1 | //===--- InlayHints.cpp ------------------------------------------*- C++-*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | #include "InlayHints.h" |
9 | #include "../clang-tidy/utils/DesignatedInitializers.h" |
10 | #include "AST.h" |
11 | #include "Config.h" |
12 | #include "ParsedAST.h" |
13 | #include "Protocol.h" |
14 | #include "SourceCode.h" |
15 | #include "clang/AST/ASTDiagnostic.h" |
16 | #include "clang/AST/Decl.h" |
17 | #include "clang/AST/DeclBase.h" |
18 | #include "clang/AST/DeclarationName.h" |
19 | #include "clang/AST/Expr.h" |
20 | #include "clang/AST/ExprCXX.h" |
21 | #include "clang/AST/RecursiveASTVisitor.h" |
22 | #include "clang/AST/Stmt.h" |
23 | #include "clang/AST/StmtVisitor.h" |
24 | #include "clang/AST/Type.h" |
25 | #include "clang/Basic/Builtins.h" |
26 | #include "clang/Basic/OperatorKinds.h" |
27 | #include "clang/Basic/SourceLocation.h" |
28 | #include "clang/Basic/SourceManager.h" |
29 | #include "clang/Sema/HeuristicResolver.h" |
30 | #include "llvm/ADT/DenseSet.h" |
31 | #include "llvm/ADT/STLExtras.h" |
32 | #include "llvm/ADT/SmallVector.h" |
33 | #include "llvm/ADT/StringExtras.h" |
34 | #include "llvm/ADT/StringRef.h" |
35 | #include "llvm/ADT/Twine.h" |
36 | #include "llvm/Support/Casting.h" |
37 | #include "llvm/Support/ErrorHandling.h" |
38 | #include "llvm/Support/FormatVariadic.h" |
39 | #include "llvm/Support/SaveAndRestore.h" |
40 | #include "llvm/Support/ScopedPrinter.h" |
41 | #include "llvm/Support/raw_ostream.h" |
42 | #include <algorithm> |
43 | #include <iterator> |
44 | #include <optional> |
45 | #include <string> |
46 | |
47 | namespace clang { |
48 | namespace clangd { |
49 | namespace { |
50 | |
51 | // For now, inlay hints are always anchored at the left or right of their range. |
52 | enum class HintSide { Left, Right }; |
53 | |
54 | void stripLeadingUnderscores(StringRef &Name) { Name = Name.ltrim(Char: '_'); } |
55 | |
56 | // getDeclForType() returns the decl responsible for Type's spelling. |
57 | // This is the inverse of ASTContext::getTypeDeclType(). |
58 | template <typename Ty, typename = decltype(((Ty *)nullptr)->getDecl())> |
59 | const NamedDecl *getDeclForTypeImpl(const Ty *T) { |
60 | return T->getDecl(); |
61 | } |
62 | const NamedDecl *getDeclForTypeImpl(const void *T) { return nullptr; } |
63 | const NamedDecl *getDeclForType(const Type *T) { |
64 | switch (T->getTypeClass()) { |
65 | #define ABSTRACT_TYPE(TY, BASE) |
66 | #define TYPE(TY, BASE) \ |
67 | case Type::TY: \ |
68 | return getDeclForTypeImpl(llvm::cast<TY##Type>(T)); |
69 | #include "clang/AST/TypeNodes.inc" |
70 | } |
71 | llvm_unreachable("Unknown TypeClass enum" ); |
72 | } |
73 | |
74 | // getSimpleName() returns the plain identifier for an entity, if any. |
75 | llvm::StringRef getSimpleName(const DeclarationName &DN) { |
76 | if (IdentifierInfo *Ident = DN.getAsIdentifierInfo()) |
77 | return Ident->getName(); |
78 | return "" ; |
79 | } |
80 | llvm::StringRef getSimpleName(const NamedDecl &D) { |
81 | return getSimpleName(DN: D.getDeclName()); |
82 | } |
83 | llvm::StringRef getSimpleName(QualType T) { |
84 | if (const auto *ET = llvm::dyn_cast<ElaboratedType>(T)) |
85 | return getSimpleName(ET->getNamedType()); |
86 | if (const auto *BT = llvm::dyn_cast<BuiltinType>(T)) { |
87 | PrintingPolicy PP(LangOptions{}); |
88 | PP.adjustForCPlusPlus(); |
89 | return BT->getName(PP); |
90 | } |
91 | if (const auto *D = getDeclForType(T: T.getTypePtr())) |
92 | return getSimpleName(DN: D->getDeclName()); |
93 | return "" ; |
94 | } |
95 | |
96 | // Returns a very abbreviated form of an expression, or "" if it's too complex. |
97 | // For example: `foo->bar()` would produce "bar". |
98 | // This is used to summarize e.g. the condition of a while loop. |
99 | std::string summarizeExpr(const Expr *E) { |
100 | struct Namer : ConstStmtVisitor<Namer, std::string> { |
101 | std::string Visit(const Expr *E) { |
102 | if (E == nullptr) |
103 | return "" ; |
104 | return ConstStmtVisitor::Visit(E->IgnoreImplicit()); |
105 | } |
106 | |
107 | // Any sort of decl reference, we just use the unqualified name. |
108 | std::string VisitMemberExpr(const MemberExpr *E) { |
109 | return getSimpleName(*E->getMemberDecl()).str(); |
110 | } |
111 | std::string VisitDeclRefExpr(const DeclRefExpr *E) { |
112 | return getSimpleName(D: *E->getFoundDecl()).str(); |
113 | } |
114 | std::string VisitCallExpr(const CallExpr *E) { |
115 | return Visit(E: E->getCallee()); |
116 | } |
117 | std::string |
118 | VisitCXXDependentScopeMemberExpr(const CXXDependentScopeMemberExpr *E) { |
119 | return getSimpleName(DN: E->getMember()).str(); |
120 | } |
121 | std::string |
122 | VisitDependentScopeDeclRefExpr(const DependentScopeDeclRefExpr *E) { |
123 | return getSimpleName(DN: E->getDeclName()).str(); |
124 | } |
125 | std::string VisitCXXFunctionalCastExpr(const CXXFunctionalCastExpr *E) { |
126 | return getSimpleName(E->getType()).str(); |
127 | } |
128 | std::string VisitCXXTemporaryObjectExpr(const CXXTemporaryObjectExpr *E) { |
129 | return getSimpleName(E->getType()).str(); |
130 | } |
131 | |
132 | // Step through implicit nodes that clang doesn't classify as such. |
133 | std::string VisitCXXMemberCallExpr(const CXXMemberCallExpr *E) { |
134 | // Call to operator bool() inside if (X): dispatch to X. |
135 | if (E->getNumArgs() == 0 && E->getMethodDecl() && |
136 | E->getMethodDecl()->getDeclName().getNameKind() == |
137 | DeclarationName::CXXConversionFunctionName && |
138 | E->getSourceRange() == |
139 | E->getImplicitObjectArgument()->getSourceRange()) |
140 | return Visit(E: E->getImplicitObjectArgument()); |
141 | return ConstStmtVisitor::VisitCXXMemberCallExpr(E); |
142 | } |
143 | std::string VisitCXXConstructExpr(const CXXConstructExpr *E) { |
144 | if (E->getNumArgs() == 1) |
145 | return Visit(E: E->getArg(Arg: 0)); |
146 | return "" ; |
147 | } |
148 | |
149 | // Literals are just printed |
150 | std::string VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { |
151 | return E->getValue() ? "true" : "false" ; |
152 | } |
153 | std::string VisitIntegerLiteral(const IntegerLiteral *E) { |
154 | return llvm::to_string(E->getValue()); |
155 | } |
156 | std::string VisitFloatingLiteral(const FloatingLiteral *E) { |
157 | std::string Result; |
158 | llvm::raw_string_ostream OS(Result); |
159 | E->getValue().print(OS); |
160 | // Printer adds newlines?! |
161 | Result.resize(n: llvm::StringRef(Result).rtrim().size()); |
162 | return Result; |
163 | } |
164 | std::string VisitStringLiteral(const StringLiteral *E) { |
165 | std::string Result = "\"" ; |
166 | if (E->containsNonAscii()) { |
167 | Result += "..." ; |
168 | } else if (E->getLength() > 10) { |
169 | Result += E->getString().take_front(N: 7); |
170 | Result += "..." ; |
171 | } else { |
172 | llvm::raw_string_ostream OS(Result); |
173 | llvm::printEscapedString(Name: E->getString(), Out&: OS); |
174 | } |
175 | Result.push_back(c: '"'); |
176 | return Result; |
177 | } |
178 | |
179 | // Simple operators. Motivating cases are `!x` and `I < Length`. |
180 | std::string printUnary(llvm::StringRef Spelling, const Expr *Operand, |
181 | bool Prefix) { |
182 | std::string Sub = Visit(E: Operand); |
183 | if (Sub.empty()) |
184 | return "" ; |
185 | if (Prefix) |
186 | return (Spelling + Sub).str(); |
187 | Sub += Spelling; |
188 | return Sub; |
189 | } |
190 | bool InsideBinary = false; // No recursing into binary expressions. |
191 | std::string printBinary(llvm::StringRef Spelling, const Expr *LHSOp, |
192 | const Expr *RHSOp) { |
193 | if (InsideBinary) |
194 | return "" ; |
195 | llvm::SaveAndRestore InBinary(InsideBinary, true); |
196 | |
197 | std::string LHS = Visit(E: LHSOp); |
198 | std::string RHS = Visit(E: RHSOp); |
199 | if (LHS.empty() && RHS.empty()) |
200 | return "" ; |
201 | |
202 | if (LHS.empty()) |
203 | LHS = "..." ; |
204 | LHS.push_back(c: ' '); |
205 | LHS += Spelling; |
206 | LHS.push_back(c: ' '); |
207 | if (RHS.empty()) |
208 | LHS += "..." ; |
209 | else |
210 | LHS += RHS; |
211 | return LHS; |
212 | } |
213 | std::string VisitUnaryOperator(const UnaryOperator *E) { |
214 | return printUnary(Spelling: E->getOpcodeStr(Op: E->getOpcode()), Operand: E->getSubExpr(), |
215 | Prefix: !E->isPostfix()); |
216 | } |
217 | std::string VisitBinaryOperator(const BinaryOperator *E) { |
218 | return printBinary(Spelling: E->getOpcodeStr(Op: E->getOpcode()), LHSOp: E->getLHS(), |
219 | RHSOp: E->getRHS()); |
220 | } |
221 | std::string VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *E) { |
222 | const char *Spelling = getOperatorSpelling(Operator: E->getOperator()); |
223 | // Handle weird unary-that-look-like-binary postfix operators. |
224 | if ((E->getOperator() == OO_PlusPlus || |
225 | E->getOperator() == OO_MinusMinus) && |
226 | E->getNumArgs() == 2) |
227 | return printUnary(Spelling, Operand: E->getArg(0), Prefix: false); |
228 | if (E->isInfixBinaryOp()) |
229 | return printBinary(Spelling, LHSOp: E->getArg(0), RHSOp: E->getArg(1)); |
230 | if (E->getNumArgs() == 1) { |
231 | switch (E->getOperator()) { |
232 | case OO_Plus: |
233 | case OO_Minus: |
234 | case OO_Star: |
235 | case OO_Amp: |
236 | case OO_Tilde: |
237 | case OO_Exclaim: |
238 | case OO_PlusPlus: |
239 | case OO_MinusMinus: |
240 | return printUnary(Spelling, Operand: E->getArg(0), Prefix: true); |
241 | default: |
242 | break; |
243 | } |
244 | } |
245 | return "" ; |
246 | } |
247 | }; |
248 | return Namer{}.Visit(E); |
249 | } |
250 | |
251 | // Determines if any intermediate type in desugaring QualType QT is of |
252 | // substituted template parameter type. Ignore pointer or reference wrappers. |
253 | bool isSugaredTemplateParameter(QualType QT) { |
254 | static auto PeelWrapper = [](QualType QT) { |
255 | // Neither `PointerType` nor `ReferenceType` is considered as sugared |
256 | // type. Peel it. |
257 | QualType Peeled = QT->getPointeeType(); |
258 | return Peeled.isNull() ? QT : Peeled; |
259 | }; |
260 | |
261 | // This is a bit tricky: we traverse the type structure and find whether or |
262 | // not a type in the desugaring process is of SubstTemplateTypeParmType. |
263 | // During the process, we may encounter pointer or reference types that are |
264 | // not marked as sugared; therefore, the desugar function won't apply. To |
265 | // move forward the traversal, we retrieve the pointees using |
266 | // QualType::getPointeeType(). |
267 | // |
268 | // However, getPointeeType could leap over our interests: The QT::getAs<T>() |
269 | // invoked would implicitly desugar the type. Consequently, if the |
270 | // SubstTemplateTypeParmType is encompassed within a TypedefType, we may lose |
271 | // the chance to visit it. |
272 | // For example, given a QT that represents `std::vector<int *>::value_type`: |
273 | // `-ElaboratedType 'value_type' sugar |
274 | // `-TypedefType 'vector<int *>::value_type' sugar |
275 | // |-Typedef 'value_type' |
276 | // `-SubstTemplateTypeParmType 'int *' sugar class depth 0 index 0 T |
277 | // |-ClassTemplateSpecialization 'vector' |
278 | // `-PointerType 'int *' |
279 | // `-BuiltinType 'int' |
280 | // Applying `getPointeeType` to QT results in 'int', a child of our target |
281 | // node SubstTemplateTypeParmType. |
282 | // |
283 | // As such, we always prefer the desugared over the pointee for next type |
284 | // in the iteration. It could avoid the getPointeeType's implicit desugaring. |
285 | while (true) { |
286 | if (QT->getAs<SubstTemplateTypeParmType>()) |
287 | return true; |
288 | QualType Desugared = QT->getLocallyUnqualifiedSingleStepDesugaredType(); |
289 | if (Desugared != QT) |
290 | QT = Desugared; |
291 | else if (auto Peeled = PeelWrapper(Desugared); Peeled != QT) |
292 | QT = Peeled; |
293 | else |
294 | break; |
295 | } |
296 | return false; |
297 | } |
298 | |
299 | // A simple wrapper for `clang::desugarForDiagnostic` that provides optional |
300 | // semantic. |
301 | std::optional<QualType> desugar(ASTContext &AST, QualType QT) { |
302 | bool ShouldAKA = false; |
303 | auto Desugared = clang::desugarForDiagnostic(Context&: AST, QT, ShouldAKA); |
304 | if (!ShouldAKA) |
305 | return std::nullopt; |
306 | return Desugared; |
307 | } |
308 | |
309 | // Apply a series of heuristic methods to determine whether or not a QualType QT |
310 | // is suitable for desugaring (e.g. getting the real name behind the using-alias |
311 | // name). If so, return the desugared type. Otherwise, return the unchanged |
312 | // parameter QT. |
313 | // |
314 | // This could be refined further. See |
315 | // https://github.com/clangd/clangd/issues/1298. |
316 | QualType maybeDesugar(ASTContext &AST, QualType QT) { |
317 | // Prefer desugared type for name that aliases the template parameters. |
318 | // This can prevent things like printing opaque `: type` when accessing std |
319 | // containers. |
320 | if (isSugaredTemplateParameter(QT)) |
321 | return desugar(AST, QT).value_or(QT); |
322 | |
323 | // Prefer desugared type for `decltype(expr)` specifiers. |
324 | if (QT->isDecltypeType()) |
325 | return QT.getCanonicalType(); |
326 | if (const AutoType *AT = QT->getContainedAutoType()) |
327 | if (!AT->getDeducedType().isNull() && |
328 | AT->getDeducedType()->isDecltypeType()) |
329 | return QT.getCanonicalType(); |
330 | |
331 | return QT; |
332 | } |
333 | |
334 | // Given a callee expression `Fn`, if the call is through a function pointer, |
335 | // try to find the declaration of the corresponding function pointer type, |
336 | // so that we can recover argument names from it. |
337 | // FIXME: This function is mostly duplicated in SemaCodeComplete.cpp; unify. |
338 | static FunctionProtoTypeLoc getPrototypeLoc(Expr *Fn) { |
339 | TypeLoc Target; |
340 | Expr *NakedFn = Fn->IgnoreParenCasts(); |
341 | if (const auto *T = NakedFn->getType().getTypePtr()->getAs<TypedefType>()) { |
342 | Target = T->getDecl()->getTypeSourceInfo()->getTypeLoc(); |
343 | } else if (const auto *DR = dyn_cast<DeclRefExpr>(NakedFn)) { |
344 | const auto *D = DR->getDecl(); |
345 | if (const auto *const VD = dyn_cast<VarDecl>(D)) { |
346 | Target = VD->getTypeSourceInfo()->getTypeLoc(); |
347 | } |
348 | } |
349 | |
350 | if (!Target) |
351 | return {}; |
352 | |
353 | // Unwrap types that may be wrapping the function type |
354 | while (true) { |
355 | if (auto P = Target.getAs<PointerTypeLoc>()) { |
356 | Target = P.getPointeeLoc(); |
357 | continue; |
358 | } |
359 | if (auto A = Target.getAs<AttributedTypeLoc>()) { |
360 | Target = A.getModifiedLoc(); |
361 | continue; |
362 | } |
363 | if (auto P = Target.getAs<ParenTypeLoc>()) { |
364 | Target = P.getInnerLoc(); |
365 | continue; |
366 | } |
367 | break; |
368 | } |
369 | |
370 | if (auto F = Target.getAs<FunctionProtoTypeLoc>()) { |
371 | return F; |
372 | } |
373 | |
374 | return {}; |
375 | } |
376 | |
377 | ArrayRef<const ParmVarDecl *> |
378 | maybeDropCxxExplicitObjectParameters(ArrayRef<const ParmVarDecl *> Params) { |
379 | if (!Params.empty() && Params.front()->isExplicitObjectParameter()) |
380 | Params = Params.drop_front(1); |
381 | return Params; |
382 | } |
383 | |
384 | template <typename R> |
385 | std::string joinAndTruncate(const R &Range, size_t MaxLength) { |
386 | std::string Out; |
387 | llvm::raw_string_ostream OS(Out); |
388 | llvm::ListSeparator Sep(", " ); |
389 | for (auto &&Element : Range) { |
390 | OS << Sep; |
391 | if (Out.size() + Element.size() >= MaxLength) { |
392 | OS << "..." ; |
393 | break; |
394 | } |
395 | OS << Element; |
396 | } |
397 | OS.flush(); |
398 | return Out; |
399 | } |
400 | |
401 | struct Callee { |
402 | // Only one of Decl or Loc is set. |
403 | // Loc is for calls through function pointers. |
404 | const FunctionDecl *Decl = nullptr; |
405 | FunctionProtoTypeLoc Loc; |
406 | }; |
407 | |
408 | class InlayHintVisitor : public RecursiveASTVisitor<InlayHintVisitor> { |
409 | public: |
410 | InlayHintVisitor(std::vector<InlayHint> &Results, ParsedAST &AST, |
411 | const Config &Cfg, std::optional<Range> RestrictRange) |
412 | : Results(Results), AST(AST.getASTContext()), Tokens(AST.getTokens()), |
413 | Cfg(Cfg), RestrictRange(std::move(RestrictRange)), |
414 | MainFileID(AST.getSourceManager().getMainFileID()), |
415 | Resolver(AST.getHeuristicResolver()), |
416 | TypeHintPolicy(this->AST.getPrintingPolicy()) { |
417 | bool Invalid = false; |
418 | llvm::StringRef Buf = |
419 | AST.getSourceManager().getBufferData(FID: MainFileID, Invalid: &Invalid); |
420 | MainFileBuf = Invalid ? StringRef{} : Buf; |
421 | |
422 | TypeHintPolicy.SuppressScope = true; // keep type names short |
423 | TypeHintPolicy.AnonymousTagLocations = |
424 | false; // do not print lambda locations |
425 | |
426 | // Not setting PrintCanonicalTypes for "auto" allows |
427 | // SuppressDefaultTemplateArgs (set by default) to have an effect. |
428 | } |
429 | |
430 | bool VisitTypeLoc(TypeLoc TL) { |
431 | if (const auto *DT = llvm::dyn_cast<DecltypeType>(TL.getType())) |
432 | if (QualType UT = DT->getUnderlyingType(); !UT->isDependentType()) |
433 | addTypeHint(R: TL.getSourceRange(), T: UT, Prefix: ": " ); |
434 | return true; |
435 | } |
436 | |
437 | bool VisitCXXConstructExpr(CXXConstructExpr *E) { |
438 | // Weed out constructor calls that don't look like a function call with |
439 | // an argument list, by checking the validity of getParenOrBraceRange(). |
440 | // Also weed out std::initializer_list constructors as there are no names |
441 | // for the individual arguments. |
442 | if (!E->getParenOrBraceRange().isValid() || |
443 | E->isStdInitListInitialization()) { |
444 | return true; |
445 | } |
446 | |
447 | Callee Callee; |
448 | Callee.Decl = E->getConstructor(); |
449 | if (!Callee.Decl) |
450 | return true; |
451 | processCall(Callee, RParenOrBraceLoc: E->getParenOrBraceRange().getEnd(), |
452 | Args: {E->getArgs(), E->getNumArgs()}); |
453 | return true; |
454 | } |
455 | |
456 | // Carefully recurse into PseudoObjectExprs, which typically incorporate |
457 | // a syntactic expression and several semantic expressions. |
458 | bool TraversePseudoObjectExpr(PseudoObjectExpr *E) { |
459 | Expr *SyntacticExpr = E->getSyntacticForm(); |
460 | if (isa<CallExpr>(SyntacticExpr)) |
461 | // Since the counterpart semantics usually get the identical source |
462 | // locations as the syntactic one, visiting those would end up presenting |
463 | // confusing hints e.g., __builtin_dump_struct. |
464 | // Thus, only traverse the syntactic forms if this is written as a |
465 | // CallExpr. This leaves the door open in case the arguments in the |
466 | // syntactic form could possibly get parameter names. |
467 | return RecursiveASTVisitor<InlayHintVisitor>::TraverseStmt(SyntacticExpr); |
468 | // We don't want the hints for some of the MS property extensions. |
469 | // e.g. |
470 | // struct S { |
471 | // __declspec(property(get=GetX, put=PutX)) int x[]; |
472 | // void PutX(int y); |
473 | // void Work(int y) { x = y; } // Bad: `x = y: y`. |
474 | // }; |
475 | if (isa<BinaryOperator>(SyntacticExpr)) |
476 | return true; |
477 | // FIXME: Handle other forms of a pseudo object expression. |
478 | return RecursiveASTVisitor<InlayHintVisitor>::TraversePseudoObjectExpr(E); |
479 | } |
480 | |
481 | bool VisitCallExpr(CallExpr *E) { |
482 | if (!Cfg.InlayHints.Parameters) |
483 | return true; |
484 | |
485 | bool IsFunctor = isFunctionObjectCallExpr(E); |
486 | // Do not show parameter hints for user-defined literals or |
487 | // operator calls except for operator(). (Among other reasons, the resulting |
488 | // hints can look awkward, e.g. the expression can itself be a function |
489 | // argument and then we'd get two hints side by side). |
490 | if ((isa<CXXOperatorCallExpr>(E) && !IsFunctor) || |
491 | isa<UserDefinedLiteral>(E)) |
492 | return true; |
493 | |
494 | auto CalleeDecls = Resolver->resolveCalleeOfCallExpr(E); |
495 | if (CalleeDecls.size() != 1) |
496 | return true; |
497 | |
498 | Callee Callee; |
499 | if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecls[0])) |
500 | Callee.Decl = FD; |
501 | else if (const auto *FTD = dyn_cast<FunctionTemplateDecl>(CalleeDecls[0])) |
502 | Callee.Decl = FTD->getTemplatedDecl(); |
503 | else if (FunctionProtoTypeLoc Loc = getPrototypeLoc(E->getCallee())) |
504 | Callee.Loc = Loc; |
505 | else |
506 | return true; |
507 | |
508 | // N4868 [over.call.object]p3 says, |
509 | // The argument list submitted to overload resolution consists of the |
510 | // argument expressions present in the function call syntax preceded by the |
511 | // implied object argument (E). |
512 | // |
513 | // As well as the provision from P0847R7 Deducing This [expr.call]p7: |
514 | // ...If the function is an explicit object member function and there is an |
515 | // implied object argument ([over.call.func]), the list of provided |
516 | // arguments is preceded by the implied object argument for the purposes of |
517 | // this correspondence... |
518 | llvm::ArrayRef<const Expr *> Args = {E->getArgs(), E->getNumArgs()}; |
519 | // We don't have the implied object argument through a function pointer |
520 | // either. |
521 | if (const CXXMethodDecl *Method = |
522 | dyn_cast_or_null<CXXMethodDecl>(Callee.Decl)) |
523 | if (IsFunctor || Method->hasCXXExplicitFunctionObjectParameter()) |
524 | Args = Args.drop_front(N: 1); |
525 | processCall(Callee, RParenOrBraceLoc: E->getRParenLoc(), Args); |
526 | return true; |
527 | } |
528 | |
529 | bool VisitFunctionDecl(FunctionDecl *D) { |
530 | if (auto *FPT = |
531 | llvm::dyn_cast<FunctionProtoType>(D->getType().getTypePtr())) { |
532 | if (!FPT->hasTrailingReturn()) { |
533 | if (auto FTL = D->getFunctionTypeLoc()) |
534 | addReturnTypeHint(D, Range: FTL.getRParenLoc()); |
535 | } |
536 | } |
537 | if (Cfg.InlayHints.BlockEnd && D->isThisDeclarationADefinition()) { |
538 | // We use `printName` here to properly print name of ctor/dtor/operator |
539 | // overload. |
540 | if (const Stmt *Body = D->getBody()) |
541 | addBlockEndHint(BraceRange: Body->getSourceRange(), DeclPrefix: "" , Name: printName(AST, *D), OptionalPunctuation: "" ); |
542 | } |
543 | return true; |
544 | } |
545 | |
546 | bool VisitForStmt(ForStmt *S) { |
547 | if (Cfg.InlayHints.BlockEnd) { |
548 | std::string Name; |
549 | // Common case: for (int I = 0; I < N; I++). Use "I" as the name. |
550 | if (auto *DS = llvm::dyn_cast_or_null<DeclStmt>(S->getInit()); |
551 | DS && DS->isSingleDecl()) |
552 | Name = getSimpleName(llvm::cast<NamedDecl>(*DS->getSingleDecl())); |
553 | else |
554 | Name = summarizeExpr(E: S->getCond()); |
555 | markBlockEnd(Body: S->getBody(), Label: "for" , Name); |
556 | } |
557 | return true; |
558 | } |
559 | |
560 | bool VisitCXXForRangeStmt(CXXForRangeStmt *S) { |
561 | if (Cfg.InlayHints.BlockEnd) |
562 | markBlockEnd(Body: S->getBody(), Label: "for" , Name: getSimpleName(*S->getLoopVariable())); |
563 | return true; |
564 | } |
565 | |
566 | bool VisitWhileStmt(WhileStmt *S) { |
567 | if (Cfg.InlayHints.BlockEnd) |
568 | markBlockEnd(Body: S->getBody(), Label: "while" , Name: summarizeExpr(E: S->getCond())); |
569 | return true; |
570 | } |
571 | |
572 | bool VisitSwitchStmt(SwitchStmt *S) { |
573 | if (Cfg.InlayHints.BlockEnd) |
574 | markBlockEnd(Body: S->getBody(), Label: "switch" , Name: summarizeExpr(E: S->getCond())); |
575 | return true; |
576 | } |
577 | |
578 | // If/else chains are tricky. |
579 | // if (cond1) { |
580 | // } else if (cond2) { |
581 | // } // mark as "cond1" or "cond2"? |
582 | // For now, the answer is neither, just mark as "if". |
583 | // The ElseIf is a different IfStmt that doesn't know about the outer one. |
584 | llvm::DenseSet<const IfStmt *> ElseIfs; // not eligible for names |
585 | bool VisitIfStmt(IfStmt *S) { |
586 | if (Cfg.InlayHints.BlockEnd) { |
587 | if (const auto *ElseIf = llvm::dyn_cast_or_null<IfStmt>(S->getElse())) |
588 | ElseIfs.insert(ElseIf); |
589 | // Don't use markBlockEnd: the relevant range is [then.begin, else.end]. |
590 | if (const auto *EndCS = llvm::dyn_cast<CompoundStmt>( |
591 | S->getElse() ? S->getElse() : S->getThen())) { |
592 | addBlockEndHint( |
593 | {S->getThen()->getBeginLoc(), EndCS->getRBracLoc()}, "if" , |
594 | ElseIfs.contains(S) ? "" : summarizeExpr(S->getCond()), "" ); |
595 | } |
596 | } |
597 | return true; |
598 | } |
599 | |
600 | void markBlockEnd(const Stmt *Body, llvm::StringRef Label, |
601 | llvm::StringRef Name = "" ) { |
602 | if (const auto *CS = llvm::dyn_cast_or_null<CompoundStmt>(Body)) |
603 | addBlockEndHint(BraceRange: CS->getSourceRange(), DeclPrefix: Label, Name, OptionalPunctuation: "" ); |
604 | } |
605 | |
606 | bool VisitTagDecl(TagDecl *D) { |
607 | if (Cfg.InlayHints.BlockEnd && D->isThisDeclarationADefinition()) { |
608 | std::string DeclPrefix = D->getKindName().str(); |
609 | if (const auto *ED = dyn_cast<EnumDecl>(D)) { |
610 | if (ED->isScoped()) |
611 | DeclPrefix += ED->isScopedUsingClassTag() ? " class" : " struct" ; |
612 | }; |
613 | addBlockEndHint(BraceRange: D->getBraceRange(), DeclPrefix, Name: getSimpleName(*D), OptionalPunctuation: ";" ); |
614 | } |
615 | return true; |
616 | } |
617 | |
618 | bool VisitNamespaceDecl(NamespaceDecl *D) { |
619 | if (Cfg.InlayHints.BlockEnd) { |
620 | // For namespace, the range actually starts at the namespace keyword. But |
621 | // it should be fine since it's usually very short. |
622 | addBlockEndHint(BraceRange: D->getSourceRange(), DeclPrefix: "namespace" , Name: getSimpleName(*D), OptionalPunctuation: "" ); |
623 | } |
624 | return true; |
625 | } |
626 | |
627 | bool VisitLambdaExpr(LambdaExpr *E) { |
628 | FunctionDecl *D = E->getCallOperator(); |
629 | if (!E->hasExplicitResultType()) { |
630 | SourceLocation TypeHintLoc; |
631 | if (!E->hasExplicitParameters()) |
632 | TypeHintLoc = E->getIntroducerRange().getEnd(); |
633 | else if (auto FTL = D->getFunctionTypeLoc()) |
634 | TypeHintLoc = FTL.getRParenLoc(); |
635 | if (TypeHintLoc.isValid()) |
636 | addReturnTypeHint(D, Range: TypeHintLoc); |
637 | } |
638 | return true; |
639 | } |
640 | |
641 | void addReturnTypeHint(FunctionDecl *D, SourceRange Range) { |
642 | auto *AT = D->getReturnType()->getContainedAutoType(); |
643 | if (!AT || AT->getDeducedType().isNull()) |
644 | return; |
645 | addTypeHint(R: Range, T: D->getReturnType(), /*Prefix=*/"-> " ); |
646 | } |
647 | |
648 | bool VisitVarDecl(VarDecl *D) { |
649 | // Do not show hints for the aggregate in a structured binding, |
650 | // but show hints for the individual bindings. |
651 | if (auto *DD = dyn_cast<DecompositionDecl>(D)) { |
652 | for (auto *Binding : DD->bindings()) { |
653 | // For structured bindings, print canonical types. This is important |
654 | // because for bindings that use the tuple_element protocol, the |
655 | // non-canonical types would be "tuple_element<I, A>::type". |
656 | if (auto Type = Binding->getType(); |
657 | !Type.isNull() && !Type->isDependentType()) |
658 | addTypeHint(Binding->getLocation(), Type.getCanonicalType(), |
659 | /*Prefix=*/": " ); |
660 | } |
661 | return true; |
662 | } |
663 | |
664 | if (auto *AT = D->getType()->getContainedAutoType()) { |
665 | if (AT->isDeduced() && !D->getType()->isDependentType()) { |
666 | // Our current approach is to place the hint on the variable |
667 | // and accordingly print the full type |
668 | // (e.g. for `const auto& x = 42`, print `const int&`). |
669 | // Alternatively, we could place the hint on the `auto` |
670 | // (and then just print the type deduced for the `auto`). |
671 | addTypeHint(R: D->getLocation(), T: D->getType(), /*Prefix=*/": " ); |
672 | } |
673 | } |
674 | |
675 | // Handle templates like `int foo(auto x)` with exactly one instantiation. |
676 | if (auto *PVD = llvm::dyn_cast<ParmVarDecl>(D)) { |
677 | if (D->getIdentifier() && PVD->getType()->isDependentType() && |
678 | !getContainedAutoParamType(D->getTypeSourceInfo()->getTypeLoc()) |
679 | .isNull()) { |
680 | if (auto *IPVD = getOnlyParamInstantiation(PVD)) |
681 | addTypeHint(R: D->getLocation(), T: IPVD->getType(), /*Prefix=*/": " ); |
682 | } |
683 | } |
684 | |
685 | return true; |
686 | } |
687 | |
688 | ParmVarDecl *getOnlyParamInstantiation(ParmVarDecl *D) { |
689 | auto *TemplateFunction = llvm::dyn_cast<FunctionDecl>(D->getDeclContext()); |
690 | if (!TemplateFunction) |
691 | return nullptr; |
692 | auto *InstantiatedFunction = llvm::dyn_cast_or_null<FunctionDecl>( |
693 | getOnlyInstantiation(TemplateFunction)); |
694 | if (!InstantiatedFunction) |
695 | return nullptr; |
696 | |
697 | unsigned ParamIdx = 0; |
698 | for (auto *Param : TemplateFunction->parameters()) { |
699 | // Can't reason about param indexes in the presence of preceding packs. |
700 | // And if this param is a pack, it may expand to multiple params. |
701 | if (Param->isParameterPack()) |
702 | return nullptr; |
703 | if (Param == D) |
704 | break; |
705 | ++ParamIdx; |
706 | } |
707 | assert(ParamIdx < TemplateFunction->getNumParams() && |
708 | "Couldn't find param in list?" ); |
709 | assert(ParamIdx < InstantiatedFunction->getNumParams() && |
710 | "Instantiated function has fewer (non-pack) parameters?" ); |
711 | return InstantiatedFunction->getParamDecl(ParamIdx); |
712 | } |
713 | |
714 | bool VisitInitListExpr(InitListExpr *Syn) { |
715 | // We receive the syntactic form here (shouldVisitImplicitCode() is false). |
716 | // This is the one we will ultimately attach designators to. |
717 | // It may have subobject initializers inlined without braces. The *semantic* |
718 | // form of the init-list has nested init-lists for these. |
719 | // getUnwrittenDesignators will look at the semantic form to determine the |
720 | // labels. |
721 | assert(Syn->isSyntacticForm() && "RAV should not visit implicit code!" ); |
722 | if (!Cfg.InlayHints.Designators) |
723 | return true; |
724 | if (Syn->isIdiomaticZeroInitializer(LangOpts: AST.getLangOpts())) |
725 | return true; |
726 | llvm::DenseMap<SourceLocation, std::string> Designators = |
727 | tidy::utils::getUnwrittenDesignators(Syn); |
728 | for (const Expr *Init : Syn->inits()) { |
729 | if (llvm::isa<DesignatedInitExpr>(Init)) |
730 | continue; |
731 | auto It = Designators.find(Init->getBeginLoc()); |
732 | if (It != Designators.end() && |
733 | !isPrecededByParamNameComment(E: Init, ParamName: It->second)) |
734 | addDesignatorHint(R: Init->getSourceRange(), Text: It->second); |
735 | } |
736 | return true; |
737 | } |
738 | |
739 | // FIXME: Handle RecoveryExpr to try to hint some invalid calls. |
740 | |
741 | private: |
742 | using NameVec = SmallVector<StringRef, 8>; |
743 | |
744 | void processCall(Callee Callee, SourceLocation RParenOrBraceLoc, |
745 | llvm::ArrayRef<const Expr *> Args) { |
746 | assert(Callee.Decl || Callee.Loc); |
747 | |
748 | if ((!Cfg.InlayHints.Parameters && !Cfg.InlayHints.DefaultArguments) || |
749 | Args.size() == 0) |
750 | return; |
751 | |
752 | // The parameter name of a move or copy constructor is not very interesting. |
753 | if (Callee.Decl) |
754 | if (auto *Ctor = dyn_cast<CXXConstructorDecl>(Callee.Decl)) |
755 | if (Ctor->isCopyOrMoveConstructor()) |
756 | return; |
757 | |
758 | SmallVector<std::string> FormattedDefaultArgs; |
759 | bool HasNonDefaultArgs = false; |
760 | |
761 | ArrayRef<const ParmVarDecl *> Params, ForwardedParams; |
762 | // Resolve parameter packs to their forwarded parameter |
763 | SmallVector<const ParmVarDecl *> ForwardedParamsStorage; |
764 | if (Callee.Decl) { |
765 | Params = maybeDropCxxExplicitObjectParameters(Callee.Decl->parameters()); |
766 | ForwardedParamsStorage = resolveForwardingParameters(Callee.Decl); |
767 | ForwardedParams = |
768 | maybeDropCxxExplicitObjectParameters(ForwardedParamsStorage); |
769 | } else { |
770 | Params = maybeDropCxxExplicitObjectParameters(Callee.Loc.getParams()); |
771 | ForwardedParams = {Params.begin(), Params.end()}; |
772 | } |
773 | |
774 | NameVec ParameterNames = chooseParameterNames(Parameters: ForwardedParams); |
775 | |
776 | // Exclude setters (i.e. functions with one argument whose name begins with |
777 | // "set"), and builtins like std::move/forward/... as their parameter name |
778 | // is also not likely to be interesting. |
779 | if (Callee.Decl && |
780 | (isSetter(Callee: Callee.Decl, ParamNames: ParameterNames) || isSimpleBuiltin(Callee: Callee.Decl))) |
781 | return; |
782 | |
783 | for (size_t I = 0; I < ParameterNames.size() && I < Args.size(); ++I) { |
784 | // Pack expansion expressions cause the 1:1 mapping between arguments and |
785 | // parameters to break down, so we don't add further inlay hints if we |
786 | // encounter one. |
787 | if (isa<PackExpansionExpr>(Args[I])) { |
788 | break; |
789 | } |
790 | |
791 | StringRef Name = ParameterNames[I]; |
792 | const bool NameHint = |
793 | shouldHintName(Arg: Args[I], ParamName: Name) && Cfg.InlayHints.Parameters; |
794 | const bool ReferenceHint = |
795 | shouldHintReference(Param: Params[I], ForwardedParam: ForwardedParams[I]) && |
796 | Cfg.InlayHints.Parameters; |
797 | |
798 | const bool IsDefault = isa<CXXDefaultArgExpr>(Args[I]); |
799 | HasNonDefaultArgs |= !IsDefault; |
800 | if (IsDefault) { |
801 | if (Cfg.InlayHints.DefaultArguments) { |
802 | const auto SourceText = Lexer::getSourceText( |
803 | Range: CharSourceRange::getTokenRange(Params[I]->getDefaultArgRange()), |
804 | SM: AST.getSourceManager(), LangOpts: AST.getLangOpts()); |
805 | const auto Abbrev = |
806 | (SourceText.size() > Cfg.InlayHints.TypeNameLimit || |
807 | SourceText.contains("\n" )) |
808 | ? "..." |
809 | : SourceText; |
810 | if (NameHint) |
811 | FormattedDefaultArgs.emplace_back( |
812 | llvm::formatv("{0}: {1}" , Name, Abbrev)); |
813 | else |
814 | FormattedDefaultArgs.emplace_back(llvm::formatv("{0}" , Abbrev)); |
815 | } |
816 | } else if (NameHint || ReferenceHint) { |
817 | addInlayHint(Args[I]->getSourceRange(), HintSide::Left, |
818 | InlayHintKind::Parameter, ReferenceHint ? "&" : "" , |
819 | NameHint ? Name : "" , ": " ); |
820 | } |
821 | } |
822 | |
823 | if (!FormattedDefaultArgs.empty()) { |
824 | std::string Hint = |
825 | joinAndTruncate(FormattedDefaultArgs, Cfg.InlayHints.TypeNameLimit); |
826 | addInlayHint(R: SourceRange{RParenOrBraceLoc}, Side: HintSide::Left, |
827 | Kind: InlayHintKind::DefaultArgument, |
828 | Prefix: HasNonDefaultArgs ? ", " : "" , Label: Hint, Suffix: "" ); |
829 | } |
830 | } |
831 | |
832 | static bool isSetter(const FunctionDecl *Callee, const NameVec &ParamNames) { |
833 | if (ParamNames.size() != 1) |
834 | return false; |
835 | |
836 | StringRef Name = getSimpleName(*Callee); |
837 | if (!Name.starts_with_insensitive(Prefix: "set" )) |
838 | return false; |
839 | |
840 | // In addition to checking that the function has one parameter and its |
841 | // name starts with "set", also check that the part after "set" matches |
842 | // the name of the parameter (ignoring case). The idea here is that if |
843 | // the parameter name differs, it may contain extra information that |
844 | // may be useful to show in a hint, as in: |
845 | // void setTimeout(int timeoutMillis); |
846 | // This currently doesn't handle cases where params use snake_case |
847 | // and functions don't, e.g. |
848 | // void setExceptionHandler(EHFunc exception_handler); |
849 | // We could improve this by replacing `equals_insensitive` with some |
850 | // `sloppy_equals` which ignores case and also skips underscores. |
851 | StringRef WhatItIsSetting = Name.substr(Start: 3).ltrim(Chars: "_" ); |
852 | return WhatItIsSetting.equals_insensitive(RHS: ParamNames[0]); |
853 | } |
854 | |
855 | // Checks if the callee is one of the builtins |
856 | // addressof, as_const, forward, move(_if_noexcept) |
857 | static bool isSimpleBuiltin(const FunctionDecl *Callee) { |
858 | switch (Callee->getBuiltinID()) { |
859 | case Builtin::BIaddressof: |
860 | case Builtin::BIas_const: |
861 | case Builtin::BIforward: |
862 | case Builtin::BImove: |
863 | case Builtin::BImove_if_noexcept: |
864 | return true; |
865 | default: |
866 | return false; |
867 | } |
868 | } |
869 | |
870 | bool shouldHintName(const Expr *Arg, StringRef ParamName) { |
871 | if (ParamName.empty()) |
872 | return false; |
873 | |
874 | // If the argument expression is a single name and it matches the |
875 | // parameter name exactly, omit the name hint. |
876 | if (ParamName == getSpelledIdentifier(E: Arg)) |
877 | return false; |
878 | |
879 | // Exclude argument expressions preceded by a /*paramName*/. |
880 | if (isPrecededByParamNameComment(E: Arg, ParamName)) |
881 | return false; |
882 | |
883 | return true; |
884 | } |
885 | |
886 | bool shouldHintReference(const ParmVarDecl *Param, |
887 | const ParmVarDecl *ForwardedParam) { |
888 | // We add a & hint only when the argument is passed as mutable reference. |
889 | // For parameters that are not part of an expanded pack, this is |
890 | // straightforward. For expanded pack parameters, it's likely that they will |
891 | // be forwarded to another function. In this situation, we only want to add |
892 | // the reference hint if the argument is actually being used via mutable |
893 | // reference. This means we need to check |
894 | // 1. whether the value category of the argument is preserved, i.e. each |
895 | // pack expansion uses std::forward correctly. |
896 | // 2. whether the argument is ever copied/cast instead of passed |
897 | // by-reference |
898 | // Instead of checking this explicitly, we use the following proxy: |
899 | // 1. the value category can only change from rvalue to lvalue during |
900 | // forwarding, so checking whether both the parameter of the forwarding |
901 | // function and the forwarded function are lvalue references detects such |
902 | // a conversion. |
903 | // 2. if the argument is copied/cast somewhere in the chain of forwarding |
904 | // calls, it can only be passed on to an rvalue reference or const lvalue |
905 | // reference parameter. Thus if the forwarded parameter is a mutable |
906 | // lvalue reference, it cannot have been copied/cast to on the way. |
907 | // Additionally, we should not add a reference hint if the forwarded |
908 | // parameter was only partially resolved, i.e. points to an expanded pack |
909 | // parameter, since we do not know how it will be used eventually. |
910 | auto Type = Param->getType(); |
911 | auto ForwardedType = ForwardedParam->getType(); |
912 | return Type->isLValueReferenceType() && |
913 | ForwardedType->isLValueReferenceType() && |
914 | !ForwardedType.getNonReferenceType().isConstQualified() && |
915 | !isExpandedFromParameterPack(D: ForwardedParam); |
916 | } |
917 | |
918 | // Checks if "E" is spelled in the main file and preceded by a C-style comment |
919 | // whose contents match ParamName (allowing for whitespace and an optional "=" |
920 | // at the end. |
921 | bool (const Expr *E, StringRef ParamName) { |
922 | auto &SM = AST.getSourceManager(); |
923 | auto FileLoc = SM.getFileLoc(Loc: E->getBeginLoc()); |
924 | auto Decomposed = SM.getDecomposedLoc(Loc: FileLoc); |
925 | if (Decomposed.first != MainFileID) |
926 | return false; |
927 | |
928 | StringRef SourcePrefix = MainFileBuf.substr(Start: 0, N: Decomposed.second); |
929 | // Allow whitespace between comment and expression. |
930 | SourcePrefix = SourcePrefix.rtrim(); |
931 | // Check for comment ending. |
932 | if (!SourcePrefix.consume_back(Suffix: "*/" )) |
933 | return false; |
934 | // Ignore some punctuation and whitespace around comment. |
935 | // In particular this allows designators to match nicely. |
936 | llvm::StringLiteral IgnoreChars = " =." ; |
937 | SourcePrefix = SourcePrefix.rtrim(Chars: IgnoreChars); |
938 | ParamName = ParamName.trim(Chars: IgnoreChars); |
939 | // Other than that, the comment must contain exactly ParamName. |
940 | if (!SourcePrefix.consume_back(Suffix: ParamName)) |
941 | return false; |
942 | SourcePrefix = SourcePrefix.rtrim(Chars: IgnoreChars); |
943 | return SourcePrefix.ends_with(Suffix: "/*" ); |
944 | } |
945 | |
946 | // If "E" spells a single unqualified identifier, return that name. |
947 | // Otherwise, return an empty string. |
948 | static StringRef getSpelledIdentifier(const Expr *E) { |
949 | E = E->IgnoreUnlessSpelledInSource(); |
950 | |
951 | if (auto *DRE = dyn_cast<DeclRefExpr>(E)) |
952 | if (!DRE->getQualifier()) |
953 | return getSimpleName(*DRE->getDecl()); |
954 | |
955 | if (auto *ME = dyn_cast<MemberExpr>(E)) |
956 | if (!ME->getQualifier() && ME->isImplicitAccess()) |
957 | return getSimpleName(*ME->getMemberDecl()); |
958 | |
959 | return {}; |
960 | } |
961 | |
962 | NameVec chooseParameterNames(ArrayRef<const ParmVarDecl *> Parameters) { |
963 | NameVec ParameterNames; |
964 | for (const auto *P : Parameters) { |
965 | if (isExpandedFromParameterPack(P)) { |
966 | // If we haven't resolved a pack paramater (e.g. foo(Args... args)) to a |
967 | // non-pack parameter, then hinting as foo(args: 1, args: 2, args: 3) is |
968 | // unlikely to be useful. |
969 | ParameterNames.emplace_back(); |
970 | } else { |
971 | auto SimpleName = getSimpleName(*P); |
972 | // If the parameter is unnamed in the declaration: |
973 | // attempt to get its name from the definition |
974 | if (SimpleName.empty()) { |
975 | if (const auto *PD = getParamDefinition(P)) { |
976 | SimpleName = getSimpleName(*PD); |
977 | } |
978 | } |
979 | ParameterNames.emplace_back(SimpleName); |
980 | } |
981 | } |
982 | |
983 | // Standard library functions often have parameter names that start |
984 | // with underscores, which makes the hints noisy, so strip them out. |
985 | for (auto &Name : ParameterNames) |
986 | stripLeadingUnderscores(Name); |
987 | |
988 | return ParameterNames; |
989 | } |
990 | |
991 | // for a ParmVarDecl from a function declaration, returns the corresponding |
992 | // ParmVarDecl from the definition if possible, nullptr otherwise. |
993 | static const ParmVarDecl *getParamDefinition(const ParmVarDecl *P) { |
994 | if (auto *Callee = dyn_cast<FunctionDecl>(P->getDeclContext())) { |
995 | if (auto *Def = Callee->getDefinition()) { |
996 | auto I = std::distance(Callee->param_begin(), |
997 | llvm::find(Callee->parameters(), P)); |
998 | if (I < (int)Callee->getNumParams()) { |
999 | return Def->getParamDecl(I); |
1000 | } |
1001 | } |
1002 | } |
1003 | return nullptr; |
1004 | } |
1005 | |
1006 | // We pass HintSide rather than SourceLocation because we want to ensure |
1007 | // it is in the same file as the common file range. |
1008 | void addInlayHint(SourceRange R, HintSide Side, InlayHintKind Kind, |
1009 | llvm::StringRef Prefix, llvm::StringRef Label, |
1010 | llvm::StringRef Suffix) { |
1011 | auto LSPRange = getHintRange(R); |
1012 | if (!LSPRange) |
1013 | return; |
1014 | |
1015 | addInlayHint(LSPRange: *LSPRange, Side, Kind, Prefix, Label, Suffix); |
1016 | } |
1017 | |
1018 | void addInlayHint(Range LSPRange, HintSide Side, InlayHintKind Kind, |
1019 | llvm::StringRef Prefix, llvm::StringRef Label, |
1020 | llvm::StringRef Suffix) { |
1021 | // We shouldn't get as far as adding a hint if the category is disabled. |
1022 | // We'd like to disable as much of the analysis as possible above instead. |
1023 | // Assert in debug mode but add a dynamic check in production. |
1024 | assert(Cfg.InlayHints.Enabled && "Shouldn't get here if disabled!" ); |
1025 | switch (Kind) { |
1026 | #define CHECK_KIND(Enumerator, ConfigProperty) \ |
1027 | case InlayHintKind::Enumerator: \ |
1028 | assert(Cfg.InlayHints.ConfigProperty && \ |
1029 | "Shouldn't get here if kind is disabled!"); \ |
1030 | if (!Cfg.InlayHints.ConfigProperty) \ |
1031 | return; \ |
1032 | break |
1033 | CHECK_KIND(Parameter, Parameters); |
1034 | CHECK_KIND(Type, DeducedTypes); |
1035 | CHECK_KIND(Designator, Designators); |
1036 | CHECK_KIND(BlockEnd, BlockEnd); |
1037 | CHECK_KIND(DefaultArgument, DefaultArguments); |
1038 | #undef CHECK_KIND |
1039 | } |
1040 | |
1041 | Position LSPPos = Side == HintSide::Left ? LSPRange.start : LSPRange.end; |
1042 | if (RestrictRange && |
1043 | (LSPPos < RestrictRange->start || !(LSPPos < RestrictRange->end))) |
1044 | return; |
1045 | bool PadLeft = Prefix.consume_front(Prefix: " " ); |
1046 | bool PadRight = Suffix.consume_back(Suffix: " " ); |
1047 | Results.push_back(InlayHint{LSPPos, |
1048 | /*label=*/{(Prefix + Label + Suffix).str()}, |
1049 | Kind, PadLeft, PadRight, LSPRange}); |
1050 | } |
1051 | |
1052 | // Get the range of the main file that *exactly* corresponds to R. |
1053 | std::optional<Range> getHintRange(SourceRange R) { |
1054 | const auto &SM = AST.getSourceManager(); |
1055 | auto Spelled = Tokens.spelledForExpanded(Tokens.expandedTokens(R)); |
1056 | // TokenBuffer will return null if e.g. R corresponds to only part of a |
1057 | // macro expansion. |
1058 | if (!Spelled || Spelled->empty()) |
1059 | return std::nullopt; |
1060 | // Hint must be within the main file, not e.g. a non-preamble include. |
1061 | if (SM.getFileID(Spelled->front().location()) != SM.getMainFileID() || |
1062 | SM.getFileID(Spelled->back().location()) != SM.getMainFileID()) |
1063 | return std::nullopt; |
1064 | return Range{sourceLocToPosition(SM, Spelled->front().location()), |
1065 | sourceLocToPosition(SM, Spelled->back().endLocation())}; |
1066 | } |
1067 | |
1068 | void addTypeHint(SourceRange R, QualType T, llvm::StringRef Prefix) { |
1069 | if (!Cfg.InlayHints.DeducedTypes || T.isNull()) |
1070 | return; |
1071 | |
1072 | // The sugared type is more useful in some cases, and the canonical |
1073 | // type in other cases. |
1074 | auto Desugared = maybeDesugar(AST, QT: T); |
1075 | std::string TypeName = Desugared.getAsString(Policy: TypeHintPolicy); |
1076 | if (T != Desugared && !shouldPrintTypeHint(TypeName)) { |
1077 | // If the desugared type is too long to display, fallback to the sugared |
1078 | // type. |
1079 | TypeName = T.getAsString(Policy: TypeHintPolicy); |
1080 | } |
1081 | if (shouldPrintTypeHint(TypeName)) |
1082 | addInlayHint(R, Side: HintSide::Right, Kind: InlayHintKind::Type, Prefix, Label: TypeName, |
1083 | /*Suffix=*/"" ); |
1084 | } |
1085 | |
1086 | void addDesignatorHint(SourceRange R, llvm::StringRef Text) { |
1087 | addInlayHint(R, Side: HintSide::Left, Kind: InlayHintKind::Designator, |
1088 | /*Prefix=*/"" , Label: Text, /*Suffix=*/"=" ); |
1089 | } |
1090 | |
1091 | bool shouldPrintTypeHint(llvm::StringRef TypeName) const noexcept { |
1092 | return Cfg.InlayHints.TypeNameLimit == 0 || |
1093 | TypeName.size() < Cfg.InlayHints.TypeNameLimit; |
1094 | } |
1095 | |
1096 | void addBlockEndHint(SourceRange BraceRange, StringRef DeclPrefix, |
1097 | StringRef Name, StringRef OptionalPunctuation) { |
1098 | auto HintRange = computeBlockEndHintRange(BraceRange, OptionalPunctuation); |
1099 | if (!HintRange) |
1100 | return; |
1101 | |
1102 | std::string Label = DeclPrefix.str(); |
1103 | if (!Label.empty() && !Name.empty()) |
1104 | Label += ' '; |
1105 | Label += Name; |
1106 | |
1107 | constexpr unsigned HintMaxLengthLimit = 60; |
1108 | if (Label.length() > HintMaxLengthLimit) |
1109 | return; |
1110 | |
1111 | addInlayHint(LSPRange: *HintRange, Side: HintSide::Right, Kind: InlayHintKind::BlockEnd, Prefix: " // " , |
1112 | Label, Suffix: "" ); |
1113 | } |
1114 | |
1115 | // Compute the LSP range to attach the block end hint to, if any allowed. |
1116 | // 1. "}" is the last non-whitespace character on the line. The range of "}" |
1117 | // is returned. |
1118 | // 2. After "}", if the trimmed trailing text is exactly |
1119 | // `OptionalPunctuation`, say ";". The range of "} ... ;" is returned. |
1120 | // Otherwise, the hint shouldn't be shown. |
1121 | std::optional<Range> computeBlockEndHintRange(SourceRange BraceRange, |
1122 | StringRef OptionalPunctuation) { |
1123 | constexpr unsigned HintMinLineLimit = 2; |
1124 | |
1125 | auto &SM = AST.getSourceManager(); |
1126 | auto [BlockBeginFileId, BlockBeginOffset] = |
1127 | SM.getDecomposedLoc(SM.getFileLoc(Loc: BraceRange.getBegin())); |
1128 | auto RBraceLoc = SM.getFileLoc(Loc: BraceRange.getEnd()); |
1129 | auto [RBraceFileId, RBraceOffset] = SM.getDecomposedLoc(RBraceLoc); |
1130 | |
1131 | // Because we need to check the block satisfies the minimum line limit, we |
1132 | // require both source location to be in the main file. This prevents hint |
1133 | // to be shown in weird cases like '{' is actually in a "#include", but it's |
1134 | // rare anyway. |
1135 | if (BlockBeginFileId != MainFileID || RBraceFileId != MainFileID) |
1136 | return std::nullopt; |
1137 | |
1138 | StringRef RestOfLine = MainFileBuf.substr(Start: RBraceOffset).split('\n').first; |
1139 | if (!RestOfLine.starts_with(Prefix: "}" )) |
1140 | return std::nullopt; |
1141 | |
1142 | StringRef TrimmedTrailingText = RestOfLine.drop_front().trim(); |
1143 | if (!TrimmedTrailingText.empty() && |
1144 | TrimmedTrailingText != OptionalPunctuation) |
1145 | return std::nullopt; |
1146 | |
1147 | auto BlockBeginLine = SM.getLineNumber(FID: BlockBeginFileId, FilePos: BlockBeginOffset); |
1148 | auto RBraceLine = SM.getLineNumber(FID: RBraceFileId, FilePos: RBraceOffset); |
1149 | |
1150 | // Don't show hint on trivial blocks like `class X {};` |
1151 | if (BlockBeginLine + HintMinLineLimit - 1 > RBraceLine) |
1152 | return std::nullopt; |
1153 | |
1154 | // This is what we attach the hint to, usually "}" or "};". |
1155 | StringRef HintRangeText = RestOfLine.take_front( |
1156 | N: TrimmedTrailingText.empty() |
1157 | ? 1 |
1158 | : TrimmedTrailingText.bytes_end() - RestOfLine.bytes_begin()); |
1159 | |
1160 | Position HintStart = sourceLocToPosition(SM, Loc: RBraceLoc); |
1161 | Position HintEnd = sourceLocToPosition( |
1162 | SM, Loc: RBraceLoc.getLocWithOffset(Offset: HintRangeText.size())); |
1163 | return Range{.start: HintStart, .end: HintEnd}; |
1164 | } |
1165 | |
1166 | static bool isFunctionObjectCallExpr(CallExpr *E) noexcept { |
1167 | if (auto *CallExpr = dyn_cast<CXXOperatorCallExpr>(E)) |
1168 | return CallExpr->getOperator() == OverloadedOperatorKind::OO_Call; |
1169 | return false; |
1170 | } |
1171 | |
1172 | std::vector<InlayHint> &Results; |
1173 | ASTContext &AST; |
1174 | const syntax::TokenBuffer &Tokens; |
1175 | const Config &Cfg; |
1176 | std::optional<Range> RestrictRange; |
1177 | FileID MainFileID; |
1178 | StringRef MainFileBuf; |
1179 | const HeuristicResolver *Resolver; |
1180 | PrintingPolicy TypeHintPolicy; |
1181 | }; |
1182 | |
1183 | } // namespace |
1184 | |
1185 | std::vector<InlayHint> inlayHints(ParsedAST &AST, |
1186 | std::optional<Range> RestrictRange) { |
1187 | std::vector<InlayHint> Results; |
1188 | const auto &Cfg = Config::current(); |
1189 | if (!Cfg.InlayHints.Enabled) |
1190 | return Results; |
1191 | InlayHintVisitor Visitor(Results, AST, Cfg, std::move(RestrictRange)); |
1192 | Visitor.TraverseAST(AST.getASTContext()); |
1193 | |
1194 | // De-duplicate hints. Duplicates can sometimes occur due to e.g. explicit |
1195 | // template instantiations. |
1196 | llvm::sort(Results); |
1197 | Results.erase(std::unique(Results.begin(), Results.end()), Results.end()); |
1198 | |
1199 | return Results; |
1200 | } |
1201 | |
1202 | } // namespace clangd |
1203 | } // namespace clang |
1204 | |