| 1 | #include "arg.h" |
| 2 | #include "common.h" |
| 3 | #include "console.h" |
| 4 | #include "log.h" |
| 5 | #include "sampling.h" |
| 6 | #include "llama.h" |
| 7 | #include "chat.h" |
| 8 | |
| 9 | #include <cstdio> |
| 10 | #include <cstring> |
| 11 | #include <ctime> |
| 12 | #include <fstream> |
| 13 | #include <iostream> |
| 14 | #include <sstream> |
| 15 | #include <string> |
| 16 | #include <vector> |
| 17 | |
| 18 | #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) |
| 19 | #include <signal.h> |
| 20 | #include <unistd.h> |
| 21 | #elif defined (_WIN32) |
| 22 | #define WIN32_LEAN_AND_MEAN |
| 23 | #ifndef NOMINMAX |
| 24 | #define NOMINMAX |
| 25 | #endif |
| 26 | #include <windows.h> |
| 27 | #include <signal.h> |
| 28 | #endif |
| 29 | |
| 30 | #if defined(_MSC_VER) |
| 31 | #pragma warning(disable: 4244 4267) // possible loss of data |
| 32 | #endif |
| 33 | |
| 34 | static llama_context ** g_ctx; |
| 35 | static llama_model ** g_model; |
| 36 | static common_sampler ** g_smpl; |
| 37 | static common_params * g_params; |
| 38 | static std::vector<llama_token> * g_input_tokens; |
| 39 | static std::ostringstream * g_output_ss; |
| 40 | static std::vector<llama_token> * g_output_tokens; |
| 41 | static bool is_interacting = false; |
| 42 | static bool need_insert_eot = false; |
| 43 | |
| 44 | static void print_usage(int argc, char ** argv) { |
| 45 | (void) argc; |
| 46 | |
| 47 | LOG("\nexample usage:\n" ); |
| 48 | LOG("\n text generation: %s -m your_model.gguf -p \"I believe the meaning of life is\" -n 128 -no-cnv\n" , argv[0]); |
| 49 | LOG("\n chat (conversation): %s -m your_model.gguf -sys \"You are a helpful assistant\"\n" , argv[0]); |
| 50 | LOG("\n" ); |
| 51 | } |
| 52 | |
| 53 | static bool file_exists(const std::string & path) { |
| 54 | std::ifstream f(path.c_str()); |
| 55 | return f.good(); |
| 56 | } |
| 57 | |
| 58 | static bool file_is_empty(const std::string & path) { |
| 59 | std::ifstream f; |
| 60 | f.exceptions(except: std::ifstream::failbit | std::ifstream::badbit); |
| 61 | f.open(s: path.c_str(), mode: std::ios::in | std::ios::binary | std::ios::ate); |
| 62 | return f.tellg() == 0; |
| 63 | } |
| 64 | |
| 65 | #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32) |
| 66 | static void sigint_handler(int signo) { |
| 67 | if (signo == SIGINT) { |
| 68 | if (!is_interacting && g_params->interactive) { |
| 69 | is_interacting = true; |
| 70 | need_insert_eot = true; |
| 71 | } else { |
| 72 | console::cleanup(); |
| 73 | LOG("\n" ); |
| 74 | common_perf_print(ctx: *g_ctx, gsmpl: *g_smpl); |
| 75 | |
| 76 | // make sure all logs are flushed |
| 77 | LOG("Interrupted by user\n" ); |
| 78 | common_log_pause(log: common_log_main()); |
| 79 | |
| 80 | _exit(status: 130); |
| 81 | } |
| 82 | } |
| 83 | } |
| 84 | #endif |
| 85 | |
| 86 | int main(int argc, char ** argv) { |
| 87 | common_params params; |
| 88 | g_params = ¶ms; |
| 89 | if (!common_params_parse(argc, argv, params, ex: LLAMA_EXAMPLE_MAIN, print_usage)) { |
| 90 | return 1; |
| 91 | } |
| 92 | |
| 93 | common_init(); |
| 94 | |
| 95 | auto & sparams = params.sampling; |
| 96 | |
| 97 | // save choice to use color for later |
| 98 | // (note for later: this is a slightly awkward choice) |
| 99 | console::init(use_simple_io: params.simple_io, use_advanced_display: params.use_color); |
| 100 | atexit(func: []() { console::cleanup(); }); |
| 101 | |
| 102 | if (params.embedding) { |
| 103 | LOG_ERR("************\n" ); |
| 104 | LOG_ERR("%s: please use the 'embedding' tool for embedding calculations\n" , __func__); |
| 105 | LOG_ERR("************\n\n" ); |
| 106 | |
| 107 | return 0; |
| 108 | } |
| 109 | |
| 110 | if (params.n_ctx != 0 && params.n_ctx < 8) { |
| 111 | LOG_WRN("%s: warning: minimum context size is 8, using minimum size.\n" , __func__); |
| 112 | params.n_ctx = 8; |
| 113 | } |
| 114 | |
| 115 | if (params.rope_freq_base != 0.0) { |
| 116 | LOG_WRN("%s: warning: changing RoPE frequency base to %g.\n" , __func__, params.rope_freq_base); |
| 117 | } |
| 118 | |
| 119 | if (params.rope_freq_scale != 0.0) { |
| 120 | LOG_WRN("%s: warning: scaling RoPE frequency by %g.\n" , __func__, params.rope_freq_scale); |
| 121 | } |
| 122 | |
| 123 | LOG_INF("%s: llama backend init\n" , __func__); |
| 124 | |
| 125 | llama_backend_init(); |
| 126 | llama_numa_init(numa: params.numa); |
| 127 | |
| 128 | llama_model * model = nullptr; |
| 129 | llama_context * ctx = nullptr; |
| 130 | common_sampler * smpl = nullptr; |
| 131 | |
| 132 | g_model = &model; |
| 133 | g_ctx = &ctx; |
| 134 | g_smpl = &smpl; |
| 135 | |
| 136 | std::vector<common_chat_msg> chat_msgs; |
| 137 | |
| 138 | // load the model and apply lora adapter, if any |
| 139 | LOG_INF("%s: load the model and apply lora adapter, if any\n" , __func__); |
| 140 | common_init_result llama_init = common_init_from_params(params); |
| 141 | |
| 142 | model = llama_init.model.get(); |
| 143 | ctx = llama_init.context.get(); |
| 144 | |
| 145 | if (model == NULL) { |
| 146 | LOG_ERR("%s: error: unable to load model\n" , __func__); |
| 147 | return 1; |
| 148 | } |
| 149 | |
| 150 | auto * mem = llama_get_memory(ctx); |
| 151 | |
| 152 | const llama_vocab * vocab = llama_model_get_vocab(model); |
| 153 | auto chat_templates = common_chat_templates_init(model, chat_template_override: params.chat_template); |
| 154 | |
| 155 | LOG_INF("%s: llama threadpool init, n_threads = %d\n" , __func__, (int) params.cpuparams.n_threads); |
| 156 | |
| 157 | auto * cpu_dev = ggml_backend_dev_by_type(type: GGML_BACKEND_DEVICE_TYPE_CPU); |
| 158 | if (!cpu_dev) { |
| 159 | LOG_ERR("%s: no CPU backend found\n" , __func__); |
| 160 | return 1; |
| 161 | } |
| 162 | auto * reg = ggml_backend_dev_backend_reg(device: cpu_dev); |
| 163 | auto * ggml_threadpool_new_fn = (decltype(ggml_threadpool_new) *) ggml_backend_reg_get_proc_address(reg, name: "ggml_threadpool_new" ); |
| 164 | auto * ggml_threadpool_free_fn = (decltype(ggml_threadpool_free) *) ggml_backend_reg_get_proc_address(reg, name: "ggml_threadpool_free" ); |
| 165 | |
| 166 | struct ggml_threadpool_params tpp_batch = |
| 167 | ggml_threadpool_params_from_cpu_params(params: params.cpuparams_batch); |
| 168 | struct ggml_threadpool_params tpp = |
| 169 | ggml_threadpool_params_from_cpu_params(params: params.cpuparams); |
| 170 | |
| 171 | set_process_priority(params.cpuparams.priority); |
| 172 | |
| 173 | struct ggml_threadpool * threadpool_batch = NULL; |
| 174 | if (!ggml_threadpool_params_match(p0: &tpp, p1: &tpp_batch)) { |
| 175 | threadpool_batch = ggml_threadpool_new_fn(&tpp_batch); |
| 176 | if (!threadpool_batch) { |
| 177 | LOG_ERR("%s: batch threadpool create failed : n_threads %d\n" , __func__, tpp_batch.n_threads); |
| 178 | return 1; |
| 179 | } |
| 180 | |
| 181 | // start the non-batch threadpool in the paused state |
| 182 | tpp.paused = true; |
| 183 | } |
| 184 | |
| 185 | struct ggml_threadpool * threadpool = ggml_threadpool_new_fn(&tpp); |
| 186 | if (!threadpool) { |
| 187 | LOG_ERR("%s: threadpool create failed : n_threads %d\n" , __func__, tpp.n_threads); |
| 188 | return 1; |
| 189 | } |
| 190 | |
| 191 | llama_attach_threadpool(ctx, threadpool, threadpool_batch); |
| 192 | |
| 193 | const int n_ctx_train = llama_model_n_ctx_train(model); |
| 194 | const int n_ctx = llama_n_ctx(ctx); |
| 195 | |
| 196 | if (n_ctx > n_ctx_train) { |
| 197 | LOG_WRN("%s: model was trained on only %d context tokens (%d specified)\n" , __func__, n_ctx_train, n_ctx); |
| 198 | } |
| 199 | |
| 200 | // auto enable conversation mode if chat template is available |
| 201 | const bool has_chat_template = common_chat_templates_was_explicit(tmpls: chat_templates.get()); |
| 202 | if (params.conversation_mode == COMMON_CONVERSATION_MODE_AUTO) { |
| 203 | if (has_chat_template) { |
| 204 | LOG_INF("%s: chat template is available, enabling conversation mode (disable it with -no-cnv)\n" , __func__); |
| 205 | params.conversation_mode = COMMON_CONVERSATION_MODE_ENABLED; |
| 206 | } else { |
| 207 | params.conversation_mode = COMMON_CONVERSATION_MODE_DISABLED; |
| 208 | } |
| 209 | } |
| 210 | |
| 211 | // in case user force-activate conversation mode (via -cnv) without proper chat template, we show a warning |
| 212 | if (params.conversation_mode && !has_chat_template) { |
| 213 | LOG_WRN("%s: chat template is not available or is not supported. This may cause the model to output suboptimal responses\n" , __func__); |
| 214 | } |
| 215 | |
| 216 | // print chat template example in conversation mode |
| 217 | if (params.conversation_mode) { |
| 218 | if (params.enable_chat_template) { |
| 219 | if (!params.prompt.empty() && params.system_prompt.empty()) { |
| 220 | LOG_WRN("*** User-specified prompt will pre-start conversation, did you mean to set --system-prompt (-sys) instead?\n" ); |
| 221 | } |
| 222 | |
| 223 | LOG_INF("%s: chat template example:\n%s\n" , __func__, common_chat_format_example(chat_templates.get(), params.use_jinja, params.default_template_kwargs).c_str()); |
| 224 | } else { |
| 225 | LOG_INF("%s: in-suffix/prefix is specified, chat template will be disabled\n" , __func__); |
| 226 | } |
| 227 | } |
| 228 | |
| 229 | // print system information |
| 230 | { |
| 231 | LOG_INF("\n" ); |
| 232 | LOG_INF("%s\n" , common_params_get_system_info(params).c_str()); |
| 233 | LOG_INF("\n" ); |
| 234 | } |
| 235 | |
| 236 | std::string path_session = params.path_prompt_cache; |
| 237 | std::vector<llama_token> session_tokens; |
| 238 | |
| 239 | if (!path_session.empty()) { |
| 240 | LOG_INF("%s: attempting to load saved session from '%s'\n" , __func__, path_session.c_str()); |
| 241 | if (!file_exists(path: path_session)) { |
| 242 | LOG_INF("%s: session file does not exist, will create.\n" , __func__); |
| 243 | } else if (file_is_empty(path: path_session)) { |
| 244 | LOG_INF("%s: The session file is empty. A new session will be initialized.\n" , __func__); |
| 245 | } else { |
| 246 | // The file exists and is not empty |
| 247 | session_tokens.resize(new_size: n_ctx); |
| 248 | size_t n_token_count_out = 0; |
| 249 | if (!llama_state_load_file(ctx, path_session: path_session.c_str(), tokens_out: session_tokens.data(), n_token_capacity: session_tokens.capacity(), n_token_count_out: &n_token_count_out)) { |
| 250 | LOG_ERR("%s: failed to load session file '%s'\n" , __func__, path_session.c_str()); |
| 251 | return 1; |
| 252 | } |
| 253 | session_tokens.resize(new_size: n_token_count_out); |
| 254 | LOG_INF("%s: loaded a session with prompt size of %d tokens\n" , __func__, (int)session_tokens.size()); |
| 255 | } |
| 256 | } |
| 257 | |
| 258 | const bool add_bos = llama_vocab_get_add_bos(vocab) && !params.use_jinja; |
| 259 | if (!llama_model_has_encoder(model)) { |
| 260 | GGML_ASSERT(!llama_vocab_get_add_eos(vocab)); |
| 261 | } |
| 262 | |
| 263 | LOG_DBG("n_ctx: %d, add_bos: %d\n" , n_ctx, add_bos); |
| 264 | |
| 265 | std::vector<llama_token> embd_inp; |
| 266 | |
| 267 | bool waiting_for_first_input = false; |
| 268 | auto chat_add_and_format = [&chat_msgs, &chat_templates](const std::string & role, const std::string & content) { |
| 269 | common_chat_msg new_msg; |
| 270 | new_msg.role = role; |
| 271 | new_msg.content = content; |
| 272 | auto formatted = common_chat_format_single(tmpls: chat_templates.get(), past_msg: chat_msgs, new_msg, add_ass: role == "user" , use_jinja: g_params->use_jinja); |
| 273 | chat_msgs.push_back(x: new_msg); |
| 274 | LOG_DBG("formatted: '%s'\n" , formatted.c_str()); |
| 275 | return formatted; |
| 276 | }; |
| 277 | |
| 278 | std::string prompt; |
| 279 | { |
| 280 | if (params.conversation_mode && params.enable_chat_template) { |
| 281 | if (!params.system_prompt.empty()) { |
| 282 | // format the system prompt (will use template default if empty) |
| 283 | chat_add_and_format("system" , params.system_prompt); |
| 284 | } |
| 285 | |
| 286 | if (!params.prompt.empty()) { |
| 287 | // format and append the user prompt |
| 288 | chat_add_and_format("user" , params.prompt); |
| 289 | } else { |
| 290 | waiting_for_first_input = true; |
| 291 | } |
| 292 | |
| 293 | if (!params.system_prompt.empty() || !params.prompt.empty()) { |
| 294 | common_chat_templates_inputs inputs; |
| 295 | inputs.use_jinja = g_params->use_jinja; |
| 296 | inputs.messages = chat_msgs; |
| 297 | inputs.add_generation_prompt = !params.prompt.empty(); |
| 298 | |
| 299 | prompt = common_chat_templates_apply(tmpls: chat_templates.get(), inputs).prompt; |
| 300 | } |
| 301 | } else { |
| 302 | // otherwise use the prompt as is |
| 303 | prompt = params.prompt; |
| 304 | } |
| 305 | |
| 306 | if (params.interactive_first || !prompt.empty() || session_tokens.empty()) { |
| 307 | LOG_DBG("tokenize the prompt\n" ); |
| 308 | embd_inp = common_tokenize(ctx, text: prompt, add_special: true, parse_special: true); |
| 309 | } else { |
| 310 | LOG_DBG("use session tokens\n" ); |
| 311 | embd_inp = session_tokens; |
| 312 | } |
| 313 | |
| 314 | LOG_DBG("prompt: \"%s\"\n" , prompt.c_str()); |
| 315 | LOG_DBG("tokens: %s\n" , string_from(ctx, embd_inp).c_str()); |
| 316 | } |
| 317 | |
| 318 | // Should not run without any tokens |
| 319 | if (!waiting_for_first_input && embd_inp.empty()) { |
| 320 | if (add_bos) { |
| 321 | embd_inp.push_back(x: llama_vocab_bos(vocab)); |
| 322 | LOG_WRN("embd_inp was considered empty and bos was added: %s\n" , string_from(ctx, embd_inp).c_str()); |
| 323 | } else { |
| 324 | LOG_ERR("input is empty\n" ); |
| 325 | return -1; |
| 326 | } |
| 327 | } |
| 328 | |
| 329 | // Tokenize negative prompt |
| 330 | if ((int) embd_inp.size() > n_ctx - 4) { |
| 331 | LOG_ERR("%s: prompt is too long (%d tokens, max %d)\n" , __func__, (int) embd_inp.size(), n_ctx - 4); |
| 332 | return 1; |
| 333 | } |
| 334 | |
| 335 | // debug message about similarity of saved session, if applicable |
| 336 | size_t n_matching_session_tokens = 0; |
| 337 | if (!session_tokens.empty()) { |
| 338 | for (llama_token id : session_tokens) { |
| 339 | if (n_matching_session_tokens >= embd_inp.size() || id != embd_inp[n_matching_session_tokens]) { |
| 340 | break; |
| 341 | } |
| 342 | n_matching_session_tokens++; |
| 343 | } |
| 344 | if (params.prompt.empty() && n_matching_session_tokens == embd_inp.size()) { |
| 345 | LOG_INF("%s: using full prompt from session file\n" , __func__); |
| 346 | } else if (n_matching_session_tokens >= embd_inp.size()) { |
| 347 | LOG_INF("%s: session file has exact match for prompt!\n" , __func__); |
| 348 | } else if (n_matching_session_tokens < (embd_inp.size() / 2)) { |
| 349 | LOG_WRN("%s: session file has low similarity to prompt (%zu / %zu tokens); will mostly be reevaluated\n" , |
| 350 | __func__, n_matching_session_tokens, embd_inp.size()); |
| 351 | } else { |
| 352 | LOG_INF("%s: session file matches %zu / %zu tokens of prompt\n" , |
| 353 | __func__, n_matching_session_tokens, embd_inp.size()); |
| 354 | } |
| 355 | |
| 356 | // remove any "future" tokens that we might have inherited from the previous session |
| 357 | llama_memory_seq_rm(mem, seq_id: -1, p0: n_matching_session_tokens, p1: -1); |
| 358 | } |
| 359 | |
| 360 | LOG_DBG("recalculate the cached logits (check): embd_inp.size() %zu, n_matching_session_tokens %zu, embd_inp.size() %zu, session_tokens.size() %zu\n" , |
| 361 | embd_inp.size(), n_matching_session_tokens, embd_inp.size(), session_tokens.size()); |
| 362 | |
| 363 | // if we will use the cache for the full prompt without reaching the end of the cache, force |
| 364 | // reevaluation of the last token to recalculate the cached logits |
| 365 | if (!embd_inp.empty() && n_matching_session_tokens == embd_inp.size() && session_tokens.size() > embd_inp.size()) { |
| 366 | LOG_DBG("recalculate the cached logits (do): session_tokens.resize( %zu )\n" , embd_inp.size() - 1); |
| 367 | |
| 368 | session_tokens.resize(new_size: embd_inp.size() - 1); |
| 369 | } |
| 370 | |
| 371 | // number of tokens to keep when resetting context |
| 372 | if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size()) { |
| 373 | params.n_keep = (int)embd_inp.size(); |
| 374 | } else { |
| 375 | params.n_keep += add_bos; // always keep the BOS token |
| 376 | } |
| 377 | |
| 378 | if (params.conversation_mode) { |
| 379 | if (params.single_turn && !params.prompt.empty()) { |
| 380 | params.interactive = false; |
| 381 | params.interactive_first = false; |
| 382 | } else { |
| 383 | params.interactive_first = true; |
| 384 | } |
| 385 | } |
| 386 | |
| 387 | // enable interactive mode if interactive start is specified |
| 388 | if (params.interactive_first) { |
| 389 | params.interactive = true; |
| 390 | } |
| 391 | |
| 392 | if (params.verbose_prompt) { |
| 393 | LOG_INF("%s: prompt: '%s'\n" , __func__, params.prompt.c_str()); |
| 394 | LOG_INF("%s: number of tokens in prompt = %zu\n" , __func__, embd_inp.size()); |
| 395 | for (int i = 0; i < (int) embd_inp.size(); i++) { |
| 396 | LOG_INF("%6d -> '%s'\n" , embd_inp[i], common_token_to_piece(ctx, embd_inp[i]).c_str()); |
| 397 | } |
| 398 | |
| 399 | if (params.n_keep > add_bos) { |
| 400 | LOG_INF("%s: static prompt based on n_keep: '" , __func__); |
| 401 | for (int i = 0; i < params.n_keep; i++) { |
| 402 | LOG_CNT("%s" , common_token_to_piece(ctx, embd_inp[i]).c_str()); |
| 403 | } |
| 404 | LOG_CNT("'\n" ); |
| 405 | } |
| 406 | LOG_INF("\n" ); |
| 407 | } |
| 408 | |
| 409 | // ctrl+C handling |
| 410 | { |
| 411 | #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) |
| 412 | struct sigaction sigint_action; |
| 413 | sigint_action.sa_handler = sigint_handler; |
| 414 | sigemptyset (set: &sigint_action.sa_mask); |
| 415 | sigint_action.sa_flags = 0; |
| 416 | sigaction(SIGINT, act: &sigint_action, NULL); |
| 417 | #elif defined (_WIN32) |
| 418 | auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL { |
| 419 | return (ctrl_type == CTRL_C_EVENT) ? (sigint_handler(SIGINT), true) : false; |
| 420 | }; |
| 421 | SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true); |
| 422 | #endif |
| 423 | } |
| 424 | |
| 425 | if (params.interactive) { |
| 426 | LOG_INF("%s: interactive mode on.\n" , __func__); |
| 427 | |
| 428 | if (!params.antiprompt.empty()) { |
| 429 | for (const auto & antiprompt : params.antiprompt) { |
| 430 | LOG_INF("Reverse prompt: '%s'\n" , antiprompt.c_str()); |
| 431 | if (params.verbose_prompt) { |
| 432 | auto tmp = common_tokenize(ctx, text: antiprompt, add_special: false, parse_special: true); |
| 433 | for (int i = 0; i < (int) tmp.size(); i++) { |
| 434 | LOG_INF("%6d -> '%s'\n" , tmp[i], common_token_to_piece(ctx, tmp[i]).c_str()); |
| 435 | } |
| 436 | } |
| 437 | } |
| 438 | } |
| 439 | |
| 440 | if (params.input_prefix_bos) { |
| 441 | LOG_INF("Input prefix with BOS\n" ); |
| 442 | } |
| 443 | |
| 444 | if (!params.input_prefix.empty()) { |
| 445 | LOG_INF("Input prefix: '%s'\n" , params.input_prefix.c_str()); |
| 446 | if (params.verbose_prompt) { |
| 447 | auto tmp = common_tokenize(ctx, text: params.input_prefix, add_special: true, parse_special: true); |
| 448 | for (int i = 0; i < (int) tmp.size(); i++) { |
| 449 | LOG_INF("%6d -> '%s'\n" , tmp[i], common_token_to_piece(ctx, tmp[i]).c_str()); |
| 450 | } |
| 451 | } |
| 452 | } |
| 453 | |
| 454 | if (!params.input_suffix.empty()) { |
| 455 | LOG_INF("Input suffix: '%s'\n" , params.input_suffix.c_str()); |
| 456 | if (params.verbose_prompt) { |
| 457 | auto tmp = common_tokenize(ctx, text: params.input_suffix, add_special: false, parse_special: true); |
| 458 | for (int i = 0; i < (int) tmp.size(); i++) { |
| 459 | LOG_INF("%6d -> '%s'\n" , tmp[i], common_token_to_piece(ctx, tmp[i]).c_str()); |
| 460 | } |
| 461 | } |
| 462 | } |
| 463 | } |
| 464 | |
| 465 | smpl = common_sampler_init(model, params: sparams); |
| 466 | if (!smpl) { |
| 467 | LOG_ERR("%s: failed to initialize sampling subsystem\n" , __func__); |
| 468 | return 1; |
| 469 | } |
| 470 | |
| 471 | LOG_INF("sampler seed: %u\n" , common_sampler_get_seed(smpl)); |
| 472 | LOG_INF("sampler params: \n%s\n" , sparams.print().c_str()); |
| 473 | LOG_INF("sampler chain: %s\n" , common_sampler_print(smpl).c_str()); |
| 474 | |
| 475 | LOG_INF("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n" , n_ctx, params.n_batch, params.n_predict, params.n_keep); |
| 476 | |
| 477 | // group-attention state |
| 478 | // number of grouped KV tokens so far (used only if params.grp_attn_n > 1) |
| 479 | int ga_i = 0; |
| 480 | |
| 481 | const int ga_n = params.grp_attn_n; |
| 482 | const int ga_w = params.grp_attn_w; |
| 483 | |
| 484 | if (ga_n != 1) { |
| 485 | GGML_ASSERT(ga_n > 0 && "grp_attn_n must be positive" ); // NOLINT |
| 486 | GGML_ASSERT(ga_w % ga_n == 0 && "grp_attn_w must be a multiple of grp_attn_n" ); // NOLINT |
| 487 | //GGML_ASSERT(n_ctx_train % ga_w == 0 && "n_ctx_train must be a multiple of grp_attn_w"); // NOLINT |
| 488 | //GGML_ASSERT(n_ctx >= n_ctx_train * ga_n && "n_ctx must be at least n_ctx_train * grp_attn_n"); // NOLINT |
| 489 | LOG_INF("self-extend: n_ctx_train = %d, grp_attn_n = %d, grp_attn_w = %d\n" , n_ctx_train, ga_n, ga_w); |
| 490 | } |
| 491 | LOG_INF("\n" ); |
| 492 | |
| 493 | if (params.interactive) { |
| 494 | const char * control_message; |
| 495 | if (params.multiline_input) { |
| 496 | control_message = " - To return control to the AI, end your input with '\\'.\n" |
| 497 | " - To return control without starting a new line, end your input with '/'.\n" ; |
| 498 | } else { |
| 499 | control_message = " - Press Return to return control to the AI.\n" |
| 500 | " - To return control without starting a new line, end your input with '/'.\n" |
| 501 | " - If you want to submit another line, end your input with '\\'.\n" ; |
| 502 | } |
| 503 | LOG_INF("== Running in interactive mode. ==\n" ); |
| 504 | #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32) |
| 505 | LOG_INF( " - Press Ctrl+C to interject at any time.\n" ); |
| 506 | #endif |
| 507 | LOG_INF( "%s" , control_message); |
| 508 | if (params.conversation_mode && params.enable_chat_template && params.system_prompt.empty()) { |
| 509 | LOG_INF( " - Not using system message. To change it, set a different value via -sys PROMPT\n" ); |
| 510 | } |
| 511 | LOG_INF("\n" ); |
| 512 | |
| 513 | is_interacting = params.interactive_first; |
| 514 | } |
| 515 | |
| 516 | bool is_antiprompt = false; |
| 517 | bool input_echo = true; |
| 518 | bool display = true; |
| 519 | bool need_to_save_session = !path_session.empty() && n_matching_session_tokens < embd_inp.size(); |
| 520 | |
| 521 | int n_past = 0; |
| 522 | int n_remain = params.n_predict; |
| 523 | int n_consumed = 0; |
| 524 | int n_session_consumed = 0; |
| 525 | |
| 526 | std::vector<int> input_tokens; g_input_tokens = &input_tokens; |
| 527 | std::vector<int> output_tokens; g_output_tokens = &output_tokens; |
| 528 | std::ostringstream output_ss; g_output_ss = &output_ss; |
| 529 | std::ostringstream assistant_ss; // for storing current assistant message, used in conversation mode |
| 530 | |
| 531 | // the first thing we will do is to output the prompt, so set color accordingly |
| 532 | console::set_display(console::prompt); |
| 533 | display = params.display_prompt; |
| 534 | |
| 535 | std::vector<llama_token> embd; |
| 536 | |
| 537 | // single-token antiprompts |
| 538 | std::vector<llama_token> antiprompt_token; |
| 539 | |
| 540 | for (const std::string & antiprompt : params.antiprompt) { |
| 541 | auto ids = ::common_tokenize(ctx, text: antiprompt, add_special: false, parse_special: true); |
| 542 | if (ids.size() == 1) { |
| 543 | antiprompt_token.push_back(x: ids[0]); |
| 544 | } |
| 545 | } |
| 546 | |
| 547 | if (llama_model_has_encoder(model)) { |
| 548 | int enc_input_size = embd_inp.size(); |
| 549 | llama_token * enc_input_buf = embd_inp.data(); |
| 550 | |
| 551 | if (llama_encode(ctx, batch: llama_batch_get_one(tokens: enc_input_buf, n_tokens: enc_input_size))) { |
| 552 | LOG_ERR("%s : failed to eval\n" , __func__); |
| 553 | return 1; |
| 554 | } |
| 555 | |
| 556 | llama_token decoder_start_token_id = llama_model_decoder_start_token(model); |
| 557 | if (decoder_start_token_id == LLAMA_TOKEN_NULL) { |
| 558 | decoder_start_token_id = llama_vocab_bos(vocab); |
| 559 | } |
| 560 | |
| 561 | embd_inp.clear(); |
| 562 | embd_inp.push_back(x: decoder_start_token_id); |
| 563 | } |
| 564 | |
| 565 | while ((n_remain != 0 && !is_antiprompt) || params.interactive) { |
| 566 | // predict |
| 567 | if (!embd.empty()) { |
| 568 | // Note: (n_ctx - 4) here is to match the logic for commandline prompt handling via |
| 569 | // --prompt or --file which uses the same value. |
| 570 | int max_embd_size = n_ctx - 4; |
| 571 | |
| 572 | // Ensure the input doesn't exceed the context size by truncating embd if necessary. |
| 573 | if ((int) embd.size() > max_embd_size) { |
| 574 | const int skipped_tokens = (int) embd.size() - max_embd_size; |
| 575 | embd.resize(new_size: max_embd_size); |
| 576 | |
| 577 | console::set_display(console::error); |
| 578 | LOG_WRN("<<input too long: skipped %d token%s>>" , skipped_tokens, skipped_tokens != 1 ? "s" : "" ); |
| 579 | console::set_display(console::reset); |
| 580 | } |
| 581 | |
| 582 | if (ga_n == 1) { |
| 583 | // infinite text generation via context shifting |
| 584 | // if we run out of context: |
| 585 | // - take the n_keep first tokens from the original prompt (via n_past) |
| 586 | // - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches |
| 587 | |
| 588 | if (n_past + (int) embd.size() >= n_ctx) { |
| 589 | if (!params.ctx_shift){ |
| 590 | LOG_WRN("\n\n%s: context full and context shift is disabled => stopping\n" , __func__); |
| 591 | break; |
| 592 | } |
| 593 | |
| 594 | if (params.n_predict == -2) { |
| 595 | LOG_WRN("\n\n%s: context full and n_predict == %d => stopping\n" , __func__, params.n_predict); |
| 596 | break; |
| 597 | } |
| 598 | |
| 599 | const int n_left = n_past - params.n_keep; |
| 600 | const int n_discard = n_left/2; |
| 601 | |
| 602 | LOG_DBG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n" , |
| 603 | n_past, n_left, n_ctx, params.n_keep, n_discard); |
| 604 | |
| 605 | llama_memory_seq_rm (mem, seq_id: 0, p0: params.n_keep , p1: params.n_keep + n_discard); |
| 606 | llama_memory_seq_add(mem, seq_id: 0, p0: params.n_keep + n_discard, p1: n_past, delta: -n_discard); |
| 607 | |
| 608 | n_past -= n_discard; |
| 609 | |
| 610 | LOG_DBG("after swap: n_past = %d\n" , n_past); |
| 611 | |
| 612 | LOG_DBG("embd: %s\n" , string_from(ctx, embd).c_str()); |
| 613 | |
| 614 | LOG_DBG("clear session path\n" ); |
| 615 | path_session.clear(); |
| 616 | } |
| 617 | } else { |
| 618 | // context extension via Self-Extend |
| 619 | while (n_past >= ga_i + ga_w) { |
| 620 | const int ib = (ga_n*ga_i)/ga_w; |
| 621 | const int bd = (ga_w/ga_n)*(ga_n - 1); |
| 622 | const int dd = (ga_w/ga_n) - ib*bd - ga_w; |
| 623 | |
| 624 | LOG_DBG("\n" ); |
| 625 | LOG_DBG("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n" , ga_i, n_past, ib*bd, ga_i + ib*bd, n_past + ib*bd); |
| 626 | LOG_DBG("div: [%6d, %6d] / %6d -> [%6d, %6d]\n" , ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n, (ga_i + ib*bd)/ga_n, (ga_i + ib*bd + ga_w)/ga_n); |
| 627 | LOG_DBG("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n" , ga_i + ib*bd + ga_w, n_past + ib*bd, dd, ga_i + ib*bd + ga_w + dd, n_past + ib*bd + dd); |
| 628 | |
| 629 | llama_memory_seq_add(mem, seq_id: 0, p0: ga_i, p1: n_past, delta: ib*bd); |
| 630 | llama_memory_seq_div(mem, seq_id: 0, p0: ga_i + ib*bd, p1: ga_i + ib*bd + ga_w, d: ga_n); |
| 631 | llama_memory_seq_add(mem, seq_id: 0, p0: ga_i + ib*bd + ga_w, p1: n_past + ib*bd, delta: dd); |
| 632 | |
| 633 | n_past -= bd; |
| 634 | |
| 635 | ga_i += ga_w/ga_n; |
| 636 | |
| 637 | LOG_DBG("\nn_past_old = %d, n_past = %d, ga_i = %d\n\n" , n_past + bd, n_past, ga_i); |
| 638 | } |
| 639 | } |
| 640 | |
| 641 | // try to reuse a matching prefix from the loaded session instead of re-eval (via n_past) |
| 642 | if (n_session_consumed < (int) session_tokens.size()) { |
| 643 | size_t i = 0; |
| 644 | for ( ; i < embd.size(); i++) { |
| 645 | if (embd[i] != session_tokens[n_session_consumed]) { |
| 646 | session_tokens.resize(new_size: n_session_consumed); |
| 647 | break; |
| 648 | } |
| 649 | |
| 650 | n_past++; |
| 651 | n_session_consumed++; |
| 652 | |
| 653 | if (n_session_consumed >= (int) session_tokens.size()) { |
| 654 | ++i; |
| 655 | break; |
| 656 | } |
| 657 | } |
| 658 | if (i > 0) { |
| 659 | embd.erase(first: embd.begin(), last: embd.begin() + i); |
| 660 | } |
| 661 | } |
| 662 | |
| 663 | for (int i = 0; i < (int) embd.size(); i += params.n_batch) { |
| 664 | int n_eval = (int) embd.size() - i; |
| 665 | if (n_eval > params.n_batch) { |
| 666 | n_eval = params.n_batch; |
| 667 | } |
| 668 | |
| 669 | LOG_DBG("eval: %s\n" , string_from(ctx, embd).c_str()); |
| 670 | |
| 671 | if (llama_decode(ctx, batch: llama_batch_get_one(tokens: &embd[i], n_tokens: n_eval))) { |
| 672 | LOG_ERR("%s : failed to eval\n" , __func__); |
| 673 | return 1; |
| 674 | } |
| 675 | |
| 676 | n_past += n_eval; |
| 677 | |
| 678 | LOG_DBG("n_past = %d\n" , n_past); |
| 679 | // Display total tokens alongside total time |
| 680 | if (params.n_print > 0 && n_past % params.n_print == 0) { |
| 681 | LOG_DBG("\n\033[31mTokens consumed so far = %d / %d \033[0m\n" , n_past, n_ctx); |
| 682 | } |
| 683 | } |
| 684 | |
| 685 | if (!embd.empty() && !path_session.empty()) { |
| 686 | session_tokens.insert(position: session_tokens.end(), first: embd.begin(), last: embd.end()); |
| 687 | n_session_consumed = session_tokens.size(); |
| 688 | } |
| 689 | } |
| 690 | |
| 691 | embd.clear(); |
| 692 | |
| 693 | if ((int) embd_inp.size() <= n_consumed && !is_interacting) { |
| 694 | // optionally save the session on first sample (for faster prompt loading next time) |
| 695 | if (!path_session.empty() && need_to_save_session && !params.prompt_cache_ro) { |
| 696 | need_to_save_session = false; |
| 697 | llama_state_save_file(ctx, path_session: path_session.c_str(), tokens: session_tokens.data(), n_token_count: session_tokens.size()); |
| 698 | |
| 699 | LOG_DBG("saved session to %s\n" , path_session.c_str()); |
| 700 | } |
| 701 | |
| 702 | const llama_token id = common_sampler_sample(gsmpl: smpl, ctx, idx: -1); |
| 703 | |
| 704 | common_sampler_accept(gsmpl: smpl, token: id, /* accept_grammar= */ true); |
| 705 | |
| 706 | // LOG_DBG("last: %s\n", string_from(ctx, smpl->prev.to_vector()).c_str()); |
| 707 | |
| 708 | embd.push_back(x: id); |
| 709 | |
| 710 | if (params.conversation_mode && !waiting_for_first_input && !llama_vocab_is_eog(vocab, token: id)) { |
| 711 | assistant_ss << common_token_to_piece(ctx, token: id, special: false); |
| 712 | } |
| 713 | |
| 714 | // echo this to console |
| 715 | input_echo = true; |
| 716 | |
| 717 | // decrement remaining sampling budget |
| 718 | --n_remain; |
| 719 | |
| 720 | LOG_DBG("n_remain: %d\n" , n_remain); |
| 721 | } else { |
| 722 | // some user input remains from prompt or interaction, forward it to processing |
| 723 | LOG_DBG("embd_inp.size(): %d, n_consumed: %d\n" , (int) embd_inp.size(), n_consumed); |
| 724 | while ((int) embd_inp.size() > n_consumed) { |
| 725 | embd.push_back(x: embd_inp[n_consumed]); |
| 726 | |
| 727 | // push the prompt in the sampling context in order to apply repetition penalties later |
| 728 | // for the prompt, we don't apply grammar rules |
| 729 | common_sampler_accept(gsmpl: smpl, token: embd_inp[n_consumed], /* accept_grammar= */ false); |
| 730 | |
| 731 | ++n_consumed; |
| 732 | if ((int) embd.size() >= params.n_batch) { |
| 733 | break; |
| 734 | } |
| 735 | } |
| 736 | } |
| 737 | |
| 738 | // display text |
| 739 | if (input_echo && display) { |
| 740 | for (auto id : embd) { |
| 741 | const std::string token_str = common_token_to_piece(ctx, token: id, special: params.special); |
| 742 | |
| 743 | // Console/Stream Output |
| 744 | LOG("%s" , token_str.c_str()); |
| 745 | |
| 746 | // Record Displayed Tokens To Log |
| 747 | // Note: Generated tokens are created one by one hence this check |
| 748 | if (embd.size() > 1) { |
| 749 | // Incoming Requested Tokens |
| 750 | input_tokens.push_back(x: id); |
| 751 | } else { |
| 752 | // Outgoing Generated Tokens |
| 753 | output_tokens.push_back(x: id); |
| 754 | output_ss << token_str; |
| 755 | } |
| 756 | } |
| 757 | } |
| 758 | |
| 759 | // reset color to default if there is no pending user input |
| 760 | if (input_echo && (int) embd_inp.size() == n_consumed) { |
| 761 | console::set_display(console::reset); |
| 762 | display = true; |
| 763 | } |
| 764 | |
| 765 | // if not currently processing queued inputs; |
| 766 | if ((int) embd_inp.size() <= n_consumed) { |
| 767 | // check for reverse prompt in the last n_prev tokens |
| 768 | if (!params.antiprompt.empty()) { |
| 769 | const int n_prev = 32; |
| 770 | const std::string last_output = common_sampler_prev_str(gsmpl: smpl, ctx, n: n_prev); |
| 771 | |
| 772 | is_antiprompt = false; |
| 773 | // Check if each of the reverse prompts appears at the end of the output. |
| 774 | // If we're not running interactively, the reverse prompt might be tokenized with some following characters |
| 775 | // so we'll compensate for that by widening the search window a bit. |
| 776 | for (std::string & antiprompt : params.antiprompt) { |
| 777 | size_t = params.interactive ? 0 : 2; |
| 778 | size_t search_start_pos = last_output.length() > static_cast<size_t>(antiprompt.length() + extra_padding) |
| 779 | ? last_output.length() - static_cast<size_t>(antiprompt.length() + extra_padding) |
| 780 | : 0; |
| 781 | |
| 782 | if (last_output.find(str: antiprompt, pos: search_start_pos) != std::string::npos) { |
| 783 | if (params.interactive) { |
| 784 | is_interacting = true; |
| 785 | } |
| 786 | is_antiprompt = true; |
| 787 | break; |
| 788 | } |
| 789 | } |
| 790 | |
| 791 | // check for reverse prompt using special tokens |
| 792 | // avoid calling common_sampler_last() if last_output is empty |
| 793 | if (!last_output.empty()) { |
| 794 | llama_token last_token = common_sampler_last(gsmpl: smpl); |
| 795 | for (auto token : antiprompt_token) { |
| 796 | if (token == last_token) { |
| 797 | if (params.interactive) { |
| 798 | is_interacting = true; |
| 799 | } |
| 800 | is_antiprompt = true; |
| 801 | break; |
| 802 | } |
| 803 | } |
| 804 | } |
| 805 | |
| 806 | if (is_antiprompt) { |
| 807 | LOG_DBG("found antiprompt: %s\n" , last_output.c_str()); |
| 808 | } |
| 809 | } |
| 810 | |
| 811 | // deal with end of generation tokens in interactive mode |
| 812 | if (!waiting_for_first_input && llama_vocab_is_eog(vocab, token: common_sampler_last(gsmpl: smpl))) { |
| 813 | LOG_DBG("found an EOG token\n" ); |
| 814 | |
| 815 | if (params.interactive) { |
| 816 | if (!params.antiprompt.empty()) { |
| 817 | // tokenize and inject first reverse prompt |
| 818 | const auto first_antiprompt = common_tokenize(ctx, text: params.antiprompt.front(), add_special: false, parse_special: true); |
| 819 | embd_inp.insert(position: embd_inp.end(), first: first_antiprompt.begin(), last: first_antiprompt.end()); |
| 820 | is_antiprompt = true; |
| 821 | } |
| 822 | |
| 823 | if (params.enable_chat_template) { |
| 824 | chat_add_and_format("assistant" , assistant_ss.str()); |
| 825 | } |
| 826 | is_interacting = true; |
| 827 | LOG("\n" ); |
| 828 | } |
| 829 | } |
| 830 | |
| 831 | if (params.conversation_mode && !waiting_for_first_input) { |
| 832 | if (!prompt.empty()) { |
| 833 | prompt.clear(); |
| 834 | is_interacting = false; |
| 835 | } |
| 836 | } |
| 837 | |
| 838 | if ((n_past > 0 || waiting_for_first_input) && is_interacting) { |
| 839 | LOG_DBG("waiting for user input\n" ); |
| 840 | |
| 841 | if (params.conversation_mode) { |
| 842 | LOG("\n> " ); |
| 843 | } |
| 844 | |
| 845 | if (params.input_prefix_bos) { |
| 846 | LOG_DBG("adding input prefix BOS token\n" ); |
| 847 | embd_inp.push_back(x: llama_vocab_bos(vocab)); |
| 848 | } |
| 849 | |
| 850 | std::string buffer; |
| 851 | if (!params.input_prefix.empty() && !params.conversation_mode) { |
| 852 | LOG_DBG("appending input prefix: '%s'\n" , params.input_prefix.c_str()); |
| 853 | LOG("%s" , params.input_prefix.c_str()); |
| 854 | } |
| 855 | |
| 856 | // color user input only |
| 857 | console::set_display(console::user_input); |
| 858 | display = params.display_prompt; |
| 859 | |
| 860 | std::string line; |
| 861 | bool another_line = true; |
| 862 | do { |
| 863 | another_line = console::readline(line, multiline_input: params.multiline_input); |
| 864 | buffer += line; |
| 865 | } while (another_line); |
| 866 | |
| 867 | // done taking input, reset color |
| 868 | console::set_display(console::reset); |
| 869 | display = true; |
| 870 | |
| 871 | if (buffer.empty()) { // Ctrl+D on empty line exits |
| 872 | LOG("EOF by user\n" ); |
| 873 | break; |
| 874 | } |
| 875 | |
| 876 | if (buffer.back() == '\n') { |
| 877 | // Implement #587: |
| 878 | // If the user wants the text to end in a newline, |
| 879 | // this should be accomplished by explicitly adding a newline by using \ followed by return, |
| 880 | // then returning control by pressing return again. |
| 881 | buffer.pop_back(); |
| 882 | } |
| 883 | |
| 884 | if (buffer.empty()) { // Enter key on empty line lets the user pass control back |
| 885 | LOG_DBG("empty line, passing control back\n" ); |
| 886 | } else { // Add tokens to embd only if the input buffer is non-empty |
| 887 | // append input suffix if any |
| 888 | if (!params.input_suffix.empty() && !params.conversation_mode) { |
| 889 | LOG_DBG("appending input suffix: '%s'\n" , params.input_suffix.c_str()); |
| 890 | LOG("%s" , params.input_suffix.c_str()); |
| 891 | } |
| 892 | |
| 893 | LOG_DBG("buffer: '%s'\n" , buffer.c_str()); |
| 894 | |
| 895 | const size_t original_size = embd_inp.size(); |
| 896 | |
| 897 | if (params.escape) { |
| 898 | string_process_escapes(input&: buffer); |
| 899 | } |
| 900 | |
| 901 | bool format_chat = params.conversation_mode && params.enable_chat_template; |
| 902 | std::string user_inp = format_chat |
| 903 | ? chat_add_and_format("user" , std::move(buffer)) |
| 904 | : std::move(buffer); |
| 905 | // TODO: one inconvenient of current chat template implementation is that we can't distinguish between user input and special tokens (prefix/postfix) |
| 906 | const auto line_pfx = common_tokenize(ctx, text: params.input_prefix, add_special: false, parse_special: true); |
| 907 | const auto line_inp = common_tokenize(ctx, text: user_inp, add_special: false, parse_special: format_chat); |
| 908 | const auto line_sfx = common_tokenize(ctx, text: params.input_suffix, add_special: false, parse_special: true); |
| 909 | |
| 910 | LOG_DBG("input tokens: %s\n" , string_from(ctx, line_inp).c_str()); |
| 911 | |
| 912 | // if user stop generation mid-way, we must add EOT to finish model's last response |
| 913 | if (need_insert_eot && format_chat) { |
| 914 | llama_token eot = llama_vocab_eot(vocab); |
| 915 | embd_inp.push_back(x: eot == LLAMA_TOKEN_NULL ? llama_vocab_eos(vocab) : eot); |
| 916 | need_insert_eot = false; |
| 917 | } |
| 918 | |
| 919 | embd_inp.insert(position: embd_inp.end(), first: line_pfx.begin(), last: line_pfx.end()); |
| 920 | embd_inp.insert(position: embd_inp.end(), first: line_inp.begin(), last: line_inp.end()); |
| 921 | embd_inp.insert(position: embd_inp.end(), first: line_sfx.begin(), last: line_sfx.end()); |
| 922 | |
| 923 | if (params.verbose_prompt) { |
| 924 | LOG_INF("%s: number of tokens in prompt = %zu\n" , __func__, embd_inp.size() - original_size); |
| 925 | } |
| 926 | |
| 927 | for (size_t i = original_size; i < embd_inp.size(); ++i) { |
| 928 | const llama_token token = embd_inp[i]; |
| 929 | const std::string token_str = common_token_to_piece(ctx, token); |
| 930 | output_tokens.push_back(x: token); |
| 931 | output_ss << token_str; |
| 932 | |
| 933 | if (params.verbose_prompt) { |
| 934 | LOG_INF("%6d -> '%s'\n" , token, token_str.c_str()); |
| 935 | } |
| 936 | } |
| 937 | |
| 938 | // reset assistant message |
| 939 | assistant_ss.str(s: "" ); |
| 940 | |
| 941 | n_remain -= line_inp.size(); |
| 942 | LOG_DBG("n_remain: %d\n" , n_remain); |
| 943 | } |
| 944 | |
| 945 | input_echo = false; // do not echo this again |
| 946 | } |
| 947 | |
| 948 | if (n_past > 0 || waiting_for_first_input) { |
| 949 | if (is_interacting) { |
| 950 | common_sampler_reset(gsmpl: smpl); |
| 951 | } |
| 952 | is_interacting = false; |
| 953 | |
| 954 | if (waiting_for_first_input && params.single_turn) { |
| 955 | params.interactive = false; |
| 956 | params.interactive_first = false; |
| 957 | } |
| 958 | waiting_for_first_input = false; |
| 959 | } |
| 960 | } |
| 961 | |
| 962 | // end of generation |
| 963 | if (!embd.empty() && llama_vocab_is_eog(vocab, token: embd.back()) && !(params.interactive)) { |
| 964 | LOG(" [end of text]\n" ); |
| 965 | break; |
| 966 | } |
| 967 | |
| 968 | // In interactive mode, respect the maximum number of tokens and drop back to user input when reached. |
| 969 | // We skip this logic when n_predict == -1 (infinite) or -2 (stop at context size). |
| 970 | if (params.interactive && n_remain <= 0 && params.n_predict >= 0) { |
| 971 | n_remain = params.n_predict; |
| 972 | is_interacting = true; |
| 973 | } |
| 974 | } |
| 975 | |
| 976 | if (!path_session.empty() && params.prompt_cache_all && !params.prompt_cache_ro) { |
| 977 | LOG("\n%s: saving final output to session file '%s'\n" , __func__, path_session.c_str()); |
| 978 | llama_state_save_file(ctx, path_session: path_session.c_str(), tokens: session_tokens.data(), n_token_count: session_tokens.size()); |
| 979 | } |
| 980 | |
| 981 | LOG("\n\n" ); |
| 982 | common_perf_print(ctx, gsmpl: smpl); |
| 983 | |
| 984 | common_sampler_free(gsmpl: smpl); |
| 985 | |
| 986 | llama_backend_free(); |
| 987 | |
| 988 | ggml_threadpool_free_fn(threadpool); |
| 989 | ggml_threadpool_free_fn(threadpool_batch); |
| 990 | |
| 991 | return 0; |
| 992 | } |
| 993 | |