| 1 | #include "arg.h" |
| 2 | #include "common.h" |
| 3 | #include "log.h" |
| 4 | #include "llama.h" |
| 5 | |
| 6 | #include <algorithm> |
| 7 | #include <cstdio> |
| 8 | #include <string> |
| 9 | #include <vector> |
| 10 | |
| 11 | static void print_usage(int, char ** argv) { |
| 12 | LOG("\nexample usage:\n" ); |
| 13 | LOG("\n %s -m model.gguf -c 2048 -b 2048 -ub 512 -npp 128,256,512 -ntg 128,256 -npl 1,2,4,8,16,32 [-pps]\n" , argv[0]); |
| 14 | LOG("\n" ); |
| 15 | } |
| 16 | |
| 17 | int main(int argc, char ** argv) { |
| 18 | common_params params; |
| 19 | |
| 20 | if (!common_params_parse(argc, argv, params, ex: LLAMA_EXAMPLE_BENCH, print_usage)) { |
| 21 | return 1; |
| 22 | } |
| 23 | |
| 24 | common_init(); |
| 25 | |
| 26 | int is_pp_shared = params.is_pp_shared; |
| 27 | |
| 28 | std::vector<int> n_pp = params.n_pp; |
| 29 | std::vector<int> n_tg = params.n_tg; |
| 30 | std::vector<int> n_pl = params.n_pl; |
| 31 | |
| 32 | // init LLM |
| 33 | |
| 34 | llama_backend_init(); |
| 35 | llama_numa_init(numa: params.numa); |
| 36 | |
| 37 | // initialize the model |
| 38 | |
| 39 | llama_model_params model_params = common_model_params_to_llama(params); |
| 40 | |
| 41 | llama_model * model = llama_model_load_from_file(path_model: params.model.path.c_str(), params: model_params); |
| 42 | |
| 43 | if (model == NULL) { |
| 44 | fprintf(stderr , format: "%s: error: unable to load model\n" , __func__); |
| 45 | return 1; |
| 46 | } |
| 47 | |
| 48 | llama_context_params ctx_params = common_context_params_to_llama(params); |
| 49 | |
| 50 | // ensure enough sequences are available |
| 51 | ctx_params.n_seq_max = n_pl.empty() ? 1 : *std::max_element(first: n_pl.begin(), last: n_pl.end()); |
| 52 | |
| 53 | llama_context * ctx = llama_init_from_model(model, params: ctx_params); |
| 54 | |
| 55 | if (ctx == NULL) { |
| 56 | fprintf(stderr , format: "%s: error: failed to create the llama_context\n" , __func__); |
| 57 | return 1; |
| 58 | } |
| 59 | |
| 60 | const llama_vocab * vocab = llama_model_get_vocab(model); |
| 61 | const int32_t n_vocab = llama_vocab_n_tokens(vocab); |
| 62 | |
| 63 | const auto get_token_rand = [n_vocab]() -> llama_token { |
| 64 | return std::rand() % n_vocab; |
| 65 | }; |
| 66 | |
| 67 | auto * mem = llama_get_memory(ctx); |
| 68 | |
| 69 | const int32_t n_kv_max = llama_n_ctx(ctx); |
| 70 | |
| 71 | llama_batch batch = llama_batch_init(n_tokens: n_kv_max, embd: 0, n_seq_max: 1); |
| 72 | |
| 73 | // decode in batches of ctx_params.n_batch tokens |
| 74 | auto decode_helper = [](llama_context * ctx, llama_batch & batch, int32_t n_batch, bool synchronize) { |
| 75 | for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) { |
| 76 | const int32_t n_tokens = std::min(a: n_batch, b: (int32_t) (batch.n_tokens - i)); |
| 77 | |
| 78 | llama_batch batch_view = { |
| 79 | .n_tokens: n_tokens, |
| 80 | .token: batch.token + i, |
| 81 | .embd: nullptr, |
| 82 | .pos: batch.pos + i, |
| 83 | .n_seq_id: batch.n_seq_id + i, |
| 84 | .seq_id: batch.seq_id + i, |
| 85 | .logits: batch.logits + i, |
| 86 | }; |
| 87 | |
| 88 | const int ret = llama_decode(ctx, batch: batch_view); |
| 89 | if (ret != 0) { |
| 90 | LOG_ERR("failed to decode the batch, n_batch = %d, ret = %d\n" , n_batch, ret); |
| 91 | return false; |
| 92 | } |
| 93 | |
| 94 | if (synchronize) { |
| 95 | llama_synchronize(ctx); |
| 96 | } |
| 97 | } |
| 98 | |
| 99 | return true; |
| 100 | }; |
| 101 | |
| 102 | // warm up |
| 103 | { |
| 104 | for (int i = 0; i < 16; ++i) { |
| 105 | common_batch_add(batch, id: get_token_rand(), pos: i, seq_ids: { 0 }, logits: false); |
| 106 | } |
| 107 | |
| 108 | if (!decode_helper(ctx, batch, ctx_params.n_batch, true)) { |
| 109 | LOG_ERR("%s: llama_decode() failed\n" , __func__); |
| 110 | return 1; |
| 111 | } |
| 112 | } |
| 113 | |
| 114 | if (!params.batched_bench_output_jsonl) { |
| 115 | LOG("\n" ); |
| 116 | LOG("%s: n_kv_max = %d, n_batch = %d, n_ubatch = %d, flash_attn = %d, is_pp_shared = %d, n_gpu_layers = %d, n_threads = %u, n_threads_batch = %u\n" , __func__, n_kv_max, params.n_batch, params.n_ubatch, int(params.flash_attn_type), params.is_pp_shared, params.n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch); |
| 117 | LOG("\n" ); |
| 118 | LOG("|%6s | %6s | %4s | %6s | %8s | %8s | %8s | %8s | %8s | %8s |\n" , "PP" , "TG" , "B" , "N_KV" , "T_PP s" , "S_PP t/s" , "T_TG s" , "S_TG t/s" , "T s" , "S t/s" ); |
| 119 | LOG("|%6s-|-%6s-|-%4s-|-%6s-|-%8s-|-%8s-|-%8s-|-%8s-|-%8s-|-%8s-|\n" , "------" , "------" , "----" , "------" , "--------" , "--------" , "--------" , "--------" , "--------" , "--------" ); |
| 120 | } |
| 121 | |
| 122 | for ( int i_pp = 0; i_pp < (int) n_pp.size(); ++i_pp) { |
| 123 | for ( int i_tg = 0; i_tg < (int) n_tg.size(); ++i_tg) { |
| 124 | for (int i_pl = 0; i_pl < (int) n_pl.size(); ++i_pl) { |
| 125 | const int pp = n_pp[i_pp]; |
| 126 | const int tg = n_tg[i_tg]; |
| 127 | const int pl = n_pl[i_pl]; |
| 128 | |
| 129 | const int n_ctx_req = is_pp_shared ? (params.kv_unified ? pp : pl*pp) + pl*tg : pl*(pp + tg); |
| 130 | |
| 131 | if (n_ctx_req > n_kv_max) { |
| 132 | continue; |
| 133 | } |
| 134 | |
| 135 | common_batch_clear(batch); |
| 136 | |
| 137 | for (int j = 0; j < (is_pp_shared ? 1 : pl); ++j) { |
| 138 | for (int i = 0; i < pp; ++i) { |
| 139 | common_batch_add(batch, id: get_token_rand(), pos: i, seq_ids: { j }, logits: i == pp - 1); |
| 140 | } |
| 141 | } |
| 142 | |
| 143 | llama_memory_clear(mem, data: false); |
| 144 | |
| 145 | const auto t_pp_start = ggml_time_us(); |
| 146 | |
| 147 | if (!decode_helper(ctx, batch, ctx_params.n_batch, false)) { |
| 148 | LOG_ERR("%s: llama_decode() failed\n" , __func__); |
| 149 | return 1; |
| 150 | } |
| 151 | |
| 152 | llama_synchronize(ctx); |
| 153 | |
| 154 | const auto t_pp_end = ggml_time_us(); |
| 155 | |
| 156 | if (is_pp_shared) { |
| 157 | for (int32_t i = 1; i < pl; ++i) { |
| 158 | llama_memory_seq_cp(mem, seq_id_src: 0, seq_id_dst: i, p0: -1, p1: -1); |
| 159 | } |
| 160 | |
| 161 | if (!params.kv_unified) { |
| 162 | // run one dummy token to apply the memory copy |
| 163 | common_batch_clear(batch); |
| 164 | common_batch_add(batch, id: get_token_rand(), pos: pp + 0, seq_ids: { 0 }, logits: true); |
| 165 | if (!decode_helper(ctx, batch, ctx_params.n_batch, true)) { |
| 166 | LOG_ERR("%s: llama_decode() failed\n" , __func__); |
| 167 | return 1; |
| 168 | } |
| 169 | llama_memory_seq_rm(mem, seq_id: 0, p0: pp, p1: -1); |
| 170 | } |
| 171 | } |
| 172 | |
| 173 | const auto t_tg_start = ggml_time_us(); |
| 174 | |
| 175 | for (int i = 0; i < tg; ++i) { |
| 176 | common_batch_clear(batch); |
| 177 | |
| 178 | for (int j = 0; j < pl; ++j) { |
| 179 | common_batch_add(batch, id: get_token_rand(), pos: pp + i, seq_ids: { j }, logits: true); |
| 180 | } |
| 181 | |
| 182 | if (!decode_helper(ctx, batch, ctx_params.n_batch, true)) { |
| 183 | LOG_ERR("%s: llama_decode() failed\n" , __func__); |
| 184 | return 1; |
| 185 | } |
| 186 | } |
| 187 | |
| 188 | const auto t_tg_end = ggml_time_us(); |
| 189 | |
| 190 | const int32_t n_kv = n_ctx_req; |
| 191 | |
| 192 | const float t_pp = (t_pp_end - t_pp_start) / 1000000.0f; |
| 193 | const float t_tg = (t_tg_end - t_tg_start) / 1000000.0f; |
| 194 | const float t = t_pp + t_tg; |
| 195 | |
| 196 | const float speed_pp = is_pp_shared ? pp / t_pp : pl*pp / t_pp; |
| 197 | const float speed_tg = pl*tg / t_tg; |
| 198 | const float speed = ((is_pp_shared ? pp : pl*pp) + pl*tg) / t; |
| 199 | |
| 200 | if(params.batched_bench_output_jsonl) { |
| 201 | LOG( |
| 202 | "{\"n_kv_max\": %d, \"n_batch\": %d, \"n_ubatch\": %d, \"flash_attn\": %d, \"is_pp_shared\": %d, \"n_gpu_layers\": %d, \"n_threads\": %u, \"n_threads_batch\": %u, " |
| 203 | "\"pp\": %d, \"tg\": %d, \"pl\": %d, \"n_kv\": %d, \"t_pp\": %f, \"speed_pp\": %f, \"t_tg\": %f, \"speed_tg\": %f, \"t\": %f, \"speed\": %f}\n" , |
| 204 | n_kv_max, params.n_batch, params.n_ubatch, int(params.flash_attn_type), params.is_pp_shared, params.n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch, |
| 205 | pp, tg, pl, n_kv, t_pp, speed_pp, t_tg, speed_tg, t, speed |
| 206 | ); |
| 207 | } else { |
| 208 | LOG("|%6d | %6d | %4d | %6d | %8.3f | %8.2f | %8.3f | %8.2f | %8.3f | %8.2f |\n" , pp, tg, pl, n_kv, t_pp, speed_pp, t_tg, speed_tg, t, speed); |
| 209 | } |
| 210 | } |
| 211 | } |
| 212 | } |
| 213 | |
| 214 | LOG("\n" ); |
| 215 | llama_perf_context_print(ctx); |
| 216 | |
| 217 | llama_batch_free(batch); |
| 218 | |
| 219 | llama_free(ctx); |
| 220 | llama_model_free(model); |
| 221 | |
| 222 | llama_backend_free(); |
| 223 | |
| 224 | return 0; |
| 225 | } |
| 226 | |