| 1 | #include "ggml.h" |
| 2 | #include "ggml-alloc.h" |
| 3 | #include "gguf.h" |
| 4 | |
| 5 | #include "arg.h" |
| 6 | #include "common.h" |
| 7 | |
| 8 | #include <map> |
| 9 | #include <vector> |
| 10 | #include <string> |
| 11 | #include <fstream> |
| 12 | |
| 13 | static bool g_verbose = false; |
| 14 | |
| 15 | struct tensor_transformation { |
| 16 | struct ggml_tensor * in; |
| 17 | struct ggml_tensor * out; |
| 18 | bool is_copy; |
| 19 | }; |
| 20 | |
| 21 | static std::string get_kv_str(struct gguf_context * ctx_gguf, const std::string & key){ |
| 22 | int id = gguf_find_key(ctx: ctx_gguf, key: key.c_str()); |
| 23 | return id < 0 ? "" : std::string(gguf_get_val_str(ctx: ctx_gguf, key_id: id)); |
| 24 | } |
| 25 | |
| 26 | static float get_kv_f32(struct gguf_context * ctx_gguf, const std::string & key) { |
| 27 | int id = gguf_find_key(ctx: ctx_gguf, key: key.c_str()); |
| 28 | return id < 0 ? 0.0f : gguf_get_val_f32(ctx: ctx_gguf, key_id: id); |
| 29 | } |
| 30 | |
| 31 | static void zeros(std::ofstream & file, size_t n) { |
| 32 | char zero = 0; |
| 33 | for (size_t i = 0; i < n; ++i) { |
| 34 | file.write(s: &zero, n: 1); |
| 35 | } |
| 36 | } |
| 37 | |
| 38 | static std::string ggml_ne_string(const ggml_tensor * t) { |
| 39 | std::string str; |
| 40 | for (int i = 0; i < GGML_MAX_DIMS; ++i) { |
| 41 | str += std::to_string(val: t->ne[i]); |
| 42 | if (i + 1 < GGML_MAX_DIMS) { |
| 43 | str += ", " ; |
| 44 | } |
| 45 | } |
| 46 | return str; |
| 47 | } |
| 48 | |
| 49 | static struct gguf_context * load_gguf(std::string & fname, struct ggml_context ** ctx_ggml) { |
| 50 | struct gguf_init_params params = { |
| 51 | /*.no_alloc = */ true, |
| 52 | /*.ctx = */ ctx_ggml, |
| 53 | }; |
| 54 | struct gguf_context * ctx_gguf = gguf_init_from_file(fname: fname.c_str(), params); |
| 55 | if (!ctx_gguf) { |
| 56 | throw std::runtime_error("failed to load input GGUF from " + fname); |
| 57 | } |
| 58 | return ctx_gguf; |
| 59 | } |
| 60 | |
| 61 | struct file_input { |
| 62 | struct ggml_context * ctx_meta = nullptr; |
| 63 | struct gguf_context * ctx_gguf = nullptr; |
| 64 | std::ifstream f_in; |
| 65 | std::map<std::string, ggml_tensor *> tensors; |
| 66 | float alpha; |
| 67 | float scale; |
| 68 | |
| 69 | file_input(std::string & fname, float scale): f_in(fname, std::ios::binary), scale(scale) { |
| 70 | if (!f_in.is_open()) { |
| 71 | throw std::runtime_error("failed to open input gguf from " + fname); |
| 72 | } |
| 73 | |
| 74 | ctx_gguf = load_gguf(fname, ctx_ggml: &ctx_meta); |
| 75 | alpha = get_kv_f32(ctx_gguf, key: "adapter.lora.alpha" ); |
| 76 | printf(format: "%s: loaded gguf from %s\n" , __func__, fname.c_str()); |
| 77 | |
| 78 | for (ggml_tensor * cur = ggml_get_first_tensor(ctx: ctx_meta); cur; cur = ggml_get_next_tensor(ctx: ctx_meta, tensor: cur)) { |
| 79 | std::string name(cur->name); |
| 80 | tensors[name] = cur; |
| 81 | if (g_verbose) { |
| 82 | printf(format: "%s: %s\n" , __func__, cur->name); |
| 83 | } |
| 84 | } |
| 85 | } |
| 86 | |
| 87 | ggml_tensor * get_tensor(std::string name) { |
| 88 | if (tensors.find(x: name) == tensors.end()) { |
| 89 | return nullptr; |
| 90 | } |
| 91 | return tensors[name]; |
| 92 | } |
| 93 | |
| 94 | void read_tensor_data(std::string name, std::vector<uint8_t> & buf) { |
| 95 | if (tensors.find(x: name) == tensors.end()) { |
| 96 | throw std::runtime_error("cannot find tensor with name: " + name); |
| 97 | } |
| 98 | auto len = ggml_nbytes(tensor: tensors[name]); |
| 99 | if (buf.size() < len) { |
| 100 | buf.resize(new_size: len); |
| 101 | } |
| 102 | auto i_tensor_in = gguf_find_tensor(ctx: ctx_gguf, name: name.c_str()); // idx of tensor in the input file |
| 103 | auto offset = gguf_get_data_offset(ctx: ctx_gguf) + gguf_get_tensor_offset(ctx: ctx_gguf, tensor_id: i_tensor_in); |
| 104 | f_in.seekg(offset); |
| 105 | f_in.read(s: (char* )buf.data(), n: len); |
| 106 | } |
| 107 | |
| 108 | ~file_input() { |
| 109 | gguf_free(ctx: ctx_gguf); |
| 110 | ggml_free(ctx: ctx_meta); |
| 111 | } |
| 112 | }; |
| 113 | |
| 114 | struct lora_merge_ctx { |
| 115 | // input base model + adapters |
| 116 | file_input base_model; |
| 117 | std::vector<std::unique_ptr<file_input>> adapters; |
| 118 | |
| 119 | // for computing merged tensor |
| 120 | int n_threads; |
| 121 | ggml_backend_t backend = nullptr; |
| 122 | ggml_gallocr_t allocr = nullptr; |
| 123 | std::vector<uint8_t> read_buf; |
| 124 | |
| 125 | // output file |
| 126 | struct gguf_context * ctx_out; |
| 127 | struct ggml_context * ctx_out_ggml; |
| 128 | std::ofstream fout; |
| 129 | |
| 130 | lora_merge_ctx( |
| 131 | std::string & base_fname, |
| 132 | std::vector<common_adapter_lora_info> & lora_files, |
| 133 | std::string & outfile, |
| 134 | int n_threads) : base_model(base_fname, 0), n_threads(n_threads), fout(outfile, std::ios::binary) { |
| 135 | fout.exceptions(except: std::ofstream::failbit); // fail fast on write errors |
| 136 | |
| 137 | if (gguf_find_key(ctx: base_model.ctx_gguf, key: LLM_KV_SPLIT_COUNT) >= 0) { |
| 138 | throw std::runtime_error("split model is not yet supported" ); |
| 139 | } |
| 140 | |
| 141 | for (auto & lora_inp : lora_files) { |
| 142 | auto fname = lora_inp.path; |
| 143 | auto scale = lora_inp.scale; |
| 144 | std::unique_ptr<file_input> adapter(new file_input(fname, scale)); |
| 145 | check_metadata_lora(adapter: adapter.get()); |
| 146 | adapters.push_back(x: std::move(adapter)); |
| 147 | } |
| 148 | |
| 149 | ctx_out = gguf_init_empty(); |
| 150 | struct ggml_init_params params = { |
| 151 | /*.mem_size =*/ static_cast<size_t>(gguf_get_n_tensors(ctx: base_model.ctx_gguf)*ggml_tensor_overhead()), |
| 152 | /*.mem_buffer =*/ NULL, |
| 153 | /*.no_alloc =*/ true, |
| 154 | }; |
| 155 | ctx_out_ggml = ggml_init(params); |
| 156 | backend = ggml_backend_cpu_init(); |
| 157 | allocr = ggml_gallocr_new(buft: ggml_backend_get_default_buffer_type(backend)); |
| 158 | } |
| 159 | |
| 160 | void check_metadata_lora(file_input * adapter) { |
| 161 | auto general_type = get_kv_str(ctx_gguf: adapter->ctx_gguf, key: "general.type" ); |
| 162 | if (general_type != "adapter" ) { |
| 163 | throw std::runtime_error("expect general.type to be 'adapter', but got: " + general_type); |
| 164 | } |
| 165 | |
| 166 | auto adapter_type = get_kv_str(ctx_gguf: adapter->ctx_gguf, key: "adapter.type" ); |
| 167 | if (adapter_type != "lora" ) { |
| 168 | throw std::runtime_error("expect adapter.type to be 'lora', but got: " + adapter_type); |
| 169 | } |
| 170 | |
| 171 | auto general_arch_base = get_kv_str(ctx_gguf: base_model.ctx_gguf, key: "general.architecture" ); |
| 172 | auto general_arch_lora = get_kv_str(ctx_gguf: adapter->ctx_gguf, key: "general.architecture" ); |
| 173 | if (general_arch_base != general_arch_lora) { |
| 174 | throw std::runtime_error("model arch and LoRA arch mismatch" ); |
| 175 | } |
| 176 | } |
| 177 | |
| 178 | ggml_type get_out_tensor_type(struct ggml_tensor * t) { |
| 179 | if (t->type == GGML_TYPE_F32) { |
| 180 | return GGML_TYPE_F32; |
| 181 | } else { |
| 182 | return GGML_TYPE_F16; |
| 183 | } |
| 184 | } |
| 185 | |
| 186 | void run_merge() { |
| 187 | // prepare metadata |
| 188 | gguf_set_kv(ctx: ctx_out, src: base_model.ctx_gguf); |
| 189 | // output is forced to f16 for now |
| 190 | gguf_set_val_u32(ctx: ctx_out, key: "general.file_type" , val: LLAMA_FTYPE_MOSTLY_F16); |
| 191 | |
| 192 | // check if all lora adapters have the same tensors |
| 193 | // TODO: remove this when we can support merging subset of adapters. Ref: https://github.com/ggerganov/llama.cpp/pull/8607#discussion_r1686027777 |
| 194 | static const char * err_no_subset_adapter = "Input adapters do not have the same list of tensors. This is not yet supported. Please merge the adapter one-by-one instead of merging all at once." ; |
| 195 | if (adapters.size() > 1) { |
| 196 | for (size_t i = 1; i < adapters.size(); ++i) { |
| 197 | if (adapters[0]->tensors.size() != adapters[i]->tensors.size()) { |
| 198 | throw std::runtime_error(err_no_subset_adapter); |
| 199 | } |
| 200 | for (auto & it : adapters[i]->tensors) { |
| 201 | if (adapters[0]->get_tensor(name: it.first) == nullptr) { |
| 202 | throw std::runtime_error(err_no_subset_adapter); |
| 203 | } |
| 204 | } |
| 205 | } |
| 206 | } |
| 207 | |
| 208 | // mapping base tensor to out tensor (same shape with base, but different type) |
| 209 | std::vector<tensor_transformation> trans; |
| 210 | for (auto & it : base_model.tensors) { |
| 211 | bool t_a = true; |
| 212 | bool t_b = true; |
| 213 | for (auto & adapter : adapters) { |
| 214 | t_a &= nullptr != adapter->get_tensor(name: it.first + ".lora_a" ); |
| 215 | t_b &= nullptr != adapter->get_tensor(name: it.first + ".lora_b" ); |
| 216 | } |
| 217 | auto base_tensor = it.second; |
| 218 | if (!t_a && !t_b) { |
| 219 | // only copy |
| 220 | struct ggml_tensor * cpy_tensor = ggml_dup_tensor(ctx: ctx_out_ggml, src: base_tensor); |
| 221 | ggml_set_name(tensor: cpy_tensor, name: base_tensor->name); |
| 222 | trans.push_back(x: { |
| 223 | .in: cpy_tensor, |
| 224 | .out: cpy_tensor, |
| 225 | .is_copy: true, |
| 226 | }); |
| 227 | gguf_add_tensor(ctx: ctx_out, tensor: cpy_tensor); |
| 228 | } else if (t_a && t_b) { |
| 229 | // need merging |
| 230 | struct ggml_tensor * out_tensor = ggml_new_tensor( |
| 231 | ctx: ctx_out_ggml, type: get_out_tensor_type(t: base_tensor), GGML_MAX_DIMS, ne: base_tensor->ne); |
| 232 | ggml_set_name(tensor: out_tensor, name: base_tensor->name); |
| 233 | trans.push_back(x: { |
| 234 | .in: base_tensor, |
| 235 | .out: out_tensor, |
| 236 | .is_copy: false, |
| 237 | }); |
| 238 | gguf_add_tensor(ctx: ctx_out, tensor: out_tensor); |
| 239 | } else { |
| 240 | throw std::runtime_error("tensor " + it.first + " missing either lora_a or lora_b" ); |
| 241 | } |
| 242 | } |
| 243 | |
| 244 | // placeholder for the meta data |
| 245 | { |
| 246 | size_t meta_size = gguf_get_meta_size(ctx: ctx_out); |
| 247 | zeros(file&: fout, n: meta_size); |
| 248 | } |
| 249 | |
| 250 | // process base model tensors |
| 251 | size_t n_merged = 0; |
| 252 | for (auto & it : trans) { |
| 253 | if (!it.is_copy) { |
| 254 | merge_tensor(base: it.in, out: it.out); |
| 255 | n_merged++; |
| 256 | } else { |
| 257 | copy_tensor(base: it.in); |
| 258 | } |
| 259 | } |
| 260 | |
| 261 | // write output metadata |
| 262 | { |
| 263 | std::vector<uint8_t> data(gguf_get_meta_size(ctx: ctx_out)); |
| 264 | gguf_get_meta_data(ctx: ctx_out, data: data.data()); |
| 265 | fout.seekp(0); |
| 266 | fout.write(s: (const char *)data.data(), n: data.size()); |
| 267 | } |
| 268 | |
| 269 | printf(format: "%s : merged %zu tensors with lora adapters\n" , __func__, n_merged); |
| 270 | printf(format: "%s : wrote %zu tensors to output file\n" , __func__, trans.size()); |
| 271 | } |
| 272 | |
| 273 | void copy_tensor(struct ggml_tensor * base) { |
| 274 | printf(format: "%s : %s [%s]\n" , __func__, base->name, ggml_ne_string(t: base).c_str()); |
| 275 | size_t len = ggml_nbytes(tensor: base); |
| 276 | base_model.read_tensor_data(name: base->name, buf&: read_buf); |
| 277 | fout.write(s: (char* )read_buf.data(), n: len); |
| 278 | zeros(file&: fout, GGML_PAD(len, GGUF_DEFAULT_ALIGNMENT) - len); |
| 279 | } |
| 280 | |
| 281 | void merge_tensor(struct ggml_tensor * base, struct ggml_tensor * out) { |
| 282 | std::string name_base(base->name); |
| 283 | std::string name_lora_a = name_base + ".lora_a" ; |
| 284 | std::string name_lora_b = name_base + ".lora_b" ; |
| 285 | |
| 286 | printf(format: "%s : %s [%s]\n" , __func__, base->name, ggml_ne_string(t: base).c_str()); |
| 287 | |
| 288 | // context for input tensor |
| 289 | std::vector<struct ggml_tensor *> inp_a(adapters.size()); |
| 290 | std::vector<struct ggml_tensor *> inp_b(adapters.size()); |
| 291 | struct ggml_init_params params { |
| 292 | /*.mem_size =*/ ggml_tensor_overhead()*(2+adapters.size()*2), |
| 293 | /*.mem_buffer =*/ NULL, |
| 294 | /*.no_alloc =*/ true, |
| 295 | }; |
| 296 | struct ggml_context * ctx = ggml_init(params); |
| 297 | |
| 298 | // alloc tensors |
| 299 | struct ggml_tensor * inp_base = ggml_new_tensor(ctx, type: GGML_TYPE_F32, GGML_MAX_DIMS, ne: base->ne); |
| 300 | for (size_t i = 0; i < adapters.size(); ++i) { |
| 301 | auto t_a = adapters[i]->get_tensor(name: name_lora_a); |
| 302 | auto t_b = adapters[i]->get_tensor(name: name_lora_b); |
| 303 | // TODO: add support for quantized lora |
| 304 | if (ggml_is_quantized(type: t_a->type) || ggml_is_quantized(type: t_b->type)) { |
| 305 | throw std::runtime_error("quantized LoRA adapters is not supported, please retry with f16 or f32" ); |
| 306 | } |
| 307 | inp_a[i] = ggml_dup_tensor(ctx, src: t_a); |
| 308 | inp_b[i] = ggml_dup_tensor(ctx, src: t_b); |
| 309 | } |
| 310 | ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx, backend); |
| 311 | |
| 312 | // load base tensor to backend buffer |
| 313 | base_model.read_tensor_data(name: name_base, buf&: read_buf); |
| 314 | if (base->type != GGML_TYPE_F32) { |
| 315 | // optionally dequantize it |
| 316 | printf(format: "%s : + dequantize base tensor from %s to F32\n" , __func__, ggml_type_name(type: base->type)); |
| 317 | auto nels = ggml_nelements(tensor: inp_base); |
| 318 | const auto * qtype = ggml_get_type_traits(type: base->type); |
| 319 | std::vector<uint8_t> dequant_buf(nels * sizeof(float)); |
| 320 | qtype->to_float(read_buf.data(), (float *)dequant_buf.data(), nels); |
| 321 | ggml_backend_tensor_set(tensor: inp_base, data: dequant_buf.data(), offset: 0, size: dequant_buf.size()); |
| 322 | } else { |
| 323 | ggml_backend_tensor_set(tensor: inp_base, data: read_buf.data(), offset: 0, size: ggml_nbytes(tensor: inp_base)); |
| 324 | } |
| 325 | |
| 326 | // load lora tensors to backend buffer |
| 327 | for (size_t i = 0; i < adapters.size(); ++i) { |
| 328 | adapters[i]->read_tensor_data(name: name_lora_a, buf&: read_buf); |
| 329 | ggml_backend_tensor_set(tensor: inp_a[i], data: read_buf.data(), offset: 0, size: ggml_nbytes(tensor: inp_a[i])); |
| 330 | adapters[i]->read_tensor_data(name: name_lora_b, buf&: read_buf); |
| 331 | ggml_backend_tensor_set(tensor: inp_b[i], data: read_buf.data(), offset: 0, size: ggml_nbytes(tensor: inp_b[i])); |
| 332 | } |
| 333 | |
| 334 | // build graph |
| 335 | struct ggml_cgraph * gf; |
| 336 | { |
| 337 | static size_t buf_size = ggml_tensor_overhead()*GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead(); |
| 338 | static std::vector<uint8_t> buf(buf_size); |
| 339 | struct ggml_init_params params0 = { |
| 340 | /*.mem_size =*/ buf_size, |
| 341 | /*.mem_buffer =*/ buf.data(), |
| 342 | /*.no_alloc =*/ true, |
| 343 | }; |
| 344 | struct ggml_context * ctx0 = ggml_init(params: params0); |
| 345 | gf = ggml_new_graph(ctx: ctx0); |
| 346 | struct ggml_tensor * cur = inp_base; |
| 347 | for (size_t i = 0; i < adapters.size(); ++i) { |
| 348 | struct ggml_tensor * delta; |
| 349 | bool is_tok_embd = string_starts_with(str: name_base, prefix: "token_embd" ); |
| 350 | if (is_tok_embd) { |
| 351 | printf(format: "%s : detected token embeddings tensor\n" , __func__); |
| 352 | delta = ggml_mul_mat(ctx: ctx0, |
| 353 | a: ggml_cast(ctx: ctx0, a: inp_b[i], type: GGML_TYPE_F32), |
| 354 | b: ggml_cast(ctx: ctx0, a: inp_a[i], type: GGML_TYPE_F32)); |
| 355 | } else { |
| 356 | delta = ggml_mul_mat(ctx: ctx0, |
| 357 | a: ggml_cont(ctx: ctx0, a: ggml_transpose(ctx: ctx0, a: ggml_cast(ctx: ctx0, a: inp_a[i], type: GGML_TYPE_F32))), |
| 358 | b: ggml_cast(ctx: ctx0, a: inp_b[i], type: GGML_TYPE_F32)); |
| 359 | } |
| 360 | // scale |
| 361 | const float alpha = adapters[i]->alpha; |
| 362 | const float rank = (float) inp_b[i]->ne[0]; |
| 363 | const float scale = alpha ? adapters[i]->scale * alpha / rank : adapters[i]->scale; |
| 364 | delta = ggml_scale(ctx: ctx0, a: delta, s: scale); |
| 365 | cur = ggml_add(ctx: ctx0, a: delta, b: cur); |
| 366 | printf(format: "%s : + merging from adapter[%zu] type=%s\n" , __func__, i, ggml_type_name(type: inp_a[i]->type)); |
| 367 | printf(format: "%s : input_scale=%f calculated_scale=%f rank=%d\n" , __func__, adapters[i]->scale, scale, (int) inp_b[i]->ne[0]); |
| 368 | } |
| 369 | cur = ggml_cast(ctx: ctx0, a: cur, type: out->type); |
| 370 | printf(format: "%s : + output type is %s\n" , __func__, ggml_type_name(type: out->type)); |
| 371 | ggml_build_forward_expand(cgraph: gf, tensor: cur); |
| 372 | ggml_free(ctx: ctx0); |
| 373 | } |
| 374 | |
| 375 | // compute |
| 376 | { |
| 377 | ggml_gallocr_alloc_graph(galloc: allocr, graph: gf); |
| 378 | ggml_backend_cpu_set_n_threads(backend_cpu: backend, n_threads); |
| 379 | ggml_backend_graph_compute(backend, cgraph: gf); |
| 380 | } |
| 381 | |
| 382 | // write data to output file |
| 383 | { |
| 384 | auto * result = ggml_graph_node(cgraph: gf, i: -1); |
| 385 | size_t len = ggml_nbytes(tensor: result); |
| 386 | if (read_buf.size() < len) { |
| 387 | read_buf.resize(new_size: len); |
| 388 | } |
| 389 | ggml_backend_tensor_get(tensor: result, data: read_buf.data(), offset: 0, size: len); |
| 390 | fout.write(s: (char* )read_buf.data(), n: len); |
| 391 | zeros(file&: fout, GGML_PAD(len, GGUF_DEFAULT_ALIGNMENT) - len); |
| 392 | } |
| 393 | |
| 394 | ggml_free(ctx); |
| 395 | ggml_backend_buffer_free(buffer); |
| 396 | } |
| 397 | |
| 398 | ~lora_merge_ctx() { |
| 399 | ggml_gallocr_free(galloc: allocr); |
| 400 | ggml_backend_free(backend); |
| 401 | gguf_free(ctx: ctx_out); |
| 402 | ggml_free(ctx: ctx_out_ggml); |
| 403 | } |
| 404 | }; |
| 405 | |
| 406 | static void print_usage(int, char ** argv) { |
| 407 | printf(format: "\nexample usage:\n" ); |
| 408 | printf(format: "\n %s -m base-model.gguf --lora lora-file.gguf -o merged-model-f16.gguf\n" , argv[0]); |
| 409 | printf(format: "\nNOTE: output model is F16\n" ); |
| 410 | printf(format: "\n" ); |
| 411 | } |
| 412 | |
| 413 | int main(int argc, char ** argv) { |
| 414 | common_params params; |
| 415 | |
| 416 | params.out_file = "ggml-lora-merged-f16.gguf" ; |
| 417 | |
| 418 | if (!common_params_parse(argc, argv, params, ex: LLAMA_EXAMPLE_EXPORT_LORA, print_usage)) { |
| 419 | return 1; |
| 420 | } |
| 421 | |
| 422 | g_verbose = (params.verbosity > 1); |
| 423 | try { |
| 424 | lora_merge_ctx ctx(params.model.path, params.lora_adapters, params.out_file, params.cpuparams.n_threads); |
| 425 | ctx.run_merge(); |
| 426 | } catch (const std::exception & err) { |
| 427 | fprintf(stderr, format: "%s\n" , err.what()); |
| 428 | exit(EXIT_FAILURE); |
| 429 | } |
| 430 | |
| 431 | printf(format: "done, output file is %s\n" , params.out_file.c_str()); |
| 432 | |
| 433 | return 0; |
| 434 | } |
| 435 | |