 | return out; |
| 5771 | } |
| 5772 | |
| 5773 | void initialize_tensors(ggml_context * ctx) override { |
| 5774 | for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, tensor: t)) { |
| 5775 | init_tensor_uniform(tensor: t, min: 0.0f, max: 1.0f); // sgd_params need non-negative values. |
| 5776 | } |
| 5777 | } |
| 5778 | |
| 5779 | bool grad_precise() override { |
| 5780 | return true; |
| 5781 | } |
| 5782 | }; |
| 5783 | |
| 5784 | enum llm_norm_type { |
| 5785 | LLM_NORM, |
| 5786 | LLM_NORM_RMS, |
| 5787 | }; |
| 5788 | |
| 5789 | struct llama_hparams { |
| 5790 | uint32_t n_vocab; |
| 5791 | uint32_t n_embd; |
| 5792 | uint32_t n_head; |
| 5793 | uint32_t n_head_kv; |
| 5794 | static constexpr uint32_t n_layer = 1; |
| 5795 | uint32_t n_rot; |
| 5796 | uint32_t n_embd_head; // dimension of values (d_v) |
| 5797 | uint32_t n_ff; |
| 5798 | |
| 5799 | float f_norm_eps; |
| 5800 | float f_norm_rms_eps; |
| 5801 | |
| 5802 | // cparams |
| 5803 | static constexpr uint32_t n_ctx = 512; // user-specified context size |
| 5804 | static constexpr uint32_t n_ctx_orig = n_ctx; |
| 5805 | |
| 5806 | // batch |
| 5807 | int32_t n_tokens; |
| 5808 | |
| 5809 | // llm_build_context |
| 5810 | static constexpr int32_t n_kv = 32; // size of KV cache to consider (n_kv <= n_ctx |
| 5811 | static constexpr int32_t kv_head = 1; // index of where we store new KV data in the cache |
| 5812 | |
| 5813 | uint32_t n_embd_gqa() const { // dimension of key embeddings across all k-v heads |
| 5814 | return n_embd_head * n_head_kv; |
| 5815 | } |
| 5816 | }; |
| 5817 | |
| 5818 | // LLM base class |
| 5819 | struct test_llm : public test_case { |
| 5820 | llama_hparams hp; |
| 5821 | |
| 5822 | protected: |
| 5823 | test_llm(llama_hparams hp) |
| 5824 | : hp(std::move(hp)) { |
| 5825 | } |
| 5826 | |
| 5827 | public: |
| 5828 | struct ggml_tensor * llm_build_norm( |
| 5829 | struct ggml_context * ctx, |
| 5830 | struct ggml_tensor * cur, |
| 5831 | struct ggml_tensor * mw, |
| 5832 | struct ggml_tensor * mb, |
| 5833 | llm_norm_type type) { |
| 5834 | switch (type) { |
| 5835 | case LLM_NORM: cur = ggml_norm (ctx, a: cur, eps: hp.f_norm_eps); break; |
| 5836 | case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, a: cur, eps: hp.f_norm_rms_eps); break; |
| 5837 | } |
| 5838 | cur = ggml_mul(ctx, a: cur, b: mw); |
| 5839 | if (mb) { |
| 5840 | cur = ggml_add(ctx, a: cur, b: mb); |
| 5841 | } |
| 5842 | return cur; |
| 5843 | } |
| 5844 | |
| 5845 | void llm_build_kv_store( |
| 5846 | struct ggml_context * ctx, |
| 5847 | struct ggml_tensor * k_l, |
| 5848 | struct ggml_tensor * v_l, |
| 5849 | struct ggml_tensor * k_cur, |
| 5850 | struct ggml_tensor * v_cur) { |
| 5851 | // compute the transposed [n_tokens, n_embd] V matrix |
| 5852 | struct ggml_tensor * v_cur_t = ggml_transpose(ctx, a: ggml_reshape_2d(ctx, a: v_cur, ne0: hp.n_embd_gqa(), ne1: hp.n_tokens)); |
| 5853 | |
| 5854 | struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, a: k_l, ne0: hp.n_tokens*hp.n_embd_gqa(), |
| 5855 | offset: (ggml_row_size(type: k_l->type, ne: hp.n_embd_gqa()))*hp.kv_head); |
| 5856 | |
| 5857 | struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, a: v_l, ne0: hp.n_tokens, ne1: hp.n_embd_gqa(), |
| 5858 | nb1: ( hp.n_ctx)*ggml_element_size(tensor: v_l), |
| 5859 | offset: (hp.kv_head)*ggml_element_size(tensor: v_l)); |
| 5860 | |
| 5861 | // important: storing RoPE-ed version of K in the KV cache! |
| 5862 | ggml_cpy(ctx, a: k_cur, b: k_cache_view); |
| 5863 | ggml_cpy(ctx, a: v_cur_t, b: v_cache_view); |
| 5864 | } |
| 5865 | |
| 5866 | struct ggml_tensor * llm_build_kqv( |
| 5867 | struct ggml_context * ctx, |
| 5868 | struct ggml_tensor * k_l, |
| 5869 | struct ggml_tensor * v_l, |
| 5870 | struct ggml_tensor * q_cur, |
| 5871 | struct ggml_tensor * kq_mask, |
| 5872 | float kq_scale) { |
| 5873 | struct ggml_tensor * q = ggml_permute(ctx, a: q_cur, axis0: 0, axis1: 2, axis2: 1, axis3: 3); |
| 5874 | |
| 5875 | struct ggml_tensor * k = |
| 5876 | ggml_view_3d(ctx, a: k_l, |
| 5877 | ne0: hp.n_embd_head, ne1: hp.n_kv, ne2: hp.n_head_kv, |
| 5878 | nb1: ggml_row_size(type: k_l->type, ne: hp.n_embd_gqa()), |
| 5879 | nb2: ggml_row_size(type: k_l->type, ne: hp.n_embd_head), |
| 5880 | offset: 0); |
| 5881 | |
| 5882 | struct ggml_tensor * kq = ggml_mul_mat(ctx, a: k, b: q); |
| 5883 | |
| 5884 | kq = ggml_soft_max_ext(ctx, a: kq, mask: kq_mask, scale: kq_scale, max_bias: 0.0f); |
| 5885 | |
| 5886 | // split cached v into n_head heads |
| 5887 | struct ggml_tensor * v = |
| 5888 | ggml_view_3d(ctx, a: v_l, |
| 5889 | ne0: hp.n_kv, ne1: hp.n_embd_head, ne2: hp.n_head_kv, |
| 5890 | nb1: ggml_element_size(tensor: v_l)*hp.n_ctx, |
| 5891 | nb2: ggml_element_size(tensor: v_l)*hp.n_ctx*hp.n_embd_head, |
| 5892 | offset: 0); |
| 5893 | |
| 5894 | struct ggml_tensor * kqv = ggml_mul_mat(ctx, a: v, b: kq); |
| 5895 | |
| 5896 | struct ggml_tensor * kqv_merged = ggml_permute(ctx, a: kqv, axis0: 0, axis1: 2, axis2: 1, axis3: 3); |
| 5897 | |
| 5898 | struct ggml_tensor * cur = ggml_cont_2d(ctx, a: kqv_merged, ne0: hp.n_embd_head*hp.n_head, ne1: hp.n_tokens); |
| 5899 | |
| 5900 | struct ggml_tensor * wo = ggml_new_tensor_2d(ctx, type: GGML_TYPE_Q4_0, ne0: hp.n_embd, ne1: hp.n_embd); |
| 5901 | cur = ggml_mul_mat(ctx, a: wo, b: cur); |
| 5902 | |
| 5903 | return cur; |
| 5904 | } |
| 5905 | |
| 5906 | void initialize_tensors(ggml_context * ctx) override { |
| 5907 | for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, tensor: t)) { |
| 5908 | if (t->type == GGML_TYPE_I32) { |
| 5909 | // pos |
| 5910 | std::vector<int> data(hp.n_tokens); |
| 5911 | for (int i = 0; i < hp.n_tokens; i++) { |
| 5912 | data[i] = rand() % hp.n_ctx; |
| 5913 | } |
| 5914 | ggml_backend_tensor_set(tensor: t, data: data.data(), offset: 0, size: hp.n_tokens * sizeof(int)); |
| 5915 | } else { |
| 5916 | init_tensor_uniform(tensor: t); |
| 5917 | } |
| 5918 | } |
| 5919 | } |
| 5920 | }; |
| 5921 | |
| 5922 | // Llama |
| 5923 | struct test_llama : public test_llm { |
| 5924 | static constexpr float freq_base = 10000.0f; |
| 5925 | static constexpr float freq_scale = 1.0f; |
| 5926 | static constexpr float ext_factor = 0.0f; |
| 5927 | static constexpr float attn_factor = 1.0f; |
| 5928 | static constexpr float beta_fast = 32.0f; |
| 5929 | static constexpr float beta_slow = 1.0f; |
| 5930 | bool fused; |
| 5931 | |
| 5932 | std::string op_desc(ggml_tensor * t) override { |
| 5933 | GGML_UNUSED(t); |
| 5934 | return "LLAMA" ; |
| 5935 | } |
| 5936 | |
| 5937 | std::string vars() override { |
| 5938 | auto n_tokens = hp.n_tokens; |
| 5939 | return VARS_TO_STR1(n_tokens); |
| 5940 | } |
| 5941 | |
| 5942 | double max_nmse_err() override { |
| 5943 | return 2e-3; |
| 5944 | } |
| 5945 | |
| 5946 | bool run_whole_graph() override { return fused; } |
| 5947 | |
| 5948 | test_llama(int n_tokens = 1, bool fused = false) |
| 5949 | : test_llm({ |
| 5950 | /*n_vocab =*/ 32000, |
| 5951 | /*n_embd =*/ 3200, |
| 5952 | /*n_head =*/ 32, |
| 5953 | /*n_head_kv =*/ 32, |
| 5954 | /*n_rot =*/ 100, |
| 5955 | /*n_embd_head =*/ 100, |
| 5956 | /*n_ff =*/ 8640, |
| 5957 | /*f_norm_eps =*/ 0.f, |
| 5958 | /*f_norm_rms_eps =*/ 1e-5f, |
| 5959 | /*n_tokens =*/ n_tokens, |
| 5960 | }) |
| 5961 | , fused(fused) |
| 5962 | { |
| 5963 | } |
| 5964 | |
| 5965 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 5966 | struct ggml_tensor * cur; |
| 5967 | struct ggml_tensor * inpL; |
| 5968 | |
| 5969 | inpL = ggml_new_tensor_2d(ctx, type: GGML_TYPE_F32, ne0: hp.n_embd, ne1: hp.n_tokens); |
| 5970 | |
| 5971 | // inp_pos - contains the positions |
| 5972 | struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, type: GGML_TYPE_I32, ne0: hp.n_tokens); |
| 5973 | |
| 5974 | // KQ_mask (mask for 1 head, it will be broadcasted to all heads) |
| 5975 | struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, type: GGML_TYPE_F16, ne0: hp.n_kv, ne1: hp.n_tokens, ne2: 1); |
| 5976 | |
| 5977 | ggml_tensor * k_l = ggml_new_tensor_1d(ctx, type: GGML_TYPE_F16, ne0: 1638400); |
| 5978 | ggml_tensor * v_l = ggml_new_tensor_1d(ctx, type: GGML_TYPE_F16, ne0: 1638400); |
| 5979 | |
| 5980 | for (uint32_t il = 0; il < hp.n_layer; ++il) { |
| 5981 | struct ggml_tensor * inpSA = inpL; |
| 5982 | |
| 5983 | // norm |
| 5984 | ggml_tensor * attn_norm = ggml_new_tensor_1d(ctx, type: GGML_TYPE_F32, ne0: hp.n_embd); |
| 5985 | cur = llm_build_norm(ctx, cur: inpL, mw: attn_norm, mb: nullptr, type: LLM_NORM_RMS); |
| 5986 | |
| 5987 | // self-attention |
| 5988 | { |
| 5989 | ggml_tensor * wq = ggml_new_tensor_2d(ctx, type: GGML_TYPE_Q4_0, ne0: hp.n_embd, ne1: hp.n_embd); |
| 5990 | ggml_tensor * wk = ggml_new_tensor_2d(ctx, type: GGML_TYPE_Q4_0, ne0: hp.n_embd, ne1: hp.n_embd_gqa()); |
| 5991 | ggml_tensor * wv = ggml_new_tensor_2d(ctx, type: GGML_TYPE_Q4_0, ne0: hp.n_embd, ne1: hp.n_embd_gqa()); |
| 5992 | |
| 5993 | // compute Q and K and RoPE them |
| 5994 | struct ggml_tensor * Qcur = ggml_mul_mat(ctx, a: wq, b: cur); |
| 5995 | struct ggml_tensor * Kcur = ggml_mul_mat(ctx, a: wk, b: cur); |
| 5996 | struct ggml_tensor * Vcur = ggml_mul_mat(ctx, a: wv, b: cur); |
| 5997 | |
| 5998 | Qcur = ggml_rope_ext( |
| 5999 | ctx, a: ggml_reshape_3d(ctx, a: Qcur, ne0: hp.n_embd_head, ne1: hp.n_head, ne2: hp.n_tokens), b: inp_pos, c: nullptr, |
| 6000 | n_dims: hp.n_rot, mode: 0, n_ctx_orig: hp.n_ctx_orig, freq_base, freq_scale, |
| 6001 | ext_factor, attn_factor, beta_fast, beta_slow |
| 6002 | ); |
| 6003 | |
| 6004 | Kcur = ggml_rope_ext( |
| 6005 | ctx, a: ggml_reshape_3d(ctx, a: Kcur, ne0: hp.n_embd_head, ne1: hp.n_head_kv, ne2: hp.n_tokens), b: inp_pos, c: nullptr, |
| 6006 | n_dims: hp.n_rot, mode: 0, n_ctx_orig: hp.n_ctx_orig, freq_base, freq_scale, |
| 6007 | ext_factor, attn_factor, beta_fast, beta_slow |
| 6008 | ); |
| 6009 | |
| 6010 | llm_build_kv_store(ctx, k_l, v_l, k_cur: Kcur, v_cur: Vcur); |
| 6011 | |
| 6012 | cur = llm_build_kqv(ctx, k_l, v_l, q_cur: Qcur, kq_mask: KQ_mask, kq_scale: 1.0f/sqrtf(x: float(hp.n_embd_head))); |
| 6013 | } |
| 6014 | |
| 6015 | struct ggml_tensor * ffn_inp = ggml_add(ctx, a: cur, b: inpSA); |
| 6016 | |
| 6017 | // feed-forward network |
| 6018 | ggml_tensor * ffn_norm = ggml_new_tensor_1d(ctx, type: GGML_TYPE_F32, ne0: hp.n_embd); |
| 6019 | cur = llm_build_norm(ctx, cur: ffn_inp, mw: ffn_norm, mb: nullptr, type: LLM_NORM_RMS); |
| 6020 | |
| 6021 | ggml_tensor * ffn_gate = ggml_new_tensor_2d(ctx, type: GGML_TYPE_Q4_0, ne0: hp.n_embd, ne1: hp.n_ff); |
| 6022 | ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, type: GGML_TYPE_Q4_0, ne0: hp.n_ff, ne1: hp.n_embd); |
| 6023 | ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, type: GGML_TYPE_Q4_0, ne0: hp.n_embd, ne1: hp.n_ff); |
| 6024 | struct ggml_tensor * tmp = ggml_mul_mat(ctx, a: ffn_up, b: cur); |
| 6025 | cur = ggml_mul_mat(ctx, a: ffn_gate, b: cur); |
| 6026 | cur = ggml_silu(ctx, a: cur); |
| 6027 | cur = ggml_mul(ctx, a: cur, b: tmp); |
| 6028 | cur = ggml_mul_mat(ctx, a: ffn_down, b: cur); |
| 6029 | |
| 6030 | cur = ggml_add(ctx, a: cur, b: ffn_inp); |
| 6031 | |
| 6032 | // input for next layer |
| 6033 | inpL = cur; |
| 6034 | } |
| 6035 | |
| 6036 | cur = inpL; |
| 6037 | |
| 6038 | ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, type: GGML_TYPE_F32, ne0: hp.n_embd); |
| 6039 | cur = llm_build_norm(ctx, cur, mw: output_norm, mb: nullptr, type: LLM_NORM_RMS); |
| 6040 | |
| 6041 | // lm_head |
| 6042 | ggml_tensor * output = ggml_new_tensor_2d(ctx, type: GGML_TYPE_Q4_0, ne0: hp.n_embd, ne1: hp.n_vocab); |
| 6043 | cur = ggml_mul_mat(ctx, a: output, b: cur); |
| 6044 | |
| 6045 | return cur; |
| 6046 | } |
| 6047 | }; |
| 6048 | |
| 6049 | // Falcon |
| 6050 | struct test_falcon : public test_llm { |
| 6051 | static constexpr float freq_base = 10000.0f; |
| 6052 | static constexpr float freq_scale = 1.0f; |
| 6053 | static constexpr float ext_factor = 0.0f; |
| 6054 | static constexpr float attn_factor = 1.0f; |
| 6055 | static constexpr float beta_fast = 32.0f; |
| 6056 | static constexpr float beta_slow = 1.0f; |
| 6057 | |
| 6058 | std::string op_desc(ggml_tensor * t) override { |
| 6059 | GGML_UNUSED(t); |
| 6060 | return "FALCON" ; |
| 6061 | } |
| 6062 | |
| 6063 | std::string vars() override { |
| 6064 | auto n_tokens = hp.n_tokens; |
| 6065 | return VARS_TO_STR1(n_tokens); |
| 6066 | } |
| 6067 | |
| 6068 | double max_nmse_err() override { |
| 6069 | return 2e-3; |
| 6070 | } |
| 6071 | |
| 6072 | test_falcon(int n_tokens = 1) |
| 6073 | : test_llm({ |
| 6074 | /*n_vocab =*/ 32000, |
| 6075 | /*n_embd =*/ 3200, |
| 6076 | /*n_head =*/ 50, |
| 6077 | /*n_head_kv =*/ 1, |
| 6078 | /*n_rot =*/ 64, |
| 6079 | /*n_embd_head =*/ 64, |
| 6080 | /*n_ff =*/ 8640, |
| 6081 | /*f_norm_eps =*/ 1e-5f, |
| 6082 | /*f_norm_rms_eps =*/ 0.f, |
| 6083 | /*n_tokens =*/ n_tokens, |
| 6084 | }) { |
| 6085 | } |
| 6086 | |
| 6087 | ggml_tensor * build_graph(ggml_context * ctx) override { |
| 6088 | struct ggml_tensor * cur; |
| 6089 | struct ggml_tensor * inpL; |
| 6090 | |
| 6091 | inpL = ggml_new_tensor_2d(ctx, type: GGML_TYPE_F32, ne0: hp.n_embd, ne1: hp.n_tokens); |
| 6092 | |
| 6093 | // inp_pos - contains the positions |
| 6094 | struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, type: GGML_TYPE_I32, ne0: hp.n_tokens); |
| 6095 | |
| 6096 | // KQ_mask (mask for 1 head, it will be broadcasted to all heads) |
| 6097 | struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, type: GGML_TYPE_F16, ne0: hp.n_kv, ne1: hp.n_tokens, ne2: 1); |
| 6098 | |
| 6099 | ggml_tensor * k_l = ggml_new_tensor_1d(ctx, type: GGML_TYPE_F16, ne0: 1638400); |
| 6100 | ggml_tensor * v_l = ggml_new_tensor_1d(ctx, type: GGML_TYPE_F16, ne0: 1638400); |
| 6101 | |
| 6102 | for (uint32_t il = 0; il < hp.n_layer; ++il) { |
| 6103 | // norm |
| 6104 | ggml_tensor * attn_norm_w = ggml_new_tensor_1d(ctx, type: GGML_TYPE_F32, ne0: hp.n_embd); |
| 6105 | ggml_tensor * attn_norm_b = ggml_new_tensor_1d(ctx, type: GGML_TYPE_F32, ne0: hp.n_embd); |
| 6106 | ggml_tensor * attn_norm = llm_build_norm(ctx, cur: inpL, mw: attn_norm_w, mb: attn_norm_b, type: LLM_NORM); |
| 6107 | |
| 6108 | // self-attention |
| 6109 | { |
| 6110 | cur = attn_norm; |
| 6111 | |
| 6112 | ggml_tensor * wqkv = ggml_new_tensor_2d(ctx, type: GGML_TYPE_Q4_0, ne0: hp.n_embd, ne1: hp.n_embd + 2*hp.n_embd_gqa()); |
| 6113 | |
| 6114 | cur = ggml_mul_mat(ctx, a: wqkv, b: cur); |
| 6115 | |
| 6116 | struct ggml_tensor * Qcur = ggml_cont(ctx, a: ggml_view_2d(ctx, a: cur, ne0: hp.n_embd, ne1: hp.n_tokens, nb1: cur->nb[1], offset: 0*sizeof(float)*(hp.n_embd))); |
| 6117 | struct ggml_tensor * Kcur = ggml_cont(ctx, a: ggml_view_2d(ctx, a: cur, ne0: hp.n_embd_gqa(), ne1: hp.n_tokens, nb1: cur->nb[1], offset: 1*sizeof(float)*(hp.n_embd))); |
| 6118 | struct ggml_tensor * Vcur = ggml_cont(ctx, a: ggml_view_2d(ctx, a: cur, ne0: hp.n_embd_gqa(), ne1: hp.n_tokens, nb1: cur->nb[1], offset: 1*sizeof(float)*(hp.n_embd + hp.n_embd_gqa()))); |
| 6119 | |
| 6120 | Qcur = ggml_reshape_3d(ctx, a: Qcur, ne0: hp.n_embd_head, ne1: hp.n_head, ne2: hp.n_tokens); |
| 6121 | Kcur = ggml_reshape_3d(ctx, a: Kcur, ne0: hp.n_embd_head, ne1: hp.n_head_kv, ne2: hp.n_tokens); |
| 6122 | |
| 6123 | // using mode = 2 for neox mode |
| 6124 | Qcur = ggml_rope_ext( |
| 6125 | ctx, a: Qcur, b: inp_pos, c: nullptr, n_dims: hp.n_rot, mode: 2, n_ctx_orig: hp.n_ctx_orig, |
| 6126 | freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow |
| 6127 | ); |
| 6128 | |
| 6129 | Kcur = ggml_rope_ext( |
| 6130 | ctx, a: Kcur, b: inp_pos, c: nullptr, n_dims: hp.n_rot, mode: 2, n_ctx_orig: hp.n_ctx_orig, |
| 6131 | freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow |
| 6132 | ); |
| 6133 | |
| 6134 | llm_build_kv_store(ctx, k_l, v_l, k_cur: Kcur, v_cur: Vcur); |
| 6135 | |
| 6136 | cur = llm_build_kqv(ctx, k_l, v_l, q_cur: Qcur, kq_mask: KQ_mask, kq_scale: 1.0f/sqrtf(x: float(hp.n_embd_head))); |
| 6137 | } |
| 6138 | |
| 6139 | struct ggml_tensor * ffn_inp = cur; |
| 6140 | |
| 6141 | // feed forward |
| 6142 | { |
| 6143 | ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, type: GGML_TYPE_Q4_0, ne0: hp.n_embd, ne1: hp.n_ff); |
| 6144 | ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, type: GGML_TYPE_Q4_0, ne0: hp.n_ff, ne1: hp.n_embd); |
| 6145 | cur = attn_norm; |
| 6146 | cur = ggml_mul_mat(ctx, a: ffn_up, b: cur); |
| 6147 | cur = ggml_gelu(ctx, a: cur); |
| 6148 | cur = ggml_mul_mat(ctx, a: ffn_down, b: cur); |
| 6149 | } |
| 6150 | |
| 6151 | cur = ggml_add(ctx, a: cur, b: ffn_inp); |
| 6152 | |
| 6153 | cur = ggml_add(ctx, a: cur, b: inpL); |
| 6154 | |
| 6155 | // input for next layer |
| 6156 | inpL = cur; |
| 6157 | } |
| 6158 | |
| 6159 | cur = inpL; |
| 6160 | |
| 6161 | ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, type: GGML_TYPE_F32, ne0: hp.n_embd); |
| 6162 | ggml_tensor * output_norm_b = ggml_new_tensor_1d(ctx, type: GGML_TYPE_F32, ne0: hp.n_embd); |
| 6163 | cur = llm_build_norm(ctx, cur, mw: output_norm, mb: output_norm_b, type: LLM_NORM); |
| 6164 | |
| 6165 | // lm_head |
| 6166 | ggml_tensor * output = ggml_new_tensor_2d(ctx, type: GGML_TYPE_Q8_0, ne0: hp.n_embd, ne1: hp.n_vocab); |
| 6167 | cur = ggml_mul_mat(ctx, a: output, b: cur); |
| 6168 | |
| 6169 | return cur; |
| 6170 | } |
| 6171 | }; |
| 6172 | |
| 6173 | |
| 6174 | // ########################################### |
| 6175 | // ## Section 3: GGML Op Test Instantiation ## |
| 6176 | // ########################################### |
| 6177 | static const ggml_type all_types[] = { |
| 6178 | GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16, |
| 6179 | GGML_TYPE_Q4_0, GGML_TYPE_Q4_1, |
| 6180 | GGML_TYPE_Q5_0, GGML_TYPE_Q5_1, |
| 6181 | GGML_TYPE_Q8_0, |
| 6182 | GGML_TYPE_MXFP4, |
| 6183 | GGML_TYPE_Q2_K, GGML_TYPE_Q3_K, |
| 6184 | GGML_TYPE_Q4_K, GGML_TYPE_Q5_K, |
| 6185 | GGML_TYPE_Q6_K, |
| 6186 | // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends |
| 6187 | GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S, |
| 6188 | GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M, |
| 6189 | GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS, |
| 6190 | }; |
| 6191 | |
| 6192 | static const ggml_type base_types[] = { |
| 6193 | GGML_TYPE_F32, GGML_TYPE_F16, |
| 6194 | GGML_TYPE_Q8_0, // for I8MM tests |
| 6195 | GGML_TYPE_Q4_0, |
| 6196 | GGML_TYPE_Q4_1, // for I8MM tests |
| 6197 | GGML_TYPE_Q4_K, |
| 6198 | GGML_TYPE_MXFP4, // TODO: or "other" |
| 6199 | GGML_TYPE_IQ2_XXS |
| 6200 | }; |
| 6201 | |
| 6202 | static const ggml_type other_types[] = { |
| 6203 | GGML_TYPE_Q4_1, |
| 6204 | GGML_TYPE_Q5_0, GGML_TYPE_Q5_1, |
| 6205 | GGML_TYPE_Q8_0, |
| 6206 | GGML_TYPE_Q2_K, GGML_TYPE_Q3_K, |
| 6207 | GGML_TYPE_Q5_K, |
| 6208 | GGML_TYPE_Q6_K, |
| 6209 | // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends |
| 6210 | GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S, |
| 6211 | GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M, |
| 6212 | GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS, |
| 6213 | GGML_TYPE_BF16, |
| 6214 | }; |
| 6215 | |
| 6216 | // Test cases for evaluation: should try to cover edge cases while using small input sizes to keep the runtime low |
| 6217 | static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() { |
| 6218 | std::vector<std::unique_ptr<test_case>> test_cases; |
| 6219 | std::default_random_engine rng(0); |
| 6220 | |
| 6221 | // unary ops |
| 6222 | for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) { |
| 6223 | for (int v : {0, 1}) { |
| 6224 | for (int op = 0; op < GGML_UNARY_OP_COUNT; op++) { |
| 6225 | test_cases.emplace_back(args: new test_unary((ggml_unary_op) op, type, { 128, 2, 2, 2 }, v)); |
| 6226 | test_cases.emplace_back(args: new test_unary((ggml_unary_op) op, type, { 5, 7, 11, 13 }, v)); |
| 6227 | } |
| 6228 | } |
| 6229 | } |
| 6230 | |
| 6231 | // glu ops |
| 6232 | for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) { |
| 6233 | for (int v : {0, 1}) { |
| 6234 | for (int op = 0; op < GGML_GLU_OP_COUNT; op++) { |
| 6235 | if (op == GGML_GLU_OP_SWIGLU_OAI) { |
| 6236 | // SWIGLU_OAI is handled separately |
| 6237 | continue; |
| 6238 | } |
| 6239 | |
| 6240 | for (bool swapped : {false, true}) { |
| 6241 | test_cases.emplace_back(args: new test_glu((ggml_glu_op) op, type, { 128, 2, 2, 2 }, v, swapped)); |
| 6242 | test_cases.emplace_back(args: new test_glu((ggml_glu_op) op, type, { 5, 7, 11, 13 }, v, swapped)); |
| 6243 | } |
| 6244 | |
| 6245 | test_cases.emplace_back(args: new test_glu_split((ggml_glu_op) op, type, { 128, 2, 2, 2 }, v)); |
| 6246 | test_cases.emplace_back(args: new test_glu_split((ggml_glu_op) op, type, { 5, 7, 11, 13 }, v)); |
| 6247 | } |
| 6248 | } |
| 6249 | } |
| 6250 | |
| 6251 | for (int v : {0, 1}) { |
| 6252 | for (float alpha : {.5f, 1.702f}) { |
| 6253 | for (float limit : {2.0f, 7.0f}) { |
| 6254 | test_cases.emplace_back(args: new test_swiglu_oai(GGML_TYPE_F32, { 128, 2, 2, 2 }, v, alpha, limit)); |
| 6255 | } |
| 6256 | } |
| 6257 | } |
| 6258 | |
| 6259 | for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_Q4_0}) { |
| 6260 | test_cases.emplace_back(args: new test_get_rows(type, 300*256, 5, 4, 1, 2, false)); |
| 6261 | test_cases.emplace_back(args: new test_get_rows(type, 256, 80000, 70000, 2, 1, false)); |
| 6262 | test_cases.emplace_back(args: new test_get_rows(type, 256, 5, 4, 700, 100, false)); |
| 6263 | } |
| 6264 | |
| 6265 | test_cases.emplace_back(args: new test_get_rows(GGML_TYPE_F32, 1, 8, 2, 1, 1, false)); |
| 6266 | for (ggml_type type : all_types) { |
| 6267 | for (int b : {1, 7}) { |
| 6268 | for (bool v : {false, true}) { |
| 6269 | test_cases.emplace_back(args: new test_get_rows(type, 256, 5, 4, b, 1, v)); |
| 6270 | } |
| 6271 | } |
| 6272 | } |
| 6273 | for (int b : {1, 7}) { |
| 6274 | for (bool v : {false, true}) { |
| 6275 | test_cases.emplace_back(args: new test_get_rows(GGML_TYPE_I32, 256, 5, 4, b, 1, v)); |
| 6276 | } |
| 6277 | } |
| 6278 | |
| 6279 | test_cases.emplace_back(args: new test_get_rows_back(GGML_TYPE_F32, 1, 8, 2, 1, false)); |
| 6280 | for (ggml_type type : all_types) { |
| 6281 | for (bool v : {false, true}) { |
| 6282 | test_cases.emplace_back(args: new test_get_rows_back(type, 256, 5, 4, 1, v)); |
| 6283 | } |
| 6284 | } |
| 6285 | for (bool v : {false, true}) { |
| 6286 | test_cases.emplace_back(args: new test_get_rows_back(GGML_TYPE_I32, 256, 5, 4, 1, v)); |
| 6287 | } |
| 6288 | |
| 6289 | test_cases.emplace_back(args: new test_set_rows(GGML_TYPE_F32, GGML_TYPE_I64, { 1, 8, 1, 3 }, { 1, 1 }, 2, false)); |
| 6290 | test_cases.emplace_back(args: new test_set_rows(GGML_TYPE_F32, GGML_TYPE_I32, { 1, 8, 1, 3 }, { 1, 1 }, 2, false)); |
| 6291 | test_cases.emplace_back(args: new test_set_rows(GGML_TYPE_Q8_0, GGML_TYPE_I32, { 256, 5, 1, 3 }, { 1, 1, }, 1, false)); |
| 6292 | for (ggml_type type : all_types) { |
| 6293 | for (int b : {1, 7}) { |
| 6294 | for (bool v : {false, true}) { |
| 6295 | test_cases.emplace_back(args: new test_set_rows(type, GGML_TYPE_I64, { 256, 5, b, 3 }, { 1, 1, }, 1, v)); |
| 6296 | test_cases.emplace_back(args: new test_set_rows(type, GGML_TYPE_I64, { 256, 11, 1, b }, { 2, 3, }, 7, v)); |
| 6297 | |
| 6298 | test_cases.emplace_back(args: new test_set_rows(type, GGML_TYPE_I64, { 3*ggml_blck_size(type), 3, b, 1 }, { 2, 3, }, 2, v)); |
| 6299 | |
| 6300 | if (ggml_blck_size(type) == 1) { |
| 6301 | test_cases.emplace_back(args: new test_set_rows(type, GGML_TYPE_I64, { 31, 3, b, 1 }, { 2, 3, }, 2, v)); |
| 6302 | test_cases.emplace_back(args: new test_set_rows(type, GGML_TYPE_I64, { 33, 5, 1, b }, { 2, 3, }, 1, v)); |
| 6303 | } |
| 6304 | } |
| 6305 | } |
| 6306 | } |
| 6307 | |
| 6308 | for (int mode : { GGML_ROPE_TYPE_NORMAL, GGML_ROPE_TYPE_NEOX }) { |
| 6309 | for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) { |
| 6310 | test_cases.emplace_back(args: new test_rope_set_rows(type, GGML_TYPE_I64, { 128, 32, 1, 100 }, mode)); |
| 6311 | test_cases.emplace_back(args: new test_rope_set_rows(type, GGML_TYPE_I64, { 128, 32, 512, 1 }, mode)); |
| 6312 | } |
| 6313 | } |
| 6314 | |
| 6315 | for (ggml_type type_input : {GGML_TYPE_F32}) { |
| 6316 | for (ggml_op_pool pool_type : {GGML_OP_POOL_AVG, GGML_OP_POOL_MAX}) { |
| 6317 | for (int k0 : {1, 3}) { |
| 6318 | for (int k1 : {1, 3}) { |
| 6319 | for (int s0 : {1, 2}) { |
| 6320 | for (int s1 : {1, 2}) { |
| 6321 | for (int p0 : {0, 1}) { |
| 6322 | for (int p1 : {0, 1}) { |
| 6323 | test_cases.emplace_back(args: new test_pool2d(pool_type, type_input, {10, 10, 3, 1}, k0, k1, s0, s1, p0, p1)); |
| 6324 | } |
| 6325 | } |
| 6326 | } |
| 6327 | } |
| 6328 | } |
| 6329 | } |
| 6330 | } |
| 6331 | } |
| 6332 | |
| 6333 | #if 0 |
| 6334 | // >4GB im2col destination. Too slow to run by default. |
| 6335 | // Test cases taken from Wan2.1 T2V 1.3B. |
| 6336 | test_cases.emplace_back(new test_im2col (GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {832, 480, 192, 4}, {3, 3, 192, 96}, 1, 1, 1, 1, 1, 1, true)); |
| 6337 | test_cases.emplace_back(new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {834, 482, 6, 96}, {3, 3,3, 9216}, 96, 1, 1, 1, 0, 0, 0, 1, 1, 1, false)); |
| 6338 | #endif |
| 6339 | |
| 6340 | // im2col 1D |
| 6341 | test_cases.emplace_back(args: new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false)); |
| 6342 | test_cases.emplace_back(args: new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false)); |
| 6343 | test_cases.emplace_back(args: new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false)); |
| 6344 | for (int s0 : {1, 3}) { |
| 6345 | for (int p0 : {0, 3}) { |
| 6346 | for (int d0 : {1, 3}) { |
| 6347 | test_cases.emplace_back(args: new test_im2col( |
| 6348 | GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 2, 2, 1}, {3, 2, 2, 1}, |
| 6349 | s0, 0, p0, 0, d0, 0, false)); |
| 6350 | } |
| 6351 | } |
| 6352 | } |
| 6353 | |
| 6354 | // im2col 2D |
| 6355 | test_cases.emplace_back(args: new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32)); |
| 6356 | test_cases.emplace_back(args: new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32)); |
| 6357 | test_cases.emplace_back(args: new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16)); |
| 6358 | for (int s0 : {1, 3}) { |
| 6359 | for (int s1 : {1, 3}) { |
| 6360 | for (int p0 : {0, 3}) { |
| 6361 | for (int p1 : {0, 3}) { |
| 6362 | for (int d0 : {1, 3}) { |
| 6363 | for (int d1 : {1, 3}) { |
| 6364 | test_cases.emplace_back(args: new test_im2col( |
| 6365 | GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 20, 2, 2}, {3, 3, 2, 2}, |
| 6366 | s0, s1, p0, p1, d0, d1, true)); |
| 6367 | } |
| 6368 | } |
| 6369 | } |
| 6370 | } |
| 6371 | } |
| 6372 | } |
| 6373 | |
| 6374 | // extra tests for im2col 2D |
| 6375 | test_cases.emplace_back(args: new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 32}, {3, 3, 1, 32}, 1, 1, 1, 1, 1, 1, true)); |
| 6376 | test_cases.emplace_back(args: new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 32}, {3, 3, 2, 32}, 1, 1, 1, 1, 1, 1, true)); |
| 6377 | test_cases.emplace_back(args: new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 1024}, {3, 3, 1, 1024}, 1, 1, 1, 1, 1, 1, true)); |
| 6378 | test_cases.emplace_back(args: new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 1024}, {3, 3, 2, 1024}, 1, 1, 1, 1, 1, 1, true)); |
| 6379 | test_cases.emplace_back(args: new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2048}, {3, 3, 1, 2048}, 1, 1, 1, 1, 1, 1, true)); |
| 6380 | test_cases.emplace_back(args: new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2048}, {3, 3, 2, 2048}, 1, 1, 1, 1, 1, 1, true)); |
| 6381 | test_cases.emplace_back(args: new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2560}, {3, 3, 1, 2560}, 1, 1, 1, 1, 1, 1, true)); |
| 6382 | test_cases.emplace_back(args: new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2560}, {3, 3, 2, 2560}, 1, 1, 1, 1, 1, 1, true)); |
| 6383 | test_cases.emplace_back(args: new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {5, 5, 1, 32}, {3, 4, 1, 32}, 1, 1, 0, 0, 1, 1, true)); |
| 6384 | |
| 6385 | // im2col 3D |
| 6386 | test_cases.emplace_back(args: new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32)); |
| 6387 | test_cases.emplace_back(args: new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32)); |
| 6388 | test_cases.emplace_back(args: new test_im2col_3d(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16)); |
| 6389 | for (int s0 : {1, 3}) { |
| 6390 | for (int s1 : {1, 3}) { |
| 6391 | for (int s2 : {1, 3}) { |
| 6392 | for (int p0 : {0, 3}) { |
| 6393 | for (int p1 : {0, 3}) { |
| 6394 | for (int p2 : {0, 3}) { |
| 6395 | for (int d0 : {1, 3}) { |
| 6396 | for (int d1 : {1, 3}) { |
| 6397 | for (int d2 : {1, 3}) { |
| 6398 | for (int IC : {1, 3}) { |
| 6399 | for (bool v : {false, true}) { |
| 6400 | test_cases.emplace_back(args: new test_im2col_3d( |
| 6401 | GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 20, 10, 3}, {3, 3, 3, 3}, |
| 6402 | IC, s0, s1, s2, p0, p1, p2, d0, d1, d2, v)); |
| 6403 | } |
| 6404 | } |
| 6405 | } |
| 6406 | } |
| 6407 | } |
| 6408 | } |
| 6409 | } |
| 6410 | } |
| 6411 | } |
| 6412 | } |
| 6413 | } |
| 6414 | |
| 6415 | // Conv_2D test cases |
| 6416 | #ifdef DETAILED_TESTS |
| 6417 | // Probably we do not have enough time to execute these in the pipeline. |
| 6418 | uint32_t iwh_idx = 0; |
| 6419 | uint32_t kwh_idx = 1; |
| 6420 | uint32_t Cout_idx = 2; |
| 6421 | uint32_t Cin_idx = 3; |
| 6422 | uint32_t B_idx = 4; |
| 6423 | |
| 6424 | std::vector<std::array<int, 5>> cases = { |
| 6425 | //{IWH, KWH, Cout, Cin, B} |
| 6426 | // K=CRS=NPQ=4096 conv_2d matmul performance |
| 6427 | {19, 4, 4096, 256, 16}, |
| 6428 | // K=128, CRS=128, NPQ=4096 |
| 6429 | { 19, 4, 128, 8, 16}, |
| 6430 | // K=130, CRS=128, NPQ=4096 |
| 6431 | { 19, 4, 130, 8, 16}, |
| 6432 | // Edge case: K x CRS is small |
| 6433 | { 19, 2, 4, 4, 16}, |
| 6434 | // A ConvNet's first layer |
| 6435 | { 224, 3, 8, 3, 1 }, |
| 6436 | // A ConvNet's first layer with 2x2 convolution, and 1 channel |
| 6437 | { 224, 2, 8, 1, 1 }, |
| 6438 | // A ConvNet's first layer with 2x2 convolution, and 1 channel, several images in the batch |
| 6439 | { 224, 2, 8, 1, 8 }, |
| 6440 | // A middle layer of a ConvNet |
| 6441 | { 58, 3, 64, 32, 1 }, |
| 6442 | // A middle layer of a ConvNet, several images in the batch |
| 6443 | { 58, 3, 64, 32, 8 }, |
| 6444 | // A deep layer of a ConvNet, several images in the batch |
| 6445 | { 16, 3, 256, 128, 8 } |
| 6446 | }; |
| 6447 | |
| 6448 | for (auto kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) { |
| 6449 | for (auto act_case : cases) { |
| 6450 | test_cases.emplace_back(new test_conv_2d( |
| 6451 | { act_case[iwh_idx], act_case[iwh_idx], act_case[Cin_idx], act_case[B_idx] }, |
| 6452 | { act_case[kwh_idx], act_case[kwh_idx], act_case[Cin_idx], act_case[Cout_idx] }, |
| 6453 | kernel_type, 1, 1, 0, 0, 1, 1, false)); |
| 6454 | } |
| 6455 | } |
| 6456 | #endif |
| 6457 | |
| 6458 | // CONV_2D: |
| 6459 | auto calc_conv_output_size = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t { |
| 6460 | return (ins + 2 * p - d * (ks - 1) - 1) / s + 1; |
| 6461 | }; |
| 6462 | |
| 6463 | //uint32_t s0 = 3; |
| 6464 | uint32_t s1 = 5; |
| 6465 | uint32_t p0 = 5; |
| 6466 | //uint32_t p1 = 2; |
| 6467 | uint32_t d0 = 2; |
| 6468 | uint32_t d1 = 4; |
| 6469 | |
| 6470 | for (uint32_t s0 : { 1, 3 }) { |
| 6471 | for (uint32_t p1 : { 2, 5 }) { |
| 6472 | for (uint32_t Cin : { 1, 25 }) { |
| 6473 | for (uint32_t Cout : { 1, 12 }) { |
| 6474 | for (uint32_t KH : { 1, 2, 3, 11 }) { |
| 6475 | for (uint32_t KW : { 1, 2, 3, 11 }) { |
| 6476 | for (uint32_t H : { 1, 133 }) { |
| 6477 | for (uint32_t W : { 1, 141 }) { |
| 6478 | if (calc_conv_output_size(W, KW, s0, p0, d0) > 0 && |
| 6479 | calc_conv_output_size(H, KH, s1, p1, d1) > 0) { |
| 6480 | for (auto kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) { |
| 6481 | test_cases.emplace_back(args: new test_conv_2d( |
| 6482 | { W, H, Cin, 2 }, { KW, KH, Cin, Cout }, kernel_type, s0, s1, p0, p1, d0, d1, false)); |
| 6483 | } |
| 6484 | } |
| 6485 | } |
| 6486 | } |
| 6487 | } |
| 6488 | } |
| 6489 | } |
| 6490 | } |
| 6491 | } |
| 6492 | } |
| 6493 | |
| 6494 | // sycl backend will limit task global_range < MAX_INT |
| 6495 | // test cases for 2D im2col with large input W and H (occurs in stable-diffusion) |
| 6496 | // however these cases need to alloc more memory which may fail in some devices (Intel Arc770, etc.) |
| 6497 | // these cases are verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend) |
| 6498 | // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true)); |
| 6499 | // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true)); |
| 6500 | |
| 6501 | test_cases.emplace_back(args: new test_conv_2d_dw({17, 34, 9, 1}, {3, 3, 1, 9}, 1, 0, 1, false)); |
| 6502 | test_cases.emplace_back(args: new test_conv_2d_dw({17, 34, 9, 1}, {3, 3, 1, 9}, 1, 0, 1, true)); |
| 6503 | test_cases.emplace_back(args: new test_conv_2d_dw({32, 8, 64, 1}, {3, 3, 1, 64}, 2, 1, 1, false)); |
| 6504 | test_cases.emplace_back(args: new test_conv_2d_dw({32, 8, 64, 1}, {3, 3, 1, 64}, 2, 1, 1, true)); |
| 6505 | |
| 6506 | // CONV_3D |
| 6507 | auto calc_conv_output_size_3d = [](int64_t ins, int64_t ks, int s, int p, int d) -> int64_t { |
| 6508 | return (ins + 2 * p - d * (ks - 1) - 1) / s + 1; |
| 6509 | }; |
| 6510 | |
| 6511 | for (ggml_type kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) { |
| 6512 | for (int N : {1, 2}) { |
| 6513 | for (int IC : {1, 3}) { |
| 6514 | for (int OC : {1, 4}) { |
| 6515 | for (int s0 : {1, 2}) { |
| 6516 | for (int p1 : {0, 1}) { |
| 6517 | for (int d2 : {1, 2}) { |
| 6518 | int64_t IW = 20, IH = 22, ID = 18; |
| 6519 | int64_t KW = 3, KH = 3, KD = 3; |
| 6520 | int s1 = s0, s2 = s0; |
| 6521 | int p0 = p1, p2 = p1; |
| 6522 | int d0 = d2, d1 = d2; |
| 6523 | |
| 6524 | if (calc_conv_output_size_3d(IW, KW, s0, p0, d0) <= 0 || |
| 6525 | calc_conv_output_size_3d(IH, KH, s1, p1, d1) <= 0 || |
| 6526 | calc_conv_output_size_3d(ID, KD, s2, p2, d2) <= 0) { |
| 6527 | continue; |
| 6528 | } |
| 6529 | test_cases.emplace_back(args: new test_conv_3d( |
| 6530 | N, IC, ID, IH, IW, |
| 6531 | OC, KD, KH, KW, |
| 6532 | s0, s1, s2, p0, p1, p2, d0, d1, d2, |
| 6533 | kernel_type)); |
| 6534 | |
| 6535 | // Asymmetric kernel and params |
| 6536 | int64_t asym_KW = 5, asym_KH = 1, asym_KD = 3; |
| 6537 | int asym_s0 = 2, asym_s1 = 1, asym_s2 = 1; |
| 6538 | int asym_p0 = 2, asym_p1 = 0, asym_p2 = 1; |
| 6539 | int asym_d0 = 1, asym_d1 = 1, asym_d2 = 2; |
| 6540 | |
| 6541 | if (calc_conv_output_size_3d(IW, asym_KW, asym_s0, asym_p0, asym_d0) <= 0 || |
| 6542 | calc_conv_output_size_3d(IH, asym_KH, asym_s1, asym_p1, asym_d1) <= 0 || |
| 6543 | calc_conv_output_size_3d(ID, asym_KD, asym_s2, asym_p2, asym_d2) <= 0) { |
| 6544 | continue; |
| 6545 | } |
| 6546 | test_cases.emplace_back(args: new test_conv_3d( |
| 6547 | N, IC, ID, IH, IW, |
| 6548 | OC, asym_KD, asym_KH, asym_KW, |
| 6549 | asym_s0, asym_s1, asym_s2, asym_p0, asym_p1, asym_p2, asym_d0, asym_d1, asym_d2, |
| 6550 | kernel_type)); |
| 6551 | } |
| 6552 | } |
| 6553 | } |
| 6554 | } |
| 6555 | } |
| 6556 | } |
| 6557 | // Case with kernel size 1 |
| 6558 | test_cases.emplace_back(args: new test_conv_3d(1, 4, 8, 8, 8, 8, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, kernel_type)); |
| 6559 | } |
| 6560 | |
| 6561 | for(uint32_t Cout : {1, 9}){ |
| 6562 | for(uint32_t Cin : {1, 7}){ |
| 6563 | for(uint32_t K : {1, 3, 1337}){ |
| 6564 | for(uint32_t L : {1, 2, 13}){ |
| 6565 | for(uint32_t s0: {1, 2, 3}){ |
| 6566 | test_cases.emplace_back(args: new test_conv_transpose_1d({L,Cin,1,1}, {K,Cout,Cin,1}, s0, 0, 1)); |
| 6567 | } |
| 6568 | } |
| 6569 | } |
| 6570 | } |
| 6571 | } |
| 6572 | |
| 6573 | test_cases.emplace_back(args: new test_conv_transpose_1d()); |
| 6574 | test_cases.emplace_back(args: new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 3, 0, 1)); |
| 6575 | test_cases.emplace_back(args: new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 2, 0, 1)); |
| 6576 | test_cases.emplace_back(args: new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 1, 0, 1)); |
| 6577 | test_cases.emplace_back(args: new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 2, 0, 1)); |
| 6578 | test_cases.emplace_back(args: new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 1, 0, 1)); |
| 6579 | test_cases.emplace_back(args: new test_conv_transpose_1d({3,2,1,1}, {3,1,2,1}, 1, 0, 1)); |
| 6580 | test_cases.emplace_back(args: new test_conv_transpose_1d({2,1,1,1}, {3,1,1,1}, 1, 0, 1)); |
| 6581 | |
| 6582 | test_cases.emplace_back(args: new test_conv_transpose_2d({3, 2, 3, 1}, {2, 2, 1, 3}, 1)); |
| 6583 | test_cases.emplace_back(args: new test_conv_transpose_2d({10, 10, 9, 1}, {3, 3, 1, 9}, 2)); |
| 6584 | |
| 6585 | test_cases.emplace_back(args: new test_count_equal(GGML_TYPE_F32, {4, 500, 1, 1})); |
| 6586 | test_cases.emplace_back(args: new test_count_equal(GGML_TYPE_F32, {4, 5000, 1, 1})); |
| 6587 | |
| 6588 | test_cases.emplace_back(args: new test_argmax(GGML_TYPE_F32, {32, 1, 1, 1})); |
| 6589 | test_cases.emplace_back(args: new test_argmax(GGML_TYPE_F32, {32, 513, 1, 1})); |
| 6590 | test_cases.emplace_back(args: new test_argmax(GGML_TYPE_F32, {100, 10, 1, 1})); |
| 6591 | test_cases.emplace_back(args: new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1})); |
| 6592 | test_cases.emplace_back(args: new test_argmax(GGML_TYPE_F32, {1024, 12, 1, 1})); |
| 6593 | test_cases.emplace_back(args: new test_argmax(GGML_TYPE_F32, {2000, 10, 1, 1})); |
| 6594 | test_cases.emplace_back(args: new test_argmax(GGML_TYPE_F32, {5438, 3, 1, 1})); |
| 6595 | |
| 6596 | for (int ne3 : {1, 3}) { // CUDA backward pass only supports ne3 == 1 |
| 6597 | test_cases.emplace_back(args: new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 1})); |
| 6598 | test_cases.emplace_back(args: new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {2, 1, 1, 1})); |
| 6599 | test_cases.emplace_back(args: new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 2, 1, 1})); |
| 6600 | test_cases.emplace_back(args: new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 2, 1})); |
| 6601 | test_cases.emplace_back(args: new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 2})); |
| 6602 | test_cases.emplace_back(args: new test_repeat(GGML_TYPE_I32, {10, 5, 4, ne3}, {2, 1, 1, 1})); |
| 6603 | test_cases.emplace_back(args: new test_repeat(GGML_TYPE_I16, {10, 5, 4, ne3}, {1, 1, 1, 2})); |
| 6604 | } |
| 6605 | |
| 6606 | for (bool view : {false, true}) { |
| 6607 | test_cases.emplace_back(args: new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 1}, view)); |
| 6608 | test_cases.emplace_back(args: new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {2, 1, 1, 1}, view)); |
| 6609 | test_cases.emplace_back(args: new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 2, 1, 1}, view)); |
| 6610 | test_cases.emplace_back(args: new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 2, 1}, view)); |
| 6611 | test_cases.emplace_back(args: new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 2}, view)); |
| 6612 | } |
| 6613 | |
| 6614 | test_cases.emplace_back(args: new test_dup(GGML_TYPE_F32)); |
| 6615 | test_cases.emplace_back(args: new test_dup(GGML_TYPE_F16)); |
| 6616 | test_cases.emplace_back(args: new test_dup(GGML_TYPE_I32)); |
| 6617 | test_cases.emplace_back(args: new test_dup(GGML_TYPE_I16)); |
| 6618 | test_cases.emplace_back(args: new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {0, 2, 1, 3})); |
| 6619 | test_cases.emplace_back(args: new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {0, 2, 1, 3})); // dup by rows |
| 6620 | test_cases.emplace_back(args: new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {1, 0, 2, 3})); |
| 6621 | test_cases.emplace_back(args: new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {1, 0, 2, 3})); // dup dst not-contiguous |
| 6622 | test_cases.emplace_back(args: new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {0, 2, 1, 3})); |
| 6623 | test_cases.emplace_back(args: new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {1, 2, 0, 3})); |
| 6624 | |
| 6625 | for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) { |
| 6626 | test_cases.emplace_back(args: new test_set(GGML_TYPE_F32, GGML_TYPE_F32, {6, 5, 4, 3}, dim)); |
| 6627 | } |
| 6628 | |
| 6629 | for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) { |
| 6630 | test_cases.emplace_back(args: new test_set(GGML_TYPE_I32, GGML_TYPE_I32, {6, 5, 4, 3}, dim)); |
| 6631 | } |
| 6632 | |
| 6633 | // same-type copy |
| 6634 | for (ggml_type type : all_types) { |
| 6635 | const auto nk = ggml_blck_size(type); |
| 6636 | |
| 6637 | for (int k = 1; k < 4; ++k) { |
| 6638 | test_cases.emplace_back(args: new test_cpy(type, type, {k*nk, 2, 3, 4})); |
| 6639 | test_cases.emplace_back(args: new test_cpy(type, type, {k*nk, 2, 3, 4}, {0, 2, 1, 3})); |
| 6640 | test_cases.emplace_back(args: new test_cpy(type, type, {k*nk, 2, 3, 4}, {0, 3, 1, 2}, {0, 2, 1, 3})); |
| 6641 | } |
| 6642 | } |
| 6643 | |
| 6644 | for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_F32}) { |
| 6645 | for (ggml_type type_dst : all_types) { |
| 6646 | test_cases.emplace_back(args: new test_cpy(type_src, type_dst, {256, 4, 4, 4})); |
| 6647 | test_cases.emplace_back(args: new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows |
| 6648 | } |
| 6649 | } |
| 6650 | for (ggml_type type_src : all_types) { |
| 6651 | for (ggml_type type_dst : {GGML_TYPE_F32}) { |
| 6652 | test_cases.emplace_back(args: new test_cpy(type_src, type_dst, {256, 4, 4, 4})); |
| 6653 | test_cases.emplace_back(args: new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows |
| 6654 | } |
| 6655 | } |
| 6656 | for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) { |
| 6657 | for (ggml_type type_dst : {GGML_TYPE_F16, GGML_TYPE_F32}) { |
| 6658 | test_cases.emplace_back(args: new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {1, 0, 2, 3})); // cpy not-contiguous |
| 6659 | } |
| 6660 | } |
| 6661 | test_cases.emplace_back(args: new test_cpy(GGML_TYPE_F32, GGML_TYPE_I32, {256, 2, 3, 4})); |
| 6662 | test_cases.emplace_back(args: new test_cpy(GGML_TYPE_F32, GGML_TYPE_I32, {256, 2, 3, 4}, {1, 0, 2, 3})); |
| 6663 | test_cases.emplace_back(args: new test_cpy(GGML_TYPE_I32, GGML_TYPE_F32, {256, 2, 3, 4})); |
| 6664 | test_cases.emplace_back(args: new test_cpy(GGML_TYPE_I32, GGML_TYPE_F32, {256, 2, 3, 4}, {1, 0, 2, 3})); |
| 6665 | test_cases.emplace_back(args: new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {256, 4, 3, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true)); |
| 6666 | test_cases.emplace_back(args: new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {256, 4, 3, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true)); |
| 6667 | test_cases.emplace_back(args: new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {256, 4, 3, 3}, {0, 0, 0, 0}, {0, 0, 0, 0}, true)); |
| 6668 | test_cases.emplace_back(args: new test_cpy(GGML_TYPE_BF16, GGML_TYPE_BF16, {256, 4, 3, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true)); |
| 6669 | test_cases.emplace_back(args: new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {256, 4, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true)); |
| 6670 | test_cases.emplace_back(args: new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {256, 4, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true)); |
| 6671 | test_cases.emplace_back(args: new test_cpy(GGML_TYPE_BF16, GGML_TYPE_BF16, {256, 4, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true)); |
| 6672 | test_cases.emplace_back(args: new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {256, 1, 4, 1}, {1, 2, 0, 3}, {0, 0, 0, 0})); |
| 6673 | |
| 6674 | test_cases.emplace_back(args: new test_cont()); |
| 6675 | test_cases.emplace_back(args: new test_cont(GGML_TYPE_F32, {2, 1, 1 ,1})); |
| 6676 | test_cases.emplace_back(args: new test_cont(GGML_TYPE_F32, {2, 1, 3 ,5})); |
| 6677 | test_cases.emplace_back(args: new test_cont(GGML_TYPE_F32, {2, 3, 5 ,7})); |
| 6678 | test_cases.emplace_back(args: new test_cont(GGML_TYPE_F16, {2, 1, 1 ,1})); |
| 6679 | test_cases.emplace_back(args: new test_cont(GGML_TYPE_F16, {2, 1, 3 ,5})); |
| 6680 | test_cases.emplace_back(args: new test_cont(GGML_TYPE_F16, {2, 3, 5 ,7})); |
| 6681 | test_cases.emplace_back(args: new test_cont(GGML_TYPE_BF16, {2, 1, 1 ,1})); |
| 6682 | test_cases.emplace_back(args: new test_cont(GGML_TYPE_BF16, {2, 1, 3 ,5})); |
| 6683 | test_cases.emplace_back(args: new test_cont(GGML_TYPE_BF16, {2, 3, 5 ,7})); |
| 6684 | |
| 6685 | auto add_test_bin_bcast = [&](ggml_type type, std::array<int64_t, 4> ne, std::array<int, 4> nr) { |
| 6686 | for (auto op : {ggml_add, ggml_sub, ggml_mul, ggml_div}) { |
| 6687 | test_cases.emplace_back(args: new test_bin_bcast(op, type, ne, nr)); |
| 6688 | } |
| 6689 | }; |
| 6690 | for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) { |
| 6691 | add_test_bin_bcast(type, {1, 1, 8, 1}, {1, 1, 1, 1}); |
| 6692 | add_test_bin_bcast(type, {1, 1, 1, 1}, {32, 1, 1, 1}); |
| 6693 | add_test_bin_bcast(type, {1, 1, 320, 320}, {1, 1, 1, 1}); |
| 6694 | add_test_bin_bcast(type, {10, 5, 1, 1}, {1, 1, 1, 1}); |
| 6695 | add_test_bin_bcast(type, {10, 5, 4, 1}, {1, 1, 1, 1}); |
| 6696 | add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 1, 1}); |
| 6697 | add_test_bin_bcast(type, {10, 5, 4, 3}, {2, 1, 1, 1}); |
| 6698 | add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 2, 1, 1}); |
| 6699 | add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 2, 1}); |
| 6700 | add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 1, 2}); |
| 6701 | add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 2, 2}); |
| 6702 | add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 2, 2, 2}); |
| 6703 | add_test_bin_bcast(type, {10, 5, 4, 3}, {2, 2, 2, 2}); |
| 6704 | |
| 6705 | // test case for k_bin_bcast_unravel in CUDA backend |
| 6706 | add_test_bin_bcast(type, {1, 1, 65536, 1}, {256, 1, 1, 1}); |
| 6707 | |
| 6708 | // stable diffusion |
| 6709 | add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 1, 1, 1}); |
| 6710 | add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 16, 16, 1}); |
| 6711 | add_test_bin_bcast(type, {1280, 16, 16, 1}, {1, 1, 1, 1}); |
| 6712 | add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 256, 1, 1}); |
| 6713 | add_test_bin_bcast(type, {1, 1, 1280, 1}, {16, 16, 1, 1}); |
| 6714 | add_test_bin_bcast(type, {16, 16, 1280, 1}, {1, 1, 1, 1}); |
| 6715 | add_test_bin_bcast(type, {1, 1, 1920, 1}, {16, 16, 1, 1}); |
| 6716 | add_test_bin_bcast(type, {1, 1, 2560, 1}, {16, 16, 1, 1}); |
| 6717 | add_test_bin_bcast(type, {1, 1, 1280, 1}, {32, 32, 1, 1}); |
| 6718 | add_test_bin_bcast(type, {1, 1, 1920, 1}, {32, 32, 1, 1}); |
| 6719 | add_test_bin_bcast(type, {1, 1, 640, 1}, {32, 32, 1, 1}); |
| 6720 | add_test_bin_bcast(type, {5120, 1, 1, 1}, {1, 256, 1, 1}); |
| 6721 | add_test_bin_bcast(type, {640, 1, 1, 1}, {1, 1, 1, 1}); |
| 6722 | add_test_bin_bcast(type, {64, 262144, 1, 1}, {1, 1, 1, 1}); |
| 6723 | //add_test_bin_bcast(type, {3, 3, 2560, 1280}, {1, 1, 1, 1}); |
| 6724 | //add_test_bin_bcast(type, {3, 3, 2560, 1280}, {2, 1, 1, 1}); |
| 6725 | } |
| 6726 | |
| 6727 | // single inplace tests, especially important for WebGPU backend since kernels for inplace vs. not are different |
| 6728 | test_cases.emplace_back(args: new test_bin_bcast(ggml_add_inplace, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16)); |
| 6729 | test_cases.emplace_back(args: new test_bin_bcast(ggml_mul_inplace, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16)); |
| 6730 | test_cases.emplace_back(args: new test_bin_bcast(ggml_sub_inplace, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16)); |
| 6731 | test_cases.emplace_back(args: new test_bin_bcast(ggml_div_inplace, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16)); |
| 6732 | |
| 6733 | // fusion |
| 6734 | test_cases.emplace_back(args: new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {2, 1, 1, 1}, 2)); |
| 6735 | test_cases.emplace_back(args: new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 2, 1, 1}, 3)); |
| 6736 | test_cases.emplace_back(args: new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 2, 1}, 4)); |
| 6737 | test_cases.emplace_back(args: new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 2}, 5)); |
| 6738 | test_cases.emplace_back(args: new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 1, 2, 2}, 6)); |
| 6739 | test_cases.emplace_back(args: new test_bin_bcast(ggml_add, GGML_TYPE_F32, {10, 5, 4, 3}, {1, 2, 2, 2}, 7)); |
| 6740 | test_cases.emplace_back(args: new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {2, 2, 2, 2}, 8)); |
| 6741 | test_cases.emplace_back(args: new test_bin_bcast(ggml_add, GGML_TYPE_F32, {16, 5, 4, 3}, {1, 1, 1, 1}, 16)); |
| 6742 | |
| 6743 | test_cases.emplace_back(args: new test_add1()); |
| 6744 | test_cases.emplace_back(args: new test_scale()); |
| 6745 | test_cases.emplace_back(args: new test_scale(GGML_TYPE_F32, {10, 10, 10, 10}, 2.0f, 1.0f)); |
| 6746 | test_cases.emplace_back(args: new test_scale(GGML_TYPE_F32, {10, 10, 10, 10}, 2.0f, 1.0f, true)); // inplace test |
| 6747 | test_cases.emplace_back(args: new test_scale(GGML_TYPE_F32, {100, 10, 10, 10}, 2.0f, 1.0f)); |
| 6748 | test_cases.emplace_back(args: new test_softcap(GGML_TYPE_F32, {10, 10, 10, 10}, 50.0f)); |
| 6749 | test_cases.emplace_back(args: new test_silu_back()); |
| 6750 | |
| 6751 | for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f}) { |
| 6752 | for (bool v : {false, true}) { |
| 6753 | test_cases.emplace_back(args: new test_norm (GGML_TYPE_F32, {64, 5, 4, 3}, v, eps)); |
| 6754 | test_cases.emplace_back(args: new test_rms_norm(GGML_TYPE_F32, {64, 5, 4, 3}, v, eps)); |
| 6755 | } |
| 6756 | test_cases.emplace_back(args: new test_rms_norm_back(GGML_TYPE_F32, {64, 5, 4, 3}, eps)); |
| 6757 | test_cases.emplace_back(args: new test_l2_norm (GGML_TYPE_F32, {64, 5, 4, 3}, eps)); |
| 6758 | } |
| 6759 | |
| 6760 | // in-place tests |
| 6761 | test_cases.emplace_back(args: new test_rms_norm(GGML_TYPE_F32, {64, 5, 4, 3}, false, 1e-6f, true)); |
| 6762 | |
| 6763 | for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f, 1.0f}) { |
| 6764 | test_cases.emplace_back(args: new test_rms_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, false)); |
| 6765 | test_cases.emplace_back(args: new test_rms_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, true)); |
| 6766 | test_cases.emplace_back(args: new test_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, false)); |
| 6767 | test_cases.emplace_back(args: new test_norm_mul_add(GGML_TYPE_F32, {64, 5, 4, 3}, eps, true)); |
| 6768 | } |
| 6769 | for (uint32_t n : {1, 511, 1025, 8192, 33*512}) { |
| 6770 | for (bool multi_add : {false, true}) { |
| 6771 | test_cases.emplace_back(args: new test_rms_norm_mul_add(GGML_TYPE_F32, {n, 1, 1, 1}, 1e-6f, false, multi_add)); |
| 6772 | } |
| 6773 | } |
| 6774 | |
| 6775 | for (auto multi_add : {false, true}) { |
| 6776 | for (auto set_rows : {false, true}) { |
| 6777 | for (auto rope : {GGML_ROPE_TYPE_NORMAL, GGML_ROPE_TYPE_NEOX}) { |
| 6778 | test_cases.emplace_back(args: new test_rms_norm_mul_rope({768, 1, 1, 1}, 1e-6f, multi_add, set_rows, rope)); |
| 6779 | test_cases.emplace_back(args: new test_rms_norm_mul_rope({768, 3, 1, 1}, 1e-6f, multi_add, set_rows, rope)); |
| 6780 | test_cases.emplace_back(args: new test_rms_norm_mul_rope({768, 3, 5, 1}, 1e-6f, multi_add, set_rows, rope)); |
| 6781 | test_cases.emplace_back(args: new test_rms_norm_mul_rope({128, 32, 2, 1}, 1e-6f, multi_add, set_rows, rope)); |
| 6782 | test_cases.emplace_back(args: new test_rms_norm_mul_rope({128, 4, 2, 1}, 1e-6f, multi_add, set_rows, rope)); |
| 6783 | test_cases.emplace_back(args: new test_rms_norm_mul_rope({128, 32, 50, 1}, 1e-6f, multi_add, set_rows, rope)); |
| 6784 | test_cases.emplace_back(args: new test_rms_norm_mul_rope({128, 4, 50, 1}, 1e-6f, multi_add, set_rows, rope)); |
| 6785 | test_cases.emplace_back(args: new test_rms_norm_mul_rope({8192, 2, 2, 1}, 1e-6f, multi_add, set_rows, rope)); |
| 6786 | test_cases.emplace_back(args: new test_rms_norm_mul_rope({8192, 2, 2, 1}, 1e-6f, multi_add, set_rows, rope)); |
| 6787 | } |
| 6788 | } |
| 6789 | } |
| 6790 | |
| 6791 | test_cases.emplace_back(args: new test_l2_norm(GGML_TYPE_F32, {64, 5, 4, 3}, 1e-12f)); |
| 6792 | |
| 6793 | for (int64_t d_conv : {3, 4}) { |
| 6794 | for (int64_t d_inner: {1024, 1536, 2048}) { |
| 6795 | test_cases.emplace_back(args: new test_ssm_conv(GGML_TYPE_F32, {4, d_inner, 1, 1}, {d_conv, d_inner, 1, 1})); |
| 6796 | test_cases.emplace_back(args: new test_ssm_conv(GGML_TYPE_F32, {8, d_inner, 1, 1}, {d_conv, d_inner, 1, 1})); |
| 6797 | test_cases.emplace_back(args: new test_ssm_conv(GGML_TYPE_F32, {4, d_inner, 4, 1}, {d_conv, d_inner, 1, 1})); |
| 6798 | } |
| 6799 | } |
| 6800 | |
| 6801 | test_cases.emplace_back(args: new test_ssm_scan(GGML_TYPE_F32, 16, 1, 1024, 1, 32, 4)); // Mamba-1 |
| 6802 | test_cases.emplace_back(args: new test_ssm_scan(GGML_TYPE_F32, 128, 64, 16, 2, 32, 4)); // Mamba-2 |
| 6803 | test_cases.emplace_back(args: new test_ssm_scan(GGML_TYPE_F32, 256, 64, 8, 2, 32, 4)); // Falcon-H1 |
| 6804 | |
| 6805 | test_cases.emplace_back(args: new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 1, 1)); |
| 6806 | test_cases.emplace_back(args: new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 1)); |
| 6807 | test_cases.emplace_back(args: new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 4)); |
| 6808 | test_cases.emplace_back(args: new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 128, 4)); |
| 6809 | |
| 6810 | test_cases.emplace_back(args: new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 1, 1)); |
| 6811 | test_cases.emplace_back(args: new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 32, 1)); |
| 6812 | test_cases.emplace_back(args: new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 32, 4)); |
| 6813 | test_cases.emplace_back(args: new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 128, 4)); |
| 6814 | |
| 6815 | test_cases.emplace_back(args: new test_gla(GGML_TYPE_F32, 32, 64, 1, 1)); |
| 6816 | test_cases.emplace_back(args: new test_gla(GGML_TYPE_F32, 32, 64, 32, 1)); |
| 6817 | test_cases.emplace_back(args: new test_gla(GGML_TYPE_F32, 32, 64, 32, 4)); |
| 6818 | test_cases.emplace_back(args: new test_gla(GGML_TYPE_F32, 32, 64, 128, 4)); |
| 6819 | |
| 6820 | #if 0 |
| 6821 | // > 4GB A matrix. Too slow to be enabled by default. |
| 6822 | test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 900000, 3, 2592, {1, 1}, {1, 1})); |
| 6823 | test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 1700000, 96, 2592, {1, 1}, {1, 1})); |
| 6824 | test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 1700000, 3, 2592, {1, 1}, {1, 1})); |
| 6825 | test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 1700000, 1, 2592, {1, 1}, {1, 1})); |
| 6826 | #endif |
| 6827 | |
| 6828 | for (ggml_type type_a : all_types) { |
| 6829 | for (int i = 1; i < 10; ++i) { |
| 6830 | test_cases.emplace_back(args: new test_mul_mat(type_a, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1})); |
| 6831 | } |
| 6832 | } |
| 6833 | |
| 6834 | #if 0 |
| 6835 | { |
| 6836 | // Test paths in OpenCL |
| 6837 | std::vector<int> ns = {32, 64, 128, 256, 512, 1024, 4096}; |
| 6838 | std::vector<int> ks = {896, 1536, 4096}; |
| 6839 | for (auto n : ns) { |
| 6840 | for (auto k : ks) { |
| 6841 | test_cases.emplace_back(new test_mul_mat(GGML_TYPE_Q8_0, GGML_TYPE_F32, 1024, n, k, {1, 1}, {1, 1})); |
| 6842 | } |
| 6843 | } |
| 6844 | } |
| 6845 | #endif |
| 6846 | |
| 6847 | #if 1 |
| 6848 | for (ggml_type type_a : base_types) { |
| 6849 | for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) { |
| 6850 | std::vector<int> ks = { 256 }; |
| 6851 | if (ggml_blck_size(type: type_a) == 1) { |
| 6852 | ks.push_back(x: 4); |
| 6853 | } |
| 6854 | for (auto k : ks) { |
| 6855 | // test cases without permutation |
| 6856 | test_cases.emplace_back(args: new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {1, 1})); |
| 6857 | test_cases.emplace_back(args: new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {2, 1})); |
| 6858 | test_cases.emplace_back(args: new test_mul_mat(type_a, type_b, 16, 1, k, {1, 1}, {1, 2})); |
| 6859 | test_cases.emplace_back(args: new test_mul_mat(type_a, type_b, 16, 1, k, {3, 1}, {1, 1})); |
| 6860 | test_cases.emplace_back(args: new test_mul_mat(type_a, type_b, 16, 1, k, {3, 1}, {2, 1})); |
| 6861 | test_cases.emplace_back(args: new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {1, 1})); |
| 6862 | test_cases.emplace_back(args: new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {2, 1})); |
| 6863 | test_cases.emplace_back(args: new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {1, 2})); |
| 6864 | test_cases.emplace_back(args: new test_mul_mat(type_a, type_b, 16, 1, k, {3, 2}, {2, 2})); |
| 6865 | |
| 6866 | test_cases.emplace_back(args: new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {1, 1})); |
| 6867 | test_cases.emplace_back(args: new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {2, 1})); |
| 6868 | test_cases.emplace_back(args: new test_mul_mat(type_a, type_b, 16, 16, k, {1, 1}, {1, 2})); |
| 6869 | test_cases.emplace_back(args: new test_mul_mat(type_a, type_b, 16, 16, k, {3, 1}, {1, 1})); |
| 6870 | test_cases.emplace_back(args: new test_mul_mat(type_a, type_b, 16, 16, k, {3, 1}, {2, 1})); |
| 6871 | test_cases.emplace_back(args: new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {1, 1})); |
| 6872 | test_cases.emplace_back(args: new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {2, 1})); |
| 6873 | test_cases.emplace_back(args: new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {1, 2})); |
| 6874 | test_cases.emplace_back(args: new test_mul_mat(type_a, type_b, 16, 16, k, {3, 2}, {2, 2})); |
| 6875 | |
| 6876 | // test cases with permutation |
| 6877 | test_cases.emplace_back(args: new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 2, 1, 3})); |
| 6878 | test_cases.emplace_back(args: new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 1, 3, 2})); |
| 6879 | test_cases.emplace_back(args: new test_mul_mat(type_a, type_b, 16, 1, k, {2, 3}, {1, 1}, {0, 3, 2, 1})); |
| 6880 | |
| 6881 | test_cases.emplace_back(args: new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 2, 1, 3})); |
| 6882 | test_cases.emplace_back(args: new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 1, 3, 2})); |
| 6883 | test_cases.emplace_back(args: new test_mul_mat(type_a, type_b, 16, 8, k, {2, 3}, {1, 1}, {0, 3, 2, 1})); |
| 6884 | |
| 6885 | test_cases.emplace_back(args: new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 2, 1, 3})); |
| 6886 | test_cases.emplace_back(args: new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 1, 3, 2})); |
| 6887 | test_cases.emplace_back(args: new test_mul_mat(type_a, type_b, 16, 16, k, {2, 3}, {1, 1}, {0, 3, 2, 1})); |
| 6888 | } |
| 6889 | |
| 6890 | // test cases with large ne00/ne10 to cover stream-k fixup |
| 6891 | test_cases.emplace_back(args: new test_mul_mat(type_a, type_b, 16, 1, 1024, {3, 2}, {1, 1})); |
| 6892 | test_cases.emplace_back(args: new test_mul_mat(type_a, type_b, 16, 8, 1024, {3, 2}, {1, 1})); |
| 6893 | test_cases.emplace_back(args: new test_mul_mat(type_a, type_b, 16, 16, 1024, {3, 2}, {1, 1})); |
| 6894 | |
| 6895 | // test cases with large batch size |
| 6896 | test_cases.emplace_back(args: new test_mul_mat(type_a, type_b, 16, 8, 256, {1536, 1}, {1, 1})); |
| 6897 | } |
| 6898 | } |
| 6899 | for (ggml_type type_a : other_types) { |
| 6900 | for (ggml_type type_b : {GGML_TYPE_F32}) { |
| 6901 | if (ggml_blck_size(type: type_a) != 256) { |
| 6902 | test_cases.emplace_back(args: new test_mul_mat(type_a, type_b, 16, 1, ggml_blck_size(type: type_a), {1, 1}, {1, 1})); |
| 6903 | } |
| 6904 | test_cases.emplace_back(args: new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 1})); |
| 6905 | } |
| 6906 | } |
| 6907 | #else |
| 6908 | // m = a rows |
| 6909 | // n = b rows |
| 6910 | // k = cols |
| 6911 | std::uniform_int_distribution<> dist_m(1, 128); |
| 6912 | std::uniform_int_distribution<> dist_n(16, 128); |
| 6913 | std::uniform_int_distribution<> dist_k(1, 16); |
| 6914 | for (int i = 0; i < 1000; i++) { |
| 6915 | for (ggml_type type_a : all_types) { |
| 6916 | for (ggml_type type_b : {GGML_TYPE_F32}) { |
| 6917 | int m = dist_m(rng); |
| 6918 | int n = dist_n(rng); |
| 6919 | int k = dist_k(rng) * ggml_blck_size(type_a); |
| 6920 | test_cases.emplace_back(new test_mul_mat(type_a, type_b, m, n, k, { 1, 1}, {1, 1})); |
| 6921 | } |
| 6922 | } |
| 6923 | } |
| 6924 | #endif |
| 6925 | |
| 6926 | test_cases.emplace_back(args: new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 128, { 8, 1}, {1, 1})); |
| 6927 | test_cases.emplace_back(args: new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 128, { 8, 1}, {4, 1})); |
| 6928 | test_cases.emplace_back(args: new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 64, { 8, 1}, {4, 1})); |
| 6929 | test_cases.emplace_back(args: new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 64, { 8, 1}, {4, 1})); |
| 6930 | test_cases.emplace_back(args: new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 45, 128, { 8, 1}, {4, 1})); |
| 6931 | test_cases.emplace_back(args: new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 45, 64, { 8, 1}, {4, 1})); |
| 6932 | test_cases.emplace_back(args: new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 1056, 1, 193, {1, 1}, {4, 1}, {0, 2, 1, 3})); |
| 6933 | test_cases.emplace_back(args: new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 1056, 1, 67, {1, 1}, {4, 1}, {0, 2, 1, 3})); |
| 6934 | test_cases.emplace_back(args: new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 16, 32, 32, { 1, 1}, {1, 1}, {0, 1, 2, 3}, 64, 3)); |
| 6935 | test_cases.emplace_back(args: new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 64, 77, 77, {12,1}, {1,1})); |
| 6936 | |
| 6937 | #if 0 |
| 6938 | // test the mat-mat path for Metal |
| 6939 | for (int k = 1; k < 512; ++k) { |
| 6940 | test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 127, k, {12,1}, {1,1})); |
| 6941 | test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 64, 127, k, {12,1}, {1,1})); |
| 6942 | test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 77, k, {12,1}, {1,1})); |
| 6943 | test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 64, 77, k, {12,1}, {1,1})); |
| 6944 | test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 128, k, {12,1}, {1,1})); |
| 6945 | test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F32, GGML_TYPE_F32, 64, 128, k, {12,1}, {1,1})); |
| 6946 | test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, false, 50, 200, k)); |
| 6947 | test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, true, 50, 200, k)); |
| 6948 | test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F32, GGML_TYPE_F32, 16, 16, false, 50, 200, k)); |
| 6949 | test_cases.emplace_back(new test_mul_mat_id(GGML_TYPE_F32, GGML_TYPE_F32, 16, 16, true, 50, 200, k)); |
| 6950 | } |
| 6951 | #endif |
| 6952 | |
| 6953 | for (auto bs2 : {1,3}) { |
| 6954 | for (auto bs : {1,2,4,8}) { |
| 6955 | for (auto nr : {1,4}) { |
| 6956 | for (uint32_t m = 0; m < 2; ++m) { |
| 6957 | for (uint32_t k = 0; k < 2; ++k) { |
| 6958 | for (ggml_type type: {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_F32}) { |
| 6959 | test_cases.emplace_back(args: new test_mul_mat(type, GGML_TYPE_F32, 1056 + m, 1, 128 + k, {bs, bs2}, {nr, 1}, {0, 2, 1, 3})); |
| 6960 | test_cases.emplace_back(args: new test_mul_mat(type, GGML_TYPE_F32, 128 + m, 1, 1056 + k, {bs, bs2}, {nr, 1}, {0, 1, 2, 3}, 2*1056 + k)); |
| 6961 | } |
| 6962 | } |
| 6963 | } |
| 6964 | } |
| 6965 | } |
| 6966 | } |
| 6967 | |
| 6968 | // sycl backend will limit task global_range < MAX_INT |
| 6969 | // test case for f16-type-convert-to-fp32 kernel with large k under fp32 compute dtype (occurs in stable-diffusion) |
| 6970 | // however this case needs to alloc more memory which may fail in some devices (Intel Arc770, etc.) |
| 6971 | // this case is verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend) |
| 6972 | // test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 512, 262144, 9216, {1, 1}, {1, 1})); |
| 6973 | |
| 6974 | // test large experts*tokens |
| 6975 | for (bool b : {false, true}) { |
| 6976 | test_cases.emplace_back(args: new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, b, 32, 1024, 16)); |
| 6977 | test_cases.emplace_back(args: new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 2, 2, b, 32, 8192, 64)); |
| 6978 | test_cases.emplace_back(args: new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, b, 50, 200, 64)); |
| 6979 | } |
| 6980 | |
| 6981 | test_cases.emplace_back(args: new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 1, 1, false, 8, 16, 1)); |
| 6982 | test_cases.emplace_back(args: new test_mul_mat_id(GGML_TYPE_F16, GGML_TYPE_F32, 16, 16, false, 32, 32, 32, 3)); |
| 6983 | |
| 6984 | // gpt-oss issue with Vulkan mmq_id |
| 6985 | test_cases.emplace_back(args: new test_mul_mat_id(GGML_TYPE_MXFP4, GGML_TYPE_F32, 32, 2, false, 2880, 32, 2880)); |
| 6986 | |
| 6987 | for (ggml_type type_a : base_types) { |
| 6988 | for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) { |
| 6989 | for (int n_mats : {4, 8}) { |
| 6990 | for (int n_used : {1, 2, 4}) { |
| 6991 | for (bool b : {false, true}) { |
| 6992 | for (int n : {1, 4, 5, 17, 32, 129}) { |
| 6993 | int m = 512; |
| 6994 | int k = 256; |
| 6995 | test_cases.emplace_back(args: new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k)); |
| 6996 | } |
| 6997 | } |
| 6998 | } |
| 6999 | } |
| 7000 | } |
| 7001 | } |
| 7002 | |
| 7003 | for (ggml_type type_a : other_types) { |
| 7004 | for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) { |
| 7005 | for (int n_mats : {4}) { |
| 7006 | for (int n_used : {2}) { |
| 7007 | for (bool b : {false}) { |
| 7008 | for (int n : {1, 32}) { |
| 7009 | int m = 512; |
| 7010 | int k = 256; |
| 7011 | test_cases.emplace_back(args: new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k)); |
| 7012 | } |
| 7013 | } |
| 7014 | } |
| 7015 | } |
| 7016 | } |
| 7017 | } |
| 7018 | |
| 7019 | for (ggml_type type_a : base_types) { |
| 7020 | for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) { |
| 7021 | for (int n : {1, 16}) { |
| 7022 | for (int k : {1, 16}) { |
| 7023 | for (int bs2 : {1, 3}) { |
| 7024 | for (int bs3 : {1, 3}) { |
| 7025 | for (int nr2 : {1, 2}) { |
| 7026 | for (int nr3 : {1, 2}) { |
| 7027 | test_cases.emplace_back(args: new test_out_prod(type_a, type_b, 256, n, k, {bs2, bs3}, {nr2, nr3})); |
| 7028 | } |
| 7029 | } |
| 7030 | } |
| 7031 | } |
| 7032 | } |
| 7033 | } |
| 7034 | } |
| 7035 | } |
| 7036 | |
| 7037 | // add_id |
| 7038 | for (ggml_type type_a : {GGML_TYPE_F32}) { |
| 7039 | for (ggml_type type_b : {GGML_TYPE_F32}) { |
| 7040 | for (int n_mats : {4, 8}) { |
| 7041 | for (int n_used : {1, 2, 4}) { |
| 7042 | for (int n_embd : {32, 129}) { |
| 7043 | for (int n_token : {1, 32, 129}) { |
| 7044 | test_cases.emplace_back(args: new test_add_id(type_a, type_b, n_embd, n_mats, n_used, n_token)); |
| 7045 | } |
| 7046 | } |
| 7047 | } |
| 7048 | } |
| 7049 | } |
| 7050 | } |
| 7051 | |
| 7052 | for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) { |
| 7053 | test_cases.emplace_back(args: new test_sqr (type)); |
| 7054 | test_cases.emplace_back(args: new test_sqrt (type)); |
| 7055 | test_cases.emplace_back(args: new test_log (type)); |
| 7056 | test_cases.emplace_back(args: new test_sin (type)); |
| 7057 | test_cases.emplace_back(args: new test_cos (type)); |
| 7058 | test_cases.emplace_back(args: new test_clamp (type)); |
| 7059 | test_cases.emplace_back(args: new test_leaky_relu(type)); |
| 7060 | test_cases.emplace_back(args: new test_floor (type)); |
| 7061 | test_cases.emplace_back(args: new test_ceil (type)); |
| 7062 | test_cases.emplace_back(args: new test_round (type)); |
| 7063 | test_cases.emplace_back(args: new test_trunc (type)); |
| 7064 | test_cases.emplace_back(args: new test_sqr (type, {7, 1, 5, 3})); |
| 7065 | test_cases.emplace_back(args: new test_sqrt (type, {7, 1, 5, 3})); |
| 7066 | test_cases.emplace_back(args: new test_log (type, {7, 1, 5, 3})); |
| 7067 | test_cases.emplace_back(args: new test_sin (type, {7, 1, 5, 3})); |
| 7068 | test_cases.emplace_back(args: new test_cos (type, {7, 1, 5, 3})); |
| 7069 | test_cases.emplace_back(args: new test_clamp (type, {7, 1, 5, 3})); |
| 7070 | test_cases.emplace_back(args: new test_leaky_relu(type, {7, 1, 5, 3})); |
| 7071 | test_cases.emplace_back(args: new test_floor (type, {7, 1, 5, 3})); |
| 7072 | test_cases.emplace_back(args: new test_ceil (type, {7, 1, 5, 3})); |
| 7073 | test_cases.emplace_back(args: new test_round (type, {7, 1, 5, 3})); |
| 7074 | test_cases.emplace_back(args: new test_trunc (type, {7, 1, 5, 3})); |
| 7075 | } |
| 7076 | |
| 7077 | test_cases.emplace_back(args: new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 1, 1}, 5)); |
| 7078 | test_cases.emplace_back(args: new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 1}, 5)); |
| 7079 | test_cases.emplace_back(args: new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 2}, 5)); |
| 7080 | |
| 7081 | #if 0 |
| 7082 | std::uniform_int_distribution<> dist_ne1(1, 50); |
| 7083 | int exponent = 1; |
| 7084 | while (exponent < (1 << 17)) { |
| 7085 | std::uniform_int_distribution<> dist_ne0(exponent, 2*exponent); |
| 7086 | |
| 7087 | for (int n = 0; n < 10; ++n) { |
| 7088 | int64_t ne0 = dist_ne0(rng); |
| 7089 | int64_t ne1 = dist_ne1(rng); |
| 7090 | test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, GGML_TYPE_F32, {ne0, ne1, 1, 1}, n/2 == 0, 0.1f, ne0 < 1000 ? 4.0f : 0.0f)); |
| 7091 | } |
| 7092 | |
| 7093 | exponent <<= 1; |
| 7094 | } |
| 7095 | #endif |
| 7096 | for (bool mask : {false, true}) { |
| 7097 | for (bool sinks : {false, true}) { |
| 7098 | for (float max_bias : {0.0f, 8.0f}) { |
| 7099 | if (!mask && max_bias > 0.0f) continue; |
| 7100 | for (float scale : {1.0f, 0.1f}) { |
| 7101 | for (int64_t ne0 : {16, 1024}) { |
| 7102 | for (int64_t ne1 : {16, 1024}) { |
| 7103 | if (mask) { |
| 7104 | for (ggml_type m_prec : {GGML_TYPE_F32, GGML_TYPE_F16}) { |
| 7105 | test_cases.emplace_back(args: new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, sinks, m_prec, {1, 1}, scale, max_bias)); |
| 7106 | test_cases.emplace_back(args: new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, sinks, m_prec, {1, 1}, scale, max_bias)); |
| 7107 | |
| 7108 | if (ne0 <= 32 && ne1 <= 32) { |
| 7109 | test_cases.emplace_back(args: new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 3}, mask, sinks, m_prec, {3, 1}, scale, max_bias)); |
| 7110 | test_cases.emplace_back(args: new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, sinks, m_prec, {2, 3}, scale, max_bias)); |
| 7111 | } |
| 7112 | } |
| 7113 | } else { |
| 7114 | /* The precision of mask here doesn't matter as boolean mask is false */ |
| 7115 | test_cases.emplace_back(args: new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, sinks, GGML_TYPE_F32, {1, 1}, scale, max_bias)); |
| 7116 | test_cases.emplace_back(args: new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, sinks, GGML_TYPE_F32, {1, 1}, scale, max_bias)); |
| 7117 | } |
| 7118 | } |
| 7119 | } |
| 7120 | } |
| 7121 | } |
| 7122 | // inplace tests |
| 7123 | test_cases.emplace_back(args: new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, mask, sinks, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f, true)); |
| 7124 | test_cases.emplace_back(args: new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, mask, sinks, GGML_TYPE_F16, {1, 1}, 0.1f, 0.0f, true)); |
| 7125 | } |
| 7126 | } |
| 7127 | test_cases.emplace_back(args: new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f)); |
| 7128 | test_cases.emplace_back(args: new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, false, GGML_TYPE_F16, {1, 1}, 0.1f, 0.0f)); |
| 7129 | test_cases.emplace_back(args: new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f)); |
| 7130 | test_cases.emplace_back(args: new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, true, GGML_TYPE_F32, {1, 1}, 0.1f, 0.0f)); |
| 7131 | test_cases.emplace_back(args: new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, false, GGML_TYPE_F16, {1, 1}, 0.1f, 0.0f)); |
| 7132 | test_cases.emplace_back(args: new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, true, GGML_TYPE_F32, {1, 1}, 0.1f, 8.0f)); |
| 7133 | test_cases.emplace_back(args: new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, true, GGML_TYPE_F16, {1, 1}, 0.1f, 8.0f)); |
| 7134 | |
| 7135 | for (float max_bias : {0.0f, 8.0f}) { |
| 7136 | for (float scale : {1.0f, 0.1f}) { |
| 7137 | for (int64_t ne0 : {16, 1024}) { |
| 7138 | for (int64_t ne1 : {16, 1024}) { |
| 7139 | test_cases.emplace_back(args: new test_soft_max_back(GGML_TYPE_F32, {ne0, ne1, 1, 1}, scale, max_bias)); |
| 7140 | test_cases.emplace_back(args: new test_soft_max_back(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, scale, max_bias)); |
| 7141 | test_cases.emplace_back(args: new test_soft_max_back(GGML_TYPE_F32, {ne0, ne1, 2, 3}, scale, max_bias)); |
| 7142 | } |
| 7143 | } |
| 7144 | } |
| 7145 | } |
| 7146 | |
| 7147 | for (bool fw : {true, false}) { // fw == forward |
| 7148 | bool all = true; |
| 7149 | |
| 7150 | for (float fs : { 1.0f, 1.4245f }) { |
| 7151 | for (float ef : { 0.0f, 0.7465f }) { |
| 7152 | for (float af : { 1.0f, 1.4245f }) { |
| 7153 | for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) { |
| 7154 | for (bool ff : {false, true}) { // freq_factors |
| 7155 | for (float v : { 0, 1 }) { |
| 7156 | test_cases.emplace_back(args: new test_rope(type, {128, 32, 2, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw)); // llama 7B |
| 7157 | |
| 7158 | if (all) { |
| 7159 | test_cases.emplace_back(args: new test_rope(type, {128, 40, 2, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw)); // llama 13B |
| 7160 | test_cases.emplace_back(args: new test_rope(type, {128, 52, 2, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw)); // llama 30B |
| 7161 | test_cases.emplace_back(args: new test_rope(type, {128, 64, 2, 1}, 128, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw)); // llama 65B |
| 7162 | } |
| 7163 | |
| 7164 | if (all) { |
| 7165 | test_cases.emplace_back(args: new test_rope(type, { 64, 1, 2, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B) |
| 7166 | test_cases.emplace_back(args: new test_rope(type, { 64, 71, 2, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B) |
| 7167 | test_cases.emplace_back(args: new test_rope(type, { 64, 8, 2, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B) |
| 7168 | |
| 7169 | test_cases.emplace_back(args: new test_rope(type, { 80, 32, 2, 1}, 20, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw)); |
| 7170 | test_cases.emplace_back(args: new test_rope(type, { 80, 32, 2, 1}, 32, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw)); |
| 7171 | test_cases.emplace_back(args: new test_rope(type, { 80, 32, 4, 1}, 32, GGML_ROPE_TYPE_NORMAL, 512, fs, ef, af, ff, v, fw)); |
| 7172 | |
| 7173 | test_cases.emplace_back(args: new test_rope(type, { 80, 32, 2, 1}, 20, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (stablelm) |
| 7174 | test_cases.emplace_back(args: new test_rope(type, { 80, 32, 2, 1}, 32, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (phi-2) |
| 7175 | test_cases.emplace_back(args: new test_rope(type, { 80, 32, 4, 1}, 32, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (phi-2) |
| 7176 | } |
| 7177 | |
| 7178 | if (all) { |
| 7179 | test_cases.emplace_back(args: new test_rope(type, {128, 12, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 2B) |
| 7180 | test_cases.emplace_back(args: new test_rope(type, {128, 28, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 7B) |
| 7181 | test_cases.emplace_back(args: new test_rope(type, {128, 12, 2, 1}, 20, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); |
| 7182 | test_cases.emplace_back(args: new test_rope(type, {128, 28, 2, 1}, 32, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); |
| 7183 | test_cases.emplace_back(args: new test_rope(type, {128, 12, 2, 1}, 128, GGML_ROPE_TYPE_IMROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,imrope (qwen3vl 2B) |
| 7184 | test_cases.emplace_back(args: new test_rope(type, {128, 28, 2, 1}, 128, GGML_ROPE_TYPE_IMROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,imrope (qwen3vl 7B) |
| 7185 | test_cases.emplace_back(args: new test_rope(type, {128, 12, 2, 1}, 20, GGML_ROPE_TYPE_IMROPE, 512, fs, ef, af, ff, v, fw)); |
| 7186 | test_cases.emplace_back(args: new test_rope(type, {128, 28, 2, 1}, 32, GGML_ROPE_TYPE_IMROPE, 512, fs, ef, af, ff, v, fw)); |
| 7187 | test_cases.emplace_back(args: new test_rope(type, { 80, 16, 2, 1}, 80, GGML_ROPE_TYPE_VISION, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl ViT) |
| 7188 | test_cases.emplace_back(args: new test_rope(type, {128, 16, 2, 1}, 128, GGML_ROPE_TYPE_IMROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen3vl) |
| 7189 | } |
| 7190 | |
| 7191 | test_cases.emplace_back(args: new test_rope(type, { 64, 128, 2, 1}, 64, GGML_ROPE_TYPE_NEOX, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B) |
| 7192 | } |
| 7193 | } |
| 7194 | |
| 7195 | all = false; |
| 7196 | } |
| 7197 | } |
| 7198 | } |
| 7199 | } |
| 7200 | } |
| 7201 | |
| 7202 | // single inplace test per type/mode/ff |
| 7203 | for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) { |
| 7204 | for (int mode : {GGML_ROPE_TYPE_NORMAL, GGML_ROPE_TYPE_NEOX, GGML_ROPE_TYPE_MROPE, GGML_ROPE_TYPE_IMROPE, GGML_ROPE_TYPE_VISION}) { |
| 7205 | for (bool ff : {false, true}) { |
| 7206 | test_cases.emplace_back(args: new test_rope(type, {128, 32, 2, 1}, 128, mode, 512, 1.4245f, 0.7465f, 1.4245f, ff, 0, true, true)); |
| 7207 | } |
| 7208 | } |
| 7209 | } |
| 7210 | |
| 7211 | for (int v : { 0, 1, 2, 3 }) { |
| 7212 | for (int dim : { 0, 1, 2, 3, }) { |
| 7213 | test_cases.emplace_back(args: new test_concat(GGML_TYPE_F32, {11, 12, 13, 14}, 7, dim, v)); |
| 7214 | test_cases.emplace_back(args: new test_concat(GGML_TYPE_I32, {11, 12, 13, 14}, 7, dim, v)); |
| 7215 | } |
| 7216 | } |
| 7217 | |
| 7218 | for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) { |
| 7219 | test_cases.emplace_back(args: new test_argsort(GGML_TYPE_F32, {8, 1, 1, 1}, order)); |
| 7220 | test_cases.emplace_back(args: new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order)); |
| 7221 | test_cases.emplace_back(args: new test_argsort(GGML_TYPE_F32, {60, 10, 10, 10}, order)); // qwen |
| 7222 | test_cases.emplace_back(args: new test_argsort(GGML_TYPE_F32, {1024, 1, 1, 1}, order)); |
| 7223 | test_cases.emplace_back(args: new test_argsort(GGML_TYPE_F32, {16384, 1, 1, 1}, order)); // many backends only handle up to 1024 |
| 7224 | test_cases.emplace_back(args: new test_argsort(GGML_TYPE_F32, {2, 8, 8192, 1}, order)); // bailingmoe2 (group selection) |
| 7225 | } |
| 7226 | |
| 7227 | for (ggml_scale_mode mode : {GGML_SCALE_MODE_NEAREST, GGML_SCALE_MODE_BILINEAR}) { |
| 7228 | test_cases.emplace_back(args: new test_upscale(GGML_TYPE_F32, {512, 512, 3, 2}, 2, mode)); |
| 7229 | test_cases.emplace_back(args: new test_upscale(GGML_TYPE_F32, {512, 512, 3, 2}, 2, mode, true)); |
| 7230 | test_cases.emplace_back(args: new test_interpolate(GGML_TYPE_F32, {2, 5, 7, 11}, {5, 7, 11, 13}, mode)); |
| 7231 | test_cases.emplace_back(args: new test_interpolate(GGML_TYPE_F32, {5, 7, 11, 13}, {2, 5, 7, 11}, mode)); |
| 7232 | } |
| 7233 | test_cases.emplace_back(args: new test_interpolate(GGML_TYPE_F32, {2, 5, 7, 11}, {5, 7, 11, 13}, GGML_SCALE_MODE_BILINEAR | GGML_SCALE_FLAG_ALIGN_CORNERS)); |
| 7234 | test_cases.emplace_back(args: new test_interpolate(GGML_TYPE_F32, {1, 4, 3, 2}, {2, 8, 3, 2}, GGML_SCALE_MODE_BILINEAR | GGML_SCALE_FLAG_ALIGN_CORNERS)); |
| 7235 | test_cases.emplace_back(args: new test_interpolate(GGML_TYPE_F32, {4, 1, 3, 2}, {1, 1, 3, 2}, GGML_SCALE_MODE_BILINEAR | GGML_SCALE_FLAG_ALIGN_CORNERS)); |
| 7236 | |
| 7237 | test_cases.emplace_back(args: new test_sum()); |
| 7238 | test_cases.emplace_back(args: new test_sum_rows()); |
| 7239 | test_cases.emplace_back(args: new test_sum(GGML_TYPE_F32, {11, 5, 6, 3}, {0, 2, 1, 3})); // row-contiguous but non-contiguous |
| 7240 | test_cases.emplace_back(args: new test_sum(GGML_TYPE_F32, {11, 5, 6, 3}, {0, 3, 2, 1})); |
| 7241 | test_cases.emplace_back(args: new test_sum(GGML_TYPE_F32, {11, 5, 6, 3}, {0, 1, 3, 2})); |
| 7242 | test_cases.emplace_back(args: new test_sum_rows(GGML_TYPE_F32, { 11, 5, 6, 3 }, true, false)); |
| 7243 | test_cases.emplace_back(args: new test_sum_rows(GGML_TYPE_F32, { 11, 5, 6, 3 }, false, true)); |
| 7244 | test_cases.emplace_back(args: new test_sum_rows(GGML_TYPE_F32, { 11, 5, 6, 3 }, true, true)); |
| 7245 | test_cases.emplace_back(args: new test_mean()); |
| 7246 | test_cases.emplace_back(args: new test_sum(GGML_TYPE_F32, { 33, 1, 1, 1 })); |
| 7247 | test_cases.emplace_back(args: new test_sum_rows(GGML_TYPE_F32, { 33, 1, 1, 1 })); |
| 7248 | test_cases.emplace_back(args: new test_mean(GGML_TYPE_F32, { 33, 1, 1, 1 })); |
| 7249 | test_cases.emplace_back(args: new test_sum(GGML_TYPE_F32, { 33, 1024, 1, 1 })); |
| 7250 | test_cases.emplace_back(args: new test_sum_rows(GGML_TYPE_F32, { 33, 1024, 1, 1 })); |
| 7251 | test_cases.emplace_back(args: new test_sum(GGML_TYPE_F32, { 33, 256, 1, 1 })); |
| 7252 | test_cases.emplace_back(args: new test_sum(GGML_TYPE_F32, { 33, 256, 1, 1 }, { 1, 0, 2, 3 })); // sum dst not-contiguous |
| 7253 | test_cases.emplace_back(args: new test_sum_rows(GGML_TYPE_F32, { 33, 256, 1, 1 })); |
| 7254 | test_cases.emplace_back(args: new test_mean(GGML_TYPE_F32, { 33, 256, 1, 1 })); |
| 7255 | test_cases.emplace_back(args: new test_mean(GGML_TYPE_F32, { 32769, 1, 1, 1 })); |
| 7256 | test_cases.emplace_back(args: new test_group_norm(GGML_TYPE_F32, {64, 64, 320, 1})); |
| 7257 | test_cases.emplace_back(args: new test_group_norm(GGML_TYPE_F32, {9, 9, 1280, 1})); |
| 7258 | test_cases.emplace_back(args: new test_group_norm_mul_add(GGML_TYPE_F32, {64, 64, 320, 1})); |
| 7259 | test_cases.emplace_back(args: new test_group_norm_mul_add(GGML_TYPE_F32, {9, 9, 1280, 1})); |
| 7260 | test_cases.emplace_back(args: new test_acc()); |
| 7261 | test_cases.emplace_back(args: new test_pad()); |
| 7262 | test_cases.emplace_back(args: new test_pad_ext()); |
| 7263 | test_cases.emplace_back(args: new test_pad_reflect_1d()); |
| 7264 | test_cases.emplace_back(args: new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 384, 4, 1})); |
| 7265 | test_cases.emplace_back(args: new test_roll()); |
| 7266 | test_cases.emplace_back(args: new test_arange()); |
| 7267 | test_cases.emplace_back(args: new test_timestep_embedding()); |
| 7268 | test_cases.emplace_back(args: new test_leaky_relu()); |
| 7269 | |
| 7270 | for (bool v : {false, true}) { |
| 7271 | test_cases.emplace_back(args: new test_pad_ext(GGML_TYPE_F32, {512, 512, 1, 1}, 0, 1, 0, 1, 0, 0, 0, 0, v)); |
| 7272 | test_cases.emplace_back(args: new test_pad_ext(GGML_TYPE_F32, {11, 22, 33, 44}, 1, 2, 3, 4, 5, 6, 7, 8, v)); |
| 7273 | } |
| 7274 | |
| 7275 | for (int hsk : { 40, 64, 72, 80, 96, 128, 192, 256, 576 }) { |
| 7276 | for (int hsv : { 40, 64, 72, 80, 96, 128, 192, 256, 512 }) { |
| 7277 | if (hsk != 192 && hsk != 576 && hsk != hsv) continue; |
| 7278 | if (hsk == 192 && (hsv != 128 && hsv != 192)) continue; |
| 7279 | if (hsk == 576 && hsv != 512) continue; // DeepSeek MLA |
| 7280 | |
| 7281 | for (bool mask : { true, false } ) { |
| 7282 | for (bool sinks : { true, false } ) { |
| 7283 | for (float max_bias : { 0.0f, 8.0f }) { |
| 7284 | if (!mask && max_bias > 0.0f) continue; |
| 7285 | for (float logit_softcap : {0.0f, 10.0f}) { |
| 7286 | if (hsk != 128 && logit_softcap != 0.0f) continue; |
| 7287 | for (int nh : { 4, }) { |
| 7288 | for (int nr3 : { 1, 3, }) { |
| 7289 | if (hsk > 64 && nr3 > 1) continue; // skip broadcast for large head sizes |
| 7290 | for (int nr2 : { 1, 4, 16 }) { |
| 7291 | if (nr2 == 16 && hsk != 128) continue; |
| 7292 | //for (int kv : { 1, 17, 31, 33, 61, 113, 65, 127, 129, 130, 255, 260, 371, 380, 407, 512, 1024, }) { |
| 7293 | for (int kv : { 113, 512, 1024, }) { |
| 7294 | if (nr2 != 1 && kv != 512) continue; |
| 7295 | for (int nb : { 1, 3, 32, 35, }) { |
| 7296 | for (ggml_prec prec : {GGML_PREC_F32, GGML_PREC_DEFAULT}) { |
| 7297 | if (hsk != 128 && prec == GGML_PREC_DEFAULT) continue; |
| 7298 | for (ggml_type type_KV : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0}) { |
| 7299 | test_cases.emplace_back(args: new test_flash_attn_ext( |
| 7300 | hsk, hsv, nh, {nr2, nr3}, kv, nb, mask, sinks, max_bias, logit_softcap, prec, type_KV)); |
| 7301 | // run fewer test cases permuted |
| 7302 | if (mask == true && max_bias == 0.0f && logit_softcap == 0 && kv == 512) { |
| 7303 | test_cases.emplace_back(args: new test_flash_attn_ext( |
| 7304 | hsk, hsv, nh, {nr2, nr3}, kv, nb, mask, sinks, max_bias, logit_softcap, prec, type_KV, {0, 2, 1, 3})); |
| 7305 | } |
| 7306 | } |
| 7307 | } |
| 7308 | } |
| 7309 | } |
| 7310 | } |
| 7311 | } |
| 7312 | } |
| 7313 | } |
| 7314 | } |
| 7315 | } |
| 7316 | } |
| 7317 | } |
| 7318 | } |
| 7319 | |
| 7320 | test_cases.emplace_back(args: new test_cross_entropy_loss (GGML_TYPE_F32, { 10, 5, 4, 3})); |
| 7321 | test_cases.emplace_back(args: new test_cross_entropy_loss (GGML_TYPE_F32, {30000, 1, 1, 1})); |
| 7322 | test_cases.emplace_back(args: new test_cross_entropy_loss_back(GGML_TYPE_F32, { 10, 5, 4, 3})); |
| 7323 | test_cases.emplace_back(args: new test_cross_entropy_loss_back(GGML_TYPE_F32, {30000, 1, 1, 1})); |
| 7324 | |
| 7325 | test_cases.emplace_back(args: new test_opt_step_adamw(GGML_TYPE_F32, {10, 5, 4, 3})); |
| 7326 | test_cases.emplace_back(args: new test_opt_step_sgd(GGML_TYPE_F32, {10, 5, 4, 3})); |
| 7327 | |
| 7328 | for (ggml_type type : base_types) { |
| 7329 | for (bool with_gate : {false, true}) { |
| 7330 | for (bool use_id : {false, true}) { |
| 7331 | for (bool b : {false, true}) { |
| 7332 | if (!use_id && b) { |
| 7333 | continue; |
| 7334 | } |
| 7335 | for (bool with_bias : {false, true}) { |
| 7336 | if (!with_gate && !with_bias) { |
| 7337 | continue; |
| 7338 | } |
| 7339 | for (ggml_glu_op glu_op : {GGML_GLU_OP_SWIGLU, GGML_GLU_OP_GEGLU}) { |
| 7340 | if (!with_bias && glu_op == GGML_GLU_OP_SWIGLU_OAI) { |
| 7341 | continue; |
| 7342 | } |
| 7343 | if (!with_gate && glu_op != GGML_GLU_OP_SWIGLU) { |
| 7344 | continue; |
| 7345 | } |
| 7346 | test_cases.emplace_back(args: new test_mul_mat_vec_fusion(type, glu_op, 1, 32, 256, |
| 7347 | use_id, 16, 8, b, with_bias, with_gate)); |
| 7348 | } |
| 7349 | } |
| 7350 | } |
| 7351 | } |
| 7352 | } |
| 7353 | } |
| 7354 | |
| 7355 | for (bool with_norm : {false, true}) { |
| 7356 | test_cases.emplace_back(args: new test_topk_moe({8, 22, 1, 1}, 4, with_norm)); |
| 7357 | test_cases.emplace_back(args: new test_topk_moe({32, 22, 1, 1}, 8, with_norm)); |
| 7358 | test_cases.emplace_back(args: new test_topk_moe({128, 1, 1, 1}, 128, with_norm)); |
| 7359 | } |
| 7360 | |
| 7361 | test_cases.emplace_back(args: new test_topk_moe({ 8, 22, 1, 1 }, 4, /*with_norm*/ false, /*delayed_softmax*/ true)); |
| 7362 | test_cases.emplace_back(args: new test_topk_moe({ 32, 22, 1, 1 }, 8, /*with_norm*/ false, /*delayed_softmax*/ true)); |
| 7363 | |
| 7364 | #if 0 |
| 7365 | // these tests are disabled to save execution time, sbut they can be handy for debugging |
| 7366 | test_cases.emplace_back(new test_llama(2, true)); |
| 7367 | test_cases.emplace_back(new test_llama(1)); |
| 7368 | test_cases.emplace_back(new test_llama(2)); |
| 7369 | test_cases.emplace_back(new test_falcon(1)); |
| 7370 | test_cases.emplace_back(new test_falcon(2)); |
| 7371 | #endif |
| 7372 | |
| 7373 | return test_cases; |
| 7374 | } |
| 7375 | |
| 7376 | // Test cases for performance evaluation: should be representative of real-world use cases |
| 7377 | static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() { |
| 7378 | std::vector<std::unique_ptr<test_case>> test_cases; |
| 7379 | |
| 7380 | // Conv2d: K=CRS=NPQ=4096 matmul performance |
| 7381 | uint32_t iwh_idx = 0; |
| 7382 | uint32_t kwh_idx = 1; |
| 7383 | uint32_t Cout_idx = 2; |
| 7384 | uint32_t Cin_idx = 3; |
| 7385 | uint32_t B_idx = 4; |
| 7386 | std::vector<std::array<int, 5>> cases = { |
| 7387 | //{IWH, KWH, Cout, Cin, B} |
| 7388 | // K=CRS=NPQ=4096 conv2d matmul performance |
| 7389 | {19, 4, 4096, 256, 16}, |
| 7390 | // K=128, CRS=128, NPQ=4096 |
| 7391 | { 19, 4, 128, 8, 16}, |
| 7392 | // K=130, CRS=128, NPQ=4096 |
| 7393 | { 19, 4, 130, 8, 16}, |
| 7394 | // Edge case: K x CRS is small |
| 7395 | { 19, 2, 4, 4, 16}, |
| 7396 | // A ConvNet's first layer |
| 7397 | { 224, 3, 8, 3, 1 }, |
| 7398 | // A ConvNet's first layer with 2x2 convolution, and 1 channel |
| 7399 | { 224, 2, 8, 1, 1 }, |
| 7400 | // A ConvNet's first layer with 2x2 convolution, and 1 channel, several images in the batch |
| 7401 | { 224, 2, 8, 1, 8 }, |
| 7402 | // A middle layer of a ConvNet |
| 7403 | { 58, 3, 64, 32, 1 }, |
| 7404 | // A middle layer of a ConvNet, several images in the batch |
| 7405 | { 58, 3, 64, 32, 8 }, |
| 7406 | // A deep layer of a ConvNet, several images in the batch |
| 7407 | { 16, 3, 512, 128, 8 }, |
| 7408 | }; |
| 7409 | |
| 7410 | for (auto kernel_type : {GGML_TYPE_F32, GGML_TYPE_F16}) { |
| 7411 | for (auto act_case : cases) { |
| 7412 | // Direct CONV_2D |
| 7413 | test_cases.emplace_back(args: new test_conv_2d( |
| 7414 | { act_case[iwh_idx], act_case[iwh_idx], act_case[Cin_idx], act_case[B_idx] }, |
| 7415 | { act_case[kwh_idx], act_case[kwh_idx], act_case[Cin_idx], act_case[Cout_idx] }, |
| 7416 | kernel_type, 1, 1, 0, 0, 1, 1, false)); |
| 7417 | } |
| 7418 | } |
| 7419 | |
| 7420 | test_cases.emplace_back(args: new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 1, 1, 1})); |
| 7421 | test_cases.emplace_back(args: new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 512, 1, 1})); |
| 7422 | |
| 7423 | test_cases.emplace_back(args: new test_cpy(GGML_TYPE_F32, GGML_TYPE_F16, {512, 3072, 1, 1})); |
| 7424 | test_cases.emplace_back(args: new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {8192, 512, 2, 1}, {0, 2, 1, 3})); |
| 7425 | test_cases.emplace_back(args: new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {3072, 512, 2, 1}, {0, 2, 1, 3})); |
| 7426 | test_cases.emplace_back(args: new test_cpy(GGML_TYPE_F32, GGML_TYPE_Q4_0, {8192, 512, 2, 1})); |
| 7427 | test_cases.emplace_back(args: new test_cpy(GGML_TYPE_Q4_0, GGML_TYPE_F32, {8192, 512, 2, 1})); |
| 7428 | |
| 7429 | test_cases.emplace_back(args: new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {768*1024, 256, 1, 1}, {1, 0, 2, 3}, {0, 0, 0, 0})); |
| 7430 | test_cases.emplace_back(args: new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {768*1024, 256, 1, 1}, {1, 0, 2, 3}, {0, 0, 0, 0})); |
| 7431 | test_cases.emplace_back(args: new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {768, 1024, 256, 1}, {1, 0, 2, 3}, {0, 0, 0, 0})); |
| 7432 | test_cases.emplace_back(args: new test_cpy(GGML_TYPE_BF16, GGML_TYPE_BF16, {768, 1024, 256, 1}, {1, 0, 2, 3}, {0, 0, 0, 0})); |
| 7433 | |
| 7434 | test_cases.emplace_back(args: new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {768*1024, 256, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true)); |
| 7435 | test_cases.emplace_back(args: new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {768, 1024, 256, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true)); |
| 7436 | test_cases.emplace_back(args: new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {768*1024, 256, 1, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true)); |
| 7437 | test_cases.emplace_back(args: new test_cpy(GGML_TYPE_F16, GGML_TYPE_F16, {768, 1024, 256, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true)); |
| 7438 | test_cases.emplace_back(args: new test_cpy(GGML_TYPE_BF16, GGML_TYPE_BF16, {768, 1024, 256, 1}, {0, 0, 0, 0}, {0, 0, 0, 0}, true)); |
| 7439 | |
| 7440 | |
| 7441 | test_cases.emplace_back(args: new test_soft_max(GGML_TYPE_F32, {4096, 4096, 5, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f)); |
| 7442 | test_cases.emplace_back(args: new test_soft_max(GGML_TYPE_F32, {12888, 256, 5, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f)); |
| 7443 | test_cases.emplace_back(args: new test_soft_max(GGML_TYPE_F32, {77, 4096, 5, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f)); |
| 7444 | test_cases.emplace_back(args: new test_soft_max(GGML_TYPE_F32, {1024, 1024, 10, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f)); |
| 7445 | test_cases.emplace_back(args: new test_soft_max(GGML_TYPE_F32, {77, 1024, 10, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f)); |
| 7446 | test_cases.emplace_back(args: new test_soft_max(GGML_TYPE_F32, {256, 256, 20, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f)); |
| 7447 | test_cases.emplace_back(args: new test_soft_max(GGML_TYPE_F32, {64, 64, 20, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f)); |
| 7448 | test_cases.emplace_back(args: new test_soft_max(GGML_TYPE_F32, {77, 64, 20, 1}, false, false, GGML_TYPE_F32, {1, 1}, 1.0f, 0.0f)); |
| 7449 | |
| 7450 | test_cases.emplace_back(args: new test_argmax(GGML_TYPE_F32, {32, 10, 1, 1})); |
| 7451 | test_cases.emplace_back(args: new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1})); |
| 7452 | test_cases.emplace_back(args: new test_argmax(GGML_TYPE_F32, {32000, 512, 1, 1})); |
| 7453 | |
| 7454 | test_cases.emplace_back(args: new test_pad_reflect_1d(GGML_TYPE_F32, {512, 34, 2, 1})); |
| 7455 | test_cases.emplace_back(args: new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 80, 1, 1})); |
| 7456 | test_cases.emplace_back(args: new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 80, 4, 1})); |
| 7457 | test_cases.emplace_back(args: new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 384, 1, 1})); |
| 7458 | test_cases.emplace_back(args: new test_pad_reflect_1d(GGML_TYPE_F32, {3000, 384, 4, 1})); |
| 7459 | |
| 7460 | test_cases.emplace_back(args: new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 16416, 1, 128, {8, 1}, {4, 1}, {0, 2, 1, 3})); |
| 7461 | test_cases.emplace_back(args: new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 1, 16416, {8, 1}, {4, 1}, {0, 1, 2, 3}, 2*16416)); |
| 7462 | |
| 7463 | for (int bs : {1, 2, 3, 4, 5, 8, 512}) { |
| 7464 | for (ggml_type type_a : all_types) { |
| 7465 | for (ggml_type type_b : {GGML_TYPE_F32}) { |
| 7466 | test_cases.emplace_back(args: new test_mul_mat(type_a, type_b, 4096, bs, 14336, {1, 1}, {1, 1})); |
| 7467 | } |
| 7468 | } |
| 7469 | } |
| 7470 | |
| 7471 | // qwen3-30b-a3b |
| 7472 | for (int bs : {1, 4, 8, 32, 64, 128, 256, 512}) { |
| 7473 | for (ggml_type type_a : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0, GGML_TYPE_Q4_K, GGML_TYPE_Q6_K, GGML_TYPE_IQ2_XS}) { |
| 7474 | for (ggml_type type_b : {GGML_TYPE_F32}) { |
| 7475 | test_cases.emplace_back(args: new test_mul_mat_id(type_a, type_b, 128, 8, false, 768, bs, 2048, 1)); |
| 7476 | } |
| 7477 | } |
| 7478 | } |
| 7479 | |
| 7480 | for (int bs : {1, 4, 8, 32, 64, 128, 256, 512}) { |
| 7481 | for (ggml_type type_a : {GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0, GGML_TYPE_Q4_K, GGML_TYPE_Q6_K, GGML_TYPE_IQ2_XS}) { |
| 7482 | for (ggml_type type_b : {GGML_TYPE_F32}) { |
| 7483 | test_cases.emplace_back(args: new test_mul_mat_id(type_a, type_b, 32, 4, false, 1792, bs, 2048, 1)); |
| 7484 | } |
| 7485 | } |
| 7486 | } |
| 7487 | |
| 7488 | |
| 7489 | // gpt-oss-20b |
| 7490 | for (int bs : {1, 4, 8, 512}) { |
| 7491 | for (ggml_type type_a : {GGML_TYPE_MXFP4}) { |
| 7492 | for (ggml_type type_b : {GGML_TYPE_F32}) { |
| 7493 | test_cases.emplace_back(args: new test_mul_mat_id(type_a, type_b, 32, 4, false, 2880, bs, 2880, 1)); |
| 7494 | } |
| 7495 | } |
| 7496 | } |
| 7497 | |
| 7498 | for (int K : {3, 5}) { |
| 7499 | for (int IC : {256, 2560}) { |
| 7500 | for (int IW_IH : {32, 64, 256}) { |
| 7501 | if (IC == 2560 && IW_IH == 256) { |
| 7502 | // too big |
| 7503 | continue; |
| 7504 | } |
| 7505 | test_cases.emplace_back(args: new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {IW_IH, IW_IH, IC, 1}, {K, K, IC, 1}, 1, 1, 1, 1, 1, 1, true)); |
| 7506 | } |
| 7507 | } |
| 7508 | } |
| 7509 | |
| 7510 | for (int kv : { 4096, 8192, 16384, }) { |
| 7511 | for (int hs : { 64, 128, }) { |
| 7512 | for (int nr : { 1, 4, }) { |
| 7513 | test_cases.emplace_back(args: new test_flash_attn_ext(hs, hs, 8, {nr, 1}, kv, 1, true, false, 0, 0, GGML_PREC_F32, GGML_TYPE_F16)); |
| 7514 | } |
| 7515 | } |
| 7516 | } |
| 7517 | |
| 7518 | test_cases.emplace_back(args: new test_conv_2d_dw({512, 512, 256, 1}, {3, 3, 1, 256}, 1, 1, 1, false)); |
| 7519 | test_cases.emplace_back(args: new test_conv_2d_dw({512, 512, 256, 1}, {3, 3, 1, 256}, 1, 1, 1, true)); |
| 7520 | |
| 7521 | test_cases.emplace_back(args: new test_conv_transpose_2d({256, 256, 256, 1}, {3, 3, 16, 256}, 1)); |
| 7522 | test_cases.emplace_back(args: new test_conv_transpose_2d({16, 16, 16, 1}, {3, 3, 8, 16}, 1)); |
| 7523 | test_cases.emplace_back(args: new test_conv_transpose_2d({10, 10, 9, 1}, {3, 3, 1, 9}, 2)); |
| 7524 | |
| 7525 | test_cases.emplace_back(args: new test_mean(GGML_TYPE_F32, {256, 256, 3, 1})); |
| 7526 | |
| 7527 | |
| 7528 | for (int n_token : {1, 512}) { |
| 7529 | test_cases.emplace_back(args: new test_add_id(GGML_TYPE_F32, GGML_TYPE_F32, 2880, 128, 4, n_token)); |
| 7530 | test_cases.emplace_back(args: new test_add_id(GGML_TYPE_F32, GGML_TYPE_F32, 2880, 32, 4, n_token)); |
| 7531 | } |
| 7532 | |
| 7533 | std::vector<std::array<int64_t, 4>> reduce_rows_cases = { |
| 7534 | { 8192, 1, 1, 1 }, |
| 7535 | { 8192, 8192, 1, 1 }, |
| 7536 | { 128, 8192, 1, 1 }, |
| 7537 | }; |
| 7538 | |
| 7539 | for (auto it: reduce_rows_cases){ |
| 7540 | test_cases.emplace_back(args: new test_mean(GGML_TYPE_F32, it)); |
| 7541 | test_cases.emplace_back(args: new test_sum_rows(GGML_TYPE_F32, it)); |
| 7542 | test_cases.emplace_back(args: new test_sum(GGML_TYPE_F32, it)); |
| 7543 | } |
| 7544 | |
| 7545 | return test_cases; |
| 7546 | } |
| 7547 | |
| 7548 | static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_names_filter, const char * params_filter, |
| 7549 | printer * output_printer) { |
| 7550 | auto filter_test_cases = [](std::vector<std::unique_ptr<test_case>> & test_cases, const char * params_filter) { |
| 7551 | if (params_filter == nullptr) { |
| 7552 | return; |
| 7553 | } |
| 7554 | |
| 7555 | std::regex params_filter_regex(params_filter); |
| 7556 | |
| 7557 | for (auto it = test_cases.begin(); it != test_cases.end();) { |
| 7558 | if (!std::regex_search(s: (*it)->vars(), e: params_filter_regex)) { |
| 7559 | it = test_cases.erase(position: it); |
| 7560 | continue; |
| 7561 | } |
| 7562 | |
| 7563 | it++; |
| 7564 | } |
| 7565 | }; |
| 7566 | |
| 7567 | if (mode == MODE_TEST) { |
| 7568 | auto test_cases = make_test_cases_eval(); |
| 7569 | filter_test_cases(test_cases, params_filter); |
| 7570 | ggml_backend_t backend_cpu = ggml_backend_init_by_type(type: GGML_BACKEND_DEVICE_TYPE_CPU, NULL); |
| 7571 | if (backend_cpu == NULL) { |
| 7572 | test_operation_info info("" , "" , "CPU" ); |
| 7573 | info.set_error(component: "backend" , details: "Failed to initialize CPU backend" ); |
| 7574 | output_printer->print_operation(info); |
| 7575 | return false; |
| 7576 | } |
| 7577 | |
| 7578 | size_t n_ok = 0; |
| 7579 | size_t tests_run = 0; |
| 7580 | std::vector<std::string> failed_tests; |
| 7581 | for (auto & test : test_cases) { |
| 7582 | test_status_t status = test->eval(backend1: backend, backend2: backend_cpu, op_names_filter, output_printer); |
| 7583 | if (status == test_status_t::SKIPPED || status == test_status_t::NOT_SUPPORTED) { |
| 7584 | continue; |
| 7585 | } |
| 7586 | tests_run++; |
| 7587 | if (status == test_status_t::OK) { |
| 7588 | n_ok++; |
| 7589 | } else if (status == test_status_t::FAIL) { |
| 7590 | failed_tests.push_back(x: test->current_op_name + "(" + test->vars() + ")" ); |
| 7591 | } |
| 7592 | } |
| 7593 | output_printer->print_summary(info: test_summary_info(n_ok, tests_run, false)); |
| 7594 | output_printer->print_failed_tests(failed_tests); |
| 7595 | |
| 7596 | ggml_backend_free(backend: backend_cpu); |
| 7597 | |
| 7598 | return n_ok == tests_run; |
| 7599 | } |
| 7600 | |
| 7601 | if (mode == MODE_GRAD) { |
| 7602 | auto test_cases = make_test_cases_eval(); |
| 7603 | filter_test_cases(test_cases, params_filter); |
| 7604 | size_t n_ok = 0; |
| 7605 | for (auto & test : test_cases) { |
| 7606 | if (test->eval_grad(backend, op_names_filter, output_printer)) { |
| 7607 | n_ok++; |
| 7608 | } |
| 7609 | } |
| 7610 | output_printer->print_summary(info: test_summary_info(n_ok, test_cases.size(), false)); |
| 7611 | |
| 7612 | return n_ok == test_cases.size(); |
| 7613 | } |
| 7614 | |
| 7615 | if (mode == MODE_PERF) { |
| 7616 | auto test_cases = make_test_cases_perf(); |
| 7617 | filter_test_cases(test_cases, params_filter); |
| 7618 | for (auto & test : test_cases) { |
| 7619 | test->eval_perf(backend, op_names_filter, output_printer); |
| 7620 | } |
| 7621 | return true; |
| 7622 | } |
| 7623 | |
| 7624 | if (mode == MODE_SUPPORT) { |
| 7625 | auto test_cases = make_test_cases_eval(); |
| 7626 | filter_test_cases(test_cases, params_filter); |
| 7627 | |
| 7628 | // Filter out fusion cases |
| 7629 | test_cases.erase( |
| 7630 | first: std::remove_if(first: test_cases.begin(), last: test_cases.end(), pred: [](const std::unique_ptr<test_case> & tc) { |
| 7631 | return tc->run_whole_graph(); |
| 7632 | }), |
| 7633 | last: test_cases.end() |
| 7634 | ); |
| 7635 | |
| 7636 | for (auto & test : test_cases) { |
| 7637 | test->eval_support(backend, op_names_filter, output_printer); |
| 7638 | } |
| 7639 | return true; |
| 7640 | } |
| 7641 | |
| 7642 | GGML_ABORT("fatal error" ); |
| 7643 | } |
| 7644 | |
| 7645 | static void list_all_ops() { |
| 7646 | printf(format: "GGML operations:\n" ); |
| 7647 | std::set<std::string> all_ops; |
| 7648 | |
| 7649 | for (int i = 1; i < GGML_OP_COUNT; i++) { |
| 7650 | all_ops.insert(x: ggml_op_name(op: (enum ggml_op)i)); |
| 7651 | } |
| 7652 | for (int i = 0; i < GGML_UNARY_OP_COUNT; i++) { |
| 7653 | all_ops.insert(x: ggml_unary_op_name(op: (enum ggml_unary_op)i)); |
| 7654 | } |
| 7655 | for (int i = 0; i < GGML_GLU_OP_COUNT; i++) { |
| 7656 | all_ops.insert(x: ggml_glu_op_name(op: (enum ggml_glu_op)i)); |
| 7657 | } |
| 7658 | for (const auto & op : all_ops) { |
| 7659 | printf(format: " %s\n" , op.c_str()); |
| 7660 | } |
| 7661 | printf(format: "\nTotal: %zu operations\n" , all_ops.size()); |
| 7662 | } |
| 7663 | |
| 7664 | static void show_test_coverage() { |
| 7665 | std::set<std::string> all_ops; |
| 7666 | for (int i = 1; i < GGML_OP_COUNT; i++) { |
| 7667 | auto op = (enum ggml_op)i; |
| 7668 | if (op == GGML_OP_VIEW || |
| 7669 | op == GGML_OP_RESHAPE || |
| 7670 | op == GGML_OP_PERMUTE || |
| 7671 | op == GGML_OP_TRANSPOSE || |
| 7672 | op == GGML_OP_CONT || |
| 7673 | op == GGML_OP_GLU || |
| 7674 | op == GGML_OP_UNARY) { |
| 7675 | continue; |
| 7676 | } |
| 7677 | all_ops.insert(x: ggml_op_name(op)); |
| 7678 | } |
| 7679 | for (int i = 0; i < GGML_UNARY_OP_COUNT; i++) { |
| 7680 | all_ops.insert(x: ggml_unary_op_name(op: (enum ggml_unary_op)i)); |
| 7681 | } |
| 7682 | for (int i = 0; i < GGML_GLU_OP_COUNT; i++) { |
| 7683 | all_ops.insert(x: ggml_glu_op_name(op: (enum ggml_glu_op)i)); |
| 7684 | } |
| 7685 | auto test_cases = make_test_cases_eval(); |
| 7686 | // Filter out fusion cases |
| 7687 | test_cases.erase( |
| 7688 | first: std::remove_if(first: test_cases.begin(), last: test_cases.end(), pred: [](const std::unique_ptr<test_case> & tc) { |
| 7689 | return tc->run_whole_graph(); |
| 7690 | }), |
| 7691 | last: test_cases.end() |
| 7692 | ); |
| 7693 | |
| 7694 | std::set<std::string> tested_ops; |
| 7695 | |
| 7696 | ggml_init_params params = { |
| 7697 | /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(), |
| 7698 | /* .mem_base = */ NULL, |
| 7699 | /* .no_alloc = */ true, |
| 7700 | }; |
| 7701 | |
| 7702 | for (auto & test_case : test_cases) { |
| 7703 | ggml_context * ctx = ggml_init(params); |
| 7704 | if (ctx) { |
| 7705 | test_case->mode = MODE_TEST; |
| 7706 | ggml_tensor * out = test_case->build_graph(ctx); |
| 7707 | if (out && out->op != GGML_OP_NONE) { |
| 7708 | if (out->op == GGML_OP_UNARY) { |
| 7709 | tested_ops.insert(x: ggml_unary_op_name(op: ggml_get_unary_op(tensor: out))); |
| 7710 | } else if (out->op == GGML_OP_GLU) { |
| 7711 | tested_ops.insert(x: ggml_glu_op_name(op: ggml_get_glu_op(tensor: out))); |
| 7712 | } else { |
| 7713 | tested_ops.insert(x: ggml_op_name(op: out->op)); |
| 7714 | } |
| 7715 | } |
| 7716 | ggml_free(ctx); |
| 7717 | } |
| 7718 | } |
| 7719 | std::set<std::string> covered_ops; |
| 7720 | std::set<std::string> uncovered_ops; |
| 7721 | for (const auto & op : all_ops) { |
| 7722 | if (tested_ops.count(x: op) > 0) { |
| 7723 | covered_ops.insert(x: op); |
| 7724 | } else { |
| 7725 | uncovered_ops.insert(x: op); |
| 7726 | } |
| 7727 | } |
| 7728 | |
| 7729 | printf(format: "Operations covered by tests (%zu):\n" , covered_ops.size()); |
| 7730 | for (const auto & op : covered_ops) { |
| 7731 | printf(format: " ✓ %s\n" , op.c_str()); |
| 7732 | } |
| 7733 | printf(format: "\nOperations without tests (%zu):\n" , uncovered_ops.size()); |
| 7734 | for (const auto & op : uncovered_ops) { |
| 7735 | printf(format: " ✗ %s\n" , op.c_str()); |
| 7736 | } |
| 7737 | |
| 7738 | printf(format: "\nCoverage Summary:\n" ); |
| 7739 | printf(format: " Total operations: %zu\n" , all_ops.size()); |
| 7740 | printf(format: " Tested operations: %zu\n" , covered_ops.size()); |
| 7741 | printf(format: " Untested operations: %zu\n" , uncovered_ops.size()); |
| 7742 | printf(format: " Coverage: %.1f%%\n" , (double)covered_ops.size() / all_ops.size() * 100.0); |
| 7743 | } |
| 7744 | |
| 7745 | static void usage(char ** argv) { |
| 7746 | printf(format: "Usage: %s [mode] [-o <op,..>] [-b <backend>] [-p <params regex>] [--output <console|sql|csv>] [--list-ops] [--show-coverage]\n" , argv[0]); |
| 7747 | printf(format: " valid modes:\n" ); |
| 7748 | printf(format: " - test (default, compare with CPU backend for correctness)\n" ); |
| 7749 | printf(format: " - grad (compare gradients from backpropagation with method of finite differences)\n" ); |
| 7750 | printf(format: " - perf (performance evaluation)\n" ); |
| 7751 | printf(format: " - support (probe backend operation support)\n" ); |
| 7752 | printf(format: " op names for -o are as given by ggml_op_desc() (e.g. ADD, MUL_MAT, etc),\n" ); |
| 7753 | printf(format: " optionally including the full test case string (e.g. \"ADD(type=f16,ne=[1,1,8,1],nr=[1,1,1,1],nf=1)\")\n" ); |
| 7754 | printf(format: " --output specifies output format (default: console, options: console, sql, csv)\n" ); |
| 7755 | printf(format: " --list-ops lists all available GGML operations\n" ); |
| 7756 | printf(format: " --show-coverage shows test coverage\n" ); |
| 7757 | } |
| 7758 | |
| 7759 | int main(int argc, char ** argv) { |
| 7760 | test_mode mode = MODE_TEST; |
| 7761 | output_formats output_format = CONSOLE; |
| 7762 | const char * op_names_filter = nullptr; |
| 7763 | const char * backend_filter = nullptr; |
| 7764 | const char * params_filter = nullptr; |
| 7765 | |
| 7766 | for (int i = 1; i < argc; i++) { |
| 7767 | if (strcmp(s1: argv[i], s2: "test" ) == 0) { |
| 7768 | mode = MODE_TEST; |
| 7769 | } else if (strcmp(s1: argv[i], s2: "perf" ) == 0) { |
| 7770 | mode = MODE_PERF; |
| 7771 | } else if (strcmp(s1: argv[i], s2: "grad" ) == 0) { |
| 7772 | mode = MODE_GRAD; |
| 7773 | } else if (strcmp(s1: argv[i], s2: "support" ) == 0) { |
| 7774 | mode = MODE_SUPPORT; |
| 7775 | } else if (strcmp(s1: argv[i], s2: "-o" ) == 0) { |
| 7776 | if (i + 1 < argc) { |
| 7777 | op_names_filter = argv[++i]; |
| 7778 | } else { |
| 7779 | usage(argv); |
| 7780 | return 1; |
| 7781 | } |
| 7782 | } else if (strcmp(s1: argv[i], s2: "-b" ) == 0) { |
| 7783 | if (i + 1 < argc) { |
| 7784 | backend_filter = argv[++i]; |
| 7785 | } else { |
| 7786 | usage(argv); |
| 7787 | return 1; |
| 7788 | } |
| 7789 | } else if (strcmp(s1: argv[i], s2: "-p" ) == 0) { |
| 7790 | if (i + 1 < argc) { |
| 7791 | params_filter = argv[++i]; |
| 7792 | } else { |
| 7793 | usage(argv); |
| 7794 | return 1; |
| 7795 | } |
| 7796 | } else if (strcmp(s1: argv[i], s2: "--output" ) == 0) { |
| 7797 | if (i + 1 < argc) { |
| 7798 | if (!output_format_from_str(s: argv[++i], format&: output_format)) { |
| 7799 | usage(argv); |
| 7800 | return 1; |
| 7801 | } |
| 7802 | } else { |
| 7803 | usage(argv); |
| 7804 | return 1; |
| 7805 | } |
| 7806 | } else if (strcmp(s1: argv[i], s2: "--list-ops" ) == 0) { |
| 7807 | list_all_ops(); |
| 7808 | return 0; |
| 7809 | } else if (strcmp(s1: argv[i], s2: "--show-coverage" ) == 0) { |
| 7810 | show_test_coverage(); |
| 7811 | return 0; |
| 7812 | } else { |
| 7813 | usage(argv); |
| 7814 | return 1; |
| 7815 | } |
| 7816 | } |
| 7817 | |
| 7818 | // load and enumerate backends |
| 7819 | ggml_backend_load_all(); |
| 7820 | |
| 7821 | // Create printer for output format |
| 7822 | std::unique_ptr<printer> output_printer = create_printer(format: output_format); |
| 7823 | if (output_printer) { |
| 7824 | output_printer->print_header(); |
| 7825 | } |
| 7826 | |
| 7827 | output_printer->print_testing_start(info: testing_start_info(ggml_backend_dev_count())); |
| 7828 | |
| 7829 | size_t n_ok = 0; |
| 7830 | |
| 7831 | for (size_t i = 0; i < ggml_backend_dev_count(); i++) { |
| 7832 | ggml_backend_dev_t dev = ggml_backend_dev_get(index: i); |
| 7833 | |
| 7834 | if (backend_filter != NULL && strcmp(s1: backend_filter, s2: ggml_backend_dev_name(device: dev)) != 0) { |
| 7835 | output_printer->print_backend_init( |
| 7836 | info: backend_init_info(i, ggml_backend_dev_count(), ggml_backend_dev_name(device: dev), true, "Skipping" )); |
| 7837 | n_ok++; |
| 7838 | continue; |
| 7839 | } |
| 7840 | |
| 7841 | if (backend_filter == NULL && ggml_backend_dev_type(device: dev) == GGML_BACKEND_DEVICE_TYPE_CPU && mode != MODE_GRAD) { |
| 7842 | output_printer->print_backend_init(info: backend_init_info( |
| 7843 | i, ggml_backend_dev_count(), ggml_backend_dev_name(device: dev), true, "Skipping CPU backend" )); |
| 7844 | n_ok++; |
| 7845 | continue; |
| 7846 | } |
| 7847 | |
| 7848 | ggml_backend_t backend = ggml_backend_dev_init(device: dev, NULL); |
| 7849 | GGML_ASSERT(backend != NULL); |
| 7850 | |
| 7851 | ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(device: dev); |
| 7852 | auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, name: "ggml_backend_set_n_threads" ); |
| 7853 | if (ggml_backend_set_n_threads_fn) { |
| 7854 | // TODO: better value for n_threads |
| 7855 | ggml_backend_set_n_threads_fn(backend, std::thread::hardware_concurrency()); |
| 7856 | } |
| 7857 | |
| 7858 | size_t free, total; // NOLINT |
| 7859 | ggml_backend_dev_memory(device: dev, free: &free, total: &total); |
| 7860 | output_printer->print_backend_init(info: backend_init_info(i, ggml_backend_dev_count(), ggml_backend_dev_name(device: dev), |
| 7861 | false, "" , ggml_backend_dev_description(device: dev), |
| 7862 | total / 1024 / 1024, free / 1024 / 1024, true)); |
| 7863 | |
| 7864 | bool ok = test_backend(backend, mode, op_names_filter, params_filter, output_printer: output_printer.get()); |
| 7865 | |
| 7866 | if (ok) { |
| 7867 | n_ok++; |
| 7868 | } |
| 7869 | output_printer->print_backend_status( |
| 7870 | info: backend_status_info(ggml_backend_name(backend), ok ? test_status_t::OK : test_status_t::FAIL)); |
| 7871 | |
| 7872 | ggml_backend_free(backend); |
| 7873 | } |
| 7874 | |
| 7875 | ggml_quantize_free(); |
| 7876 | |
| 7877 | if (output_printer) { |
| 7878 | output_printer->print_footer(); |
| 7879 | } |
| 7880 | |
| 7881 | output_printer->print_overall_summary( |
| 7882 | info: overall_summary_info(n_ok, ggml_backend_dev_count(), n_ok == ggml_backend_dev_count())); |
| 7883 | |
| 7884 | if (n_ok != ggml_backend_dev_count()) { |
| 7885 | return 1; |
| 7886 | } |
| 7887 | |
| 7888 | return 0; |
| 7889 | } |
| 7890 | |