| 1 | /* |
| 2 | Copyright (c) 2014 - 2019, Syoyo Fujita and many contributors. |
| 3 | All rights reserved. |
| 4 | |
| 5 | Redistribution and use in source and binary forms, with or without |
| 6 | modification, are permitted provided that the following conditions are met: |
| 7 | * Redistributions of source code must retain the above copyright |
| 8 | notice, this list of conditions and the following disclaimer. |
| 9 | * Redistributions in binary form must reproduce the above copyright |
| 10 | notice, this list of conditions and the following disclaimer in the |
| 11 | documentation and/or other materials provided with the distribution. |
| 12 | * Neither the name of the Syoyo Fujita nor the |
| 13 | names of its contributors may be used to endorse or promote products |
| 14 | derived from this software without specific prior written permission. |
| 15 | |
| 16 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND |
| 17 | ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| 18 | WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| 19 | DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY |
| 20 | DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| 21 | (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| 22 | LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
| 23 | ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 24 | (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| 25 | SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 26 | */ |
| 27 | |
| 28 | // TinyEXR contains some OpenEXR code, which is licensed under ------------ |
| 29 | |
| 30 | /////////////////////////////////////////////////////////////////////////// |
| 31 | // |
| 32 | // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas |
| 33 | // Digital Ltd. LLC |
| 34 | // |
| 35 | // All rights reserved. |
| 36 | // |
| 37 | // Redistribution and use in source and binary forms, with or without |
| 38 | // modification, are permitted provided that the following conditions are |
| 39 | // met: |
| 40 | // * Redistributions of source code must retain the above copyright |
| 41 | // notice, this list of conditions and the following disclaimer. |
| 42 | // * Redistributions in binary form must reproduce the above |
| 43 | // copyright notice, this list of conditions and the following disclaimer |
| 44 | // in the documentation and/or other materials provided with the |
| 45 | // distribution. |
| 46 | // * Neither the name of Industrial Light & Magic nor the names of |
| 47 | // its contributors may be used to endorse or promote products derived |
| 48 | // from this software without specific prior written permission. |
| 49 | // |
| 50 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 51 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 52 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 53 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 54 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 55 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 56 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 57 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 58 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 59 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 60 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 61 | // |
| 62 | /////////////////////////////////////////////////////////////////////////// |
| 63 | |
| 64 | // End of OpenEXR license ------------------------------------------------- |
| 65 | |
| 66 | #ifndef TINYEXR_H_ |
| 67 | #define TINYEXR_H_ |
| 68 | |
| 69 | // |
| 70 | // |
| 71 | // Do this: |
| 72 | // #define TINYEXR_IMPLEMENTATION |
| 73 | // before you include this file in *one* C or C++ file to create the |
| 74 | // implementation. |
| 75 | // |
| 76 | // // i.e. it should look like this: |
| 77 | // #include ... |
| 78 | // #include ... |
| 79 | // #include ... |
| 80 | // #define TINYEXR_IMPLEMENTATION |
| 81 | // #include "tinyexr.h" |
| 82 | // |
| 83 | // |
| 84 | |
| 85 | #include <stddef.h> // for size_t |
| 86 | #include <stdint.h> // guess stdint.h is available(C99) |
| 87 | |
| 88 | #ifdef __cplusplus |
| 89 | extern "C" { |
| 90 | #endif |
| 91 | |
| 92 | // Use embedded miniz or not to decode ZIP format pixel. Linking with zlib |
| 93 | // required if this flas is 0. |
| 94 | #ifndef TINYEXR_USE_MINIZ |
| 95 | #define TINYEXR_USE_MINIZ (1) |
| 96 | #endif |
| 97 | |
| 98 | // Disable PIZ comporession when applying cpplint. |
| 99 | #ifndef TINYEXR_USE_PIZ |
| 100 | #define TINYEXR_USE_PIZ (1) |
| 101 | #endif |
| 102 | |
| 103 | #ifndef TINYEXR_USE_ZFP |
| 104 | #define TINYEXR_USE_ZFP (0) // TinyEXR extension. |
| 105 | // http://computation.llnl.gov/projects/floating-point-compression |
| 106 | #endif |
| 107 | |
| 108 | #define TINYEXR_SUCCESS (0) |
| 109 | #define TINYEXR_ERROR_INVALID_MAGIC_NUMBER (-1) |
| 110 | #define TINYEXR_ERROR_INVALID_EXR_VERSION (-2) |
| 111 | #define TINYEXR_ERROR_INVALID_ARGUMENT (-3) |
| 112 | #define TINYEXR_ERROR_INVALID_DATA (-4) |
| 113 | #define TINYEXR_ERROR_INVALID_FILE (-5) |
| 114 | #define TINYEXR_ERROR_INVALID_PARAMETER (-5) |
| 115 | #define TINYEXR_ERROR_CANT_OPEN_FILE (-6) |
| 116 | #define TINYEXR_ERROR_UNSUPPORTED_FORMAT (-7) |
| 117 | #define (-8) |
| 118 | #define TINYEXR_ERROR_UNSUPPORTED_FEATURE (-9) |
| 119 | #define TINYEXR_ERROR_CANT_WRITE_FILE (-10) |
| 120 | #define TINYEXR_ERROR_SERIALZATION_FAILED (-11) |
| 121 | |
| 122 | // @note { OpenEXR file format: http://www.openexr.com/openexrfilelayout.pdf } |
| 123 | |
| 124 | // pixel type: possible values are: UINT = 0 HALF = 1 FLOAT = 2 |
| 125 | #define TINYEXR_PIXELTYPE_UINT (0) |
| 126 | #define TINYEXR_PIXELTYPE_HALF (1) |
| 127 | #define TINYEXR_PIXELTYPE_FLOAT (2) |
| 128 | |
| 129 | #define (1024) |
| 130 | #define TINYEXR_MAX_CUSTOM_ATTRIBUTES (128) |
| 131 | |
| 132 | #define TINYEXR_COMPRESSIONTYPE_NONE (0) |
| 133 | #define TINYEXR_COMPRESSIONTYPE_RLE (1) |
| 134 | #define TINYEXR_COMPRESSIONTYPE_ZIPS (2) |
| 135 | #define TINYEXR_COMPRESSIONTYPE_ZIP (3) |
| 136 | #define TINYEXR_COMPRESSIONTYPE_PIZ (4) |
| 137 | #define TINYEXR_COMPRESSIONTYPE_ZFP (128) // TinyEXR extension |
| 138 | |
| 139 | #define TINYEXR_ZFP_COMPRESSIONTYPE_RATE (0) |
| 140 | #define TINYEXR_ZFP_COMPRESSIONTYPE_PRECISION (1) |
| 141 | #define TINYEXR_ZFP_COMPRESSIONTYPE_ACCURACY (2) |
| 142 | |
| 143 | #define TINYEXR_TILE_ONE_LEVEL (0) |
| 144 | #define TINYEXR_TILE_MIPMAP_LEVELS (1) |
| 145 | #define TINYEXR_TILE_RIPMAP_LEVELS (2) |
| 146 | |
| 147 | #define TINYEXR_TILE_ROUND_DOWN (0) |
| 148 | #define TINYEXR_TILE_ROUND_UP (1) |
| 149 | |
| 150 | typedef struct _EXRVersion { |
| 151 | int version; // this must be 2 |
| 152 | int tiled; // tile format image |
| 153 | int long_name; // long name attribute |
| 154 | int non_image; // deep image(EXR 2.0) |
| 155 | int multipart; // multi-part(EXR 2.0) |
| 156 | } EXRVersion; |
| 157 | |
| 158 | typedef struct _EXRAttribute { |
| 159 | char name[256]; // name and type are up to 255 chars long. |
| 160 | char type[256]; |
| 161 | unsigned char *value; // uint8_t* |
| 162 | int size; |
| 163 | int pad0; |
| 164 | } EXRAttribute; |
| 165 | |
| 166 | typedef struct _EXRChannelInfo { |
| 167 | char name[256]; // less than 255 bytes long |
| 168 | int pixel_type; |
| 169 | int x_sampling; |
| 170 | int y_sampling; |
| 171 | unsigned char p_linear; |
| 172 | unsigned char pad[3]; |
| 173 | } EXRChannelInfo; |
| 174 | |
| 175 | typedef struct _EXRTile { |
| 176 | int offset_x; |
| 177 | int offset_y; |
| 178 | int level_x; |
| 179 | int level_y; |
| 180 | |
| 181 | int width; // actual width in a tile. |
| 182 | int height; // actual height int a tile. |
| 183 | |
| 184 | unsigned char **images; // image[channels][pixels] |
| 185 | } EXRTile; |
| 186 | |
| 187 | typedef struct { |
| 188 | float ; |
| 189 | int ; |
| 190 | int [4]; |
| 191 | int [4]; |
| 192 | float [2]; |
| 193 | float ; |
| 194 | |
| 195 | int ; |
| 196 | |
| 197 | // Properties for tiled format(`tiledesc`). |
| 198 | int ; |
| 199 | int ; |
| 200 | int ; |
| 201 | int ; |
| 202 | int ; |
| 203 | |
| 204 | int ; |
| 205 | int ; |
| 206 | int ; |
| 207 | unsigned int ; |
| 208 | |
| 209 | // Custom attributes(exludes required attributes(e.g. `channels`, |
| 210 | // `compression`, etc) |
| 211 | int ; |
| 212 | EXRAttribute *; // array of EXRAttribute. size = |
| 213 | // `num_custom_attributes`. |
| 214 | |
| 215 | EXRChannelInfo *; // [num_channels] |
| 216 | |
| 217 | int *; // Loaded pixel type(TINYEXR_PIXELTYPE_*) of `images` for |
| 218 | // each channel. This is overwritten with `requested_pixel_types` when |
| 219 | // loading. |
| 220 | int ; |
| 221 | |
| 222 | int ; // compression type(TINYEXR_COMPRESSIONTYPE_*) |
| 223 | int *; // Filled initially by |
| 224 | // ParseEXRHeaderFrom(Meomory|File), then users |
| 225 | // can edit it(only valid for HALF pixel type |
| 226 | // channel) |
| 227 | |
| 228 | } ; |
| 229 | |
| 230 | typedef struct { |
| 231 | int ; |
| 232 | EXRHeader *; |
| 233 | |
| 234 | } ; |
| 235 | |
| 236 | typedef struct _EXRImage { |
| 237 | EXRTile *tiles; // Tiled pixel data. The application must reconstruct image |
| 238 | // from tiles manually. NULL if scanline format. |
| 239 | unsigned char **images; // image[channels][pixels]. NULL if tiled format. |
| 240 | |
| 241 | int width; |
| 242 | int height; |
| 243 | int num_channels; |
| 244 | |
| 245 | // Properties for tile format. |
| 246 | int num_tiles; |
| 247 | |
| 248 | } EXRImage; |
| 249 | |
| 250 | typedef struct _EXRMultiPartImage { |
| 251 | int num_images; |
| 252 | EXRImage *images; |
| 253 | |
| 254 | } EXRMultiPartImage; |
| 255 | |
| 256 | typedef struct _DeepImage { |
| 257 | const char **channel_names; |
| 258 | float ***image; // image[channels][scanlines][samples] |
| 259 | int **offset_table; // offset_table[scanline][offsets] |
| 260 | int num_channels; |
| 261 | int width; |
| 262 | int height; |
| 263 | int pad0; |
| 264 | } DeepImage; |
| 265 | |
| 266 | // @deprecated { to be removed. } |
| 267 | // Loads single-frame OpenEXR image. Assume EXR image contains A(single channel |
| 268 | // alpha) or RGB(A) channels. |
| 269 | // Application must free image data as returned by `out_rgba` |
| 270 | // Result image format is: float x RGBA x width x hight |
| 271 | // Returns negative value and may set error string in `err` when there's an |
| 272 | // error |
| 273 | extern int LoadEXR(float **out_rgba, int *width, int *height, |
| 274 | const char *filename, const char **err); |
| 275 | |
| 276 | // @deprecated { to be removed. } |
| 277 | // Simple wrapper API for ParseEXRHeaderFromFile. |
| 278 | // checking given file is a EXR file(by just look up header) |
| 279 | // @return TINYEXR_SUCCEES for EXR image, TINYEXR_ERROR_INVALID_HEADER for |
| 280 | // others |
| 281 | extern int IsEXR(const char *filename); |
| 282 | |
| 283 | // @deprecated { to be removed. } |
| 284 | // Saves single-frame OpenEXR image. Assume EXR image contains RGB(A) channels. |
| 285 | // components must be 1(Grayscale), 3(RGB) or 4(RGBA). |
| 286 | // Input image format is: `float x width x height`, or `float x RGB(A) x width x |
| 287 | // hight` |
| 288 | // Save image as fp16(HALF) format when `save_as_fp16` is positive non-zero |
| 289 | // value. |
| 290 | // Save image as fp32(FLOAT) format when `save_as_fp16` is 0. |
| 291 | // Use ZIP compression by default. |
| 292 | // Returns negative value and may set error string in `err` when there's an |
| 293 | // error |
| 294 | extern int SaveEXR(const float *data, const int width, const int height, |
| 295 | const int components, const int save_as_fp16, |
| 296 | const char *filename, const char **err); |
| 297 | |
| 298 | // Initialize EXRHeader struct |
| 299 | extern void InitEXRHeader(EXRHeader *); |
| 300 | |
| 301 | // Initialize EXRImage struct |
| 302 | extern void InitEXRImage(EXRImage *exr_image); |
| 303 | |
| 304 | // Free's internal data of EXRHeader struct |
| 305 | extern int FreeEXRHeader(EXRHeader *); |
| 306 | |
| 307 | // Free's internal data of EXRImage struct |
| 308 | extern int FreeEXRImage(EXRImage *exr_image); |
| 309 | |
| 310 | // Free's error message |
| 311 | extern void FreeEXRErrorMessage(const char *msg); |
| 312 | |
| 313 | // Parse EXR version header of a file. |
| 314 | extern int ParseEXRVersionFromFile(EXRVersion *version, const char *filename); |
| 315 | |
| 316 | // Parse EXR version header from memory-mapped EXR data. |
| 317 | extern int ParseEXRVersionFromMemory(EXRVersion *version, |
| 318 | const unsigned char *memory, size_t size); |
| 319 | |
| 320 | // Parse single-part OpenEXR header from a file and initialize `EXRHeader`. |
| 321 | // When there was an error message, Application must free `err` with |
| 322 | // FreeEXRErrorMessage() |
| 323 | extern int ParseEXRHeaderFromFile(EXRHeader *, const EXRVersion *version, |
| 324 | const char *filename, const char **err); |
| 325 | |
| 326 | // Parse single-part OpenEXR header from a memory and initialize `EXRHeader`. |
| 327 | // When there was an error message, Application must free `err` with |
| 328 | // FreeEXRErrorMessage() |
| 329 | extern int ParseEXRHeaderFromMemory(EXRHeader *, |
| 330 | const EXRVersion *version, |
| 331 | const unsigned char *memory, size_t size, |
| 332 | const char **err); |
| 333 | |
| 334 | // Parse multi-part OpenEXR headers from a file and initialize `EXRHeader*` |
| 335 | // array. |
| 336 | // When there was an error message, Application must free `err` with |
| 337 | // FreeEXRErrorMessage() |
| 338 | extern int ParseEXRMultipartHeaderFromFile(EXRHeader ***, |
| 339 | int *, |
| 340 | const EXRVersion *version, |
| 341 | const char *filename, |
| 342 | const char **err); |
| 343 | |
| 344 | // Parse multi-part OpenEXR headers from a memory and initialize `EXRHeader*` |
| 345 | // array |
| 346 | // When there was an error message, Application must free `err` with |
| 347 | // FreeEXRErrorMessage() |
| 348 | extern int ParseEXRMultipartHeaderFromMemory(EXRHeader ***, |
| 349 | int *, |
| 350 | const EXRVersion *version, |
| 351 | const unsigned char *memory, |
| 352 | size_t size, const char **err); |
| 353 | |
| 354 | // Loads single-part OpenEXR image from a file. |
| 355 | // Application must setup `ParseEXRHeaderFromFile` before calling this function. |
| 356 | // Application can free EXRImage using `FreeEXRImage` |
| 357 | // Returns negative value and may set error string in `err` when there's an |
| 358 | // error |
| 359 | // When there was an error message, Application must free `err` with |
| 360 | // FreeEXRErrorMessage() |
| 361 | extern int LoadEXRImageFromFile(EXRImage *image, const EXRHeader *, |
| 362 | const char *filename, const char **err); |
| 363 | |
| 364 | // Loads single-part OpenEXR image from a memory. |
| 365 | // Application must setup `EXRHeader` with |
| 366 | // `ParseEXRHeaderFromMemory` before calling this function. |
| 367 | // Application can free EXRImage using `FreeEXRImage` |
| 368 | // Returns negative value and may set error string in `err` when there's an |
| 369 | // error |
| 370 | // When there was an error message, Application must free `err` with |
| 371 | // FreeEXRErrorMessage() |
| 372 | extern int LoadEXRImageFromMemory(EXRImage *image, const EXRHeader *, |
| 373 | const unsigned char *memory, |
| 374 | const size_t size, const char **err); |
| 375 | |
| 376 | // Loads multi-part OpenEXR image from a file. |
| 377 | // Application must setup `ParseEXRMultipartHeaderFromFile` before calling this |
| 378 | // function. |
| 379 | // Application can free EXRImage using `FreeEXRImage` |
| 380 | // Returns negative value and may set error string in `err` when there's an |
| 381 | // error |
| 382 | // When there was an error message, Application must free `err` with |
| 383 | // FreeEXRErrorMessage() |
| 384 | extern int LoadEXRMultipartImageFromFile(EXRImage *images, |
| 385 | const EXRHeader **, |
| 386 | unsigned int num_parts, |
| 387 | const char *filename, |
| 388 | const char **err); |
| 389 | |
| 390 | // Loads multi-part OpenEXR image from a memory. |
| 391 | // Application must setup `EXRHeader*` array with |
| 392 | // `ParseEXRMultipartHeaderFromMemory` before calling this function. |
| 393 | // Application can free EXRImage using `FreeEXRImage` |
| 394 | // Returns negative value and may set error string in `err` when there's an |
| 395 | // error |
| 396 | // When there was an error message, Application must free `err` with |
| 397 | // FreeEXRErrorMessage() |
| 398 | extern int LoadEXRMultipartImageFromMemory(EXRImage *images, |
| 399 | const EXRHeader **, |
| 400 | unsigned int num_parts, |
| 401 | const unsigned char *memory, |
| 402 | const size_t size, const char **err); |
| 403 | |
| 404 | // Saves multi-channel, single-frame OpenEXR image to a file. |
| 405 | // Returns negative value and may set error string in `err` when there's an |
| 406 | // error |
| 407 | // When there was an error message, Application must free `err` with |
| 408 | // FreeEXRErrorMessage() |
| 409 | extern int SaveEXRImageToFile(const EXRImage *image, |
| 410 | const EXRHeader *, const char *filename, |
| 411 | const char **err); |
| 412 | |
| 413 | // Saves multi-channel, single-frame OpenEXR image to a memory. |
| 414 | // Image is compressed using EXRImage.compression value. |
| 415 | // Return the number of bytes if success. |
| 416 | // Return zero and will set error string in `err` when there's an |
| 417 | // error. |
| 418 | // When there was an error message, Application must free `err` with |
| 419 | // FreeEXRErrorMessage() |
| 420 | extern size_t SaveEXRImageToMemory(const EXRImage *image, |
| 421 | const EXRHeader *, |
| 422 | unsigned char **memory, const char **err); |
| 423 | |
| 424 | // Loads single-frame OpenEXR deep image. |
| 425 | // Application must free memory of variables in DeepImage(image, offset_table) |
| 426 | // Returns negative value and may set error string in `err` when there's an |
| 427 | // error |
| 428 | // When there was an error message, Application must free `err` with |
| 429 | // FreeEXRErrorMessage() |
| 430 | extern int LoadDeepEXR(DeepImage *out_image, const char *filename, |
| 431 | const char **err); |
| 432 | |
| 433 | // NOT YET IMPLEMENTED: |
| 434 | // Saves single-frame OpenEXR deep image. |
| 435 | // Returns negative value and may set error string in `err` when there's an |
| 436 | // error |
| 437 | // extern int SaveDeepEXR(const DeepImage *in_image, const char *filename, |
| 438 | // const char **err); |
| 439 | |
| 440 | // NOT YET IMPLEMENTED: |
| 441 | // Loads multi-part OpenEXR deep image. |
| 442 | // Application must free memory of variables in DeepImage(image, offset_table) |
| 443 | // extern int LoadMultiPartDeepEXR(DeepImage **out_image, int num_parts, const |
| 444 | // char *filename, |
| 445 | // const char **err); |
| 446 | |
| 447 | // For emscripten. |
| 448 | // Loads single-frame OpenEXR image from memory. Assume EXR image contains |
| 449 | // RGB(A) channels. |
| 450 | // Returns negative value and may set error string in `err` when there's an |
| 451 | // error |
| 452 | // When there was an error message, Application must free `err` with |
| 453 | // FreeEXRErrorMessage() |
| 454 | extern int LoadEXRFromMemory(float **out_rgba, int *width, int *height, |
| 455 | const unsigned char *memory, size_t size, |
| 456 | const char **err); |
| 457 | |
| 458 | #ifdef __cplusplus |
| 459 | } |
| 460 | #endif |
| 461 | |
| 462 | #endif // TINYEXR_H_ |
| 463 | |
| 464 | #ifdef TINYEXR_IMPLEMENTATION |
| 465 | #ifndef TINYEXR_IMPLEMENTATION_DEIFNED |
| 466 | #define TINYEXR_IMPLEMENTATION_DEIFNED |
| 467 | |
| 468 | #include <algorithm> |
| 469 | #include <cassert> |
| 470 | #include <cstdio> |
| 471 | #include <cstdlib> |
| 472 | #include <cstring> |
| 473 | #include <sstream> |
| 474 | |
| 475 | // #include <iostream> // debug |
| 476 | |
| 477 | #include <limits> |
| 478 | #include <string> |
| 479 | #include <vector> |
| 480 | |
| 481 | #if __cplusplus > 199711L |
| 482 | // C++11 |
| 483 | #include <cstdint> |
| 484 | #endif // __cplusplus > 199711L |
| 485 | |
| 486 | #ifdef _OPENMP |
| 487 | #include <omp.h> |
| 488 | #endif |
| 489 | |
| 490 | #if TINYEXR_USE_MINIZ |
| 491 | #else |
| 492 | // Issue #46. Please include your own zlib-compatible API header before |
| 493 | // including `tinyexr.h` |
| 494 | //#include "zlib.h" |
| 495 | #endif |
| 496 | |
| 497 | #if TINYEXR_USE_ZFP |
| 498 | #include "zfp.h" |
| 499 | #endif |
| 500 | |
| 501 | namespace tinyexr { |
| 502 | |
| 503 | #if __cplusplus > 199711L |
| 504 | // C++11 |
| 505 | typedef uint64_t tinyexr_uint64; |
| 506 | typedef int64_t tinyexr_int64; |
| 507 | #else |
| 508 | // Although `long long` is not a standard type pre C++11, assume it is defined |
| 509 | // as a compiler's extension. |
| 510 | #ifdef __clang__ |
| 511 | #pragma clang diagnostic push |
| 512 | #pragma clang diagnostic ignored "-Wc++11-long-long" |
| 513 | #endif |
| 514 | typedef unsigned long long tinyexr_uint64; |
| 515 | typedef long long tinyexr_int64; |
| 516 | #ifdef __clang__ |
| 517 | #pragma clang diagnostic pop |
| 518 | #endif |
| 519 | #endif |
| 520 | |
| 521 | #if TINYEXR_USE_MINIZ |
| 522 | |
| 523 | namespace miniz { |
| 524 | |
| 525 | #ifdef __clang__ |
| 526 | #pragma clang diagnostic push |
| 527 | #pragma clang diagnostic ignored "-Wc++11-long-long" |
| 528 | #pragma clang diagnostic ignored "-Wold-style-cast" |
| 529 | #pragma clang diagnostic ignored "-Wpadded" |
| 530 | #pragma clang diagnostic ignored "-Wsign-conversion" |
| 531 | #pragma clang diagnostic ignored "-Wc++11-extensions" |
| 532 | #pragma clang diagnostic ignored "-Wconversion" |
| 533 | #pragma clang diagnostic ignored "-Wunused-function" |
| 534 | #pragma clang diagnostic ignored "-Wc++98-compat-pedantic" |
| 535 | #pragma clang diagnostic ignored "-Wundef" |
| 536 | |
| 537 | #if __has_warning("-Wcomma") |
| 538 | #pragma clang diagnostic ignored "-Wcomma" |
| 539 | #endif |
| 540 | |
| 541 | #if __has_warning("-Wmacro-redefined") |
| 542 | #pragma clang diagnostic ignored "-Wmacro-redefined" |
| 543 | #endif |
| 544 | |
| 545 | #if __has_warning("-Wcast-qual") |
| 546 | #pragma clang diagnostic ignored "-Wcast-qual" |
| 547 | #endif |
| 548 | |
| 549 | #if __has_warning("-Wzero-as-null-pointer-constant") |
| 550 | #pragma clang diagnostic ignored "-Wzero-as-null-pointer-constant" |
| 551 | #endif |
| 552 | |
| 553 | #if __has_warning("-Wtautological-constant-compare") |
| 554 | #pragma clang diagnostic ignored "-Wtautological-constant-compare" |
| 555 | #endif |
| 556 | |
| 557 | #endif |
| 558 | |
| 559 | /* miniz.c v1.15 - public domain deflate/inflate, zlib-subset, ZIP |
| 560 | reading/writing/appending, PNG writing |
| 561 | See "unlicense" statement at the end of this file. |
| 562 | Rich Geldreich <richgel99@gmail.com>, last updated Oct. 13, 2013 |
| 563 | Implements RFC 1950: http://www.ietf.org/rfc/rfc1950.txt and RFC 1951: |
| 564 | http://www.ietf.org/rfc/rfc1951.txt |
| 565 | |
| 566 | Most API's defined in miniz.c are optional. For example, to disable the |
| 567 | archive related functions just define |
| 568 | MINIZ_NO_ARCHIVE_APIS, or to get rid of all stdio usage define MINIZ_NO_STDIO |
| 569 | (see the list below for more macros). |
| 570 | |
| 571 | * Change History |
| 572 | 10/13/13 v1.15 r4 - Interim bugfix release while I work on the next major |
| 573 | release with Zip64 support (almost there!): |
| 574 | - Critical fix for the MZ_ZIP_FLAG_DO_NOT_SORT_CENTRAL_DIRECTORY bug |
| 575 | (thanks kahmyong.moon@hp.com) which could cause locate files to not find |
| 576 | files. This bug |
| 577 | would only have occured in earlier versions if you explicitly used this |
| 578 | flag, OR if you used mz_zip_extract_archive_file_to_heap() or |
| 579 | mz_zip_add_mem_to_archive_file_in_place() |
| 580 | (which used this flag). If you can't switch to v1.15 but want to fix |
| 581 | this bug, just remove the uses of this flag from both helper funcs (and of |
| 582 | course don't use the flag). |
| 583 | - Bugfix in mz_zip_reader_extract_to_mem_no_alloc() from kymoon when |
| 584 | pUser_read_buf is not NULL and compressed size is > uncompressed size |
| 585 | - Fixing mz_zip_reader_extract_*() funcs so they don't try to extract |
| 586 | compressed data from directory entries, to account for weird zipfiles which |
| 587 | contain zero-size compressed data on dir entries. |
| 588 | Hopefully this fix won't cause any issues on weird zip archives, |
| 589 | because it assumes the low 16-bits of zip external attributes are DOS |
| 590 | attributes (which I believe they always are in practice). |
| 591 | - Fixing mz_zip_reader_is_file_a_directory() so it doesn't check the |
| 592 | internal attributes, just the filename and external attributes |
| 593 | - mz_zip_reader_init_file() - missing MZ_FCLOSE() call if the seek failed |
| 594 | - Added cmake support for Linux builds which builds all the examples, |
| 595 | tested with clang v3.3 and gcc v4.6. |
| 596 | - Clang fix for tdefl_write_image_to_png_file_in_memory() from toffaletti |
| 597 | - Merged MZ_FORCEINLINE fix from hdeanclark |
| 598 | - Fix <time.h> include before config #ifdef, thanks emil.brink |
| 599 | - Added tdefl_write_image_to_png_file_in_memory_ex(): supports Y flipping |
| 600 | (super useful for OpenGL apps), and explicit control over the compression |
| 601 | level (so you can |
| 602 | set it to 1 for real-time compression). |
| 603 | - Merged in some compiler fixes from paulharris's github repro. |
| 604 | - Retested this build under Windows (VS 2010, including static analysis), |
| 605 | tcc 0.9.26, gcc v4.6 and clang v3.3. |
| 606 | - Added example6.c, which dumps an image of the mandelbrot set to a PNG |
| 607 | file. |
| 608 | - Modified example2 to help test the |
| 609 | MZ_ZIP_FLAG_DO_NOT_SORT_CENTRAL_DIRECTORY flag more. |
| 610 | - In r3: Bugfix to mz_zip_writer_add_file() found during merge: Fix |
| 611 | possible src file fclose() leak if alignment bytes+local header file write |
| 612 | faiiled |
| 613 | - In r4: Minor bugfix to mz_zip_writer_add_from_zip_reader(): |
| 614 | Was pushing the wrong central dir header offset, appears harmless in this |
| 615 | release, but it became a problem in the zip64 branch |
| 616 | 5/20/12 v1.14 - MinGW32/64 GCC 4.6.1 compiler fixes: added MZ_FORCEINLINE, |
| 617 | #include <time.h> (thanks fermtect). |
| 618 | 5/19/12 v1.13 - From jason@cornsyrup.org and kelwert@mtu.edu - Fix |
| 619 | mz_crc32() so it doesn't compute the wrong CRC-32's when mz_ulong is 64-bit. |
| 620 | - Temporarily/locally slammed in "typedef unsigned long mz_ulong" and |
| 621 | re-ran a randomized regression test on ~500k files. |
| 622 | - Eliminated a bunch of warnings when compiling with GCC 32-bit/64. |
| 623 | - Ran all examples, miniz.c, and tinfl.c through MSVC 2008's /analyze |
| 624 | (static analysis) option and fixed all warnings (except for the silly |
| 625 | "Use of the comma-operator in a tested expression.." analysis warning, |
| 626 | which I purposely use to work around a MSVC compiler warning). |
| 627 | - Created 32-bit and 64-bit Codeblocks projects/workspace. Built and |
| 628 | tested Linux executables. The codeblocks workspace is compatible with |
| 629 | Linux+Win32/x64. |
| 630 | - Added miniz_tester solution/project, which is a useful little app |
| 631 | derived from LZHAM's tester app that I use as part of the regression test. |
| 632 | - Ran miniz.c and tinfl.c through another series of regression testing on |
| 633 | ~500,000 files and archives. |
| 634 | - Modified example5.c so it purposely disables a bunch of high-level |
| 635 | functionality (MINIZ_NO_STDIO, etc.). (Thanks to corysama for the |
| 636 | MINIZ_NO_STDIO bug report.) |
| 637 | - Fix ftell() usage in examples so they exit with an error on files which |
| 638 | are too large (a limitation of the examples, not miniz itself). |
| 639 | 4/12/12 v1.12 - More comments, added low-level example5.c, fixed a couple |
| 640 | minor level_and_flags issues in the archive API's. |
| 641 | level_and_flags can now be set to MZ_DEFAULT_COMPRESSION. Thanks to Bruce |
| 642 | Dawson <bruced@valvesoftware.com> for the feedback/bug report. |
| 643 | 5/28/11 v1.11 - Added statement from unlicense.org |
| 644 | 5/27/11 v1.10 - Substantial compressor optimizations: |
| 645 | - Level 1 is now ~4x faster than before. The L1 compressor's throughput |
| 646 | now varies between 70-110MB/sec. on a |
| 647 | - Core i7 (actual throughput varies depending on the type of data, and x64 |
| 648 | vs. x86). |
| 649 | - Improved baseline L2-L9 compression perf. Also, greatly improved |
| 650 | compression perf. issues on some file types. |
| 651 | - Refactored the compression code for better readability and |
| 652 | maintainability. |
| 653 | - Added level 10 compression level (L10 has slightly better ratio than |
| 654 | level 9, but could have a potentially large |
| 655 | drop in throughput on some files). |
| 656 | 5/15/11 v1.09 - Initial stable release. |
| 657 | |
| 658 | * Low-level Deflate/Inflate implementation notes: |
| 659 | |
| 660 | Compression: Use the "tdefl" API's. The compressor supports raw, static, |
| 661 | and dynamic blocks, lazy or |
| 662 | greedy parsing, match length filtering, RLE-only, and Huffman-only streams. |
| 663 | It performs and compresses |
| 664 | approximately as well as zlib. |
| 665 | |
| 666 | Decompression: Use the "tinfl" API's. The entire decompressor is |
| 667 | implemented as a single function |
| 668 | coroutine: see tinfl_decompress(). It supports decompression into a 32KB |
| 669 | (or larger power of 2) wrapping buffer, or into a memory |
| 670 | block large enough to hold the entire file. |
| 671 | |
| 672 | The low-level tdefl/tinfl API's do not make any use of dynamic memory |
| 673 | allocation. |
| 674 | |
| 675 | * zlib-style API notes: |
| 676 | |
| 677 | miniz.c implements a fairly large subset of zlib. There's enough |
| 678 | functionality present for it to be a drop-in |
| 679 | zlib replacement in many apps: |
| 680 | The z_stream struct, optional memory allocation callbacks |
| 681 | deflateInit/deflateInit2/deflate/deflateReset/deflateEnd/deflateBound |
| 682 | inflateInit/inflateInit2/inflate/inflateEnd |
| 683 | compress, compress2, compressBound, uncompress |
| 684 | CRC-32, Adler-32 - Using modern, minimal code size, CPU cache friendly |
| 685 | routines. |
| 686 | Supports raw deflate streams or standard zlib streams with adler-32 |
| 687 | checking. |
| 688 | |
| 689 | Limitations: |
| 690 | The callback API's are not implemented yet. No support for gzip headers or |
| 691 | zlib static dictionaries. |
| 692 | I've tried to closely emulate zlib's various flavors of stream flushing |
| 693 | and return status codes, but |
| 694 | there are no guarantees that miniz.c pulls this off perfectly. |
| 695 | |
| 696 | * PNG writing: See the tdefl_write_image_to_png_file_in_memory() function, |
| 697 | originally written by |
| 698 | Alex Evans. Supports 1-4 bytes/pixel images. |
| 699 | |
| 700 | * ZIP archive API notes: |
| 701 | |
| 702 | The ZIP archive API's where designed with simplicity and efficiency in |
| 703 | mind, with just enough abstraction to |
| 704 | get the job done with minimal fuss. There are simple API's to retrieve file |
| 705 | information, read files from |
| 706 | existing archives, create new archives, append new files to existing |
| 707 | archives, or clone archive data from |
| 708 | one archive to another. It supports archives located in memory or the heap, |
| 709 | on disk (using stdio.h), |
| 710 | or you can specify custom file read/write callbacks. |
| 711 | |
| 712 | - Archive reading: Just call this function to read a single file from a |
| 713 | disk archive: |
| 714 | |
| 715 | void *mz_zip_extract_archive_file_to_heap(const char *pZip_filename, const |
| 716 | char *pArchive_name, |
| 717 | size_t *pSize, mz_uint zip_flags); |
| 718 | |
| 719 | For more complex cases, use the "mz_zip_reader" functions. Upon opening an |
| 720 | archive, the entire central |
| 721 | directory is located and read as-is into memory, and subsequent file access |
| 722 | only occurs when reading individual files. |
| 723 | |
| 724 | - Archives file scanning: The simple way is to use this function to scan a |
| 725 | loaded archive for a specific file: |
| 726 | |
| 727 | int mz_zip_reader_locate_file(mz_zip_archive *pZip, const char *pName, |
| 728 | const char *pComment, mz_uint flags); |
| 729 | |
| 730 | The locate operation can optionally check file comments too, which (as one |
| 731 | example) can be used to identify |
| 732 | multiple versions of the same file in an archive. This function uses a |
| 733 | simple linear search through the central |
| 734 | directory, so it's not very fast. |
| 735 | |
| 736 | Alternately, you can iterate through all the files in an archive (using |
| 737 | mz_zip_reader_get_num_files()) and |
| 738 | retrieve detailed info on each file by calling mz_zip_reader_file_stat(). |
| 739 | |
| 740 | - Archive creation: Use the "mz_zip_writer" functions. The ZIP writer |
| 741 | immediately writes compressed file data |
| 742 | to disk and builds an exact image of the central directory in memory. The |
| 743 | central directory image is written |
| 744 | all at once at the end of the archive file when the archive is finalized. |
| 745 | |
| 746 | The archive writer can optionally align each file's local header and file |
| 747 | data to any power of 2 alignment, |
| 748 | which can be useful when the archive will be read from optical media. Also, |
| 749 | the writer supports placing |
| 750 | arbitrary data blobs at the very beginning of ZIP archives. Archives |
| 751 | written using either feature are still |
| 752 | readable by any ZIP tool. |
| 753 | |
| 754 | - Archive appending: The simple way to add a single file to an archive is |
| 755 | to call this function: |
| 756 | |
| 757 | mz_bool mz_zip_add_mem_to_archive_file_in_place(const char *pZip_filename, |
| 758 | const char *pArchive_name, |
| 759 | const void *pBuf, size_t buf_size, const void *pComment, mz_uint16 |
| 760 | comment_size, mz_uint level_and_flags); |
| 761 | |
| 762 | The archive will be created if it doesn't already exist, otherwise it'll be |
| 763 | appended to. |
| 764 | Note the appending is done in-place and is not an atomic operation, so if |
| 765 | something goes wrong |
| 766 | during the operation it's possible the archive could be left without a |
| 767 | central directory (although the local |
| 768 | file headers and file data will be fine, so the archive will be |
| 769 | recoverable). |
| 770 | |
| 771 | For more complex archive modification scenarios: |
| 772 | 1. The safest way is to use a mz_zip_reader to read the existing archive, |
| 773 | cloning only those bits you want to |
| 774 | preserve into a new archive using using the |
| 775 | mz_zip_writer_add_from_zip_reader() function (which compiles the |
| 776 | compressed file data as-is). When you're done, delete the old archive and |
| 777 | rename the newly written archive, and |
| 778 | you're done. This is safe but requires a bunch of temporary disk space or |
| 779 | heap memory. |
| 780 | |
| 781 | 2. Or, you can convert an mz_zip_reader in-place to an mz_zip_writer using |
| 782 | mz_zip_writer_init_from_reader(), |
| 783 | append new files as needed, then finalize the archive which will write an |
| 784 | updated central directory to the |
| 785 | original archive. (This is basically what |
| 786 | mz_zip_add_mem_to_archive_file_in_place() does.) There's a |
| 787 | possibility that the archive's central directory could be lost with this |
| 788 | method if anything goes wrong, though. |
| 789 | |
| 790 | - ZIP archive support limitations: |
| 791 | No zip64 or spanning support. Extraction functions can only handle |
| 792 | unencrypted, stored or deflated files. |
| 793 | Requires streams capable of seeking. |
| 794 | |
| 795 | * This is a header file library, like stb_image.c. To get only a header file, |
| 796 | either cut and paste the |
| 797 | below header, or create miniz.h, #define MINIZ_HEADER_FILE_ONLY, and then |
| 798 | include miniz.c from it. |
| 799 | |
| 800 | * Important: For best perf. be sure to customize the below macros for your |
| 801 | target platform: |
| 802 | #define MINIZ_USE_UNALIGNED_LOADS_AND_STORES 1 |
| 803 | #define MINIZ_LITTLE_ENDIAN 1 |
| 804 | #define MINIZ_HAS_64BIT_REGISTERS 1 |
| 805 | |
| 806 | * On platforms using glibc, Be sure to "#define _LARGEFILE64_SOURCE 1" before |
| 807 | including miniz.c to ensure miniz |
| 808 | uses the 64-bit variants: fopen64(), stat64(), etc. Otherwise you won't be |
| 809 | able to process large files |
| 810 | (i.e. 32-bit stat() fails for me on files > 0x7FFFFFFF bytes). |
| 811 | */ |
| 812 | |
| 813 | #ifndef MINIZ_HEADER_INCLUDED |
| 814 | #define MINIZ_HEADER_INCLUDED |
| 815 | |
| 816 | //#include <stdlib.h> |
| 817 | |
| 818 | // Defines to completely disable specific portions of miniz.c: |
| 819 | // If all macros here are defined the only functionality remaining will be |
| 820 | // CRC-32, adler-32, tinfl, and tdefl. |
| 821 | |
| 822 | // Define MINIZ_NO_STDIO to disable all usage and any functions which rely on |
| 823 | // stdio for file I/O. |
| 824 | //#define MINIZ_NO_STDIO |
| 825 | |
| 826 | // If MINIZ_NO_TIME is specified then the ZIP archive functions will not be able |
| 827 | // to get the current time, or |
| 828 | // get/set file times, and the C run-time funcs that get/set times won't be |
| 829 | // called. |
| 830 | // The current downside is the times written to your archives will be from 1979. |
| 831 | #define MINIZ_NO_TIME |
| 832 | |
| 833 | // Define MINIZ_NO_ARCHIVE_APIS to disable all ZIP archive API's. |
| 834 | #define MINIZ_NO_ARCHIVE_APIS |
| 835 | |
| 836 | // Define MINIZ_NO_ARCHIVE_APIS to disable all writing related ZIP archive |
| 837 | // API's. |
| 838 | //#define MINIZ_NO_ARCHIVE_WRITING_APIS |
| 839 | |
| 840 | // Define MINIZ_NO_ZLIB_APIS to remove all ZLIB-style compression/decompression |
| 841 | // API's. |
| 842 | //#define MINIZ_NO_ZLIB_APIS |
| 843 | |
| 844 | // Define MINIZ_NO_ZLIB_COMPATIBLE_NAME to disable zlib names, to prevent |
| 845 | // conflicts against stock zlib. |
| 846 | //#define MINIZ_NO_ZLIB_COMPATIBLE_NAMES |
| 847 | |
| 848 | // Define MINIZ_NO_MALLOC to disable all calls to malloc, free, and realloc. |
| 849 | // Note if MINIZ_NO_MALLOC is defined then the user must always provide custom |
| 850 | // user alloc/free/realloc |
| 851 | // callbacks to the zlib and archive API's, and a few stand-alone helper API's |
| 852 | // which don't provide custom user |
| 853 | // functions (such as tdefl_compress_mem_to_heap() and |
| 854 | // tinfl_decompress_mem_to_heap()) won't work. |
| 855 | //#define MINIZ_NO_MALLOC |
| 856 | |
| 857 | #if defined(__TINYC__) && (defined(__linux) || defined(__linux__)) |
| 858 | // TODO: Work around "error: include file 'sys\utime.h' when compiling with tcc |
| 859 | // on Linux |
| 860 | #define MINIZ_NO_TIME |
| 861 | #endif |
| 862 | |
| 863 | #if !defined(MINIZ_NO_TIME) && !defined(MINIZ_NO_ARCHIVE_APIS) |
| 864 | //#include <time.h> |
| 865 | #endif |
| 866 | |
| 867 | #if defined(_M_IX86) || defined(_M_X64) || defined(__i386__) || \ |
| 868 | defined(__i386) || defined(__i486__) || defined(__i486) || \ |
| 869 | defined(i386) || defined(__ia64__) || defined(__x86_64__) |
| 870 | // MINIZ_X86_OR_X64_CPU is only used to help set the below macros. |
| 871 | #define MINIZ_X86_OR_X64_CPU 1 |
| 872 | #endif |
| 873 | |
| 874 | #if defined(__sparcv9) |
| 875 | // Big endian |
| 876 | #else |
| 877 | #if (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) || MINIZ_X86_OR_X64_CPU |
| 878 | // Set MINIZ_LITTLE_ENDIAN to 1 if the processor is little endian. |
| 879 | #define MINIZ_LITTLE_ENDIAN 1 |
| 880 | #endif |
| 881 | #endif |
| 882 | |
| 883 | #if MINIZ_X86_OR_X64_CPU |
| 884 | // Set MINIZ_USE_UNALIGNED_LOADS_AND_STORES to 1 on CPU's that permit efficient |
| 885 | // integer loads and stores from unaligned addresses. |
| 886 | //#define MINIZ_USE_UNALIGNED_LOADS_AND_STORES 1 |
| 887 | #define MINIZ_USE_UNALIGNED_LOADS_AND_STORES \ |
| 888 | 0 // disable to suppress compiler warnings |
| 889 | #endif |
| 890 | |
| 891 | #if defined(_M_X64) || defined(_WIN64) || defined(__MINGW64__) || \ |
| 892 | defined(_LP64) || defined(__LP64__) || defined(__ia64__) || \ |
| 893 | defined(__x86_64__) |
| 894 | // Set MINIZ_HAS_64BIT_REGISTERS to 1 if operations on 64-bit integers are |
| 895 | // reasonably fast (and don't involve compiler generated calls to helper |
| 896 | // functions). |
| 897 | #define MINIZ_HAS_64BIT_REGISTERS 1 |
| 898 | #endif |
| 899 | |
| 900 | #ifdef __cplusplus |
| 901 | extern "C" { |
| 902 | #endif |
| 903 | |
| 904 | // ------------------- zlib-style API Definitions. |
| 905 | |
| 906 | // For more compatibility with zlib, miniz.c uses unsigned long for some |
| 907 | // parameters/struct members. Beware: mz_ulong can be either 32 or 64-bits! |
| 908 | typedef unsigned long mz_ulong; |
| 909 | |
| 910 | // mz_free() internally uses the MZ_FREE() macro (which by default calls free() |
| 911 | // unless you've modified the MZ_MALLOC macro) to release a block allocated from |
| 912 | // the heap. |
| 913 | void mz_free(void *p); |
| 914 | |
| 915 | #define MZ_ADLER32_INIT (1) |
| 916 | // mz_adler32() returns the initial adler-32 value to use when called with |
| 917 | // ptr==NULL. |
| 918 | mz_ulong mz_adler32(mz_ulong adler, const unsigned char *ptr, size_t buf_len); |
| 919 | |
| 920 | #define MZ_CRC32_INIT (0) |
| 921 | // mz_crc32() returns the initial CRC-32 value to use when called with |
| 922 | // ptr==NULL. |
| 923 | mz_ulong mz_crc32(mz_ulong crc, const unsigned char *ptr, size_t buf_len); |
| 924 | |
| 925 | // Compression strategies. |
| 926 | enum { |
| 927 | MZ_DEFAULT_STRATEGY = 0, |
| 928 | MZ_FILTERED = 1, |
| 929 | MZ_HUFFMAN_ONLY = 2, |
| 930 | MZ_RLE = 3, |
| 931 | MZ_FIXED = 4 |
| 932 | }; |
| 933 | |
| 934 | // Method |
| 935 | #define MZ_DEFLATED 8 |
| 936 | |
| 937 | #ifndef MINIZ_NO_ZLIB_APIS |
| 938 | |
| 939 | // Heap allocation callbacks. |
| 940 | // Note that mz_alloc_func parameter types purpsosely differ from zlib's: |
| 941 | // items/size is size_t, not unsigned long. |
| 942 | typedef void *(*mz_alloc_func)(void *opaque, size_t items, size_t size); |
| 943 | typedef void (*mz_free_func)(void *opaque, void *address); |
| 944 | typedef void *(*mz_realloc_func)(void *opaque, void *address, size_t items, |
| 945 | size_t size); |
| 946 | |
| 947 | #define MZ_VERSION "9.1.15" |
| 948 | #define MZ_VERNUM 0x91F0 |
| 949 | #define MZ_VER_MAJOR 9 |
| 950 | #define MZ_VER_MINOR 1 |
| 951 | #define MZ_VER_REVISION 15 |
| 952 | #define MZ_VER_SUBREVISION 0 |
| 953 | |
| 954 | // Flush values. For typical usage you only need MZ_NO_FLUSH and MZ_FINISH. The |
| 955 | // other values are for advanced use (refer to the zlib docs). |
| 956 | enum { |
| 957 | MZ_NO_FLUSH = 0, |
| 958 | MZ_PARTIAL_FLUSH = 1, |
| 959 | MZ_SYNC_FLUSH = 2, |
| 960 | MZ_FULL_FLUSH = 3, |
| 961 | MZ_FINISH = 4, |
| 962 | MZ_BLOCK = 5 |
| 963 | }; |
| 964 | |
| 965 | // Return status codes. MZ_PARAM_ERROR is non-standard. |
| 966 | enum { |
| 967 | MZ_OK = 0, |
| 968 | MZ_STREAM_END = 1, |
| 969 | MZ_NEED_DICT = 2, |
| 970 | MZ_ERRNO = -1, |
| 971 | MZ_STREAM_ERROR = -2, |
| 972 | MZ_DATA_ERROR = -3, |
| 973 | MZ_MEM_ERROR = -4, |
| 974 | MZ_BUF_ERROR = -5, |
| 975 | MZ_VERSION_ERROR = -6, |
| 976 | MZ_PARAM_ERROR = -10000 |
| 977 | }; |
| 978 | |
| 979 | // Compression levels: 0-9 are the standard zlib-style levels, 10 is best |
| 980 | // possible compression (not zlib compatible, and may be very slow), |
| 981 | // MZ_DEFAULT_COMPRESSION=MZ_DEFAULT_LEVEL. |
| 982 | enum { |
| 983 | MZ_NO_COMPRESSION = 0, |
| 984 | MZ_BEST_SPEED = 1, |
| 985 | MZ_BEST_COMPRESSION = 9, |
| 986 | MZ_UBER_COMPRESSION = 10, |
| 987 | MZ_DEFAULT_LEVEL = 6, |
| 988 | MZ_DEFAULT_COMPRESSION = -1 |
| 989 | }; |
| 990 | |
| 991 | // Window bits |
| 992 | #define MZ_DEFAULT_WINDOW_BITS 15 |
| 993 | |
| 994 | struct mz_internal_state; |
| 995 | |
| 996 | // Compression/decompression stream struct. |
| 997 | typedef struct mz_stream_s { |
| 998 | const unsigned char *next_in; // pointer to next byte to read |
| 999 | unsigned int avail_in; // number of bytes available at next_in |
| 1000 | mz_ulong total_in; // total number of bytes consumed so far |
| 1001 | |
| 1002 | unsigned char *next_out; // pointer to next byte to write |
| 1003 | unsigned int avail_out; // number of bytes that can be written to next_out |
| 1004 | mz_ulong total_out; // total number of bytes produced so far |
| 1005 | |
| 1006 | char *msg; // error msg (unused) |
| 1007 | struct mz_internal_state *state; // internal state, allocated by zalloc/zfree |
| 1008 | |
| 1009 | mz_alloc_func |
| 1010 | zalloc; // optional heap allocation function (defaults to malloc) |
| 1011 | mz_free_func zfree; // optional heap free function (defaults to free) |
| 1012 | void *opaque; // heap alloc function user pointer |
| 1013 | |
| 1014 | int data_type; // data_type (unused) |
| 1015 | mz_ulong adler; // adler32 of the source or uncompressed data |
| 1016 | mz_ulong reserved; // not used |
| 1017 | } mz_stream; |
| 1018 | |
| 1019 | typedef mz_stream *mz_streamp; |
| 1020 | |
| 1021 | // Returns the version string of miniz.c. |
| 1022 | const char *mz_version(void); |
| 1023 | |
| 1024 | // mz_deflateInit() initializes a compressor with default options: |
| 1025 | // Parameters: |
| 1026 | // pStream must point to an initialized mz_stream struct. |
| 1027 | // level must be between [MZ_NO_COMPRESSION, MZ_BEST_COMPRESSION]. |
| 1028 | // level 1 enables a specially optimized compression function that's been |
| 1029 | // optimized purely for performance, not ratio. |
| 1030 | // (This special func. is currently only enabled when |
| 1031 | // MINIZ_USE_UNALIGNED_LOADS_AND_STORES and MINIZ_LITTLE_ENDIAN are defined.) |
| 1032 | // Return values: |
| 1033 | // MZ_OK on success. |
| 1034 | // MZ_STREAM_ERROR if the stream is bogus. |
| 1035 | // MZ_PARAM_ERROR if the input parameters are bogus. |
| 1036 | // MZ_MEM_ERROR on out of memory. |
| 1037 | int mz_deflateInit(mz_streamp pStream, int level); |
| 1038 | |
| 1039 | // mz_deflateInit2() is like mz_deflate(), except with more control: |
| 1040 | // Additional parameters: |
| 1041 | // method must be MZ_DEFLATED |
| 1042 | // window_bits must be MZ_DEFAULT_WINDOW_BITS (to wrap the deflate stream with |
| 1043 | // zlib header/adler-32 footer) or -MZ_DEFAULT_WINDOW_BITS (raw deflate/no |
| 1044 | // header or footer) |
| 1045 | // mem_level must be between [1, 9] (it's checked but ignored by miniz.c) |
| 1046 | int mz_deflateInit2(mz_streamp pStream, int level, int method, int window_bits, |
| 1047 | int mem_level, int strategy); |
| 1048 | |
| 1049 | // Quickly resets a compressor without having to reallocate anything. Same as |
| 1050 | // calling mz_deflateEnd() followed by mz_deflateInit()/mz_deflateInit2(). |
| 1051 | int mz_deflateReset(mz_streamp pStream); |
| 1052 | |
| 1053 | // mz_deflate() compresses the input to output, consuming as much of the input |
| 1054 | // and producing as much output as possible. |
| 1055 | // Parameters: |
| 1056 | // pStream is the stream to read from and write to. You must initialize/update |
| 1057 | // the next_in, avail_in, next_out, and avail_out members. |
| 1058 | // flush may be MZ_NO_FLUSH, MZ_PARTIAL_FLUSH/MZ_SYNC_FLUSH, MZ_FULL_FLUSH, or |
| 1059 | // MZ_FINISH. |
| 1060 | // Return values: |
| 1061 | // MZ_OK on success (when flushing, or if more input is needed but not |
| 1062 | // available, and/or there's more output to be written but the output buffer |
| 1063 | // is full). |
| 1064 | // MZ_STREAM_END if all input has been consumed and all output bytes have been |
| 1065 | // written. Don't call mz_deflate() on the stream anymore. |
| 1066 | // MZ_STREAM_ERROR if the stream is bogus. |
| 1067 | // MZ_PARAM_ERROR if one of the parameters is invalid. |
| 1068 | // MZ_BUF_ERROR if no forward progress is possible because the input and/or |
| 1069 | // output buffers are empty. (Fill up the input buffer or free up some output |
| 1070 | // space and try again.) |
| 1071 | int mz_deflate(mz_streamp pStream, int flush); |
| 1072 | |
| 1073 | // mz_deflateEnd() deinitializes a compressor: |
| 1074 | // Return values: |
| 1075 | // MZ_OK on success. |
| 1076 | // MZ_STREAM_ERROR if the stream is bogus. |
| 1077 | int mz_deflateEnd(mz_streamp pStream); |
| 1078 | |
| 1079 | // mz_deflateBound() returns a (very) conservative upper bound on the amount of |
| 1080 | // data that could be generated by deflate(), assuming flush is set to only |
| 1081 | // MZ_NO_FLUSH or MZ_FINISH. |
| 1082 | mz_ulong mz_deflateBound(mz_streamp pStream, mz_ulong source_len); |
| 1083 | |
| 1084 | // Single-call compression functions mz_compress() and mz_compress2(): |
| 1085 | // Returns MZ_OK on success, or one of the error codes from mz_deflate() on |
| 1086 | // failure. |
| 1087 | int mz_compress(unsigned char *pDest, mz_ulong *pDest_len, |
| 1088 | const unsigned char *pSource, mz_ulong source_len); |
| 1089 | int mz_compress2(unsigned char *pDest, mz_ulong *pDest_len, |
| 1090 | const unsigned char *pSource, mz_ulong source_len, int level); |
| 1091 | |
| 1092 | // mz_compressBound() returns a (very) conservative upper bound on the amount of |
| 1093 | // data that could be generated by calling mz_compress(). |
| 1094 | mz_ulong mz_compressBound(mz_ulong source_len); |
| 1095 | |
| 1096 | // Initializes a decompressor. |
| 1097 | int mz_inflateInit(mz_streamp pStream); |
| 1098 | |
| 1099 | // mz_inflateInit2() is like mz_inflateInit() with an additional option that |
| 1100 | // controls the window size and whether or not the stream has been wrapped with |
| 1101 | // a zlib header/footer: |
| 1102 | // window_bits must be MZ_DEFAULT_WINDOW_BITS (to parse zlib header/footer) or |
| 1103 | // -MZ_DEFAULT_WINDOW_BITS (raw deflate). |
| 1104 | int mz_inflateInit2(mz_streamp pStream, int window_bits); |
| 1105 | |
| 1106 | // Decompresses the input stream to the output, consuming only as much of the |
| 1107 | // input as needed, and writing as much to the output as possible. |
| 1108 | // Parameters: |
| 1109 | // pStream is the stream to read from and write to. You must initialize/update |
| 1110 | // the next_in, avail_in, next_out, and avail_out members. |
| 1111 | // flush may be MZ_NO_FLUSH, MZ_SYNC_FLUSH, or MZ_FINISH. |
| 1112 | // On the first call, if flush is MZ_FINISH it's assumed the input and output |
| 1113 | // buffers are both sized large enough to decompress the entire stream in a |
| 1114 | // single call (this is slightly faster). |
| 1115 | // MZ_FINISH implies that there are no more source bytes available beside |
| 1116 | // what's already in the input buffer, and that the output buffer is large |
| 1117 | // enough to hold the rest of the decompressed data. |
| 1118 | // Return values: |
| 1119 | // MZ_OK on success. Either more input is needed but not available, and/or |
| 1120 | // there's more output to be written but the output buffer is full. |
| 1121 | // MZ_STREAM_END if all needed input has been consumed and all output bytes |
| 1122 | // have been written. For zlib streams, the adler-32 of the decompressed data |
| 1123 | // has also been verified. |
| 1124 | // MZ_STREAM_ERROR if the stream is bogus. |
| 1125 | // MZ_DATA_ERROR if the deflate stream is invalid. |
| 1126 | // MZ_PARAM_ERROR if one of the parameters is invalid. |
| 1127 | // MZ_BUF_ERROR if no forward progress is possible because the input buffer is |
| 1128 | // empty but the inflater needs more input to continue, or if the output |
| 1129 | // buffer is not large enough. Call mz_inflate() again |
| 1130 | // with more input data, or with more room in the output buffer (except when |
| 1131 | // using single call decompression, described above). |
| 1132 | int mz_inflate(mz_streamp pStream, int flush); |
| 1133 | |
| 1134 | // Deinitializes a decompressor. |
| 1135 | int mz_inflateEnd(mz_streamp pStream); |
| 1136 | |
| 1137 | // Single-call decompression. |
| 1138 | // Returns MZ_OK on success, or one of the error codes from mz_inflate() on |
| 1139 | // failure. |
| 1140 | int mz_uncompress(unsigned char *pDest, mz_ulong *pDest_len, |
| 1141 | const unsigned char *pSource, mz_ulong source_len); |
| 1142 | |
| 1143 | // Returns a string description of the specified error code, or NULL if the |
| 1144 | // error code is invalid. |
| 1145 | const char *mz_error(int err); |
| 1146 | |
| 1147 | // Redefine zlib-compatible names to miniz equivalents, so miniz.c can be used |
| 1148 | // as a drop-in replacement for the subset of zlib that miniz.c supports. |
| 1149 | // Define MINIZ_NO_ZLIB_COMPATIBLE_NAMES to disable zlib-compatibility if you |
| 1150 | // use zlib in the same project. |
| 1151 | #ifndef MINIZ_NO_ZLIB_COMPATIBLE_NAMES |
| 1152 | typedef unsigned char Byte; |
| 1153 | typedef unsigned int uInt; |
| 1154 | typedef mz_ulong uLong; |
| 1155 | typedef Byte Bytef; |
| 1156 | typedef uInt uIntf; |
| 1157 | typedef char charf; |
| 1158 | typedef int intf; |
| 1159 | typedef void *voidpf; |
| 1160 | typedef uLong uLongf; |
| 1161 | typedef void *voidp; |
| 1162 | typedef void *const voidpc; |
| 1163 | #define Z_NULL 0 |
| 1164 | #define Z_NO_FLUSH MZ_NO_FLUSH |
| 1165 | #define Z_PARTIAL_FLUSH MZ_PARTIAL_FLUSH |
| 1166 | #define Z_SYNC_FLUSH MZ_SYNC_FLUSH |
| 1167 | #define Z_FULL_FLUSH MZ_FULL_FLUSH |
| 1168 | #define Z_FINISH MZ_FINISH |
| 1169 | #define Z_BLOCK MZ_BLOCK |
| 1170 | #define Z_OK MZ_OK |
| 1171 | #define Z_STREAM_END MZ_STREAM_END |
| 1172 | #define Z_NEED_DICT MZ_NEED_DICT |
| 1173 | #define Z_ERRNO MZ_ERRNO |
| 1174 | #define Z_STREAM_ERROR MZ_STREAM_ERROR |
| 1175 | #define Z_DATA_ERROR MZ_DATA_ERROR |
| 1176 | #define Z_MEM_ERROR MZ_MEM_ERROR |
| 1177 | #define Z_BUF_ERROR MZ_BUF_ERROR |
| 1178 | #define Z_VERSION_ERROR MZ_VERSION_ERROR |
| 1179 | #define Z_PARAM_ERROR MZ_PARAM_ERROR |
| 1180 | #define Z_NO_COMPRESSION MZ_NO_COMPRESSION |
| 1181 | #define Z_BEST_SPEED MZ_BEST_SPEED |
| 1182 | #define Z_BEST_COMPRESSION MZ_BEST_COMPRESSION |
| 1183 | #define Z_DEFAULT_COMPRESSION MZ_DEFAULT_COMPRESSION |
| 1184 | #define Z_DEFAULT_STRATEGY MZ_DEFAULT_STRATEGY |
| 1185 | #define Z_FILTERED MZ_FILTERED |
| 1186 | #define Z_HUFFMAN_ONLY MZ_HUFFMAN_ONLY |
| 1187 | #define Z_RLE MZ_RLE |
| 1188 | #define Z_FIXED MZ_FIXED |
| 1189 | #define Z_DEFLATED MZ_DEFLATED |
| 1190 | #define Z_DEFAULT_WINDOW_BITS MZ_DEFAULT_WINDOW_BITS |
| 1191 | #define alloc_func mz_alloc_func |
| 1192 | #define free_func mz_free_func |
| 1193 | #define internal_state mz_internal_state |
| 1194 | #define z_stream mz_stream |
| 1195 | #define deflateInit mz_deflateInit |
| 1196 | #define deflateInit2 mz_deflateInit2 |
| 1197 | #define deflateReset mz_deflateReset |
| 1198 | #define deflate mz_deflate |
| 1199 | #define deflateEnd mz_deflateEnd |
| 1200 | #define deflateBound mz_deflateBound |
| 1201 | #define compress mz_compress |
| 1202 | #define compress2 mz_compress2 |
| 1203 | #define compressBound mz_compressBound |
| 1204 | #define inflateInit mz_inflateInit |
| 1205 | #define inflateInit2 mz_inflateInit2 |
| 1206 | #define inflate mz_inflate |
| 1207 | #define inflateEnd mz_inflateEnd |
| 1208 | #define uncompress mz_uncompress |
| 1209 | #define crc32 mz_crc32 |
| 1210 | #define adler32 mz_adler32 |
| 1211 | #define MAX_WBITS 15 |
| 1212 | #define MAX_MEM_LEVEL 9 |
| 1213 | #define zError mz_error |
| 1214 | #define ZLIB_VERSION MZ_VERSION |
| 1215 | #define ZLIB_VERNUM MZ_VERNUM |
| 1216 | #define ZLIB_VER_MAJOR MZ_VER_MAJOR |
| 1217 | #define ZLIB_VER_MINOR MZ_VER_MINOR |
| 1218 | #define ZLIB_VER_REVISION MZ_VER_REVISION |
| 1219 | #define ZLIB_VER_SUBREVISION MZ_VER_SUBREVISION |
| 1220 | #define zlibVersion mz_version |
| 1221 | #define zlib_version mz_version() |
| 1222 | #endif // #ifndef MINIZ_NO_ZLIB_COMPATIBLE_NAMES |
| 1223 | |
| 1224 | #endif // MINIZ_NO_ZLIB_APIS |
| 1225 | |
| 1226 | // ------------------- Types and macros |
| 1227 | |
| 1228 | typedef unsigned char mz_uint8; |
| 1229 | typedef signed short mz_int16; |
| 1230 | typedef unsigned short mz_uint16; |
| 1231 | typedef unsigned int mz_uint32; |
| 1232 | typedef unsigned int mz_uint; |
| 1233 | typedef long long mz_int64; |
| 1234 | typedef unsigned long long mz_uint64; |
| 1235 | typedef int mz_bool; |
| 1236 | |
| 1237 | #define MZ_FALSE (0) |
| 1238 | #define MZ_TRUE (1) |
| 1239 | |
| 1240 | // An attempt to work around MSVC's spammy "warning C4127: conditional |
| 1241 | // expression is constant" message. |
| 1242 | #ifdef _MSC_VER |
| 1243 | #define MZ_MACRO_END while (0, 0) |
| 1244 | #else |
| 1245 | #define MZ_MACRO_END while (0) |
| 1246 | #endif |
| 1247 | |
| 1248 | // ------------------- ZIP archive reading/writing |
| 1249 | |
| 1250 | #ifndef MINIZ_NO_ARCHIVE_APIS |
| 1251 | |
| 1252 | enum { |
| 1253 | MZ_ZIP_MAX_IO_BUF_SIZE = 64 * 1024, |
| 1254 | MZ_ZIP_MAX_ARCHIVE_FILENAME_SIZE = 260, |
| 1255 | MZ_ZIP_MAX_ARCHIVE_FILE_COMMENT_SIZE = 256 |
| 1256 | }; |
| 1257 | |
| 1258 | typedef struct { |
| 1259 | mz_uint32 m_file_index; |
| 1260 | mz_uint32 m_central_dir_ofs; |
| 1261 | mz_uint16 m_version_made_by; |
| 1262 | mz_uint16 m_version_needed; |
| 1263 | mz_uint16 m_bit_flag; |
| 1264 | mz_uint16 m_method; |
| 1265 | #ifndef MINIZ_NO_TIME |
| 1266 | time_t m_time; |
| 1267 | #endif |
| 1268 | mz_uint32 m_crc32; |
| 1269 | mz_uint64 m_comp_size; |
| 1270 | mz_uint64 m_uncomp_size; |
| 1271 | mz_uint16 m_internal_attr; |
| 1272 | mz_uint32 m_external_attr; |
| 1273 | mz_uint64 m_local_header_ofs; |
| 1274 | mz_uint32 m_comment_size; |
| 1275 | char m_filename[MZ_ZIP_MAX_ARCHIVE_FILENAME_SIZE]; |
| 1276 | char m_comment[MZ_ZIP_MAX_ARCHIVE_FILE_COMMENT_SIZE]; |
| 1277 | } mz_zip_archive_file_stat; |
| 1278 | |
| 1279 | typedef size_t (*mz_file_read_func)(void *pOpaque, mz_uint64 file_ofs, |
| 1280 | void *pBuf, size_t n); |
| 1281 | typedef size_t (*mz_file_write_func)(void *pOpaque, mz_uint64 file_ofs, |
| 1282 | const void *pBuf, size_t n); |
| 1283 | |
| 1284 | struct mz_zip_internal_state_tag; |
| 1285 | typedef struct mz_zip_internal_state_tag mz_zip_internal_state; |
| 1286 | |
| 1287 | typedef enum { |
| 1288 | MZ_ZIP_MODE_INVALID = 0, |
| 1289 | MZ_ZIP_MODE_READING = 1, |
| 1290 | MZ_ZIP_MODE_WRITING = 2, |
| 1291 | MZ_ZIP_MODE_WRITING_HAS_BEEN_FINALIZED = 3 |
| 1292 | } mz_zip_mode; |
| 1293 | |
| 1294 | typedef struct mz_zip_archive_tag { |
| 1295 | mz_uint64 m_archive_size; |
| 1296 | mz_uint64 m_central_directory_file_ofs; |
| 1297 | mz_uint m_total_files; |
| 1298 | mz_zip_mode m_zip_mode; |
| 1299 | |
| 1300 | mz_uint m_file_offset_alignment; |
| 1301 | |
| 1302 | mz_alloc_func m_pAlloc; |
| 1303 | mz_free_func m_pFree; |
| 1304 | mz_realloc_func m_pRealloc; |
| 1305 | void *m_pAlloc_opaque; |
| 1306 | |
| 1307 | mz_file_read_func m_pRead; |
| 1308 | mz_file_write_func m_pWrite; |
| 1309 | void *m_pIO_opaque; |
| 1310 | |
| 1311 | mz_zip_internal_state *m_pState; |
| 1312 | |
| 1313 | } mz_zip_archive; |
| 1314 | |
| 1315 | typedef enum { |
| 1316 | MZ_ZIP_FLAG_CASE_SENSITIVE = 0x0100, |
| 1317 | MZ_ZIP_FLAG_IGNORE_PATH = 0x0200, |
| 1318 | MZ_ZIP_FLAG_COMPRESSED_DATA = 0x0400, |
| 1319 | MZ_ZIP_FLAG_DO_NOT_SORT_CENTRAL_DIRECTORY = 0x0800 |
| 1320 | } mz_zip_flags; |
| 1321 | |
| 1322 | // ZIP archive reading |
| 1323 | |
| 1324 | // Inits a ZIP archive reader. |
| 1325 | // These functions read and validate the archive's central directory. |
| 1326 | mz_bool mz_zip_reader_init(mz_zip_archive *pZip, mz_uint64 size, |
| 1327 | mz_uint32 flags); |
| 1328 | mz_bool mz_zip_reader_init_mem(mz_zip_archive *pZip, const void *pMem, |
| 1329 | size_t size, mz_uint32 flags); |
| 1330 | |
| 1331 | #ifndef MINIZ_NO_STDIO |
| 1332 | mz_bool mz_zip_reader_init_file(mz_zip_archive *pZip, const char *pFilename, |
| 1333 | mz_uint32 flags); |
| 1334 | #endif |
| 1335 | |
| 1336 | // Returns the total number of files in the archive. |
| 1337 | mz_uint mz_zip_reader_get_num_files(mz_zip_archive *pZip); |
| 1338 | |
| 1339 | // Returns detailed information about an archive file entry. |
| 1340 | mz_bool mz_zip_reader_file_stat(mz_zip_archive *pZip, mz_uint file_index, |
| 1341 | mz_zip_archive_file_stat *pStat); |
| 1342 | |
| 1343 | // Determines if an archive file entry is a directory entry. |
| 1344 | mz_bool mz_zip_reader_is_file_a_directory(mz_zip_archive *pZip, |
| 1345 | mz_uint file_index); |
| 1346 | mz_bool mz_zip_reader_is_file_encrypted(mz_zip_archive *pZip, |
| 1347 | mz_uint file_index); |
| 1348 | |
| 1349 | // Retrieves the filename of an archive file entry. |
| 1350 | // Returns the number of bytes written to pFilename, or if filename_buf_size is |
| 1351 | // 0 this function returns the number of bytes needed to fully store the |
| 1352 | // filename. |
| 1353 | mz_uint mz_zip_reader_get_filename(mz_zip_archive *pZip, mz_uint file_index, |
| 1354 | char *pFilename, mz_uint filename_buf_size); |
| 1355 | |
| 1356 | // Attempts to locates a file in the archive's central directory. |
| 1357 | // Valid flags: MZ_ZIP_FLAG_CASE_SENSITIVE, MZ_ZIP_FLAG_IGNORE_PATH |
| 1358 | // Returns -1 if the file cannot be found. |
| 1359 | int mz_zip_reader_locate_file(mz_zip_archive *pZip, const char *pName, |
| 1360 | const char *pComment, mz_uint flags); |
| 1361 | |
| 1362 | // Extracts a archive file to a memory buffer using no memory allocation. |
| 1363 | mz_bool mz_zip_reader_extract_to_mem_no_alloc(mz_zip_archive *pZip, |
| 1364 | mz_uint file_index, void *pBuf, |
| 1365 | size_t buf_size, mz_uint flags, |
| 1366 | void *pUser_read_buf, |
| 1367 | size_t user_read_buf_size); |
| 1368 | mz_bool mz_zip_reader_extract_file_to_mem_no_alloc( |
| 1369 | mz_zip_archive *pZip, const char *pFilename, void *pBuf, size_t buf_size, |
| 1370 | mz_uint flags, void *pUser_read_buf, size_t user_read_buf_size); |
| 1371 | |
| 1372 | // Extracts a archive file to a memory buffer. |
| 1373 | mz_bool mz_zip_reader_extract_to_mem(mz_zip_archive *pZip, mz_uint file_index, |
| 1374 | void *pBuf, size_t buf_size, |
| 1375 | mz_uint flags); |
| 1376 | mz_bool mz_zip_reader_extract_file_to_mem(mz_zip_archive *pZip, |
| 1377 | const char *pFilename, void *pBuf, |
| 1378 | size_t buf_size, mz_uint flags); |
| 1379 | |
| 1380 | // Extracts a archive file to a dynamically allocated heap buffer. |
| 1381 | void *mz_zip_reader_extract_to_heap(mz_zip_archive *pZip, mz_uint file_index, |
| 1382 | size_t *pSize, mz_uint flags); |
| 1383 | void *mz_zip_reader_extract_file_to_heap(mz_zip_archive *pZip, |
| 1384 | const char *pFilename, size_t *pSize, |
| 1385 | mz_uint flags); |
| 1386 | |
| 1387 | // Extracts a archive file using a callback function to output the file's data. |
| 1388 | mz_bool mz_zip_reader_extract_to_callback(mz_zip_archive *pZip, |
| 1389 | mz_uint file_index, |
| 1390 | mz_file_write_func pCallback, |
| 1391 | void *pOpaque, mz_uint flags); |
| 1392 | mz_bool mz_zip_reader_extract_file_to_callback(mz_zip_archive *pZip, |
| 1393 | const char *pFilename, |
| 1394 | mz_file_write_func pCallback, |
| 1395 | void *pOpaque, mz_uint flags); |
| 1396 | |
| 1397 | #ifndef MINIZ_NO_STDIO |
| 1398 | // Extracts a archive file to a disk file and sets its last accessed and |
| 1399 | // modified times. |
| 1400 | // This function only extracts files, not archive directory records. |
| 1401 | mz_bool mz_zip_reader_extract_to_file(mz_zip_archive *pZip, mz_uint file_index, |
| 1402 | const char *pDst_filename, mz_uint flags); |
| 1403 | mz_bool mz_zip_reader_extract_file_to_file(mz_zip_archive *pZip, |
| 1404 | const char *pArchive_filename, |
| 1405 | const char *pDst_filename, |
| 1406 | mz_uint flags); |
| 1407 | #endif |
| 1408 | |
| 1409 | // Ends archive reading, freeing all allocations, and closing the input archive |
| 1410 | // file if mz_zip_reader_init_file() was used. |
| 1411 | mz_bool mz_zip_reader_end(mz_zip_archive *pZip); |
| 1412 | |
| 1413 | // ZIP archive writing |
| 1414 | |
| 1415 | #ifndef MINIZ_NO_ARCHIVE_WRITING_APIS |
| 1416 | |
| 1417 | // Inits a ZIP archive writer. |
| 1418 | mz_bool mz_zip_writer_init(mz_zip_archive *pZip, mz_uint64 existing_size); |
| 1419 | mz_bool mz_zip_writer_init_heap(mz_zip_archive *pZip, |
| 1420 | size_t size_to_reserve_at_beginning, |
| 1421 | size_t initial_allocation_size); |
| 1422 | |
| 1423 | #ifndef MINIZ_NO_STDIO |
| 1424 | mz_bool mz_zip_writer_init_file(mz_zip_archive *pZip, const char *pFilename, |
| 1425 | mz_uint64 size_to_reserve_at_beginning); |
| 1426 | #endif |
| 1427 | |
| 1428 | // Converts a ZIP archive reader object into a writer object, to allow efficient |
| 1429 | // in-place file appends to occur on an existing archive. |
| 1430 | // For archives opened using mz_zip_reader_init_file, pFilename must be the |
| 1431 | // archive's filename so it can be reopened for writing. If the file can't be |
| 1432 | // reopened, mz_zip_reader_end() will be called. |
| 1433 | // For archives opened using mz_zip_reader_init_mem, the memory block must be |
| 1434 | // growable using the realloc callback (which defaults to realloc unless you've |
| 1435 | // overridden it). |
| 1436 | // Finally, for archives opened using mz_zip_reader_init, the mz_zip_archive's |
| 1437 | // user provided m_pWrite function cannot be NULL. |
| 1438 | // Note: In-place archive modification is not recommended unless you know what |
| 1439 | // you're doing, because if execution stops or something goes wrong before |
| 1440 | // the archive is finalized the file's central directory will be hosed. |
| 1441 | mz_bool mz_zip_writer_init_from_reader(mz_zip_archive *pZip, |
| 1442 | const char *pFilename); |
| 1443 | |
| 1444 | // Adds the contents of a memory buffer to an archive. These functions record |
| 1445 | // the current local time into the archive. |
| 1446 | // To add a directory entry, call this method with an archive name ending in a |
| 1447 | // forwardslash with empty buffer. |
| 1448 | // level_and_flags - compression level (0-10, see MZ_BEST_SPEED, |
| 1449 | // MZ_BEST_COMPRESSION, etc.) logically OR'd with zero or more mz_zip_flags, or |
| 1450 | // just set to MZ_DEFAULT_COMPRESSION. |
| 1451 | mz_bool mz_zip_writer_add_mem(mz_zip_archive *pZip, const char *pArchive_name, |
| 1452 | const void *pBuf, size_t buf_size, |
| 1453 | mz_uint level_and_flags); |
| 1454 | mz_bool mz_zip_writer_add_mem_ex(mz_zip_archive *pZip, |
| 1455 | const char *pArchive_name, const void *pBuf, |
| 1456 | size_t buf_size, const void *pComment, |
| 1457 | mz_uint16 comment_size, |
| 1458 | mz_uint level_and_flags, mz_uint64 uncomp_size, |
| 1459 | mz_uint32 uncomp_crc32); |
| 1460 | |
| 1461 | #ifndef MINIZ_NO_STDIO |
| 1462 | // Adds the contents of a disk file to an archive. This function also records |
| 1463 | // the disk file's modified time into the archive. |
| 1464 | // level_and_flags - compression level (0-10, see MZ_BEST_SPEED, |
| 1465 | // MZ_BEST_COMPRESSION, etc.) logically OR'd with zero or more mz_zip_flags, or |
| 1466 | // just set to MZ_DEFAULT_COMPRESSION. |
| 1467 | mz_bool mz_zip_writer_add_file(mz_zip_archive *pZip, const char *pArchive_name, |
| 1468 | const char *pSrc_filename, const void *pComment, |
| 1469 | mz_uint16 comment_size, mz_uint level_and_flags); |
| 1470 | #endif |
| 1471 | |
| 1472 | // Adds a file to an archive by fully cloning the data from another archive. |
| 1473 | // This function fully clones the source file's compressed data (no |
| 1474 | // recompression), along with its full filename, extra data, and comment fields. |
| 1475 | mz_bool mz_zip_writer_add_from_zip_reader(mz_zip_archive *pZip, |
| 1476 | mz_zip_archive *pSource_zip, |
| 1477 | mz_uint file_index); |
| 1478 | |
| 1479 | // Finalizes the archive by writing the central directory records followed by |
| 1480 | // the end of central directory record. |
| 1481 | // After an archive is finalized, the only valid call on the mz_zip_archive |
| 1482 | // struct is mz_zip_writer_end(). |
| 1483 | // An archive must be manually finalized by calling this function for it to be |
| 1484 | // valid. |
| 1485 | mz_bool mz_zip_writer_finalize_archive(mz_zip_archive *pZip); |
| 1486 | mz_bool mz_zip_writer_finalize_heap_archive(mz_zip_archive *pZip, void **pBuf, |
| 1487 | size_t *pSize); |
| 1488 | |
| 1489 | // Ends archive writing, freeing all allocations, and closing the output file if |
| 1490 | // mz_zip_writer_init_file() was used. |
| 1491 | // Note for the archive to be valid, it must have been finalized before ending. |
| 1492 | mz_bool mz_zip_writer_end(mz_zip_archive *pZip); |
| 1493 | |
| 1494 | // Misc. high-level helper functions: |
| 1495 | |
| 1496 | // mz_zip_add_mem_to_archive_file_in_place() efficiently (but not atomically) |
| 1497 | // appends a memory blob to a ZIP archive. |
| 1498 | // level_and_flags - compression level (0-10, see MZ_BEST_SPEED, |
| 1499 | // MZ_BEST_COMPRESSION, etc.) logically OR'd with zero or more mz_zip_flags, or |
| 1500 | // just set to MZ_DEFAULT_COMPRESSION. |
| 1501 | mz_bool mz_zip_add_mem_to_archive_file_in_place( |
| 1502 | const char *pZip_filename, const char *pArchive_name, const void *pBuf, |
| 1503 | size_t buf_size, const void *pComment, mz_uint16 comment_size, |
| 1504 | mz_uint level_and_flags); |
| 1505 | |
| 1506 | // Reads a single file from an archive into a heap block. |
| 1507 | // Returns NULL on failure. |
| 1508 | void *mz_zip_extract_archive_file_to_heap(const char *pZip_filename, |
| 1509 | const char *pArchive_name, |
| 1510 | size_t *pSize, mz_uint zip_flags); |
| 1511 | |
| 1512 | #endif // #ifndef MINIZ_NO_ARCHIVE_WRITING_APIS |
| 1513 | |
| 1514 | #endif // #ifndef MINIZ_NO_ARCHIVE_APIS |
| 1515 | |
| 1516 | // ------------------- Low-level Decompression API Definitions |
| 1517 | |
| 1518 | // Decompression flags used by tinfl_decompress(). |
| 1519 | // TINFL_FLAG_PARSE_ZLIB_HEADER: If set, the input has a valid zlib header and |
| 1520 | // ends with an adler32 checksum (it's a valid zlib stream). Otherwise, the |
| 1521 | // input is a raw deflate stream. |
| 1522 | // TINFL_FLAG_HAS_MORE_INPUT: If set, there are more input bytes available |
| 1523 | // beyond the end of the supplied input buffer. If clear, the input buffer |
| 1524 | // contains all remaining input. |
| 1525 | // TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF: If set, the output buffer is large |
| 1526 | // enough to hold the entire decompressed stream. If clear, the output buffer is |
| 1527 | // at least the size of the dictionary (typically 32KB). |
| 1528 | // TINFL_FLAG_COMPUTE_ADLER32: Force adler-32 checksum computation of the |
| 1529 | // decompressed bytes. |
| 1530 | enum { |
| 1531 | TINFL_FLAG_PARSE_ZLIB_HEADER = 1, |
| 1532 | TINFL_FLAG_HAS_MORE_INPUT = 2, |
| 1533 | TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF = 4, |
| 1534 | TINFL_FLAG_COMPUTE_ADLER32 = 8 |
| 1535 | }; |
| 1536 | |
| 1537 | // High level decompression functions: |
| 1538 | // tinfl_decompress_mem_to_heap() decompresses a block in memory to a heap block |
| 1539 | // allocated via malloc(). |
| 1540 | // On entry: |
| 1541 | // pSrc_buf, src_buf_len: Pointer and size of the Deflate or zlib source data |
| 1542 | // to decompress. |
| 1543 | // On return: |
| 1544 | // Function returns a pointer to the decompressed data, or NULL on failure. |
| 1545 | // *pOut_len will be set to the decompressed data's size, which could be larger |
| 1546 | // than src_buf_len on uncompressible data. |
| 1547 | // The caller must call mz_free() on the returned block when it's no longer |
| 1548 | // needed. |
| 1549 | void *tinfl_decompress_mem_to_heap(const void *pSrc_buf, size_t src_buf_len, |
| 1550 | size_t *pOut_len, int flags); |
| 1551 | |
| 1552 | // tinfl_decompress_mem_to_mem() decompresses a block in memory to another block |
| 1553 | // in memory. |
| 1554 | // Returns TINFL_DECOMPRESS_MEM_TO_MEM_FAILED on failure, or the number of bytes |
| 1555 | // written on success. |
| 1556 | #define TINFL_DECOMPRESS_MEM_TO_MEM_FAILED ((size_t)(-1)) |
| 1557 | size_t tinfl_decompress_mem_to_mem(void *pOut_buf, size_t out_buf_len, |
| 1558 | const void *pSrc_buf, size_t src_buf_len, |
| 1559 | int flags); |
| 1560 | |
| 1561 | // tinfl_decompress_mem_to_callback() decompresses a block in memory to an |
| 1562 | // internal 32KB buffer, and a user provided callback function will be called to |
| 1563 | // flush the buffer. |
| 1564 | // Returns 1 on success or 0 on failure. |
| 1565 | typedef int (*tinfl_put_buf_func_ptr)(const void *pBuf, int len, void *pUser); |
| 1566 | int tinfl_decompress_mem_to_callback(const void *pIn_buf, size_t *pIn_buf_size, |
| 1567 | tinfl_put_buf_func_ptr pPut_buf_func, |
| 1568 | void *pPut_buf_user, int flags); |
| 1569 | |
| 1570 | struct tinfl_decompressor_tag; |
| 1571 | typedef struct tinfl_decompressor_tag tinfl_decompressor; |
| 1572 | |
| 1573 | // Max size of LZ dictionary. |
| 1574 | #define TINFL_LZ_DICT_SIZE 32768 |
| 1575 | |
| 1576 | // Return status. |
| 1577 | typedef enum { |
| 1578 | TINFL_STATUS_BAD_PARAM = -3, |
| 1579 | TINFL_STATUS_ADLER32_MISMATCH = -2, |
| 1580 | TINFL_STATUS_FAILED = -1, |
| 1581 | TINFL_STATUS_DONE = 0, |
| 1582 | TINFL_STATUS_NEEDS_MORE_INPUT = 1, |
| 1583 | TINFL_STATUS_HAS_MORE_OUTPUT = 2 |
| 1584 | } tinfl_status; |
| 1585 | |
| 1586 | // Initializes the decompressor to its initial state. |
| 1587 | #define tinfl_init(r) \ |
| 1588 | do { \ |
| 1589 | (r)->m_state = 0; \ |
| 1590 | } \ |
| 1591 | MZ_MACRO_END |
| 1592 | #define tinfl_get_adler32(r) (r)->m_check_adler32 |
| 1593 | |
| 1594 | // Main low-level decompressor coroutine function. This is the only function |
| 1595 | // actually needed for decompression. All the other functions are just |
| 1596 | // high-level helpers for improved usability. |
| 1597 | // This is a universal API, i.e. it can be used as a building block to build any |
| 1598 | // desired higher level decompression API. In the limit case, it can be called |
| 1599 | // once per every byte input or output. |
| 1600 | tinfl_status tinfl_decompress(tinfl_decompressor *r, |
| 1601 | const mz_uint8 *pIn_buf_next, |
| 1602 | size_t *pIn_buf_size, mz_uint8 *pOut_buf_start, |
| 1603 | mz_uint8 *pOut_buf_next, size_t *pOut_buf_size, |
| 1604 | const mz_uint32 decomp_flags); |
| 1605 | |
| 1606 | // Internal/private bits follow. |
| 1607 | enum { |
| 1608 | TINFL_MAX_HUFF_TABLES = 3, |
| 1609 | TINFL_MAX_HUFF_SYMBOLS_0 = 288, |
| 1610 | TINFL_MAX_HUFF_SYMBOLS_1 = 32, |
| 1611 | TINFL_MAX_HUFF_SYMBOLS_2 = 19, |
| 1612 | TINFL_FAST_LOOKUP_BITS = 10, |
| 1613 | TINFL_FAST_LOOKUP_SIZE = 1 << TINFL_FAST_LOOKUP_BITS |
| 1614 | }; |
| 1615 | |
| 1616 | typedef struct { |
| 1617 | mz_uint8 m_code_size[TINFL_MAX_HUFF_SYMBOLS_0]; |
| 1618 | mz_int16 m_look_up[TINFL_FAST_LOOKUP_SIZE], |
| 1619 | m_tree[TINFL_MAX_HUFF_SYMBOLS_0 * 2]; |
| 1620 | } tinfl_huff_table; |
| 1621 | |
| 1622 | #if MINIZ_HAS_64BIT_REGISTERS |
| 1623 | #define TINFL_USE_64BIT_BITBUF 1 |
| 1624 | #endif |
| 1625 | |
| 1626 | #if TINFL_USE_64BIT_BITBUF |
| 1627 | typedef mz_uint64 tinfl_bit_buf_t; |
| 1628 | #define TINFL_BITBUF_SIZE (64) |
| 1629 | #else |
| 1630 | typedef mz_uint32 tinfl_bit_buf_t; |
| 1631 | #define TINFL_BITBUF_SIZE (32) |
| 1632 | #endif |
| 1633 | |
| 1634 | struct tinfl_decompressor_tag { |
| 1635 | mz_uint32 m_state, m_num_bits, m_zhdr0, m_zhdr1, m_z_adler32, m_final, m_type, |
| 1636 | m_check_adler32, m_dist, m_counter, m_num_extra, |
| 1637 | m_table_sizes[TINFL_MAX_HUFF_TABLES]; |
| 1638 | tinfl_bit_buf_t m_bit_buf; |
| 1639 | size_t m_dist_from_out_buf_start; |
| 1640 | tinfl_huff_table m_tables[TINFL_MAX_HUFF_TABLES]; |
| 1641 | mz_uint8 m_raw_header[4], |
| 1642 | m_len_codes[TINFL_MAX_HUFF_SYMBOLS_0 + TINFL_MAX_HUFF_SYMBOLS_1 + 137]; |
| 1643 | }; |
| 1644 | |
| 1645 | // ------------------- Low-level Compression API Definitions |
| 1646 | |
| 1647 | // Set TDEFL_LESS_MEMORY to 1 to use less memory (compression will be slightly |
| 1648 | // slower, and raw/dynamic blocks will be output more frequently). |
| 1649 | #define TDEFL_LESS_MEMORY 0 |
| 1650 | |
| 1651 | // tdefl_init() compression flags logically OR'd together (low 12 bits contain |
| 1652 | // the max. number of probes per dictionary search): |
| 1653 | // TDEFL_DEFAULT_MAX_PROBES: The compressor defaults to 128 dictionary probes |
| 1654 | // per dictionary search. 0=Huffman only, 1=Huffman+LZ (fastest/crap |
| 1655 | // compression), 4095=Huffman+LZ (slowest/best compression). |
| 1656 | enum { |
| 1657 | TDEFL_HUFFMAN_ONLY = 0, |
| 1658 | TDEFL_DEFAULT_MAX_PROBES = 128, |
| 1659 | TDEFL_MAX_PROBES_MASK = 0xFFF |
| 1660 | }; |
| 1661 | |
| 1662 | // TDEFL_WRITE_ZLIB_HEADER: If set, the compressor outputs a zlib header before |
| 1663 | // the deflate data, and the Adler-32 of the source data at the end. Otherwise, |
| 1664 | // you'll get raw deflate data. |
| 1665 | // TDEFL_COMPUTE_ADLER32: Always compute the adler-32 of the input data (even |
| 1666 | // when not writing zlib headers). |
| 1667 | // TDEFL_GREEDY_PARSING_FLAG: Set to use faster greedy parsing, instead of more |
| 1668 | // efficient lazy parsing. |
| 1669 | // TDEFL_NONDETERMINISTIC_PARSING_FLAG: Enable to decrease the compressor's |
| 1670 | // initialization time to the minimum, but the output may vary from run to run |
| 1671 | // given the same input (depending on the contents of memory). |
| 1672 | // TDEFL_RLE_MATCHES: Only look for RLE matches (matches with a distance of 1) |
| 1673 | // TDEFL_FILTER_MATCHES: Discards matches <= 5 chars if enabled. |
| 1674 | // TDEFL_FORCE_ALL_STATIC_BLOCKS: Disable usage of optimized Huffman tables. |
| 1675 | // TDEFL_FORCE_ALL_RAW_BLOCKS: Only use raw (uncompressed) deflate blocks. |
| 1676 | // The low 12 bits are reserved to control the max # of hash probes per |
| 1677 | // dictionary lookup (see TDEFL_MAX_PROBES_MASK). |
| 1678 | enum { |
| 1679 | TDEFL_WRITE_ZLIB_HEADER = 0x01000, |
| 1680 | TDEFL_COMPUTE_ADLER32 = 0x02000, |
| 1681 | TDEFL_GREEDY_PARSING_FLAG = 0x04000, |
| 1682 | TDEFL_NONDETERMINISTIC_PARSING_FLAG = 0x08000, |
| 1683 | TDEFL_RLE_MATCHES = 0x10000, |
| 1684 | TDEFL_FILTER_MATCHES = 0x20000, |
| 1685 | TDEFL_FORCE_ALL_STATIC_BLOCKS = 0x40000, |
| 1686 | TDEFL_FORCE_ALL_RAW_BLOCKS = 0x80000 |
| 1687 | }; |
| 1688 | |
| 1689 | // High level compression functions: |
| 1690 | // tdefl_compress_mem_to_heap() compresses a block in memory to a heap block |
| 1691 | // allocated via malloc(). |
| 1692 | // On entry: |
| 1693 | // pSrc_buf, src_buf_len: Pointer and size of source block to compress. |
| 1694 | // flags: The max match finder probes (default is 128) logically OR'd against |
| 1695 | // the above flags. Higher probes are slower but improve compression. |
| 1696 | // On return: |
| 1697 | // Function returns a pointer to the compressed data, or NULL on failure. |
| 1698 | // *pOut_len will be set to the compressed data's size, which could be larger |
| 1699 | // than src_buf_len on uncompressible data. |
| 1700 | // The caller must free() the returned block when it's no longer needed. |
| 1701 | void *tdefl_compress_mem_to_heap(const void *pSrc_buf, size_t src_buf_len, |
| 1702 | size_t *pOut_len, int flags); |
| 1703 | |
| 1704 | // tdefl_compress_mem_to_mem() compresses a block in memory to another block in |
| 1705 | // memory. |
| 1706 | // Returns 0 on failure. |
| 1707 | size_t tdefl_compress_mem_to_mem(void *pOut_buf, size_t out_buf_len, |
| 1708 | const void *pSrc_buf, size_t src_buf_len, |
| 1709 | int flags); |
| 1710 | |
| 1711 | // Compresses an image to a compressed PNG file in memory. |
| 1712 | // On entry: |
| 1713 | // pImage, w, h, and num_chans describe the image to compress. num_chans may be |
| 1714 | // 1, 2, 3, or 4. |
| 1715 | // The image pitch in bytes per scanline will be w*num_chans. The leftmost |
| 1716 | // pixel on the top scanline is stored first in memory. |
| 1717 | // level may range from [0,10], use MZ_NO_COMPRESSION, MZ_BEST_SPEED, |
| 1718 | // MZ_BEST_COMPRESSION, etc. or a decent default is MZ_DEFAULT_LEVEL |
| 1719 | // If flip is true, the image will be flipped on the Y axis (useful for OpenGL |
| 1720 | // apps). |
| 1721 | // On return: |
| 1722 | // Function returns a pointer to the compressed data, or NULL on failure. |
| 1723 | // *pLen_out will be set to the size of the PNG image file. |
| 1724 | // The caller must mz_free() the returned heap block (which will typically be |
| 1725 | // larger than *pLen_out) when it's no longer needed. |
| 1726 | void *tdefl_write_image_to_png_file_in_memory_ex(const void *pImage, int w, |
| 1727 | int h, int num_chans, |
| 1728 | size_t *pLen_out, |
| 1729 | mz_uint level, mz_bool flip); |
| 1730 | void *tdefl_write_image_to_png_file_in_memory(const void *pImage, int w, int h, |
| 1731 | int num_chans, size_t *pLen_out); |
| 1732 | |
| 1733 | // Output stream interface. The compressor uses this interface to write |
| 1734 | // compressed data. It'll typically be called TDEFL_OUT_BUF_SIZE at a time. |
| 1735 | typedef mz_bool (*tdefl_put_buf_func_ptr)(const void *pBuf, int len, |
| 1736 | void *pUser); |
| 1737 | |
| 1738 | // tdefl_compress_mem_to_output() compresses a block to an output stream. The |
| 1739 | // above helpers use this function internally. |
| 1740 | mz_bool tdefl_compress_mem_to_output(const void *pBuf, size_t buf_len, |
| 1741 | tdefl_put_buf_func_ptr pPut_buf_func, |
| 1742 | void *pPut_buf_user, int flags); |
| 1743 | |
| 1744 | enum { |
| 1745 | TDEFL_MAX_HUFF_TABLES = 3, |
| 1746 | TDEFL_MAX_HUFF_SYMBOLS_0 = 288, |
| 1747 | TDEFL_MAX_HUFF_SYMBOLS_1 = 32, |
| 1748 | TDEFL_MAX_HUFF_SYMBOLS_2 = 19, |
| 1749 | TDEFL_LZ_DICT_SIZE = 32768, |
| 1750 | TDEFL_LZ_DICT_SIZE_MASK = TDEFL_LZ_DICT_SIZE - 1, |
| 1751 | TDEFL_MIN_MATCH_LEN = 3, |
| 1752 | TDEFL_MAX_MATCH_LEN = 258 |
| 1753 | }; |
| 1754 | |
| 1755 | // TDEFL_OUT_BUF_SIZE MUST be large enough to hold a single entire compressed |
| 1756 | // output block (using static/fixed Huffman codes). |
| 1757 | #if TDEFL_LESS_MEMORY |
| 1758 | enum { |
| 1759 | TDEFL_LZ_CODE_BUF_SIZE = 24 * 1024, |
| 1760 | TDEFL_OUT_BUF_SIZE = (TDEFL_LZ_CODE_BUF_SIZE * 13) / 10, |
| 1761 | TDEFL_MAX_HUFF_SYMBOLS = 288, |
| 1762 | TDEFL_LZ_HASH_BITS = 12, |
| 1763 | TDEFL_LEVEL1_HASH_SIZE_MASK = 4095, |
| 1764 | TDEFL_LZ_HASH_SHIFT = (TDEFL_LZ_HASH_BITS + 2) / 3, |
| 1765 | TDEFL_LZ_HASH_SIZE = 1 << TDEFL_LZ_HASH_BITS |
| 1766 | }; |
| 1767 | #else |
| 1768 | enum { |
| 1769 | TDEFL_LZ_CODE_BUF_SIZE = 64 * 1024, |
| 1770 | TDEFL_OUT_BUF_SIZE = (TDEFL_LZ_CODE_BUF_SIZE * 13) / 10, |
| 1771 | TDEFL_MAX_HUFF_SYMBOLS = 288, |
| 1772 | TDEFL_LZ_HASH_BITS = 15, |
| 1773 | TDEFL_LEVEL1_HASH_SIZE_MASK = 4095, |
| 1774 | TDEFL_LZ_HASH_SHIFT = (TDEFL_LZ_HASH_BITS + 2) / 3, |
| 1775 | TDEFL_LZ_HASH_SIZE = 1 << TDEFL_LZ_HASH_BITS |
| 1776 | }; |
| 1777 | #endif |
| 1778 | |
| 1779 | // The low-level tdefl functions below may be used directly if the above helper |
| 1780 | // functions aren't flexible enough. The low-level functions don't make any heap |
| 1781 | // allocations, unlike the above helper functions. |
| 1782 | typedef enum { |
| 1783 | TDEFL_STATUS_BAD_PARAM = -2, |
| 1784 | TDEFL_STATUS_PUT_BUF_FAILED = -1, |
| 1785 | TDEFL_STATUS_OKAY = 0, |
| 1786 | TDEFL_STATUS_DONE = 1 |
| 1787 | } tdefl_status; |
| 1788 | |
| 1789 | // Must map to MZ_NO_FLUSH, MZ_SYNC_FLUSH, etc. enums |
| 1790 | typedef enum { |
| 1791 | TDEFL_NO_FLUSH = 0, |
| 1792 | TDEFL_SYNC_FLUSH = 2, |
| 1793 | TDEFL_FULL_FLUSH = 3, |
| 1794 | TDEFL_FINISH = 4 |
| 1795 | } tdefl_flush; |
| 1796 | |
| 1797 | // tdefl's compression state structure. |
| 1798 | typedef struct { |
| 1799 | tdefl_put_buf_func_ptr m_pPut_buf_func; |
| 1800 | void *m_pPut_buf_user; |
| 1801 | mz_uint m_flags, m_max_probes[2]; |
| 1802 | int m_greedy_parsing; |
| 1803 | mz_uint m_adler32, m_lookahead_pos, m_lookahead_size, m_dict_size; |
| 1804 | mz_uint8 *m_pLZ_code_buf, *m_pLZ_flags, *m_pOutput_buf, *m_pOutput_buf_end; |
| 1805 | mz_uint m_num_flags_left, m_total_lz_bytes, m_lz_code_buf_dict_pos, m_bits_in, |
| 1806 | m_bit_buffer; |
| 1807 | mz_uint m_saved_match_dist, m_saved_match_len, m_saved_lit, |
| 1808 | m_output_flush_ofs, m_output_flush_remaining, m_finished, m_block_index, |
| 1809 | m_wants_to_finish; |
| 1810 | tdefl_status m_prev_return_status; |
| 1811 | const void *m_pIn_buf; |
| 1812 | void *m_pOut_buf; |
| 1813 | size_t *m_pIn_buf_size, *m_pOut_buf_size; |
| 1814 | tdefl_flush m_flush; |
| 1815 | const mz_uint8 *m_pSrc; |
| 1816 | size_t m_src_buf_left, m_out_buf_ofs; |
| 1817 | mz_uint8 m_dict[TDEFL_LZ_DICT_SIZE + TDEFL_MAX_MATCH_LEN - 1]; |
| 1818 | mz_uint16 m_huff_count[TDEFL_MAX_HUFF_TABLES][TDEFL_MAX_HUFF_SYMBOLS]; |
| 1819 | mz_uint16 m_huff_codes[TDEFL_MAX_HUFF_TABLES][TDEFL_MAX_HUFF_SYMBOLS]; |
| 1820 | mz_uint8 m_huff_code_sizes[TDEFL_MAX_HUFF_TABLES][TDEFL_MAX_HUFF_SYMBOLS]; |
| 1821 | mz_uint8 m_lz_code_buf[TDEFL_LZ_CODE_BUF_SIZE]; |
| 1822 | mz_uint16 m_next[TDEFL_LZ_DICT_SIZE]; |
| 1823 | mz_uint16 m_hash[TDEFL_LZ_HASH_SIZE]; |
| 1824 | mz_uint8 m_output_buf[TDEFL_OUT_BUF_SIZE]; |
| 1825 | } tdefl_compressor; |
| 1826 | |
| 1827 | // Initializes the compressor. |
| 1828 | // There is no corresponding deinit() function because the tdefl API's do not |
| 1829 | // dynamically allocate memory. |
| 1830 | // pBut_buf_func: If NULL, output data will be supplied to the specified |
| 1831 | // callback. In this case, the user should call the tdefl_compress_buffer() API |
| 1832 | // for compression. |
| 1833 | // If pBut_buf_func is NULL the user should always call the tdefl_compress() |
| 1834 | // API. |
| 1835 | // flags: See the above enums (TDEFL_HUFFMAN_ONLY, TDEFL_WRITE_ZLIB_HEADER, |
| 1836 | // etc.) |
| 1837 | tdefl_status tdefl_init(tdefl_compressor *d, |
| 1838 | tdefl_put_buf_func_ptr pPut_buf_func, |
| 1839 | void *pPut_buf_user, int flags); |
| 1840 | |
| 1841 | // Compresses a block of data, consuming as much of the specified input buffer |
| 1842 | // as possible, and writing as much compressed data to the specified output |
| 1843 | // buffer as possible. |
| 1844 | tdefl_status tdefl_compress(tdefl_compressor *d, const void *pIn_buf, |
| 1845 | size_t *pIn_buf_size, void *pOut_buf, |
| 1846 | size_t *pOut_buf_size, tdefl_flush flush); |
| 1847 | |
| 1848 | // tdefl_compress_buffer() is only usable when the tdefl_init() is called with a |
| 1849 | // non-NULL tdefl_put_buf_func_ptr. |
| 1850 | // tdefl_compress_buffer() always consumes the entire input buffer. |
| 1851 | tdefl_status tdefl_compress_buffer(tdefl_compressor *d, const void *pIn_buf, |
| 1852 | size_t in_buf_size, tdefl_flush flush); |
| 1853 | |
| 1854 | tdefl_status tdefl_get_prev_return_status(tdefl_compressor *d); |
| 1855 | mz_uint32 tdefl_get_adler32(tdefl_compressor *d); |
| 1856 | |
| 1857 | // Can't use tdefl_create_comp_flags_from_zip_params if MINIZ_NO_ZLIB_APIS isn't |
| 1858 | // defined, because it uses some of its macros. |
| 1859 | #ifndef MINIZ_NO_ZLIB_APIS |
| 1860 | // Create tdefl_compress() flags given zlib-style compression parameters. |
| 1861 | // level may range from [0,10] (where 10 is absolute max compression, but may be |
| 1862 | // much slower on some files) |
| 1863 | // window_bits may be -15 (raw deflate) or 15 (zlib) |
| 1864 | // strategy may be either MZ_DEFAULT_STRATEGY, MZ_FILTERED, MZ_HUFFMAN_ONLY, |
| 1865 | // MZ_RLE, or MZ_FIXED |
| 1866 | mz_uint tdefl_create_comp_flags_from_zip_params(int level, int window_bits, |
| 1867 | int strategy); |
| 1868 | #endif // #ifndef MINIZ_NO_ZLIB_APIS |
| 1869 | |
| 1870 | #ifdef __cplusplus |
| 1871 | } |
| 1872 | #endif |
| 1873 | |
| 1874 | #endif // MINIZ_HEADER_INCLUDED |
| 1875 | |
| 1876 | // ------------------- End of Header: Implementation follows. (If you only want |
| 1877 | // the header, define MINIZ_HEADER_FILE_ONLY.) |
| 1878 | |
| 1879 | #ifndef MINIZ_HEADER_FILE_ONLY |
| 1880 | |
| 1881 | typedef unsigned char mz_validate_uint16[sizeof(mz_uint16) == 2 ? 1 : -1]; |
| 1882 | typedef unsigned char mz_validate_uint32[sizeof(mz_uint32) == 4 ? 1 : -1]; |
| 1883 | typedef unsigned char mz_validate_uint64[sizeof(mz_uint64) == 8 ? 1 : -1]; |
| 1884 | |
| 1885 | //#include <assert.h> |
| 1886 | //#include <string.h> |
| 1887 | |
| 1888 | #define MZ_ASSERT(x) assert(x) |
| 1889 | |
| 1890 | #ifdef MINIZ_NO_MALLOC |
| 1891 | #define MZ_MALLOC(x) NULL |
| 1892 | #define MZ_FREE(x) (void)x, ((void)0) |
| 1893 | #define MZ_REALLOC(p, x) NULL |
| 1894 | #else |
| 1895 | #define MZ_MALLOC(x) malloc(x) |
| 1896 | #define MZ_FREE(x) free(x) |
| 1897 | #define MZ_REALLOC(p, x) realloc(p, x) |
| 1898 | #endif |
| 1899 | |
| 1900 | #define MZ_MAX(a, b) (((a) > (b)) ? (a) : (b)) |
| 1901 | #define MZ_MIN(a, b) (((a) < (b)) ? (a) : (b)) |
| 1902 | #define MZ_CLEAR_OBJ(obj) memset(&(obj), 0, sizeof(obj)) |
| 1903 | |
| 1904 | #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN |
| 1905 | #define MZ_READ_LE16(p) *((const mz_uint16 *)(p)) |
| 1906 | #define MZ_READ_LE32(p) *((const mz_uint32 *)(p)) |
| 1907 | #else |
| 1908 | #define MZ_READ_LE16(p) \ |
| 1909 | ((mz_uint32)(((const mz_uint8 *)(p))[0]) | \ |
| 1910 | ((mz_uint32)(((const mz_uint8 *)(p))[1]) << 8U)) |
| 1911 | #define MZ_READ_LE32(p) \ |
| 1912 | ((mz_uint32)(((const mz_uint8 *)(p))[0]) | \ |
| 1913 | ((mz_uint32)(((const mz_uint8 *)(p))[1]) << 8U) | \ |
| 1914 | ((mz_uint32)(((const mz_uint8 *)(p))[2]) << 16U) | \ |
| 1915 | ((mz_uint32)(((const mz_uint8 *)(p))[3]) << 24U)) |
| 1916 | #endif |
| 1917 | |
| 1918 | #ifdef _MSC_VER |
| 1919 | #define MZ_FORCEINLINE __forceinline |
| 1920 | #elif defined(__GNUC__) |
| 1921 | #define MZ_FORCEINLINE inline __attribute__((__always_inline__)) |
| 1922 | #else |
| 1923 | #define MZ_FORCEINLINE inline |
| 1924 | #endif |
| 1925 | |
| 1926 | #ifdef __cplusplus |
| 1927 | extern "C" { |
| 1928 | #endif |
| 1929 | |
| 1930 | // ------------------- zlib-style API's |
| 1931 | |
| 1932 | mz_ulong mz_adler32(mz_ulong adler, const unsigned char *ptr, size_t buf_len) { |
| 1933 | mz_uint32 i, s1 = (mz_uint32)(adler & 0xffff), s2 = (mz_uint32)(adler >> 16); |
| 1934 | size_t block_len = buf_len % 5552; |
| 1935 | if (!ptr) return MZ_ADLER32_INIT; |
| 1936 | while (buf_len) { |
| 1937 | for (i = 0; i + 7 < block_len; i += 8, ptr += 8) { |
| 1938 | s1 += ptr[0], s2 += s1; |
| 1939 | s1 += ptr[1], s2 += s1; |
| 1940 | s1 += ptr[2], s2 += s1; |
| 1941 | s1 += ptr[3], s2 += s1; |
| 1942 | s1 += ptr[4], s2 += s1; |
| 1943 | s1 += ptr[5], s2 += s1; |
| 1944 | s1 += ptr[6], s2 += s1; |
| 1945 | s1 += ptr[7], s2 += s1; |
| 1946 | } |
| 1947 | for (; i < block_len; ++i) s1 += *ptr++, s2 += s1; |
| 1948 | s1 %= 65521U, s2 %= 65521U; |
| 1949 | buf_len -= block_len; |
| 1950 | block_len = 5552; |
| 1951 | } |
| 1952 | return (s2 << 16) + s1; |
| 1953 | } |
| 1954 | |
| 1955 | // Karl Malbrain's compact CRC-32. See "A compact CCITT crc16 and crc32 C |
| 1956 | // implementation that balances processor cache usage against speed": |
| 1957 | // http://www.geocities.com/malbrain/ |
| 1958 | mz_ulong mz_crc32(mz_ulong crc, const mz_uint8 *ptr, size_t buf_len) { |
| 1959 | static const mz_uint32 s_crc32[16] = { |
| 1960 | 0, 0x1db71064, 0x3b6e20c8, 0x26d930ac, 0x76dc4190, 0x6b6b51f4, |
| 1961 | 0x4db26158, 0x5005713c, 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c, |
| 1962 | 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c}; |
| 1963 | mz_uint32 crcu32 = (mz_uint32)crc; |
| 1964 | if (!ptr) return MZ_CRC32_INIT; |
| 1965 | crcu32 = ~crcu32; |
| 1966 | while (buf_len--) { |
| 1967 | mz_uint8 b = *ptr++; |
| 1968 | crcu32 = (crcu32 >> 4) ^ s_crc32[(crcu32 & 0xF) ^ (b & 0xF)]; |
| 1969 | crcu32 = (crcu32 >> 4) ^ s_crc32[(crcu32 & 0xF) ^ (b >> 4)]; |
| 1970 | } |
| 1971 | return ~crcu32; |
| 1972 | } |
| 1973 | |
| 1974 | void mz_free(void *p) { MZ_FREE(p); } |
| 1975 | |
| 1976 | #ifndef MINIZ_NO_ZLIB_APIS |
| 1977 | |
| 1978 | static void *def_alloc_func(void *opaque, size_t items, size_t size) { |
| 1979 | (void)opaque, (void)items, (void)size; |
| 1980 | return MZ_MALLOC(items * size); |
| 1981 | } |
| 1982 | static void def_free_func(void *opaque, void *address) { |
| 1983 | (void)opaque, (void)address; |
| 1984 | MZ_FREE(address); |
| 1985 | } |
| 1986 | // static void *def_realloc_func(void *opaque, void *address, size_t items, |
| 1987 | // size_t size) { |
| 1988 | // (void)opaque, (void)address, (void)items, (void)size; |
| 1989 | // return MZ_REALLOC(address, items * size); |
| 1990 | //} |
| 1991 | |
| 1992 | const char *mz_version(void) { return MZ_VERSION; } |
| 1993 | |
| 1994 | int mz_deflateInit(mz_streamp pStream, int level) { |
| 1995 | return mz_deflateInit2(pStream, level, MZ_DEFLATED, MZ_DEFAULT_WINDOW_BITS, 9, |
| 1996 | MZ_DEFAULT_STRATEGY); |
| 1997 | } |
| 1998 | |
| 1999 | int mz_deflateInit2(mz_streamp pStream, int level, int method, int window_bits, |
| 2000 | int mem_level, int strategy) { |
| 2001 | tdefl_compressor *pComp; |
| 2002 | mz_uint comp_flags = |
| 2003 | TDEFL_COMPUTE_ADLER32 | |
| 2004 | tdefl_create_comp_flags_from_zip_params(level, window_bits, strategy); |
| 2005 | |
| 2006 | if (!pStream) return MZ_STREAM_ERROR; |
| 2007 | if ((method != MZ_DEFLATED) || ((mem_level < 1) || (mem_level > 9)) || |
| 2008 | ((window_bits != MZ_DEFAULT_WINDOW_BITS) && |
| 2009 | (-window_bits != MZ_DEFAULT_WINDOW_BITS))) |
| 2010 | return MZ_PARAM_ERROR; |
| 2011 | |
| 2012 | pStream->data_type = 0; |
| 2013 | pStream->adler = MZ_ADLER32_INIT; |
| 2014 | pStream->msg = NULL; |
| 2015 | pStream->reserved = 0; |
| 2016 | pStream->total_in = 0; |
| 2017 | pStream->total_out = 0; |
| 2018 | if (!pStream->zalloc) pStream->zalloc = def_alloc_func; |
| 2019 | if (!pStream->zfree) pStream->zfree = def_free_func; |
| 2020 | |
| 2021 | pComp = (tdefl_compressor *)pStream->zalloc(pStream->opaque, 1, |
| 2022 | sizeof(tdefl_compressor)); |
| 2023 | if (!pComp) return MZ_MEM_ERROR; |
| 2024 | |
| 2025 | pStream->state = (struct mz_internal_state *)pComp; |
| 2026 | |
| 2027 | if (tdefl_init(pComp, NULL, NULL, comp_flags) != TDEFL_STATUS_OKAY) { |
| 2028 | mz_deflateEnd(pStream); |
| 2029 | return MZ_PARAM_ERROR; |
| 2030 | } |
| 2031 | |
| 2032 | return MZ_OK; |
| 2033 | } |
| 2034 | |
| 2035 | int mz_deflateReset(mz_streamp pStream) { |
| 2036 | if ((!pStream) || (!pStream->state) || (!pStream->zalloc) || |
| 2037 | (!pStream->zfree)) |
| 2038 | return MZ_STREAM_ERROR; |
| 2039 | pStream->total_in = pStream->total_out = 0; |
| 2040 | tdefl_init((tdefl_compressor *)pStream->state, NULL, NULL, |
| 2041 | ((tdefl_compressor *)pStream->state)->m_flags); |
| 2042 | return MZ_OK; |
| 2043 | } |
| 2044 | |
| 2045 | int mz_deflate(mz_streamp pStream, int flush) { |
| 2046 | size_t in_bytes, out_bytes; |
| 2047 | mz_ulong orig_total_in, orig_total_out; |
| 2048 | int mz_status = MZ_OK; |
| 2049 | |
| 2050 | if ((!pStream) || (!pStream->state) || (flush < 0) || (flush > MZ_FINISH) || |
| 2051 | (!pStream->next_out)) |
| 2052 | return MZ_STREAM_ERROR; |
| 2053 | if (!pStream->avail_out) return MZ_BUF_ERROR; |
| 2054 | |
| 2055 | if (flush == MZ_PARTIAL_FLUSH) flush = MZ_SYNC_FLUSH; |
| 2056 | |
| 2057 | if (((tdefl_compressor *)pStream->state)->m_prev_return_status == |
| 2058 | TDEFL_STATUS_DONE) |
| 2059 | return (flush == MZ_FINISH) ? MZ_STREAM_END : MZ_BUF_ERROR; |
| 2060 | |
| 2061 | orig_total_in = pStream->total_in; |
| 2062 | orig_total_out = pStream->total_out; |
| 2063 | for (;;) { |
| 2064 | tdefl_status defl_status; |
| 2065 | in_bytes = pStream->avail_in; |
| 2066 | out_bytes = pStream->avail_out; |
| 2067 | |
| 2068 | defl_status = tdefl_compress((tdefl_compressor *)pStream->state, |
| 2069 | pStream->next_in, &in_bytes, pStream->next_out, |
| 2070 | &out_bytes, (tdefl_flush)flush); |
| 2071 | pStream->next_in += (mz_uint)in_bytes; |
| 2072 | pStream->avail_in -= (mz_uint)in_bytes; |
| 2073 | pStream->total_in += (mz_uint)in_bytes; |
| 2074 | pStream->adler = tdefl_get_adler32((tdefl_compressor *)pStream->state); |
| 2075 | |
| 2076 | pStream->next_out += (mz_uint)out_bytes; |
| 2077 | pStream->avail_out -= (mz_uint)out_bytes; |
| 2078 | pStream->total_out += (mz_uint)out_bytes; |
| 2079 | |
| 2080 | if (defl_status < 0) { |
| 2081 | mz_status = MZ_STREAM_ERROR; |
| 2082 | break; |
| 2083 | } else if (defl_status == TDEFL_STATUS_DONE) { |
| 2084 | mz_status = MZ_STREAM_END; |
| 2085 | break; |
| 2086 | } else if (!pStream->avail_out) |
| 2087 | break; |
| 2088 | else if ((!pStream->avail_in) && (flush != MZ_FINISH)) { |
| 2089 | if ((flush) || (pStream->total_in != orig_total_in) || |
| 2090 | (pStream->total_out != orig_total_out)) |
| 2091 | break; |
| 2092 | return MZ_BUF_ERROR; // Can't make forward progress without some input. |
| 2093 | } |
| 2094 | } |
| 2095 | return mz_status; |
| 2096 | } |
| 2097 | |
| 2098 | int mz_deflateEnd(mz_streamp pStream) { |
| 2099 | if (!pStream) return MZ_STREAM_ERROR; |
| 2100 | if (pStream->state) { |
| 2101 | pStream->zfree(pStream->opaque, pStream->state); |
| 2102 | pStream->state = NULL; |
| 2103 | } |
| 2104 | return MZ_OK; |
| 2105 | } |
| 2106 | |
| 2107 | mz_ulong mz_deflateBound(mz_streamp pStream, mz_ulong source_len) { |
| 2108 | (void)pStream; |
| 2109 | // This is really over conservative. (And lame, but it's actually pretty |
| 2110 | // tricky to compute a true upper bound given the way tdefl's blocking works.) |
| 2111 | return MZ_MAX(128 + (source_len * 110) / 100, |
| 2112 | 128 + source_len + ((source_len / (31 * 1024)) + 1) * 5); |
| 2113 | } |
| 2114 | |
| 2115 | int mz_compress2(unsigned char *pDest, mz_ulong *pDest_len, |
| 2116 | const unsigned char *pSource, mz_ulong source_len, int level) { |
| 2117 | int status; |
| 2118 | mz_stream stream; |
| 2119 | memset(&stream, 0, sizeof(stream)); |
| 2120 | |
| 2121 | // In case mz_ulong is 64-bits (argh I hate longs). |
| 2122 | if ((source_len | *pDest_len) > 0xFFFFFFFFU) return MZ_PARAM_ERROR; |
| 2123 | |
| 2124 | stream.next_in = pSource; |
| 2125 | stream.avail_in = (mz_uint32)source_len; |
| 2126 | stream.next_out = pDest; |
| 2127 | stream.avail_out = (mz_uint32)*pDest_len; |
| 2128 | |
| 2129 | status = mz_deflateInit(&stream, level); |
| 2130 | if (status != MZ_OK) return status; |
| 2131 | |
| 2132 | status = mz_deflate(&stream, MZ_FINISH); |
| 2133 | if (status != MZ_STREAM_END) { |
| 2134 | mz_deflateEnd(&stream); |
| 2135 | return (status == MZ_OK) ? MZ_BUF_ERROR : status; |
| 2136 | } |
| 2137 | |
| 2138 | *pDest_len = stream.total_out; |
| 2139 | return mz_deflateEnd(&stream); |
| 2140 | } |
| 2141 | |
| 2142 | int mz_compress(unsigned char *pDest, mz_ulong *pDest_len, |
| 2143 | const unsigned char *pSource, mz_ulong source_len) { |
| 2144 | return mz_compress2(pDest, pDest_len, pSource, source_len, |
| 2145 | MZ_DEFAULT_COMPRESSION); |
| 2146 | } |
| 2147 | |
| 2148 | mz_ulong mz_compressBound(mz_ulong source_len) { |
| 2149 | return mz_deflateBound(NULL, source_len); |
| 2150 | } |
| 2151 | |
| 2152 | typedef struct { |
| 2153 | tinfl_decompressor m_decomp; |
| 2154 | mz_uint m_dict_ofs, m_dict_avail, m_first_call, m_has_flushed; |
| 2155 | int m_window_bits; |
| 2156 | mz_uint8 m_dict[TINFL_LZ_DICT_SIZE]; |
| 2157 | tinfl_status m_last_status; |
| 2158 | } inflate_state; |
| 2159 | |
| 2160 | int mz_inflateInit2(mz_streamp pStream, int window_bits) { |
| 2161 | inflate_state *pDecomp; |
| 2162 | if (!pStream) return MZ_STREAM_ERROR; |
| 2163 | if ((window_bits != MZ_DEFAULT_WINDOW_BITS) && |
| 2164 | (-window_bits != MZ_DEFAULT_WINDOW_BITS)) |
| 2165 | return MZ_PARAM_ERROR; |
| 2166 | |
| 2167 | pStream->data_type = 0; |
| 2168 | pStream->adler = 0; |
| 2169 | pStream->msg = NULL; |
| 2170 | pStream->total_in = 0; |
| 2171 | pStream->total_out = 0; |
| 2172 | pStream->reserved = 0; |
| 2173 | if (!pStream->zalloc) pStream->zalloc = def_alloc_func; |
| 2174 | if (!pStream->zfree) pStream->zfree = def_free_func; |
| 2175 | |
| 2176 | pDecomp = (inflate_state *)pStream->zalloc(pStream->opaque, 1, |
| 2177 | sizeof(inflate_state)); |
| 2178 | if (!pDecomp) return MZ_MEM_ERROR; |
| 2179 | |
| 2180 | pStream->state = (struct mz_internal_state *)pDecomp; |
| 2181 | |
| 2182 | tinfl_init(&pDecomp->m_decomp); |
| 2183 | pDecomp->m_dict_ofs = 0; |
| 2184 | pDecomp->m_dict_avail = 0; |
| 2185 | pDecomp->m_last_status = TINFL_STATUS_NEEDS_MORE_INPUT; |
| 2186 | pDecomp->m_first_call = 1; |
| 2187 | pDecomp->m_has_flushed = 0; |
| 2188 | pDecomp->m_window_bits = window_bits; |
| 2189 | |
| 2190 | return MZ_OK; |
| 2191 | } |
| 2192 | |
| 2193 | int mz_inflateInit(mz_streamp pStream) { |
| 2194 | return mz_inflateInit2(pStream, MZ_DEFAULT_WINDOW_BITS); |
| 2195 | } |
| 2196 | |
| 2197 | int mz_inflate(mz_streamp pStream, int flush) { |
| 2198 | inflate_state *pState; |
| 2199 | mz_uint n, first_call, decomp_flags = TINFL_FLAG_COMPUTE_ADLER32; |
| 2200 | size_t in_bytes, out_bytes, orig_avail_in; |
| 2201 | tinfl_status status; |
| 2202 | |
| 2203 | if ((!pStream) || (!pStream->state)) return MZ_STREAM_ERROR; |
| 2204 | if (flush == MZ_PARTIAL_FLUSH) flush = MZ_SYNC_FLUSH; |
| 2205 | if ((flush) && (flush != MZ_SYNC_FLUSH) && (flush != MZ_FINISH)) |
| 2206 | return MZ_STREAM_ERROR; |
| 2207 | |
| 2208 | pState = (inflate_state *)pStream->state; |
| 2209 | if (pState->m_window_bits > 0) decomp_flags |= TINFL_FLAG_PARSE_ZLIB_HEADER; |
| 2210 | orig_avail_in = pStream->avail_in; |
| 2211 | |
| 2212 | first_call = pState->m_first_call; |
| 2213 | pState->m_first_call = 0; |
| 2214 | if (pState->m_last_status < 0) return MZ_DATA_ERROR; |
| 2215 | |
| 2216 | if (pState->m_has_flushed && (flush != MZ_FINISH)) return MZ_STREAM_ERROR; |
| 2217 | pState->m_has_flushed |= (flush == MZ_FINISH); |
| 2218 | |
| 2219 | if ((flush == MZ_FINISH) && (first_call)) { |
| 2220 | // MZ_FINISH on the first call implies that the input and output buffers are |
| 2221 | // large enough to hold the entire compressed/decompressed file. |
| 2222 | decomp_flags |= TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF; |
| 2223 | in_bytes = pStream->avail_in; |
| 2224 | out_bytes = pStream->avail_out; |
| 2225 | status = tinfl_decompress(&pState->m_decomp, pStream->next_in, &in_bytes, |
| 2226 | pStream->next_out, pStream->next_out, &out_bytes, |
| 2227 | decomp_flags); |
| 2228 | pState->m_last_status = status; |
| 2229 | pStream->next_in += (mz_uint)in_bytes; |
| 2230 | pStream->avail_in -= (mz_uint)in_bytes; |
| 2231 | pStream->total_in += (mz_uint)in_bytes; |
| 2232 | pStream->adler = tinfl_get_adler32(&pState->m_decomp); |
| 2233 | pStream->next_out += (mz_uint)out_bytes; |
| 2234 | pStream->avail_out -= (mz_uint)out_bytes; |
| 2235 | pStream->total_out += (mz_uint)out_bytes; |
| 2236 | |
| 2237 | if (status < 0) |
| 2238 | return MZ_DATA_ERROR; |
| 2239 | else if (status != TINFL_STATUS_DONE) { |
| 2240 | pState->m_last_status = TINFL_STATUS_FAILED; |
| 2241 | return MZ_BUF_ERROR; |
| 2242 | } |
| 2243 | return MZ_STREAM_END; |
| 2244 | } |
| 2245 | // flush != MZ_FINISH then we must assume there's more input. |
| 2246 | if (flush != MZ_FINISH) decomp_flags |= TINFL_FLAG_HAS_MORE_INPUT; |
| 2247 | |
| 2248 | if (pState->m_dict_avail) { |
| 2249 | n = MZ_MIN(pState->m_dict_avail, pStream->avail_out); |
| 2250 | memcpy(pStream->next_out, pState->m_dict + pState->m_dict_ofs, n); |
| 2251 | pStream->next_out += n; |
| 2252 | pStream->avail_out -= n; |
| 2253 | pStream->total_out += n; |
| 2254 | pState->m_dict_avail -= n; |
| 2255 | pState->m_dict_ofs = (pState->m_dict_ofs + n) & (TINFL_LZ_DICT_SIZE - 1); |
| 2256 | return ((pState->m_last_status == TINFL_STATUS_DONE) && |
| 2257 | (!pState->m_dict_avail)) |
| 2258 | ? MZ_STREAM_END |
| 2259 | : MZ_OK; |
| 2260 | } |
| 2261 | |
| 2262 | for (;;) { |
| 2263 | in_bytes = pStream->avail_in; |
| 2264 | out_bytes = TINFL_LZ_DICT_SIZE - pState->m_dict_ofs; |
| 2265 | |
| 2266 | status = tinfl_decompress( |
| 2267 | &pState->m_decomp, pStream->next_in, &in_bytes, pState->m_dict, |
| 2268 | pState->m_dict + pState->m_dict_ofs, &out_bytes, decomp_flags); |
| 2269 | pState->m_last_status = status; |
| 2270 | |
| 2271 | pStream->next_in += (mz_uint)in_bytes; |
| 2272 | pStream->avail_in -= (mz_uint)in_bytes; |
| 2273 | pStream->total_in += (mz_uint)in_bytes; |
| 2274 | pStream->adler = tinfl_get_adler32(&pState->m_decomp); |
| 2275 | |
| 2276 | pState->m_dict_avail = (mz_uint)out_bytes; |
| 2277 | |
| 2278 | n = MZ_MIN(pState->m_dict_avail, pStream->avail_out); |
| 2279 | memcpy(pStream->next_out, pState->m_dict + pState->m_dict_ofs, n); |
| 2280 | pStream->next_out += n; |
| 2281 | pStream->avail_out -= n; |
| 2282 | pStream->total_out += n; |
| 2283 | pState->m_dict_avail -= n; |
| 2284 | pState->m_dict_ofs = (pState->m_dict_ofs + n) & (TINFL_LZ_DICT_SIZE - 1); |
| 2285 | |
| 2286 | if (status < 0) |
| 2287 | return MZ_DATA_ERROR; // Stream is corrupted (there could be some |
| 2288 | // uncompressed data left in the output dictionary - |
| 2289 | // oh well). |
| 2290 | else if ((status == TINFL_STATUS_NEEDS_MORE_INPUT) && (!orig_avail_in)) |
| 2291 | return MZ_BUF_ERROR; // Signal caller that we can't make forward progress |
| 2292 | // without supplying more input or by setting flush |
| 2293 | // to MZ_FINISH. |
| 2294 | else if (flush == MZ_FINISH) { |
| 2295 | // The output buffer MUST be large to hold the remaining uncompressed data |
| 2296 | // when flush==MZ_FINISH. |
| 2297 | if (status == TINFL_STATUS_DONE) |
| 2298 | return pState->m_dict_avail ? MZ_BUF_ERROR : MZ_STREAM_END; |
| 2299 | // status here must be TINFL_STATUS_HAS_MORE_OUTPUT, which means there's |
| 2300 | // at least 1 more byte on the way. If there's no more room left in the |
| 2301 | // output buffer then something is wrong. |
| 2302 | else if (!pStream->avail_out) |
| 2303 | return MZ_BUF_ERROR; |
| 2304 | } else if ((status == TINFL_STATUS_DONE) || (!pStream->avail_in) || |
| 2305 | (!pStream->avail_out) || (pState->m_dict_avail)) |
| 2306 | break; |
| 2307 | } |
| 2308 | |
| 2309 | return ((status == TINFL_STATUS_DONE) && (!pState->m_dict_avail)) |
| 2310 | ? MZ_STREAM_END |
| 2311 | : MZ_OK; |
| 2312 | } |
| 2313 | |
| 2314 | int mz_inflateEnd(mz_streamp pStream) { |
| 2315 | if (!pStream) return MZ_STREAM_ERROR; |
| 2316 | if (pStream->state) { |
| 2317 | pStream->zfree(pStream->opaque, pStream->state); |
| 2318 | pStream->state = NULL; |
| 2319 | } |
| 2320 | return MZ_OK; |
| 2321 | } |
| 2322 | |
| 2323 | int mz_uncompress(unsigned char *pDest, mz_ulong *pDest_len, |
| 2324 | const unsigned char *pSource, mz_ulong source_len) { |
| 2325 | mz_stream stream; |
| 2326 | int status; |
| 2327 | memset(&stream, 0, sizeof(stream)); |
| 2328 | |
| 2329 | // In case mz_ulong is 64-bits (argh I hate longs). |
| 2330 | if ((source_len | *pDest_len) > 0xFFFFFFFFU) return MZ_PARAM_ERROR; |
| 2331 | |
| 2332 | stream.next_in = pSource; |
| 2333 | stream.avail_in = (mz_uint32)source_len; |
| 2334 | stream.next_out = pDest; |
| 2335 | stream.avail_out = (mz_uint32)*pDest_len; |
| 2336 | |
| 2337 | status = mz_inflateInit(&stream); |
| 2338 | if (status != MZ_OK) return status; |
| 2339 | |
| 2340 | status = mz_inflate(&stream, MZ_FINISH); |
| 2341 | if (status != MZ_STREAM_END) { |
| 2342 | mz_inflateEnd(&stream); |
| 2343 | return ((status == MZ_BUF_ERROR) && (!stream.avail_in)) ? MZ_DATA_ERROR |
| 2344 | : status; |
| 2345 | } |
| 2346 | *pDest_len = stream.total_out; |
| 2347 | |
| 2348 | return mz_inflateEnd(&stream); |
| 2349 | } |
| 2350 | |
| 2351 | const char *mz_error(int err) { |
| 2352 | static struct { |
| 2353 | int m_err; |
| 2354 | const char *m_pDesc; |
| 2355 | } s_error_descs[] = {{MZ_OK, "" }, |
| 2356 | {MZ_STREAM_END, "stream end" }, |
| 2357 | {MZ_NEED_DICT, "need dictionary" }, |
| 2358 | {MZ_ERRNO, "file error" }, |
| 2359 | {MZ_STREAM_ERROR, "stream error" }, |
| 2360 | {MZ_DATA_ERROR, "data error" }, |
| 2361 | {MZ_MEM_ERROR, "out of memory" }, |
| 2362 | {MZ_BUF_ERROR, "buf error" }, |
| 2363 | {MZ_VERSION_ERROR, "version error" }, |
| 2364 | {MZ_PARAM_ERROR, "parameter error" }}; |
| 2365 | mz_uint i; |
| 2366 | for (i = 0; i < sizeof(s_error_descs) / sizeof(s_error_descs[0]); ++i) |
| 2367 | if (s_error_descs[i].m_err == err) return s_error_descs[i].m_pDesc; |
| 2368 | return NULL; |
| 2369 | } |
| 2370 | |
| 2371 | #endif // MINIZ_NO_ZLIB_APIS |
| 2372 | |
| 2373 | // ------------------- Low-level Decompression (completely independent from all |
| 2374 | // compression API's) |
| 2375 | |
| 2376 | #define TINFL_MEMCPY(d, s, l) memcpy(d, s, l) |
| 2377 | #define TINFL_MEMSET(p, c, l) memset(p, c, l) |
| 2378 | |
| 2379 | #define TINFL_CR_BEGIN \ |
| 2380 | switch (r->m_state) { \ |
| 2381 | case 0: |
| 2382 | #define TINFL_CR_RETURN(state_index, result) \ |
| 2383 | do { \ |
| 2384 | status = result; \ |
| 2385 | r->m_state = state_index; \ |
| 2386 | goto common_exit; \ |
| 2387 | case state_index:; \ |
| 2388 | } \ |
| 2389 | MZ_MACRO_END |
| 2390 | #define TINFL_CR_RETURN_FOREVER(state_index, result) \ |
| 2391 | do { \ |
| 2392 | for (;;) { \ |
| 2393 | TINFL_CR_RETURN(state_index, result); \ |
| 2394 | } \ |
| 2395 | } \ |
| 2396 | MZ_MACRO_END |
| 2397 | #define TINFL_CR_FINISH } |
| 2398 | |
| 2399 | // TODO: If the caller has indicated that there's no more input, and we attempt |
| 2400 | // to read beyond the input buf, then something is wrong with the input because |
| 2401 | // the inflator never |
| 2402 | // reads ahead more than it needs to. Currently TINFL_GET_BYTE() pads the end of |
| 2403 | // the stream with 0's in this scenario. |
| 2404 | #define TINFL_GET_BYTE(state_index, c) \ |
| 2405 | do { \ |
| 2406 | if (pIn_buf_cur >= pIn_buf_end) { \ |
| 2407 | for (;;) { \ |
| 2408 | if (decomp_flags & TINFL_FLAG_HAS_MORE_INPUT) { \ |
| 2409 | TINFL_CR_RETURN(state_index, TINFL_STATUS_NEEDS_MORE_INPUT); \ |
| 2410 | if (pIn_buf_cur < pIn_buf_end) { \ |
| 2411 | c = *pIn_buf_cur++; \ |
| 2412 | break; \ |
| 2413 | } \ |
| 2414 | } else { \ |
| 2415 | c = 0; \ |
| 2416 | break; \ |
| 2417 | } \ |
| 2418 | } \ |
| 2419 | } else \ |
| 2420 | c = *pIn_buf_cur++; \ |
| 2421 | } \ |
| 2422 | MZ_MACRO_END |
| 2423 | |
| 2424 | #define TINFL_NEED_BITS(state_index, n) \ |
| 2425 | do { \ |
| 2426 | mz_uint c; \ |
| 2427 | TINFL_GET_BYTE(state_index, c); \ |
| 2428 | bit_buf |= (((tinfl_bit_buf_t)c) << num_bits); \ |
| 2429 | num_bits += 8; \ |
| 2430 | } while (num_bits < (mz_uint)(n)) |
| 2431 | #define TINFL_SKIP_BITS(state_index, n) \ |
| 2432 | do { \ |
| 2433 | if (num_bits < (mz_uint)(n)) { \ |
| 2434 | TINFL_NEED_BITS(state_index, n); \ |
| 2435 | } \ |
| 2436 | bit_buf >>= (n); \ |
| 2437 | num_bits -= (n); \ |
| 2438 | } \ |
| 2439 | MZ_MACRO_END |
| 2440 | #define TINFL_GET_BITS(state_index, b, n) \ |
| 2441 | do { \ |
| 2442 | if (num_bits < (mz_uint)(n)) { \ |
| 2443 | TINFL_NEED_BITS(state_index, n); \ |
| 2444 | } \ |
| 2445 | b = bit_buf & ((1 << (n)) - 1); \ |
| 2446 | bit_buf >>= (n); \ |
| 2447 | num_bits -= (n); \ |
| 2448 | } \ |
| 2449 | MZ_MACRO_END |
| 2450 | |
| 2451 | // TINFL_HUFF_BITBUF_FILL() is only used rarely, when the number of bytes |
| 2452 | // remaining in the input buffer falls below 2. |
| 2453 | // It reads just enough bytes from the input stream that are needed to decode |
| 2454 | // the next Huffman code (and absolutely no more). It works by trying to fully |
| 2455 | // decode a |
| 2456 | // Huffman code by using whatever bits are currently present in the bit buffer. |
| 2457 | // If this fails, it reads another byte, and tries again until it succeeds or |
| 2458 | // until the |
| 2459 | // bit buffer contains >=15 bits (deflate's max. Huffman code size). |
| 2460 | #define TINFL_HUFF_BITBUF_FILL(state_index, pHuff) \ |
| 2461 | do { \ |
| 2462 | temp = (pHuff)->m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]; \ |
| 2463 | if (temp >= 0) { \ |
| 2464 | code_len = temp >> 9; \ |
| 2465 | if ((code_len) && (num_bits >= code_len)) break; \ |
| 2466 | } else if (num_bits > TINFL_FAST_LOOKUP_BITS) { \ |
| 2467 | code_len = TINFL_FAST_LOOKUP_BITS; \ |
| 2468 | do { \ |
| 2469 | temp = (pHuff)->m_tree[~temp + ((bit_buf >> code_len++) & 1)]; \ |
| 2470 | } while ((temp < 0) && (num_bits >= (code_len + 1))); \ |
| 2471 | if (temp >= 0) break; \ |
| 2472 | } \ |
| 2473 | TINFL_GET_BYTE(state_index, c); \ |
| 2474 | bit_buf |= (((tinfl_bit_buf_t)c) << num_bits); \ |
| 2475 | num_bits += 8; \ |
| 2476 | } while (num_bits < 15); |
| 2477 | |
| 2478 | // TINFL_HUFF_DECODE() decodes the next Huffman coded symbol. It's more complex |
| 2479 | // than you would initially expect because the zlib API expects the decompressor |
| 2480 | // to never read |
| 2481 | // beyond the final byte of the deflate stream. (In other words, when this macro |
| 2482 | // wants to read another byte from the input, it REALLY needs another byte in |
| 2483 | // order to fully |
| 2484 | // decode the next Huffman code.) Handling this properly is particularly |
| 2485 | // important on raw deflate (non-zlib) streams, which aren't followed by a byte |
| 2486 | // aligned adler-32. |
| 2487 | // The slow path is only executed at the very end of the input buffer. |
| 2488 | #define TINFL_HUFF_DECODE(state_index, sym, pHuff) \ |
| 2489 | do { \ |
| 2490 | int temp; \ |
| 2491 | mz_uint code_len, c; \ |
| 2492 | if (num_bits < 15) { \ |
| 2493 | if ((pIn_buf_end - pIn_buf_cur) < 2) { \ |
| 2494 | TINFL_HUFF_BITBUF_FILL(state_index, pHuff); \ |
| 2495 | } else { \ |
| 2496 | bit_buf |= (((tinfl_bit_buf_t)pIn_buf_cur[0]) << num_bits) | \ |
| 2497 | (((tinfl_bit_buf_t)pIn_buf_cur[1]) << (num_bits + 8)); \ |
| 2498 | pIn_buf_cur += 2; \ |
| 2499 | num_bits += 16; \ |
| 2500 | } \ |
| 2501 | } \ |
| 2502 | if ((temp = (pHuff)->m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]) >= \ |
| 2503 | 0) \ |
| 2504 | code_len = temp >> 9, temp &= 511; \ |
| 2505 | else { \ |
| 2506 | code_len = TINFL_FAST_LOOKUP_BITS; \ |
| 2507 | do { \ |
| 2508 | temp = (pHuff)->m_tree[~temp + ((bit_buf >> code_len++) & 1)]; \ |
| 2509 | } while (temp < 0); \ |
| 2510 | } \ |
| 2511 | sym = temp; \ |
| 2512 | bit_buf >>= code_len; \ |
| 2513 | num_bits -= code_len; \ |
| 2514 | } \ |
| 2515 | MZ_MACRO_END |
| 2516 | |
| 2517 | tinfl_status tinfl_decompress(tinfl_decompressor *r, |
| 2518 | const mz_uint8 *pIn_buf_next, |
| 2519 | size_t *pIn_buf_size, mz_uint8 *pOut_buf_start, |
| 2520 | mz_uint8 *pOut_buf_next, size_t *pOut_buf_size, |
| 2521 | const mz_uint32 decomp_flags) { |
| 2522 | static const int s_length_base[31] = { |
| 2523 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, |
| 2524 | 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0}; |
| 2525 | static const int s_length_extra[31] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, |
| 2526 | 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, |
| 2527 | 4, 4, 5, 5, 5, 5, 0, 0, 0}; |
| 2528 | static const int s_dist_base[32] = { |
| 2529 | 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, |
| 2530 | 49, 65, 97, 129, 193, 257, 385, 513, 769, 1025, 1537, |
| 2531 | 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577, 0, 0}; |
| 2532 | static const int s_dist_extra[32] = {0, 0, 0, 0, 1, 1, 2, 2, 3, 3, |
| 2533 | 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, |
| 2534 | 9, 9, 10, 10, 11, 11, 12, 12, 13, 13}; |
| 2535 | static const mz_uint8 s_length_dezigzag[19] = { |
| 2536 | 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; |
| 2537 | static const int s_min_table_sizes[3] = {257, 1, 4}; |
| 2538 | |
| 2539 | tinfl_status status = TINFL_STATUS_FAILED; |
| 2540 | mz_uint32 num_bits, dist, counter, num_extra; |
| 2541 | tinfl_bit_buf_t bit_buf; |
| 2542 | const mz_uint8 *pIn_buf_cur = pIn_buf_next, *const pIn_buf_end = |
| 2543 | pIn_buf_next + *pIn_buf_size; |
| 2544 | mz_uint8 *pOut_buf_cur = pOut_buf_next, *const pOut_buf_end = |
| 2545 | pOut_buf_next + *pOut_buf_size; |
| 2546 | size_t out_buf_size_mask = |
| 2547 | (decomp_flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF) |
| 2548 | ? (size_t)-1 |
| 2549 | : ((pOut_buf_next - pOut_buf_start) + *pOut_buf_size) - 1, |
| 2550 | dist_from_out_buf_start; |
| 2551 | |
| 2552 | // Ensure the output buffer's size is a power of 2, unless the output buffer |
| 2553 | // is large enough to hold the entire output file (in which case it doesn't |
| 2554 | // matter). |
| 2555 | if (((out_buf_size_mask + 1) & out_buf_size_mask) || |
| 2556 | (pOut_buf_next < pOut_buf_start)) { |
| 2557 | *pIn_buf_size = *pOut_buf_size = 0; |
| 2558 | return TINFL_STATUS_BAD_PARAM; |
| 2559 | } |
| 2560 | |
| 2561 | num_bits = r->m_num_bits; |
| 2562 | bit_buf = r->m_bit_buf; |
| 2563 | dist = r->m_dist; |
| 2564 | counter = r->m_counter; |
| 2565 | num_extra = r->m_num_extra; |
| 2566 | dist_from_out_buf_start = r->m_dist_from_out_buf_start; |
| 2567 | TINFL_CR_BEGIN |
| 2568 | |
| 2569 | bit_buf = num_bits = dist = counter = num_extra = r->m_zhdr0 = r->m_zhdr1 = 0; |
| 2570 | r->m_z_adler32 = r->m_check_adler32 = 1; |
| 2571 | if (decomp_flags & TINFL_FLAG_PARSE_ZLIB_HEADER) { |
| 2572 | TINFL_GET_BYTE(1, r->m_zhdr0); |
| 2573 | TINFL_GET_BYTE(2, r->m_zhdr1); |
| 2574 | counter = (((r->m_zhdr0 * 256 + r->m_zhdr1) % 31 != 0) || |
| 2575 | (r->m_zhdr1 & 32) || ((r->m_zhdr0 & 15) != 8)); |
| 2576 | if (!(decomp_flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF)) |
| 2577 | counter |= (((1U << (8U + (r->m_zhdr0 >> 4))) > 32768U) || |
| 2578 | ((out_buf_size_mask + 1) < |
| 2579 | (size_t)(1ULL << (8U + (r->m_zhdr0 >> 4))))); |
| 2580 | if (counter) { |
| 2581 | TINFL_CR_RETURN_FOREVER(36, TINFL_STATUS_FAILED); |
| 2582 | } |
| 2583 | } |
| 2584 | |
| 2585 | do { |
| 2586 | TINFL_GET_BITS(3, r->m_final, 3); |
| 2587 | r->m_type = r->m_final >> 1; |
| 2588 | if (r->m_type == 0) { |
| 2589 | TINFL_SKIP_BITS(5, num_bits & 7); |
| 2590 | for (counter = 0; counter < 4; ++counter) { |
| 2591 | if (num_bits) |
| 2592 | TINFL_GET_BITS(6, r->m_raw_header[counter], 8); |
| 2593 | else |
| 2594 | TINFL_GET_BYTE(7, r->m_raw_header[counter]); |
| 2595 | } |
| 2596 | if ((counter = (r->m_raw_header[0] | (r->m_raw_header[1] << 8))) != |
| 2597 | (mz_uint)(0xFFFF ^ |
| 2598 | (r->m_raw_header[2] | (r->m_raw_header[3] << 8)))) { |
| 2599 | TINFL_CR_RETURN_FOREVER(39, TINFL_STATUS_FAILED); |
| 2600 | } |
| 2601 | while ((counter) && (num_bits)) { |
| 2602 | TINFL_GET_BITS(51, dist, 8); |
| 2603 | while (pOut_buf_cur >= pOut_buf_end) { |
| 2604 | TINFL_CR_RETURN(52, TINFL_STATUS_HAS_MORE_OUTPUT); |
| 2605 | } |
| 2606 | *pOut_buf_cur++ = (mz_uint8)dist; |
| 2607 | counter--; |
| 2608 | } |
| 2609 | while (counter) { |
| 2610 | size_t n; |
| 2611 | while (pOut_buf_cur >= pOut_buf_end) { |
| 2612 | TINFL_CR_RETURN(9, TINFL_STATUS_HAS_MORE_OUTPUT); |
| 2613 | } |
| 2614 | while (pIn_buf_cur >= pIn_buf_end) { |
| 2615 | if (decomp_flags & TINFL_FLAG_HAS_MORE_INPUT) { |
| 2616 | TINFL_CR_RETURN(38, TINFL_STATUS_NEEDS_MORE_INPUT); |
| 2617 | } else { |
| 2618 | TINFL_CR_RETURN_FOREVER(40, TINFL_STATUS_FAILED); |
| 2619 | } |
| 2620 | } |
| 2621 | n = MZ_MIN(MZ_MIN((size_t)(pOut_buf_end - pOut_buf_cur), |
| 2622 | (size_t)(pIn_buf_end - pIn_buf_cur)), |
| 2623 | counter); |
| 2624 | TINFL_MEMCPY(pOut_buf_cur, pIn_buf_cur, n); |
| 2625 | pIn_buf_cur += n; |
| 2626 | pOut_buf_cur += n; |
| 2627 | counter -= (mz_uint)n; |
| 2628 | } |
| 2629 | } else if (r->m_type == 3) { |
| 2630 | TINFL_CR_RETURN_FOREVER(10, TINFL_STATUS_FAILED); |
| 2631 | } else { |
| 2632 | if (r->m_type == 1) { |
| 2633 | mz_uint8 *p = r->m_tables[0].m_code_size; |
| 2634 | mz_uint i; |
| 2635 | r->m_table_sizes[0] = 288; |
| 2636 | r->m_table_sizes[1] = 32; |
| 2637 | TINFL_MEMSET(r->m_tables[1].m_code_size, 5, 32); |
| 2638 | for (i = 0; i <= 143; ++i) *p++ = 8; |
| 2639 | for (; i <= 255; ++i) *p++ = 9; |
| 2640 | for (; i <= 279; ++i) *p++ = 7; |
| 2641 | for (; i <= 287; ++i) *p++ = 8; |
| 2642 | } else { |
| 2643 | for (counter = 0; counter < 3; counter++) { |
| 2644 | TINFL_GET_BITS(11, r->m_table_sizes[counter], "\05\05\04" [counter]); |
| 2645 | r->m_table_sizes[counter] += s_min_table_sizes[counter]; |
| 2646 | } |
| 2647 | MZ_CLEAR_OBJ(r->m_tables[2].m_code_size); |
| 2648 | for (counter = 0; counter < r->m_table_sizes[2]; counter++) { |
| 2649 | mz_uint s; |
| 2650 | TINFL_GET_BITS(14, s, 3); |
| 2651 | r->m_tables[2].m_code_size[s_length_dezigzag[counter]] = (mz_uint8)s; |
| 2652 | } |
| 2653 | r->m_table_sizes[2] = 19; |
| 2654 | } |
| 2655 | for (; (int)r->m_type >= 0; r->m_type--) { |
| 2656 | int tree_next, tree_cur; |
| 2657 | tinfl_huff_table *pTable; |
| 2658 | mz_uint i, j, used_syms, total, sym_index, next_code[17], |
| 2659 | total_syms[16]; |
| 2660 | pTable = &r->m_tables[r->m_type]; |
| 2661 | MZ_CLEAR_OBJ(total_syms); |
| 2662 | MZ_CLEAR_OBJ(pTable->m_look_up); |
| 2663 | MZ_CLEAR_OBJ(pTable->m_tree); |
| 2664 | for (i = 0; i < r->m_table_sizes[r->m_type]; ++i) |
| 2665 | total_syms[pTable->m_code_size[i]]++; |
| 2666 | used_syms = 0, total = 0; |
| 2667 | next_code[0] = next_code[1] = 0; |
| 2668 | for (i = 1; i <= 15; ++i) { |
| 2669 | used_syms += total_syms[i]; |
| 2670 | next_code[i + 1] = (total = ((total + total_syms[i]) << 1)); |
| 2671 | } |
| 2672 | if ((65536 != total) && (used_syms > 1)) { |
| 2673 | TINFL_CR_RETURN_FOREVER(35, TINFL_STATUS_FAILED); |
| 2674 | } |
| 2675 | for (tree_next = -1, sym_index = 0; |
| 2676 | sym_index < r->m_table_sizes[r->m_type]; ++sym_index) { |
| 2677 | mz_uint rev_code = 0, l, cur_code, |
| 2678 | code_size = pTable->m_code_size[sym_index]; |
| 2679 | if (!code_size) continue; |
| 2680 | cur_code = next_code[code_size]++; |
| 2681 | for (l = code_size; l > 0; l--, cur_code >>= 1) |
| 2682 | rev_code = (rev_code << 1) | (cur_code & 1); |
| 2683 | if (code_size <= TINFL_FAST_LOOKUP_BITS) { |
| 2684 | mz_int16 k = (mz_int16)((code_size << 9) | sym_index); |
| 2685 | while (rev_code < TINFL_FAST_LOOKUP_SIZE) { |
| 2686 | pTable->m_look_up[rev_code] = k; |
| 2687 | rev_code += (1 << code_size); |
| 2688 | } |
| 2689 | continue; |
| 2690 | } |
| 2691 | if (0 == |
| 2692 | (tree_cur = pTable->m_look_up[rev_code & |
| 2693 | (TINFL_FAST_LOOKUP_SIZE - 1)])) { |
| 2694 | pTable->m_look_up[rev_code & (TINFL_FAST_LOOKUP_SIZE - 1)] = |
| 2695 | (mz_int16)tree_next; |
| 2696 | tree_cur = tree_next; |
| 2697 | tree_next -= 2; |
| 2698 | } |
| 2699 | rev_code >>= (TINFL_FAST_LOOKUP_BITS - 1); |
| 2700 | for (j = code_size; j > (TINFL_FAST_LOOKUP_BITS + 1); j--) { |
| 2701 | tree_cur -= ((rev_code >>= 1) & 1); |
| 2702 | if (!pTable->m_tree[-tree_cur - 1]) { |
| 2703 | pTable->m_tree[-tree_cur - 1] = (mz_int16)tree_next; |
| 2704 | tree_cur = tree_next; |
| 2705 | tree_next -= 2; |
| 2706 | } else |
| 2707 | tree_cur = pTable->m_tree[-tree_cur - 1]; |
| 2708 | } |
| 2709 | tree_cur -= ((rev_code >>= 1) & 1); |
| 2710 | pTable->m_tree[-tree_cur - 1] = (mz_int16)sym_index; |
| 2711 | } |
| 2712 | if (r->m_type == 2) { |
| 2713 | for (counter = 0; |
| 2714 | counter < (r->m_table_sizes[0] + r->m_table_sizes[1]);) { |
| 2715 | mz_uint s; |
| 2716 | TINFL_HUFF_DECODE(16, dist, &r->m_tables[2]); |
| 2717 | if (dist < 16) { |
| 2718 | r->m_len_codes[counter++] = (mz_uint8)dist; |
| 2719 | continue; |
| 2720 | } |
| 2721 | if ((dist == 16) && (!counter)) { |
| 2722 | TINFL_CR_RETURN_FOREVER(17, TINFL_STATUS_FAILED); |
| 2723 | } |
| 2724 | num_extra = "\02\03\07" [dist - 16]; |
| 2725 | TINFL_GET_BITS(18, s, num_extra); |
| 2726 | s += "\03\03\013" [dist - 16]; |
| 2727 | TINFL_MEMSET(r->m_len_codes + counter, |
| 2728 | (dist == 16) ? r->m_len_codes[counter - 1] : 0, s); |
| 2729 | counter += s; |
| 2730 | } |
| 2731 | if ((r->m_table_sizes[0] + r->m_table_sizes[1]) != counter) { |
| 2732 | TINFL_CR_RETURN_FOREVER(21, TINFL_STATUS_FAILED); |
| 2733 | } |
| 2734 | TINFL_MEMCPY(r->m_tables[0].m_code_size, r->m_len_codes, |
| 2735 | r->m_table_sizes[0]); |
| 2736 | TINFL_MEMCPY(r->m_tables[1].m_code_size, |
| 2737 | r->m_len_codes + r->m_table_sizes[0], |
| 2738 | r->m_table_sizes[1]); |
| 2739 | } |
| 2740 | } |
| 2741 | for (;;) { |
| 2742 | mz_uint8 *pSrc; |
| 2743 | for (;;) { |
| 2744 | if (((pIn_buf_end - pIn_buf_cur) < 4) || |
| 2745 | ((pOut_buf_end - pOut_buf_cur) < 2)) { |
| 2746 | TINFL_HUFF_DECODE(23, counter, &r->m_tables[0]); |
| 2747 | if (counter >= 256) break; |
| 2748 | while (pOut_buf_cur >= pOut_buf_end) { |
| 2749 | TINFL_CR_RETURN(24, TINFL_STATUS_HAS_MORE_OUTPUT); |
| 2750 | } |
| 2751 | *pOut_buf_cur++ = (mz_uint8)counter; |
| 2752 | } else { |
| 2753 | int sym2; |
| 2754 | mz_uint code_len; |
| 2755 | #if TINFL_USE_64BIT_BITBUF |
| 2756 | if (num_bits < 30) { |
| 2757 | bit_buf |= |
| 2758 | (((tinfl_bit_buf_t)MZ_READ_LE32(pIn_buf_cur)) << num_bits); |
| 2759 | pIn_buf_cur += 4; |
| 2760 | num_bits += 32; |
| 2761 | } |
| 2762 | #else |
| 2763 | if (num_bits < 15) { |
| 2764 | bit_buf |= |
| 2765 | (((tinfl_bit_buf_t)MZ_READ_LE16(pIn_buf_cur)) << num_bits); |
| 2766 | pIn_buf_cur += 2; |
| 2767 | num_bits += 16; |
| 2768 | } |
| 2769 | #endif |
| 2770 | if ((sym2 = |
| 2771 | r->m_tables[0] |
| 2772 | .m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]) >= |
| 2773 | 0) |
| 2774 | code_len = sym2 >> 9; |
| 2775 | else { |
| 2776 | code_len = TINFL_FAST_LOOKUP_BITS; |
| 2777 | do { |
| 2778 | sym2 = r->m_tables[0] |
| 2779 | .m_tree[~sym2 + ((bit_buf >> code_len++) & 1)]; |
| 2780 | } while (sym2 < 0); |
| 2781 | } |
| 2782 | counter = sym2; |
| 2783 | bit_buf >>= code_len; |
| 2784 | num_bits -= code_len; |
| 2785 | if (counter & 256) break; |
| 2786 | |
| 2787 | #if !TINFL_USE_64BIT_BITBUF |
| 2788 | if (num_bits < 15) { |
| 2789 | bit_buf |= |
| 2790 | (((tinfl_bit_buf_t)MZ_READ_LE16(pIn_buf_cur)) << num_bits); |
| 2791 | pIn_buf_cur += 2; |
| 2792 | num_bits += 16; |
| 2793 | } |
| 2794 | #endif |
| 2795 | if ((sym2 = |
| 2796 | r->m_tables[0] |
| 2797 | .m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]) >= |
| 2798 | 0) |
| 2799 | code_len = sym2 >> 9; |
| 2800 | else { |
| 2801 | code_len = TINFL_FAST_LOOKUP_BITS; |
| 2802 | do { |
| 2803 | sym2 = r->m_tables[0] |
| 2804 | .m_tree[~sym2 + ((bit_buf >> code_len++) & 1)]; |
| 2805 | } while (sym2 < 0); |
| 2806 | } |
| 2807 | bit_buf >>= code_len; |
| 2808 | num_bits -= code_len; |
| 2809 | |
| 2810 | pOut_buf_cur[0] = (mz_uint8)counter; |
| 2811 | if (sym2 & 256) { |
| 2812 | pOut_buf_cur++; |
| 2813 | counter = sym2; |
| 2814 | break; |
| 2815 | } |
| 2816 | pOut_buf_cur[1] = (mz_uint8)sym2; |
| 2817 | pOut_buf_cur += 2; |
| 2818 | } |
| 2819 | } |
| 2820 | if ((counter &= 511) == 256) break; |
| 2821 | |
| 2822 | num_extra = s_length_extra[counter - 257]; |
| 2823 | counter = s_length_base[counter - 257]; |
| 2824 | if (num_extra) { |
| 2825 | mz_uint extra_bits; |
| 2826 | TINFL_GET_BITS(25, extra_bits, num_extra); |
| 2827 | counter += extra_bits; |
| 2828 | } |
| 2829 | |
| 2830 | TINFL_HUFF_DECODE(26, dist, &r->m_tables[1]); |
| 2831 | num_extra = s_dist_extra[dist]; |
| 2832 | dist = s_dist_base[dist]; |
| 2833 | if (num_extra) { |
| 2834 | mz_uint extra_bits; |
| 2835 | TINFL_GET_BITS(27, extra_bits, num_extra); |
| 2836 | dist += extra_bits; |
| 2837 | } |
| 2838 | |
| 2839 | dist_from_out_buf_start = pOut_buf_cur - pOut_buf_start; |
| 2840 | if ((dist > dist_from_out_buf_start) && |
| 2841 | (decomp_flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF)) { |
| 2842 | TINFL_CR_RETURN_FOREVER(37, TINFL_STATUS_FAILED); |
| 2843 | } |
| 2844 | |
| 2845 | pSrc = pOut_buf_start + |
| 2846 | ((dist_from_out_buf_start - dist) & out_buf_size_mask); |
| 2847 | |
| 2848 | if ((MZ_MAX(pOut_buf_cur, pSrc) + counter) > pOut_buf_end) { |
| 2849 | while (counter--) { |
| 2850 | while (pOut_buf_cur >= pOut_buf_end) { |
| 2851 | TINFL_CR_RETURN(53, TINFL_STATUS_HAS_MORE_OUTPUT); |
| 2852 | } |
| 2853 | *pOut_buf_cur++ = |
| 2854 | pOut_buf_start[(dist_from_out_buf_start++ - dist) & |
| 2855 | out_buf_size_mask]; |
| 2856 | } |
| 2857 | continue; |
| 2858 | } |
| 2859 | #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES |
| 2860 | else if ((counter >= 9) && (counter <= dist)) { |
| 2861 | const mz_uint8 *pSrc_end = pSrc + (counter & ~7); |
| 2862 | do { |
| 2863 | ((mz_uint32 *)pOut_buf_cur)[0] = ((const mz_uint32 *)pSrc)[0]; |
| 2864 | ((mz_uint32 *)pOut_buf_cur)[1] = ((const mz_uint32 *)pSrc)[1]; |
| 2865 | pOut_buf_cur += 8; |
| 2866 | } while ((pSrc += 8) < pSrc_end); |
| 2867 | if ((counter &= 7) < 3) { |
| 2868 | if (counter) { |
| 2869 | pOut_buf_cur[0] = pSrc[0]; |
| 2870 | if (counter > 1) pOut_buf_cur[1] = pSrc[1]; |
| 2871 | pOut_buf_cur += counter; |
| 2872 | } |
| 2873 | continue; |
| 2874 | } |
| 2875 | } |
| 2876 | #endif |
| 2877 | do { |
| 2878 | pOut_buf_cur[0] = pSrc[0]; |
| 2879 | pOut_buf_cur[1] = pSrc[1]; |
| 2880 | pOut_buf_cur[2] = pSrc[2]; |
| 2881 | pOut_buf_cur += 3; |
| 2882 | pSrc += 3; |
| 2883 | } while ((int)(counter -= 3) > 2); |
| 2884 | if ((int)counter > 0) { |
| 2885 | pOut_buf_cur[0] = pSrc[0]; |
| 2886 | if ((int)counter > 1) pOut_buf_cur[1] = pSrc[1]; |
| 2887 | pOut_buf_cur += counter; |
| 2888 | } |
| 2889 | } |
| 2890 | } |
| 2891 | } while (!(r->m_final & 1)); |
| 2892 | if (decomp_flags & TINFL_FLAG_PARSE_ZLIB_HEADER) { |
| 2893 | TINFL_SKIP_BITS(32, num_bits & 7); |
| 2894 | for (counter = 0; counter < 4; ++counter) { |
| 2895 | mz_uint s; |
| 2896 | if (num_bits) |
| 2897 | TINFL_GET_BITS(41, s, 8); |
| 2898 | else |
| 2899 | TINFL_GET_BYTE(42, s); |
| 2900 | r->m_z_adler32 = (r->m_z_adler32 << 8) | s; |
| 2901 | } |
| 2902 | } |
| 2903 | TINFL_CR_RETURN_FOREVER(34, TINFL_STATUS_DONE); |
| 2904 | TINFL_CR_FINISH |
| 2905 | |
| 2906 | common_exit: |
| 2907 | r->m_num_bits = num_bits; |
| 2908 | r->m_bit_buf = bit_buf; |
| 2909 | r->m_dist = dist; |
| 2910 | r->m_counter = counter; |
| 2911 | r->m_num_extra = num_extra; |
| 2912 | r->m_dist_from_out_buf_start = dist_from_out_buf_start; |
| 2913 | *pIn_buf_size = pIn_buf_cur - pIn_buf_next; |
| 2914 | *pOut_buf_size = pOut_buf_cur - pOut_buf_next; |
| 2915 | if ((decomp_flags & |
| 2916 | (TINFL_FLAG_PARSE_ZLIB_HEADER | TINFL_FLAG_COMPUTE_ADLER32)) && |
| 2917 | (status >= 0)) { |
| 2918 | const mz_uint8 *ptr = pOut_buf_next; |
| 2919 | size_t buf_len = *pOut_buf_size; |
| 2920 | mz_uint32 i, s1 = r->m_check_adler32 & 0xffff, |
| 2921 | s2 = r->m_check_adler32 >> 16; |
| 2922 | size_t block_len = buf_len % 5552; |
| 2923 | while (buf_len) { |
| 2924 | for (i = 0; i + 7 < block_len; i += 8, ptr += 8) { |
| 2925 | s1 += ptr[0], s2 += s1; |
| 2926 | s1 += ptr[1], s2 += s1; |
| 2927 | s1 += ptr[2], s2 += s1; |
| 2928 | s1 += ptr[3], s2 += s1; |
| 2929 | s1 += ptr[4], s2 += s1; |
| 2930 | s1 += ptr[5], s2 += s1; |
| 2931 | s1 += ptr[6], s2 += s1; |
| 2932 | s1 += ptr[7], s2 += s1; |
| 2933 | } |
| 2934 | for (; i < block_len; ++i) s1 += *ptr++, s2 += s1; |
| 2935 | s1 %= 65521U, s2 %= 65521U; |
| 2936 | buf_len -= block_len; |
| 2937 | block_len = 5552; |
| 2938 | } |
| 2939 | r->m_check_adler32 = (s2 << 16) + s1; |
| 2940 | if ((status == TINFL_STATUS_DONE) && |
| 2941 | (decomp_flags & TINFL_FLAG_PARSE_ZLIB_HEADER) && |
| 2942 | (r->m_check_adler32 != r->m_z_adler32)) |
| 2943 | status = TINFL_STATUS_ADLER32_MISMATCH; |
| 2944 | } |
| 2945 | return status; |
| 2946 | } |
| 2947 | |
| 2948 | // Higher level helper functions. |
| 2949 | void *tinfl_decompress_mem_to_heap(const void *pSrc_buf, size_t src_buf_len, |
| 2950 | size_t *pOut_len, int flags) { |
| 2951 | tinfl_decompressor decomp; |
| 2952 | void *pBuf = NULL, *pNew_buf; |
| 2953 | size_t src_buf_ofs = 0, out_buf_capacity = 0; |
| 2954 | *pOut_len = 0; |
| 2955 | tinfl_init(&decomp); |
| 2956 | for (;;) { |
| 2957 | size_t src_buf_size = src_buf_len - src_buf_ofs, |
| 2958 | dst_buf_size = out_buf_capacity - *pOut_len, new_out_buf_capacity; |
| 2959 | tinfl_status status = tinfl_decompress( |
| 2960 | &decomp, (const mz_uint8 *)pSrc_buf + src_buf_ofs, &src_buf_size, |
| 2961 | (mz_uint8 *)pBuf, pBuf ? (mz_uint8 *)pBuf + *pOut_len : NULL, |
| 2962 | &dst_buf_size, |
| 2963 | (flags & ~TINFL_FLAG_HAS_MORE_INPUT) | |
| 2964 | TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF); |
| 2965 | if ((status < 0) || (status == TINFL_STATUS_NEEDS_MORE_INPUT)) { |
| 2966 | MZ_FREE(pBuf); |
| 2967 | *pOut_len = 0; |
| 2968 | return NULL; |
| 2969 | } |
| 2970 | src_buf_ofs += src_buf_size; |
| 2971 | *pOut_len += dst_buf_size; |
| 2972 | if (status == TINFL_STATUS_DONE) break; |
| 2973 | new_out_buf_capacity = out_buf_capacity * 2; |
| 2974 | if (new_out_buf_capacity < 128) new_out_buf_capacity = 128; |
| 2975 | pNew_buf = MZ_REALLOC(pBuf, new_out_buf_capacity); |
| 2976 | if (!pNew_buf) { |
| 2977 | MZ_FREE(pBuf); |
| 2978 | *pOut_len = 0; |
| 2979 | return NULL; |
| 2980 | } |
| 2981 | pBuf = pNew_buf; |
| 2982 | out_buf_capacity = new_out_buf_capacity; |
| 2983 | } |
| 2984 | return pBuf; |
| 2985 | } |
| 2986 | |
| 2987 | size_t tinfl_decompress_mem_to_mem(void *pOut_buf, size_t out_buf_len, |
| 2988 | const void *pSrc_buf, size_t src_buf_len, |
| 2989 | int flags) { |
| 2990 | tinfl_decompressor decomp; |
| 2991 | tinfl_status status; |
| 2992 | tinfl_init(&decomp); |
| 2993 | status = |
| 2994 | tinfl_decompress(&decomp, (const mz_uint8 *)pSrc_buf, &src_buf_len, |
| 2995 | (mz_uint8 *)pOut_buf, (mz_uint8 *)pOut_buf, &out_buf_len, |
| 2996 | (flags & ~TINFL_FLAG_HAS_MORE_INPUT) | |
| 2997 | TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF); |
| 2998 | return (status != TINFL_STATUS_DONE) ? TINFL_DECOMPRESS_MEM_TO_MEM_FAILED |
| 2999 | : out_buf_len; |
| 3000 | } |
| 3001 | |
| 3002 | int tinfl_decompress_mem_to_callback(const void *pIn_buf, size_t *pIn_buf_size, |
| 3003 | tinfl_put_buf_func_ptr pPut_buf_func, |
| 3004 | void *pPut_buf_user, int flags) { |
| 3005 | int result = 0; |
| 3006 | tinfl_decompressor decomp; |
| 3007 | mz_uint8 *pDict = (mz_uint8 *)MZ_MALLOC(TINFL_LZ_DICT_SIZE); |
| 3008 | size_t in_buf_ofs = 0, dict_ofs = 0; |
| 3009 | if (!pDict) return TINFL_STATUS_FAILED; |
| 3010 | tinfl_init(&decomp); |
| 3011 | for (;;) { |
| 3012 | size_t in_buf_size = *pIn_buf_size - in_buf_ofs, |
| 3013 | dst_buf_size = TINFL_LZ_DICT_SIZE - dict_ofs; |
| 3014 | tinfl_status status = |
| 3015 | tinfl_decompress(&decomp, (const mz_uint8 *)pIn_buf + in_buf_ofs, |
| 3016 | &in_buf_size, pDict, pDict + dict_ofs, &dst_buf_size, |
| 3017 | (flags & ~(TINFL_FLAG_HAS_MORE_INPUT | |
| 3018 | TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF))); |
| 3019 | in_buf_ofs += in_buf_size; |
| 3020 | if ((dst_buf_size) && |
| 3021 | (!(*pPut_buf_func)(pDict + dict_ofs, (int)dst_buf_size, pPut_buf_user))) |
| 3022 | break; |
| 3023 | if (status != TINFL_STATUS_HAS_MORE_OUTPUT) { |
| 3024 | result = (status == TINFL_STATUS_DONE); |
| 3025 | break; |
| 3026 | } |
| 3027 | dict_ofs = (dict_ofs + dst_buf_size) & (TINFL_LZ_DICT_SIZE - 1); |
| 3028 | } |
| 3029 | MZ_FREE(pDict); |
| 3030 | *pIn_buf_size = in_buf_ofs; |
| 3031 | return result; |
| 3032 | } |
| 3033 | |
| 3034 | // ------------------- Low-level Compression (independent from all decompression |
| 3035 | // API's) |
| 3036 | |
| 3037 | // Purposely making these tables static for faster init and thread safety. |
| 3038 | static const mz_uint16 s_tdefl_len_sym[256] = { |
| 3039 | 257, 258, 259, 260, 261, 262, 263, 264, 265, 265, 266, 266, 267, 267, 268, |
| 3040 | 268, 269, 269, 269, 269, 270, 270, 270, 270, 271, 271, 271, 271, 272, 272, |
| 3041 | 272, 272, 273, 273, 273, 273, 273, 273, 273, 273, 274, 274, 274, 274, 274, |
| 3042 | 274, 274, 274, 275, 275, 275, 275, 275, 275, 275, 275, 276, 276, 276, 276, |
| 3043 | 276, 276, 276, 276, 277, 277, 277, 277, 277, 277, 277, 277, 277, 277, 277, |
| 3044 | 277, 277, 277, 277, 277, 278, 278, 278, 278, 278, 278, 278, 278, 278, 278, |
| 3045 | 278, 278, 278, 278, 278, 278, 279, 279, 279, 279, 279, 279, 279, 279, 279, |
| 3046 | 279, 279, 279, 279, 279, 279, 279, 280, 280, 280, 280, 280, 280, 280, 280, |
| 3047 | 280, 280, 280, 280, 280, 280, 280, 280, 281, 281, 281, 281, 281, 281, 281, |
| 3048 | 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, |
| 3049 | 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 282, 282, 282, 282, 282, |
| 3050 | 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, |
| 3051 | 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 283, 283, 283, |
| 3052 | 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, |
| 3053 | 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 284, |
| 3054 | 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, |
| 3055 | 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, |
| 3056 | 285}; |
| 3057 | |
| 3058 | static const mz_uint8 s_tdefl_len_extra[256] = { |
| 3059 | 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, |
| 3060 | 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, |
| 3061 | 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, |
| 3062 | 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, |
| 3063 | 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, |
| 3064 | 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, |
| 3065 | 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, |
| 3066 | 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, |
| 3067 | 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, |
| 3068 | 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, |
| 3069 | 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 0}; |
| 3070 | |
| 3071 | static const mz_uint8 s_tdefl_small_dist_sym[512] = { |
| 3072 | 0, 1, 2, 3, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, |
| 3073 | 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, |
| 3074 | 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, |
| 3075 | 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, |
| 3076 | 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, |
| 3077 | 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, |
| 3078 | 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, |
| 3079 | 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, |
| 3080 | 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, |
| 3081 | 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, |
| 3082 | 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, |
| 3083 | 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, |
| 3084 | 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, |
| 3085 | 15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, |
| 3086 | 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, |
| 3087 | 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, |
| 3088 | 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, |
| 3089 | 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, |
| 3090 | 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, |
| 3091 | 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, |
| 3092 | 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, |
| 3093 | 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, |
| 3094 | 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, |
| 3095 | 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, |
| 3096 | 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, |
| 3097 | 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, |
| 3098 | 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17}; |
| 3099 | |
| 3100 | static const mz_uint8 s_tdefl_small_dist_extra[512] = { |
| 3101 | 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, |
| 3102 | 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, |
| 3103 | 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, |
| 3104 | 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, |
| 3105 | 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, |
| 3106 | 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, |
| 3107 | 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, |
| 3108 | 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, |
| 3109 | 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, |
| 3110 | 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, |
| 3111 | 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, |
| 3112 | 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, |
| 3113 | 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, |
| 3114 | 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, |
| 3115 | 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, |
| 3116 | 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, |
| 3117 | 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, |
| 3118 | 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, |
| 3119 | 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, |
| 3120 | 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, |
| 3121 | 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7}; |
| 3122 | |
| 3123 | static const mz_uint8 s_tdefl_large_dist_sym[128] = { |
| 3124 | 0, 0, 18, 19, 20, 20, 21, 21, 22, 22, 22, 22, 23, 23, 23, 23, 24, 24, 24, |
| 3125 | 24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, |
| 3126 | 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 27, |
| 3127 | 27, 27, 27, 27, 27, 27, 27, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, |
| 3128 | 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, |
| 3129 | 28, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, |
| 3130 | 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29}; |
| 3131 | |
| 3132 | static const mz_uint8 s_tdefl_large_dist_extra[128] = { |
| 3133 | 0, 0, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, |
| 3134 | 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, |
| 3135 | 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, |
| 3136 | 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, |
| 3137 | 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, |
| 3138 | 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, |
| 3139 | 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13}; |
| 3140 | |
| 3141 | // Radix sorts tdefl_sym_freq[] array by 16-bit key m_key. Returns ptr to sorted |
| 3142 | // values. |
| 3143 | typedef struct { |
| 3144 | mz_uint16 m_key, m_sym_index; |
| 3145 | } tdefl_sym_freq; |
| 3146 | static tdefl_sym_freq *tdefl_radix_sort_syms(mz_uint num_syms, |
| 3147 | tdefl_sym_freq *pSyms0, |
| 3148 | tdefl_sym_freq *pSyms1) { |
| 3149 | mz_uint32 total_passes = 2, pass_shift, pass, i, hist[256 * 2]; |
| 3150 | tdefl_sym_freq *pCur_syms = pSyms0, *pNew_syms = pSyms1; |
| 3151 | MZ_CLEAR_OBJ(hist); |
| 3152 | for (i = 0; i < num_syms; i++) { |
| 3153 | mz_uint freq = pSyms0[i].m_key; |
| 3154 | hist[freq & 0xFF]++; |
| 3155 | hist[256 + ((freq >> 8) & 0xFF)]++; |
| 3156 | } |
| 3157 | while ((total_passes > 1) && (num_syms == hist[(total_passes - 1) * 256])) |
| 3158 | total_passes--; |
| 3159 | for (pass_shift = 0, pass = 0; pass < total_passes; pass++, pass_shift += 8) { |
| 3160 | const mz_uint32 *pHist = &hist[pass << 8]; |
| 3161 | mz_uint offsets[256], cur_ofs = 0; |
| 3162 | for (i = 0; i < 256; i++) { |
| 3163 | offsets[i] = cur_ofs; |
| 3164 | cur_ofs += pHist[i]; |
| 3165 | } |
| 3166 | for (i = 0; i < num_syms; i++) |
| 3167 | pNew_syms[offsets[(pCur_syms[i].m_key >> pass_shift) & 0xFF]++] = |
| 3168 | pCur_syms[i]; |
| 3169 | { |
| 3170 | tdefl_sym_freq *t = pCur_syms; |
| 3171 | pCur_syms = pNew_syms; |
| 3172 | pNew_syms = t; |
| 3173 | } |
| 3174 | } |
| 3175 | return pCur_syms; |
| 3176 | } |
| 3177 | |
| 3178 | // tdefl_calculate_minimum_redundancy() originally written by: Alistair Moffat, |
| 3179 | // alistair@cs.mu.oz.au, Jyrki Katajainen, jyrki@diku.dk, November 1996. |
| 3180 | static void tdefl_calculate_minimum_redundancy(tdefl_sym_freq *A, int n) { |
| 3181 | int root, leaf, next, avbl, used, dpth; |
| 3182 | if (n == 0) |
| 3183 | return; |
| 3184 | else if (n == 1) { |
| 3185 | A[0].m_key = 1; |
| 3186 | return; |
| 3187 | } |
| 3188 | A[0].m_key += A[1].m_key; |
| 3189 | root = 0; |
| 3190 | leaf = 2; |
| 3191 | for (next = 1; next < n - 1; next++) { |
| 3192 | if (leaf >= n || A[root].m_key < A[leaf].m_key) { |
| 3193 | A[next].m_key = A[root].m_key; |
| 3194 | A[root++].m_key = (mz_uint16)next; |
| 3195 | } else |
| 3196 | A[next].m_key = A[leaf++].m_key; |
| 3197 | if (leaf >= n || (root < next && A[root].m_key < A[leaf].m_key)) { |
| 3198 | A[next].m_key = (mz_uint16)(A[next].m_key + A[root].m_key); |
| 3199 | A[root++].m_key = (mz_uint16)next; |
| 3200 | } else |
| 3201 | A[next].m_key = (mz_uint16)(A[next].m_key + A[leaf++].m_key); |
| 3202 | } |
| 3203 | A[n - 2].m_key = 0; |
| 3204 | for (next = n - 3; next >= 0; next--) |
| 3205 | A[next].m_key = A[A[next].m_key].m_key + 1; |
| 3206 | avbl = 1; |
| 3207 | used = dpth = 0; |
| 3208 | root = n - 2; |
| 3209 | next = n - 1; |
| 3210 | while (avbl > 0) { |
| 3211 | while (root >= 0 && (int)A[root].m_key == dpth) { |
| 3212 | used++; |
| 3213 | root--; |
| 3214 | } |
| 3215 | while (avbl > used) { |
| 3216 | A[next--].m_key = (mz_uint16)(dpth); |
| 3217 | avbl--; |
| 3218 | } |
| 3219 | avbl = 2 * used; |
| 3220 | dpth++; |
| 3221 | used = 0; |
| 3222 | } |
| 3223 | } |
| 3224 | |
| 3225 | // Limits canonical Huffman code table's max code size. |
| 3226 | enum { TDEFL_MAX_SUPPORTED_HUFF_CODESIZE = 32 }; |
| 3227 | static void tdefl_huffman_enforce_max_code_size(int *pNum_codes, |
| 3228 | int code_list_len, |
| 3229 | int max_code_size) { |
| 3230 | int i; |
| 3231 | mz_uint32 total = 0; |
| 3232 | if (code_list_len <= 1) return; |
| 3233 | for (i = max_code_size + 1; i <= TDEFL_MAX_SUPPORTED_HUFF_CODESIZE; i++) |
| 3234 | pNum_codes[max_code_size] += pNum_codes[i]; |
| 3235 | for (i = max_code_size; i > 0; i--) |
| 3236 | total += (((mz_uint32)pNum_codes[i]) << (max_code_size - i)); |
| 3237 | while (total != (1UL << max_code_size)) { |
| 3238 | pNum_codes[max_code_size]--; |
| 3239 | for (i = max_code_size - 1; i > 0; i--) |
| 3240 | if (pNum_codes[i]) { |
| 3241 | pNum_codes[i]--; |
| 3242 | pNum_codes[i + 1] += 2; |
| 3243 | break; |
| 3244 | } |
| 3245 | total--; |
| 3246 | } |
| 3247 | } |
| 3248 | |
| 3249 | static void tdefl_optimize_huffman_table(tdefl_compressor *d, int table_num, |
| 3250 | int table_len, int code_size_limit, |
| 3251 | int static_table) { |
| 3252 | int i, j, l, num_codes[1 + TDEFL_MAX_SUPPORTED_HUFF_CODESIZE]; |
| 3253 | mz_uint next_code[TDEFL_MAX_SUPPORTED_HUFF_CODESIZE + 1]; |
| 3254 | MZ_CLEAR_OBJ(num_codes); |
| 3255 | if (static_table) { |
| 3256 | for (i = 0; i < table_len; i++) |
| 3257 | num_codes[d->m_huff_code_sizes[table_num][i]]++; |
| 3258 | } else { |
| 3259 | tdefl_sym_freq syms0[TDEFL_MAX_HUFF_SYMBOLS], syms1[TDEFL_MAX_HUFF_SYMBOLS], |
| 3260 | *pSyms; |
| 3261 | int num_used_syms = 0; |
| 3262 | const mz_uint16 *pSym_count = &d->m_huff_count[table_num][0]; |
| 3263 | for (i = 0; i < table_len; i++) |
| 3264 | if (pSym_count[i]) { |
| 3265 | syms0[num_used_syms].m_key = (mz_uint16)pSym_count[i]; |
| 3266 | syms0[num_used_syms++].m_sym_index = (mz_uint16)i; |
| 3267 | } |
| 3268 | |
| 3269 | pSyms = tdefl_radix_sort_syms(num_used_syms, syms0, syms1); |
| 3270 | tdefl_calculate_minimum_redundancy(pSyms, num_used_syms); |
| 3271 | |
| 3272 | for (i = 0; i < num_used_syms; i++) num_codes[pSyms[i].m_key]++; |
| 3273 | |
| 3274 | tdefl_huffman_enforce_max_code_size(num_codes, num_used_syms, |
| 3275 | code_size_limit); |
| 3276 | |
| 3277 | MZ_CLEAR_OBJ(d->m_huff_code_sizes[table_num]); |
| 3278 | MZ_CLEAR_OBJ(d->m_huff_codes[table_num]); |
| 3279 | for (i = 1, j = num_used_syms; i <= code_size_limit; i++) |
| 3280 | for (l = num_codes[i]; l > 0; l--) |
| 3281 | d->m_huff_code_sizes[table_num][pSyms[--j].m_sym_index] = (mz_uint8)(i); |
| 3282 | } |
| 3283 | |
| 3284 | next_code[1] = 0; |
| 3285 | for (j = 0, i = 2; i <= code_size_limit; i++) |
| 3286 | next_code[i] = j = ((j + num_codes[i - 1]) << 1); |
| 3287 | |
| 3288 | for (i = 0; i < table_len; i++) { |
| 3289 | mz_uint rev_code = 0, code, code_size; |
| 3290 | if ((code_size = d->m_huff_code_sizes[table_num][i]) == 0) continue; |
| 3291 | code = next_code[code_size]++; |
| 3292 | for (l = code_size; l > 0; l--, code >>= 1) |
| 3293 | rev_code = (rev_code << 1) | (code & 1); |
| 3294 | d->m_huff_codes[table_num][i] = (mz_uint16)rev_code; |
| 3295 | } |
| 3296 | } |
| 3297 | |
| 3298 | #define TDEFL_PUT_BITS(b, l) \ |
| 3299 | do { \ |
| 3300 | mz_uint bits = b; \ |
| 3301 | mz_uint len = l; \ |
| 3302 | MZ_ASSERT(bits <= ((1U << len) - 1U)); \ |
| 3303 | d->m_bit_buffer |= (bits << d->m_bits_in); \ |
| 3304 | d->m_bits_in += len; \ |
| 3305 | while (d->m_bits_in >= 8) { \ |
| 3306 | if (d->m_pOutput_buf < d->m_pOutput_buf_end) \ |
| 3307 | *d->m_pOutput_buf++ = (mz_uint8)(d->m_bit_buffer); \ |
| 3308 | d->m_bit_buffer >>= 8; \ |
| 3309 | d->m_bits_in -= 8; \ |
| 3310 | } \ |
| 3311 | } \ |
| 3312 | MZ_MACRO_END |
| 3313 | |
| 3314 | #define TDEFL_RLE_PREV_CODE_SIZE() \ |
| 3315 | { \ |
| 3316 | if (rle_repeat_count) { \ |
| 3317 | if (rle_repeat_count < 3) { \ |
| 3318 | d->m_huff_count[2][prev_code_size] = (mz_uint16)( \ |
| 3319 | d->m_huff_count[2][prev_code_size] + rle_repeat_count); \ |
| 3320 | while (rle_repeat_count--) \ |
| 3321 | packed_code_sizes[num_packed_code_sizes++] = prev_code_size; \ |
| 3322 | } else { \ |
| 3323 | d->m_huff_count[2][16] = (mz_uint16)(d->m_huff_count[2][16] + 1); \ |
| 3324 | packed_code_sizes[num_packed_code_sizes++] = 16; \ |
| 3325 | packed_code_sizes[num_packed_code_sizes++] = \ |
| 3326 | (mz_uint8)(rle_repeat_count - 3); \ |
| 3327 | } \ |
| 3328 | rle_repeat_count = 0; \ |
| 3329 | } \ |
| 3330 | } |
| 3331 | |
| 3332 | #define TDEFL_RLE_ZERO_CODE_SIZE() \ |
| 3333 | { \ |
| 3334 | if (rle_z_count) { \ |
| 3335 | if (rle_z_count < 3) { \ |
| 3336 | d->m_huff_count[2][0] = \ |
| 3337 | (mz_uint16)(d->m_huff_count[2][0] + rle_z_count); \ |
| 3338 | while (rle_z_count--) packed_code_sizes[num_packed_code_sizes++] = 0; \ |
| 3339 | } else if (rle_z_count <= 10) { \ |
| 3340 | d->m_huff_count[2][17] = (mz_uint16)(d->m_huff_count[2][17] + 1); \ |
| 3341 | packed_code_sizes[num_packed_code_sizes++] = 17; \ |
| 3342 | packed_code_sizes[num_packed_code_sizes++] = \ |
| 3343 | (mz_uint8)(rle_z_count - 3); \ |
| 3344 | } else { \ |
| 3345 | d->m_huff_count[2][18] = (mz_uint16)(d->m_huff_count[2][18] + 1); \ |
| 3346 | packed_code_sizes[num_packed_code_sizes++] = 18; \ |
| 3347 | packed_code_sizes[num_packed_code_sizes++] = \ |
| 3348 | (mz_uint8)(rle_z_count - 11); \ |
| 3349 | } \ |
| 3350 | rle_z_count = 0; \ |
| 3351 | } \ |
| 3352 | } |
| 3353 | |
| 3354 | static mz_uint8 s_tdefl_packed_code_size_syms_swizzle[] = { |
| 3355 | 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; |
| 3356 | |
| 3357 | static void tdefl_start_dynamic_block(tdefl_compressor *d) { |
| 3358 | int num_lit_codes, num_dist_codes, num_bit_lengths; |
| 3359 | mz_uint i, total_code_sizes_to_pack, num_packed_code_sizes, rle_z_count, |
| 3360 | rle_repeat_count, packed_code_sizes_index; |
| 3361 | mz_uint8 |
| 3362 | code_sizes_to_pack[TDEFL_MAX_HUFF_SYMBOLS_0 + TDEFL_MAX_HUFF_SYMBOLS_1], |
| 3363 | packed_code_sizes[TDEFL_MAX_HUFF_SYMBOLS_0 + TDEFL_MAX_HUFF_SYMBOLS_1], |
| 3364 | prev_code_size = 0xFF; |
| 3365 | |
| 3366 | d->m_huff_count[0][256] = 1; |
| 3367 | |
| 3368 | tdefl_optimize_huffman_table(d, 0, TDEFL_MAX_HUFF_SYMBOLS_0, 15, MZ_FALSE); |
| 3369 | tdefl_optimize_huffman_table(d, 1, TDEFL_MAX_HUFF_SYMBOLS_1, 15, MZ_FALSE); |
| 3370 | |
| 3371 | for (num_lit_codes = 286; num_lit_codes > 257; num_lit_codes--) |
| 3372 | if (d->m_huff_code_sizes[0][num_lit_codes - 1]) break; |
| 3373 | for (num_dist_codes = 30; num_dist_codes > 1; num_dist_codes--) |
| 3374 | if (d->m_huff_code_sizes[1][num_dist_codes - 1]) break; |
| 3375 | |
| 3376 | memcpy(code_sizes_to_pack, &d->m_huff_code_sizes[0][0], num_lit_codes); |
| 3377 | memcpy(code_sizes_to_pack + num_lit_codes, &d->m_huff_code_sizes[1][0], |
| 3378 | num_dist_codes); |
| 3379 | total_code_sizes_to_pack = num_lit_codes + num_dist_codes; |
| 3380 | num_packed_code_sizes = 0; |
| 3381 | rle_z_count = 0; |
| 3382 | rle_repeat_count = 0; |
| 3383 | |
| 3384 | memset(&d->m_huff_count[2][0], 0, |
| 3385 | sizeof(d->m_huff_count[2][0]) * TDEFL_MAX_HUFF_SYMBOLS_2); |
| 3386 | for (i = 0; i < total_code_sizes_to_pack; i++) { |
| 3387 | mz_uint8 code_size = code_sizes_to_pack[i]; |
| 3388 | if (!code_size) { |
| 3389 | TDEFL_RLE_PREV_CODE_SIZE(); |
| 3390 | if (++rle_z_count == 138) { |
| 3391 | TDEFL_RLE_ZERO_CODE_SIZE(); |
| 3392 | } |
| 3393 | } else { |
| 3394 | TDEFL_RLE_ZERO_CODE_SIZE(); |
| 3395 | if (code_size != prev_code_size) { |
| 3396 | TDEFL_RLE_PREV_CODE_SIZE(); |
| 3397 | d->m_huff_count[2][code_size] = |
| 3398 | (mz_uint16)(d->m_huff_count[2][code_size] + 1); |
| 3399 | packed_code_sizes[num_packed_code_sizes++] = code_size; |
| 3400 | } else if (++rle_repeat_count == 6) { |
| 3401 | TDEFL_RLE_PREV_CODE_SIZE(); |
| 3402 | } |
| 3403 | } |
| 3404 | prev_code_size = code_size; |
| 3405 | } |
| 3406 | if (rle_repeat_count) { |
| 3407 | TDEFL_RLE_PREV_CODE_SIZE(); |
| 3408 | } else { |
| 3409 | TDEFL_RLE_ZERO_CODE_SIZE(); |
| 3410 | } |
| 3411 | |
| 3412 | tdefl_optimize_huffman_table(d, 2, TDEFL_MAX_HUFF_SYMBOLS_2, 7, MZ_FALSE); |
| 3413 | |
| 3414 | TDEFL_PUT_BITS(2, 2); |
| 3415 | |
| 3416 | TDEFL_PUT_BITS(num_lit_codes - 257, 5); |
| 3417 | TDEFL_PUT_BITS(num_dist_codes - 1, 5); |
| 3418 | |
| 3419 | for (num_bit_lengths = 18; num_bit_lengths >= 0; num_bit_lengths--) |
| 3420 | if (d->m_huff_code_sizes |
| 3421 | [2][s_tdefl_packed_code_size_syms_swizzle[num_bit_lengths]]) |
| 3422 | break; |
| 3423 | num_bit_lengths = MZ_MAX(4, (num_bit_lengths + 1)); |
| 3424 | TDEFL_PUT_BITS(num_bit_lengths - 4, 4); |
| 3425 | for (i = 0; (int)i < num_bit_lengths; i++) |
| 3426 | TDEFL_PUT_BITS( |
| 3427 | d->m_huff_code_sizes[2][s_tdefl_packed_code_size_syms_swizzle[i]], 3); |
| 3428 | |
| 3429 | for (packed_code_sizes_index = 0; |
| 3430 | packed_code_sizes_index < num_packed_code_sizes;) { |
| 3431 | mz_uint code = packed_code_sizes[packed_code_sizes_index++]; |
| 3432 | MZ_ASSERT(code < TDEFL_MAX_HUFF_SYMBOLS_2); |
| 3433 | TDEFL_PUT_BITS(d->m_huff_codes[2][code], d->m_huff_code_sizes[2][code]); |
| 3434 | if (code >= 16) |
| 3435 | TDEFL_PUT_BITS(packed_code_sizes[packed_code_sizes_index++], |
| 3436 | "\02\03\07" [code - 16]); |
| 3437 | } |
| 3438 | } |
| 3439 | |
| 3440 | static void tdefl_start_static_block(tdefl_compressor *d) { |
| 3441 | mz_uint i; |
| 3442 | mz_uint8 *p = &d->m_huff_code_sizes[0][0]; |
| 3443 | |
| 3444 | for (i = 0; i <= 143; ++i) *p++ = 8; |
| 3445 | for (; i <= 255; ++i) *p++ = 9; |
| 3446 | for (; i <= 279; ++i) *p++ = 7; |
| 3447 | for (; i <= 287; ++i) *p++ = 8; |
| 3448 | |
| 3449 | memset(d->m_huff_code_sizes[1], 5, 32); |
| 3450 | |
| 3451 | tdefl_optimize_huffman_table(d, 0, 288, 15, MZ_TRUE); |
| 3452 | tdefl_optimize_huffman_table(d, 1, 32, 15, MZ_TRUE); |
| 3453 | |
| 3454 | TDEFL_PUT_BITS(1, 2); |
| 3455 | } |
| 3456 | |
| 3457 | static const mz_uint mz_bitmasks[17] = { |
| 3458 | 0x0000, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF, |
| 3459 | 0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF}; |
| 3460 | |
| 3461 | #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN && \ |
| 3462 | MINIZ_HAS_64BIT_REGISTERS |
| 3463 | static mz_bool tdefl_compress_lz_codes(tdefl_compressor *d) { |
| 3464 | mz_uint flags; |
| 3465 | mz_uint8 *pLZ_codes; |
| 3466 | mz_uint8 *pOutput_buf = d->m_pOutput_buf; |
| 3467 | mz_uint8 *pLZ_code_buf_end = d->m_pLZ_code_buf; |
| 3468 | mz_uint64 bit_buffer = d->m_bit_buffer; |
| 3469 | mz_uint bits_in = d->m_bits_in; |
| 3470 | |
| 3471 | #define TDEFL_PUT_BITS_FAST(b, l) \ |
| 3472 | { \ |
| 3473 | bit_buffer |= (((mz_uint64)(b)) << bits_in); \ |
| 3474 | bits_in += (l); \ |
| 3475 | } |
| 3476 | |
| 3477 | flags = 1; |
| 3478 | for (pLZ_codes = d->m_lz_code_buf; pLZ_codes < pLZ_code_buf_end; |
| 3479 | flags >>= 1) { |
| 3480 | if (flags == 1) flags = *pLZ_codes++ | 0x100; |
| 3481 | |
| 3482 | if (flags & 1) { |
| 3483 | mz_uint s0, s1, n0, n1, sym, num_extra_bits; |
| 3484 | mz_uint match_len = pLZ_codes[0], |
| 3485 | match_dist = *(const mz_uint16 *)(pLZ_codes + 1); |
| 3486 | pLZ_codes += 3; |
| 3487 | |
| 3488 | MZ_ASSERT(d->m_huff_code_sizes[0][s_tdefl_len_sym[match_len]]); |
| 3489 | TDEFL_PUT_BITS_FAST(d->m_huff_codes[0][s_tdefl_len_sym[match_len]], |
| 3490 | d->m_huff_code_sizes[0][s_tdefl_len_sym[match_len]]); |
| 3491 | TDEFL_PUT_BITS_FAST(match_len & mz_bitmasks[s_tdefl_len_extra[match_len]], |
| 3492 | s_tdefl_len_extra[match_len]); |
| 3493 | |
| 3494 | // This sequence coaxes MSVC into using cmov's vs. jmp's. |
| 3495 | s0 = s_tdefl_small_dist_sym[match_dist & 511]; |
| 3496 | n0 = s_tdefl_small_dist_extra[match_dist & 511]; |
| 3497 | s1 = s_tdefl_large_dist_sym[match_dist >> 8]; |
| 3498 | n1 = s_tdefl_large_dist_extra[match_dist >> 8]; |
| 3499 | sym = (match_dist < 512) ? s0 : s1; |
| 3500 | num_extra_bits = (match_dist < 512) ? n0 : n1; |
| 3501 | |
| 3502 | MZ_ASSERT(d->m_huff_code_sizes[1][sym]); |
| 3503 | TDEFL_PUT_BITS_FAST(d->m_huff_codes[1][sym], |
| 3504 | d->m_huff_code_sizes[1][sym]); |
| 3505 | TDEFL_PUT_BITS_FAST(match_dist & mz_bitmasks[num_extra_bits], |
| 3506 | num_extra_bits); |
| 3507 | } else { |
| 3508 | mz_uint lit = *pLZ_codes++; |
| 3509 | MZ_ASSERT(d->m_huff_code_sizes[0][lit]); |
| 3510 | TDEFL_PUT_BITS_FAST(d->m_huff_codes[0][lit], |
| 3511 | d->m_huff_code_sizes[0][lit]); |
| 3512 | |
| 3513 | if (((flags & 2) == 0) && (pLZ_codes < pLZ_code_buf_end)) { |
| 3514 | flags >>= 1; |
| 3515 | lit = *pLZ_codes++; |
| 3516 | MZ_ASSERT(d->m_huff_code_sizes[0][lit]); |
| 3517 | TDEFL_PUT_BITS_FAST(d->m_huff_codes[0][lit], |
| 3518 | d->m_huff_code_sizes[0][lit]); |
| 3519 | |
| 3520 | if (((flags & 2) == 0) && (pLZ_codes < pLZ_code_buf_end)) { |
| 3521 | flags >>= 1; |
| 3522 | lit = *pLZ_codes++; |
| 3523 | MZ_ASSERT(d->m_huff_code_sizes[0][lit]); |
| 3524 | TDEFL_PUT_BITS_FAST(d->m_huff_codes[0][lit], |
| 3525 | d->m_huff_code_sizes[0][lit]); |
| 3526 | } |
| 3527 | } |
| 3528 | } |
| 3529 | |
| 3530 | if (pOutput_buf >= d->m_pOutput_buf_end) return MZ_FALSE; |
| 3531 | |
| 3532 | *(mz_uint64 *)pOutput_buf = bit_buffer; |
| 3533 | pOutput_buf += (bits_in >> 3); |
| 3534 | bit_buffer >>= (bits_in & ~7); |
| 3535 | bits_in &= 7; |
| 3536 | } |
| 3537 | |
| 3538 | #undef TDEFL_PUT_BITS_FAST |
| 3539 | |
| 3540 | d->m_pOutput_buf = pOutput_buf; |
| 3541 | d->m_bits_in = 0; |
| 3542 | d->m_bit_buffer = 0; |
| 3543 | |
| 3544 | while (bits_in) { |
| 3545 | mz_uint32 n = MZ_MIN(bits_in, 16); |
| 3546 | TDEFL_PUT_BITS((mz_uint)bit_buffer & mz_bitmasks[n], n); |
| 3547 | bit_buffer >>= n; |
| 3548 | bits_in -= n; |
| 3549 | } |
| 3550 | |
| 3551 | TDEFL_PUT_BITS(d->m_huff_codes[0][256], d->m_huff_code_sizes[0][256]); |
| 3552 | |
| 3553 | return (d->m_pOutput_buf < d->m_pOutput_buf_end); |
| 3554 | } |
| 3555 | #else |
| 3556 | static mz_bool tdefl_compress_lz_codes(tdefl_compressor *d) { |
| 3557 | mz_uint flags; |
| 3558 | mz_uint8 *pLZ_codes; |
| 3559 | |
| 3560 | flags = 1; |
| 3561 | for (pLZ_codes = d->m_lz_code_buf; pLZ_codes < d->m_pLZ_code_buf; |
| 3562 | flags >>= 1) { |
| 3563 | if (flags == 1) flags = *pLZ_codes++ | 0x100; |
| 3564 | if (flags & 1) { |
| 3565 | mz_uint sym, num_extra_bits; |
| 3566 | mz_uint match_len = pLZ_codes[0], |
| 3567 | match_dist = (pLZ_codes[1] | (pLZ_codes[2] << 8)); |
| 3568 | pLZ_codes += 3; |
| 3569 | |
| 3570 | MZ_ASSERT(d->m_huff_code_sizes[0][s_tdefl_len_sym[match_len]]); |
| 3571 | TDEFL_PUT_BITS(d->m_huff_codes[0][s_tdefl_len_sym[match_len]], |
| 3572 | d->m_huff_code_sizes[0][s_tdefl_len_sym[match_len]]); |
| 3573 | TDEFL_PUT_BITS(match_len & mz_bitmasks[s_tdefl_len_extra[match_len]], |
| 3574 | s_tdefl_len_extra[match_len]); |
| 3575 | |
| 3576 | if (match_dist < 512) { |
| 3577 | sym = s_tdefl_small_dist_sym[match_dist]; |
| 3578 | num_extra_bits = s_tdefl_small_dist_extra[match_dist]; |
| 3579 | } else { |
| 3580 | sym = s_tdefl_large_dist_sym[match_dist >> 8]; |
| 3581 | num_extra_bits = s_tdefl_large_dist_extra[match_dist >> 8]; |
| 3582 | } |
| 3583 | MZ_ASSERT(d->m_huff_code_sizes[1][sym]); |
| 3584 | TDEFL_PUT_BITS(d->m_huff_codes[1][sym], d->m_huff_code_sizes[1][sym]); |
| 3585 | TDEFL_PUT_BITS(match_dist & mz_bitmasks[num_extra_bits], num_extra_bits); |
| 3586 | } else { |
| 3587 | mz_uint lit = *pLZ_codes++; |
| 3588 | MZ_ASSERT(d->m_huff_code_sizes[0][lit]); |
| 3589 | TDEFL_PUT_BITS(d->m_huff_codes[0][lit], d->m_huff_code_sizes[0][lit]); |
| 3590 | } |
| 3591 | } |
| 3592 | |
| 3593 | TDEFL_PUT_BITS(d->m_huff_codes[0][256], d->m_huff_code_sizes[0][256]); |
| 3594 | |
| 3595 | return (d->m_pOutput_buf < d->m_pOutput_buf_end); |
| 3596 | } |
| 3597 | #endif // MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN && |
| 3598 | // MINIZ_HAS_64BIT_REGISTERS |
| 3599 | |
| 3600 | static mz_bool tdefl_compress_block(tdefl_compressor *d, mz_bool static_block) { |
| 3601 | if (static_block) |
| 3602 | tdefl_start_static_block(d); |
| 3603 | else |
| 3604 | tdefl_start_dynamic_block(d); |
| 3605 | return tdefl_compress_lz_codes(d); |
| 3606 | } |
| 3607 | |
| 3608 | static int tdefl_flush_block(tdefl_compressor *d, int flush) { |
| 3609 | mz_uint saved_bit_buf, saved_bits_in; |
| 3610 | mz_uint8 *pSaved_output_buf; |
| 3611 | mz_bool comp_block_succeeded = MZ_FALSE; |
| 3612 | int n, use_raw_block = |
| 3613 | ((d->m_flags & TDEFL_FORCE_ALL_RAW_BLOCKS) != 0) && |
| 3614 | (d->m_lookahead_pos - d->m_lz_code_buf_dict_pos) <= d->m_dict_size; |
| 3615 | mz_uint8 *pOutput_buf_start = |
| 3616 | ((d->m_pPut_buf_func == NULL) && |
| 3617 | ((*d->m_pOut_buf_size - d->m_out_buf_ofs) >= TDEFL_OUT_BUF_SIZE)) |
| 3618 | ? ((mz_uint8 *)d->m_pOut_buf + d->m_out_buf_ofs) |
| 3619 | : d->m_output_buf; |
| 3620 | |
| 3621 | d->m_pOutput_buf = pOutput_buf_start; |
| 3622 | d->m_pOutput_buf_end = d->m_pOutput_buf + TDEFL_OUT_BUF_SIZE - 16; |
| 3623 | |
| 3624 | MZ_ASSERT(!d->m_output_flush_remaining); |
| 3625 | d->m_output_flush_ofs = 0; |
| 3626 | d->m_output_flush_remaining = 0; |
| 3627 | |
| 3628 | *d->m_pLZ_flags = (mz_uint8)(*d->m_pLZ_flags >> d->m_num_flags_left); |
| 3629 | d->m_pLZ_code_buf -= (d->m_num_flags_left == 8); |
| 3630 | |
| 3631 | if ((d->m_flags & TDEFL_WRITE_ZLIB_HEADER) && (!d->m_block_index)) { |
| 3632 | TDEFL_PUT_BITS(0x78, 8); |
| 3633 | TDEFL_PUT_BITS(0x01, 8); |
| 3634 | } |
| 3635 | |
| 3636 | TDEFL_PUT_BITS(flush == TDEFL_FINISH, 1); |
| 3637 | |
| 3638 | pSaved_output_buf = d->m_pOutput_buf; |
| 3639 | saved_bit_buf = d->m_bit_buffer; |
| 3640 | saved_bits_in = d->m_bits_in; |
| 3641 | |
| 3642 | if (!use_raw_block) |
| 3643 | comp_block_succeeded = |
| 3644 | tdefl_compress_block(d, (d->m_flags & TDEFL_FORCE_ALL_STATIC_BLOCKS) || |
| 3645 | (d->m_total_lz_bytes < 48)); |
| 3646 | |
| 3647 | // If the block gets expanded, forget the current contents of the output |
| 3648 | // buffer and send a raw block instead. |
| 3649 | if (((use_raw_block) || |
| 3650 | ((d->m_total_lz_bytes) && ((d->m_pOutput_buf - pSaved_output_buf + 1U) >= |
| 3651 | d->m_total_lz_bytes))) && |
| 3652 | ((d->m_lookahead_pos - d->m_lz_code_buf_dict_pos) <= d->m_dict_size)) { |
| 3653 | mz_uint i; |
| 3654 | d->m_pOutput_buf = pSaved_output_buf; |
| 3655 | d->m_bit_buffer = saved_bit_buf, d->m_bits_in = saved_bits_in; |
| 3656 | TDEFL_PUT_BITS(0, 2); |
| 3657 | if (d->m_bits_in) { |
| 3658 | TDEFL_PUT_BITS(0, 8 - d->m_bits_in); |
| 3659 | } |
| 3660 | for (i = 2; i; --i, d->m_total_lz_bytes ^= 0xFFFF) { |
| 3661 | TDEFL_PUT_BITS(d->m_total_lz_bytes & 0xFFFF, 16); |
| 3662 | } |
| 3663 | for (i = 0; i < d->m_total_lz_bytes; ++i) { |
| 3664 | TDEFL_PUT_BITS( |
| 3665 | d->m_dict[(d->m_lz_code_buf_dict_pos + i) & TDEFL_LZ_DICT_SIZE_MASK], |
| 3666 | 8); |
| 3667 | } |
| 3668 | } |
| 3669 | // Check for the extremely unlikely (if not impossible) case of the compressed |
| 3670 | // block not fitting into the output buffer when using dynamic codes. |
| 3671 | else if (!comp_block_succeeded) { |
| 3672 | d->m_pOutput_buf = pSaved_output_buf; |
| 3673 | d->m_bit_buffer = saved_bit_buf, d->m_bits_in = saved_bits_in; |
| 3674 | tdefl_compress_block(d, MZ_TRUE); |
| 3675 | } |
| 3676 | |
| 3677 | if (flush) { |
| 3678 | if (flush == TDEFL_FINISH) { |
| 3679 | if (d->m_bits_in) { |
| 3680 | TDEFL_PUT_BITS(0, 8 - d->m_bits_in); |
| 3681 | } |
| 3682 | if (d->m_flags & TDEFL_WRITE_ZLIB_HEADER) { |
| 3683 | mz_uint i, a = d->m_adler32; |
| 3684 | for (i = 0; i < 4; i++) { |
| 3685 | TDEFL_PUT_BITS((a >> 24) & 0xFF, 8); |
| 3686 | a <<= 8; |
| 3687 | } |
| 3688 | } |
| 3689 | } else { |
| 3690 | mz_uint i, z = 0; |
| 3691 | TDEFL_PUT_BITS(0, 3); |
| 3692 | if (d->m_bits_in) { |
| 3693 | TDEFL_PUT_BITS(0, 8 - d->m_bits_in); |
| 3694 | } |
| 3695 | for (i = 2; i; --i, z ^= 0xFFFF) { |
| 3696 | TDEFL_PUT_BITS(z & 0xFFFF, 16); |
| 3697 | } |
| 3698 | } |
| 3699 | } |
| 3700 | |
| 3701 | MZ_ASSERT(d->m_pOutput_buf < d->m_pOutput_buf_end); |
| 3702 | |
| 3703 | memset(&d->m_huff_count[0][0], 0, |
| 3704 | sizeof(d->m_huff_count[0][0]) * TDEFL_MAX_HUFF_SYMBOLS_0); |
| 3705 | memset(&d->m_huff_count[1][0], 0, |
| 3706 | sizeof(d->m_huff_count[1][0]) * TDEFL_MAX_HUFF_SYMBOLS_1); |
| 3707 | |
| 3708 | d->m_pLZ_code_buf = d->m_lz_code_buf + 1; |
| 3709 | d->m_pLZ_flags = d->m_lz_code_buf; |
| 3710 | d->m_num_flags_left = 8; |
| 3711 | d->m_lz_code_buf_dict_pos += d->m_total_lz_bytes; |
| 3712 | d->m_total_lz_bytes = 0; |
| 3713 | d->m_block_index++; |
| 3714 | |
| 3715 | if ((n = (int)(d->m_pOutput_buf - pOutput_buf_start)) != 0) { |
| 3716 | if (d->m_pPut_buf_func) { |
| 3717 | *d->m_pIn_buf_size = d->m_pSrc - (const mz_uint8 *)d->m_pIn_buf; |
| 3718 | if (!(*d->m_pPut_buf_func)(d->m_output_buf, n, d->m_pPut_buf_user)) |
| 3719 | return (d->m_prev_return_status = TDEFL_STATUS_PUT_BUF_FAILED); |
| 3720 | } else if (pOutput_buf_start == d->m_output_buf) { |
| 3721 | int bytes_to_copy = (int)MZ_MIN( |
| 3722 | (size_t)n, (size_t)(*d->m_pOut_buf_size - d->m_out_buf_ofs)); |
| 3723 | memcpy((mz_uint8 *)d->m_pOut_buf + d->m_out_buf_ofs, d->m_output_buf, |
| 3724 | bytes_to_copy); |
| 3725 | d->m_out_buf_ofs += bytes_to_copy; |
| 3726 | if ((n -= bytes_to_copy) != 0) { |
| 3727 | d->m_output_flush_ofs = bytes_to_copy; |
| 3728 | d->m_output_flush_remaining = n; |
| 3729 | } |
| 3730 | } else { |
| 3731 | d->m_out_buf_ofs += n; |
| 3732 | } |
| 3733 | } |
| 3734 | |
| 3735 | return d->m_output_flush_remaining; |
| 3736 | } |
| 3737 | |
| 3738 | #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES |
| 3739 | #define TDEFL_READ_UNALIGNED_WORD(p) *(const mz_uint16 *)(p) |
| 3740 | static MZ_FORCEINLINE void tdefl_find_match( |
| 3741 | tdefl_compressor *d, mz_uint lookahead_pos, mz_uint max_dist, |
| 3742 | mz_uint max_match_len, mz_uint *pMatch_dist, mz_uint *pMatch_len) { |
| 3743 | mz_uint dist, pos = lookahead_pos & TDEFL_LZ_DICT_SIZE_MASK, |
| 3744 | match_len = *pMatch_len, probe_pos = pos, next_probe_pos, |
| 3745 | probe_len; |
| 3746 | mz_uint num_probes_left = d->m_max_probes[match_len >= 32]; |
| 3747 | const mz_uint16 *s = (const mz_uint16 *)(d->m_dict + pos), *p, *q; |
| 3748 | mz_uint16 c01 = TDEFL_READ_UNALIGNED_WORD(&d->m_dict[pos + match_len - 1]), |
| 3749 | s01 = TDEFL_READ_UNALIGNED_WORD(s); |
| 3750 | MZ_ASSERT(max_match_len <= TDEFL_MAX_MATCH_LEN); |
| 3751 | if (max_match_len <= match_len) return; |
| 3752 | for (;;) { |
| 3753 | for (;;) { |
| 3754 | if (--num_probes_left == 0) return; |
| 3755 | #define TDEFL_PROBE \ |
| 3756 | next_probe_pos = d->m_next[probe_pos]; \ |
| 3757 | if ((!next_probe_pos) || \ |
| 3758 | ((dist = (mz_uint16)(lookahead_pos - next_probe_pos)) > max_dist)) \ |
| 3759 | return; \ |
| 3760 | probe_pos = next_probe_pos & TDEFL_LZ_DICT_SIZE_MASK; \ |
| 3761 | if (TDEFL_READ_UNALIGNED_WORD(&d->m_dict[probe_pos + match_len - 1]) == c01) \ |
| 3762 | break; |
| 3763 | TDEFL_PROBE; |
| 3764 | TDEFL_PROBE; |
| 3765 | TDEFL_PROBE; |
| 3766 | } |
| 3767 | if (!dist) break; |
| 3768 | q = (const mz_uint16 *)(d->m_dict + probe_pos); |
| 3769 | if (TDEFL_READ_UNALIGNED_WORD(q) != s01) continue; |
| 3770 | p = s; |
| 3771 | probe_len = 32; |
| 3772 | do { |
| 3773 | } while ( |
| 3774 | (TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) && |
| 3775 | (TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) && |
| 3776 | (TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) && |
| 3777 | (TDEFL_READ_UNALIGNED_WORD(++p) == TDEFL_READ_UNALIGNED_WORD(++q)) && |
| 3778 | (--probe_len > 0)); |
| 3779 | if (!probe_len) { |
| 3780 | *pMatch_dist = dist; |
| 3781 | *pMatch_len = MZ_MIN(max_match_len, TDEFL_MAX_MATCH_LEN); |
| 3782 | break; |
| 3783 | } else if ((probe_len = ((mz_uint)(p - s) * 2) + |
| 3784 | (mz_uint)(*(const mz_uint8 *)p == |
| 3785 | *(const mz_uint8 *)q)) > match_len) { |
| 3786 | *pMatch_dist = dist; |
| 3787 | if ((*pMatch_len = match_len = MZ_MIN(max_match_len, probe_len)) == |
| 3788 | max_match_len) |
| 3789 | break; |
| 3790 | c01 = TDEFL_READ_UNALIGNED_WORD(&d->m_dict[pos + match_len - 1]); |
| 3791 | } |
| 3792 | } |
| 3793 | } |
| 3794 | #else |
| 3795 | static MZ_FORCEINLINE void tdefl_find_match( |
| 3796 | tdefl_compressor *d, mz_uint lookahead_pos, mz_uint max_dist, |
| 3797 | mz_uint max_match_len, mz_uint *pMatch_dist, mz_uint *pMatch_len) { |
| 3798 | mz_uint dist, pos = lookahead_pos & TDEFL_LZ_DICT_SIZE_MASK, |
| 3799 | match_len = *pMatch_len, probe_pos = pos, next_probe_pos, |
| 3800 | probe_len; |
| 3801 | mz_uint num_probes_left = d->m_max_probes[match_len >= 32]; |
| 3802 | const mz_uint8 *s = d->m_dict + pos, *p, *q; |
| 3803 | mz_uint8 c0 = d->m_dict[pos + match_len], c1 = d->m_dict[pos + match_len - 1]; |
| 3804 | MZ_ASSERT(max_match_len <= TDEFL_MAX_MATCH_LEN); |
| 3805 | if (max_match_len <= match_len) return; |
| 3806 | for (;;) { |
| 3807 | for (;;) { |
| 3808 | if (--num_probes_left == 0) return; |
| 3809 | #define TDEFL_PROBE \ |
| 3810 | next_probe_pos = d->m_next[probe_pos]; \ |
| 3811 | if ((!next_probe_pos) || \ |
| 3812 | ((dist = (mz_uint16)(lookahead_pos - next_probe_pos)) > max_dist)) \ |
| 3813 | return; \ |
| 3814 | probe_pos = next_probe_pos & TDEFL_LZ_DICT_SIZE_MASK; \ |
| 3815 | if ((d->m_dict[probe_pos + match_len] == c0) && \ |
| 3816 | (d->m_dict[probe_pos + match_len - 1] == c1)) \ |
| 3817 | break; |
| 3818 | TDEFL_PROBE; |
| 3819 | TDEFL_PROBE; |
| 3820 | TDEFL_PROBE; |
| 3821 | } |
| 3822 | if (!dist) break; |
| 3823 | p = s; |
| 3824 | q = d->m_dict + probe_pos; |
| 3825 | for (probe_len = 0; probe_len < max_match_len; probe_len++) |
| 3826 | if (*p++ != *q++) break; |
| 3827 | if (probe_len > match_len) { |
| 3828 | *pMatch_dist = dist; |
| 3829 | if ((*pMatch_len = match_len = probe_len) == max_match_len) return; |
| 3830 | c0 = d->m_dict[pos + match_len]; |
| 3831 | c1 = d->m_dict[pos + match_len - 1]; |
| 3832 | } |
| 3833 | } |
| 3834 | } |
| 3835 | #endif // #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES |
| 3836 | |
| 3837 | #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN |
| 3838 | static mz_bool tdefl_compress_fast(tdefl_compressor *d) { |
| 3839 | // Faster, minimally featured LZRW1-style match+parse loop with better |
| 3840 | // register utilization. Intended for applications where raw throughput is |
| 3841 | // valued more highly than ratio. |
| 3842 | mz_uint lookahead_pos = d->m_lookahead_pos, |
| 3843 | lookahead_size = d->m_lookahead_size, dict_size = d->m_dict_size, |
| 3844 | total_lz_bytes = d->m_total_lz_bytes, |
| 3845 | num_flags_left = d->m_num_flags_left; |
| 3846 | mz_uint8 *pLZ_code_buf = d->m_pLZ_code_buf, *pLZ_flags = d->m_pLZ_flags; |
| 3847 | mz_uint cur_pos = lookahead_pos & TDEFL_LZ_DICT_SIZE_MASK; |
| 3848 | |
| 3849 | while ((d->m_src_buf_left) || ((d->m_flush) && (lookahead_size))) { |
| 3850 | const mz_uint TDEFL_COMP_FAST_LOOKAHEAD_SIZE = 4096; |
| 3851 | mz_uint dst_pos = |
| 3852 | (lookahead_pos + lookahead_size) & TDEFL_LZ_DICT_SIZE_MASK; |
| 3853 | mz_uint num_bytes_to_process = (mz_uint)MZ_MIN( |
| 3854 | d->m_src_buf_left, TDEFL_COMP_FAST_LOOKAHEAD_SIZE - lookahead_size); |
| 3855 | d->m_src_buf_left -= num_bytes_to_process; |
| 3856 | lookahead_size += num_bytes_to_process; |
| 3857 | |
| 3858 | while (num_bytes_to_process) { |
| 3859 | mz_uint32 n = MZ_MIN(TDEFL_LZ_DICT_SIZE - dst_pos, num_bytes_to_process); |
| 3860 | memcpy(d->m_dict + dst_pos, d->m_pSrc, n); |
| 3861 | if (dst_pos < (TDEFL_MAX_MATCH_LEN - 1)) |
| 3862 | memcpy(d->m_dict + TDEFL_LZ_DICT_SIZE + dst_pos, d->m_pSrc, |
| 3863 | MZ_MIN(n, (TDEFL_MAX_MATCH_LEN - 1) - dst_pos)); |
| 3864 | d->m_pSrc += n; |
| 3865 | dst_pos = (dst_pos + n) & TDEFL_LZ_DICT_SIZE_MASK; |
| 3866 | num_bytes_to_process -= n; |
| 3867 | } |
| 3868 | |
| 3869 | dict_size = MZ_MIN(TDEFL_LZ_DICT_SIZE - lookahead_size, dict_size); |
| 3870 | if ((!d->m_flush) && (lookahead_size < TDEFL_COMP_FAST_LOOKAHEAD_SIZE)) |
| 3871 | break; |
| 3872 | |
| 3873 | while (lookahead_size >= 4) { |
| 3874 | mz_uint cur_match_dist, cur_match_len = 1; |
| 3875 | mz_uint8 *pCur_dict = d->m_dict + cur_pos; |
| 3876 | mz_uint first_trigram = (*(const mz_uint32 *)pCur_dict) & 0xFFFFFF; |
| 3877 | mz_uint hash = |
| 3878 | (first_trigram ^ (first_trigram >> (24 - (TDEFL_LZ_HASH_BITS - 8)))) & |
| 3879 | TDEFL_LEVEL1_HASH_SIZE_MASK; |
| 3880 | mz_uint probe_pos = d->m_hash[hash]; |
| 3881 | d->m_hash[hash] = (mz_uint16)lookahead_pos; |
| 3882 | |
| 3883 | if (((cur_match_dist = (mz_uint16)(lookahead_pos - probe_pos)) <= |
| 3884 | dict_size) && |
| 3885 | ((*(const mz_uint32 *)(d->m_dict + |
| 3886 | (probe_pos &= TDEFL_LZ_DICT_SIZE_MASK)) & |
| 3887 | 0xFFFFFF) == first_trigram)) { |
| 3888 | const mz_uint16 *p = (const mz_uint16 *)pCur_dict; |
| 3889 | const mz_uint16 *q = (const mz_uint16 *)(d->m_dict + probe_pos); |
| 3890 | mz_uint32 probe_len = 32; |
| 3891 | do { |
| 3892 | } while ((TDEFL_READ_UNALIGNED_WORD(++p) == |
| 3893 | TDEFL_READ_UNALIGNED_WORD(++q)) && |
| 3894 | (TDEFL_READ_UNALIGNED_WORD(++p) == |
| 3895 | TDEFL_READ_UNALIGNED_WORD(++q)) && |
| 3896 | (TDEFL_READ_UNALIGNED_WORD(++p) == |
| 3897 | TDEFL_READ_UNALIGNED_WORD(++q)) && |
| 3898 | (TDEFL_READ_UNALIGNED_WORD(++p) == |
| 3899 | TDEFL_READ_UNALIGNED_WORD(++q)) && |
| 3900 | (--probe_len > 0)); |
| 3901 | cur_match_len = ((mz_uint)(p - (const mz_uint16 *)pCur_dict) * 2) + |
| 3902 | (mz_uint)(*(const mz_uint8 *)p == *(const mz_uint8 *)q); |
| 3903 | if (!probe_len) |
| 3904 | cur_match_len = cur_match_dist ? TDEFL_MAX_MATCH_LEN : 0; |
| 3905 | |
| 3906 | if ((cur_match_len < TDEFL_MIN_MATCH_LEN) || |
| 3907 | ((cur_match_len == TDEFL_MIN_MATCH_LEN) && |
| 3908 | (cur_match_dist >= 8U * 1024U))) { |
| 3909 | cur_match_len = 1; |
| 3910 | *pLZ_code_buf++ = (mz_uint8)first_trigram; |
| 3911 | *pLZ_flags = (mz_uint8)(*pLZ_flags >> 1); |
| 3912 | d->m_huff_count[0][(mz_uint8)first_trigram]++; |
| 3913 | } else { |
| 3914 | mz_uint32 s0, s1; |
| 3915 | cur_match_len = MZ_MIN(cur_match_len, lookahead_size); |
| 3916 | |
| 3917 | MZ_ASSERT((cur_match_len >= TDEFL_MIN_MATCH_LEN) && |
| 3918 | (cur_match_dist >= 1) && |
| 3919 | (cur_match_dist <= TDEFL_LZ_DICT_SIZE)); |
| 3920 | |
| 3921 | cur_match_dist--; |
| 3922 | |
| 3923 | pLZ_code_buf[0] = (mz_uint8)(cur_match_len - TDEFL_MIN_MATCH_LEN); |
| 3924 | *(mz_uint16 *)(&pLZ_code_buf[1]) = (mz_uint16)cur_match_dist; |
| 3925 | pLZ_code_buf += 3; |
| 3926 | *pLZ_flags = (mz_uint8)((*pLZ_flags >> 1) | 0x80); |
| 3927 | |
| 3928 | s0 = s_tdefl_small_dist_sym[cur_match_dist & 511]; |
| 3929 | s1 = s_tdefl_large_dist_sym[cur_match_dist >> 8]; |
| 3930 | d->m_huff_count[1][(cur_match_dist < 512) ? s0 : s1]++; |
| 3931 | |
| 3932 | d->m_huff_count[0][s_tdefl_len_sym[cur_match_len - |
| 3933 | TDEFL_MIN_MATCH_LEN]]++; |
| 3934 | } |
| 3935 | } else { |
| 3936 | *pLZ_code_buf++ = (mz_uint8)first_trigram; |
| 3937 | *pLZ_flags = (mz_uint8)(*pLZ_flags >> 1); |
| 3938 | d->m_huff_count[0][(mz_uint8)first_trigram]++; |
| 3939 | } |
| 3940 | |
| 3941 | if (--num_flags_left == 0) { |
| 3942 | num_flags_left = 8; |
| 3943 | pLZ_flags = pLZ_code_buf++; |
| 3944 | } |
| 3945 | |
| 3946 | total_lz_bytes += cur_match_len; |
| 3947 | lookahead_pos += cur_match_len; |
| 3948 | dict_size = MZ_MIN(dict_size + cur_match_len, TDEFL_LZ_DICT_SIZE); |
| 3949 | cur_pos = (cur_pos + cur_match_len) & TDEFL_LZ_DICT_SIZE_MASK; |
| 3950 | MZ_ASSERT(lookahead_size >= cur_match_len); |
| 3951 | lookahead_size -= cur_match_len; |
| 3952 | |
| 3953 | if (pLZ_code_buf > &d->m_lz_code_buf[TDEFL_LZ_CODE_BUF_SIZE - 8]) { |
| 3954 | int n; |
| 3955 | d->m_lookahead_pos = lookahead_pos; |
| 3956 | d->m_lookahead_size = lookahead_size; |
| 3957 | d->m_dict_size = dict_size; |
| 3958 | d->m_total_lz_bytes = total_lz_bytes; |
| 3959 | d->m_pLZ_code_buf = pLZ_code_buf; |
| 3960 | d->m_pLZ_flags = pLZ_flags; |
| 3961 | d->m_num_flags_left = num_flags_left; |
| 3962 | if ((n = tdefl_flush_block(d, 0)) != 0) |
| 3963 | return (n < 0) ? MZ_FALSE : MZ_TRUE; |
| 3964 | total_lz_bytes = d->m_total_lz_bytes; |
| 3965 | pLZ_code_buf = d->m_pLZ_code_buf; |
| 3966 | pLZ_flags = d->m_pLZ_flags; |
| 3967 | num_flags_left = d->m_num_flags_left; |
| 3968 | } |
| 3969 | } |
| 3970 | |
| 3971 | while (lookahead_size) { |
| 3972 | mz_uint8 lit = d->m_dict[cur_pos]; |
| 3973 | |
| 3974 | total_lz_bytes++; |
| 3975 | *pLZ_code_buf++ = lit; |
| 3976 | *pLZ_flags = (mz_uint8)(*pLZ_flags >> 1); |
| 3977 | if (--num_flags_left == 0) { |
| 3978 | num_flags_left = 8; |
| 3979 | pLZ_flags = pLZ_code_buf++; |
| 3980 | } |
| 3981 | |
| 3982 | d->m_huff_count[0][lit]++; |
| 3983 | |
| 3984 | lookahead_pos++; |
| 3985 | dict_size = MZ_MIN(dict_size + 1, TDEFL_LZ_DICT_SIZE); |
| 3986 | cur_pos = (cur_pos + 1) & TDEFL_LZ_DICT_SIZE_MASK; |
| 3987 | lookahead_size--; |
| 3988 | |
| 3989 | if (pLZ_code_buf > &d->m_lz_code_buf[TDEFL_LZ_CODE_BUF_SIZE - 8]) { |
| 3990 | int n; |
| 3991 | d->m_lookahead_pos = lookahead_pos; |
| 3992 | d->m_lookahead_size = lookahead_size; |
| 3993 | d->m_dict_size = dict_size; |
| 3994 | d->m_total_lz_bytes = total_lz_bytes; |
| 3995 | d->m_pLZ_code_buf = pLZ_code_buf; |
| 3996 | d->m_pLZ_flags = pLZ_flags; |
| 3997 | d->m_num_flags_left = num_flags_left; |
| 3998 | if ((n = tdefl_flush_block(d, 0)) != 0) |
| 3999 | return (n < 0) ? MZ_FALSE : MZ_TRUE; |
| 4000 | total_lz_bytes = d->m_total_lz_bytes; |
| 4001 | pLZ_code_buf = d->m_pLZ_code_buf; |
| 4002 | pLZ_flags = d->m_pLZ_flags; |
| 4003 | num_flags_left = d->m_num_flags_left; |
| 4004 | } |
| 4005 | } |
| 4006 | } |
| 4007 | |
| 4008 | d->m_lookahead_pos = lookahead_pos; |
| 4009 | d->m_lookahead_size = lookahead_size; |
| 4010 | d->m_dict_size = dict_size; |
| 4011 | d->m_total_lz_bytes = total_lz_bytes; |
| 4012 | d->m_pLZ_code_buf = pLZ_code_buf; |
| 4013 | d->m_pLZ_flags = pLZ_flags; |
| 4014 | d->m_num_flags_left = num_flags_left; |
| 4015 | return MZ_TRUE; |
| 4016 | } |
| 4017 | #endif // MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN |
| 4018 | |
| 4019 | static MZ_FORCEINLINE void tdefl_record_literal(tdefl_compressor *d, |
| 4020 | mz_uint8 lit) { |
| 4021 | d->m_total_lz_bytes++; |
| 4022 | *d->m_pLZ_code_buf++ = lit; |
| 4023 | *d->m_pLZ_flags = (mz_uint8)(*d->m_pLZ_flags >> 1); |
| 4024 | if (--d->m_num_flags_left == 0) { |
| 4025 | d->m_num_flags_left = 8; |
| 4026 | d->m_pLZ_flags = d->m_pLZ_code_buf++; |
| 4027 | } |
| 4028 | d->m_huff_count[0][lit]++; |
| 4029 | } |
| 4030 | |
| 4031 | static MZ_FORCEINLINE void tdefl_record_match(tdefl_compressor *d, |
| 4032 | mz_uint match_len, |
| 4033 | mz_uint match_dist) { |
| 4034 | mz_uint32 s0, s1; |
| 4035 | |
| 4036 | MZ_ASSERT((match_len >= TDEFL_MIN_MATCH_LEN) && (match_dist >= 1) && |
| 4037 | (match_dist <= TDEFL_LZ_DICT_SIZE)); |
| 4038 | |
| 4039 | d->m_total_lz_bytes += match_len; |
| 4040 | |
| 4041 | d->m_pLZ_code_buf[0] = (mz_uint8)(match_len - TDEFL_MIN_MATCH_LEN); |
| 4042 | |
| 4043 | match_dist -= 1; |
| 4044 | d->m_pLZ_code_buf[1] = (mz_uint8)(match_dist & 0xFF); |
| 4045 | d->m_pLZ_code_buf[2] = (mz_uint8)(match_dist >> 8); |
| 4046 | d->m_pLZ_code_buf += 3; |
| 4047 | |
| 4048 | *d->m_pLZ_flags = (mz_uint8)((*d->m_pLZ_flags >> 1) | 0x80); |
| 4049 | if (--d->m_num_flags_left == 0) { |
| 4050 | d->m_num_flags_left = 8; |
| 4051 | d->m_pLZ_flags = d->m_pLZ_code_buf++; |
| 4052 | } |
| 4053 | |
| 4054 | s0 = s_tdefl_small_dist_sym[match_dist & 511]; |
| 4055 | s1 = s_tdefl_large_dist_sym[(match_dist >> 8) & 127]; |
| 4056 | d->m_huff_count[1][(match_dist < 512) ? s0 : s1]++; |
| 4057 | |
| 4058 | if (match_len >= TDEFL_MIN_MATCH_LEN) |
| 4059 | d->m_huff_count[0][s_tdefl_len_sym[match_len - TDEFL_MIN_MATCH_LEN]]++; |
| 4060 | } |
| 4061 | |
| 4062 | static mz_bool tdefl_compress_normal(tdefl_compressor *d) { |
| 4063 | const mz_uint8 *pSrc = d->m_pSrc; |
| 4064 | size_t src_buf_left = d->m_src_buf_left; |
| 4065 | tdefl_flush flush = d->m_flush; |
| 4066 | |
| 4067 | while ((src_buf_left) || ((flush) && (d->m_lookahead_size))) { |
| 4068 | mz_uint len_to_move, cur_match_dist, cur_match_len, cur_pos; |
| 4069 | // Update dictionary and hash chains. Keeps the lookahead size equal to |
| 4070 | // TDEFL_MAX_MATCH_LEN. |
| 4071 | if ((d->m_lookahead_size + d->m_dict_size) >= (TDEFL_MIN_MATCH_LEN - 1)) { |
| 4072 | mz_uint dst_pos = (d->m_lookahead_pos + d->m_lookahead_size) & |
| 4073 | TDEFL_LZ_DICT_SIZE_MASK, |
| 4074 | ins_pos = d->m_lookahead_pos + d->m_lookahead_size - 2; |
| 4075 | mz_uint hash = (d->m_dict[ins_pos & TDEFL_LZ_DICT_SIZE_MASK] |
| 4076 | << TDEFL_LZ_HASH_SHIFT) ^ |
| 4077 | d->m_dict[(ins_pos + 1) & TDEFL_LZ_DICT_SIZE_MASK]; |
| 4078 | mz_uint num_bytes_to_process = (mz_uint)MZ_MIN( |
| 4079 | src_buf_left, TDEFL_MAX_MATCH_LEN - d->m_lookahead_size); |
| 4080 | const mz_uint8 *pSrc_end = pSrc + num_bytes_to_process; |
| 4081 | src_buf_left -= num_bytes_to_process; |
| 4082 | d->m_lookahead_size += num_bytes_to_process; |
| 4083 | while (pSrc != pSrc_end) { |
| 4084 | mz_uint8 c = *pSrc++; |
| 4085 | d->m_dict[dst_pos] = c; |
| 4086 | if (dst_pos < (TDEFL_MAX_MATCH_LEN - 1)) |
| 4087 | d->m_dict[TDEFL_LZ_DICT_SIZE + dst_pos] = c; |
| 4088 | hash = ((hash << TDEFL_LZ_HASH_SHIFT) ^ c) & (TDEFL_LZ_HASH_SIZE - 1); |
| 4089 | d->m_next[ins_pos & TDEFL_LZ_DICT_SIZE_MASK] = d->m_hash[hash]; |
| 4090 | d->m_hash[hash] = (mz_uint16)(ins_pos); |
| 4091 | dst_pos = (dst_pos + 1) & TDEFL_LZ_DICT_SIZE_MASK; |
| 4092 | ins_pos++; |
| 4093 | } |
| 4094 | } else { |
| 4095 | while ((src_buf_left) && (d->m_lookahead_size < TDEFL_MAX_MATCH_LEN)) { |
| 4096 | mz_uint8 c = *pSrc++; |
| 4097 | mz_uint dst_pos = (d->m_lookahead_pos + d->m_lookahead_size) & |
| 4098 | TDEFL_LZ_DICT_SIZE_MASK; |
| 4099 | src_buf_left--; |
| 4100 | d->m_dict[dst_pos] = c; |
| 4101 | if (dst_pos < (TDEFL_MAX_MATCH_LEN - 1)) |
| 4102 | d->m_dict[TDEFL_LZ_DICT_SIZE + dst_pos] = c; |
| 4103 | if ((++d->m_lookahead_size + d->m_dict_size) >= TDEFL_MIN_MATCH_LEN) { |
| 4104 | mz_uint ins_pos = d->m_lookahead_pos + (d->m_lookahead_size - 1) - 2; |
| 4105 | mz_uint hash = ((d->m_dict[ins_pos & TDEFL_LZ_DICT_SIZE_MASK] |
| 4106 | << (TDEFL_LZ_HASH_SHIFT * 2)) ^ |
| 4107 | (d->m_dict[(ins_pos + 1) & TDEFL_LZ_DICT_SIZE_MASK] |
| 4108 | << TDEFL_LZ_HASH_SHIFT) ^ |
| 4109 | c) & |
| 4110 | (TDEFL_LZ_HASH_SIZE - 1); |
| 4111 | d->m_next[ins_pos & TDEFL_LZ_DICT_SIZE_MASK] = d->m_hash[hash]; |
| 4112 | d->m_hash[hash] = (mz_uint16)(ins_pos); |
| 4113 | } |
| 4114 | } |
| 4115 | } |
| 4116 | d->m_dict_size = |
| 4117 | MZ_MIN(TDEFL_LZ_DICT_SIZE - d->m_lookahead_size, d->m_dict_size); |
| 4118 | if ((!flush) && (d->m_lookahead_size < TDEFL_MAX_MATCH_LEN)) break; |
| 4119 | |
| 4120 | // Simple lazy/greedy parsing state machine. |
| 4121 | len_to_move = 1; |
| 4122 | cur_match_dist = 0; |
| 4123 | cur_match_len = |
| 4124 | d->m_saved_match_len ? d->m_saved_match_len : (TDEFL_MIN_MATCH_LEN - 1); |
| 4125 | cur_pos = d->m_lookahead_pos & TDEFL_LZ_DICT_SIZE_MASK; |
| 4126 | if (d->m_flags & (TDEFL_RLE_MATCHES | TDEFL_FORCE_ALL_RAW_BLOCKS)) { |
| 4127 | if ((d->m_dict_size) && (!(d->m_flags & TDEFL_FORCE_ALL_RAW_BLOCKS))) { |
| 4128 | mz_uint8 c = d->m_dict[(cur_pos - 1) & TDEFL_LZ_DICT_SIZE_MASK]; |
| 4129 | cur_match_len = 0; |
| 4130 | while (cur_match_len < d->m_lookahead_size) { |
| 4131 | if (d->m_dict[cur_pos + cur_match_len] != c) break; |
| 4132 | cur_match_len++; |
| 4133 | } |
| 4134 | if (cur_match_len < TDEFL_MIN_MATCH_LEN) |
| 4135 | cur_match_len = 0; |
| 4136 | else |
| 4137 | cur_match_dist = 1; |
| 4138 | } |
| 4139 | } else { |
| 4140 | tdefl_find_match(d, d->m_lookahead_pos, d->m_dict_size, |
| 4141 | d->m_lookahead_size, &cur_match_dist, &cur_match_len); |
| 4142 | } |
| 4143 | if (((cur_match_len == TDEFL_MIN_MATCH_LEN) && |
| 4144 | (cur_match_dist >= 8U * 1024U)) || |
| 4145 | (cur_pos == cur_match_dist) || |
| 4146 | ((d->m_flags & TDEFL_FILTER_MATCHES) && (cur_match_len <= 5))) { |
| 4147 | cur_match_dist = cur_match_len = 0; |
| 4148 | } |
| 4149 | if (d->m_saved_match_len) { |
| 4150 | if (cur_match_len > d->m_saved_match_len) { |
| 4151 | tdefl_record_literal(d, (mz_uint8)d->m_saved_lit); |
| 4152 | if (cur_match_len >= 128) { |
| 4153 | tdefl_record_match(d, cur_match_len, cur_match_dist); |
| 4154 | d->m_saved_match_len = 0; |
| 4155 | len_to_move = cur_match_len; |
| 4156 | } else { |
| 4157 | d->m_saved_lit = d->m_dict[cur_pos]; |
| 4158 | d->m_saved_match_dist = cur_match_dist; |
| 4159 | d->m_saved_match_len = cur_match_len; |
| 4160 | } |
| 4161 | } else { |
| 4162 | tdefl_record_match(d, d->m_saved_match_len, d->m_saved_match_dist); |
| 4163 | len_to_move = d->m_saved_match_len - 1; |
| 4164 | d->m_saved_match_len = 0; |
| 4165 | } |
| 4166 | } else if (!cur_match_dist) |
| 4167 | tdefl_record_literal(d, |
| 4168 | d->m_dict[MZ_MIN(cur_pos, sizeof(d->m_dict) - 1)]); |
| 4169 | else if ((d->m_greedy_parsing) || (d->m_flags & TDEFL_RLE_MATCHES) || |
| 4170 | (cur_match_len >= 128)) { |
| 4171 | tdefl_record_match(d, cur_match_len, cur_match_dist); |
| 4172 | len_to_move = cur_match_len; |
| 4173 | } else { |
| 4174 | d->m_saved_lit = d->m_dict[MZ_MIN(cur_pos, sizeof(d->m_dict) - 1)]; |
| 4175 | d->m_saved_match_dist = cur_match_dist; |
| 4176 | d->m_saved_match_len = cur_match_len; |
| 4177 | } |
| 4178 | // Move the lookahead forward by len_to_move bytes. |
| 4179 | d->m_lookahead_pos += len_to_move; |
| 4180 | MZ_ASSERT(d->m_lookahead_size >= len_to_move); |
| 4181 | d->m_lookahead_size -= len_to_move; |
| 4182 | d->m_dict_size = |
| 4183 | MZ_MIN(d->m_dict_size + len_to_move, (mz_uint)TDEFL_LZ_DICT_SIZE); |
| 4184 | // Check if it's time to flush the current LZ codes to the internal output |
| 4185 | // buffer. |
| 4186 | if ((d->m_pLZ_code_buf > &d->m_lz_code_buf[TDEFL_LZ_CODE_BUF_SIZE - 8]) || |
| 4187 | ((d->m_total_lz_bytes > 31 * 1024) && |
| 4188 | (((((mz_uint)(d->m_pLZ_code_buf - d->m_lz_code_buf) * 115) >> 7) >= |
| 4189 | d->m_total_lz_bytes) || |
| 4190 | (d->m_flags & TDEFL_FORCE_ALL_RAW_BLOCKS)))) { |
| 4191 | int n; |
| 4192 | d->m_pSrc = pSrc; |
| 4193 | d->m_src_buf_left = src_buf_left; |
| 4194 | if ((n = tdefl_flush_block(d, 0)) != 0) |
| 4195 | return (n < 0) ? MZ_FALSE : MZ_TRUE; |
| 4196 | } |
| 4197 | } |
| 4198 | |
| 4199 | d->m_pSrc = pSrc; |
| 4200 | d->m_src_buf_left = src_buf_left; |
| 4201 | return MZ_TRUE; |
| 4202 | } |
| 4203 | |
| 4204 | static tdefl_status tdefl_flush_output_buffer(tdefl_compressor *d) { |
| 4205 | if (d->m_pIn_buf_size) { |
| 4206 | *d->m_pIn_buf_size = d->m_pSrc - (const mz_uint8 *)d->m_pIn_buf; |
| 4207 | } |
| 4208 | |
| 4209 | if (d->m_pOut_buf_size) { |
| 4210 | size_t n = MZ_MIN(*d->m_pOut_buf_size - d->m_out_buf_ofs, |
| 4211 | d->m_output_flush_remaining); |
| 4212 | memcpy((mz_uint8 *)d->m_pOut_buf + d->m_out_buf_ofs, |
| 4213 | d->m_output_buf + d->m_output_flush_ofs, n); |
| 4214 | d->m_output_flush_ofs += (mz_uint)n; |
| 4215 | d->m_output_flush_remaining -= (mz_uint)n; |
| 4216 | d->m_out_buf_ofs += n; |
| 4217 | |
| 4218 | *d->m_pOut_buf_size = d->m_out_buf_ofs; |
| 4219 | } |
| 4220 | |
| 4221 | return (d->m_finished && !d->m_output_flush_remaining) ? TDEFL_STATUS_DONE |
| 4222 | : TDEFL_STATUS_OKAY; |
| 4223 | } |
| 4224 | |
| 4225 | tdefl_status tdefl_compress(tdefl_compressor *d, const void *pIn_buf, |
| 4226 | size_t *pIn_buf_size, void *pOut_buf, |
| 4227 | size_t *pOut_buf_size, tdefl_flush flush) { |
| 4228 | if (!d) { |
| 4229 | if (pIn_buf_size) *pIn_buf_size = 0; |
| 4230 | if (pOut_buf_size) *pOut_buf_size = 0; |
| 4231 | return TDEFL_STATUS_BAD_PARAM; |
| 4232 | } |
| 4233 | |
| 4234 | d->m_pIn_buf = pIn_buf; |
| 4235 | d->m_pIn_buf_size = pIn_buf_size; |
| 4236 | d->m_pOut_buf = pOut_buf; |
| 4237 | d->m_pOut_buf_size = pOut_buf_size; |
| 4238 | d->m_pSrc = (const mz_uint8 *)(pIn_buf); |
| 4239 | d->m_src_buf_left = pIn_buf_size ? *pIn_buf_size : 0; |
| 4240 | d->m_out_buf_ofs = 0; |
| 4241 | d->m_flush = flush; |
| 4242 | |
| 4243 | if (((d->m_pPut_buf_func != NULL) == |
| 4244 | ((pOut_buf != NULL) || (pOut_buf_size != NULL))) || |
| 4245 | (d->m_prev_return_status != TDEFL_STATUS_OKAY) || |
| 4246 | (d->m_wants_to_finish && (flush != TDEFL_FINISH)) || |
| 4247 | (pIn_buf_size && *pIn_buf_size && !pIn_buf) || |
| 4248 | (pOut_buf_size && *pOut_buf_size && !pOut_buf)) { |
| 4249 | if (pIn_buf_size) *pIn_buf_size = 0; |
| 4250 | if (pOut_buf_size) *pOut_buf_size = 0; |
| 4251 | return (d->m_prev_return_status = TDEFL_STATUS_BAD_PARAM); |
| 4252 | } |
| 4253 | d->m_wants_to_finish |= (flush == TDEFL_FINISH); |
| 4254 | |
| 4255 | if ((d->m_output_flush_remaining) || (d->m_finished)) |
| 4256 | return (d->m_prev_return_status = tdefl_flush_output_buffer(d)); |
| 4257 | |
| 4258 | #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN |
| 4259 | if (((d->m_flags & TDEFL_MAX_PROBES_MASK) == 1) && |
| 4260 | ((d->m_flags & TDEFL_GREEDY_PARSING_FLAG) != 0) && |
| 4261 | ((d->m_flags & (TDEFL_FILTER_MATCHES | TDEFL_FORCE_ALL_RAW_BLOCKS | |
| 4262 | TDEFL_RLE_MATCHES)) == 0)) { |
| 4263 | if (!tdefl_compress_fast(d)) return d->m_prev_return_status; |
| 4264 | } else |
| 4265 | #endif // #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN |
| 4266 | { |
| 4267 | if (!tdefl_compress_normal(d)) return d->m_prev_return_status; |
| 4268 | } |
| 4269 | |
| 4270 | if ((d->m_flags & (TDEFL_WRITE_ZLIB_HEADER | TDEFL_COMPUTE_ADLER32)) && |
| 4271 | (pIn_buf)) |
| 4272 | d->m_adler32 = |
| 4273 | (mz_uint32)mz_adler32(d->m_adler32, (const mz_uint8 *)pIn_buf, |
| 4274 | d->m_pSrc - (const mz_uint8 *)pIn_buf); |
| 4275 | |
| 4276 | if ((flush) && (!d->m_lookahead_size) && (!d->m_src_buf_left) && |
| 4277 | (!d->m_output_flush_remaining)) { |
| 4278 | if (tdefl_flush_block(d, flush) < 0) return d->m_prev_return_status; |
| 4279 | d->m_finished = (flush == TDEFL_FINISH); |
| 4280 | if (flush == TDEFL_FULL_FLUSH) { |
| 4281 | MZ_CLEAR_OBJ(d->m_hash); |
| 4282 | MZ_CLEAR_OBJ(d->m_next); |
| 4283 | d->m_dict_size = 0; |
| 4284 | } |
| 4285 | } |
| 4286 | |
| 4287 | return (d->m_prev_return_status = tdefl_flush_output_buffer(d)); |
| 4288 | } |
| 4289 | |
| 4290 | tdefl_status tdefl_compress_buffer(tdefl_compressor *d, const void *pIn_buf, |
| 4291 | size_t in_buf_size, tdefl_flush flush) { |
| 4292 | MZ_ASSERT(d->m_pPut_buf_func); |
| 4293 | return tdefl_compress(d, pIn_buf, &in_buf_size, NULL, NULL, flush); |
| 4294 | } |
| 4295 | |
| 4296 | tdefl_status tdefl_init(tdefl_compressor *d, |
| 4297 | tdefl_put_buf_func_ptr pPut_buf_func, |
| 4298 | void *pPut_buf_user, int flags) { |
| 4299 | d->m_pPut_buf_func = pPut_buf_func; |
| 4300 | d->m_pPut_buf_user = pPut_buf_user; |
| 4301 | d->m_flags = (mz_uint)(flags); |
| 4302 | d->m_max_probes[0] = 1 + ((flags & 0xFFF) + 2) / 3; |
| 4303 | d->m_greedy_parsing = (flags & TDEFL_GREEDY_PARSING_FLAG) != 0; |
| 4304 | d->m_max_probes[1] = 1 + (((flags & 0xFFF) >> 2) + 2) / 3; |
| 4305 | if (!(flags & TDEFL_NONDETERMINISTIC_PARSING_FLAG)) MZ_CLEAR_OBJ(d->m_hash); |
| 4306 | d->m_lookahead_pos = d->m_lookahead_size = d->m_dict_size = |
| 4307 | d->m_total_lz_bytes = d->m_lz_code_buf_dict_pos = d->m_bits_in = 0; |
| 4308 | d->m_output_flush_ofs = d->m_output_flush_remaining = d->m_finished = |
| 4309 | d->m_block_index = d->m_bit_buffer = d->m_wants_to_finish = 0; |
| 4310 | d->m_pLZ_code_buf = d->m_lz_code_buf + 1; |
| 4311 | d->m_pLZ_flags = d->m_lz_code_buf; |
| 4312 | d->m_num_flags_left = 8; |
| 4313 | d->m_pOutput_buf = d->m_output_buf; |
| 4314 | d->m_pOutput_buf_end = d->m_output_buf; |
| 4315 | d->m_prev_return_status = TDEFL_STATUS_OKAY; |
| 4316 | d->m_saved_match_dist = d->m_saved_match_len = d->m_saved_lit = 0; |
| 4317 | d->m_adler32 = 1; |
| 4318 | d->m_pIn_buf = NULL; |
| 4319 | d->m_pOut_buf = NULL; |
| 4320 | d->m_pIn_buf_size = NULL; |
| 4321 | d->m_pOut_buf_size = NULL; |
| 4322 | d->m_flush = TDEFL_NO_FLUSH; |
| 4323 | d->m_pSrc = NULL; |
| 4324 | d->m_src_buf_left = 0; |
| 4325 | d->m_out_buf_ofs = 0; |
| 4326 | memset(&d->m_huff_count[0][0], 0, |
| 4327 | sizeof(d->m_huff_count[0][0]) * TDEFL_MAX_HUFF_SYMBOLS_0); |
| 4328 | memset(&d->m_huff_count[1][0], 0, |
| 4329 | sizeof(d->m_huff_count[1][0]) * TDEFL_MAX_HUFF_SYMBOLS_1); |
| 4330 | return TDEFL_STATUS_OKAY; |
| 4331 | } |
| 4332 | |
| 4333 | tdefl_status tdefl_get_prev_return_status(tdefl_compressor *d) { |
| 4334 | return d->m_prev_return_status; |
| 4335 | } |
| 4336 | |
| 4337 | mz_uint32 tdefl_get_adler32(tdefl_compressor *d) { return d->m_adler32; } |
| 4338 | |
| 4339 | mz_bool tdefl_compress_mem_to_output(const void *pBuf, size_t buf_len, |
| 4340 | tdefl_put_buf_func_ptr pPut_buf_func, |
| 4341 | void *pPut_buf_user, int flags) { |
| 4342 | tdefl_compressor *pComp; |
| 4343 | mz_bool succeeded; |
| 4344 | if (((buf_len) && (!pBuf)) || (!pPut_buf_func)) return MZ_FALSE; |
| 4345 | pComp = (tdefl_compressor *)MZ_MALLOC(sizeof(tdefl_compressor)); |
| 4346 | if (!pComp) return MZ_FALSE; |
| 4347 | succeeded = (tdefl_init(pComp, pPut_buf_func, pPut_buf_user, flags) == |
| 4348 | TDEFL_STATUS_OKAY); |
| 4349 | succeeded = |
| 4350 | succeeded && (tdefl_compress_buffer(pComp, pBuf, buf_len, TDEFL_FINISH) == |
| 4351 | TDEFL_STATUS_DONE); |
| 4352 | MZ_FREE(pComp); |
| 4353 | return succeeded; |
| 4354 | } |
| 4355 | |
| 4356 | typedef struct { |
| 4357 | size_t m_size, m_capacity; |
| 4358 | mz_uint8 *m_pBuf; |
| 4359 | mz_bool m_expandable; |
| 4360 | } tdefl_output_buffer; |
| 4361 | |
| 4362 | static mz_bool tdefl_output_buffer_putter(const void *pBuf, int len, |
| 4363 | void *pUser) { |
| 4364 | tdefl_output_buffer *p = (tdefl_output_buffer *)pUser; |
| 4365 | size_t new_size = p->m_size + len; |
| 4366 | if (new_size > p->m_capacity) { |
| 4367 | size_t new_capacity = p->m_capacity; |
| 4368 | mz_uint8 *pNew_buf; |
| 4369 | if (!p->m_expandable) return MZ_FALSE; |
| 4370 | do { |
| 4371 | new_capacity = MZ_MAX(128U, new_capacity << 1U); |
| 4372 | } while (new_size > new_capacity); |
| 4373 | pNew_buf = (mz_uint8 *)MZ_REALLOC(p->m_pBuf, new_capacity); |
| 4374 | if (!pNew_buf) return MZ_FALSE; |
| 4375 | p->m_pBuf = pNew_buf; |
| 4376 | p->m_capacity = new_capacity; |
| 4377 | } |
| 4378 | memcpy((mz_uint8 *)p->m_pBuf + p->m_size, pBuf, len); |
| 4379 | p->m_size = new_size; |
| 4380 | return MZ_TRUE; |
| 4381 | } |
| 4382 | |
| 4383 | void *tdefl_compress_mem_to_heap(const void *pSrc_buf, size_t src_buf_len, |
| 4384 | size_t *pOut_len, int flags) { |
| 4385 | tdefl_output_buffer out_buf; |
| 4386 | MZ_CLEAR_OBJ(out_buf); |
| 4387 | if (!pOut_len) |
| 4388 | return MZ_FALSE; |
| 4389 | else |
| 4390 | *pOut_len = 0; |
| 4391 | out_buf.m_expandable = MZ_TRUE; |
| 4392 | if (!tdefl_compress_mem_to_output( |
| 4393 | pSrc_buf, src_buf_len, tdefl_output_buffer_putter, &out_buf, flags)) |
| 4394 | return NULL; |
| 4395 | *pOut_len = out_buf.m_size; |
| 4396 | return out_buf.m_pBuf; |
| 4397 | } |
| 4398 | |
| 4399 | size_t tdefl_compress_mem_to_mem(void *pOut_buf, size_t out_buf_len, |
| 4400 | const void *pSrc_buf, size_t src_buf_len, |
| 4401 | int flags) { |
| 4402 | tdefl_output_buffer out_buf; |
| 4403 | MZ_CLEAR_OBJ(out_buf); |
| 4404 | if (!pOut_buf) return 0; |
| 4405 | out_buf.m_pBuf = (mz_uint8 *)pOut_buf; |
| 4406 | out_buf.m_capacity = out_buf_len; |
| 4407 | if (!tdefl_compress_mem_to_output( |
| 4408 | pSrc_buf, src_buf_len, tdefl_output_buffer_putter, &out_buf, flags)) |
| 4409 | return 0; |
| 4410 | return out_buf.m_size; |
| 4411 | } |
| 4412 | |
| 4413 | #ifndef MINIZ_NO_ZLIB_APIS |
| 4414 | static const mz_uint s_tdefl_num_probes[11] = {0, 1, 6, 32, 16, 32, |
| 4415 | 128, 256, 512, 768, 1500}; |
| 4416 | |
| 4417 | // level may actually range from [0,10] (10 is a "hidden" max level, where we |
| 4418 | // want a bit more compression and it's fine if throughput to fall off a cliff |
| 4419 | // on some files). |
| 4420 | mz_uint tdefl_create_comp_flags_from_zip_params(int level, int window_bits, |
| 4421 | int strategy) { |
| 4422 | mz_uint comp_flags = |
| 4423 | s_tdefl_num_probes[(level >= 0) ? MZ_MIN(10, level) : MZ_DEFAULT_LEVEL] | |
| 4424 | ((level <= 3) ? TDEFL_GREEDY_PARSING_FLAG : 0); |
| 4425 | if (window_bits > 0) comp_flags |= TDEFL_WRITE_ZLIB_HEADER; |
| 4426 | |
| 4427 | if (!level) |
| 4428 | comp_flags |= TDEFL_FORCE_ALL_RAW_BLOCKS; |
| 4429 | else if (strategy == MZ_FILTERED) |
| 4430 | comp_flags |= TDEFL_FILTER_MATCHES; |
| 4431 | else if (strategy == MZ_HUFFMAN_ONLY) |
| 4432 | comp_flags &= ~TDEFL_MAX_PROBES_MASK; |
| 4433 | else if (strategy == MZ_FIXED) |
| 4434 | comp_flags |= TDEFL_FORCE_ALL_STATIC_BLOCKS; |
| 4435 | else if (strategy == MZ_RLE) |
| 4436 | comp_flags |= TDEFL_RLE_MATCHES; |
| 4437 | |
| 4438 | return comp_flags; |
| 4439 | } |
| 4440 | #endif // MINIZ_NO_ZLIB_APIS |
| 4441 | |
| 4442 | #ifdef _MSC_VER |
| 4443 | #pragma warning(push) |
| 4444 | #pragma warning(disable : 4204) // nonstandard extension used : non-constant |
| 4445 | // aggregate initializer (also supported by GNU |
| 4446 | // C and C99, so no big deal) |
| 4447 | #pragma warning(disable : 4244) // 'initializing': conversion from '__int64' to |
| 4448 | // 'int', possible loss of data |
| 4449 | #pragma warning(disable : 4267) // 'argument': conversion from '__int64' to |
| 4450 | // 'int', possible loss of data |
| 4451 | #pragma warning(disable : 4996) // 'strdup': The POSIX name for this item is |
| 4452 | // deprecated. Instead, use the ISO C and C++ |
| 4453 | // conformant name: _strdup. |
| 4454 | #endif |
| 4455 | |
| 4456 | // Simple PNG writer function by Alex Evans, 2011. Released into the public |
| 4457 | // domain: https://gist.github.com/908299, more context at |
| 4458 | // http://altdevblogaday.org/2011/04/06/a-smaller-jpg-encoder/. |
| 4459 | // This is actually a modification of Alex's original code so PNG files |
| 4460 | // generated by this function pass pngcheck. |
| 4461 | void *tdefl_write_image_to_png_file_in_memory_ex(const void *pImage, int w, |
| 4462 | int h, int num_chans, |
| 4463 | size_t *pLen_out, |
| 4464 | mz_uint level, mz_bool flip) { |
| 4465 | // Using a local copy of this array here in case MINIZ_NO_ZLIB_APIS was |
| 4466 | // defined. |
| 4467 | static const mz_uint s_tdefl_png_num_probes[11] = { |
| 4468 | 0, 1, 6, 32, 16, 32, 128, 256, 512, 768, 1500}; |
| 4469 | tdefl_compressor *pComp = |
| 4470 | (tdefl_compressor *)MZ_MALLOC(sizeof(tdefl_compressor)); |
| 4471 | tdefl_output_buffer out_buf; |
| 4472 | int i, bpl = w * num_chans, y, z; |
| 4473 | mz_uint32 c; |
| 4474 | *pLen_out = 0; |
| 4475 | if (!pComp) return NULL; |
| 4476 | MZ_CLEAR_OBJ(out_buf); |
| 4477 | out_buf.m_expandable = MZ_TRUE; |
| 4478 | out_buf.m_capacity = 57 + MZ_MAX(64, (1 + bpl) * h); |
| 4479 | if (NULL == (out_buf.m_pBuf = (mz_uint8 *)MZ_MALLOC(out_buf.m_capacity))) { |
| 4480 | MZ_FREE(pComp); |
| 4481 | return NULL; |
| 4482 | } |
| 4483 | // write dummy header |
| 4484 | for (z = 41; z; --z) tdefl_output_buffer_putter(&z, 1, &out_buf); |
| 4485 | // compress image data |
| 4486 | tdefl_init( |
| 4487 | pComp, tdefl_output_buffer_putter, &out_buf, |
| 4488 | s_tdefl_png_num_probes[MZ_MIN(10, level)] | TDEFL_WRITE_ZLIB_HEADER); |
| 4489 | for (y = 0; y < h; ++y) { |
| 4490 | tdefl_compress_buffer(pComp, &z, 1, TDEFL_NO_FLUSH); |
| 4491 | tdefl_compress_buffer(pComp, |
| 4492 | (mz_uint8 *)pImage + (flip ? (h - 1 - y) : y) * bpl, |
| 4493 | bpl, TDEFL_NO_FLUSH); |
| 4494 | } |
| 4495 | if (tdefl_compress_buffer(pComp, NULL, 0, TDEFL_FINISH) != |
| 4496 | TDEFL_STATUS_DONE) { |
| 4497 | MZ_FREE(pComp); |
| 4498 | MZ_FREE(out_buf.m_pBuf); |
| 4499 | return NULL; |
| 4500 | } |
| 4501 | // write real header |
| 4502 | *pLen_out = out_buf.m_size - 41; |
| 4503 | { |
| 4504 | static const mz_uint8 chans[] = {0x00, 0x00, 0x04, 0x02, 0x06}; |
| 4505 | mz_uint8 pnghdr[41] = {0x89, |
| 4506 | 0x50, |
| 4507 | 0x4e, |
| 4508 | 0x47, |
| 4509 | 0x0d, |
| 4510 | 0x0a, |
| 4511 | 0x1a, |
| 4512 | 0x0a, |
| 4513 | 0x00, |
| 4514 | 0x00, |
| 4515 | 0x00, |
| 4516 | 0x0d, |
| 4517 | 0x49, |
| 4518 | 0x48, |
| 4519 | 0x44, |
| 4520 | 0x52, |
| 4521 | 0, |
| 4522 | 0, |
| 4523 | (mz_uint8)(w >> 8), |
| 4524 | (mz_uint8)w, |
| 4525 | 0, |
| 4526 | 0, |
| 4527 | (mz_uint8)(h >> 8), |
| 4528 | (mz_uint8)h, |
| 4529 | 8, |
| 4530 | chans[num_chans], |
| 4531 | 0, |
| 4532 | 0, |
| 4533 | 0, |
| 4534 | 0, |
| 4535 | 0, |
| 4536 | 0, |
| 4537 | 0, |
| 4538 | (mz_uint8)(*pLen_out >> 24), |
| 4539 | (mz_uint8)(*pLen_out >> 16), |
| 4540 | (mz_uint8)(*pLen_out >> 8), |
| 4541 | (mz_uint8)*pLen_out, |
| 4542 | 0x49, |
| 4543 | 0x44, |
| 4544 | 0x41, |
| 4545 | 0x54}; |
| 4546 | c = (mz_uint32)mz_crc32(MZ_CRC32_INIT, pnghdr + 12, 17); |
| 4547 | for (i = 0; i < 4; ++i, c <<= 8) |
| 4548 | ((mz_uint8 *)(pnghdr + 29))[i] = (mz_uint8)(c >> 24); |
| 4549 | memcpy(out_buf.m_pBuf, pnghdr, 41); |
| 4550 | } |
| 4551 | // write footer (IDAT CRC-32, followed by IEND chunk) |
| 4552 | if (!tdefl_output_buffer_putter( |
| 4553 | "\0\0\0\0\0\0\0\0\x49\x45\x4e\x44\xae\x42\x60\x82" , 16, &out_buf)) { |
| 4554 | *pLen_out = 0; |
| 4555 | MZ_FREE(pComp); |
| 4556 | MZ_FREE(out_buf.m_pBuf); |
| 4557 | return NULL; |
| 4558 | } |
| 4559 | c = (mz_uint32)mz_crc32(MZ_CRC32_INIT, out_buf.m_pBuf + 41 - 4, |
| 4560 | *pLen_out + 4); |
| 4561 | for (i = 0; i < 4; ++i, c <<= 8) |
| 4562 | (out_buf.m_pBuf + out_buf.m_size - 16)[i] = (mz_uint8)(c >> 24); |
| 4563 | // compute final size of file, grab compressed data buffer and return |
| 4564 | *pLen_out += 57; |
| 4565 | MZ_FREE(pComp); |
| 4566 | return out_buf.m_pBuf; |
| 4567 | } |
| 4568 | void *tdefl_write_image_to_png_file_in_memory(const void *pImage, int w, int h, |
| 4569 | int num_chans, size_t *pLen_out) { |
| 4570 | // Level 6 corresponds to TDEFL_DEFAULT_MAX_PROBES or MZ_DEFAULT_LEVEL (but we |
| 4571 | // can't depend on MZ_DEFAULT_LEVEL being available in case the zlib API's |
| 4572 | // where #defined out) |
| 4573 | return tdefl_write_image_to_png_file_in_memory_ex(pImage, w, h, num_chans, |
| 4574 | pLen_out, 6, MZ_FALSE); |
| 4575 | } |
| 4576 | |
| 4577 | // ------------------- .ZIP archive reading |
| 4578 | |
| 4579 | #ifndef MINIZ_NO_ARCHIVE_APIS |
| 4580 | #error "No arvhive APIs" |
| 4581 | |
| 4582 | #ifdef MINIZ_NO_STDIO |
| 4583 | #define MZ_FILE void * |
| 4584 | #else |
| 4585 | #include <stdio.h> |
| 4586 | #include <sys/stat.h> |
| 4587 | |
| 4588 | #if defined(_MSC_VER) || defined(__MINGW64__) |
| 4589 | static FILE *mz_fopen(const char *pFilename, const char *pMode) { |
| 4590 | FILE *pFile = NULL; |
| 4591 | fopen_s(&pFile, pFilename, pMode); |
| 4592 | return pFile; |
| 4593 | } |
| 4594 | static FILE *mz_freopen(const char *pPath, const char *pMode, FILE *pStream) { |
| 4595 | FILE *pFile = NULL; |
| 4596 | if (freopen_s(&pFile, pPath, pMode, pStream)) return NULL; |
| 4597 | return pFile; |
| 4598 | } |
| 4599 | #ifndef MINIZ_NO_TIME |
| 4600 | #include <sys/utime.h> |
| 4601 | #endif |
| 4602 | #define MZ_FILE FILE |
| 4603 | #define MZ_FOPEN mz_fopen |
| 4604 | #define MZ_FCLOSE fclose |
| 4605 | #define MZ_FREAD fread |
| 4606 | #define MZ_FWRITE fwrite |
| 4607 | #define MZ_FTELL64 _ftelli64 |
| 4608 | #define MZ_FSEEK64 _fseeki64 |
| 4609 | #define MZ_FILE_STAT_STRUCT _stat |
| 4610 | #define MZ_FILE_STAT _stat |
| 4611 | #define MZ_FFLUSH fflush |
| 4612 | #define MZ_FREOPEN mz_freopen |
| 4613 | #define MZ_DELETE_FILE remove |
| 4614 | #elif defined(__MINGW32__) |
| 4615 | #ifndef MINIZ_NO_TIME |
| 4616 | #include <sys/utime.h> |
| 4617 | #endif |
| 4618 | #define MZ_FILE FILE |
| 4619 | #define MZ_FOPEN(f, m) fopen(f, m) |
| 4620 | #define MZ_FCLOSE fclose |
| 4621 | #define MZ_FREAD fread |
| 4622 | #define MZ_FWRITE fwrite |
| 4623 | #define MZ_FTELL64 ftello64 |
| 4624 | #define MZ_FSEEK64 fseeko64 |
| 4625 | #define MZ_FILE_STAT_STRUCT _stat |
| 4626 | #define MZ_FILE_STAT _stat |
| 4627 | #define MZ_FFLUSH fflush |
| 4628 | #define MZ_FREOPEN(f, m, s) freopen(f, m, s) |
| 4629 | #define MZ_DELETE_FILE remove |
| 4630 | #elif defined(__TINYC__) |
| 4631 | #ifndef MINIZ_NO_TIME |
| 4632 | #include <sys/utime.h> |
| 4633 | #endif |
| 4634 | #define MZ_FILE FILE |
| 4635 | #define MZ_FOPEN(f, m) fopen(f, m) |
| 4636 | #define MZ_FCLOSE fclose |
| 4637 | #define MZ_FREAD fread |
| 4638 | #define MZ_FWRITE fwrite |
| 4639 | #define MZ_FTELL64 ftell |
| 4640 | #define MZ_FSEEK64 fseek |
| 4641 | #define MZ_FILE_STAT_STRUCT stat |
| 4642 | #define MZ_FILE_STAT stat |
| 4643 | #define MZ_FFLUSH fflush |
| 4644 | #define MZ_FREOPEN(f, m, s) freopen(f, m, s) |
| 4645 | #define MZ_DELETE_FILE remove |
| 4646 | #elif defined(__GNUC__) && defined(_LARGEFILE64_SOURCE) && _LARGEFILE64_SOURCE |
| 4647 | #ifndef MINIZ_NO_TIME |
| 4648 | #include <utime.h> |
| 4649 | #endif |
| 4650 | #define MZ_FILE FILE |
| 4651 | #define MZ_FOPEN(f, m) fopen64(f, m) |
| 4652 | #define MZ_FCLOSE fclose |
| 4653 | #define MZ_FREAD fread |
| 4654 | #define MZ_FWRITE fwrite |
| 4655 | #define MZ_FTELL64 ftello64 |
| 4656 | #define MZ_FSEEK64 fseeko64 |
| 4657 | #define MZ_FILE_STAT_STRUCT stat64 |
| 4658 | #define MZ_FILE_STAT stat64 |
| 4659 | #define MZ_FFLUSH fflush |
| 4660 | #define MZ_FREOPEN(p, m, s) freopen64(p, m, s) |
| 4661 | #define MZ_DELETE_FILE remove |
| 4662 | #else |
| 4663 | #ifndef MINIZ_NO_TIME |
| 4664 | #include <utime.h> |
| 4665 | #endif |
| 4666 | #define MZ_FILE FILE |
| 4667 | #define MZ_FOPEN(f, m) fopen(f, m) |
| 4668 | #define MZ_FCLOSE fclose |
| 4669 | #define MZ_FREAD fread |
| 4670 | #define MZ_FWRITE fwrite |
| 4671 | #define MZ_FTELL64 ftello |
| 4672 | #define MZ_FSEEK64 fseeko |
| 4673 | #define MZ_FILE_STAT_STRUCT stat |
| 4674 | #define MZ_FILE_STAT stat |
| 4675 | #define MZ_FFLUSH fflush |
| 4676 | #define MZ_FREOPEN(f, m, s) freopen(f, m, s) |
| 4677 | #define MZ_DELETE_FILE remove |
| 4678 | #endif // #ifdef _MSC_VER |
| 4679 | #endif // #ifdef MINIZ_NO_STDIO |
| 4680 | |
| 4681 | #define MZ_TOLOWER(c) ((((c) >= 'A') && ((c) <= 'Z')) ? ((c) - 'A' + 'a') : (c)) |
| 4682 | |
| 4683 | // Various ZIP archive enums. To completely avoid cross platform compiler |
| 4684 | // alignment and platform endian issues, miniz.c doesn't use structs for any of |
| 4685 | // this stuff. |
| 4686 | enum { |
| 4687 | // ZIP archive identifiers and record sizes |
| 4688 | MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIG = 0x06054b50, |
| 4689 | MZ_ZIP_CENTRAL_DIR_HEADER_SIG = 0x02014b50, |
| 4690 | MZ_ZIP_LOCAL_DIR_HEADER_SIG = 0x04034b50, |
| 4691 | MZ_ZIP_LOCAL_DIR_HEADER_SIZE = 30, |
| 4692 | MZ_ZIP_CENTRAL_DIR_HEADER_SIZE = 46, |
| 4693 | MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIZE = 22, |
| 4694 | // Central directory header record offsets |
| 4695 | MZ_ZIP_CDH_SIG_OFS = 0, |
| 4696 | MZ_ZIP_CDH_VERSION_MADE_BY_OFS = 4, |
| 4697 | MZ_ZIP_CDH_VERSION_NEEDED_OFS = 6, |
| 4698 | MZ_ZIP_CDH_BIT_FLAG_OFS = 8, |
| 4699 | MZ_ZIP_CDH_METHOD_OFS = 10, |
| 4700 | MZ_ZIP_CDH_FILE_TIME_OFS = 12, |
| 4701 | MZ_ZIP_CDH_FILE_DATE_OFS = 14, |
| 4702 | MZ_ZIP_CDH_CRC32_OFS = 16, |
| 4703 | MZ_ZIP_CDH_COMPRESSED_SIZE_OFS = 20, |
| 4704 | MZ_ZIP_CDH_DECOMPRESSED_SIZE_OFS = 24, |
| 4705 | MZ_ZIP_CDH_FILENAME_LEN_OFS = 28, |
| 4706 | MZ_ZIP_CDH_EXTRA_LEN_OFS = 30, |
| 4707 | MZ_ZIP_CDH_COMMENT_LEN_OFS = 32, |
| 4708 | MZ_ZIP_CDH_DISK_START_OFS = 34, |
| 4709 | MZ_ZIP_CDH_INTERNAL_ATTR_OFS = 36, |
| 4710 | MZ_ZIP_CDH_EXTERNAL_ATTR_OFS = 38, |
| 4711 | MZ_ZIP_CDH_LOCAL_HEADER_OFS = 42, |
| 4712 | // Local directory header offsets |
| 4713 | MZ_ZIP_LDH_SIG_OFS = 0, |
| 4714 | MZ_ZIP_LDH_VERSION_NEEDED_OFS = 4, |
| 4715 | MZ_ZIP_LDH_BIT_FLAG_OFS = 6, |
| 4716 | MZ_ZIP_LDH_METHOD_OFS = 8, |
| 4717 | MZ_ZIP_LDH_FILE_TIME_OFS = 10, |
| 4718 | MZ_ZIP_LDH_FILE_DATE_OFS = 12, |
| 4719 | MZ_ZIP_LDH_CRC32_OFS = 14, |
| 4720 | MZ_ZIP_LDH_COMPRESSED_SIZE_OFS = 18, |
| 4721 | MZ_ZIP_LDH_DECOMPRESSED_SIZE_OFS = 22, |
| 4722 | MZ_ZIP_LDH_FILENAME_LEN_OFS = 26, |
| 4723 | MZ_ZIP_LDH_EXTRA_LEN_OFS = 28, |
| 4724 | // End of central directory offsets |
| 4725 | MZ_ZIP_ECDH_SIG_OFS = 0, |
| 4726 | MZ_ZIP_ECDH_NUM_THIS_DISK_OFS = 4, |
| 4727 | MZ_ZIP_ECDH_NUM_DISK_CDIR_OFS = 6, |
| 4728 | MZ_ZIP_ECDH_CDIR_NUM_ENTRIES_ON_DISK_OFS = 8, |
| 4729 | MZ_ZIP_ECDH_CDIR_TOTAL_ENTRIES_OFS = 10, |
| 4730 | MZ_ZIP_ECDH_CDIR_SIZE_OFS = 12, |
| 4731 | MZ_ZIP_ECDH_CDIR_OFS_OFS = 16, |
| 4732 | MZ_ZIP_ECDH_COMMENT_SIZE_OFS = 20, |
| 4733 | }; |
| 4734 | |
| 4735 | typedef struct { |
| 4736 | void *m_p; |
| 4737 | size_t m_size, m_capacity; |
| 4738 | mz_uint m_element_size; |
| 4739 | } mz_zip_array; |
| 4740 | |
| 4741 | struct mz_zip_internal_state_tag { |
| 4742 | mz_zip_array m_central_dir; |
| 4743 | mz_zip_array m_central_dir_offsets; |
| 4744 | mz_zip_array m_sorted_central_dir_offsets; |
| 4745 | MZ_FILE *m_pFile; |
| 4746 | void *m_pMem; |
| 4747 | size_t m_mem_size; |
| 4748 | size_t m_mem_capacity; |
| 4749 | }; |
| 4750 | |
| 4751 | #define MZ_ZIP_ARRAY_SET_ELEMENT_SIZE(array_ptr, element_size) \ |
| 4752 | (array_ptr)->m_element_size = element_size |
| 4753 | #define MZ_ZIP_ARRAY_ELEMENT(array_ptr, element_type, index) \ |
| 4754 | ((element_type *)((array_ptr)->m_p))[index] |
| 4755 | |
| 4756 | static MZ_FORCEINLINE void mz_zip_array_clear(mz_zip_archive *pZip, |
| 4757 | mz_zip_array *pArray) { |
| 4758 | pZip->m_pFree(pZip->m_pAlloc_opaque, pArray->m_p); |
| 4759 | memset(pArray, 0, sizeof(mz_zip_array)); |
| 4760 | } |
| 4761 | |
| 4762 | static mz_bool mz_zip_array_ensure_capacity(mz_zip_archive *pZip, |
| 4763 | mz_zip_array *pArray, |
| 4764 | size_t min_new_capacity, |
| 4765 | mz_uint growing) { |
| 4766 | void *pNew_p; |
| 4767 | size_t new_capacity = min_new_capacity; |
| 4768 | MZ_ASSERT(pArray->m_element_size); |
| 4769 | if (pArray->m_capacity >= min_new_capacity) return MZ_TRUE; |
| 4770 | if (growing) { |
| 4771 | new_capacity = MZ_MAX(1, pArray->m_capacity); |
| 4772 | while (new_capacity < min_new_capacity) new_capacity *= 2; |
| 4773 | } |
| 4774 | if (NULL == (pNew_p = pZip->m_pRealloc(pZip->m_pAlloc_opaque, pArray->m_p, |
| 4775 | pArray->m_element_size, new_capacity))) |
| 4776 | return MZ_FALSE; |
| 4777 | pArray->m_p = pNew_p; |
| 4778 | pArray->m_capacity = new_capacity; |
| 4779 | return MZ_TRUE; |
| 4780 | } |
| 4781 | |
| 4782 | static MZ_FORCEINLINE mz_bool mz_zip_array_reserve(mz_zip_archive *pZip, |
| 4783 | mz_zip_array *pArray, |
| 4784 | size_t new_capacity, |
| 4785 | mz_uint growing) { |
| 4786 | if (new_capacity > pArray->m_capacity) { |
| 4787 | if (!mz_zip_array_ensure_capacity(pZip, pArray, new_capacity, growing)) |
| 4788 | return MZ_FALSE; |
| 4789 | } |
| 4790 | return MZ_TRUE; |
| 4791 | } |
| 4792 | |
| 4793 | static MZ_FORCEINLINE mz_bool mz_zip_array_resize(mz_zip_archive *pZip, |
| 4794 | mz_zip_array *pArray, |
| 4795 | size_t new_size, |
| 4796 | mz_uint growing) { |
| 4797 | if (new_size > pArray->m_capacity) { |
| 4798 | if (!mz_zip_array_ensure_capacity(pZip, pArray, new_size, growing)) |
| 4799 | return MZ_FALSE; |
| 4800 | } |
| 4801 | pArray->m_size = new_size; |
| 4802 | return MZ_TRUE; |
| 4803 | } |
| 4804 | |
| 4805 | static MZ_FORCEINLINE mz_bool mz_zip_array_ensure_room(mz_zip_archive *pZip, |
| 4806 | mz_zip_array *pArray, |
| 4807 | size_t n) { |
| 4808 | return mz_zip_array_reserve(pZip, pArray, pArray->m_size + n, MZ_TRUE); |
| 4809 | } |
| 4810 | |
| 4811 | static MZ_FORCEINLINE mz_bool mz_zip_array_push_back(mz_zip_archive *pZip, |
| 4812 | mz_zip_array *pArray, |
| 4813 | const void *pElements, |
| 4814 | size_t n) { |
| 4815 | size_t orig_size = pArray->m_size; |
| 4816 | if (!mz_zip_array_resize(pZip, pArray, orig_size + n, MZ_TRUE)) |
| 4817 | return MZ_FALSE; |
| 4818 | memcpy((mz_uint8 *)pArray->m_p + orig_size * pArray->m_element_size, |
| 4819 | pElements, n * pArray->m_element_size); |
| 4820 | return MZ_TRUE; |
| 4821 | } |
| 4822 | |
| 4823 | #ifndef MINIZ_NO_TIME |
| 4824 | static time_t mz_zip_dos_to_time_t(int dos_time, int dos_date) { |
| 4825 | struct tm tm; |
| 4826 | memset(&tm, 0, sizeof(tm)); |
| 4827 | tm.tm_isdst = -1; |
| 4828 | tm.tm_year = ((dos_date >> 9) & 127) + 1980 - 1900; |
| 4829 | tm.tm_mon = ((dos_date >> 5) & 15) - 1; |
| 4830 | tm.tm_mday = dos_date & 31; |
| 4831 | tm.tm_hour = (dos_time >> 11) & 31; |
| 4832 | tm.tm_min = (dos_time >> 5) & 63; |
| 4833 | tm.tm_sec = (dos_time << 1) & 62; |
| 4834 | return mktime(&tm); |
| 4835 | } |
| 4836 | |
| 4837 | static void mz_zip_time_to_dos_time(time_t time, mz_uint16 *pDOS_time, |
| 4838 | mz_uint16 *pDOS_date) { |
| 4839 | #ifdef _MSC_VER |
| 4840 | struct tm tm_struct; |
| 4841 | struct tm *tm = &tm_struct; |
| 4842 | errno_t err = localtime_s(tm, &time); |
| 4843 | if (err) { |
| 4844 | *pDOS_date = 0; |
| 4845 | *pDOS_time = 0; |
| 4846 | return; |
| 4847 | } |
| 4848 | #else |
| 4849 | struct tm *tm = localtime(&time); |
| 4850 | #endif |
| 4851 | *pDOS_time = (mz_uint16)(((tm->tm_hour) << 11) + ((tm->tm_min) << 5) + |
| 4852 | ((tm->tm_sec) >> 1)); |
| 4853 | *pDOS_date = (mz_uint16)(((tm->tm_year + 1900 - 1980) << 9) + |
| 4854 | ((tm->tm_mon + 1) << 5) + tm->tm_mday); |
| 4855 | } |
| 4856 | #endif |
| 4857 | |
| 4858 | #ifndef MINIZ_NO_STDIO |
| 4859 | static mz_bool mz_zip_get_file_modified_time(const char *pFilename, |
| 4860 | mz_uint16 *pDOS_time, |
| 4861 | mz_uint16 *pDOS_date) { |
| 4862 | #ifdef MINIZ_NO_TIME |
| 4863 | (void)pFilename; |
| 4864 | *pDOS_date = *pDOS_time = 0; |
| 4865 | #else |
| 4866 | struct MZ_FILE_STAT_STRUCT file_stat; |
| 4867 | // On Linux with x86 glibc, this call will fail on large files (>= 0x80000000 |
| 4868 | // bytes) unless you compiled with _LARGEFILE64_SOURCE. Argh. |
| 4869 | if (MZ_FILE_STAT(pFilename, &file_stat) != 0) return MZ_FALSE; |
| 4870 | mz_zip_time_to_dos_time(file_stat.st_mtime, pDOS_time, pDOS_date); |
| 4871 | #endif // #ifdef MINIZ_NO_TIME |
| 4872 | return MZ_TRUE; |
| 4873 | } |
| 4874 | |
| 4875 | #ifndef MINIZ_NO_TIME |
| 4876 | static mz_bool mz_zip_set_file_times(const char *pFilename, time_t access_time, |
| 4877 | time_t modified_time) { |
| 4878 | struct utimbuf t; |
| 4879 | t.actime = access_time; |
| 4880 | t.modtime = modified_time; |
| 4881 | return !utime(pFilename, &t); |
| 4882 | } |
| 4883 | #endif // #ifndef MINIZ_NO_TIME |
| 4884 | #endif // #ifndef MINIZ_NO_STDIO |
| 4885 | |
| 4886 | static mz_bool mz_zip_reader_init_internal(mz_zip_archive *pZip, |
| 4887 | mz_uint32 flags) { |
| 4888 | (void)flags; |
| 4889 | if ((!pZip) || (pZip->m_pState) || (pZip->m_zip_mode != MZ_ZIP_MODE_INVALID)) |
| 4890 | return MZ_FALSE; |
| 4891 | |
| 4892 | if (!pZip->m_pAlloc) pZip->m_pAlloc = def_alloc_func; |
| 4893 | if (!pZip->m_pFree) pZip->m_pFree = def_free_func; |
| 4894 | if (!pZip->m_pRealloc) pZip->m_pRealloc = def_realloc_func; |
| 4895 | |
| 4896 | pZip->m_zip_mode = MZ_ZIP_MODE_READING; |
| 4897 | pZip->m_archive_size = 0; |
| 4898 | pZip->m_central_directory_file_ofs = 0; |
| 4899 | pZip->m_total_files = 0; |
| 4900 | |
| 4901 | if (NULL == (pZip->m_pState = (mz_zip_internal_state *)pZip->m_pAlloc( |
| 4902 | pZip->m_pAlloc_opaque, 1, sizeof(mz_zip_internal_state)))) |
| 4903 | return MZ_FALSE; |
| 4904 | memset(pZip->m_pState, 0, sizeof(mz_zip_internal_state)); |
| 4905 | MZ_ZIP_ARRAY_SET_ELEMENT_SIZE(&pZip->m_pState->m_central_dir, |
| 4906 | sizeof(mz_uint8)); |
| 4907 | MZ_ZIP_ARRAY_SET_ELEMENT_SIZE(&pZip->m_pState->m_central_dir_offsets, |
| 4908 | sizeof(mz_uint32)); |
| 4909 | MZ_ZIP_ARRAY_SET_ELEMENT_SIZE(&pZip->m_pState->m_sorted_central_dir_offsets, |
| 4910 | sizeof(mz_uint32)); |
| 4911 | return MZ_TRUE; |
| 4912 | } |
| 4913 | |
| 4914 | static MZ_FORCEINLINE mz_bool |
| 4915 | mz_zip_reader_filename_less(const mz_zip_array *pCentral_dir_array, |
| 4916 | const mz_zip_array *pCentral_dir_offsets, |
| 4917 | mz_uint l_index, mz_uint r_index) { |
| 4918 | const mz_uint8 *pL = &MZ_ZIP_ARRAY_ELEMENT( |
| 4919 | pCentral_dir_array, mz_uint8, |
| 4920 | MZ_ZIP_ARRAY_ELEMENT(pCentral_dir_offsets, mz_uint32, |
| 4921 | l_index)), |
| 4922 | *pE; |
| 4923 | const mz_uint8 *pR = &MZ_ZIP_ARRAY_ELEMENT( |
| 4924 | pCentral_dir_array, mz_uint8, |
| 4925 | MZ_ZIP_ARRAY_ELEMENT(pCentral_dir_offsets, mz_uint32, r_index)); |
| 4926 | mz_uint l_len = MZ_READ_LE16(pL + MZ_ZIP_CDH_FILENAME_LEN_OFS), |
| 4927 | r_len = MZ_READ_LE16(pR + MZ_ZIP_CDH_FILENAME_LEN_OFS); |
| 4928 | mz_uint8 l = 0, r = 0; |
| 4929 | pL += MZ_ZIP_CENTRAL_DIR_HEADER_SIZE; |
| 4930 | pR += MZ_ZIP_CENTRAL_DIR_HEADER_SIZE; |
| 4931 | pE = pL + MZ_MIN(l_len, r_len); |
| 4932 | while (pL < pE) { |
| 4933 | if ((l = MZ_TOLOWER(*pL)) != (r = MZ_TOLOWER(*pR))) break; |
| 4934 | pL++; |
| 4935 | pR++; |
| 4936 | } |
| 4937 | return (pL == pE) ? (l_len < r_len) : (l < r); |
| 4938 | } |
| 4939 | |
| 4940 | #define MZ_SWAP_UINT32(a, b) \ |
| 4941 | do { \ |
| 4942 | mz_uint32 t = a; \ |
| 4943 | a = b; \ |
| 4944 | b = t; \ |
| 4945 | } \ |
| 4946 | MZ_MACRO_END |
| 4947 | |
| 4948 | // Heap sort of lowercased filenames, used to help accelerate plain central |
| 4949 | // directory searches by mz_zip_reader_locate_file(). (Could also use qsort(), |
| 4950 | // but it could allocate memory.) |
| 4951 | static void mz_zip_reader_sort_central_dir_offsets_by_filename( |
| 4952 | mz_zip_archive *pZip) { |
| 4953 | mz_zip_internal_state *pState = pZip->m_pState; |
| 4954 | const mz_zip_array *pCentral_dir_offsets = &pState->m_central_dir_offsets; |
| 4955 | const mz_zip_array *pCentral_dir = &pState->m_central_dir; |
| 4956 | mz_uint32 *pIndices = &MZ_ZIP_ARRAY_ELEMENT( |
| 4957 | &pState->m_sorted_central_dir_offsets, mz_uint32, 0); |
| 4958 | const int size = pZip->m_total_files; |
| 4959 | int start = (size - 2) >> 1, end; |
| 4960 | while (start >= 0) { |
| 4961 | int child, root = start; |
| 4962 | for (;;) { |
| 4963 | if ((child = (root << 1) + 1) >= size) break; |
| 4964 | child += |
| 4965 | (((child + 1) < size) && |
| 4966 | (mz_zip_reader_filename_less(pCentral_dir, pCentral_dir_offsets, |
| 4967 | pIndices[child], pIndices[child + 1]))); |
| 4968 | if (!mz_zip_reader_filename_less(pCentral_dir, pCentral_dir_offsets, |
| 4969 | pIndices[root], pIndices[child])) |
| 4970 | break; |
| 4971 | MZ_SWAP_UINT32(pIndices[root], pIndices[child]); |
| 4972 | root = child; |
| 4973 | } |
| 4974 | start--; |
| 4975 | } |
| 4976 | |
| 4977 | end = size - 1; |
| 4978 | while (end > 0) { |
| 4979 | int child, root = 0; |
| 4980 | MZ_SWAP_UINT32(pIndices[end], pIndices[0]); |
| 4981 | for (;;) { |
| 4982 | if ((child = (root << 1) + 1) >= end) break; |
| 4983 | child += |
| 4984 | (((child + 1) < end) && |
| 4985 | mz_zip_reader_filename_less(pCentral_dir, pCentral_dir_offsets, |
| 4986 | pIndices[child], pIndices[child + 1])); |
| 4987 | if (!mz_zip_reader_filename_less(pCentral_dir, pCentral_dir_offsets, |
| 4988 | pIndices[root], pIndices[child])) |
| 4989 | break; |
| 4990 | MZ_SWAP_UINT32(pIndices[root], pIndices[child]); |
| 4991 | root = child; |
| 4992 | } |
| 4993 | end--; |
| 4994 | } |
| 4995 | } |
| 4996 | |
| 4997 | static mz_bool mz_zip_reader_read_central_dir(mz_zip_archive *pZip, |
| 4998 | mz_uint32 flags) { |
| 4999 | mz_uint cdir_size, num_this_disk, cdir_disk_index; |
| 5000 | mz_uint64 cdir_ofs; |
| 5001 | mz_int64 cur_file_ofs; |
| 5002 | const mz_uint8 *p; |
| 5003 | mz_uint32 buf_u32[4096 / sizeof(mz_uint32)]; |
| 5004 | mz_uint8 *pBuf = (mz_uint8 *)buf_u32; |
| 5005 | mz_bool sort_central_dir = |
| 5006 | ((flags & MZ_ZIP_FLAG_DO_NOT_SORT_CENTRAL_DIRECTORY) == 0); |
| 5007 | // Basic sanity checks - reject files which are too small, and check the first |
| 5008 | // 4 bytes of the file to make sure a local header is there. |
| 5009 | if (pZip->m_archive_size < MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIZE) |
| 5010 | return MZ_FALSE; |
| 5011 | // Find the end of central directory record by scanning the file from the end |
| 5012 | // towards the beginning. |
| 5013 | cur_file_ofs = |
| 5014 | MZ_MAX((mz_int64)pZip->m_archive_size - (mz_int64)sizeof(buf_u32), 0); |
| 5015 | for (;;) { |
| 5016 | int i, |
| 5017 | n = (int)MZ_MIN(sizeof(buf_u32), pZip->m_archive_size - cur_file_ofs); |
| 5018 | if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pBuf, n) != (mz_uint)n) |
| 5019 | return MZ_FALSE; |
| 5020 | for (i = n - 4; i >= 0; --i) |
| 5021 | if (MZ_READ_LE32(pBuf + i) == MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIG) break; |
| 5022 | if (i >= 0) { |
| 5023 | cur_file_ofs += i; |
| 5024 | break; |
| 5025 | } |
| 5026 | if ((!cur_file_ofs) || ((pZip->m_archive_size - cur_file_ofs) >= |
| 5027 | (0xFFFF + MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIZE))) |
| 5028 | return MZ_FALSE; |
| 5029 | cur_file_ofs = MZ_MAX(cur_file_ofs - (sizeof(buf_u32) - 3), 0); |
| 5030 | } |
| 5031 | // Read and verify the end of central directory record. |
| 5032 | if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pBuf, |
| 5033 | MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIZE) != |
| 5034 | MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIZE) |
| 5035 | return MZ_FALSE; |
| 5036 | if ((MZ_READ_LE32(pBuf + MZ_ZIP_ECDH_SIG_OFS) != |
| 5037 | MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIG) || |
| 5038 | ((pZip->m_total_files = |
| 5039 | MZ_READ_LE16(pBuf + MZ_ZIP_ECDH_CDIR_TOTAL_ENTRIES_OFS)) != |
| 5040 | MZ_READ_LE16(pBuf + MZ_ZIP_ECDH_CDIR_NUM_ENTRIES_ON_DISK_OFS))) |
| 5041 | return MZ_FALSE; |
| 5042 | |
| 5043 | num_this_disk = MZ_READ_LE16(pBuf + MZ_ZIP_ECDH_NUM_THIS_DISK_OFS); |
| 5044 | cdir_disk_index = MZ_READ_LE16(pBuf + MZ_ZIP_ECDH_NUM_DISK_CDIR_OFS); |
| 5045 | if (((num_this_disk | cdir_disk_index) != 0) && |
| 5046 | ((num_this_disk != 1) || (cdir_disk_index != 1))) |
| 5047 | return MZ_FALSE; |
| 5048 | |
| 5049 | if ((cdir_size = MZ_READ_LE32(pBuf + MZ_ZIP_ECDH_CDIR_SIZE_OFS)) < |
| 5050 | pZip->m_total_files * MZ_ZIP_CENTRAL_DIR_HEADER_SIZE) |
| 5051 | return MZ_FALSE; |
| 5052 | |
| 5053 | cdir_ofs = MZ_READ_LE32(pBuf + MZ_ZIP_ECDH_CDIR_OFS_OFS); |
| 5054 | if ((cdir_ofs + (mz_uint64)cdir_size) > pZip->m_archive_size) return MZ_FALSE; |
| 5055 | |
| 5056 | pZip->m_central_directory_file_ofs = cdir_ofs; |
| 5057 | |
| 5058 | if (pZip->m_total_files) { |
| 5059 | mz_uint i, n; |
| 5060 | |
| 5061 | // Read the entire central directory into a heap block, and allocate another |
| 5062 | // heap block to hold the unsorted central dir file record offsets, and |
| 5063 | // another to hold the sorted indices. |
| 5064 | if ((!mz_zip_array_resize(pZip, &pZip->m_pState->m_central_dir, cdir_size, |
| 5065 | MZ_FALSE)) || |
| 5066 | (!mz_zip_array_resize(pZip, &pZip->m_pState->m_central_dir_offsets, |
| 5067 | pZip->m_total_files, MZ_FALSE))) |
| 5068 | return MZ_FALSE; |
| 5069 | |
| 5070 | if (sort_central_dir) { |
| 5071 | if (!mz_zip_array_resize(pZip, |
| 5072 | &pZip->m_pState->m_sorted_central_dir_offsets, |
| 5073 | pZip->m_total_files, MZ_FALSE)) |
| 5074 | return MZ_FALSE; |
| 5075 | } |
| 5076 | |
| 5077 | if (pZip->m_pRead(pZip->m_pIO_opaque, cdir_ofs, |
| 5078 | pZip->m_pState->m_central_dir.m_p, |
| 5079 | cdir_size) != cdir_size) |
| 5080 | return MZ_FALSE; |
| 5081 | |
| 5082 | // Now create an index into the central directory file records, do some |
| 5083 | // basic sanity checking on each record, and check for zip64 entries (which |
| 5084 | // are not yet supported). |
| 5085 | p = (const mz_uint8 *)pZip->m_pState->m_central_dir.m_p; |
| 5086 | for (n = cdir_size, i = 0; i < pZip->m_total_files; ++i) { |
| 5087 | mz_uint total_header_size, comp_size, decomp_size, disk_index; |
| 5088 | if ((n < MZ_ZIP_CENTRAL_DIR_HEADER_SIZE) || |
| 5089 | (MZ_READ_LE32(p) != MZ_ZIP_CENTRAL_DIR_HEADER_SIG)) |
| 5090 | return MZ_FALSE; |
| 5091 | MZ_ZIP_ARRAY_ELEMENT(&pZip->m_pState->m_central_dir_offsets, mz_uint32, |
| 5092 | i) = |
| 5093 | (mz_uint32)(p - (const mz_uint8 *)pZip->m_pState->m_central_dir.m_p); |
| 5094 | if (sort_central_dir) |
| 5095 | MZ_ZIP_ARRAY_ELEMENT(&pZip->m_pState->m_sorted_central_dir_offsets, |
| 5096 | mz_uint32, i) = i; |
| 5097 | comp_size = MZ_READ_LE32(p + MZ_ZIP_CDH_COMPRESSED_SIZE_OFS); |
| 5098 | decomp_size = MZ_READ_LE32(p + MZ_ZIP_CDH_DECOMPRESSED_SIZE_OFS); |
| 5099 | if (((!MZ_READ_LE32(p + MZ_ZIP_CDH_METHOD_OFS)) && |
| 5100 | (decomp_size != comp_size)) || |
| 5101 | (decomp_size && !comp_size) || (decomp_size == 0xFFFFFFFF) || |
| 5102 | (comp_size == 0xFFFFFFFF)) |
| 5103 | return MZ_FALSE; |
| 5104 | disk_index = MZ_READ_LE16(p + MZ_ZIP_CDH_DISK_START_OFS); |
| 5105 | if ((disk_index != num_this_disk) && (disk_index != 1)) return MZ_FALSE; |
| 5106 | if (((mz_uint64)MZ_READ_LE32(p + MZ_ZIP_CDH_LOCAL_HEADER_OFS) + |
| 5107 | MZ_ZIP_LOCAL_DIR_HEADER_SIZE + comp_size) > pZip->m_archive_size) |
| 5108 | return MZ_FALSE; |
| 5109 | if ((total_header_size = MZ_ZIP_CENTRAL_DIR_HEADER_SIZE + |
| 5110 | MZ_READ_LE16(p + MZ_ZIP_CDH_FILENAME_LEN_OFS) + |
| 5111 | MZ_READ_LE16(p + MZ_ZIP_CDH_EXTRA_LEN_OFS) + |
| 5112 | MZ_READ_LE16(p + MZ_ZIP_CDH_COMMENT_LEN_OFS)) > |
| 5113 | n) |
| 5114 | return MZ_FALSE; |
| 5115 | n -= total_header_size; |
| 5116 | p += total_header_size; |
| 5117 | } |
| 5118 | } |
| 5119 | |
| 5120 | if (sort_central_dir) |
| 5121 | mz_zip_reader_sort_central_dir_offsets_by_filename(pZip); |
| 5122 | |
| 5123 | return MZ_TRUE; |
| 5124 | } |
| 5125 | |
| 5126 | mz_bool mz_zip_reader_init(mz_zip_archive *pZip, mz_uint64 size, |
| 5127 | mz_uint32 flags) { |
| 5128 | if ((!pZip) || (!pZip->m_pRead)) return MZ_FALSE; |
| 5129 | if (!mz_zip_reader_init_internal(pZip, flags)) return MZ_FALSE; |
| 5130 | pZip->m_archive_size = size; |
| 5131 | if (!mz_zip_reader_read_central_dir(pZip, flags)) { |
| 5132 | mz_zip_reader_end(pZip); |
| 5133 | return MZ_FALSE; |
| 5134 | } |
| 5135 | return MZ_TRUE; |
| 5136 | } |
| 5137 | |
| 5138 | static size_t mz_zip_mem_read_func(void *pOpaque, mz_uint64 file_ofs, |
| 5139 | void *pBuf, size_t n) { |
| 5140 | mz_zip_archive *pZip = (mz_zip_archive *)pOpaque; |
| 5141 | size_t s = (file_ofs >= pZip->m_archive_size) |
| 5142 | ? 0 |
| 5143 | : (size_t)MZ_MIN(pZip->m_archive_size - file_ofs, n); |
| 5144 | memcpy(pBuf, (const mz_uint8 *)pZip->m_pState->m_pMem + file_ofs, s); |
| 5145 | return s; |
| 5146 | } |
| 5147 | |
| 5148 | mz_bool mz_zip_reader_init_mem(mz_zip_archive *pZip, const void *pMem, |
| 5149 | size_t size, mz_uint32 flags) { |
| 5150 | if (!mz_zip_reader_init_internal(pZip, flags)) return MZ_FALSE; |
| 5151 | pZip->m_archive_size = size; |
| 5152 | pZip->m_pRead = mz_zip_mem_read_func; |
| 5153 | pZip->m_pIO_opaque = pZip; |
| 5154 | #ifdef __cplusplus |
| 5155 | pZip->m_pState->m_pMem = const_cast<void *>(pMem); |
| 5156 | #else |
| 5157 | pZip->m_pState->m_pMem = (void *)pMem; |
| 5158 | #endif |
| 5159 | pZip->m_pState->m_mem_size = size; |
| 5160 | if (!mz_zip_reader_read_central_dir(pZip, flags)) { |
| 5161 | mz_zip_reader_end(pZip); |
| 5162 | return MZ_FALSE; |
| 5163 | } |
| 5164 | return MZ_TRUE; |
| 5165 | } |
| 5166 | |
| 5167 | #ifndef MINIZ_NO_STDIO |
| 5168 | static size_t mz_zip_file_read_func(void *pOpaque, mz_uint64 file_ofs, |
| 5169 | void *pBuf, size_t n) { |
| 5170 | mz_zip_archive *pZip = (mz_zip_archive *)pOpaque; |
| 5171 | mz_int64 cur_ofs = MZ_FTELL64(pZip->m_pState->m_pFile); |
| 5172 | if (((mz_int64)file_ofs < 0) || |
| 5173 | (((cur_ofs != (mz_int64)file_ofs)) && |
| 5174 | (MZ_FSEEK64(pZip->m_pState->m_pFile, (mz_int64)file_ofs, SEEK_SET)))) |
| 5175 | return 0; |
| 5176 | return MZ_FREAD(pBuf, 1, n, pZip->m_pState->m_pFile); |
| 5177 | } |
| 5178 | |
| 5179 | mz_bool mz_zip_reader_init_file(mz_zip_archive *pZip, const char *pFilename, |
| 5180 | mz_uint32 flags) { |
| 5181 | mz_uint64 file_size; |
| 5182 | MZ_FILE *pFile = MZ_FOPEN(pFilename, "rb" ); |
| 5183 | if (!pFile) return MZ_FALSE; |
| 5184 | if (MZ_FSEEK64(pFile, 0, SEEK_END)) { |
| 5185 | MZ_FCLOSE(pFile); |
| 5186 | return MZ_FALSE; |
| 5187 | } |
| 5188 | file_size = MZ_FTELL64(pFile); |
| 5189 | if (!mz_zip_reader_init_internal(pZip, flags)) { |
| 5190 | MZ_FCLOSE(pFile); |
| 5191 | return MZ_FALSE; |
| 5192 | } |
| 5193 | pZip->m_pRead = mz_zip_file_read_func; |
| 5194 | pZip->m_pIO_opaque = pZip; |
| 5195 | pZip->m_pState->m_pFile = pFile; |
| 5196 | pZip->m_archive_size = file_size; |
| 5197 | if (!mz_zip_reader_read_central_dir(pZip, flags)) { |
| 5198 | mz_zip_reader_end(pZip); |
| 5199 | return MZ_FALSE; |
| 5200 | } |
| 5201 | return MZ_TRUE; |
| 5202 | } |
| 5203 | #endif // #ifndef MINIZ_NO_STDIO |
| 5204 | |
| 5205 | mz_uint mz_zip_reader_get_num_files(mz_zip_archive *pZip) { |
| 5206 | return pZip ? pZip->m_total_files : 0; |
| 5207 | } |
| 5208 | |
| 5209 | static MZ_FORCEINLINE const mz_uint8 *mz_zip_reader_get_cdh( |
| 5210 | mz_zip_archive *pZip, mz_uint file_index) { |
| 5211 | if ((!pZip) || (!pZip->m_pState) || (file_index >= pZip->m_total_files) || |
| 5212 | (pZip->m_zip_mode != MZ_ZIP_MODE_READING)) |
| 5213 | return NULL; |
| 5214 | return &MZ_ZIP_ARRAY_ELEMENT( |
| 5215 | &pZip->m_pState->m_central_dir, mz_uint8, |
| 5216 | MZ_ZIP_ARRAY_ELEMENT(&pZip->m_pState->m_central_dir_offsets, mz_uint32, |
| 5217 | file_index)); |
| 5218 | } |
| 5219 | |
| 5220 | mz_bool mz_zip_reader_is_file_encrypted(mz_zip_archive *pZip, |
| 5221 | mz_uint file_index) { |
| 5222 | mz_uint m_bit_flag; |
| 5223 | const mz_uint8 *p = mz_zip_reader_get_cdh(pZip, file_index); |
| 5224 | if (!p) return MZ_FALSE; |
| 5225 | m_bit_flag = MZ_READ_LE16(p + MZ_ZIP_CDH_BIT_FLAG_OFS); |
| 5226 | return (m_bit_flag & 1); |
| 5227 | } |
| 5228 | |
| 5229 | mz_bool mz_zip_reader_is_file_a_directory(mz_zip_archive *pZip, |
| 5230 | mz_uint file_index) { |
| 5231 | mz_uint filename_len, external_attr; |
| 5232 | const mz_uint8 *p = mz_zip_reader_get_cdh(pZip, file_index); |
| 5233 | if (!p) return MZ_FALSE; |
| 5234 | |
| 5235 | // First see if the filename ends with a '/' character. |
| 5236 | filename_len = MZ_READ_LE16(p + MZ_ZIP_CDH_FILENAME_LEN_OFS); |
| 5237 | if (filename_len) { |
| 5238 | if (*(p + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE + filename_len - 1) == '/') |
| 5239 | return MZ_TRUE; |
| 5240 | } |
| 5241 | |
| 5242 | // Bugfix: This code was also checking if the internal attribute was non-zero, |
| 5243 | // which wasn't correct. |
| 5244 | // Most/all zip writers (hopefully) set DOS file/directory attributes in the |
| 5245 | // low 16-bits, so check for the DOS directory flag and ignore the source OS |
| 5246 | // ID in the created by field. |
| 5247 | // FIXME: Remove this check? Is it necessary - we already check the filename. |
| 5248 | external_attr = MZ_READ_LE32(p + MZ_ZIP_CDH_EXTERNAL_ATTR_OFS); |
| 5249 | if ((external_attr & 0x10) != 0) return MZ_TRUE; |
| 5250 | |
| 5251 | return MZ_FALSE; |
| 5252 | } |
| 5253 | |
| 5254 | mz_bool mz_zip_reader_file_stat(mz_zip_archive *pZip, mz_uint file_index, |
| 5255 | mz_zip_archive_file_stat *pStat) { |
| 5256 | mz_uint n; |
| 5257 | const mz_uint8 *p = mz_zip_reader_get_cdh(pZip, file_index); |
| 5258 | if ((!p) || (!pStat)) return MZ_FALSE; |
| 5259 | |
| 5260 | // Unpack the central directory record. |
| 5261 | pStat->m_file_index = file_index; |
| 5262 | pStat->m_central_dir_ofs = MZ_ZIP_ARRAY_ELEMENT( |
| 5263 | &pZip->m_pState->m_central_dir_offsets, mz_uint32, file_index); |
| 5264 | pStat->m_version_made_by = MZ_READ_LE16(p + MZ_ZIP_CDH_VERSION_MADE_BY_OFS); |
| 5265 | pStat->m_version_needed = MZ_READ_LE16(p + MZ_ZIP_CDH_VERSION_NEEDED_OFS); |
| 5266 | pStat->m_bit_flag = MZ_READ_LE16(p + MZ_ZIP_CDH_BIT_FLAG_OFS); |
| 5267 | pStat->m_method = MZ_READ_LE16(p + MZ_ZIP_CDH_METHOD_OFS); |
| 5268 | #ifndef MINIZ_NO_TIME |
| 5269 | pStat->m_time = |
| 5270 | mz_zip_dos_to_time_t(MZ_READ_LE16(p + MZ_ZIP_CDH_FILE_TIME_OFS), |
| 5271 | MZ_READ_LE16(p + MZ_ZIP_CDH_FILE_DATE_OFS)); |
| 5272 | #endif |
| 5273 | pStat->m_crc32 = MZ_READ_LE32(p + MZ_ZIP_CDH_CRC32_OFS); |
| 5274 | pStat->m_comp_size = MZ_READ_LE32(p + MZ_ZIP_CDH_COMPRESSED_SIZE_OFS); |
| 5275 | pStat->m_uncomp_size = MZ_READ_LE32(p + MZ_ZIP_CDH_DECOMPRESSED_SIZE_OFS); |
| 5276 | pStat->m_internal_attr = MZ_READ_LE16(p + MZ_ZIP_CDH_INTERNAL_ATTR_OFS); |
| 5277 | pStat->m_external_attr = MZ_READ_LE32(p + MZ_ZIP_CDH_EXTERNAL_ATTR_OFS); |
| 5278 | pStat->m_local_header_ofs = MZ_READ_LE32(p + MZ_ZIP_CDH_LOCAL_HEADER_OFS); |
| 5279 | |
| 5280 | // Copy as much of the filename and comment as possible. |
| 5281 | n = MZ_READ_LE16(p + MZ_ZIP_CDH_FILENAME_LEN_OFS); |
| 5282 | n = MZ_MIN(n, MZ_ZIP_MAX_ARCHIVE_FILENAME_SIZE - 1); |
| 5283 | memcpy(pStat->m_filename, p + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE, n); |
| 5284 | pStat->m_filename[n] = '\0'; |
| 5285 | |
| 5286 | n = MZ_READ_LE16(p + MZ_ZIP_CDH_COMMENT_LEN_OFS); |
| 5287 | n = MZ_MIN(n, MZ_ZIP_MAX_ARCHIVE_FILE_COMMENT_SIZE - 1); |
| 5288 | pStat->m_comment_size = n; |
| 5289 | memcpy(pStat->m_comment, |
| 5290 | p + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE + |
| 5291 | MZ_READ_LE16(p + MZ_ZIP_CDH_FILENAME_LEN_OFS) + |
| 5292 | MZ_READ_LE16(p + MZ_ZIP_CDH_EXTRA_LEN_OFS), |
| 5293 | n); |
| 5294 | pStat->m_comment[n] = '\0'; |
| 5295 | |
| 5296 | return MZ_TRUE; |
| 5297 | } |
| 5298 | |
| 5299 | mz_uint mz_zip_reader_get_filename(mz_zip_archive *pZip, mz_uint file_index, |
| 5300 | char *pFilename, mz_uint filename_buf_size) { |
| 5301 | mz_uint n; |
| 5302 | const mz_uint8 *p = mz_zip_reader_get_cdh(pZip, file_index); |
| 5303 | if (!p) { |
| 5304 | if (filename_buf_size) pFilename[0] = '\0'; |
| 5305 | return 0; |
| 5306 | } |
| 5307 | n = MZ_READ_LE16(p + MZ_ZIP_CDH_FILENAME_LEN_OFS); |
| 5308 | if (filename_buf_size) { |
| 5309 | n = MZ_MIN(n, filename_buf_size - 1); |
| 5310 | memcpy(pFilename, p + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE, n); |
| 5311 | pFilename[n] = '\0'; |
| 5312 | } |
| 5313 | return n + 1; |
| 5314 | } |
| 5315 | |
| 5316 | static MZ_FORCEINLINE mz_bool mz_zip_reader_string_equal(const char *pA, |
| 5317 | const char *pB, |
| 5318 | mz_uint len, |
| 5319 | mz_uint flags) { |
| 5320 | mz_uint i; |
| 5321 | if (flags & MZ_ZIP_FLAG_CASE_SENSITIVE) return 0 == memcmp(pA, pB, len); |
| 5322 | for (i = 0; i < len; ++i) |
| 5323 | if (MZ_TOLOWER(pA[i]) != MZ_TOLOWER(pB[i])) return MZ_FALSE; |
| 5324 | return MZ_TRUE; |
| 5325 | } |
| 5326 | |
| 5327 | static MZ_FORCEINLINE int mz_zip_reader_filename_compare( |
| 5328 | const mz_zip_array *pCentral_dir_array, |
| 5329 | const mz_zip_array *pCentral_dir_offsets, mz_uint l_index, const char *pR, |
| 5330 | mz_uint r_len) { |
| 5331 | const mz_uint8 *pL = &MZ_ZIP_ARRAY_ELEMENT( |
| 5332 | pCentral_dir_array, mz_uint8, |
| 5333 | MZ_ZIP_ARRAY_ELEMENT(pCentral_dir_offsets, mz_uint32, |
| 5334 | l_index)), |
| 5335 | *pE; |
| 5336 | mz_uint l_len = MZ_READ_LE16(pL + MZ_ZIP_CDH_FILENAME_LEN_OFS); |
| 5337 | mz_uint8 l = 0, r = 0; |
| 5338 | pL += MZ_ZIP_CENTRAL_DIR_HEADER_SIZE; |
| 5339 | pE = pL + MZ_MIN(l_len, r_len); |
| 5340 | while (pL < pE) { |
| 5341 | if ((l = MZ_TOLOWER(*pL)) != (r = MZ_TOLOWER(*pR))) break; |
| 5342 | pL++; |
| 5343 | pR++; |
| 5344 | } |
| 5345 | return (pL == pE) ? (int)(l_len - r_len) : (l - r); |
| 5346 | } |
| 5347 | |
| 5348 | static int mz_zip_reader_locate_file_binary_search(mz_zip_archive *pZip, |
| 5349 | const char *pFilename) { |
| 5350 | mz_zip_internal_state *pState = pZip->m_pState; |
| 5351 | const mz_zip_array *pCentral_dir_offsets = &pState->m_central_dir_offsets; |
| 5352 | const mz_zip_array *pCentral_dir = &pState->m_central_dir; |
| 5353 | mz_uint32 *pIndices = &MZ_ZIP_ARRAY_ELEMENT( |
| 5354 | &pState->m_sorted_central_dir_offsets, mz_uint32, 0); |
| 5355 | const int size = pZip->m_total_files; |
| 5356 | const mz_uint filename_len = (mz_uint)strlen(pFilename); |
| 5357 | int l = 0, h = size - 1; |
| 5358 | while (l <= h) { |
| 5359 | int m = (l + h) >> 1, file_index = pIndices[m], |
| 5360 | comp = |
| 5361 | mz_zip_reader_filename_compare(pCentral_dir, pCentral_dir_offsets, |
| 5362 | file_index, pFilename, filename_len); |
| 5363 | if (!comp) |
| 5364 | return file_index; |
| 5365 | else if (comp < 0) |
| 5366 | l = m + 1; |
| 5367 | else |
| 5368 | h = m - 1; |
| 5369 | } |
| 5370 | return -1; |
| 5371 | } |
| 5372 | |
| 5373 | int mz_zip_reader_locate_file(mz_zip_archive *pZip, const char *pName, |
| 5374 | const char *pComment, mz_uint flags) { |
| 5375 | mz_uint file_index; |
| 5376 | size_t name_len, comment_len; |
| 5377 | if ((!pZip) || (!pZip->m_pState) || (!pName) || |
| 5378 | (pZip->m_zip_mode != MZ_ZIP_MODE_READING)) |
| 5379 | return -1; |
| 5380 | if (((flags & (MZ_ZIP_FLAG_IGNORE_PATH | MZ_ZIP_FLAG_CASE_SENSITIVE)) == 0) && |
| 5381 | (!pComment) && (pZip->m_pState->m_sorted_central_dir_offsets.m_size)) |
| 5382 | return mz_zip_reader_locate_file_binary_search(pZip, pName); |
| 5383 | name_len = strlen(pName); |
| 5384 | if (name_len > 0xFFFF) return -1; |
| 5385 | comment_len = pComment ? strlen(pComment) : 0; |
| 5386 | if (comment_len > 0xFFFF) return -1; |
| 5387 | for (file_index = 0; file_index < pZip->m_total_files; file_index++) { |
| 5388 | const mz_uint8 *pHeader = &MZ_ZIP_ARRAY_ELEMENT( |
| 5389 | &pZip->m_pState->m_central_dir, mz_uint8, |
| 5390 | MZ_ZIP_ARRAY_ELEMENT(&pZip->m_pState->m_central_dir_offsets, mz_uint32, |
| 5391 | file_index)); |
| 5392 | mz_uint filename_len = MZ_READ_LE16(pHeader + MZ_ZIP_CDH_FILENAME_LEN_OFS); |
| 5393 | const char *pFilename = |
| 5394 | (const char *)pHeader + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE; |
| 5395 | if (filename_len < name_len) continue; |
| 5396 | if (comment_len) { |
| 5397 | mz_uint file_extra_len = MZ_READ_LE16(pHeader + MZ_ZIP_CDH_EXTRA_LEN_OFS), |
| 5398 | file_comment_len = |
| 5399 | MZ_READ_LE16(pHeader + MZ_ZIP_CDH_COMMENT_LEN_OFS); |
| 5400 | const char *pFile_comment = pFilename + filename_len + file_extra_len; |
| 5401 | if ((file_comment_len != comment_len) || |
| 5402 | (!mz_zip_reader_string_equal(pComment, pFile_comment, |
| 5403 | file_comment_len, flags))) |
| 5404 | continue; |
| 5405 | } |
| 5406 | if ((flags & MZ_ZIP_FLAG_IGNORE_PATH) && (filename_len)) { |
| 5407 | int ofs = filename_len - 1; |
| 5408 | do { |
| 5409 | if ((pFilename[ofs] == '/') || (pFilename[ofs] == '\\') || |
| 5410 | (pFilename[ofs] == ':')) |
| 5411 | break; |
| 5412 | } while (--ofs >= 0); |
| 5413 | ofs++; |
| 5414 | pFilename += ofs; |
| 5415 | filename_len -= ofs; |
| 5416 | } |
| 5417 | if ((filename_len == name_len) && |
| 5418 | (mz_zip_reader_string_equal(pName, pFilename, filename_len, flags))) |
| 5419 | return file_index; |
| 5420 | } |
| 5421 | return -1; |
| 5422 | } |
| 5423 | |
| 5424 | mz_bool mz_zip_reader_extract_to_mem_no_alloc(mz_zip_archive *pZip, |
| 5425 | mz_uint file_index, void *pBuf, |
| 5426 | size_t buf_size, mz_uint flags, |
| 5427 | void *pUser_read_buf, |
| 5428 | size_t user_read_buf_size) { |
| 5429 | int status = TINFL_STATUS_DONE; |
| 5430 | mz_uint64 needed_size, cur_file_ofs, comp_remaining, |
| 5431 | out_buf_ofs = 0, read_buf_size, read_buf_ofs = 0, read_buf_avail; |
| 5432 | mz_zip_archive_file_stat file_stat; |
| 5433 | void *pRead_buf; |
| 5434 | mz_uint32 |
| 5435 | local_header_u32[(MZ_ZIP_LOCAL_DIR_HEADER_SIZE + sizeof(mz_uint32) - 1) / |
| 5436 | sizeof(mz_uint32)]; |
| 5437 | mz_uint8 *pLocal_header = (mz_uint8 *)local_header_u32; |
| 5438 | tinfl_decompressor inflator; |
| 5439 | |
| 5440 | if ((buf_size) && (!pBuf)) return MZ_FALSE; |
| 5441 | |
| 5442 | if (!mz_zip_reader_file_stat(pZip, file_index, &file_stat)) return MZ_FALSE; |
| 5443 | |
| 5444 | // Empty file, or a directory (but not always a directory - I've seen odd zips |
| 5445 | // with directories that have compressed data which inflates to 0 bytes) |
| 5446 | if (!file_stat.m_comp_size) return MZ_TRUE; |
| 5447 | |
| 5448 | // Entry is a subdirectory (I've seen old zips with dir entries which have |
| 5449 | // compressed deflate data which inflates to 0 bytes, but these entries claim |
| 5450 | // to uncompress to 512 bytes in the headers). |
| 5451 | // I'm torn how to handle this case - should it fail instead? |
| 5452 | if (mz_zip_reader_is_file_a_directory(pZip, file_index)) return MZ_TRUE; |
| 5453 | |
| 5454 | // Encryption and patch files are not supported. |
| 5455 | if (file_stat.m_bit_flag & (1 | 32)) return MZ_FALSE; |
| 5456 | |
| 5457 | // This function only supports stored and deflate. |
| 5458 | if ((!(flags & MZ_ZIP_FLAG_COMPRESSED_DATA)) && (file_stat.m_method != 0) && |
| 5459 | (file_stat.m_method != MZ_DEFLATED)) |
| 5460 | return MZ_FALSE; |
| 5461 | |
| 5462 | // Ensure supplied output buffer is large enough. |
| 5463 | needed_size = (flags & MZ_ZIP_FLAG_COMPRESSED_DATA) ? file_stat.m_comp_size |
| 5464 | : file_stat.m_uncomp_size; |
| 5465 | if (buf_size < needed_size) return MZ_FALSE; |
| 5466 | |
| 5467 | // Read and parse the local directory entry. |
| 5468 | cur_file_ofs = file_stat.m_local_header_ofs; |
| 5469 | if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pLocal_header, |
| 5470 | MZ_ZIP_LOCAL_DIR_HEADER_SIZE) != |
| 5471 | MZ_ZIP_LOCAL_DIR_HEADER_SIZE) |
| 5472 | return MZ_FALSE; |
| 5473 | if (MZ_READ_LE32(pLocal_header) != MZ_ZIP_LOCAL_DIR_HEADER_SIG) |
| 5474 | return MZ_FALSE; |
| 5475 | |
| 5476 | cur_file_ofs += MZ_ZIP_LOCAL_DIR_HEADER_SIZE + |
| 5477 | MZ_READ_LE16(pLocal_header + MZ_ZIP_LDH_FILENAME_LEN_OFS) + |
| 5478 | MZ_READ_LE16(pLocal_header + MZ_ZIP_LDH_EXTRA_LEN_OFS); |
| 5479 | if ((cur_file_ofs + file_stat.m_comp_size) > pZip->m_archive_size) |
| 5480 | return MZ_FALSE; |
| 5481 | |
| 5482 | if ((flags & MZ_ZIP_FLAG_COMPRESSED_DATA) || (!file_stat.m_method)) { |
| 5483 | // The file is stored or the caller has requested the compressed data. |
| 5484 | if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pBuf, |
| 5485 | (size_t)needed_size) != needed_size) |
| 5486 | return MZ_FALSE; |
| 5487 | return ((flags & MZ_ZIP_FLAG_COMPRESSED_DATA) != 0) || |
| 5488 | (mz_crc32(MZ_CRC32_INIT, (const mz_uint8 *)pBuf, |
| 5489 | (size_t)file_stat.m_uncomp_size) == file_stat.m_crc32); |
| 5490 | } |
| 5491 | |
| 5492 | // Decompress the file either directly from memory or from a file input |
| 5493 | // buffer. |
| 5494 | tinfl_init(&inflator); |
| 5495 | |
| 5496 | if (pZip->m_pState->m_pMem) { |
| 5497 | // Read directly from the archive in memory. |
| 5498 | pRead_buf = (mz_uint8 *)pZip->m_pState->m_pMem + cur_file_ofs; |
| 5499 | read_buf_size = read_buf_avail = file_stat.m_comp_size; |
| 5500 | comp_remaining = 0; |
| 5501 | } else if (pUser_read_buf) { |
| 5502 | // Use a user provided read buffer. |
| 5503 | if (!user_read_buf_size) return MZ_FALSE; |
| 5504 | pRead_buf = (mz_uint8 *)pUser_read_buf; |
| 5505 | read_buf_size = user_read_buf_size; |
| 5506 | read_buf_avail = 0; |
| 5507 | comp_remaining = file_stat.m_comp_size; |
| 5508 | } else { |
| 5509 | // Temporarily allocate a read buffer. |
| 5510 | read_buf_size = |
| 5511 | MZ_MIN(file_stat.m_comp_size, (mz_uint)MZ_ZIP_MAX_IO_BUF_SIZE); |
| 5512 | #ifdef _MSC_VER |
| 5513 | if (((0, sizeof(size_t) == sizeof(mz_uint32))) && |
| 5514 | (read_buf_size > 0x7FFFFFFF)) |
| 5515 | #else |
| 5516 | if (((sizeof(size_t) == sizeof(mz_uint32))) && (read_buf_size > 0x7FFFFFFF)) |
| 5517 | #endif |
| 5518 | return MZ_FALSE; |
| 5519 | if (NULL == (pRead_buf = pZip->m_pAlloc(pZip->m_pAlloc_opaque, 1, |
| 5520 | (size_t)read_buf_size))) |
| 5521 | return MZ_FALSE; |
| 5522 | read_buf_avail = 0; |
| 5523 | comp_remaining = file_stat.m_comp_size; |
| 5524 | } |
| 5525 | |
| 5526 | do { |
| 5527 | size_t in_buf_size, |
| 5528 | out_buf_size = (size_t)(file_stat.m_uncomp_size - out_buf_ofs); |
| 5529 | if ((!read_buf_avail) && (!pZip->m_pState->m_pMem)) { |
| 5530 | read_buf_avail = MZ_MIN(read_buf_size, comp_remaining); |
| 5531 | if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pRead_buf, |
| 5532 | (size_t)read_buf_avail) != read_buf_avail) { |
| 5533 | status = TINFL_STATUS_FAILED; |
| 5534 | break; |
| 5535 | } |
| 5536 | cur_file_ofs += read_buf_avail; |
| 5537 | comp_remaining -= read_buf_avail; |
| 5538 | read_buf_ofs = 0; |
| 5539 | } |
| 5540 | in_buf_size = (size_t)read_buf_avail; |
| 5541 | status = tinfl_decompress( |
| 5542 | &inflator, (mz_uint8 *)pRead_buf + read_buf_ofs, &in_buf_size, |
| 5543 | (mz_uint8 *)pBuf, (mz_uint8 *)pBuf + out_buf_ofs, &out_buf_size, |
| 5544 | TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF | |
| 5545 | (comp_remaining ? TINFL_FLAG_HAS_MORE_INPUT : 0)); |
| 5546 | read_buf_avail -= in_buf_size; |
| 5547 | read_buf_ofs += in_buf_size; |
| 5548 | out_buf_ofs += out_buf_size; |
| 5549 | } while (status == TINFL_STATUS_NEEDS_MORE_INPUT); |
| 5550 | |
| 5551 | if (status == TINFL_STATUS_DONE) { |
| 5552 | // Make sure the entire file was decompressed, and check its CRC. |
| 5553 | if ((out_buf_ofs != file_stat.m_uncomp_size) || |
| 5554 | (mz_crc32(MZ_CRC32_INIT, (const mz_uint8 *)pBuf, |
| 5555 | (size_t)file_stat.m_uncomp_size) != file_stat.m_crc32)) |
| 5556 | status = TINFL_STATUS_FAILED; |
| 5557 | } |
| 5558 | |
| 5559 | if ((!pZip->m_pState->m_pMem) && (!pUser_read_buf)) |
| 5560 | pZip->m_pFree(pZip->m_pAlloc_opaque, pRead_buf); |
| 5561 | |
| 5562 | return status == TINFL_STATUS_DONE; |
| 5563 | } |
| 5564 | |
| 5565 | mz_bool mz_zip_reader_extract_file_to_mem_no_alloc( |
| 5566 | mz_zip_archive *pZip, const char *pFilename, void *pBuf, size_t buf_size, |
| 5567 | mz_uint flags, void *pUser_read_buf, size_t user_read_buf_size) { |
| 5568 | int file_index = mz_zip_reader_locate_file(pZip, pFilename, NULL, flags); |
| 5569 | if (file_index < 0) return MZ_FALSE; |
| 5570 | return mz_zip_reader_extract_to_mem_no_alloc(pZip, file_index, pBuf, buf_size, |
| 5571 | flags, pUser_read_buf, |
| 5572 | user_read_buf_size); |
| 5573 | } |
| 5574 | |
| 5575 | mz_bool mz_zip_reader_extract_to_mem(mz_zip_archive *pZip, mz_uint file_index, |
| 5576 | void *pBuf, size_t buf_size, |
| 5577 | mz_uint flags) { |
| 5578 | return mz_zip_reader_extract_to_mem_no_alloc(pZip, file_index, pBuf, buf_size, |
| 5579 | flags, NULL, 0); |
| 5580 | } |
| 5581 | |
| 5582 | mz_bool mz_zip_reader_extract_file_to_mem(mz_zip_archive *pZip, |
| 5583 | const char *pFilename, void *pBuf, |
| 5584 | size_t buf_size, mz_uint flags) { |
| 5585 | return mz_zip_reader_extract_file_to_mem_no_alloc(pZip, pFilename, pBuf, |
| 5586 | buf_size, flags, NULL, 0); |
| 5587 | } |
| 5588 | |
| 5589 | void *mz_zip_reader_extract_to_heap(mz_zip_archive *pZip, mz_uint file_index, |
| 5590 | size_t *pSize, mz_uint flags) { |
| 5591 | mz_uint64 comp_size, uncomp_size, alloc_size; |
| 5592 | const mz_uint8 *p = mz_zip_reader_get_cdh(pZip, file_index); |
| 5593 | void *pBuf; |
| 5594 | |
| 5595 | if (pSize) *pSize = 0; |
| 5596 | if (!p) return NULL; |
| 5597 | |
| 5598 | comp_size = MZ_READ_LE32(p + MZ_ZIP_CDH_COMPRESSED_SIZE_OFS); |
| 5599 | uncomp_size = MZ_READ_LE32(p + MZ_ZIP_CDH_DECOMPRESSED_SIZE_OFS); |
| 5600 | |
| 5601 | alloc_size = (flags & MZ_ZIP_FLAG_COMPRESSED_DATA) ? comp_size : uncomp_size; |
| 5602 | #ifdef _MSC_VER |
| 5603 | if (((0, sizeof(size_t) == sizeof(mz_uint32))) && (alloc_size > 0x7FFFFFFF)) |
| 5604 | #else |
| 5605 | if (((sizeof(size_t) == sizeof(mz_uint32))) && (alloc_size > 0x7FFFFFFF)) |
| 5606 | #endif |
| 5607 | return NULL; |
| 5608 | if (NULL == |
| 5609 | (pBuf = pZip->m_pAlloc(pZip->m_pAlloc_opaque, 1, (size_t)alloc_size))) |
| 5610 | return NULL; |
| 5611 | |
| 5612 | if (!mz_zip_reader_extract_to_mem(pZip, file_index, pBuf, (size_t)alloc_size, |
| 5613 | flags)) { |
| 5614 | pZip->m_pFree(pZip->m_pAlloc_opaque, pBuf); |
| 5615 | return NULL; |
| 5616 | } |
| 5617 | |
| 5618 | if (pSize) *pSize = (size_t)alloc_size; |
| 5619 | return pBuf; |
| 5620 | } |
| 5621 | |
| 5622 | void *mz_zip_reader_extract_file_to_heap(mz_zip_archive *pZip, |
| 5623 | const char *pFilename, size_t *pSize, |
| 5624 | mz_uint flags) { |
| 5625 | int file_index = mz_zip_reader_locate_file(pZip, pFilename, NULL, flags); |
| 5626 | if (file_index < 0) { |
| 5627 | if (pSize) *pSize = 0; |
| 5628 | return MZ_FALSE; |
| 5629 | } |
| 5630 | return mz_zip_reader_extract_to_heap(pZip, file_index, pSize, flags); |
| 5631 | } |
| 5632 | |
| 5633 | mz_bool mz_zip_reader_extract_to_callback(mz_zip_archive *pZip, |
| 5634 | mz_uint file_index, |
| 5635 | mz_file_write_func pCallback, |
| 5636 | void *pOpaque, mz_uint flags) { |
| 5637 | int status = TINFL_STATUS_DONE; |
| 5638 | mz_uint file_crc32 = MZ_CRC32_INIT; |
| 5639 | mz_uint64 read_buf_size, read_buf_ofs = 0, read_buf_avail, comp_remaining, |
| 5640 | out_buf_ofs = 0, cur_file_ofs; |
| 5641 | mz_zip_archive_file_stat file_stat; |
| 5642 | void *pRead_buf = NULL; |
| 5643 | void *pWrite_buf = NULL; |
| 5644 | mz_uint32 |
| 5645 | local_header_u32[(MZ_ZIP_LOCAL_DIR_HEADER_SIZE + sizeof(mz_uint32) - 1) / |
| 5646 | sizeof(mz_uint32)]; |
| 5647 | mz_uint8 *pLocal_header = (mz_uint8 *)local_header_u32; |
| 5648 | |
| 5649 | if (!mz_zip_reader_file_stat(pZip, file_index, &file_stat)) return MZ_FALSE; |
| 5650 | |
| 5651 | // Empty file, or a directory (but not always a directory - I've seen odd zips |
| 5652 | // with directories that have compressed data which inflates to 0 bytes) |
| 5653 | if (!file_stat.m_comp_size) return MZ_TRUE; |
| 5654 | |
| 5655 | // Entry is a subdirectory (I've seen old zips with dir entries which have |
| 5656 | // compressed deflate data which inflates to 0 bytes, but these entries claim |
| 5657 | // to uncompress to 512 bytes in the headers). |
| 5658 | // I'm torn how to handle this case - should it fail instead? |
| 5659 | if (mz_zip_reader_is_file_a_directory(pZip, file_index)) return MZ_TRUE; |
| 5660 | |
| 5661 | // Encryption and patch files are not supported. |
| 5662 | if (file_stat.m_bit_flag & (1 | 32)) return MZ_FALSE; |
| 5663 | |
| 5664 | // This function only supports stored and deflate. |
| 5665 | if ((!(flags & MZ_ZIP_FLAG_COMPRESSED_DATA)) && (file_stat.m_method != 0) && |
| 5666 | (file_stat.m_method != MZ_DEFLATED)) |
| 5667 | return MZ_FALSE; |
| 5668 | |
| 5669 | // Read and parse the local directory entry. |
| 5670 | cur_file_ofs = file_stat.m_local_header_ofs; |
| 5671 | if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pLocal_header, |
| 5672 | MZ_ZIP_LOCAL_DIR_HEADER_SIZE) != |
| 5673 | MZ_ZIP_LOCAL_DIR_HEADER_SIZE) |
| 5674 | return MZ_FALSE; |
| 5675 | if (MZ_READ_LE32(pLocal_header) != MZ_ZIP_LOCAL_DIR_HEADER_SIG) |
| 5676 | return MZ_FALSE; |
| 5677 | |
| 5678 | cur_file_ofs += MZ_ZIP_LOCAL_DIR_HEADER_SIZE + |
| 5679 | MZ_READ_LE16(pLocal_header + MZ_ZIP_LDH_FILENAME_LEN_OFS) + |
| 5680 | MZ_READ_LE16(pLocal_header + MZ_ZIP_LDH_EXTRA_LEN_OFS); |
| 5681 | if ((cur_file_ofs + file_stat.m_comp_size) > pZip->m_archive_size) |
| 5682 | return MZ_FALSE; |
| 5683 | |
| 5684 | // Decompress the file either directly from memory or from a file input |
| 5685 | // buffer. |
| 5686 | if (pZip->m_pState->m_pMem) { |
| 5687 | pRead_buf = (mz_uint8 *)pZip->m_pState->m_pMem + cur_file_ofs; |
| 5688 | read_buf_size = read_buf_avail = file_stat.m_comp_size; |
| 5689 | comp_remaining = 0; |
| 5690 | } else { |
| 5691 | read_buf_size = |
| 5692 | MZ_MIN(file_stat.m_comp_size, (mz_uint)MZ_ZIP_MAX_IO_BUF_SIZE); |
| 5693 | if (NULL == (pRead_buf = pZip->m_pAlloc(pZip->m_pAlloc_opaque, 1, |
| 5694 | (size_t)read_buf_size))) |
| 5695 | return MZ_FALSE; |
| 5696 | read_buf_avail = 0; |
| 5697 | comp_remaining = file_stat.m_comp_size; |
| 5698 | } |
| 5699 | |
| 5700 | if ((flags & MZ_ZIP_FLAG_COMPRESSED_DATA) || (!file_stat.m_method)) { |
| 5701 | // The file is stored or the caller has requested the compressed data. |
| 5702 | if (pZip->m_pState->m_pMem) { |
| 5703 | #ifdef _MSC_VER |
| 5704 | if (((0, sizeof(size_t) == sizeof(mz_uint32))) && |
| 5705 | (file_stat.m_comp_size > 0xFFFFFFFF)) |
| 5706 | #else |
| 5707 | if (((sizeof(size_t) == sizeof(mz_uint32))) && |
| 5708 | (file_stat.m_comp_size > 0xFFFFFFFF)) |
| 5709 | #endif |
| 5710 | return MZ_FALSE; |
| 5711 | if (pCallback(pOpaque, out_buf_ofs, pRead_buf, |
| 5712 | (size_t)file_stat.m_comp_size) != file_stat.m_comp_size) |
| 5713 | status = TINFL_STATUS_FAILED; |
| 5714 | else if (!(flags & MZ_ZIP_FLAG_COMPRESSED_DATA)) |
| 5715 | file_crc32 = |
| 5716 | (mz_uint32)mz_crc32(file_crc32, (const mz_uint8 *)pRead_buf, |
| 5717 | (size_t)file_stat.m_comp_size); |
| 5718 | cur_file_ofs += file_stat.m_comp_size; |
| 5719 | out_buf_ofs += file_stat.m_comp_size; |
| 5720 | comp_remaining = 0; |
| 5721 | } else { |
| 5722 | while (comp_remaining) { |
| 5723 | read_buf_avail = MZ_MIN(read_buf_size, comp_remaining); |
| 5724 | if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pRead_buf, |
| 5725 | (size_t)read_buf_avail) != read_buf_avail) { |
| 5726 | status = TINFL_STATUS_FAILED; |
| 5727 | break; |
| 5728 | } |
| 5729 | |
| 5730 | if (!(flags & MZ_ZIP_FLAG_COMPRESSED_DATA)) |
| 5731 | file_crc32 = (mz_uint32)mz_crc32( |
| 5732 | file_crc32, (const mz_uint8 *)pRead_buf, (size_t)read_buf_avail); |
| 5733 | |
| 5734 | if (pCallback(pOpaque, out_buf_ofs, pRead_buf, |
| 5735 | (size_t)read_buf_avail) != read_buf_avail) { |
| 5736 | status = TINFL_STATUS_FAILED; |
| 5737 | break; |
| 5738 | } |
| 5739 | cur_file_ofs += read_buf_avail; |
| 5740 | out_buf_ofs += read_buf_avail; |
| 5741 | comp_remaining -= read_buf_avail; |
| 5742 | } |
| 5743 | } |
| 5744 | } else { |
| 5745 | tinfl_decompressor inflator; |
| 5746 | tinfl_init(&inflator); |
| 5747 | |
| 5748 | if (NULL == (pWrite_buf = pZip->m_pAlloc(pZip->m_pAlloc_opaque, 1, |
| 5749 | TINFL_LZ_DICT_SIZE))) |
| 5750 | status = TINFL_STATUS_FAILED; |
| 5751 | else { |
| 5752 | do { |
| 5753 | mz_uint8 *pWrite_buf_cur = |
| 5754 | (mz_uint8 *)pWrite_buf + (out_buf_ofs & (TINFL_LZ_DICT_SIZE - 1)); |
| 5755 | size_t in_buf_size, |
| 5756 | out_buf_size = |
| 5757 | TINFL_LZ_DICT_SIZE - (out_buf_ofs & (TINFL_LZ_DICT_SIZE - 1)); |
| 5758 | if ((!read_buf_avail) && (!pZip->m_pState->m_pMem)) { |
| 5759 | read_buf_avail = MZ_MIN(read_buf_size, comp_remaining); |
| 5760 | if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pRead_buf, |
| 5761 | (size_t)read_buf_avail) != read_buf_avail) { |
| 5762 | status = TINFL_STATUS_FAILED; |
| 5763 | break; |
| 5764 | } |
| 5765 | cur_file_ofs += read_buf_avail; |
| 5766 | comp_remaining -= read_buf_avail; |
| 5767 | read_buf_ofs = 0; |
| 5768 | } |
| 5769 | |
| 5770 | in_buf_size = (size_t)read_buf_avail; |
| 5771 | status = tinfl_decompress( |
| 5772 | &inflator, (const mz_uint8 *)pRead_buf + read_buf_ofs, &in_buf_size, |
| 5773 | (mz_uint8 *)pWrite_buf, pWrite_buf_cur, &out_buf_size, |
| 5774 | comp_remaining ? TINFL_FLAG_HAS_MORE_INPUT : 0); |
| 5775 | read_buf_avail -= in_buf_size; |
| 5776 | read_buf_ofs += in_buf_size; |
| 5777 | |
| 5778 | if (out_buf_size) { |
| 5779 | if (pCallback(pOpaque, out_buf_ofs, pWrite_buf_cur, out_buf_size) != |
| 5780 | out_buf_size) { |
| 5781 | status = TINFL_STATUS_FAILED; |
| 5782 | break; |
| 5783 | } |
| 5784 | file_crc32 = |
| 5785 | (mz_uint32)mz_crc32(file_crc32, pWrite_buf_cur, out_buf_size); |
| 5786 | if ((out_buf_ofs += out_buf_size) > file_stat.m_uncomp_size) { |
| 5787 | status = TINFL_STATUS_FAILED; |
| 5788 | break; |
| 5789 | } |
| 5790 | } |
| 5791 | } while ((status == TINFL_STATUS_NEEDS_MORE_INPUT) || |
| 5792 | (status == TINFL_STATUS_HAS_MORE_OUTPUT)); |
| 5793 | } |
| 5794 | } |
| 5795 | |
| 5796 | if ((status == TINFL_STATUS_DONE) && |
| 5797 | (!(flags & MZ_ZIP_FLAG_COMPRESSED_DATA))) { |
| 5798 | // Make sure the entire file was decompressed, and check its CRC. |
| 5799 | if ((out_buf_ofs != file_stat.m_uncomp_size) || |
| 5800 | (file_crc32 != file_stat.m_crc32)) |
| 5801 | status = TINFL_STATUS_FAILED; |
| 5802 | } |
| 5803 | |
| 5804 | if (!pZip->m_pState->m_pMem) pZip->m_pFree(pZip->m_pAlloc_opaque, pRead_buf); |
| 5805 | if (pWrite_buf) pZip->m_pFree(pZip->m_pAlloc_opaque, pWrite_buf); |
| 5806 | |
| 5807 | return status == TINFL_STATUS_DONE; |
| 5808 | } |
| 5809 | |
| 5810 | mz_bool mz_zip_reader_extract_file_to_callback(mz_zip_archive *pZip, |
| 5811 | const char *pFilename, |
| 5812 | mz_file_write_func pCallback, |
| 5813 | void *pOpaque, mz_uint flags) { |
| 5814 | int file_index = mz_zip_reader_locate_file(pZip, pFilename, NULL, flags); |
| 5815 | if (file_index < 0) return MZ_FALSE; |
| 5816 | return mz_zip_reader_extract_to_callback(pZip, file_index, pCallback, pOpaque, |
| 5817 | flags); |
| 5818 | } |
| 5819 | |
| 5820 | #ifndef MINIZ_NO_STDIO |
| 5821 | static size_t mz_zip_file_write_callback(void *pOpaque, mz_uint64 ofs, |
| 5822 | const void *pBuf, size_t n) { |
| 5823 | (void)ofs; |
| 5824 | return MZ_FWRITE(pBuf, 1, n, (MZ_FILE *)pOpaque); |
| 5825 | } |
| 5826 | |
| 5827 | mz_bool mz_zip_reader_extract_to_file(mz_zip_archive *pZip, mz_uint file_index, |
| 5828 | const char *pDst_filename, |
| 5829 | mz_uint flags) { |
| 5830 | mz_bool status; |
| 5831 | mz_zip_archive_file_stat file_stat; |
| 5832 | MZ_FILE *pFile; |
| 5833 | if (!mz_zip_reader_file_stat(pZip, file_index, &file_stat)) return MZ_FALSE; |
| 5834 | pFile = MZ_FOPEN(pDst_filename, "wb" ); |
| 5835 | if (!pFile) return MZ_FALSE; |
| 5836 | status = mz_zip_reader_extract_to_callback( |
| 5837 | pZip, file_index, mz_zip_file_write_callback, pFile, flags); |
| 5838 | if (MZ_FCLOSE(pFile) == EOF) return MZ_FALSE; |
| 5839 | #ifndef MINIZ_NO_TIME |
| 5840 | if (status) |
| 5841 | mz_zip_set_file_times(pDst_filename, file_stat.m_time, file_stat.m_time); |
| 5842 | #endif |
| 5843 | return status; |
| 5844 | } |
| 5845 | #endif // #ifndef MINIZ_NO_STDIO |
| 5846 | |
| 5847 | mz_bool mz_zip_reader_end(mz_zip_archive *pZip) { |
| 5848 | if ((!pZip) || (!pZip->m_pState) || (!pZip->m_pAlloc) || (!pZip->m_pFree) || |
| 5849 | (pZip->m_zip_mode != MZ_ZIP_MODE_READING)) |
| 5850 | return MZ_FALSE; |
| 5851 | |
| 5852 | if (pZip->m_pState) { |
| 5853 | mz_zip_internal_state *pState = pZip->m_pState; |
| 5854 | pZip->m_pState = NULL; |
| 5855 | mz_zip_array_clear(pZip, &pState->m_central_dir); |
| 5856 | mz_zip_array_clear(pZip, &pState->m_central_dir_offsets); |
| 5857 | mz_zip_array_clear(pZip, &pState->m_sorted_central_dir_offsets); |
| 5858 | |
| 5859 | #ifndef MINIZ_NO_STDIO |
| 5860 | if (pState->m_pFile) { |
| 5861 | MZ_FCLOSE(pState->m_pFile); |
| 5862 | pState->m_pFile = NULL; |
| 5863 | } |
| 5864 | #endif // #ifndef MINIZ_NO_STDIO |
| 5865 | |
| 5866 | pZip->m_pFree(pZip->m_pAlloc_opaque, pState); |
| 5867 | } |
| 5868 | pZip->m_zip_mode = MZ_ZIP_MODE_INVALID; |
| 5869 | |
| 5870 | return MZ_TRUE; |
| 5871 | } |
| 5872 | |
| 5873 | #ifndef MINIZ_NO_STDIO |
| 5874 | mz_bool mz_zip_reader_extract_file_to_file(mz_zip_archive *pZip, |
| 5875 | const char *pArchive_filename, |
| 5876 | const char *pDst_filename, |
| 5877 | mz_uint flags) { |
| 5878 | int file_index = |
| 5879 | mz_zip_reader_locate_file(pZip, pArchive_filename, NULL, flags); |
| 5880 | if (file_index < 0) return MZ_FALSE; |
| 5881 | return mz_zip_reader_extract_to_file(pZip, file_index, pDst_filename, flags); |
| 5882 | } |
| 5883 | #endif |
| 5884 | |
| 5885 | // ------------------- .ZIP archive writing |
| 5886 | |
| 5887 | #ifndef MINIZ_NO_ARCHIVE_WRITING_APIS |
| 5888 | |
| 5889 | static void mz_write_le16(mz_uint8 *p, mz_uint16 v) { |
| 5890 | p[0] = (mz_uint8)v; |
| 5891 | p[1] = (mz_uint8)(v >> 8); |
| 5892 | } |
| 5893 | static void mz_write_le32(mz_uint8 *p, mz_uint32 v) { |
| 5894 | p[0] = (mz_uint8)v; |
| 5895 | p[1] = (mz_uint8)(v >> 8); |
| 5896 | p[2] = (mz_uint8)(v >> 16); |
| 5897 | p[3] = (mz_uint8)(v >> 24); |
| 5898 | } |
| 5899 | #define MZ_WRITE_LE16(p, v) mz_write_le16((mz_uint8 *)(p), (mz_uint16)(v)) |
| 5900 | #define MZ_WRITE_LE32(p, v) mz_write_le32((mz_uint8 *)(p), (mz_uint32)(v)) |
| 5901 | |
| 5902 | mz_bool mz_zip_writer_init(mz_zip_archive *pZip, mz_uint64 existing_size) { |
| 5903 | if ((!pZip) || (pZip->m_pState) || (!pZip->m_pWrite) || |
| 5904 | (pZip->m_zip_mode != MZ_ZIP_MODE_INVALID)) |
| 5905 | return MZ_FALSE; |
| 5906 | |
| 5907 | if (pZip->m_file_offset_alignment) { |
| 5908 | // Ensure user specified file offset alignment is a power of 2. |
| 5909 | if (pZip->m_file_offset_alignment & (pZip->m_file_offset_alignment - 1)) |
| 5910 | return MZ_FALSE; |
| 5911 | } |
| 5912 | |
| 5913 | if (!pZip->m_pAlloc) pZip->m_pAlloc = def_alloc_func; |
| 5914 | if (!pZip->m_pFree) pZip->m_pFree = def_free_func; |
| 5915 | if (!pZip->m_pRealloc) pZip->m_pRealloc = def_realloc_func; |
| 5916 | |
| 5917 | pZip->m_zip_mode = MZ_ZIP_MODE_WRITING; |
| 5918 | pZip->m_archive_size = existing_size; |
| 5919 | pZip->m_central_directory_file_ofs = 0; |
| 5920 | pZip->m_total_files = 0; |
| 5921 | |
| 5922 | if (NULL == (pZip->m_pState = (mz_zip_internal_state *)pZip->m_pAlloc( |
| 5923 | pZip->m_pAlloc_opaque, 1, sizeof(mz_zip_internal_state)))) |
| 5924 | return MZ_FALSE; |
| 5925 | memset(pZip->m_pState, 0, sizeof(mz_zip_internal_state)); |
| 5926 | MZ_ZIP_ARRAY_SET_ELEMENT_SIZE(&pZip->m_pState->m_central_dir, |
| 5927 | sizeof(mz_uint8)); |
| 5928 | MZ_ZIP_ARRAY_SET_ELEMENT_SIZE(&pZip->m_pState->m_central_dir_offsets, |
| 5929 | sizeof(mz_uint32)); |
| 5930 | MZ_ZIP_ARRAY_SET_ELEMENT_SIZE(&pZip->m_pState->m_sorted_central_dir_offsets, |
| 5931 | sizeof(mz_uint32)); |
| 5932 | return MZ_TRUE; |
| 5933 | } |
| 5934 | |
| 5935 | static size_t mz_zip_heap_write_func(void *pOpaque, mz_uint64 file_ofs, |
| 5936 | const void *pBuf, size_t n) { |
| 5937 | mz_zip_archive *pZip = (mz_zip_archive *)pOpaque; |
| 5938 | mz_zip_internal_state *pState = pZip->m_pState; |
| 5939 | mz_uint64 new_size = MZ_MAX(file_ofs + n, pState->m_mem_size); |
| 5940 | #ifdef _MSC_VER |
| 5941 | if ((!n) || |
| 5942 | ((0, sizeof(size_t) == sizeof(mz_uint32)) && (new_size > 0x7FFFFFFF))) |
| 5943 | #else |
| 5944 | if ((!n) || |
| 5945 | ((sizeof(size_t) == sizeof(mz_uint32)) && (new_size > 0x7FFFFFFF))) |
| 5946 | #endif |
| 5947 | return 0; |
| 5948 | if (new_size > pState->m_mem_capacity) { |
| 5949 | void *pNew_block; |
| 5950 | size_t new_capacity = MZ_MAX(64, pState->m_mem_capacity); |
| 5951 | while (new_capacity < new_size) new_capacity *= 2; |
| 5952 | if (NULL == (pNew_block = pZip->m_pRealloc( |
| 5953 | pZip->m_pAlloc_opaque, pState->m_pMem, 1, new_capacity))) |
| 5954 | return 0; |
| 5955 | pState->m_pMem = pNew_block; |
| 5956 | pState->m_mem_capacity = new_capacity; |
| 5957 | } |
| 5958 | memcpy((mz_uint8 *)pState->m_pMem + file_ofs, pBuf, n); |
| 5959 | pState->m_mem_size = (size_t)new_size; |
| 5960 | return n; |
| 5961 | } |
| 5962 | |
| 5963 | mz_bool mz_zip_writer_init_heap(mz_zip_archive *pZip, |
| 5964 | size_t size_to_reserve_at_beginning, |
| 5965 | size_t initial_allocation_size) { |
| 5966 | pZip->m_pWrite = mz_zip_heap_write_func; |
| 5967 | pZip->m_pIO_opaque = pZip; |
| 5968 | if (!mz_zip_writer_init(pZip, size_to_reserve_at_beginning)) return MZ_FALSE; |
| 5969 | if (0 != (initial_allocation_size = MZ_MAX(initial_allocation_size, |
| 5970 | size_to_reserve_at_beginning))) { |
| 5971 | if (NULL == (pZip->m_pState->m_pMem = pZip->m_pAlloc( |
| 5972 | pZip->m_pAlloc_opaque, 1, initial_allocation_size))) { |
| 5973 | mz_zip_writer_end(pZip); |
| 5974 | return MZ_FALSE; |
| 5975 | } |
| 5976 | pZip->m_pState->m_mem_capacity = initial_allocation_size; |
| 5977 | } |
| 5978 | return MZ_TRUE; |
| 5979 | } |
| 5980 | |
| 5981 | #ifndef MINIZ_NO_STDIO |
| 5982 | static size_t mz_zip_file_write_func(void *pOpaque, mz_uint64 file_ofs, |
| 5983 | const void *pBuf, size_t n) { |
| 5984 | mz_zip_archive *pZip = (mz_zip_archive *)pOpaque; |
| 5985 | mz_int64 cur_ofs = MZ_FTELL64(pZip->m_pState->m_pFile); |
| 5986 | if (((mz_int64)file_ofs < 0) || |
| 5987 | (((cur_ofs != (mz_int64)file_ofs)) && |
| 5988 | (MZ_FSEEK64(pZip->m_pState->m_pFile, (mz_int64)file_ofs, SEEK_SET)))) |
| 5989 | return 0; |
| 5990 | return MZ_FWRITE(pBuf, 1, n, pZip->m_pState->m_pFile); |
| 5991 | } |
| 5992 | |
| 5993 | mz_bool mz_zip_writer_init_file(mz_zip_archive *pZip, const char *pFilename, |
| 5994 | mz_uint64 size_to_reserve_at_beginning) { |
| 5995 | MZ_FILE *pFile; |
| 5996 | pZip->m_pWrite = mz_zip_file_write_func; |
| 5997 | pZip->m_pIO_opaque = pZip; |
| 5998 | if (!mz_zip_writer_init(pZip, size_to_reserve_at_beginning)) return MZ_FALSE; |
| 5999 | if (NULL == (pFile = MZ_FOPEN(pFilename, "wb" ))) { |
| 6000 | mz_zip_writer_end(pZip); |
| 6001 | return MZ_FALSE; |
| 6002 | } |
| 6003 | pZip->m_pState->m_pFile = pFile; |
| 6004 | if (size_to_reserve_at_beginning) { |
| 6005 | mz_uint64 cur_ofs = 0; |
| 6006 | char buf[4096]; |
| 6007 | MZ_CLEAR_OBJ(buf); |
| 6008 | do { |
| 6009 | size_t n = (size_t)MZ_MIN(sizeof(buf), size_to_reserve_at_beginning); |
| 6010 | if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_ofs, buf, n) != n) { |
| 6011 | mz_zip_writer_end(pZip); |
| 6012 | return MZ_FALSE; |
| 6013 | } |
| 6014 | cur_ofs += n; |
| 6015 | size_to_reserve_at_beginning -= n; |
| 6016 | } while (size_to_reserve_at_beginning); |
| 6017 | } |
| 6018 | return MZ_TRUE; |
| 6019 | } |
| 6020 | #endif // #ifndef MINIZ_NO_STDIO |
| 6021 | |
| 6022 | mz_bool mz_zip_writer_init_from_reader(mz_zip_archive *pZip, |
| 6023 | const char *pFilename) { |
| 6024 | mz_zip_internal_state *pState; |
| 6025 | if ((!pZip) || (!pZip->m_pState) || (pZip->m_zip_mode != MZ_ZIP_MODE_READING)) |
| 6026 | return MZ_FALSE; |
| 6027 | // No sense in trying to write to an archive that's already at the support max |
| 6028 | // size |
| 6029 | if ((pZip->m_total_files == 0xFFFF) || |
| 6030 | ((pZip->m_archive_size + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE + |
| 6031 | MZ_ZIP_LOCAL_DIR_HEADER_SIZE) > 0xFFFFFFFF)) |
| 6032 | return MZ_FALSE; |
| 6033 | |
| 6034 | pState = pZip->m_pState; |
| 6035 | |
| 6036 | if (pState->m_pFile) { |
| 6037 | #ifdef MINIZ_NO_STDIO |
| 6038 | pFilename; |
| 6039 | return MZ_FALSE; |
| 6040 | #else |
| 6041 | // Archive is being read from stdio - try to reopen as writable. |
| 6042 | if (pZip->m_pIO_opaque != pZip) return MZ_FALSE; |
| 6043 | if (!pFilename) return MZ_FALSE; |
| 6044 | pZip->m_pWrite = mz_zip_file_write_func; |
| 6045 | if (NULL == |
| 6046 | (pState->m_pFile = MZ_FREOPEN(pFilename, "r+b" , pState->m_pFile))) { |
| 6047 | // The mz_zip_archive is now in a bogus state because pState->m_pFile is |
| 6048 | // NULL, so just close it. |
| 6049 | mz_zip_reader_end(pZip); |
| 6050 | return MZ_FALSE; |
| 6051 | } |
| 6052 | #endif // #ifdef MINIZ_NO_STDIO |
| 6053 | } else if (pState->m_pMem) { |
| 6054 | // Archive lives in a memory block. Assume it's from the heap that we can |
| 6055 | // resize using the realloc callback. |
| 6056 | if (pZip->m_pIO_opaque != pZip) return MZ_FALSE; |
| 6057 | pState->m_mem_capacity = pState->m_mem_size; |
| 6058 | pZip->m_pWrite = mz_zip_heap_write_func; |
| 6059 | } |
| 6060 | // Archive is being read via a user provided read function - make sure the |
| 6061 | // user has specified a write function too. |
| 6062 | else if (!pZip->m_pWrite) |
| 6063 | return MZ_FALSE; |
| 6064 | |
| 6065 | // Start writing new files at the archive's current central directory |
| 6066 | // location. |
| 6067 | pZip->m_archive_size = pZip->m_central_directory_file_ofs; |
| 6068 | pZip->m_zip_mode = MZ_ZIP_MODE_WRITING; |
| 6069 | pZip->m_central_directory_file_ofs = 0; |
| 6070 | |
| 6071 | return MZ_TRUE; |
| 6072 | } |
| 6073 | |
| 6074 | mz_bool mz_zip_writer_add_mem(mz_zip_archive *pZip, const char *pArchive_name, |
| 6075 | const void *pBuf, size_t buf_size, |
| 6076 | mz_uint level_and_flags) { |
| 6077 | return mz_zip_writer_add_mem_ex(pZip, pArchive_name, pBuf, buf_size, NULL, 0, |
| 6078 | level_and_flags, 0, 0); |
| 6079 | } |
| 6080 | |
| 6081 | typedef struct { |
| 6082 | mz_zip_archive *m_pZip; |
| 6083 | mz_uint64 m_cur_archive_file_ofs; |
| 6084 | mz_uint64 m_comp_size; |
| 6085 | } mz_zip_writer_add_state; |
| 6086 | |
| 6087 | static mz_bool mz_zip_writer_add_put_buf_callback(const void *pBuf, int len, |
| 6088 | void *pUser) { |
| 6089 | mz_zip_writer_add_state *pState = (mz_zip_writer_add_state *)pUser; |
| 6090 | if ((int)pState->m_pZip->m_pWrite(pState->m_pZip->m_pIO_opaque, |
| 6091 | pState->m_cur_archive_file_ofs, pBuf, |
| 6092 | len) != len) |
| 6093 | return MZ_FALSE; |
| 6094 | pState->m_cur_archive_file_ofs += len; |
| 6095 | pState->m_comp_size += len; |
| 6096 | return MZ_TRUE; |
| 6097 | } |
| 6098 | |
| 6099 | static mz_bool mz_zip_writer_create_local_dir_header( |
| 6100 | mz_zip_archive *pZip, mz_uint8 *pDst, mz_uint16 filename_size, |
| 6101 | mz_uint16 extra_size, mz_uint64 uncomp_size, mz_uint64 comp_size, |
| 6102 | mz_uint32 uncomp_crc32, mz_uint16 method, mz_uint16 bit_flags, |
| 6103 | mz_uint16 dos_time, mz_uint16 dos_date) { |
| 6104 | (void)pZip; |
| 6105 | memset(pDst, 0, MZ_ZIP_LOCAL_DIR_HEADER_SIZE); |
| 6106 | MZ_WRITE_LE32(pDst + MZ_ZIP_LDH_SIG_OFS, MZ_ZIP_LOCAL_DIR_HEADER_SIG); |
| 6107 | MZ_WRITE_LE16(pDst + MZ_ZIP_LDH_VERSION_NEEDED_OFS, method ? 20 : 0); |
| 6108 | MZ_WRITE_LE16(pDst + MZ_ZIP_LDH_BIT_FLAG_OFS, bit_flags); |
| 6109 | MZ_WRITE_LE16(pDst + MZ_ZIP_LDH_METHOD_OFS, method); |
| 6110 | MZ_WRITE_LE16(pDst + MZ_ZIP_LDH_FILE_TIME_OFS, dos_time); |
| 6111 | MZ_WRITE_LE16(pDst + MZ_ZIP_LDH_FILE_DATE_OFS, dos_date); |
| 6112 | MZ_WRITE_LE32(pDst + MZ_ZIP_LDH_CRC32_OFS, uncomp_crc32); |
| 6113 | MZ_WRITE_LE32(pDst + MZ_ZIP_LDH_COMPRESSED_SIZE_OFS, comp_size); |
| 6114 | MZ_WRITE_LE32(pDst + MZ_ZIP_LDH_DECOMPRESSED_SIZE_OFS, uncomp_size); |
| 6115 | MZ_WRITE_LE16(pDst + MZ_ZIP_LDH_FILENAME_LEN_OFS, filename_size); |
| 6116 | MZ_WRITE_LE16(pDst + MZ_ZIP_LDH_EXTRA_LEN_OFS, extra_size); |
| 6117 | return MZ_TRUE; |
| 6118 | } |
| 6119 | |
| 6120 | static mz_bool mz_zip_writer_create_central_dir_header( |
| 6121 | mz_zip_archive *pZip, mz_uint8 *pDst, mz_uint16 filename_size, |
| 6122 | mz_uint16 extra_size, mz_uint16 comment_size, mz_uint64 uncomp_size, |
| 6123 | mz_uint64 comp_size, mz_uint32 uncomp_crc32, mz_uint16 method, |
| 6124 | mz_uint16 bit_flags, mz_uint16 dos_time, mz_uint16 dos_date, |
| 6125 | mz_uint64 local_header_ofs, mz_uint32 ext_attributes) { |
| 6126 | (void)pZip; |
| 6127 | memset(pDst, 0, MZ_ZIP_CENTRAL_DIR_HEADER_SIZE); |
| 6128 | MZ_WRITE_LE32(pDst + MZ_ZIP_CDH_SIG_OFS, MZ_ZIP_CENTRAL_DIR_HEADER_SIG); |
| 6129 | MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_VERSION_NEEDED_OFS, method ? 20 : 0); |
| 6130 | MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_BIT_FLAG_OFS, bit_flags); |
| 6131 | MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_METHOD_OFS, method); |
| 6132 | MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_FILE_TIME_OFS, dos_time); |
| 6133 | MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_FILE_DATE_OFS, dos_date); |
| 6134 | MZ_WRITE_LE32(pDst + MZ_ZIP_CDH_CRC32_OFS, uncomp_crc32); |
| 6135 | MZ_WRITE_LE32(pDst + MZ_ZIP_CDH_COMPRESSED_SIZE_OFS, comp_size); |
| 6136 | MZ_WRITE_LE32(pDst + MZ_ZIP_CDH_DECOMPRESSED_SIZE_OFS, uncomp_size); |
| 6137 | MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_FILENAME_LEN_OFS, filename_size); |
| 6138 | MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_EXTRA_LEN_OFS, extra_size); |
| 6139 | MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_COMMENT_LEN_OFS, comment_size); |
| 6140 | MZ_WRITE_LE32(pDst + MZ_ZIP_CDH_EXTERNAL_ATTR_OFS, ext_attributes); |
| 6141 | MZ_WRITE_LE32(pDst + MZ_ZIP_CDH_LOCAL_HEADER_OFS, local_header_ofs); |
| 6142 | return MZ_TRUE; |
| 6143 | } |
| 6144 | |
| 6145 | static mz_bool mz_zip_writer_add_to_central_dir( |
| 6146 | mz_zip_archive *pZip, const char *pFilename, mz_uint16 filename_size, |
| 6147 | const void *pExtra, mz_uint16 extra_size, const void *pComment, |
| 6148 | mz_uint16 comment_size, mz_uint64 uncomp_size, mz_uint64 comp_size, |
| 6149 | mz_uint32 uncomp_crc32, mz_uint16 method, mz_uint16 bit_flags, |
| 6150 | mz_uint16 dos_time, mz_uint16 dos_date, mz_uint64 local_header_ofs, |
| 6151 | mz_uint32 ext_attributes) { |
| 6152 | mz_zip_internal_state *pState = pZip->m_pState; |
| 6153 | mz_uint32 central_dir_ofs = (mz_uint32)pState->m_central_dir.m_size; |
| 6154 | size_t orig_central_dir_size = pState->m_central_dir.m_size; |
| 6155 | mz_uint8 central_dir_header[MZ_ZIP_CENTRAL_DIR_HEADER_SIZE]; |
| 6156 | |
| 6157 | // No zip64 support yet |
| 6158 | if ((local_header_ofs > 0xFFFFFFFF) || |
| 6159 | (((mz_uint64)pState->m_central_dir.m_size + |
| 6160 | MZ_ZIP_CENTRAL_DIR_HEADER_SIZE + filename_size + extra_size + |
| 6161 | comment_size) > 0xFFFFFFFF)) |
| 6162 | return MZ_FALSE; |
| 6163 | |
| 6164 | if (!mz_zip_writer_create_central_dir_header( |
| 6165 | pZip, central_dir_header, filename_size, extra_size, comment_size, |
| 6166 | uncomp_size, comp_size, uncomp_crc32, method, bit_flags, dos_time, |
| 6167 | dos_date, local_header_ofs, ext_attributes)) |
| 6168 | return MZ_FALSE; |
| 6169 | |
| 6170 | if ((!mz_zip_array_push_back(pZip, &pState->m_central_dir, central_dir_header, |
| 6171 | MZ_ZIP_CENTRAL_DIR_HEADER_SIZE)) || |
| 6172 | (!mz_zip_array_push_back(pZip, &pState->m_central_dir, pFilename, |
| 6173 | filename_size)) || |
| 6174 | (!mz_zip_array_push_back(pZip, &pState->m_central_dir, pExtra, |
| 6175 | extra_size)) || |
| 6176 | (!mz_zip_array_push_back(pZip, &pState->m_central_dir, pComment, |
| 6177 | comment_size)) || |
| 6178 | (!mz_zip_array_push_back(pZip, &pState->m_central_dir_offsets, |
| 6179 | ¢ral_dir_ofs, 1))) { |
| 6180 | // Try to push the central directory array back into its original state. |
| 6181 | mz_zip_array_resize(pZip, &pState->m_central_dir, orig_central_dir_size, |
| 6182 | MZ_FALSE); |
| 6183 | return MZ_FALSE; |
| 6184 | } |
| 6185 | |
| 6186 | return MZ_TRUE; |
| 6187 | } |
| 6188 | |
| 6189 | static mz_bool mz_zip_writer_validate_archive_name(const char *pArchive_name) { |
| 6190 | // Basic ZIP archive filename validity checks: Valid filenames cannot start |
| 6191 | // with a forward slash, cannot contain a drive letter, and cannot use |
| 6192 | // DOS-style backward slashes. |
| 6193 | if (*pArchive_name == '/') return MZ_FALSE; |
| 6194 | while (*pArchive_name) { |
| 6195 | if ((*pArchive_name == '\\') || (*pArchive_name == ':')) return MZ_FALSE; |
| 6196 | pArchive_name++; |
| 6197 | } |
| 6198 | return MZ_TRUE; |
| 6199 | } |
| 6200 | |
| 6201 | static mz_uint mz_zip_writer_compute_padding_needed_for_file_alignment( |
| 6202 | mz_zip_archive *pZip) { |
| 6203 | mz_uint32 n; |
| 6204 | if (!pZip->m_file_offset_alignment) return 0; |
| 6205 | n = (mz_uint32)(pZip->m_archive_size & (pZip->m_file_offset_alignment - 1)); |
| 6206 | return (pZip->m_file_offset_alignment - n) & |
| 6207 | (pZip->m_file_offset_alignment - 1); |
| 6208 | } |
| 6209 | |
| 6210 | static mz_bool mz_zip_writer_write_zeros(mz_zip_archive *pZip, |
| 6211 | mz_uint64 cur_file_ofs, mz_uint32 n) { |
| 6212 | char buf[4096]; |
| 6213 | memset(buf, 0, MZ_MIN(sizeof(buf), n)); |
| 6214 | while (n) { |
| 6215 | mz_uint32 s = MZ_MIN(sizeof(buf), n); |
| 6216 | if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_file_ofs, buf, s) != s) |
| 6217 | return MZ_FALSE; |
| 6218 | cur_file_ofs += s; |
| 6219 | n -= s; |
| 6220 | } |
| 6221 | return MZ_TRUE; |
| 6222 | } |
| 6223 | |
| 6224 | mz_bool mz_zip_writer_add_mem_ex(mz_zip_archive *pZip, |
| 6225 | const char *pArchive_name, const void *pBuf, |
| 6226 | size_t buf_size, const void *pComment, |
| 6227 | mz_uint16 comment_size, |
| 6228 | mz_uint level_and_flags, mz_uint64 uncomp_size, |
| 6229 | mz_uint32 uncomp_crc32) { |
| 6230 | mz_uint16 method = 0, dos_time = 0, dos_date = 0; |
| 6231 | mz_uint level, ext_attributes = 0, num_alignment_padding_bytes; |
| 6232 | mz_uint64 local_dir_header_ofs = pZip->m_archive_size, |
| 6233 | cur_archive_file_ofs = pZip->m_archive_size, comp_size = 0; |
| 6234 | size_t archive_name_size; |
| 6235 | mz_uint8 local_dir_header[MZ_ZIP_LOCAL_DIR_HEADER_SIZE]; |
| 6236 | tdefl_compressor *pComp = NULL; |
| 6237 | mz_bool store_data_uncompressed; |
| 6238 | mz_zip_internal_state *pState; |
| 6239 | |
| 6240 | if ((int)level_and_flags < 0) level_and_flags = MZ_DEFAULT_LEVEL; |
| 6241 | level = level_and_flags & 0xF; |
| 6242 | store_data_uncompressed = |
| 6243 | ((!level) || (level_and_flags & MZ_ZIP_FLAG_COMPRESSED_DATA)); |
| 6244 | |
| 6245 | if ((!pZip) || (!pZip->m_pState) || |
| 6246 | (pZip->m_zip_mode != MZ_ZIP_MODE_WRITING) || ((buf_size) && (!pBuf)) || |
| 6247 | (!pArchive_name) || ((comment_size) && (!pComment)) || |
| 6248 | (pZip->m_total_files == 0xFFFF) || (level > MZ_UBER_COMPRESSION)) |
| 6249 | return MZ_FALSE; |
| 6250 | |
| 6251 | pState = pZip->m_pState; |
| 6252 | |
| 6253 | if ((!(level_and_flags & MZ_ZIP_FLAG_COMPRESSED_DATA)) && (uncomp_size)) |
| 6254 | return MZ_FALSE; |
| 6255 | // No zip64 support yet |
| 6256 | if ((buf_size > 0xFFFFFFFF) || (uncomp_size > 0xFFFFFFFF)) return MZ_FALSE; |
| 6257 | if (!mz_zip_writer_validate_archive_name(pArchive_name)) return MZ_FALSE; |
| 6258 | |
| 6259 | #ifndef MINIZ_NO_TIME |
| 6260 | { |
| 6261 | time_t cur_time; |
| 6262 | time(&cur_time); |
| 6263 | mz_zip_time_to_dos_time(cur_time, &dos_time, &dos_date); |
| 6264 | } |
| 6265 | #endif // #ifndef MINIZ_NO_TIME |
| 6266 | |
| 6267 | archive_name_size = strlen(pArchive_name); |
| 6268 | if (archive_name_size > 0xFFFF) return MZ_FALSE; |
| 6269 | |
| 6270 | num_alignment_padding_bytes = |
| 6271 | mz_zip_writer_compute_padding_needed_for_file_alignment(pZip); |
| 6272 | |
| 6273 | // no zip64 support yet |
| 6274 | if ((pZip->m_total_files == 0xFFFF) || |
| 6275 | ((pZip->m_archive_size + num_alignment_padding_bytes + |
| 6276 | MZ_ZIP_LOCAL_DIR_HEADER_SIZE + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE + |
| 6277 | comment_size + archive_name_size) > 0xFFFFFFFF)) |
| 6278 | return MZ_FALSE; |
| 6279 | |
| 6280 | if ((archive_name_size) && (pArchive_name[archive_name_size - 1] == '/')) { |
| 6281 | // Set DOS Subdirectory attribute bit. |
| 6282 | ext_attributes |= 0x10; |
| 6283 | // Subdirectories cannot contain data. |
| 6284 | if ((buf_size) || (uncomp_size)) return MZ_FALSE; |
| 6285 | } |
| 6286 | |
| 6287 | // Try to do any allocations before writing to the archive, so if an |
| 6288 | // allocation fails the file remains unmodified. (A good idea if we're doing |
| 6289 | // an in-place modification.) |
| 6290 | if ((!mz_zip_array_ensure_room( |
| 6291 | pZip, &pState->m_central_dir, |
| 6292 | MZ_ZIP_CENTRAL_DIR_HEADER_SIZE + archive_name_size + comment_size)) || |
| 6293 | (!mz_zip_array_ensure_room(pZip, &pState->m_central_dir_offsets, 1))) |
| 6294 | return MZ_FALSE; |
| 6295 | |
| 6296 | if ((!store_data_uncompressed) && (buf_size)) { |
| 6297 | if (NULL == (pComp = (tdefl_compressor *)pZip->m_pAlloc( |
| 6298 | pZip->m_pAlloc_opaque, 1, sizeof(tdefl_compressor)))) |
| 6299 | return MZ_FALSE; |
| 6300 | } |
| 6301 | |
| 6302 | if (!mz_zip_writer_write_zeros( |
| 6303 | pZip, cur_archive_file_ofs, |
| 6304 | num_alignment_padding_bytes + sizeof(local_dir_header))) { |
| 6305 | pZip->m_pFree(pZip->m_pAlloc_opaque, pComp); |
| 6306 | return MZ_FALSE; |
| 6307 | } |
| 6308 | local_dir_header_ofs += num_alignment_padding_bytes; |
| 6309 | if (pZip->m_file_offset_alignment) { |
| 6310 | MZ_ASSERT((local_dir_header_ofs & (pZip->m_file_offset_alignment - 1)) == |
| 6311 | 0); |
| 6312 | } |
| 6313 | cur_archive_file_ofs += |
| 6314 | num_alignment_padding_bytes + sizeof(local_dir_header); |
| 6315 | |
| 6316 | MZ_CLEAR_OBJ(local_dir_header); |
| 6317 | if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_archive_file_ofs, pArchive_name, |
| 6318 | archive_name_size) != archive_name_size) { |
| 6319 | pZip->m_pFree(pZip->m_pAlloc_opaque, pComp); |
| 6320 | return MZ_FALSE; |
| 6321 | } |
| 6322 | cur_archive_file_ofs += archive_name_size; |
| 6323 | |
| 6324 | if (!(level_and_flags & MZ_ZIP_FLAG_COMPRESSED_DATA)) { |
| 6325 | uncomp_crc32 = |
| 6326 | (mz_uint32)mz_crc32(MZ_CRC32_INIT, (const mz_uint8 *)pBuf, buf_size); |
| 6327 | uncomp_size = buf_size; |
| 6328 | if (uncomp_size <= 3) { |
| 6329 | level = 0; |
| 6330 | store_data_uncompressed = MZ_TRUE; |
| 6331 | } |
| 6332 | } |
| 6333 | |
| 6334 | if (store_data_uncompressed) { |
| 6335 | if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_archive_file_ofs, pBuf, |
| 6336 | buf_size) != buf_size) { |
| 6337 | pZip->m_pFree(pZip->m_pAlloc_opaque, pComp); |
| 6338 | return MZ_FALSE; |
| 6339 | } |
| 6340 | |
| 6341 | cur_archive_file_ofs += buf_size; |
| 6342 | comp_size = buf_size; |
| 6343 | |
| 6344 | if (level_and_flags & MZ_ZIP_FLAG_COMPRESSED_DATA) method = MZ_DEFLATED; |
| 6345 | } else if (buf_size) { |
| 6346 | mz_zip_writer_add_state state; |
| 6347 | |
| 6348 | state.m_pZip = pZip; |
| 6349 | state.m_cur_archive_file_ofs = cur_archive_file_ofs; |
| 6350 | state.m_comp_size = 0; |
| 6351 | |
| 6352 | if ((tdefl_init(pComp, mz_zip_writer_add_put_buf_callback, &state, |
| 6353 | tdefl_create_comp_flags_from_zip_params( |
| 6354 | level, -15, MZ_DEFAULT_STRATEGY)) != |
| 6355 | TDEFL_STATUS_OKAY) || |
| 6356 | (tdefl_compress_buffer(pComp, pBuf, buf_size, TDEFL_FINISH) != |
| 6357 | TDEFL_STATUS_DONE)) { |
| 6358 | pZip->m_pFree(pZip->m_pAlloc_opaque, pComp); |
| 6359 | return MZ_FALSE; |
| 6360 | } |
| 6361 | |
| 6362 | comp_size = state.m_comp_size; |
| 6363 | cur_archive_file_ofs = state.m_cur_archive_file_ofs; |
| 6364 | |
| 6365 | method = MZ_DEFLATED; |
| 6366 | } |
| 6367 | |
| 6368 | pZip->m_pFree(pZip->m_pAlloc_opaque, pComp); |
| 6369 | pComp = NULL; |
| 6370 | |
| 6371 | // no zip64 support yet |
| 6372 | if ((comp_size > 0xFFFFFFFF) || (cur_archive_file_ofs > 0xFFFFFFFF)) |
| 6373 | return MZ_FALSE; |
| 6374 | |
| 6375 | if (!mz_zip_writer_create_local_dir_header( |
| 6376 | pZip, local_dir_header, (mz_uint16)archive_name_size, 0, uncomp_size, |
| 6377 | comp_size, uncomp_crc32, method, 0, dos_time, dos_date)) |
| 6378 | return MZ_FALSE; |
| 6379 | |
| 6380 | if (pZip->m_pWrite(pZip->m_pIO_opaque, local_dir_header_ofs, local_dir_header, |
| 6381 | sizeof(local_dir_header)) != sizeof(local_dir_header)) |
| 6382 | return MZ_FALSE; |
| 6383 | |
| 6384 | if (!mz_zip_writer_add_to_central_dir( |
| 6385 | pZip, pArchive_name, (mz_uint16)archive_name_size, NULL, 0, pComment, |
| 6386 | comment_size, uncomp_size, comp_size, uncomp_crc32, method, 0, |
| 6387 | dos_time, dos_date, local_dir_header_ofs, ext_attributes)) |
| 6388 | return MZ_FALSE; |
| 6389 | |
| 6390 | pZip->m_total_files++; |
| 6391 | pZip->m_archive_size = cur_archive_file_ofs; |
| 6392 | |
| 6393 | return MZ_TRUE; |
| 6394 | } |
| 6395 | |
| 6396 | #ifndef MINIZ_NO_STDIO |
| 6397 | mz_bool mz_zip_writer_add_file(mz_zip_archive *pZip, const char *pArchive_name, |
| 6398 | const char *pSrc_filename, const void *pComment, |
| 6399 | mz_uint16 comment_size, |
| 6400 | mz_uint level_and_flags) { |
| 6401 | mz_uint uncomp_crc32 = MZ_CRC32_INIT, level, num_alignment_padding_bytes; |
| 6402 | mz_uint16 method = 0, dos_time = 0, dos_date = 0, ext_attributes = 0; |
| 6403 | mz_uint64 local_dir_header_ofs = pZip->m_archive_size, |
| 6404 | cur_archive_file_ofs = pZip->m_archive_size, uncomp_size = 0, |
| 6405 | comp_size = 0; |
| 6406 | size_t archive_name_size; |
| 6407 | mz_uint8 local_dir_header[MZ_ZIP_LOCAL_DIR_HEADER_SIZE]; |
| 6408 | MZ_FILE *pSrc_file = NULL; |
| 6409 | |
| 6410 | if ((int)level_and_flags < 0) level_and_flags = MZ_DEFAULT_LEVEL; |
| 6411 | level = level_and_flags & 0xF; |
| 6412 | |
| 6413 | if ((!pZip) || (!pZip->m_pState) || |
| 6414 | (pZip->m_zip_mode != MZ_ZIP_MODE_WRITING) || (!pArchive_name) || |
| 6415 | ((comment_size) && (!pComment)) || (level > MZ_UBER_COMPRESSION)) |
| 6416 | return MZ_FALSE; |
| 6417 | if (level_and_flags & MZ_ZIP_FLAG_COMPRESSED_DATA) return MZ_FALSE; |
| 6418 | if (!mz_zip_writer_validate_archive_name(pArchive_name)) return MZ_FALSE; |
| 6419 | |
| 6420 | archive_name_size = strlen(pArchive_name); |
| 6421 | if (archive_name_size > 0xFFFF) return MZ_FALSE; |
| 6422 | |
| 6423 | num_alignment_padding_bytes = |
| 6424 | mz_zip_writer_compute_padding_needed_for_file_alignment(pZip); |
| 6425 | |
| 6426 | // no zip64 support yet |
| 6427 | if ((pZip->m_total_files == 0xFFFF) || |
| 6428 | ((pZip->m_archive_size + num_alignment_padding_bytes + |
| 6429 | MZ_ZIP_LOCAL_DIR_HEADER_SIZE + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE + |
| 6430 | comment_size + archive_name_size) > 0xFFFFFFFF)) |
| 6431 | return MZ_FALSE; |
| 6432 | |
| 6433 | if (!mz_zip_get_file_modified_time(pSrc_filename, &dos_time, &dos_date)) |
| 6434 | return MZ_FALSE; |
| 6435 | |
| 6436 | pSrc_file = MZ_FOPEN(pSrc_filename, "rb" ); |
| 6437 | if (!pSrc_file) return MZ_FALSE; |
| 6438 | MZ_FSEEK64(pSrc_file, 0, SEEK_END); |
| 6439 | uncomp_size = MZ_FTELL64(pSrc_file); |
| 6440 | MZ_FSEEK64(pSrc_file, 0, SEEK_SET); |
| 6441 | |
| 6442 | if (uncomp_size > 0xFFFFFFFF) { |
| 6443 | // No zip64 support yet |
| 6444 | MZ_FCLOSE(pSrc_file); |
| 6445 | return MZ_FALSE; |
| 6446 | } |
| 6447 | if (uncomp_size <= 3) level = 0; |
| 6448 | |
| 6449 | if (!mz_zip_writer_write_zeros( |
| 6450 | pZip, cur_archive_file_ofs, |
| 6451 | num_alignment_padding_bytes + sizeof(local_dir_header))) { |
| 6452 | MZ_FCLOSE(pSrc_file); |
| 6453 | return MZ_FALSE; |
| 6454 | } |
| 6455 | local_dir_header_ofs += num_alignment_padding_bytes; |
| 6456 | if (pZip->m_file_offset_alignment) { |
| 6457 | MZ_ASSERT((local_dir_header_ofs & (pZip->m_file_offset_alignment - 1)) == |
| 6458 | 0); |
| 6459 | } |
| 6460 | cur_archive_file_ofs += |
| 6461 | num_alignment_padding_bytes + sizeof(local_dir_header); |
| 6462 | |
| 6463 | MZ_CLEAR_OBJ(local_dir_header); |
| 6464 | if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_archive_file_ofs, pArchive_name, |
| 6465 | archive_name_size) != archive_name_size) { |
| 6466 | MZ_FCLOSE(pSrc_file); |
| 6467 | return MZ_FALSE; |
| 6468 | } |
| 6469 | cur_archive_file_ofs += archive_name_size; |
| 6470 | |
| 6471 | if (uncomp_size) { |
| 6472 | mz_uint64 uncomp_remaining = uncomp_size; |
| 6473 | void *pRead_buf = |
| 6474 | pZip->m_pAlloc(pZip->m_pAlloc_opaque, 1, MZ_ZIP_MAX_IO_BUF_SIZE); |
| 6475 | if (!pRead_buf) { |
| 6476 | MZ_FCLOSE(pSrc_file); |
| 6477 | return MZ_FALSE; |
| 6478 | } |
| 6479 | |
| 6480 | if (!level) { |
| 6481 | while (uncomp_remaining) { |
| 6482 | mz_uint n = |
| 6483 | (mz_uint)MZ_MIN((mz_uint)MZ_ZIP_MAX_IO_BUF_SIZE, uncomp_remaining); |
| 6484 | if ((MZ_FREAD(pRead_buf, 1, n, pSrc_file) != n) || |
| 6485 | (pZip->m_pWrite(pZip->m_pIO_opaque, cur_archive_file_ofs, pRead_buf, |
| 6486 | n) != n)) { |
| 6487 | pZip->m_pFree(pZip->m_pAlloc_opaque, pRead_buf); |
| 6488 | MZ_FCLOSE(pSrc_file); |
| 6489 | return MZ_FALSE; |
| 6490 | } |
| 6491 | uncomp_crc32 = |
| 6492 | (mz_uint32)mz_crc32(uncomp_crc32, (const mz_uint8 *)pRead_buf, n); |
| 6493 | uncomp_remaining -= n; |
| 6494 | cur_archive_file_ofs += n; |
| 6495 | } |
| 6496 | comp_size = uncomp_size; |
| 6497 | } else { |
| 6498 | mz_bool result = MZ_FALSE; |
| 6499 | mz_zip_writer_add_state state; |
| 6500 | tdefl_compressor *pComp = (tdefl_compressor *)pZip->m_pAlloc( |
| 6501 | pZip->m_pAlloc_opaque, 1, sizeof(tdefl_compressor)); |
| 6502 | if (!pComp) { |
| 6503 | pZip->m_pFree(pZip->m_pAlloc_opaque, pRead_buf); |
| 6504 | MZ_FCLOSE(pSrc_file); |
| 6505 | return MZ_FALSE; |
| 6506 | } |
| 6507 | |
| 6508 | state.m_pZip = pZip; |
| 6509 | state.m_cur_archive_file_ofs = cur_archive_file_ofs; |
| 6510 | state.m_comp_size = 0; |
| 6511 | |
| 6512 | if (tdefl_init(pComp, mz_zip_writer_add_put_buf_callback, &state, |
| 6513 | tdefl_create_comp_flags_from_zip_params( |
| 6514 | level, -15, MZ_DEFAULT_STRATEGY)) != |
| 6515 | TDEFL_STATUS_OKAY) { |
| 6516 | pZip->m_pFree(pZip->m_pAlloc_opaque, pComp); |
| 6517 | pZip->m_pFree(pZip->m_pAlloc_opaque, pRead_buf); |
| 6518 | MZ_FCLOSE(pSrc_file); |
| 6519 | return MZ_FALSE; |
| 6520 | } |
| 6521 | |
| 6522 | for (;;) { |
| 6523 | size_t in_buf_size = (mz_uint32)MZ_MIN(uncomp_remaining, |
| 6524 | (mz_uint)MZ_ZIP_MAX_IO_BUF_SIZE); |
| 6525 | tdefl_status status; |
| 6526 | |
| 6527 | if (MZ_FREAD(pRead_buf, 1, in_buf_size, pSrc_file) != in_buf_size) |
| 6528 | break; |
| 6529 | |
| 6530 | uncomp_crc32 = (mz_uint32)mz_crc32( |
| 6531 | uncomp_crc32, (const mz_uint8 *)pRead_buf, in_buf_size); |
| 6532 | uncomp_remaining -= in_buf_size; |
| 6533 | |
| 6534 | status = tdefl_compress_buffer( |
| 6535 | pComp, pRead_buf, in_buf_size, |
| 6536 | uncomp_remaining ? TDEFL_NO_FLUSH : TDEFL_FINISH); |
| 6537 | if (status == TDEFL_STATUS_DONE) { |
| 6538 | result = MZ_TRUE; |
| 6539 | break; |
| 6540 | } else if (status != TDEFL_STATUS_OKAY) |
| 6541 | break; |
| 6542 | } |
| 6543 | |
| 6544 | pZip->m_pFree(pZip->m_pAlloc_opaque, pComp); |
| 6545 | |
| 6546 | if (!result) { |
| 6547 | pZip->m_pFree(pZip->m_pAlloc_opaque, pRead_buf); |
| 6548 | MZ_FCLOSE(pSrc_file); |
| 6549 | return MZ_FALSE; |
| 6550 | } |
| 6551 | |
| 6552 | comp_size = state.m_comp_size; |
| 6553 | cur_archive_file_ofs = state.m_cur_archive_file_ofs; |
| 6554 | |
| 6555 | method = MZ_DEFLATED; |
| 6556 | } |
| 6557 | |
| 6558 | pZip->m_pFree(pZip->m_pAlloc_opaque, pRead_buf); |
| 6559 | } |
| 6560 | |
| 6561 | MZ_FCLOSE(pSrc_file); |
| 6562 | pSrc_file = NULL; |
| 6563 | |
| 6564 | // no zip64 support yet |
| 6565 | if ((comp_size > 0xFFFFFFFF) || (cur_archive_file_ofs > 0xFFFFFFFF)) |
| 6566 | return MZ_FALSE; |
| 6567 | |
| 6568 | if (!mz_zip_writer_create_local_dir_header( |
| 6569 | pZip, local_dir_header, (mz_uint16)archive_name_size, 0, uncomp_size, |
| 6570 | comp_size, uncomp_crc32, method, 0, dos_time, dos_date)) |
| 6571 | return MZ_FALSE; |
| 6572 | |
| 6573 | if (pZip->m_pWrite(pZip->m_pIO_opaque, local_dir_header_ofs, local_dir_header, |
| 6574 | sizeof(local_dir_header)) != sizeof(local_dir_header)) |
| 6575 | return MZ_FALSE; |
| 6576 | |
| 6577 | if (!mz_zip_writer_add_to_central_dir( |
| 6578 | pZip, pArchive_name, (mz_uint16)archive_name_size, NULL, 0, pComment, |
| 6579 | comment_size, uncomp_size, comp_size, uncomp_crc32, method, 0, |
| 6580 | dos_time, dos_date, local_dir_header_ofs, ext_attributes)) |
| 6581 | return MZ_FALSE; |
| 6582 | |
| 6583 | pZip->m_total_files++; |
| 6584 | pZip->m_archive_size = cur_archive_file_ofs; |
| 6585 | |
| 6586 | return MZ_TRUE; |
| 6587 | } |
| 6588 | #endif // #ifndef MINIZ_NO_STDIO |
| 6589 | |
| 6590 | mz_bool mz_zip_writer_add_from_zip_reader(mz_zip_archive *pZip, |
| 6591 | mz_zip_archive *pSource_zip, |
| 6592 | mz_uint file_index) { |
| 6593 | mz_uint n, bit_flags, num_alignment_padding_bytes; |
| 6594 | mz_uint64 comp_bytes_remaining, local_dir_header_ofs; |
| 6595 | mz_uint64 cur_src_file_ofs, cur_dst_file_ofs; |
| 6596 | mz_uint32 |
| 6597 | local_header_u32[(MZ_ZIP_LOCAL_DIR_HEADER_SIZE + sizeof(mz_uint32) - 1) / |
| 6598 | sizeof(mz_uint32)]; |
| 6599 | mz_uint8 *pLocal_header = (mz_uint8 *)local_header_u32; |
| 6600 | mz_uint8 central_header[MZ_ZIP_CENTRAL_DIR_HEADER_SIZE]; |
| 6601 | size_t orig_central_dir_size; |
| 6602 | mz_zip_internal_state *pState; |
| 6603 | void *pBuf; |
| 6604 | const mz_uint8 *pSrc_central_header; |
| 6605 | |
| 6606 | if ((!pZip) || (!pZip->m_pState) || (pZip->m_zip_mode != MZ_ZIP_MODE_WRITING)) |
| 6607 | return MZ_FALSE; |
| 6608 | if (NULL == |
| 6609 | (pSrc_central_header = mz_zip_reader_get_cdh(pSource_zip, file_index))) |
| 6610 | return MZ_FALSE; |
| 6611 | pState = pZip->m_pState; |
| 6612 | |
| 6613 | num_alignment_padding_bytes = |
| 6614 | mz_zip_writer_compute_padding_needed_for_file_alignment(pZip); |
| 6615 | |
| 6616 | // no zip64 support yet |
| 6617 | if ((pZip->m_total_files == 0xFFFF) || |
| 6618 | ((pZip->m_archive_size + num_alignment_padding_bytes + |
| 6619 | MZ_ZIP_LOCAL_DIR_HEADER_SIZE + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE) > |
| 6620 | 0xFFFFFFFF)) |
| 6621 | return MZ_FALSE; |
| 6622 | |
| 6623 | cur_src_file_ofs = |
| 6624 | MZ_READ_LE32(pSrc_central_header + MZ_ZIP_CDH_LOCAL_HEADER_OFS); |
| 6625 | cur_dst_file_ofs = pZip->m_archive_size; |
| 6626 | |
| 6627 | if (pSource_zip->m_pRead(pSource_zip->m_pIO_opaque, cur_src_file_ofs, |
| 6628 | pLocal_header, MZ_ZIP_LOCAL_DIR_HEADER_SIZE) != |
| 6629 | MZ_ZIP_LOCAL_DIR_HEADER_SIZE) |
| 6630 | return MZ_FALSE; |
| 6631 | if (MZ_READ_LE32(pLocal_header) != MZ_ZIP_LOCAL_DIR_HEADER_SIG) |
| 6632 | return MZ_FALSE; |
| 6633 | cur_src_file_ofs += MZ_ZIP_LOCAL_DIR_HEADER_SIZE; |
| 6634 | |
| 6635 | if (!mz_zip_writer_write_zeros(pZip, cur_dst_file_ofs, |
| 6636 | num_alignment_padding_bytes)) |
| 6637 | return MZ_FALSE; |
| 6638 | cur_dst_file_ofs += num_alignment_padding_bytes; |
| 6639 | local_dir_header_ofs = cur_dst_file_ofs; |
| 6640 | if (pZip->m_file_offset_alignment) { |
| 6641 | MZ_ASSERT((local_dir_header_ofs & (pZip->m_file_offset_alignment - 1)) == |
| 6642 | 0); |
| 6643 | } |
| 6644 | |
| 6645 | if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_dst_file_ofs, pLocal_header, |
| 6646 | MZ_ZIP_LOCAL_DIR_HEADER_SIZE) != |
| 6647 | MZ_ZIP_LOCAL_DIR_HEADER_SIZE) |
| 6648 | return MZ_FALSE; |
| 6649 | cur_dst_file_ofs += MZ_ZIP_LOCAL_DIR_HEADER_SIZE; |
| 6650 | |
| 6651 | n = MZ_READ_LE16(pLocal_header + MZ_ZIP_LDH_FILENAME_LEN_OFS) + |
| 6652 | MZ_READ_LE16(pLocal_header + MZ_ZIP_LDH_EXTRA_LEN_OFS); |
| 6653 | comp_bytes_remaining = |
| 6654 | n + MZ_READ_LE32(pSrc_central_header + MZ_ZIP_CDH_COMPRESSED_SIZE_OFS); |
| 6655 | |
| 6656 | if (NULL == (pBuf = pZip->m_pAlloc( |
| 6657 | pZip->m_pAlloc_opaque, 1, |
| 6658 | (size_t)MZ_MAX(sizeof(mz_uint32) * 4, |
| 6659 | MZ_MIN((mz_uint)MZ_ZIP_MAX_IO_BUF_SIZE, |
| 6660 | comp_bytes_remaining))))) |
| 6661 | return MZ_FALSE; |
| 6662 | |
| 6663 | while (comp_bytes_remaining) { |
| 6664 | n = (mz_uint)MZ_MIN((mz_uint)MZ_ZIP_MAX_IO_BUF_SIZE, comp_bytes_remaining); |
| 6665 | if (pSource_zip->m_pRead(pSource_zip->m_pIO_opaque, cur_src_file_ofs, pBuf, |
| 6666 | n) != n) { |
| 6667 | pZip->m_pFree(pZip->m_pAlloc_opaque, pBuf); |
| 6668 | return MZ_FALSE; |
| 6669 | } |
| 6670 | cur_src_file_ofs += n; |
| 6671 | |
| 6672 | if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_dst_file_ofs, pBuf, n) != n) { |
| 6673 | pZip->m_pFree(pZip->m_pAlloc_opaque, pBuf); |
| 6674 | return MZ_FALSE; |
| 6675 | } |
| 6676 | cur_dst_file_ofs += n; |
| 6677 | |
| 6678 | comp_bytes_remaining -= n; |
| 6679 | } |
| 6680 | |
| 6681 | bit_flags = MZ_READ_LE16(pLocal_header + MZ_ZIP_LDH_BIT_FLAG_OFS); |
| 6682 | if (bit_flags & 8) { |
| 6683 | // Copy data descriptor |
| 6684 | if (pSource_zip->m_pRead(pSource_zip->m_pIO_opaque, cur_src_file_ofs, pBuf, |
| 6685 | sizeof(mz_uint32) * 4) != sizeof(mz_uint32) * 4) { |
| 6686 | pZip->m_pFree(pZip->m_pAlloc_opaque, pBuf); |
| 6687 | return MZ_FALSE; |
| 6688 | } |
| 6689 | |
| 6690 | n = sizeof(mz_uint32) * ((MZ_READ_LE32(pBuf) == 0x08074b50) ? 4 : 3); |
| 6691 | if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_dst_file_ofs, pBuf, n) != n) { |
| 6692 | pZip->m_pFree(pZip->m_pAlloc_opaque, pBuf); |
| 6693 | return MZ_FALSE; |
| 6694 | } |
| 6695 | |
| 6696 | cur_src_file_ofs += n; |
| 6697 | cur_dst_file_ofs += n; |
| 6698 | } |
| 6699 | pZip->m_pFree(pZip->m_pAlloc_opaque, pBuf); |
| 6700 | |
| 6701 | // no zip64 support yet |
| 6702 | if (cur_dst_file_ofs > 0xFFFFFFFF) return MZ_FALSE; |
| 6703 | |
| 6704 | orig_central_dir_size = pState->m_central_dir.m_size; |
| 6705 | |
| 6706 | memcpy(central_header, pSrc_central_header, MZ_ZIP_CENTRAL_DIR_HEADER_SIZE); |
| 6707 | MZ_WRITE_LE32(central_header + MZ_ZIP_CDH_LOCAL_HEADER_OFS, |
| 6708 | local_dir_header_ofs); |
| 6709 | if (!mz_zip_array_push_back(pZip, &pState->m_central_dir, central_header, |
| 6710 | MZ_ZIP_CENTRAL_DIR_HEADER_SIZE)) |
| 6711 | return MZ_FALSE; |
| 6712 | |
| 6713 | n = MZ_READ_LE16(pSrc_central_header + MZ_ZIP_CDH_FILENAME_LEN_OFS) + |
| 6714 | MZ_READ_LE16(pSrc_central_header + MZ_ZIP_CDH_EXTRA_LEN_OFS) + |
| 6715 | MZ_READ_LE16(pSrc_central_header + MZ_ZIP_CDH_COMMENT_LEN_OFS); |
| 6716 | if (!mz_zip_array_push_back( |
| 6717 | pZip, &pState->m_central_dir, |
| 6718 | pSrc_central_header + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE, n)) { |
| 6719 | mz_zip_array_resize(pZip, &pState->m_central_dir, orig_central_dir_size, |
| 6720 | MZ_FALSE); |
| 6721 | return MZ_FALSE; |
| 6722 | } |
| 6723 | |
| 6724 | if (pState->m_central_dir.m_size > 0xFFFFFFFF) return MZ_FALSE; |
| 6725 | n = (mz_uint32)orig_central_dir_size; |
| 6726 | if (!mz_zip_array_push_back(pZip, &pState->m_central_dir_offsets, &n, 1)) { |
| 6727 | mz_zip_array_resize(pZip, &pState->m_central_dir, orig_central_dir_size, |
| 6728 | MZ_FALSE); |
| 6729 | return MZ_FALSE; |
| 6730 | } |
| 6731 | |
| 6732 | pZip->m_total_files++; |
| 6733 | pZip->m_archive_size = cur_dst_file_ofs; |
| 6734 | |
| 6735 | return MZ_TRUE; |
| 6736 | } |
| 6737 | |
| 6738 | mz_bool mz_zip_writer_finalize_archive(mz_zip_archive *pZip) { |
| 6739 | mz_zip_internal_state *pState; |
| 6740 | mz_uint64 central_dir_ofs, central_dir_size; |
| 6741 | mz_uint8 hdr[MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIZE]; |
| 6742 | |
| 6743 | if ((!pZip) || (!pZip->m_pState) || (pZip->m_zip_mode != MZ_ZIP_MODE_WRITING)) |
| 6744 | return MZ_FALSE; |
| 6745 | |
| 6746 | pState = pZip->m_pState; |
| 6747 | |
| 6748 | // no zip64 support yet |
| 6749 | if ((pZip->m_total_files > 0xFFFF) || |
| 6750 | ((pZip->m_archive_size + pState->m_central_dir.m_size + |
| 6751 | MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIZE) > 0xFFFFFFFF)) |
| 6752 | return MZ_FALSE; |
| 6753 | |
| 6754 | central_dir_ofs = 0; |
| 6755 | central_dir_size = 0; |
| 6756 | if (pZip->m_total_files) { |
| 6757 | // Write central directory |
| 6758 | central_dir_ofs = pZip->m_archive_size; |
| 6759 | central_dir_size = pState->m_central_dir.m_size; |
| 6760 | pZip->m_central_directory_file_ofs = central_dir_ofs; |
| 6761 | if (pZip->m_pWrite(pZip->m_pIO_opaque, central_dir_ofs, |
| 6762 | pState->m_central_dir.m_p, |
| 6763 | (size_t)central_dir_size) != central_dir_size) |
| 6764 | return MZ_FALSE; |
| 6765 | pZip->m_archive_size += central_dir_size; |
| 6766 | } |
| 6767 | |
| 6768 | // Write end of central directory record |
| 6769 | MZ_CLEAR_OBJ(hdr); |
| 6770 | MZ_WRITE_LE32(hdr + MZ_ZIP_ECDH_SIG_OFS, |
| 6771 | MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIG); |
| 6772 | MZ_WRITE_LE16(hdr + MZ_ZIP_ECDH_CDIR_NUM_ENTRIES_ON_DISK_OFS, |
| 6773 | pZip->m_total_files); |
| 6774 | MZ_WRITE_LE16(hdr + MZ_ZIP_ECDH_CDIR_TOTAL_ENTRIES_OFS, pZip->m_total_files); |
| 6775 | MZ_WRITE_LE32(hdr + MZ_ZIP_ECDH_CDIR_SIZE_OFS, central_dir_size); |
| 6776 | MZ_WRITE_LE32(hdr + MZ_ZIP_ECDH_CDIR_OFS_OFS, central_dir_ofs); |
| 6777 | |
| 6778 | if (pZip->m_pWrite(pZip->m_pIO_opaque, pZip->m_archive_size, hdr, |
| 6779 | sizeof(hdr)) != sizeof(hdr)) |
| 6780 | return MZ_FALSE; |
| 6781 | #ifndef MINIZ_NO_STDIO |
| 6782 | if ((pState->m_pFile) && (MZ_FFLUSH(pState->m_pFile) == EOF)) return MZ_FALSE; |
| 6783 | #endif // #ifndef MINIZ_NO_STDIO |
| 6784 | |
| 6785 | pZip->m_archive_size += sizeof(hdr); |
| 6786 | |
| 6787 | pZip->m_zip_mode = MZ_ZIP_MODE_WRITING_HAS_BEEN_FINALIZED; |
| 6788 | return MZ_TRUE; |
| 6789 | } |
| 6790 | |
| 6791 | mz_bool mz_zip_writer_finalize_heap_archive(mz_zip_archive *pZip, void **pBuf, |
| 6792 | size_t *pSize) { |
| 6793 | if ((!pZip) || (!pZip->m_pState) || (!pBuf) || (!pSize)) return MZ_FALSE; |
| 6794 | if (pZip->m_pWrite != mz_zip_heap_write_func) return MZ_FALSE; |
| 6795 | if (!mz_zip_writer_finalize_archive(pZip)) return MZ_FALSE; |
| 6796 | |
| 6797 | *pBuf = pZip->m_pState->m_pMem; |
| 6798 | *pSize = pZip->m_pState->m_mem_size; |
| 6799 | pZip->m_pState->m_pMem = NULL; |
| 6800 | pZip->m_pState->m_mem_size = pZip->m_pState->m_mem_capacity = 0; |
| 6801 | return MZ_TRUE; |
| 6802 | } |
| 6803 | |
| 6804 | mz_bool mz_zip_writer_end(mz_zip_archive *pZip) { |
| 6805 | mz_zip_internal_state *pState; |
| 6806 | mz_bool status = MZ_TRUE; |
| 6807 | if ((!pZip) || (!pZip->m_pState) || (!pZip->m_pAlloc) || (!pZip->m_pFree) || |
| 6808 | ((pZip->m_zip_mode != MZ_ZIP_MODE_WRITING) && |
| 6809 | (pZip->m_zip_mode != MZ_ZIP_MODE_WRITING_HAS_BEEN_FINALIZED))) |
| 6810 | return MZ_FALSE; |
| 6811 | |
| 6812 | pState = pZip->m_pState; |
| 6813 | pZip->m_pState = NULL; |
| 6814 | mz_zip_array_clear(pZip, &pState->m_central_dir); |
| 6815 | mz_zip_array_clear(pZip, &pState->m_central_dir_offsets); |
| 6816 | mz_zip_array_clear(pZip, &pState->m_sorted_central_dir_offsets); |
| 6817 | |
| 6818 | #ifndef MINIZ_NO_STDIO |
| 6819 | if (pState->m_pFile) { |
| 6820 | MZ_FCLOSE(pState->m_pFile); |
| 6821 | pState->m_pFile = NULL; |
| 6822 | } |
| 6823 | #endif // #ifndef MINIZ_NO_STDIO |
| 6824 | |
| 6825 | if ((pZip->m_pWrite == mz_zip_heap_write_func) && (pState->m_pMem)) { |
| 6826 | pZip->m_pFree(pZip->m_pAlloc_opaque, pState->m_pMem); |
| 6827 | pState->m_pMem = NULL; |
| 6828 | } |
| 6829 | |
| 6830 | pZip->m_pFree(pZip->m_pAlloc_opaque, pState); |
| 6831 | pZip->m_zip_mode = MZ_ZIP_MODE_INVALID; |
| 6832 | return status; |
| 6833 | } |
| 6834 | |
| 6835 | #ifndef MINIZ_NO_STDIO |
| 6836 | mz_bool mz_zip_add_mem_to_archive_file_in_place( |
| 6837 | const char *pZip_filename, const char *pArchive_name, const void *pBuf, |
| 6838 | size_t buf_size, const void *pComment, mz_uint16 comment_size, |
| 6839 | mz_uint level_and_flags) { |
| 6840 | mz_bool status, created_new_archive = MZ_FALSE; |
| 6841 | mz_zip_archive zip_archive; |
| 6842 | struct MZ_FILE_STAT_STRUCT file_stat; |
| 6843 | MZ_CLEAR_OBJ(zip_archive); |
| 6844 | if ((int)level_and_flags < 0) level_and_flags = MZ_DEFAULT_LEVEL; |
| 6845 | if ((!pZip_filename) || (!pArchive_name) || ((buf_size) && (!pBuf)) || |
| 6846 | ((comment_size) && (!pComment)) || |
| 6847 | ((level_and_flags & 0xF) > MZ_UBER_COMPRESSION)) |
| 6848 | return MZ_FALSE; |
| 6849 | if (!mz_zip_writer_validate_archive_name(pArchive_name)) return MZ_FALSE; |
| 6850 | if (MZ_FILE_STAT(pZip_filename, &file_stat) != 0) { |
| 6851 | // Create a new archive. |
| 6852 | if (!mz_zip_writer_init_file(&zip_archive, pZip_filename, 0)) |
| 6853 | return MZ_FALSE; |
| 6854 | created_new_archive = MZ_TRUE; |
| 6855 | } else { |
| 6856 | // Append to an existing archive. |
| 6857 | if (!mz_zip_reader_init_file( |
| 6858 | &zip_archive, pZip_filename, |
| 6859 | level_and_flags | MZ_ZIP_FLAG_DO_NOT_SORT_CENTRAL_DIRECTORY)) |
| 6860 | return MZ_FALSE; |
| 6861 | if (!mz_zip_writer_init_from_reader(&zip_archive, pZip_filename)) { |
| 6862 | mz_zip_reader_end(&zip_archive); |
| 6863 | return MZ_FALSE; |
| 6864 | } |
| 6865 | } |
| 6866 | status = |
| 6867 | mz_zip_writer_add_mem_ex(&zip_archive, pArchive_name, pBuf, buf_size, |
| 6868 | pComment, comment_size, level_and_flags, 0, 0); |
| 6869 | // Always finalize, even if adding failed for some reason, so we have a valid |
| 6870 | // central directory. (This may not always succeed, but we can try.) |
| 6871 | if (!mz_zip_writer_finalize_archive(&zip_archive)) status = MZ_FALSE; |
| 6872 | if (!mz_zip_writer_end(&zip_archive)) status = MZ_FALSE; |
| 6873 | if ((!status) && (created_new_archive)) { |
| 6874 | // It's a new archive and something went wrong, so just delete it. |
| 6875 | int ignoredStatus = MZ_DELETE_FILE(pZip_filename); |
| 6876 | (void)ignoredStatus; |
| 6877 | } |
| 6878 | return status; |
| 6879 | } |
| 6880 | |
| 6881 | void *mz_zip_extract_archive_file_to_heap(const char *pZip_filename, |
| 6882 | const char *pArchive_name, |
| 6883 | size_t *pSize, mz_uint flags) { |
| 6884 | int file_index; |
| 6885 | mz_zip_archive zip_archive; |
| 6886 | void *p = NULL; |
| 6887 | |
| 6888 | if (pSize) *pSize = 0; |
| 6889 | |
| 6890 | if ((!pZip_filename) || (!pArchive_name)) return NULL; |
| 6891 | |
| 6892 | MZ_CLEAR_OBJ(zip_archive); |
| 6893 | if (!mz_zip_reader_init_file( |
| 6894 | &zip_archive, pZip_filename, |
| 6895 | flags | MZ_ZIP_FLAG_DO_NOT_SORT_CENTRAL_DIRECTORY)) |
| 6896 | return NULL; |
| 6897 | |
| 6898 | if ((file_index = mz_zip_reader_locate_file(&zip_archive, pArchive_name, NULL, |
| 6899 | flags)) >= 0) |
| 6900 | p = mz_zip_reader_extract_to_heap(&zip_archive, file_index, pSize, flags); |
| 6901 | |
| 6902 | mz_zip_reader_end(&zip_archive); |
| 6903 | return p; |
| 6904 | } |
| 6905 | |
| 6906 | #endif // #ifndef MINIZ_NO_STDIO |
| 6907 | |
| 6908 | #endif // #ifndef MINIZ_NO_ARCHIVE_WRITING_APIS |
| 6909 | |
| 6910 | #endif // #ifndef MINIZ_NO_ARCHIVE_APIS |
| 6911 | |
| 6912 | #ifdef __cplusplus |
| 6913 | } |
| 6914 | #endif |
| 6915 | |
| 6916 | #endif // MINIZ_HEADER_FILE_ONLY |
| 6917 | |
| 6918 | /* |
| 6919 | This is free and unencumbered software released into the public domain. |
| 6920 | |
| 6921 | Anyone is free to copy, modify, publish, use, compile, sell, or |
| 6922 | distribute this software, either in source code form or as a compiled |
| 6923 | binary, for any purpose, commercial or non-commercial, and by any |
| 6924 | means. |
| 6925 | |
| 6926 | In jurisdictions that recognize copyright laws, the author or authors |
| 6927 | of this software dedicate any and all copyright interest in the |
| 6928 | software to the public domain. We make this dedication for the benefit |
| 6929 | of the public at large and to the detriment of our heirs and |
| 6930 | successors. We intend this dedication to be an overt act of |
| 6931 | relinquishment in perpetuity of all present and future rights to this |
| 6932 | software under copyright law. |
| 6933 | |
| 6934 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| 6935 | EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| 6936 | MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. |
| 6937 | IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| 6938 | OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| 6939 | ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| 6940 | OTHER DEALINGS IN THE SOFTWARE. |
| 6941 | |
| 6942 | For more information, please refer to <http://unlicense.org/> |
| 6943 | */ |
| 6944 | |
| 6945 | // ---------------------- end of miniz ---------------------------------------- |
| 6946 | |
| 6947 | #ifdef __clang__ |
| 6948 | #pragma clang diagnostic pop |
| 6949 | #endif |
| 6950 | |
| 6951 | #ifdef _MSC_VER |
| 6952 | #pragma warning(pop) |
| 6953 | #endif |
| 6954 | } // namespace miniz |
| 6955 | #else |
| 6956 | |
| 6957 | // Reuse MINIZ_LITTE_ENDIAN macro |
| 6958 | |
| 6959 | #if defined(__sparcv9) |
| 6960 | // Big endian |
| 6961 | #else |
| 6962 | #if (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) || MINIZ_X86_OR_X64_CPU |
| 6963 | // Set MINIZ_LITTLE_ENDIAN to 1 if the processor is little endian. |
| 6964 | #define MINIZ_LITTLE_ENDIAN 1 |
| 6965 | #endif |
| 6966 | #endif |
| 6967 | |
| 6968 | #endif // TINYEXR_USE_MINIZ |
| 6969 | |
| 6970 | // static bool IsBigEndian(void) { |
| 6971 | // union { |
| 6972 | // unsigned int i; |
| 6973 | // char c[4]; |
| 6974 | // } bint = {0x01020304}; |
| 6975 | // |
| 6976 | // return bint.c[0] == 1; |
| 6977 | //} |
| 6978 | |
| 6979 | static void SetErrorMessage(const std::string &msg, const char **err) { |
| 6980 | if (err) { |
| 6981 | #ifdef _WIN32 |
| 6982 | (*err) = _strdup(msg.c_str()); |
| 6983 | #else |
| 6984 | (*err) = strdup(msg.c_str()); |
| 6985 | #endif |
| 6986 | } |
| 6987 | } |
| 6988 | |
| 6989 | static const int kEXRVersionSize = 8; |
| 6990 | |
| 6991 | static void cpy2(unsigned short *dst_val, const unsigned short *src_val) { |
| 6992 | unsigned char *dst = reinterpret_cast<unsigned char *>(dst_val); |
| 6993 | const unsigned char *src = reinterpret_cast<const unsigned char *>(src_val); |
| 6994 | |
| 6995 | dst[0] = src[0]; |
| 6996 | dst[1] = src[1]; |
| 6997 | } |
| 6998 | |
| 6999 | static void swap2(unsigned short *val) { |
| 7000 | #ifdef MINIZ_LITTLE_ENDIAN |
| 7001 | (void)val; |
| 7002 | #else |
| 7003 | unsigned short tmp = *val; |
| 7004 | unsigned char *dst = reinterpret_cast<unsigned char *>(val); |
| 7005 | unsigned char *src = reinterpret_cast<unsigned char *>(&tmp); |
| 7006 | |
| 7007 | dst[0] = src[1]; |
| 7008 | dst[1] = src[0]; |
| 7009 | #endif |
| 7010 | } |
| 7011 | |
| 7012 | #ifdef __clang__ |
| 7013 | #pragma clang diagnostic push |
| 7014 | #pragma clang diagnostic ignored "-Wunused-function" |
| 7015 | #endif |
| 7016 | static void cpy4(int *dst_val, const int *src_val) { |
| 7017 | unsigned char *dst = reinterpret_cast<unsigned char *>(dst_val); |
| 7018 | const unsigned char *src = reinterpret_cast<const unsigned char *>(src_val); |
| 7019 | |
| 7020 | dst[0] = src[0]; |
| 7021 | dst[1] = src[1]; |
| 7022 | dst[2] = src[2]; |
| 7023 | dst[3] = src[3]; |
| 7024 | } |
| 7025 | |
| 7026 | static void cpy4(unsigned int *dst_val, const unsigned int *src_val) { |
| 7027 | unsigned char *dst = reinterpret_cast<unsigned char *>(dst_val); |
| 7028 | const unsigned char *src = reinterpret_cast<const unsigned char *>(src_val); |
| 7029 | |
| 7030 | dst[0] = src[0]; |
| 7031 | dst[1] = src[1]; |
| 7032 | dst[2] = src[2]; |
| 7033 | dst[3] = src[3]; |
| 7034 | } |
| 7035 | |
| 7036 | static void cpy4(float *dst_val, const float *src_val) { |
| 7037 | unsigned char *dst = reinterpret_cast<unsigned char *>(dst_val); |
| 7038 | const unsigned char *src = reinterpret_cast<const unsigned char *>(src_val); |
| 7039 | |
| 7040 | dst[0] = src[0]; |
| 7041 | dst[1] = src[1]; |
| 7042 | dst[2] = src[2]; |
| 7043 | dst[3] = src[3]; |
| 7044 | } |
| 7045 | #ifdef __clang__ |
| 7046 | #pragma clang diagnostic pop |
| 7047 | #endif |
| 7048 | |
| 7049 | static void swap4(unsigned int *val) { |
| 7050 | #ifdef MINIZ_LITTLE_ENDIAN |
| 7051 | (void)val; |
| 7052 | #else |
| 7053 | unsigned int tmp = *val; |
| 7054 | unsigned char *dst = reinterpret_cast<unsigned char *>(val); |
| 7055 | unsigned char *src = reinterpret_cast<unsigned char *>(&tmp); |
| 7056 | |
| 7057 | dst[0] = src[3]; |
| 7058 | dst[1] = src[2]; |
| 7059 | dst[2] = src[1]; |
| 7060 | dst[3] = src[0]; |
| 7061 | #endif |
| 7062 | } |
| 7063 | |
| 7064 | #if 0 |
| 7065 | static void cpy8(tinyexr::tinyexr_uint64 *dst_val, const tinyexr::tinyexr_uint64 *src_val) { |
| 7066 | unsigned char *dst = reinterpret_cast<unsigned char *>(dst_val); |
| 7067 | const unsigned char *src = reinterpret_cast<const unsigned char *>(src_val); |
| 7068 | |
| 7069 | dst[0] = src[0]; |
| 7070 | dst[1] = src[1]; |
| 7071 | dst[2] = src[2]; |
| 7072 | dst[3] = src[3]; |
| 7073 | dst[4] = src[4]; |
| 7074 | dst[5] = src[5]; |
| 7075 | dst[6] = src[6]; |
| 7076 | dst[7] = src[7]; |
| 7077 | } |
| 7078 | #endif |
| 7079 | |
| 7080 | static void swap8(tinyexr::tinyexr_uint64 *val) { |
| 7081 | #ifdef MINIZ_LITTLE_ENDIAN |
| 7082 | (void)val; |
| 7083 | #else |
| 7084 | tinyexr::tinyexr_uint64 tmp = (*val); |
| 7085 | unsigned char *dst = reinterpret_cast<unsigned char *>(val); |
| 7086 | unsigned char *src = reinterpret_cast<unsigned char *>(&tmp); |
| 7087 | |
| 7088 | dst[0] = src[7]; |
| 7089 | dst[1] = src[6]; |
| 7090 | dst[2] = src[5]; |
| 7091 | dst[3] = src[4]; |
| 7092 | dst[4] = src[3]; |
| 7093 | dst[5] = src[2]; |
| 7094 | dst[6] = src[1]; |
| 7095 | dst[7] = src[0]; |
| 7096 | #endif |
| 7097 | } |
| 7098 | |
| 7099 | // https://gist.github.com/rygorous/2156668 |
| 7100 | // Reuse MINIZ_LITTLE_ENDIAN flag from miniz. |
| 7101 | union FP32 { |
| 7102 | unsigned int u; |
| 7103 | float f; |
| 7104 | struct { |
| 7105 | #if MINIZ_LITTLE_ENDIAN |
| 7106 | unsigned int Mantissa : 23; |
| 7107 | unsigned int Exponent : 8; |
| 7108 | unsigned int Sign : 1; |
| 7109 | #else |
| 7110 | unsigned int Sign : 1; |
| 7111 | unsigned int Exponent : 8; |
| 7112 | unsigned int Mantissa : 23; |
| 7113 | #endif |
| 7114 | } s; |
| 7115 | }; |
| 7116 | |
| 7117 | #ifdef __clang__ |
| 7118 | #pragma clang diagnostic push |
| 7119 | #pragma clang diagnostic ignored "-Wpadded" |
| 7120 | #endif |
| 7121 | |
| 7122 | union FP16 { |
| 7123 | unsigned short u; |
| 7124 | struct { |
| 7125 | #if MINIZ_LITTLE_ENDIAN |
| 7126 | unsigned int Mantissa : 10; |
| 7127 | unsigned int Exponent : 5; |
| 7128 | unsigned int Sign : 1; |
| 7129 | #else |
| 7130 | unsigned int Sign : 1; |
| 7131 | unsigned int Exponent : 5; |
| 7132 | unsigned int Mantissa : 10; |
| 7133 | #endif |
| 7134 | } s; |
| 7135 | }; |
| 7136 | |
| 7137 | #ifdef __clang__ |
| 7138 | #pragma clang diagnostic pop |
| 7139 | #endif |
| 7140 | |
| 7141 | static FP32 half_to_float(FP16 h) { |
| 7142 | static const FP32 magic = {113 << 23}; |
| 7143 | static const unsigned int shifted_exp = 0x7c00 |
| 7144 | << 13; // exponent mask after shift |
| 7145 | FP32 o; |
| 7146 | |
| 7147 | o.u = (h.u & 0x7fffU) << 13U; // exponent/mantissa bits |
| 7148 | unsigned int exp_ = shifted_exp & o.u; // just the exponent |
| 7149 | o.u += (127 - 15) << 23; // exponent adjust |
| 7150 | |
| 7151 | // handle exponent special cases |
| 7152 | if (exp_ == shifted_exp) // Inf/NaN? |
| 7153 | o.u += (128 - 16) << 23; // extra exp adjust |
| 7154 | else if (exp_ == 0) // Zero/Denormal? |
| 7155 | { |
| 7156 | o.u += 1 << 23; // extra exp adjust |
| 7157 | o.f -= magic.f; // renormalize |
| 7158 | } |
| 7159 | |
| 7160 | o.u |= (h.u & 0x8000U) << 16U; // sign bit |
| 7161 | return o; |
| 7162 | } |
| 7163 | |
| 7164 | static FP16 float_to_half_full(FP32 f) { |
| 7165 | FP16 o = {0}; |
| 7166 | |
| 7167 | // Based on ISPC reference code (with minor modifications) |
| 7168 | if (f.s.Exponent == 0) // Signed zero/denormal (which will underflow) |
| 7169 | o.s.Exponent = 0; |
| 7170 | else if (f.s.Exponent == 255) // Inf or NaN (all exponent bits set) |
| 7171 | { |
| 7172 | o.s.Exponent = 31; |
| 7173 | o.s.Mantissa = f.s.Mantissa ? 0x200 : 0; // NaN->qNaN and Inf->Inf |
| 7174 | } else // Normalized number |
| 7175 | { |
| 7176 | // Exponent unbias the single, then bias the halfp |
| 7177 | int newexp = f.s.Exponent - 127 + 15; |
| 7178 | if (newexp >= 31) // Overflow, return signed infinity |
| 7179 | o.s.Exponent = 31; |
| 7180 | else if (newexp <= 0) // Underflow |
| 7181 | { |
| 7182 | if ((14 - newexp) <= 24) // Mantissa might be non-zero |
| 7183 | { |
| 7184 | unsigned int mant = f.s.Mantissa | 0x800000; // Hidden 1 bit |
| 7185 | o.s.Mantissa = mant >> (14 - newexp); |
| 7186 | if ((mant >> (13 - newexp)) & 1) // Check for rounding |
| 7187 | o.u++; // Round, might overflow into exp bit, but this is OK |
| 7188 | } |
| 7189 | } else { |
| 7190 | o.s.Exponent = static_cast<unsigned int>(newexp); |
| 7191 | o.s.Mantissa = f.s.Mantissa >> 13; |
| 7192 | if (f.s.Mantissa & 0x1000) // Check for rounding |
| 7193 | o.u++; // Round, might overflow to inf, this is OK |
| 7194 | } |
| 7195 | } |
| 7196 | |
| 7197 | o.s.Sign = f.s.Sign; |
| 7198 | return o; |
| 7199 | } |
| 7200 | |
| 7201 | // NOTE: From OpenEXR code |
| 7202 | // #define IMF_INCREASING_Y 0 |
| 7203 | // #define IMF_DECREASING_Y 1 |
| 7204 | // #define IMF_RAMDOM_Y 2 |
| 7205 | // |
| 7206 | // #define IMF_NO_COMPRESSION 0 |
| 7207 | // #define IMF_RLE_COMPRESSION 1 |
| 7208 | // #define IMF_ZIPS_COMPRESSION 2 |
| 7209 | // #define IMF_ZIP_COMPRESSION 3 |
| 7210 | // #define IMF_PIZ_COMPRESSION 4 |
| 7211 | // #define IMF_PXR24_COMPRESSION 5 |
| 7212 | // #define IMF_B44_COMPRESSION 6 |
| 7213 | // #define IMF_B44A_COMPRESSION 7 |
| 7214 | |
| 7215 | #ifdef __clang__ |
| 7216 | #pragma clang diagnostic push |
| 7217 | |
| 7218 | #if __has_warning("-Wzero-as-null-pointer-constant") |
| 7219 | #pragma clang diagnostic ignored "-Wzero-as-null-pointer-constant" |
| 7220 | #endif |
| 7221 | |
| 7222 | #endif |
| 7223 | |
| 7224 | static const char *ReadString(std::string *s, const char *ptr, size_t len) { |
| 7225 | // Read untile NULL(\0). |
| 7226 | const char *p = ptr; |
| 7227 | const char *q = ptr; |
| 7228 | while ((size_t(q - ptr) < len) && (*q) != 0) { |
| 7229 | q++; |
| 7230 | } |
| 7231 | |
| 7232 | if (size_t(q - ptr) >= len) { |
| 7233 | (*s) = std::string(); |
| 7234 | return NULL; |
| 7235 | } |
| 7236 | |
| 7237 | (*s) = std::string(p, q); |
| 7238 | |
| 7239 | return q + 1; // skip '\0' |
| 7240 | } |
| 7241 | |
| 7242 | static bool ReadAttribute(std::string *name, std::string *type, |
| 7243 | std::vector<unsigned char> *data, size_t *marker_size, |
| 7244 | const char *marker, size_t size) { |
| 7245 | size_t name_len = strnlen(marker, size); |
| 7246 | if (name_len == size) { |
| 7247 | // String does not have a terminating character. |
| 7248 | return false; |
| 7249 | } |
| 7250 | *name = std::string(marker, name_len); |
| 7251 | |
| 7252 | marker += name_len + 1; |
| 7253 | size -= name_len + 1; |
| 7254 | |
| 7255 | size_t type_len = strnlen(marker, size); |
| 7256 | if (type_len == size) { |
| 7257 | return false; |
| 7258 | } |
| 7259 | *type = std::string(marker, type_len); |
| 7260 | |
| 7261 | marker += type_len + 1; |
| 7262 | size -= type_len + 1; |
| 7263 | |
| 7264 | if (size < sizeof(uint32_t)) { |
| 7265 | return false; |
| 7266 | } |
| 7267 | |
| 7268 | uint32_t data_len; |
| 7269 | memcpy(&data_len, marker, sizeof(uint32_t)); |
| 7270 | tinyexr::swap4(reinterpret_cast<unsigned int *>(&data_len)); |
| 7271 | |
| 7272 | if (data_len == 0) { |
| 7273 | if ((*type).compare("string" ) == 0) { |
| 7274 | // Accept empty string attribute. |
| 7275 | |
| 7276 | marker += sizeof(uint32_t); |
| 7277 | size -= sizeof(uint32_t); |
| 7278 | |
| 7279 | *marker_size = name_len + 1 + type_len + 1 + sizeof(uint32_t); |
| 7280 | |
| 7281 | data->resize(1); |
| 7282 | (*data)[0] = '\0'; |
| 7283 | |
| 7284 | return true; |
| 7285 | } else { |
| 7286 | return false; |
| 7287 | } |
| 7288 | } |
| 7289 | |
| 7290 | marker += sizeof(uint32_t); |
| 7291 | size -= sizeof(uint32_t); |
| 7292 | |
| 7293 | if (size < data_len) { |
| 7294 | return false; |
| 7295 | } |
| 7296 | |
| 7297 | data->resize(static_cast<size_t>(data_len)); |
| 7298 | memcpy(&data->at(0), marker, static_cast<size_t>(data_len)); |
| 7299 | |
| 7300 | *marker_size = name_len + 1 + type_len + 1 + sizeof(uint32_t) + data_len; |
| 7301 | return true; |
| 7302 | } |
| 7303 | |
| 7304 | static void WriteAttributeToMemory(std::vector<unsigned char> *out, |
| 7305 | const char *name, const char *type, |
| 7306 | const unsigned char *data, int len) { |
| 7307 | out->insert(out->end(), name, name + strlen(name) + 1); |
| 7308 | out->insert(out->end(), type, type + strlen(type) + 1); |
| 7309 | |
| 7310 | int outLen = len; |
| 7311 | tinyexr::swap4(reinterpret_cast<unsigned int *>(&outLen)); |
| 7312 | out->insert(out->end(), reinterpret_cast<unsigned char *>(&outLen), |
| 7313 | reinterpret_cast<unsigned char *>(&outLen) + sizeof(int)); |
| 7314 | out->insert(out->end(), data, data + len); |
| 7315 | } |
| 7316 | |
| 7317 | typedef struct { |
| 7318 | std::string name; // less than 255 bytes long |
| 7319 | int pixel_type; |
| 7320 | int x_sampling; |
| 7321 | int y_sampling; |
| 7322 | unsigned char p_linear; |
| 7323 | unsigned char pad[3]; |
| 7324 | } ChannelInfo; |
| 7325 | |
| 7326 | typedef struct { |
| 7327 | std::vector<tinyexr::ChannelInfo> channels; |
| 7328 | std::vector<EXRAttribute> attributes; |
| 7329 | |
| 7330 | int data_window[4]; |
| 7331 | int line_order; |
| 7332 | int display_window[4]; |
| 7333 | float screen_window_center[2]; |
| 7334 | float screen_window_width; |
| 7335 | float pixel_aspect_ratio; |
| 7336 | |
| 7337 | int chunk_count; |
| 7338 | |
| 7339 | // Tiled format |
| 7340 | int tile_size_x; |
| 7341 | int tile_size_y; |
| 7342 | int tile_level_mode; |
| 7343 | int tile_rounding_mode; |
| 7344 | |
| 7345 | unsigned int ; |
| 7346 | |
| 7347 | int compression_type; |
| 7348 | |
| 7349 | void () { |
| 7350 | channels.clear(); |
| 7351 | attributes.clear(); |
| 7352 | |
| 7353 | data_window[0] = 0; |
| 7354 | data_window[1] = 0; |
| 7355 | data_window[2] = 0; |
| 7356 | data_window[3] = 0; |
| 7357 | line_order = 0; |
| 7358 | display_window[0] = 0; |
| 7359 | display_window[1] = 0; |
| 7360 | display_window[2] = 0; |
| 7361 | display_window[3] = 0; |
| 7362 | screen_window_center[0] = 0.0f; |
| 7363 | screen_window_center[1] = 0.0f; |
| 7364 | screen_window_width = 0.0f; |
| 7365 | pixel_aspect_ratio = 0.0f; |
| 7366 | |
| 7367 | chunk_count = 0; |
| 7368 | |
| 7369 | // Tiled format |
| 7370 | tile_size_x = 0; |
| 7371 | tile_size_y = 0; |
| 7372 | tile_level_mode = 0; |
| 7373 | tile_rounding_mode = 0; |
| 7374 | |
| 7375 | header_len = 0; |
| 7376 | compression_type = 0; |
| 7377 | } |
| 7378 | } ; |
| 7379 | |
| 7380 | static bool ReadChannelInfo(std::vector<ChannelInfo> &channels, |
| 7381 | const std::vector<unsigned char> &data) { |
| 7382 | const char *p = reinterpret_cast<const char *>(&data.at(0)); |
| 7383 | |
| 7384 | for (;;) { |
| 7385 | if ((*p) == 0) { |
| 7386 | break; |
| 7387 | } |
| 7388 | ChannelInfo info; |
| 7389 | |
| 7390 | tinyexr_int64 data_len = static_cast<tinyexr_int64>(data.size()) - |
| 7391 | (p - reinterpret_cast<const char *>(data.data())); |
| 7392 | if (data_len < 0) { |
| 7393 | return false; |
| 7394 | } |
| 7395 | |
| 7396 | p = ReadString(&info.name, p, size_t(data_len)); |
| 7397 | if ((p == NULL) && (info.name.empty())) { |
| 7398 | // Buffer overrun. Issue #51. |
| 7399 | return false; |
| 7400 | } |
| 7401 | |
| 7402 | const unsigned char *data_end = |
| 7403 | reinterpret_cast<const unsigned char *>(p) + 16; |
| 7404 | if (data_end >= (data.data() + data.size())) { |
| 7405 | return false; |
| 7406 | } |
| 7407 | |
| 7408 | memcpy(&info.pixel_type, p, sizeof(int)); |
| 7409 | p += 4; |
| 7410 | info.p_linear = static_cast<unsigned char>(p[0]); // uchar |
| 7411 | p += 1 + 3; // reserved: uchar[3] |
| 7412 | memcpy(&info.x_sampling, p, sizeof(int)); // int |
| 7413 | p += 4; |
| 7414 | memcpy(&info.y_sampling, p, sizeof(int)); // int |
| 7415 | p += 4; |
| 7416 | |
| 7417 | tinyexr::swap4(reinterpret_cast<unsigned int *>(&info.pixel_type)); |
| 7418 | tinyexr::swap4(reinterpret_cast<unsigned int *>(&info.x_sampling)); |
| 7419 | tinyexr::swap4(reinterpret_cast<unsigned int *>(&info.y_sampling)); |
| 7420 | |
| 7421 | channels.push_back(info); |
| 7422 | } |
| 7423 | |
| 7424 | return true; |
| 7425 | } |
| 7426 | |
| 7427 | static void WriteChannelInfo(std::vector<unsigned char> &data, |
| 7428 | const std::vector<ChannelInfo> &channels) { |
| 7429 | size_t sz = 0; |
| 7430 | |
| 7431 | // Calculate total size. |
| 7432 | for (size_t c = 0; c < channels.size(); c++) { |
| 7433 | sz += strlen(channels[c].name.c_str()) + 1; // +1 for \0 |
| 7434 | sz += 16; // 4 * int |
| 7435 | } |
| 7436 | data.resize(sz + 1); |
| 7437 | |
| 7438 | unsigned char *p = &data.at(0); |
| 7439 | |
| 7440 | for (size_t c = 0; c < channels.size(); c++) { |
| 7441 | memcpy(p, channels[c].name.c_str(), strlen(channels[c].name.c_str())); |
| 7442 | p += strlen(channels[c].name.c_str()); |
| 7443 | (*p) = '\0'; |
| 7444 | p++; |
| 7445 | |
| 7446 | int pixel_type = channels[c].pixel_type; |
| 7447 | int x_sampling = channels[c].x_sampling; |
| 7448 | int y_sampling = channels[c].y_sampling; |
| 7449 | tinyexr::swap4(reinterpret_cast<unsigned int *>(&pixel_type)); |
| 7450 | tinyexr::swap4(reinterpret_cast<unsigned int *>(&x_sampling)); |
| 7451 | tinyexr::swap4(reinterpret_cast<unsigned int *>(&y_sampling)); |
| 7452 | |
| 7453 | memcpy(p, &pixel_type, sizeof(int)); |
| 7454 | p += sizeof(int); |
| 7455 | |
| 7456 | (*p) = channels[c].p_linear; |
| 7457 | p += 4; |
| 7458 | |
| 7459 | memcpy(p, &x_sampling, sizeof(int)); |
| 7460 | p += sizeof(int); |
| 7461 | |
| 7462 | memcpy(p, &y_sampling, sizeof(int)); |
| 7463 | p += sizeof(int); |
| 7464 | } |
| 7465 | |
| 7466 | (*p) = '\0'; |
| 7467 | } |
| 7468 | |
| 7469 | static void CompressZip(unsigned char *dst, |
| 7470 | tinyexr::tinyexr_uint64 &compressedSize, |
| 7471 | const unsigned char *src, unsigned long src_size) { |
| 7472 | std::vector<unsigned char> tmpBuf(src_size); |
| 7473 | |
| 7474 | // |
| 7475 | // Apply EXR-specific? postprocess. Grabbed from OpenEXR's |
| 7476 | // ImfZipCompressor.cpp |
| 7477 | // |
| 7478 | |
| 7479 | // |
| 7480 | // Reorder the pixel data. |
| 7481 | // |
| 7482 | |
| 7483 | const char *srcPtr = reinterpret_cast<const char *>(src); |
| 7484 | |
| 7485 | { |
| 7486 | char *t1 = reinterpret_cast<char *>(&tmpBuf.at(0)); |
| 7487 | char *t2 = reinterpret_cast<char *>(&tmpBuf.at(0)) + (src_size + 1) / 2; |
| 7488 | const char *stop = srcPtr + src_size; |
| 7489 | |
| 7490 | for (;;) { |
| 7491 | if (srcPtr < stop) |
| 7492 | *(t1++) = *(srcPtr++); |
| 7493 | else |
| 7494 | break; |
| 7495 | |
| 7496 | if (srcPtr < stop) |
| 7497 | *(t2++) = *(srcPtr++); |
| 7498 | else |
| 7499 | break; |
| 7500 | } |
| 7501 | } |
| 7502 | |
| 7503 | // |
| 7504 | // Predictor. |
| 7505 | // |
| 7506 | |
| 7507 | { |
| 7508 | unsigned char *t = &tmpBuf.at(0) + 1; |
| 7509 | unsigned char *stop = &tmpBuf.at(0) + src_size; |
| 7510 | int p = t[-1]; |
| 7511 | |
| 7512 | while (t < stop) { |
| 7513 | int d = int(t[0]) - p + (128 + 256); |
| 7514 | p = t[0]; |
| 7515 | t[0] = static_cast<unsigned char>(d); |
| 7516 | ++t; |
| 7517 | } |
| 7518 | } |
| 7519 | |
| 7520 | #if TINYEXR_USE_MINIZ |
| 7521 | // |
| 7522 | // Compress the data using miniz |
| 7523 | // |
| 7524 | |
| 7525 | miniz::mz_ulong outSize = miniz::mz_compressBound(src_size); |
| 7526 | int ret = miniz::mz_compress( |
| 7527 | dst, &outSize, static_cast<const unsigned char *>(&tmpBuf.at(0)), |
| 7528 | src_size); |
| 7529 | assert(ret == miniz::MZ_OK); |
| 7530 | (void)ret; |
| 7531 | |
| 7532 | compressedSize = outSize; |
| 7533 | #else |
| 7534 | uLong outSize = compressBound(static_cast<uLong>(src_size)); |
| 7535 | int ret = compress(dst, &outSize, static_cast<const Bytef *>(&tmpBuf.at(0)), |
| 7536 | src_size); |
| 7537 | assert(ret == Z_OK); |
| 7538 | |
| 7539 | compressedSize = outSize; |
| 7540 | #endif |
| 7541 | |
| 7542 | // Use uncompressed data when compressed data is larger than uncompressed. |
| 7543 | // (Issue 40) |
| 7544 | if (compressedSize >= src_size) { |
| 7545 | compressedSize = src_size; |
| 7546 | memcpy(dst, src, src_size); |
| 7547 | } |
| 7548 | } |
| 7549 | |
| 7550 | static bool DecompressZip(unsigned char *dst, |
| 7551 | unsigned long *uncompressed_size /* inout */, |
| 7552 | const unsigned char *src, unsigned long src_size) { |
| 7553 | if ((*uncompressed_size) == src_size) { |
| 7554 | // Data is not compressed(Issue 40). |
| 7555 | memcpy(dst, src, src_size); |
| 7556 | return true; |
| 7557 | } |
| 7558 | std::vector<unsigned char> tmpBuf(*uncompressed_size); |
| 7559 | |
| 7560 | #if TINYEXR_USE_MINIZ |
| 7561 | int ret = |
| 7562 | miniz::mz_uncompress(&tmpBuf.at(0), uncompressed_size, src, src_size); |
| 7563 | if (miniz::MZ_OK != ret) { |
| 7564 | return false; |
| 7565 | } |
| 7566 | #else |
| 7567 | int ret = uncompress(&tmpBuf.at(0), uncompressed_size, src, src_size); |
| 7568 | if (Z_OK != ret) { |
| 7569 | return false; |
| 7570 | } |
| 7571 | #endif |
| 7572 | |
| 7573 | // |
| 7574 | // Apply EXR-specific? postprocess. Grabbed from OpenEXR's |
| 7575 | // ImfZipCompressor.cpp |
| 7576 | // |
| 7577 | |
| 7578 | // Predictor. |
| 7579 | { |
| 7580 | unsigned char *t = &tmpBuf.at(0) + 1; |
| 7581 | unsigned char *stop = &tmpBuf.at(0) + (*uncompressed_size); |
| 7582 | |
| 7583 | while (t < stop) { |
| 7584 | int d = int(t[-1]) + int(t[0]) - 128; |
| 7585 | t[0] = static_cast<unsigned char>(d); |
| 7586 | ++t; |
| 7587 | } |
| 7588 | } |
| 7589 | |
| 7590 | // Reorder the pixel data. |
| 7591 | { |
| 7592 | const char *t1 = reinterpret_cast<const char *>(&tmpBuf.at(0)); |
| 7593 | const char *t2 = reinterpret_cast<const char *>(&tmpBuf.at(0)) + |
| 7594 | (*uncompressed_size + 1) / 2; |
| 7595 | char *s = reinterpret_cast<char *>(dst); |
| 7596 | char *stop = s + (*uncompressed_size); |
| 7597 | |
| 7598 | for (;;) { |
| 7599 | if (s < stop) |
| 7600 | *(s++) = *(t1++); |
| 7601 | else |
| 7602 | break; |
| 7603 | |
| 7604 | if (s < stop) |
| 7605 | *(s++) = *(t2++); |
| 7606 | else |
| 7607 | break; |
| 7608 | } |
| 7609 | } |
| 7610 | |
| 7611 | return true; |
| 7612 | } |
| 7613 | |
| 7614 | // RLE code from OpenEXR -------------------------------------- |
| 7615 | |
| 7616 | #ifdef __clang__ |
| 7617 | #pragma clang diagnostic push |
| 7618 | #pragma clang diagnostic ignored "-Wsign-conversion" |
| 7619 | #endif |
| 7620 | |
| 7621 | #ifdef _MSC_VER |
| 7622 | #pragma warning(push) |
| 7623 | #pragma warning(disable : 4204) // nonstandard extension used : non-constant |
| 7624 | // aggregate initializer (also supported by GNU |
| 7625 | // C and C99, so no big deal) |
| 7626 | #pragma warning(disable : 4244) // 'initializing': conversion from '__int64' to |
| 7627 | // 'int', possible loss of data |
| 7628 | #pragma warning(disable : 4267) // 'argument': conversion from '__int64' to |
| 7629 | // 'int', possible loss of data |
| 7630 | #pragma warning(disable : 4996) // 'strdup': The POSIX name for this item is |
| 7631 | // deprecated. Instead, use the ISO C and C++ |
| 7632 | // conformant name: _strdup. |
| 7633 | #endif |
| 7634 | |
| 7635 | const int MIN_RUN_LENGTH = 3; |
| 7636 | const int MAX_RUN_LENGTH = 127; |
| 7637 | |
| 7638 | // |
| 7639 | // Compress an array of bytes, using run-length encoding, |
| 7640 | // and return the length of the compressed data. |
| 7641 | // |
| 7642 | |
| 7643 | static int rleCompress(int inLength, const char in[], signed char out[]) { |
| 7644 | const char *inEnd = in + inLength; |
| 7645 | const char *runStart = in; |
| 7646 | const char *runEnd = in + 1; |
| 7647 | signed char *outWrite = out; |
| 7648 | |
| 7649 | while (runStart < inEnd) { |
| 7650 | while (runEnd < inEnd && *runStart == *runEnd && |
| 7651 | runEnd - runStart - 1 < MAX_RUN_LENGTH) { |
| 7652 | ++runEnd; |
| 7653 | } |
| 7654 | |
| 7655 | if (runEnd - runStart >= MIN_RUN_LENGTH) { |
| 7656 | // |
| 7657 | // Compressable run |
| 7658 | // |
| 7659 | |
| 7660 | *outWrite++ = static_cast<char>(runEnd - runStart) - 1; |
| 7661 | *outWrite++ = *(reinterpret_cast<const signed char *>(runStart)); |
| 7662 | runStart = runEnd; |
| 7663 | } else { |
| 7664 | // |
| 7665 | // Uncompressable run |
| 7666 | // |
| 7667 | |
| 7668 | while (runEnd < inEnd && |
| 7669 | ((runEnd + 1 >= inEnd || *runEnd != *(runEnd + 1)) || |
| 7670 | (runEnd + 2 >= inEnd || *(runEnd + 1) != *(runEnd + 2))) && |
| 7671 | runEnd - runStart < MAX_RUN_LENGTH) { |
| 7672 | ++runEnd; |
| 7673 | } |
| 7674 | |
| 7675 | *outWrite++ = static_cast<char>(runStart - runEnd); |
| 7676 | |
| 7677 | while (runStart < runEnd) { |
| 7678 | *outWrite++ = *(reinterpret_cast<const signed char *>(runStart++)); |
| 7679 | } |
| 7680 | } |
| 7681 | |
| 7682 | ++runEnd; |
| 7683 | } |
| 7684 | |
| 7685 | return static_cast<int>(outWrite - out); |
| 7686 | } |
| 7687 | |
| 7688 | // |
| 7689 | // Uncompress an array of bytes compressed with rleCompress(). |
| 7690 | // Returns the length of the oncompressed data, or 0 if the |
| 7691 | // length of the uncompressed data would be more than maxLength. |
| 7692 | // |
| 7693 | |
| 7694 | static int rleUncompress(int inLength, int maxLength, const signed char in[], |
| 7695 | char out[]) { |
| 7696 | char *outStart = out; |
| 7697 | |
| 7698 | while (inLength > 0) { |
| 7699 | if (*in < 0) { |
| 7700 | int count = -(static_cast<int>(*in++)); |
| 7701 | inLength -= count + 1; |
| 7702 | |
| 7703 | // Fixes #116: Add bounds check to in buffer. |
| 7704 | if ((0 > (maxLength -= count)) || (inLength < 0)) return 0; |
| 7705 | |
| 7706 | memcpy(out, in, count); |
| 7707 | out += count; |
| 7708 | in += count; |
| 7709 | } else { |
| 7710 | int count = *in++; |
| 7711 | inLength -= 2; |
| 7712 | |
| 7713 | if (0 > (maxLength -= count + 1)) return 0; |
| 7714 | |
| 7715 | memset(out, *reinterpret_cast<const char *>(in), count + 1); |
| 7716 | out += count + 1; |
| 7717 | |
| 7718 | in++; |
| 7719 | } |
| 7720 | } |
| 7721 | |
| 7722 | return static_cast<int>(out - outStart); |
| 7723 | } |
| 7724 | |
| 7725 | #ifdef __clang__ |
| 7726 | #pragma clang diagnostic pop |
| 7727 | #endif |
| 7728 | |
| 7729 | // End of RLE code from OpenEXR ----------------------------------- |
| 7730 | |
| 7731 | static void CompressRle(unsigned char *dst, |
| 7732 | tinyexr::tinyexr_uint64 &compressedSize, |
| 7733 | const unsigned char *src, unsigned long src_size) { |
| 7734 | std::vector<unsigned char> tmpBuf(src_size); |
| 7735 | |
| 7736 | // |
| 7737 | // Apply EXR-specific? postprocess. Grabbed from OpenEXR's |
| 7738 | // ImfRleCompressor.cpp |
| 7739 | // |
| 7740 | |
| 7741 | // |
| 7742 | // Reorder the pixel data. |
| 7743 | // |
| 7744 | |
| 7745 | const char *srcPtr = reinterpret_cast<const char *>(src); |
| 7746 | |
| 7747 | { |
| 7748 | char *t1 = reinterpret_cast<char *>(&tmpBuf.at(0)); |
| 7749 | char *t2 = reinterpret_cast<char *>(&tmpBuf.at(0)) + (src_size + 1) / 2; |
| 7750 | const char *stop = srcPtr + src_size; |
| 7751 | |
| 7752 | for (;;) { |
| 7753 | if (srcPtr < stop) |
| 7754 | *(t1++) = *(srcPtr++); |
| 7755 | else |
| 7756 | break; |
| 7757 | |
| 7758 | if (srcPtr < stop) |
| 7759 | *(t2++) = *(srcPtr++); |
| 7760 | else |
| 7761 | break; |
| 7762 | } |
| 7763 | } |
| 7764 | |
| 7765 | // |
| 7766 | // Predictor. |
| 7767 | // |
| 7768 | |
| 7769 | { |
| 7770 | unsigned char *t = &tmpBuf.at(0) + 1; |
| 7771 | unsigned char *stop = &tmpBuf.at(0) + src_size; |
| 7772 | int p = t[-1]; |
| 7773 | |
| 7774 | while (t < stop) { |
| 7775 | int d = int(t[0]) - p + (128 + 256); |
| 7776 | p = t[0]; |
| 7777 | t[0] = static_cast<unsigned char>(d); |
| 7778 | ++t; |
| 7779 | } |
| 7780 | } |
| 7781 | |
| 7782 | // outSize will be (srcSiz * 3) / 2 at max. |
| 7783 | int outSize = rleCompress(static_cast<int>(src_size), |
| 7784 | reinterpret_cast<const char *>(&tmpBuf.at(0)), |
| 7785 | reinterpret_cast<signed char *>(dst)); |
| 7786 | assert(outSize > 0); |
| 7787 | |
| 7788 | compressedSize = static_cast<tinyexr::tinyexr_uint64>(outSize); |
| 7789 | |
| 7790 | // Use uncompressed data when compressed data is larger than uncompressed. |
| 7791 | // (Issue 40) |
| 7792 | if (compressedSize >= src_size) { |
| 7793 | compressedSize = src_size; |
| 7794 | memcpy(dst, src, src_size); |
| 7795 | } |
| 7796 | } |
| 7797 | |
| 7798 | static bool DecompressRle(unsigned char *dst, |
| 7799 | const unsigned long uncompressed_size, |
| 7800 | const unsigned char *src, unsigned long src_size) { |
| 7801 | if (uncompressed_size == src_size) { |
| 7802 | // Data is not compressed(Issue 40). |
| 7803 | memcpy(dst, src, src_size); |
| 7804 | return true; |
| 7805 | } |
| 7806 | |
| 7807 | // Workaround for issue #112. |
| 7808 | // TODO(syoyo): Add more robust out-of-bounds check in `rleUncompress`. |
| 7809 | if (src_size <= 2) { |
| 7810 | return false; |
| 7811 | } |
| 7812 | |
| 7813 | std::vector<unsigned char> tmpBuf(uncompressed_size); |
| 7814 | |
| 7815 | int ret = rleUncompress(static_cast<int>(src_size), |
| 7816 | static_cast<int>(uncompressed_size), |
| 7817 | reinterpret_cast<const signed char *>(src), |
| 7818 | reinterpret_cast<char *>(&tmpBuf.at(0))); |
| 7819 | if (ret != static_cast<int>(uncompressed_size)) { |
| 7820 | return false; |
| 7821 | } |
| 7822 | |
| 7823 | // |
| 7824 | // Apply EXR-specific? postprocess. Grabbed from OpenEXR's |
| 7825 | // ImfRleCompressor.cpp |
| 7826 | // |
| 7827 | |
| 7828 | // Predictor. |
| 7829 | { |
| 7830 | unsigned char *t = &tmpBuf.at(0) + 1; |
| 7831 | unsigned char *stop = &tmpBuf.at(0) + uncompressed_size; |
| 7832 | |
| 7833 | while (t < stop) { |
| 7834 | int d = int(t[-1]) + int(t[0]) - 128; |
| 7835 | t[0] = static_cast<unsigned char>(d); |
| 7836 | ++t; |
| 7837 | } |
| 7838 | } |
| 7839 | |
| 7840 | // Reorder the pixel data. |
| 7841 | { |
| 7842 | const char *t1 = reinterpret_cast<const char *>(&tmpBuf.at(0)); |
| 7843 | const char *t2 = reinterpret_cast<const char *>(&tmpBuf.at(0)) + |
| 7844 | (uncompressed_size + 1) / 2; |
| 7845 | char *s = reinterpret_cast<char *>(dst); |
| 7846 | char *stop = s + uncompressed_size; |
| 7847 | |
| 7848 | for (;;) { |
| 7849 | if (s < stop) |
| 7850 | *(s++) = *(t1++); |
| 7851 | else |
| 7852 | break; |
| 7853 | |
| 7854 | if (s < stop) |
| 7855 | *(s++) = *(t2++); |
| 7856 | else |
| 7857 | break; |
| 7858 | } |
| 7859 | } |
| 7860 | |
| 7861 | return true; |
| 7862 | } |
| 7863 | |
| 7864 | #if TINYEXR_USE_PIZ |
| 7865 | |
| 7866 | #ifdef __clang__ |
| 7867 | #pragma clang diagnostic push |
| 7868 | #pragma clang diagnostic ignored "-Wc++11-long-long" |
| 7869 | #pragma clang diagnostic ignored "-Wold-style-cast" |
| 7870 | #pragma clang diagnostic ignored "-Wpadded" |
| 7871 | #pragma clang diagnostic ignored "-Wsign-conversion" |
| 7872 | #pragma clang diagnostic ignored "-Wc++11-extensions" |
| 7873 | #pragma clang diagnostic ignored "-Wconversion" |
| 7874 | #pragma clang diagnostic ignored "-Wc++98-compat-pedantic" |
| 7875 | |
| 7876 | #if __has_warning("-Wcast-qual") |
| 7877 | #pragma clang diagnostic ignored "-Wcast-qual" |
| 7878 | #endif |
| 7879 | |
| 7880 | #endif |
| 7881 | |
| 7882 | // |
| 7883 | // PIZ compress/uncompress, based on OpenEXR's ImfPizCompressor.cpp |
| 7884 | // |
| 7885 | // ----------------------------------------------------------------- |
| 7886 | // Copyright (c) 2004, Industrial Light & Magic, a division of Lucas |
| 7887 | // Digital Ltd. LLC) |
| 7888 | // (3 clause BSD license) |
| 7889 | // |
| 7890 | |
| 7891 | struct PIZChannelData { |
| 7892 | unsigned short *start; |
| 7893 | unsigned short *end; |
| 7894 | int nx; |
| 7895 | int ny; |
| 7896 | int ys; |
| 7897 | int size; |
| 7898 | }; |
| 7899 | |
| 7900 | //----------------------------------------------------------------------------- |
| 7901 | // |
| 7902 | // 16-bit Haar Wavelet encoding and decoding |
| 7903 | // |
| 7904 | // The source code in this file is derived from the encoding |
| 7905 | // and decoding routines written by Christian Rouet for his |
| 7906 | // PIZ image file format. |
| 7907 | // |
| 7908 | //----------------------------------------------------------------------------- |
| 7909 | |
| 7910 | // |
| 7911 | // Wavelet basis functions without modulo arithmetic; they produce |
| 7912 | // the best compression ratios when the wavelet-transformed data are |
| 7913 | // Huffman-encoded, but the wavelet transform works only for 14-bit |
| 7914 | // data (untransformed data values must be less than (1 << 14)). |
| 7915 | // |
| 7916 | |
| 7917 | inline void wenc14(unsigned short a, unsigned short b, unsigned short &l, |
| 7918 | unsigned short &h) { |
| 7919 | short as = static_cast<short>(a); |
| 7920 | short bs = static_cast<short>(b); |
| 7921 | |
| 7922 | short ms = (as + bs) >> 1; |
| 7923 | short ds = as - bs; |
| 7924 | |
| 7925 | l = static_cast<unsigned short>(ms); |
| 7926 | h = static_cast<unsigned short>(ds); |
| 7927 | } |
| 7928 | |
| 7929 | inline void wdec14(unsigned short l, unsigned short h, unsigned short &a, |
| 7930 | unsigned short &b) { |
| 7931 | short ls = static_cast<short>(l); |
| 7932 | short hs = static_cast<short>(h); |
| 7933 | |
| 7934 | int hi = hs; |
| 7935 | int ai = ls + (hi & 1) + (hi >> 1); |
| 7936 | |
| 7937 | short as = static_cast<short>(ai); |
| 7938 | short bs = static_cast<short>(ai - hi); |
| 7939 | |
| 7940 | a = static_cast<unsigned short>(as); |
| 7941 | b = static_cast<unsigned short>(bs); |
| 7942 | } |
| 7943 | |
| 7944 | // |
| 7945 | // Wavelet basis functions with modulo arithmetic; they work with full |
| 7946 | // 16-bit data, but Huffman-encoding the wavelet-transformed data doesn't |
| 7947 | // compress the data quite as well. |
| 7948 | // |
| 7949 | |
| 7950 | const int NBITS = 16; |
| 7951 | const int A_OFFSET = 1 << (NBITS - 1); |
| 7952 | const int M_OFFSET = 1 << (NBITS - 1); |
| 7953 | const int MOD_MASK = (1 << NBITS) - 1; |
| 7954 | |
| 7955 | inline void wenc16(unsigned short a, unsigned short b, unsigned short &l, |
| 7956 | unsigned short &h) { |
| 7957 | int ao = (a + A_OFFSET) & MOD_MASK; |
| 7958 | int m = ((ao + b) >> 1); |
| 7959 | int d = ao - b; |
| 7960 | |
| 7961 | if (d < 0) m = (m + M_OFFSET) & MOD_MASK; |
| 7962 | |
| 7963 | d &= MOD_MASK; |
| 7964 | |
| 7965 | l = static_cast<unsigned short>(m); |
| 7966 | h = static_cast<unsigned short>(d); |
| 7967 | } |
| 7968 | |
| 7969 | inline void wdec16(unsigned short l, unsigned short h, unsigned short &a, |
| 7970 | unsigned short &b) { |
| 7971 | int m = l; |
| 7972 | int d = h; |
| 7973 | int bb = (m - (d >> 1)) & MOD_MASK; |
| 7974 | int aa = (d + bb - A_OFFSET) & MOD_MASK; |
| 7975 | b = static_cast<unsigned short>(bb); |
| 7976 | a = static_cast<unsigned short>(aa); |
| 7977 | } |
| 7978 | |
| 7979 | // |
| 7980 | // 2D Wavelet encoding: |
| 7981 | // |
| 7982 | |
| 7983 | static void wav2Encode( |
| 7984 | unsigned short *in, // io: values are transformed in place |
| 7985 | int nx, // i : x size |
| 7986 | int ox, // i : x offset |
| 7987 | int ny, // i : y size |
| 7988 | int oy, // i : y offset |
| 7989 | unsigned short mx) // i : maximum in[x][y] value |
| 7990 | { |
| 7991 | bool w14 = (mx < (1 << 14)); |
| 7992 | int n = (nx > ny) ? ny : nx; |
| 7993 | int p = 1; // == 1 << level |
| 7994 | int p2 = 2; // == 1 << (level+1) |
| 7995 | |
| 7996 | // |
| 7997 | // Hierachical loop on smaller dimension n |
| 7998 | // |
| 7999 | |
| 8000 | while (p2 <= n) { |
| 8001 | unsigned short *py = in; |
| 8002 | unsigned short *ey = in + oy * (ny - p2); |
| 8003 | int oy1 = oy * p; |
| 8004 | int oy2 = oy * p2; |
| 8005 | int ox1 = ox * p; |
| 8006 | int ox2 = ox * p2; |
| 8007 | unsigned short i00, i01, i10, i11; |
| 8008 | |
| 8009 | // |
| 8010 | // Y loop |
| 8011 | // |
| 8012 | |
| 8013 | for (; py <= ey; py += oy2) { |
| 8014 | unsigned short *px = py; |
| 8015 | unsigned short *ex = py + ox * (nx - p2); |
| 8016 | |
| 8017 | // |
| 8018 | // X loop |
| 8019 | // |
| 8020 | |
| 8021 | for (; px <= ex; px += ox2) { |
| 8022 | unsigned short *p01 = px + ox1; |
| 8023 | unsigned short *p10 = px + oy1; |
| 8024 | unsigned short *p11 = p10 + ox1; |
| 8025 | |
| 8026 | // |
| 8027 | // 2D wavelet encoding |
| 8028 | // |
| 8029 | |
| 8030 | if (w14) { |
| 8031 | wenc14(*px, *p01, i00, i01); |
| 8032 | wenc14(*p10, *p11, i10, i11); |
| 8033 | wenc14(i00, i10, *px, *p10); |
| 8034 | wenc14(i01, i11, *p01, *p11); |
| 8035 | } else { |
| 8036 | wenc16(*px, *p01, i00, i01); |
| 8037 | wenc16(*p10, *p11, i10, i11); |
| 8038 | wenc16(i00, i10, *px, *p10); |
| 8039 | wenc16(i01, i11, *p01, *p11); |
| 8040 | } |
| 8041 | } |
| 8042 | |
| 8043 | // |
| 8044 | // Encode (1D) odd column (still in Y loop) |
| 8045 | // |
| 8046 | |
| 8047 | if (nx & p) { |
| 8048 | unsigned short *p10 = px + oy1; |
| 8049 | |
| 8050 | if (w14) |
| 8051 | wenc14(*px, *p10, i00, *p10); |
| 8052 | else |
| 8053 | wenc16(*px, *p10, i00, *p10); |
| 8054 | |
| 8055 | *px = i00; |
| 8056 | } |
| 8057 | } |
| 8058 | |
| 8059 | // |
| 8060 | // Encode (1D) odd line (must loop in X) |
| 8061 | // |
| 8062 | |
| 8063 | if (ny & p) { |
| 8064 | unsigned short *px = py; |
| 8065 | unsigned short *ex = py + ox * (nx - p2); |
| 8066 | |
| 8067 | for (; px <= ex; px += ox2) { |
| 8068 | unsigned short *p01 = px + ox1; |
| 8069 | |
| 8070 | if (w14) |
| 8071 | wenc14(*px, *p01, i00, *p01); |
| 8072 | else |
| 8073 | wenc16(*px, *p01, i00, *p01); |
| 8074 | |
| 8075 | *px = i00; |
| 8076 | } |
| 8077 | } |
| 8078 | |
| 8079 | // |
| 8080 | // Next level |
| 8081 | // |
| 8082 | |
| 8083 | p = p2; |
| 8084 | p2 <<= 1; |
| 8085 | } |
| 8086 | } |
| 8087 | |
| 8088 | // |
| 8089 | // 2D Wavelet decoding: |
| 8090 | // |
| 8091 | |
| 8092 | static void wav2Decode( |
| 8093 | unsigned short *in, // io: values are transformed in place |
| 8094 | int nx, // i : x size |
| 8095 | int ox, // i : x offset |
| 8096 | int ny, // i : y size |
| 8097 | int oy, // i : y offset |
| 8098 | unsigned short mx) // i : maximum in[x][y] value |
| 8099 | { |
| 8100 | bool w14 = (mx < (1 << 14)); |
| 8101 | int n = (nx > ny) ? ny : nx; |
| 8102 | int p = 1; |
| 8103 | int p2; |
| 8104 | |
| 8105 | // |
| 8106 | // Search max level |
| 8107 | // |
| 8108 | |
| 8109 | while (p <= n) p <<= 1; |
| 8110 | |
| 8111 | p >>= 1; |
| 8112 | p2 = p; |
| 8113 | p >>= 1; |
| 8114 | |
| 8115 | // |
| 8116 | // Hierarchical loop on smaller dimension n |
| 8117 | // |
| 8118 | |
| 8119 | while (p >= 1) { |
| 8120 | unsigned short *py = in; |
| 8121 | unsigned short *ey = in + oy * (ny - p2); |
| 8122 | int oy1 = oy * p; |
| 8123 | int oy2 = oy * p2; |
| 8124 | int ox1 = ox * p; |
| 8125 | int ox2 = ox * p2; |
| 8126 | unsigned short i00, i01, i10, i11; |
| 8127 | |
| 8128 | // |
| 8129 | // Y loop |
| 8130 | // |
| 8131 | |
| 8132 | for (; py <= ey; py += oy2) { |
| 8133 | unsigned short *px = py; |
| 8134 | unsigned short *ex = py + ox * (nx - p2); |
| 8135 | |
| 8136 | // |
| 8137 | // X loop |
| 8138 | // |
| 8139 | |
| 8140 | for (; px <= ex; px += ox2) { |
| 8141 | unsigned short *p01 = px + ox1; |
| 8142 | unsigned short *p10 = px + oy1; |
| 8143 | unsigned short *p11 = p10 + ox1; |
| 8144 | |
| 8145 | // |
| 8146 | // 2D wavelet decoding |
| 8147 | // |
| 8148 | |
| 8149 | if (w14) { |
| 8150 | wdec14(*px, *p10, i00, i10); |
| 8151 | wdec14(*p01, *p11, i01, i11); |
| 8152 | wdec14(i00, i01, *px, *p01); |
| 8153 | wdec14(i10, i11, *p10, *p11); |
| 8154 | } else { |
| 8155 | wdec16(*px, *p10, i00, i10); |
| 8156 | wdec16(*p01, *p11, i01, i11); |
| 8157 | wdec16(i00, i01, *px, *p01); |
| 8158 | wdec16(i10, i11, *p10, *p11); |
| 8159 | } |
| 8160 | } |
| 8161 | |
| 8162 | // |
| 8163 | // Decode (1D) odd column (still in Y loop) |
| 8164 | // |
| 8165 | |
| 8166 | if (nx & p) { |
| 8167 | unsigned short *p10 = px + oy1; |
| 8168 | |
| 8169 | if (w14) |
| 8170 | wdec14(*px, *p10, i00, *p10); |
| 8171 | else |
| 8172 | wdec16(*px, *p10, i00, *p10); |
| 8173 | |
| 8174 | *px = i00; |
| 8175 | } |
| 8176 | } |
| 8177 | |
| 8178 | // |
| 8179 | // Decode (1D) odd line (must loop in X) |
| 8180 | // |
| 8181 | |
| 8182 | if (ny & p) { |
| 8183 | unsigned short *px = py; |
| 8184 | unsigned short *ex = py + ox * (nx - p2); |
| 8185 | |
| 8186 | for (; px <= ex; px += ox2) { |
| 8187 | unsigned short *p01 = px + ox1; |
| 8188 | |
| 8189 | if (w14) |
| 8190 | wdec14(*px, *p01, i00, *p01); |
| 8191 | else |
| 8192 | wdec16(*px, *p01, i00, *p01); |
| 8193 | |
| 8194 | *px = i00; |
| 8195 | } |
| 8196 | } |
| 8197 | |
| 8198 | // |
| 8199 | // Next level |
| 8200 | // |
| 8201 | |
| 8202 | p2 = p; |
| 8203 | p >>= 1; |
| 8204 | } |
| 8205 | } |
| 8206 | |
| 8207 | //----------------------------------------------------------------------------- |
| 8208 | // |
| 8209 | // 16-bit Huffman compression and decompression. |
| 8210 | // |
| 8211 | // The source code in this file is derived from the 8-bit |
| 8212 | // Huffman compression and decompression routines written |
| 8213 | // by Christian Rouet for his PIZ image file format. |
| 8214 | // |
| 8215 | //----------------------------------------------------------------------------- |
| 8216 | |
| 8217 | // Adds some modification for tinyexr. |
| 8218 | |
| 8219 | const int HUF_ENCBITS = 16; // literal (value) bit length |
| 8220 | const int HUF_DECBITS = 14; // decoding bit size (>= 8) |
| 8221 | |
| 8222 | const int HUF_ENCSIZE = (1 << HUF_ENCBITS) + 1; // encoding table size |
| 8223 | const int HUF_DECSIZE = 1 << HUF_DECBITS; // decoding table size |
| 8224 | const int HUF_DECMASK = HUF_DECSIZE - 1; |
| 8225 | |
| 8226 | struct HufDec { // short code long code |
| 8227 | //------------------------------- |
| 8228 | int len : 8; // code length 0 |
| 8229 | int lit : 24; // lit p size |
| 8230 | int *p; // 0 lits |
| 8231 | }; |
| 8232 | |
| 8233 | inline long long hufLength(long long code) { return code & 63; } |
| 8234 | |
| 8235 | inline long long hufCode(long long code) { return code >> 6; } |
| 8236 | |
| 8237 | inline void outputBits(int nBits, long long bits, long long &c, int &lc, |
| 8238 | char *&out) { |
| 8239 | c <<= nBits; |
| 8240 | lc += nBits; |
| 8241 | |
| 8242 | c |= bits; |
| 8243 | |
| 8244 | while (lc >= 8) *out++ = static_cast<char>((c >> (lc -= 8))); |
| 8245 | } |
| 8246 | |
| 8247 | inline long long getBits(int nBits, long long &c, int &lc, const char *&in) { |
| 8248 | while (lc < nBits) { |
| 8249 | c = (c << 8) | *(reinterpret_cast<const unsigned char *>(in++)); |
| 8250 | lc += 8; |
| 8251 | } |
| 8252 | |
| 8253 | lc -= nBits; |
| 8254 | return (c >> lc) & ((1 << nBits) - 1); |
| 8255 | } |
| 8256 | |
| 8257 | // |
| 8258 | // ENCODING TABLE BUILDING & (UN)PACKING |
| 8259 | // |
| 8260 | |
| 8261 | // |
| 8262 | // Build a "canonical" Huffman code table: |
| 8263 | // - for each (uncompressed) symbol, hcode contains the length |
| 8264 | // of the corresponding code (in the compressed data) |
| 8265 | // - canonical codes are computed and stored in hcode |
| 8266 | // - the rules for constructing canonical codes are as follows: |
| 8267 | // * shorter codes (if filled with zeroes to the right) |
| 8268 | // have a numerically higher value than longer codes |
| 8269 | // * for codes with the same length, numerical values |
| 8270 | // increase with numerical symbol values |
| 8271 | // - because the canonical code table can be constructed from |
| 8272 | // symbol lengths alone, the code table can be transmitted |
| 8273 | // without sending the actual code values |
| 8274 | // - see http://www.compressconsult.com/huffman/ |
| 8275 | // |
| 8276 | |
| 8277 | static void hufCanonicalCodeTable(long long hcode[HUF_ENCSIZE]) { |
| 8278 | long long n[59]; |
| 8279 | |
| 8280 | // |
| 8281 | // For each i from 0 through 58, count the |
| 8282 | // number of different codes of length i, and |
| 8283 | // store the count in n[i]. |
| 8284 | // |
| 8285 | |
| 8286 | for (int i = 0; i <= 58; ++i) n[i] = 0; |
| 8287 | |
| 8288 | for (int i = 0; i < HUF_ENCSIZE; ++i) n[hcode[i]] += 1; |
| 8289 | |
| 8290 | // |
| 8291 | // For each i from 58 through 1, compute the |
| 8292 | // numerically lowest code with length i, and |
| 8293 | // store that code in n[i]. |
| 8294 | // |
| 8295 | |
| 8296 | long long c = 0; |
| 8297 | |
| 8298 | for (int i = 58; i > 0; --i) { |
| 8299 | long long nc = ((c + n[i]) >> 1); |
| 8300 | n[i] = c; |
| 8301 | c = nc; |
| 8302 | } |
| 8303 | |
| 8304 | // |
| 8305 | // hcode[i] contains the length, l, of the |
| 8306 | // code for symbol i. Assign the next available |
| 8307 | // code of length l to the symbol and store both |
| 8308 | // l and the code in hcode[i]. |
| 8309 | // |
| 8310 | |
| 8311 | for (int i = 0; i < HUF_ENCSIZE; ++i) { |
| 8312 | int l = static_cast<int>(hcode[i]); |
| 8313 | |
| 8314 | if (l > 0) hcode[i] = l | (n[l]++ << 6); |
| 8315 | } |
| 8316 | } |
| 8317 | |
| 8318 | // |
| 8319 | // Compute Huffman codes (based on frq input) and store them in frq: |
| 8320 | // - code structure is : [63:lsb - 6:msb] | [5-0: bit length]; |
| 8321 | // - max code length is 58 bits; |
| 8322 | // - codes outside the range [im-iM] have a null length (unused values); |
| 8323 | // - original frequencies are destroyed; |
| 8324 | // - encoding tables are used by hufEncode() and hufBuildDecTable(); |
| 8325 | // |
| 8326 | |
| 8327 | struct FHeapCompare { |
| 8328 | bool operator()(long long *a, long long *b) { return *a > *b; } |
| 8329 | }; |
| 8330 | |
| 8331 | static void hufBuildEncTable( |
| 8332 | long long *frq, // io: input frequencies [HUF_ENCSIZE], output table |
| 8333 | int *im, // o: min frq index |
| 8334 | int *iM) // o: max frq index |
| 8335 | { |
| 8336 | // |
| 8337 | // This function assumes that when it is called, array frq |
| 8338 | // indicates the frequency of all possible symbols in the data |
| 8339 | // that are to be Huffman-encoded. (frq[i] contains the number |
| 8340 | // of occurrences of symbol i in the data.) |
| 8341 | // |
| 8342 | // The loop below does three things: |
| 8343 | // |
| 8344 | // 1) Finds the minimum and maximum indices that point |
| 8345 | // to non-zero entries in frq: |
| 8346 | // |
| 8347 | // frq[im] != 0, and frq[i] == 0 for all i < im |
| 8348 | // frq[iM] != 0, and frq[i] == 0 for all i > iM |
| 8349 | // |
| 8350 | // 2) Fills array fHeap with pointers to all non-zero |
| 8351 | // entries in frq. |
| 8352 | // |
| 8353 | // 3) Initializes array hlink such that hlink[i] == i |
| 8354 | // for all array entries. |
| 8355 | // |
| 8356 | |
| 8357 | std::vector<int> hlink(HUF_ENCSIZE); |
| 8358 | std::vector<long long *> fHeap(HUF_ENCSIZE); |
| 8359 | |
| 8360 | *im = 0; |
| 8361 | |
| 8362 | while (!frq[*im]) (*im)++; |
| 8363 | |
| 8364 | int nf = 0; |
| 8365 | |
| 8366 | for (int i = *im; i < HUF_ENCSIZE; i++) { |
| 8367 | hlink[i] = i; |
| 8368 | |
| 8369 | if (frq[i]) { |
| 8370 | fHeap[nf] = &frq[i]; |
| 8371 | nf++; |
| 8372 | *iM = i; |
| 8373 | } |
| 8374 | } |
| 8375 | |
| 8376 | // |
| 8377 | // Add a pseudo-symbol, with a frequency count of 1, to frq; |
| 8378 | // adjust the fHeap and hlink array accordingly. Function |
| 8379 | // hufEncode() uses the pseudo-symbol for run-length encoding. |
| 8380 | // |
| 8381 | |
| 8382 | (*iM)++; |
| 8383 | frq[*iM] = 1; |
| 8384 | fHeap[nf] = &frq[*iM]; |
| 8385 | nf++; |
| 8386 | |
| 8387 | // |
| 8388 | // Build an array, scode, such that scode[i] contains the number |
| 8389 | // of bits assigned to symbol i. Conceptually this is done by |
| 8390 | // constructing a tree whose leaves are the symbols with non-zero |
| 8391 | // frequency: |
| 8392 | // |
| 8393 | // Make a heap that contains all symbols with a non-zero frequency, |
| 8394 | // with the least frequent symbol on top. |
| 8395 | // |
| 8396 | // Repeat until only one symbol is left on the heap: |
| 8397 | // |
| 8398 | // Take the two least frequent symbols off the top of the heap. |
| 8399 | // Create a new node that has first two nodes as children, and |
| 8400 | // whose frequency is the sum of the frequencies of the first |
| 8401 | // two nodes. Put the new node back into the heap. |
| 8402 | // |
| 8403 | // The last node left on the heap is the root of the tree. For each |
| 8404 | // leaf node, the distance between the root and the leaf is the length |
| 8405 | // of the code for the corresponding symbol. |
| 8406 | // |
| 8407 | // The loop below doesn't actually build the tree; instead we compute |
| 8408 | // the distances of the leaves from the root on the fly. When a new |
| 8409 | // node is added to the heap, then that node's descendants are linked |
| 8410 | // into a single linear list that starts at the new node, and the code |
| 8411 | // lengths of the descendants (that is, their distance from the root |
| 8412 | // of the tree) are incremented by one. |
| 8413 | // |
| 8414 | |
| 8415 | std::make_heap(&fHeap[0], &fHeap[nf], FHeapCompare()); |
| 8416 | |
| 8417 | std::vector<long long> scode(HUF_ENCSIZE); |
| 8418 | memset(scode.data(), 0, sizeof(long long) * HUF_ENCSIZE); |
| 8419 | |
| 8420 | while (nf > 1) { |
| 8421 | // |
| 8422 | // Find the indices, mm and m, of the two smallest non-zero frq |
| 8423 | // values in fHeap, add the smallest frq to the second-smallest |
| 8424 | // frq, and remove the smallest frq value from fHeap. |
| 8425 | // |
| 8426 | |
| 8427 | int mm = fHeap[0] - frq; |
| 8428 | std::pop_heap(&fHeap[0], &fHeap[nf], FHeapCompare()); |
| 8429 | --nf; |
| 8430 | |
| 8431 | int m = fHeap[0] - frq; |
| 8432 | std::pop_heap(&fHeap[0], &fHeap[nf], FHeapCompare()); |
| 8433 | |
| 8434 | frq[m] += frq[mm]; |
| 8435 | std::push_heap(&fHeap[0], &fHeap[nf], FHeapCompare()); |
| 8436 | |
| 8437 | // |
| 8438 | // The entries in scode are linked into lists with the |
| 8439 | // entries in hlink serving as "next" pointers and with |
| 8440 | // the end of a list marked by hlink[j] == j. |
| 8441 | // |
| 8442 | // Traverse the lists that start at scode[m] and scode[mm]. |
| 8443 | // For each element visited, increment the length of the |
| 8444 | // corresponding code by one bit. (If we visit scode[j] |
| 8445 | // during the traversal, then the code for symbol j becomes |
| 8446 | // one bit longer.) |
| 8447 | // |
| 8448 | // Merge the lists that start at scode[m] and scode[mm] |
| 8449 | // into a single list that starts at scode[m]. |
| 8450 | // |
| 8451 | |
| 8452 | // |
| 8453 | // Add a bit to all codes in the first list. |
| 8454 | // |
| 8455 | |
| 8456 | for (int j = m;; j = hlink[j]) { |
| 8457 | scode[j]++; |
| 8458 | |
| 8459 | assert(scode[j] <= 58); |
| 8460 | |
| 8461 | if (hlink[j] == j) { |
| 8462 | // |
| 8463 | // Merge the two lists. |
| 8464 | // |
| 8465 | |
| 8466 | hlink[j] = mm; |
| 8467 | break; |
| 8468 | } |
| 8469 | } |
| 8470 | |
| 8471 | // |
| 8472 | // Add a bit to all codes in the second list |
| 8473 | // |
| 8474 | |
| 8475 | for (int j = mm;; j = hlink[j]) { |
| 8476 | scode[j]++; |
| 8477 | |
| 8478 | assert(scode[j] <= 58); |
| 8479 | |
| 8480 | if (hlink[j] == j) break; |
| 8481 | } |
| 8482 | } |
| 8483 | |
| 8484 | // |
| 8485 | // Build a canonical Huffman code table, replacing the code |
| 8486 | // lengths in scode with (code, code length) pairs. Copy the |
| 8487 | // code table from scode into frq. |
| 8488 | // |
| 8489 | |
| 8490 | hufCanonicalCodeTable(scode.data()); |
| 8491 | memcpy(frq, scode.data(), sizeof(long long) * HUF_ENCSIZE); |
| 8492 | } |
| 8493 | |
| 8494 | // |
| 8495 | // Pack an encoding table: |
| 8496 | // - only code lengths, not actual codes, are stored |
| 8497 | // - runs of zeroes are compressed as follows: |
| 8498 | // |
| 8499 | // unpacked packed |
| 8500 | // -------------------------------- |
| 8501 | // 1 zero 0 (6 bits) |
| 8502 | // 2 zeroes 59 |
| 8503 | // 3 zeroes 60 |
| 8504 | // 4 zeroes 61 |
| 8505 | // 5 zeroes 62 |
| 8506 | // n zeroes (6 or more) 63 n-6 (6 + 8 bits) |
| 8507 | // |
| 8508 | |
| 8509 | const int SHORT_ZEROCODE_RUN = 59; |
| 8510 | const int LONG_ZEROCODE_RUN = 63; |
| 8511 | const int SHORTEST_LONG_RUN = 2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN; |
| 8512 | const int LONGEST_LONG_RUN = 255 + SHORTEST_LONG_RUN; |
| 8513 | |
| 8514 | static void hufPackEncTable( |
| 8515 | const long long *hcode, // i : encoding table [HUF_ENCSIZE] |
| 8516 | int im, // i : min hcode index |
| 8517 | int iM, // i : max hcode index |
| 8518 | char **pcode) // o: ptr to packed table (updated) |
| 8519 | { |
| 8520 | char *p = *pcode; |
| 8521 | long long c = 0; |
| 8522 | int lc = 0; |
| 8523 | |
| 8524 | for (; im <= iM; im++) { |
| 8525 | int l = hufLength(hcode[im]); |
| 8526 | |
| 8527 | if (l == 0) { |
| 8528 | int zerun = 1; |
| 8529 | |
| 8530 | while ((im < iM) && (zerun < LONGEST_LONG_RUN)) { |
| 8531 | if (hufLength(hcode[im + 1]) > 0) break; |
| 8532 | im++; |
| 8533 | zerun++; |
| 8534 | } |
| 8535 | |
| 8536 | if (zerun >= 2) { |
| 8537 | if (zerun >= SHORTEST_LONG_RUN) { |
| 8538 | outputBits(6, LONG_ZEROCODE_RUN, c, lc, p); |
| 8539 | outputBits(8, zerun - SHORTEST_LONG_RUN, c, lc, p); |
| 8540 | } else { |
| 8541 | outputBits(6, SHORT_ZEROCODE_RUN + zerun - 2, c, lc, p); |
| 8542 | } |
| 8543 | continue; |
| 8544 | } |
| 8545 | } |
| 8546 | |
| 8547 | outputBits(6, l, c, lc, p); |
| 8548 | } |
| 8549 | |
| 8550 | if (lc > 0) *p++ = (unsigned char)(c << (8 - lc)); |
| 8551 | |
| 8552 | *pcode = p; |
| 8553 | } |
| 8554 | |
| 8555 | // |
| 8556 | // Unpack an encoding table packed by hufPackEncTable(): |
| 8557 | // |
| 8558 | |
| 8559 | static bool hufUnpackEncTable( |
| 8560 | const char **pcode, // io: ptr to packed table (updated) |
| 8561 | int ni, // i : input size (in bytes) |
| 8562 | int im, // i : min hcode index |
| 8563 | int iM, // i : max hcode index |
| 8564 | long long *hcode) // o: encoding table [HUF_ENCSIZE] |
| 8565 | { |
| 8566 | memset(hcode, 0, sizeof(long long) * HUF_ENCSIZE); |
| 8567 | |
| 8568 | const char *p = *pcode; |
| 8569 | long long c = 0; |
| 8570 | int lc = 0; |
| 8571 | |
| 8572 | for (; im <= iM; im++) { |
| 8573 | if (p - *pcode > ni) { |
| 8574 | return false; |
| 8575 | } |
| 8576 | |
| 8577 | long long l = hcode[im] = getBits(6, c, lc, p); // code length |
| 8578 | |
| 8579 | if (l == (long long)LONG_ZEROCODE_RUN) { |
| 8580 | if (p - *pcode > ni) { |
| 8581 | return false; |
| 8582 | } |
| 8583 | |
| 8584 | int zerun = getBits(8, c, lc, p) + SHORTEST_LONG_RUN; |
| 8585 | |
| 8586 | if (im + zerun > iM + 1) { |
| 8587 | return false; |
| 8588 | } |
| 8589 | |
| 8590 | while (zerun--) hcode[im++] = 0; |
| 8591 | |
| 8592 | im--; |
| 8593 | } else if (l >= (long long)SHORT_ZEROCODE_RUN) { |
| 8594 | int zerun = l - SHORT_ZEROCODE_RUN + 2; |
| 8595 | |
| 8596 | if (im + zerun > iM + 1) { |
| 8597 | return false; |
| 8598 | } |
| 8599 | |
| 8600 | while (zerun--) hcode[im++] = 0; |
| 8601 | |
| 8602 | im--; |
| 8603 | } |
| 8604 | } |
| 8605 | |
| 8606 | *pcode = const_cast<char *>(p); |
| 8607 | |
| 8608 | hufCanonicalCodeTable(hcode); |
| 8609 | |
| 8610 | return true; |
| 8611 | } |
| 8612 | |
| 8613 | // |
| 8614 | // DECODING TABLE BUILDING |
| 8615 | // |
| 8616 | |
| 8617 | // |
| 8618 | // Clear a newly allocated decoding table so that it contains only zeroes. |
| 8619 | // |
| 8620 | |
| 8621 | static void hufClearDecTable(HufDec *hdecod) // io: (allocated by caller) |
| 8622 | // decoding table [HUF_DECSIZE] |
| 8623 | { |
| 8624 | for (int i = 0; i < HUF_DECSIZE; i++) { |
| 8625 | hdecod[i].len = 0; |
| 8626 | hdecod[i].lit = 0; |
| 8627 | hdecod[i].p = NULL; |
| 8628 | } |
| 8629 | // memset(hdecod, 0, sizeof(HufDec) * HUF_DECSIZE); |
| 8630 | } |
| 8631 | |
| 8632 | // |
| 8633 | // Build a decoding hash table based on the encoding table hcode: |
| 8634 | // - short codes (<= HUF_DECBITS) are resolved with a single table access; |
| 8635 | // - long code entry allocations are not optimized, because long codes are |
| 8636 | // unfrequent; |
| 8637 | // - decoding tables are used by hufDecode(); |
| 8638 | // |
| 8639 | |
| 8640 | static bool hufBuildDecTable(const long long *hcode, // i : encoding table |
| 8641 | int im, // i : min index in hcode |
| 8642 | int iM, // i : max index in hcode |
| 8643 | HufDec *hdecod) // o: (allocated by caller) |
| 8644 | // decoding table [HUF_DECSIZE] |
| 8645 | { |
| 8646 | // |
| 8647 | // Init hashtable & loop on all codes. |
| 8648 | // Assumes that hufClearDecTable(hdecod) has already been called. |
| 8649 | // |
| 8650 | |
| 8651 | for (; im <= iM; im++) { |
| 8652 | long long c = hufCode(hcode[im]); |
| 8653 | int l = hufLength(hcode[im]); |
| 8654 | |
| 8655 | if (c >> l) { |
| 8656 | // |
| 8657 | // Error: c is supposed to be an l-bit code, |
| 8658 | // but c contains a value that is greater |
| 8659 | // than the largest l-bit number. |
| 8660 | // |
| 8661 | |
| 8662 | // invalidTableEntry(); |
| 8663 | return false; |
| 8664 | } |
| 8665 | |
| 8666 | if (l > HUF_DECBITS) { |
| 8667 | // |
| 8668 | // Long code: add a secondary entry |
| 8669 | // |
| 8670 | |
| 8671 | HufDec *pl = hdecod + (c >> (l - HUF_DECBITS)); |
| 8672 | |
| 8673 | if (pl->len) { |
| 8674 | // |
| 8675 | // Error: a short code has already |
| 8676 | // been stored in table entry *pl. |
| 8677 | // |
| 8678 | |
| 8679 | // invalidTableEntry(); |
| 8680 | return false; |
| 8681 | } |
| 8682 | |
| 8683 | pl->lit++; |
| 8684 | |
| 8685 | if (pl->p) { |
| 8686 | int *p = pl->p; |
| 8687 | pl->p = new int[pl->lit]; |
| 8688 | |
| 8689 | for (int i = 0; i < pl->lit - 1; ++i) pl->p[i] = p[i]; |
| 8690 | |
| 8691 | delete[] p; |
| 8692 | } else { |
| 8693 | pl->p = new int[1]; |
| 8694 | } |
| 8695 | |
| 8696 | pl->p[pl->lit - 1] = im; |
| 8697 | } else if (l) { |
| 8698 | // |
| 8699 | // Short code: init all primary entries |
| 8700 | // |
| 8701 | |
| 8702 | HufDec *pl = hdecod + (c << (HUF_DECBITS - l)); |
| 8703 | |
| 8704 | for (long long i = 1ULL << (HUF_DECBITS - l); i > 0; i--, pl++) { |
| 8705 | if (pl->len || pl->p) { |
| 8706 | // |
| 8707 | // Error: a short code or a long code has |
| 8708 | // already been stored in table entry *pl. |
| 8709 | // |
| 8710 | |
| 8711 | // invalidTableEntry(); |
| 8712 | return false; |
| 8713 | } |
| 8714 | |
| 8715 | pl->len = l; |
| 8716 | pl->lit = im; |
| 8717 | } |
| 8718 | } |
| 8719 | } |
| 8720 | |
| 8721 | return true; |
| 8722 | } |
| 8723 | |
| 8724 | // |
| 8725 | // Free the long code entries of a decoding table built by hufBuildDecTable() |
| 8726 | // |
| 8727 | |
| 8728 | static void hufFreeDecTable(HufDec *hdecod) // io: Decoding table |
| 8729 | { |
| 8730 | for (int i = 0; i < HUF_DECSIZE; i++) { |
| 8731 | if (hdecod[i].p) { |
| 8732 | delete[] hdecod[i].p; |
| 8733 | hdecod[i].p = 0; |
| 8734 | } |
| 8735 | } |
| 8736 | } |
| 8737 | |
| 8738 | // |
| 8739 | // ENCODING |
| 8740 | // |
| 8741 | |
| 8742 | inline void outputCode(long long code, long long &c, int &lc, char *&out) { |
| 8743 | outputBits(hufLength(code), hufCode(code), c, lc, out); |
| 8744 | } |
| 8745 | |
| 8746 | inline void sendCode(long long sCode, int runCount, long long runCode, |
| 8747 | long long &c, int &lc, char *&out) { |
| 8748 | // |
| 8749 | // Output a run of runCount instances of the symbol sCount. |
| 8750 | // Output the symbols explicitly, or if that is shorter, output |
| 8751 | // the sCode symbol once followed by a runCode symbol and runCount |
| 8752 | // expressed as an 8-bit number. |
| 8753 | // |
| 8754 | |
| 8755 | if (hufLength(sCode) + hufLength(runCode) + 8 < hufLength(sCode) * runCount) { |
| 8756 | outputCode(sCode, c, lc, out); |
| 8757 | outputCode(runCode, c, lc, out); |
| 8758 | outputBits(8, runCount, c, lc, out); |
| 8759 | } else { |
| 8760 | while (runCount-- >= 0) outputCode(sCode, c, lc, out); |
| 8761 | } |
| 8762 | } |
| 8763 | |
| 8764 | // |
| 8765 | // Encode (compress) ni values based on the Huffman encoding table hcode: |
| 8766 | // |
| 8767 | |
| 8768 | static int hufEncode // return: output size (in bits) |
| 8769 | (const long long *hcode, // i : encoding table |
| 8770 | const unsigned short *in, // i : uncompressed input buffer |
| 8771 | const int ni, // i : input buffer size (in bytes) |
| 8772 | int rlc, // i : rl code |
| 8773 | char *out) // o: compressed output buffer |
| 8774 | { |
| 8775 | char *outStart = out; |
| 8776 | long long c = 0; // bits not yet written to out |
| 8777 | int lc = 0; // number of valid bits in c (LSB) |
| 8778 | int s = in[0]; |
| 8779 | int cs = 0; |
| 8780 | |
| 8781 | // |
| 8782 | // Loop on input values |
| 8783 | // |
| 8784 | |
| 8785 | for (int i = 1; i < ni; i++) { |
| 8786 | // |
| 8787 | // Count same values or send code |
| 8788 | // |
| 8789 | |
| 8790 | if (s == in[i] && cs < 255) { |
| 8791 | cs++; |
| 8792 | } else { |
| 8793 | sendCode(hcode[s], cs, hcode[rlc], c, lc, out); |
| 8794 | cs = 0; |
| 8795 | } |
| 8796 | |
| 8797 | s = in[i]; |
| 8798 | } |
| 8799 | |
| 8800 | // |
| 8801 | // Send remaining code |
| 8802 | // |
| 8803 | |
| 8804 | sendCode(hcode[s], cs, hcode[rlc], c, lc, out); |
| 8805 | |
| 8806 | if (lc) *out = (c << (8 - lc)) & 0xff; |
| 8807 | |
| 8808 | return (out - outStart) * 8 + lc; |
| 8809 | } |
| 8810 | |
| 8811 | // |
| 8812 | // DECODING |
| 8813 | // |
| 8814 | |
| 8815 | // |
| 8816 | // In order to force the compiler to inline them, |
| 8817 | // getChar() and getCode() are implemented as macros |
| 8818 | // instead of "inline" functions. |
| 8819 | // |
| 8820 | |
| 8821 | #define getChar(c, lc, in) \ |
| 8822 | { \ |
| 8823 | c = (c << 8) | *(unsigned char *)(in++); \ |
| 8824 | lc += 8; \ |
| 8825 | } |
| 8826 | |
| 8827 | #if 0 |
| 8828 | #define getCode(po, rlc, c, lc, in, out, ob, oe) \ |
| 8829 | { \ |
| 8830 | if (po == rlc) { \ |
| 8831 | if (lc < 8) getChar(c, lc, in); \ |
| 8832 | \ |
| 8833 | lc -= 8; \ |
| 8834 | \ |
| 8835 | unsigned char cs = (c >> lc); \ |
| 8836 | \ |
| 8837 | if (out + cs > oe) return false; \ |
| 8838 | \ |
| 8839 | /* TinyEXR issue 78 */ \ |
| 8840 | unsigned short s = out[-1]; \ |
| 8841 | \ |
| 8842 | while (cs-- > 0) *out++ = s; \ |
| 8843 | } else if (out < oe) { \ |
| 8844 | *out++ = po; \ |
| 8845 | } else { \ |
| 8846 | return false; \ |
| 8847 | } \ |
| 8848 | } |
| 8849 | #else |
| 8850 | static bool getCode(int po, int rlc, long long &c, int &lc, const char *&in, |
| 8851 | const char *in_end, unsigned short *&out, |
| 8852 | const unsigned short *ob, const unsigned short *oe) { |
| 8853 | (void)ob; |
| 8854 | if (po == rlc) { |
| 8855 | if (lc < 8) { |
| 8856 | /* TinyEXR issue 78 */ |
| 8857 | if ((in + 1) >= in_end) { |
| 8858 | return false; |
| 8859 | } |
| 8860 | |
| 8861 | getChar(c, lc, in); |
| 8862 | } |
| 8863 | |
| 8864 | lc -= 8; |
| 8865 | |
| 8866 | unsigned char cs = (c >> lc); |
| 8867 | |
| 8868 | if (out + cs > oe) return false; |
| 8869 | |
| 8870 | // Bounds check for safety |
| 8871 | // Issue 100. |
| 8872 | if ((out - 1) < ob) return false; |
| 8873 | unsigned short s = out[-1]; |
| 8874 | |
| 8875 | while (cs-- > 0) *out++ = s; |
| 8876 | } else if (out < oe) { |
| 8877 | *out++ = po; |
| 8878 | } else { |
| 8879 | return false; |
| 8880 | } |
| 8881 | return true; |
| 8882 | } |
| 8883 | #endif |
| 8884 | |
| 8885 | // |
| 8886 | // Decode (uncompress) ni bits based on encoding & decoding tables: |
| 8887 | // |
| 8888 | |
| 8889 | static bool hufDecode(const long long *hcode, // i : encoding table |
| 8890 | const HufDec *hdecod, // i : decoding table |
| 8891 | const char *in, // i : compressed input buffer |
| 8892 | int ni, // i : input size (in bits) |
| 8893 | int rlc, // i : run-length code |
| 8894 | int no, // i : expected output size (in bytes) |
| 8895 | unsigned short *out) // o: uncompressed output buffer |
| 8896 | { |
| 8897 | long long c = 0; |
| 8898 | int lc = 0; |
| 8899 | unsigned short *outb = out; // begin |
| 8900 | unsigned short *oe = out + no; // end |
| 8901 | const char *ie = in + (ni + 7) / 8; // input byte size |
| 8902 | |
| 8903 | // |
| 8904 | // Loop on input bytes |
| 8905 | // |
| 8906 | |
| 8907 | while (in < ie) { |
| 8908 | getChar(c, lc, in); |
| 8909 | |
| 8910 | // |
| 8911 | // Access decoding table |
| 8912 | // |
| 8913 | |
| 8914 | while (lc >= HUF_DECBITS) { |
| 8915 | const HufDec pl = hdecod[(c >> (lc - HUF_DECBITS)) & HUF_DECMASK]; |
| 8916 | |
| 8917 | if (pl.len) { |
| 8918 | // |
| 8919 | // Get short code |
| 8920 | // |
| 8921 | |
| 8922 | lc -= pl.len; |
| 8923 | // std::cout << "lit = " << pl.lit << std::endl; |
| 8924 | // std::cout << "rlc = " << rlc << std::endl; |
| 8925 | // std::cout << "c = " << c << std::endl; |
| 8926 | // std::cout << "lc = " << lc << std::endl; |
| 8927 | // std::cout << "in = " << in << std::endl; |
| 8928 | // std::cout << "out = " << out << std::endl; |
| 8929 | // std::cout << "oe = " << oe << std::endl; |
| 8930 | if (!getCode(pl.lit, rlc, c, lc, in, ie, out, outb, oe)) { |
| 8931 | return false; |
| 8932 | } |
| 8933 | } else { |
| 8934 | if (!pl.p) { |
| 8935 | return false; |
| 8936 | } |
| 8937 | // invalidCode(); // wrong code |
| 8938 | |
| 8939 | // |
| 8940 | // Search long code |
| 8941 | // |
| 8942 | |
| 8943 | int j; |
| 8944 | |
| 8945 | for (j = 0; j < pl.lit; j++) { |
| 8946 | int l = hufLength(hcode[pl.p[j]]); |
| 8947 | |
| 8948 | while (lc < l && in < ie) // get more bits |
| 8949 | getChar(c, lc, in); |
| 8950 | |
| 8951 | if (lc >= l) { |
| 8952 | if (hufCode(hcode[pl.p[j]]) == |
| 8953 | ((c >> (lc - l)) & (((long long)(1) << l) - 1))) { |
| 8954 | // |
| 8955 | // Found : get long code |
| 8956 | // |
| 8957 | |
| 8958 | lc -= l; |
| 8959 | if (!getCode(pl.p[j], rlc, c, lc, in, ie, out, outb, oe)) { |
| 8960 | return false; |
| 8961 | } |
| 8962 | break; |
| 8963 | } |
| 8964 | } |
| 8965 | } |
| 8966 | |
| 8967 | if (j == pl.lit) { |
| 8968 | return false; |
| 8969 | // invalidCode(); // Not found |
| 8970 | } |
| 8971 | } |
| 8972 | } |
| 8973 | } |
| 8974 | |
| 8975 | // |
| 8976 | // Get remaining (short) codes |
| 8977 | // |
| 8978 | |
| 8979 | int i = (8 - ni) & 7; |
| 8980 | c >>= i; |
| 8981 | lc -= i; |
| 8982 | |
| 8983 | while (lc > 0) { |
| 8984 | const HufDec pl = hdecod[(c << (HUF_DECBITS - lc)) & HUF_DECMASK]; |
| 8985 | |
| 8986 | if (pl.len) { |
| 8987 | lc -= pl.len; |
| 8988 | if (!getCode(pl.lit, rlc, c, lc, in, ie, out, outb, oe)) { |
| 8989 | return false; |
| 8990 | } |
| 8991 | } else { |
| 8992 | return false; |
| 8993 | // invalidCode(); // wrong (long) code |
| 8994 | } |
| 8995 | } |
| 8996 | |
| 8997 | if (out - outb != no) { |
| 8998 | return false; |
| 8999 | } |
| 9000 | // notEnoughData (); |
| 9001 | |
| 9002 | return true; |
| 9003 | } |
| 9004 | |
| 9005 | static void countFrequencies(std::vector<long long> &freq, |
| 9006 | const unsigned short data[/*n*/], int n) { |
| 9007 | for (int i = 0; i < HUF_ENCSIZE; ++i) freq[i] = 0; |
| 9008 | |
| 9009 | for (int i = 0; i < n; ++i) ++freq[data[i]]; |
| 9010 | } |
| 9011 | |
| 9012 | static void writeUInt(char buf[4], unsigned int i) { |
| 9013 | unsigned char *b = (unsigned char *)buf; |
| 9014 | |
| 9015 | b[0] = i; |
| 9016 | b[1] = i >> 8; |
| 9017 | b[2] = i >> 16; |
| 9018 | b[3] = i >> 24; |
| 9019 | } |
| 9020 | |
| 9021 | static unsigned int readUInt(const char buf[4]) { |
| 9022 | const unsigned char *b = (const unsigned char *)buf; |
| 9023 | |
| 9024 | return (b[0] & 0x000000ff) | ((b[1] << 8) & 0x0000ff00) | |
| 9025 | ((b[2] << 16) & 0x00ff0000) | ((b[3] << 24) & 0xff000000); |
| 9026 | } |
| 9027 | |
| 9028 | // |
| 9029 | // EXTERNAL INTERFACE |
| 9030 | // |
| 9031 | |
| 9032 | static int hufCompress(const unsigned short raw[], int nRaw, |
| 9033 | char compressed[]) { |
| 9034 | if (nRaw == 0) return 0; |
| 9035 | |
| 9036 | std::vector<long long> freq(HUF_ENCSIZE); |
| 9037 | |
| 9038 | countFrequencies(freq, raw, nRaw); |
| 9039 | |
| 9040 | int im = 0; |
| 9041 | int iM = 0; |
| 9042 | hufBuildEncTable(freq.data(), &im, &iM); |
| 9043 | |
| 9044 | char *tableStart = compressed + 20; |
| 9045 | char *tableEnd = tableStart; |
| 9046 | hufPackEncTable(freq.data(), im, iM, &tableEnd); |
| 9047 | int tableLength = tableEnd - tableStart; |
| 9048 | |
| 9049 | char *dataStart = tableEnd; |
| 9050 | int nBits = hufEncode(freq.data(), raw, nRaw, iM, dataStart); |
| 9051 | int data_length = (nBits + 7) / 8; |
| 9052 | |
| 9053 | writeUInt(compressed, im); |
| 9054 | writeUInt(compressed + 4, iM); |
| 9055 | writeUInt(compressed + 8, tableLength); |
| 9056 | writeUInt(compressed + 12, nBits); |
| 9057 | writeUInt(compressed + 16, 0); // room for future extensions |
| 9058 | |
| 9059 | return dataStart + data_length - compressed; |
| 9060 | } |
| 9061 | |
| 9062 | static bool hufUncompress(const char compressed[], int nCompressed, |
| 9063 | std::vector<unsigned short> *raw) { |
| 9064 | if (nCompressed == 0) { |
| 9065 | if (raw->size() != 0) return false; |
| 9066 | |
| 9067 | return false; |
| 9068 | } |
| 9069 | |
| 9070 | int im = readUInt(compressed); |
| 9071 | int iM = readUInt(compressed + 4); |
| 9072 | // int tableLength = readUInt (compressed + 8); |
| 9073 | int nBits = readUInt(compressed + 12); |
| 9074 | |
| 9075 | if (im < 0 || im >= HUF_ENCSIZE || iM < 0 || iM >= HUF_ENCSIZE) return false; |
| 9076 | |
| 9077 | const char *ptr = compressed + 20; |
| 9078 | |
| 9079 | // |
| 9080 | // Fast decoder needs at least 2x64-bits of compressed data, and |
| 9081 | // needs to be run-able on this platform. Otherwise, fall back |
| 9082 | // to the original decoder |
| 9083 | // |
| 9084 | |
| 9085 | // if (FastHufDecoder::enabled() && nBits > 128) |
| 9086 | //{ |
| 9087 | // FastHufDecoder fhd (ptr, nCompressed - (ptr - compressed), im, iM, iM); |
| 9088 | // fhd.decode ((unsigned char*)ptr, nBits, raw, nRaw); |
| 9089 | //} |
| 9090 | // else |
| 9091 | { |
| 9092 | std::vector<long long> freq(HUF_ENCSIZE); |
| 9093 | std::vector<HufDec> hdec(HUF_DECSIZE); |
| 9094 | |
| 9095 | hufClearDecTable(&hdec.at(0)); |
| 9096 | |
| 9097 | hufUnpackEncTable(&ptr, nCompressed - (ptr - compressed), im, iM, |
| 9098 | &freq.at(0)); |
| 9099 | |
| 9100 | { |
| 9101 | if (nBits > 8 * (nCompressed - (ptr - compressed))) { |
| 9102 | return false; |
| 9103 | } |
| 9104 | |
| 9105 | hufBuildDecTable(&freq.at(0), im, iM, &hdec.at(0)); |
| 9106 | hufDecode(&freq.at(0), &hdec.at(0), ptr, nBits, iM, raw->size(), |
| 9107 | raw->data()); |
| 9108 | } |
| 9109 | // catch (...) |
| 9110 | //{ |
| 9111 | // hufFreeDecTable (hdec); |
| 9112 | // throw; |
| 9113 | //} |
| 9114 | |
| 9115 | hufFreeDecTable(&hdec.at(0)); |
| 9116 | } |
| 9117 | |
| 9118 | return true; |
| 9119 | } |
| 9120 | |
| 9121 | // |
| 9122 | // Functions to compress the range of values in the pixel data |
| 9123 | // |
| 9124 | |
| 9125 | const int USHORT_RANGE = (1 << 16); |
| 9126 | const int BITMAP_SIZE = (USHORT_RANGE >> 3); |
| 9127 | |
| 9128 | static void bitmapFromData(const unsigned short data[/*nData*/], int nData, |
| 9129 | unsigned char bitmap[BITMAP_SIZE], |
| 9130 | unsigned short &minNonZero, |
| 9131 | unsigned short &maxNonZero) { |
| 9132 | for (int i = 0; i < BITMAP_SIZE; ++i) bitmap[i] = 0; |
| 9133 | |
| 9134 | for (int i = 0; i < nData; ++i) bitmap[data[i] >> 3] |= (1 << (data[i] & 7)); |
| 9135 | |
| 9136 | bitmap[0] &= ~1; // zero is not explicitly stored in |
| 9137 | // the bitmap; we assume that the |
| 9138 | // data always contain zeroes |
| 9139 | minNonZero = BITMAP_SIZE - 1; |
| 9140 | maxNonZero = 0; |
| 9141 | |
| 9142 | for (int i = 0; i < BITMAP_SIZE; ++i) { |
| 9143 | if (bitmap[i]) { |
| 9144 | if (minNonZero > i) minNonZero = i; |
| 9145 | if (maxNonZero < i) maxNonZero = i; |
| 9146 | } |
| 9147 | } |
| 9148 | } |
| 9149 | |
| 9150 | static unsigned short forwardLutFromBitmap( |
| 9151 | const unsigned char bitmap[BITMAP_SIZE], unsigned short lut[USHORT_RANGE]) { |
| 9152 | int k = 0; |
| 9153 | |
| 9154 | for (int i = 0; i < USHORT_RANGE; ++i) { |
| 9155 | if ((i == 0) || (bitmap[i >> 3] & (1 << (i & 7)))) |
| 9156 | lut[i] = k++; |
| 9157 | else |
| 9158 | lut[i] = 0; |
| 9159 | } |
| 9160 | |
| 9161 | return k - 1; // maximum value stored in lut[], |
| 9162 | } // i.e. number of ones in bitmap minus 1 |
| 9163 | |
| 9164 | static unsigned short reverseLutFromBitmap( |
| 9165 | const unsigned char bitmap[BITMAP_SIZE], unsigned short lut[USHORT_RANGE]) { |
| 9166 | int k = 0; |
| 9167 | |
| 9168 | for (int i = 0; i < USHORT_RANGE; ++i) { |
| 9169 | if ((i == 0) || (bitmap[i >> 3] & (1 << (i & 7)))) lut[k++] = i; |
| 9170 | } |
| 9171 | |
| 9172 | int n = k - 1; |
| 9173 | |
| 9174 | while (k < USHORT_RANGE) lut[k++] = 0; |
| 9175 | |
| 9176 | return n; // maximum k where lut[k] is non-zero, |
| 9177 | } // i.e. number of ones in bitmap minus 1 |
| 9178 | |
| 9179 | static void applyLut(const unsigned short lut[USHORT_RANGE], |
| 9180 | unsigned short data[/*nData*/], int nData) { |
| 9181 | for (int i = 0; i < nData; ++i) data[i] = lut[data[i]]; |
| 9182 | } |
| 9183 | |
| 9184 | #ifdef __clang__ |
| 9185 | #pragma clang diagnostic pop |
| 9186 | #endif // __clang__ |
| 9187 | |
| 9188 | #ifdef _MSC_VER |
| 9189 | #pragma warning(pop) |
| 9190 | #endif |
| 9191 | |
| 9192 | static bool CompressPiz(unsigned char *outPtr, unsigned int *outSize, |
| 9193 | const unsigned char *inPtr, size_t inSize, |
| 9194 | const std::vector<ChannelInfo> &channelInfo, |
| 9195 | int data_width, int num_lines) { |
| 9196 | std::vector<unsigned char> bitmap(BITMAP_SIZE); |
| 9197 | unsigned short minNonZero; |
| 9198 | unsigned short maxNonZero; |
| 9199 | |
| 9200 | #if !MINIZ_LITTLE_ENDIAN |
| 9201 | // @todo { PIZ compression on BigEndian architecture. } |
| 9202 | assert(0); |
| 9203 | return false; |
| 9204 | #endif |
| 9205 | |
| 9206 | // Assume `inSize` is multiple of 2 or 4. |
| 9207 | std::vector<unsigned short> tmpBuffer(inSize / sizeof(unsigned short)); |
| 9208 | |
| 9209 | std::vector<PIZChannelData> channelData(channelInfo.size()); |
| 9210 | unsigned short *tmpBufferEnd = &tmpBuffer.at(0); |
| 9211 | |
| 9212 | for (size_t c = 0; c < channelData.size(); c++) { |
| 9213 | PIZChannelData &cd = channelData[c]; |
| 9214 | |
| 9215 | cd.start = tmpBufferEnd; |
| 9216 | cd.end = cd.start; |
| 9217 | |
| 9218 | cd.nx = data_width; |
| 9219 | cd.ny = num_lines; |
| 9220 | // cd.ys = c.channel().ySampling; |
| 9221 | |
| 9222 | size_t pixelSize = sizeof(int); // UINT and FLOAT |
| 9223 | if (channelInfo[c].pixel_type == TINYEXR_PIXELTYPE_HALF) { |
| 9224 | pixelSize = sizeof(short); |
| 9225 | } |
| 9226 | |
| 9227 | cd.size = static_cast<int>(pixelSize / sizeof(short)); |
| 9228 | |
| 9229 | tmpBufferEnd += cd.nx * cd.ny * cd.size; |
| 9230 | } |
| 9231 | |
| 9232 | const unsigned char *ptr = inPtr; |
| 9233 | for (int y = 0; y < num_lines; ++y) { |
| 9234 | for (size_t i = 0; i < channelData.size(); ++i) { |
| 9235 | PIZChannelData &cd = channelData[i]; |
| 9236 | |
| 9237 | // if (modp (y, cd.ys) != 0) |
| 9238 | // continue; |
| 9239 | |
| 9240 | size_t n = static_cast<size_t>(cd.nx * cd.size); |
| 9241 | memcpy(cd.end, ptr, n * sizeof(unsigned short)); |
| 9242 | ptr += n * sizeof(unsigned short); |
| 9243 | cd.end += n; |
| 9244 | } |
| 9245 | } |
| 9246 | |
| 9247 | bitmapFromData(&tmpBuffer.at(0), static_cast<int>(tmpBuffer.size()), |
| 9248 | bitmap.data(), minNonZero, maxNonZero); |
| 9249 | |
| 9250 | std::vector<unsigned short> lut(USHORT_RANGE); |
| 9251 | unsigned short maxValue = forwardLutFromBitmap(bitmap.data(), lut.data()); |
| 9252 | applyLut(lut.data(), &tmpBuffer.at(0), static_cast<int>(tmpBuffer.size())); |
| 9253 | |
| 9254 | // |
| 9255 | // Store range compression info in _outBuffer |
| 9256 | // |
| 9257 | |
| 9258 | char *buf = reinterpret_cast<char *>(outPtr); |
| 9259 | |
| 9260 | memcpy(buf, &minNonZero, sizeof(unsigned short)); |
| 9261 | buf += sizeof(unsigned short); |
| 9262 | memcpy(buf, &maxNonZero, sizeof(unsigned short)); |
| 9263 | buf += sizeof(unsigned short); |
| 9264 | |
| 9265 | if (minNonZero <= maxNonZero) { |
| 9266 | memcpy(buf, reinterpret_cast<char *>(&bitmap[0] + minNonZero), |
| 9267 | maxNonZero - minNonZero + 1); |
| 9268 | buf += maxNonZero - minNonZero + 1; |
| 9269 | } |
| 9270 | |
| 9271 | // |
| 9272 | // Apply wavelet encoding |
| 9273 | // |
| 9274 | |
| 9275 | for (size_t i = 0; i < channelData.size(); ++i) { |
| 9276 | PIZChannelData &cd = channelData[i]; |
| 9277 | |
| 9278 | for (int j = 0; j < cd.size; ++j) { |
| 9279 | wav2Encode(cd.start + j, cd.nx, cd.size, cd.ny, cd.nx * cd.size, |
| 9280 | maxValue); |
| 9281 | } |
| 9282 | } |
| 9283 | |
| 9284 | // |
| 9285 | // Apply Huffman encoding; append the result to _outBuffer |
| 9286 | // |
| 9287 | |
| 9288 | // length header(4byte), then huff data. Initialize length header with zero, |
| 9289 | // then later fill it by `length`. |
| 9290 | char *lengthPtr = buf; |
| 9291 | int zero = 0; |
| 9292 | memcpy(buf, &zero, sizeof(int)); |
| 9293 | buf += sizeof(int); |
| 9294 | |
| 9295 | int length = |
| 9296 | hufCompress(&tmpBuffer.at(0), static_cast<int>(tmpBuffer.size()), buf); |
| 9297 | memcpy(lengthPtr, &length, sizeof(int)); |
| 9298 | |
| 9299 | (*outSize) = static_cast<unsigned int>( |
| 9300 | (reinterpret_cast<unsigned char *>(buf) - outPtr) + |
| 9301 | static_cast<unsigned int>(length)); |
| 9302 | |
| 9303 | // Use uncompressed data when compressed data is larger than uncompressed. |
| 9304 | // (Issue 40) |
| 9305 | if ((*outSize) >= inSize) { |
| 9306 | (*outSize) = static_cast<unsigned int>(inSize); |
| 9307 | memcpy(outPtr, inPtr, inSize); |
| 9308 | } |
| 9309 | return true; |
| 9310 | } |
| 9311 | |
| 9312 | static bool DecompressPiz(unsigned char *outPtr, const unsigned char *inPtr, |
| 9313 | size_t tmpBufSize, size_t inLen, int num_channels, |
| 9314 | const EXRChannelInfo *channels, int data_width, |
| 9315 | int num_lines) { |
| 9316 | if (inLen == tmpBufSize) { |
| 9317 | // Data is not compressed(Issue 40). |
| 9318 | memcpy(outPtr, inPtr, inLen); |
| 9319 | return true; |
| 9320 | } |
| 9321 | |
| 9322 | std::vector<unsigned char> bitmap(BITMAP_SIZE); |
| 9323 | unsigned short minNonZero; |
| 9324 | unsigned short maxNonZero; |
| 9325 | |
| 9326 | #if !MINIZ_LITTLE_ENDIAN |
| 9327 | // @todo { PIZ compression on BigEndian architecture. } |
| 9328 | assert(0); |
| 9329 | return false; |
| 9330 | #endif |
| 9331 | |
| 9332 | memset(bitmap.data(), 0, BITMAP_SIZE); |
| 9333 | |
| 9334 | const unsigned char *ptr = inPtr; |
| 9335 | // minNonZero = *(reinterpret_cast<const unsigned short *>(ptr)); |
| 9336 | tinyexr::cpy2(&minNonZero, reinterpret_cast<const unsigned short *>(ptr)); |
| 9337 | // maxNonZero = *(reinterpret_cast<const unsigned short *>(ptr + 2)); |
| 9338 | tinyexr::cpy2(&maxNonZero, reinterpret_cast<const unsigned short *>(ptr + 2)); |
| 9339 | ptr += 4; |
| 9340 | |
| 9341 | if (maxNonZero >= BITMAP_SIZE) { |
| 9342 | return false; |
| 9343 | } |
| 9344 | |
| 9345 | if (minNonZero <= maxNonZero) { |
| 9346 | memcpy(reinterpret_cast<char *>(&bitmap[0] + minNonZero), ptr, |
| 9347 | maxNonZero - minNonZero + 1); |
| 9348 | ptr += maxNonZero - minNonZero + 1; |
| 9349 | } |
| 9350 | |
| 9351 | std::vector<unsigned short> lut(USHORT_RANGE); |
| 9352 | memset(lut.data(), 0, sizeof(unsigned short) * USHORT_RANGE); |
| 9353 | unsigned short maxValue = reverseLutFromBitmap(bitmap.data(), lut.data()); |
| 9354 | |
| 9355 | // |
| 9356 | // Huffman decoding |
| 9357 | // |
| 9358 | |
| 9359 | int length; |
| 9360 | |
| 9361 | // length = *(reinterpret_cast<const int *>(ptr)); |
| 9362 | tinyexr::cpy4(&length, reinterpret_cast<const int *>(ptr)); |
| 9363 | ptr += sizeof(int); |
| 9364 | |
| 9365 | if (size_t((ptr - inPtr) + length) > inLen) { |
| 9366 | return false; |
| 9367 | } |
| 9368 | |
| 9369 | std::vector<unsigned short> tmpBuffer(tmpBufSize); |
| 9370 | hufUncompress(reinterpret_cast<const char *>(ptr), length, &tmpBuffer); |
| 9371 | |
| 9372 | // |
| 9373 | // Wavelet decoding |
| 9374 | // |
| 9375 | |
| 9376 | std::vector<PIZChannelData> channelData(static_cast<size_t>(num_channels)); |
| 9377 | |
| 9378 | unsigned short *tmpBufferEnd = &tmpBuffer.at(0); |
| 9379 | |
| 9380 | for (size_t i = 0; i < static_cast<size_t>(num_channels); ++i) { |
| 9381 | const EXRChannelInfo &chan = channels[i]; |
| 9382 | |
| 9383 | size_t pixelSize = sizeof(int); // UINT and FLOAT |
| 9384 | if (chan.pixel_type == TINYEXR_PIXELTYPE_HALF) { |
| 9385 | pixelSize = sizeof(short); |
| 9386 | } |
| 9387 | |
| 9388 | channelData[i].start = tmpBufferEnd; |
| 9389 | channelData[i].end = channelData[i].start; |
| 9390 | channelData[i].nx = data_width; |
| 9391 | channelData[i].ny = num_lines; |
| 9392 | // channelData[i].ys = 1; |
| 9393 | channelData[i].size = static_cast<int>(pixelSize / sizeof(short)); |
| 9394 | |
| 9395 | tmpBufferEnd += channelData[i].nx * channelData[i].ny * channelData[i].size; |
| 9396 | } |
| 9397 | |
| 9398 | for (size_t i = 0; i < channelData.size(); ++i) { |
| 9399 | PIZChannelData &cd = channelData[i]; |
| 9400 | |
| 9401 | for (int j = 0; j < cd.size; ++j) { |
| 9402 | wav2Decode(cd.start + j, cd.nx, cd.size, cd.ny, cd.nx * cd.size, |
| 9403 | maxValue); |
| 9404 | } |
| 9405 | } |
| 9406 | |
| 9407 | // |
| 9408 | // Expand the pixel data to their original range |
| 9409 | // |
| 9410 | |
| 9411 | applyLut(lut.data(), &tmpBuffer.at(0), static_cast<int>(tmpBufSize)); |
| 9412 | |
| 9413 | for (int y = 0; y < num_lines; y++) { |
| 9414 | for (size_t i = 0; i < channelData.size(); ++i) { |
| 9415 | PIZChannelData &cd = channelData[i]; |
| 9416 | |
| 9417 | // if (modp (y, cd.ys) != 0) |
| 9418 | // continue; |
| 9419 | |
| 9420 | size_t n = static_cast<size_t>(cd.nx * cd.size); |
| 9421 | memcpy(outPtr, cd.end, static_cast<size_t>(n * sizeof(unsigned short))); |
| 9422 | outPtr += n * sizeof(unsigned short); |
| 9423 | cd.end += n; |
| 9424 | } |
| 9425 | } |
| 9426 | |
| 9427 | return true; |
| 9428 | } |
| 9429 | #endif // TINYEXR_USE_PIZ |
| 9430 | |
| 9431 | #if TINYEXR_USE_ZFP |
| 9432 | struct ZFPCompressionParam { |
| 9433 | double rate; |
| 9434 | int precision; |
| 9435 | double tolerance; |
| 9436 | int type; // TINYEXR_ZFP_COMPRESSIONTYPE_* |
| 9437 | |
| 9438 | ZFPCompressionParam() { |
| 9439 | type = TINYEXR_ZFP_COMPRESSIONTYPE_RATE; |
| 9440 | rate = 2.0; |
| 9441 | precision = 0; |
| 9442 | tolerance = 0.0f; |
| 9443 | } |
| 9444 | }; |
| 9445 | |
| 9446 | bool FindZFPCompressionParam(ZFPCompressionParam *param, |
| 9447 | const EXRAttribute *attributes, |
| 9448 | int num_attributes) { |
| 9449 | bool foundType = false; |
| 9450 | |
| 9451 | for (int i = 0; i < num_attributes; i++) { |
| 9452 | if ((strcmp(attributes[i].name, "zfpCompressionType" ) == 0) && |
| 9453 | (attributes[i].size == 1)) { |
| 9454 | param->type = static_cast<int>(attributes[i].value[0]); |
| 9455 | |
| 9456 | foundType = true; |
| 9457 | } |
| 9458 | } |
| 9459 | |
| 9460 | if (!foundType) { |
| 9461 | return false; |
| 9462 | } |
| 9463 | |
| 9464 | if (param->type == TINYEXR_ZFP_COMPRESSIONTYPE_RATE) { |
| 9465 | for (int i = 0; i < num_attributes; i++) { |
| 9466 | if ((strcmp(attributes[i].name, "zfpCompressionRate" ) == 0) && |
| 9467 | (attributes[i].size == 8)) { |
| 9468 | param->rate = *(reinterpret_cast<double *>(attributes[i].value)); |
| 9469 | return true; |
| 9470 | } |
| 9471 | } |
| 9472 | } else if (param->type == TINYEXR_ZFP_COMPRESSIONTYPE_PRECISION) { |
| 9473 | for (int i = 0; i < num_attributes; i++) { |
| 9474 | if ((strcmp(attributes[i].name, "zfpCompressionPrecision" ) == 0) && |
| 9475 | (attributes[i].size == 4)) { |
| 9476 | param->rate = *(reinterpret_cast<int *>(attributes[i].value)); |
| 9477 | return true; |
| 9478 | } |
| 9479 | } |
| 9480 | } else if (param->type == TINYEXR_ZFP_COMPRESSIONTYPE_ACCURACY) { |
| 9481 | for (int i = 0; i < num_attributes; i++) { |
| 9482 | if ((strcmp(attributes[i].name, "zfpCompressionTolerance" ) == 0) && |
| 9483 | (attributes[i].size == 8)) { |
| 9484 | param->tolerance = *(reinterpret_cast<double *>(attributes[i].value)); |
| 9485 | return true; |
| 9486 | } |
| 9487 | } |
| 9488 | } else { |
| 9489 | assert(0); |
| 9490 | } |
| 9491 | |
| 9492 | return false; |
| 9493 | } |
| 9494 | |
| 9495 | // Assume pixel format is FLOAT for all channels. |
| 9496 | static bool DecompressZfp(float *dst, int dst_width, int dst_num_lines, |
| 9497 | int num_channels, const unsigned char *src, |
| 9498 | unsigned long src_size, |
| 9499 | const ZFPCompressionParam ¶m) { |
| 9500 | size_t uncompressed_size = dst_width * dst_num_lines * num_channels; |
| 9501 | |
| 9502 | if (uncompressed_size == src_size) { |
| 9503 | // Data is not compressed(Issue 40). |
| 9504 | memcpy(dst, src, src_size); |
| 9505 | } |
| 9506 | |
| 9507 | zfp_stream *zfp = NULL; |
| 9508 | zfp_field *field = NULL; |
| 9509 | |
| 9510 | assert((dst_width % 4) == 0); |
| 9511 | assert((dst_num_lines % 4) == 0); |
| 9512 | |
| 9513 | if ((dst_width & 3U) || (dst_num_lines & 3U)) { |
| 9514 | return false; |
| 9515 | } |
| 9516 | |
| 9517 | field = |
| 9518 | zfp_field_2d(reinterpret_cast<void *>(const_cast<unsigned char *>(src)), |
| 9519 | zfp_type_float, dst_width, dst_num_lines * num_channels); |
| 9520 | zfp = zfp_stream_open(NULL); |
| 9521 | |
| 9522 | if (param.type == TINYEXR_ZFP_COMPRESSIONTYPE_RATE) { |
| 9523 | zfp_stream_set_rate(zfp, param.rate, zfp_type_float, /* dimention */ 2, |
| 9524 | /* write random access */ 0); |
| 9525 | } else if (param.type == TINYEXR_ZFP_COMPRESSIONTYPE_PRECISION) { |
| 9526 | zfp_stream_set_precision(zfp, param.precision, zfp_type_float); |
| 9527 | } else if (param.type == TINYEXR_ZFP_COMPRESSIONTYPE_ACCURACY) { |
| 9528 | zfp_stream_set_accuracy(zfp, param.tolerance, zfp_type_float); |
| 9529 | } else { |
| 9530 | assert(0); |
| 9531 | } |
| 9532 | |
| 9533 | size_t buf_size = zfp_stream_maximum_size(zfp, field); |
| 9534 | std::vector<unsigned char> buf(buf_size); |
| 9535 | memcpy(&buf.at(0), src, src_size); |
| 9536 | |
| 9537 | bitstream *stream = stream_open(&buf.at(0), buf_size); |
| 9538 | zfp_stream_set_bit_stream(zfp, stream); |
| 9539 | zfp_stream_rewind(zfp); |
| 9540 | |
| 9541 | size_t image_size = dst_width * dst_num_lines; |
| 9542 | |
| 9543 | for (int c = 0; c < num_channels; c++) { |
| 9544 | // decompress 4x4 pixel block. |
| 9545 | for (int y = 0; y < dst_num_lines; y += 4) { |
| 9546 | for (int x = 0; x < dst_width; x += 4) { |
| 9547 | float fblock[16]; |
| 9548 | zfp_decode_block_float_2(zfp, fblock); |
| 9549 | for (int j = 0; j < 4; j++) { |
| 9550 | for (int i = 0; i < 4; i++) { |
| 9551 | dst[c * image_size + ((y + j) * dst_width + (x + i))] = |
| 9552 | fblock[j * 4 + i]; |
| 9553 | } |
| 9554 | } |
| 9555 | } |
| 9556 | } |
| 9557 | } |
| 9558 | |
| 9559 | zfp_field_free(field); |
| 9560 | zfp_stream_close(zfp); |
| 9561 | stream_close(stream); |
| 9562 | |
| 9563 | return true; |
| 9564 | } |
| 9565 | |
| 9566 | // Assume pixel format is FLOAT for all channels. |
| 9567 | bool CompressZfp(std::vector<unsigned char> *outBuf, unsigned int *outSize, |
| 9568 | const float *inPtr, int width, int num_lines, int num_channels, |
| 9569 | const ZFPCompressionParam ¶m) { |
| 9570 | zfp_stream *zfp = NULL; |
| 9571 | zfp_field *field = NULL; |
| 9572 | |
| 9573 | assert((width % 4) == 0); |
| 9574 | assert((num_lines % 4) == 0); |
| 9575 | |
| 9576 | if ((width & 3U) || (num_lines & 3U)) { |
| 9577 | return false; |
| 9578 | } |
| 9579 | |
| 9580 | // create input array. |
| 9581 | field = zfp_field_2d(reinterpret_cast<void *>(const_cast<float *>(inPtr)), |
| 9582 | zfp_type_float, width, num_lines * num_channels); |
| 9583 | |
| 9584 | zfp = zfp_stream_open(NULL); |
| 9585 | |
| 9586 | if (param.type == TINYEXR_ZFP_COMPRESSIONTYPE_RATE) { |
| 9587 | zfp_stream_set_rate(zfp, param.rate, zfp_type_float, 2, 0); |
| 9588 | } else if (param.type == TINYEXR_ZFP_COMPRESSIONTYPE_PRECISION) { |
| 9589 | zfp_stream_set_precision(zfp, param.precision, zfp_type_float); |
| 9590 | } else if (param.type == TINYEXR_ZFP_COMPRESSIONTYPE_ACCURACY) { |
| 9591 | zfp_stream_set_accuracy(zfp, param.tolerance, zfp_type_float); |
| 9592 | } else { |
| 9593 | assert(0); |
| 9594 | } |
| 9595 | |
| 9596 | size_t buf_size = zfp_stream_maximum_size(zfp, field); |
| 9597 | |
| 9598 | outBuf->resize(buf_size); |
| 9599 | |
| 9600 | bitstream *stream = stream_open(&outBuf->at(0), buf_size); |
| 9601 | zfp_stream_set_bit_stream(zfp, stream); |
| 9602 | zfp_field_free(field); |
| 9603 | |
| 9604 | size_t image_size = width * num_lines; |
| 9605 | |
| 9606 | for (int c = 0; c < num_channels; c++) { |
| 9607 | // compress 4x4 pixel block. |
| 9608 | for (int y = 0; y < num_lines; y += 4) { |
| 9609 | for (int x = 0; x < width; x += 4) { |
| 9610 | float fblock[16]; |
| 9611 | for (int j = 0; j < 4; j++) { |
| 9612 | for (int i = 0; i < 4; i++) { |
| 9613 | fblock[j * 4 + i] = |
| 9614 | inPtr[c * image_size + ((y + j) * width + (x + i))]; |
| 9615 | } |
| 9616 | } |
| 9617 | zfp_encode_block_float_2(zfp, fblock); |
| 9618 | } |
| 9619 | } |
| 9620 | } |
| 9621 | |
| 9622 | zfp_stream_flush(zfp); |
| 9623 | (*outSize) = zfp_stream_compressed_size(zfp); |
| 9624 | |
| 9625 | zfp_stream_close(zfp); |
| 9626 | |
| 9627 | return true; |
| 9628 | } |
| 9629 | |
| 9630 | #endif |
| 9631 | |
| 9632 | // |
| 9633 | // ----------------------------------------------------------------- |
| 9634 | // |
| 9635 | |
| 9636 | // TODO(syoyo): Refactor function arguments. |
| 9637 | static bool DecodePixelData(/* out */ unsigned char **out_images, |
| 9638 | const int *requested_pixel_types, |
| 9639 | const unsigned char *data_ptr, size_t data_len, |
| 9640 | int compression_type, int line_order, int width, |
| 9641 | int height, int x_stride, int y, int line_no, |
| 9642 | int num_lines, size_t pixel_data_size, |
| 9643 | size_t num_attributes, |
| 9644 | const EXRAttribute *attributes, size_t num_channels, |
| 9645 | const EXRChannelInfo *channels, |
| 9646 | const std::vector<size_t> &channel_offset_list) { |
| 9647 | if (compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) { // PIZ |
| 9648 | #if TINYEXR_USE_PIZ |
| 9649 | if ((width == 0) || (num_lines == 0) || (pixel_data_size == 0)) { |
| 9650 | // Invalid input #90 |
| 9651 | return false; |
| 9652 | } |
| 9653 | |
| 9654 | // Allocate original data size. |
| 9655 | std::vector<unsigned char> outBuf(static_cast<size_t>( |
| 9656 | static_cast<size_t>(width * num_lines) * pixel_data_size)); |
| 9657 | size_t tmpBufLen = outBuf.size(); |
| 9658 | |
| 9659 | bool ret = tinyexr::DecompressPiz( |
| 9660 | reinterpret_cast<unsigned char *>(&outBuf.at(0)), data_ptr, tmpBufLen, |
| 9661 | data_len, static_cast<int>(num_channels), channels, width, num_lines); |
| 9662 | |
| 9663 | if (!ret) { |
| 9664 | return false; |
| 9665 | } |
| 9666 | |
| 9667 | // For PIZ_COMPRESSION: |
| 9668 | // pixel sample data for channel 0 for scanline 0 |
| 9669 | // pixel sample data for channel 1 for scanline 0 |
| 9670 | // pixel sample data for channel ... for scanline 0 |
| 9671 | // pixel sample data for channel n for scanline 0 |
| 9672 | // pixel sample data for channel 0 for scanline 1 |
| 9673 | // pixel sample data for channel 1 for scanline 1 |
| 9674 | // pixel sample data for channel ... for scanline 1 |
| 9675 | // pixel sample data for channel n for scanline 1 |
| 9676 | // ... |
| 9677 | for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) { |
| 9678 | if (channels[c].pixel_type == TINYEXR_PIXELTYPE_HALF) { |
| 9679 | for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) { |
| 9680 | const unsigned short *line_ptr = reinterpret_cast<unsigned short *>( |
| 9681 | &outBuf.at(v * pixel_data_size * static_cast<size_t>(width) + |
| 9682 | channel_offset_list[c] * static_cast<size_t>(width))); |
| 9683 | for (size_t u = 0; u < static_cast<size_t>(width); u++) { |
| 9684 | FP16 hf; |
| 9685 | |
| 9686 | // hf.u = line_ptr[u]; |
| 9687 | // use `cpy` to avoid unaligned memory access when compiler's |
| 9688 | // optimization is on. |
| 9689 | tinyexr::cpy2(&(hf.u), line_ptr + u); |
| 9690 | |
| 9691 | tinyexr::swap2(reinterpret_cast<unsigned short *>(&hf.u)); |
| 9692 | |
| 9693 | if (requested_pixel_types[c] == TINYEXR_PIXELTYPE_HALF) { |
| 9694 | unsigned short *image = |
| 9695 | reinterpret_cast<unsigned short **>(out_images)[c]; |
| 9696 | if (line_order == 0) { |
| 9697 | image += (static_cast<size_t>(line_no) + v) * |
| 9698 | static_cast<size_t>(x_stride) + |
| 9699 | u; |
| 9700 | } else { |
| 9701 | image += static_cast<size_t>( |
| 9702 | (height - 1 - (line_no + static_cast<int>(v)))) * |
| 9703 | static_cast<size_t>(x_stride) + |
| 9704 | u; |
| 9705 | } |
| 9706 | *image = hf.u; |
| 9707 | } else { // HALF -> FLOAT |
| 9708 | FP32 f32 = half_to_float(hf); |
| 9709 | float *image = reinterpret_cast<float **>(out_images)[c]; |
| 9710 | size_t offset = 0; |
| 9711 | if (line_order == 0) { |
| 9712 | offset = (static_cast<size_t>(line_no) + v) * |
| 9713 | static_cast<size_t>(x_stride) + |
| 9714 | u; |
| 9715 | } else { |
| 9716 | offset = static_cast<size_t>( |
| 9717 | (height - 1 - (line_no + static_cast<int>(v)))) * |
| 9718 | static_cast<size_t>(x_stride) + |
| 9719 | u; |
| 9720 | } |
| 9721 | image += offset; |
| 9722 | *image = f32.f; |
| 9723 | } |
| 9724 | } |
| 9725 | } |
| 9726 | } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_UINT) { |
| 9727 | assert(requested_pixel_types[c] == TINYEXR_PIXELTYPE_UINT); |
| 9728 | |
| 9729 | for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) { |
| 9730 | const unsigned int *line_ptr = reinterpret_cast<unsigned int *>( |
| 9731 | &outBuf.at(v * pixel_data_size * static_cast<size_t>(width) + |
| 9732 | channel_offset_list[c] * static_cast<size_t>(width))); |
| 9733 | for (size_t u = 0; u < static_cast<size_t>(width); u++) { |
| 9734 | unsigned int val; |
| 9735 | // val = line_ptr[u]; |
| 9736 | tinyexr::cpy4(&val, line_ptr + u); |
| 9737 | |
| 9738 | tinyexr::swap4(&val); |
| 9739 | |
| 9740 | unsigned int *image = |
| 9741 | reinterpret_cast<unsigned int **>(out_images)[c]; |
| 9742 | if (line_order == 0) { |
| 9743 | image += (static_cast<size_t>(line_no) + v) * |
| 9744 | static_cast<size_t>(x_stride) + |
| 9745 | u; |
| 9746 | } else { |
| 9747 | image += static_cast<size_t>( |
| 9748 | (height - 1 - (line_no + static_cast<int>(v)))) * |
| 9749 | static_cast<size_t>(x_stride) + |
| 9750 | u; |
| 9751 | } |
| 9752 | *image = val; |
| 9753 | } |
| 9754 | } |
| 9755 | } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) { |
| 9756 | assert(requested_pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT); |
| 9757 | for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) { |
| 9758 | const float *line_ptr = reinterpret_cast<float *>(&outBuf.at( |
| 9759 | v * pixel_data_size * static_cast<size_t>(x_stride) + |
| 9760 | channel_offset_list[c] * static_cast<size_t>(x_stride))); |
| 9761 | for (size_t u = 0; u < static_cast<size_t>(width); u++) { |
| 9762 | float val; |
| 9763 | // val = line_ptr[u]; |
| 9764 | tinyexr::cpy4(&val, line_ptr + u); |
| 9765 | |
| 9766 | tinyexr::swap4(reinterpret_cast<unsigned int *>(&val)); |
| 9767 | |
| 9768 | float *image = reinterpret_cast<float **>(out_images)[c]; |
| 9769 | if (line_order == 0) { |
| 9770 | image += (static_cast<size_t>(line_no) + v) * |
| 9771 | static_cast<size_t>(x_stride) + |
| 9772 | u; |
| 9773 | } else { |
| 9774 | image += static_cast<size_t>( |
| 9775 | (height - 1 - (line_no + static_cast<int>(v)))) * |
| 9776 | static_cast<size_t>(x_stride) + |
| 9777 | u; |
| 9778 | } |
| 9779 | *image = val; |
| 9780 | } |
| 9781 | } |
| 9782 | } else { |
| 9783 | assert(0); |
| 9784 | } |
| 9785 | } |
| 9786 | #else |
| 9787 | assert(0 && "PIZ is enabled in this build" ); |
| 9788 | return false; |
| 9789 | #endif |
| 9790 | |
| 9791 | } else if (compression_type == TINYEXR_COMPRESSIONTYPE_ZIPS || |
| 9792 | compression_type == TINYEXR_COMPRESSIONTYPE_ZIP) { |
| 9793 | // Allocate original data size. |
| 9794 | std::vector<unsigned char> outBuf(static_cast<size_t>(width) * |
| 9795 | static_cast<size_t>(num_lines) * |
| 9796 | pixel_data_size); |
| 9797 | |
| 9798 | unsigned long dstLen = static_cast<unsigned long>(outBuf.size()); |
| 9799 | assert(dstLen > 0); |
| 9800 | if (!tinyexr::DecompressZip( |
| 9801 | reinterpret_cast<unsigned char *>(&outBuf.at(0)), &dstLen, data_ptr, |
| 9802 | static_cast<unsigned long>(data_len))) { |
| 9803 | return false; |
| 9804 | } |
| 9805 | |
| 9806 | // For ZIP_COMPRESSION: |
| 9807 | // pixel sample data for channel 0 for scanline 0 |
| 9808 | // pixel sample data for channel 1 for scanline 0 |
| 9809 | // pixel sample data for channel ... for scanline 0 |
| 9810 | // pixel sample data for channel n for scanline 0 |
| 9811 | // pixel sample data for channel 0 for scanline 1 |
| 9812 | // pixel sample data for channel 1 for scanline 1 |
| 9813 | // pixel sample data for channel ... for scanline 1 |
| 9814 | // pixel sample data for channel n for scanline 1 |
| 9815 | // ... |
| 9816 | for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) { |
| 9817 | if (channels[c].pixel_type == TINYEXR_PIXELTYPE_HALF) { |
| 9818 | for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) { |
| 9819 | const unsigned short *line_ptr = reinterpret_cast<unsigned short *>( |
| 9820 | &outBuf.at(v * static_cast<size_t>(pixel_data_size) * |
| 9821 | static_cast<size_t>(width) + |
| 9822 | channel_offset_list[c] * static_cast<size_t>(width))); |
| 9823 | for (size_t u = 0; u < static_cast<size_t>(width); u++) { |
| 9824 | tinyexr::FP16 hf; |
| 9825 | |
| 9826 | // hf.u = line_ptr[u]; |
| 9827 | tinyexr::cpy2(&(hf.u), line_ptr + u); |
| 9828 | |
| 9829 | tinyexr::swap2(reinterpret_cast<unsigned short *>(&hf.u)); |
| 9830 | |
| 9831 | if (requested_pixel_types[c] == TINYEXR_PIXELTYPE_HALF) { |
| 9832 | unsigned short *image = |
| 9833 | reinterpret_cast<unsigned short **>(out_images)[c]; |
| 9834 | if (line_order == 0) { |
| 9835 | image += (static_cast<size_t>(line_no) + v) * |
| 9836 | static_cast<size_t>(x_stride) + |
| 9837 | u; |
| 9838 | } else { |
| 9839 | image += (static_cast<size_t>(height) - 1U - |
| 9840 | (static_cast<size_t>(line_no) + v)) * |
| 9841 | static_cast<size_t>(x_stride) + |
| 9842 | u; |
| 9843 | } |
| 9844 | *image = hf.u; |
| 9845 | } else { // HALF -> FLOAT |
| 9846 | tinyexr::FP32 f32 = half_to_float(hf); |
| 9847 | float *image = reinterpret_cast<float **>(out_images)[c]; |
| 9848 | size_t offset = 0; |
| 9849 | if (line_order == 0) { |
| 9850 | offset = (static_cast<size_t>(line_no) + v) * |
| 9851 | static_cast<size_t>(x_stride) + |
| 9852 | u; |
| 9853 | } else { |
| 9854 | offset = (static_cast<size_t>(height) - 1U - |
| 9855 | (static_cast<size_t>(line_no) + v)) * |
| 9856 | static_cast<size_t>(x_stride) + |
| 9857 | u; |
| 9858 | } |
| 9859 | image += offset; |
| 9860 | |
| 9861 | *image = f32.f; |
| 9862 | } |
| 9863 | } |
| 9864 | } |
| 9865 | } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_UINT) { |
| 9866 | assert(requested_pixel_types[c] == TINYEXR_PIXELTYPE_UINT); |
| 9867 | |
| 9868 | for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) { |
| 9869 | const unsigned int *line_ptr = reinterpret_cast<unsigned int *>( |
| 9870 | &outBuf.at(v * pixel_data_size * static_cast<size_t>(width) + |
| 9871 | channel_offset_list[c] * static_cast<size_t>(width))); |
| 9872 | for (size_t u = 0; u < static_cast<size_t>(width); u++) { |
| 9873 | unsigned int val; |
| 9874 | // val = line_ptr[u]; |
| 9875 | tinyexr::cpy4(&val, line_ptr + u); |
| 9876 | |
| 9877 | tinyexr::swap4(&val); |
| 9878 | |
| 9879 | unsigned int *image = |
| 9880 | reinterpret_cast<unsigned int **>(out_images)[c]; |
| 9881 | if (line_order == 0) { |
| 9882 | image += (static_cast<size_t>(line_no) + v) * |
| 9883 | static_cast<size_t>(x_stride) + |
| 9884 | u; |
| 9885 | } else { |
| 9886 | image += (static_cast<size_t>(height) - 1U - |
| 9887 | (static_cast<size_t>(line_no) + v)) * |
| 9888 | static_cast<size_t>(x_stride) + |
| 9889 | u; |
| 9890 | } |
| 9891 | *image = val; |
| 9892 | } |
| 9893 | } |
| 9894 | } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) { |
| 9895 | assert(requested_pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT); |
| 9896 | for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) { |
| 9897 | const float *line_ptr = reinterpret_cast<float *>( |
| 9898 | &outBuf.at(v * pixel_data_size * static_cast<size_t>(width) + |
| 9899 | channel_offset_list[c] * static_cast<size_t>(width))); |
| 9900 | for (size_t u = 0; u < static_cast<size_t>(width); u++) { |
| 9901 | float val; |
| 9902 | // val = line_ptr[u]; |
| 9903 | tinyexr::cpy4(&val, line_ptr + u); |
| 9904 | |
| 9905 | tinyexr::swap4(reinterpret_cast<unsigned int *>(&val)); |
| 9906 | |
| 9907 | float *image = reinterpret_cast<float **>(out_images)[c]; |
| 9908 | if (line_order == 0) { |
| 9909 | image += (static_cast<size_t>(line_no) + v) * |
| 9910 | static_cast<size_t>(x_stride) + |
| 9911 | u; |
| 9912 | } else { |
| 9913 | image += (static_cast<size_t>(height) - 1U - |
| 9914 | (static_cast<size_t>(line_no) + v)) * |
| 9915 | static_cast<size_t>(x_stride) + |
| 9916 | u; |
| 9917 | } |
| 9918 | *image = val; |
| 9919 | } |
| 9920 | } |
| 9921 | } else { |
| 9922 | assert(0); |
| 9923 | return false; |
| 9924 | } |
| 9925 | } |
| 9926 | } else if (compression_type == TINYEXR_COMPRESSIONTYPE_RLE) { |
| 9927 | // Allocate original data size. |
| 9928 | std::vector<unsigned char> outBuf(static_cast<size_t>(width) * |
| 9929 | static_cast<size_t>(num_lines) * |
| 9930 | pixel_data_size); |
| 9931 | |
| 9932 | unsigned long dstLen = static_cast<unsigned long>(outBuf.size()); |
| 9933 | if (dstLen == 0) { |
| 9934 | return false; |
| 9935 | } |
| 9936 | |
| 9937 | if (!tinyexr::DecompressRle(reinterpret_cast<unsigned char *>(&outBuf.at(0)), |
| 9938 | dstLen, data_ptr, |
| 9939 | static_cast<unsigned long>(data_len))) { |
| 9940 | return false; |
| 9941 | } |
| 9942 | |
| 9943 | // For RLE_COMPRESSION: |
| 9944 | // pixel sample data for channel 0 for scanline 0 |
| 9945 | // pixel sample data for channel 1 for scanline 0 |
| 9946 | // pixel sample data for channel ... for scanline 0 |
| 9947 | // pixel sample data for channel n for scanline 0 |
| 9948 | // pixel sample data for channel 0 for scanline 1 |
| 9949 | // pixel sample data for channel 1 for scanline 1 |
| 9950 | // pixel sample data for channel ... for scanline 1 |
| 9951 | // pixel sample data for channel n for scanline 1 |
| 9952 | // ... |
| 9953 | for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) { |
| 9954 | if (channels[c].pixel_type == TINYEXR_PIXELTYPE_HALF) { |
| 9955 | for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) { |
| 9956 | const unsigned short *line_ptr = reinterpret_cast<unsigned short *>( |
| 9957 | &outBuf.at(v * static_cast<size_t>(pixel_data_size) * |
| 9958 | static_cast<size_t>(width) + |
| 9959 | channel_offset_list[c] * static_cast<size_t>(width))); |
| 9960 | for (size_t u = 0; u < static_cast<size_t>(width); u++) { |
| 9961 | tinyexr::FP16 hf; |
| 9962 | |
| 9963 | // hf.u = line_ptr[u]; |
| 9964 | tinyexr::cpy2(&(hf.u), line_ptr + u); |
| 9965 | |
| 9966 | tinyexr::swap2(reinterpret_cast<unsigned short *>(&hf.u)); |
| 9967 | |
| 9968 | if (requested_pixel_types[c] == TINYEXR_PIXELTYPE_HALF) { |
| 9969 | unsigned short *image = |
| 9970 | reinterpret_cast<unsigned short **>(out_images)[c]; |
| 9971 | if (line_order == 0) { |
| 9972 | image += (static_cast<size_t>(line_no) + v) * |
| 9973 | static_cast<size_t>(x_stride) + |
| 9974 | u; |
| 9975 | } else { |
| 9976 | image += (static_cast<size_t>(height) - 1U - |
| 9977 | (static_cast<size_t>(line_no) + v)) * |
| 9978 | static_cast<size_t>(x_stride) + |
| 9979 | u; |
| 9980 | } |
| 9981 | *image = hf.u; |
| 9982 | } else { // HALF -> FLOAT |
| 9983 | tinyexr::FP32 f32 = half_to_float(hf); |
| 9984 | float *image = reinterpret_cast<float **>(out_images)[c]; |
| 9985 | if (line_order == 0) { |
| 9986 | image += (static_cast<size_t>(line_no) + v) * |
| 9987 | static_cast<size_t>(x_stride) + |
| 9988 | u; |
| 9989 | } else { |
| 9990 | image += (static_cast<size_t>(height) - 1U - |
| 9991 | (static_cast<size_t>(line_no) + v)) * |
| 9992 | static_cast<size_t>(x_stride) + |
| 9993 | u; |
| 9994 | } |
| 9995 | *image = f32.f; |
| 9996 | } |
| 9997 | } |
| 9998 | } |
| 9999 | } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_UINT) { |
| 10000 | assert(requested_pixel_types[c] == TINYEXR_PIXELTYPE_UINT); |
| 10001 | |
| 10002 | for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) { |
| 10003 | const unsigned int *line_ptr = reinterpret_cast<unsigned int *>( |
| 10004 | &outBuf.at(v * pixel_data_size * static_cast<size_t>(width) + |
| 10005 | channel_offset_list[c] * static_cast<size_t>(width))); |
| 10006 | for (size_t u = 0; u < static_cast<size_t>(width); u++) { |
| 10007 | unsigned int val; |
| 10008 | // val = line_ptr[u]; |
| 10009 | tinyexr::cpy4(&val, line_ptr + u); |
| 10010 | |
| 10011 | tinyexr::swap4(&val); |
| 10012 | |
| 10013 | unsigned int *image = |
| 10014 | reinterpret_cast<unsigned int **>(out_images)[c]; |
| 10015 | if (line_order == 0) { |
| 10016 | image += (static_cast<size_t>(line_no) + v) * |
| 10017 | static_cast<size_t>(x_stride) + |
| 10018 | u; |
| 10019 | } else { |
| 10020 | image += (static_cast<size_t>(height) - 1U - |
| 10021 | (static_cast<size_t>(line_no) + v)) * |
| 10022 | static_cast<size_t>(x_stride) + |
| 10023 | u; |
| 10024 | } |
| 10025 | *image = val; |
| 10026 | } |
| 10027 | } |
| 10028 | } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) { |
| 10029 | assert(requested_pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT); |
| 10030 | for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) { |
| 10031 | const float *line_ptr = reinterpret_cast<float *>( |
| 10032 | &outBuf.at(v * pixel_data_size * static_cast<size_t>(width) + |
| 10033 | channel_offset_list[c] * static_cast<size_t>(width))); |
| 10034 | for (size_t u = 0; u < static_cast<size_t>(width); u++) { |
| 10035 | float val; |
| 10036 | // val = line_ptr[u]; |
| 10037 | tinyexr::cpy4(&val, line_ptr + u); |
| 10038 | |
| 10039 | tinyexr::swap4(reinterpret_cast<unsigned int *>(&val)); |
| 10040 | |
| 10041 | float *image = reinterpret_cast<float **>(out_images)[c]; |
| 10042 | if (line_order == 0) { |
| 10043 | image += (static_cast<size_t>(line_no) + v) * |
| 10044 | static_cast<size_t>(x_stride) + |
| 10045 | u; |
| 10046 | } else { |
| 10047 | image += (static_cast<size_t>(height) - 1U - |
| 10048 | (static_cast<size_t>(line_no) + v)) * |
| 10049 | static_cast<size_t>(x_stride) + |
| 10050 | u; |
| 10051 | } |
| 10052 | *image = val; |
| 10053 | } |
| 10054 | } |
| 10055 | } else { |
| 10056 | assert(0); |
| 10057 | return false; |
| 10058 | } |
| 10059 | } |
| 10060 | } else if (compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) { |
| 10061 | #if TINYEXR_USE_ZFP |
| 10062 | tinyexr::ZFPCompressionParam zfp_compression_param; |
| 10063 | if (!FindZFPCompressionParam(&zfp_compression_param, attributes, |
| 10064 | num_attributes)) { |
| 10065 | assert(0); |
| 10066 | return false; |
| 10067 | } |
| 10068 | |
| 10069 | // Allocate original data size. |
| 10070 | std::vector<unsigned char> outBuf(static_cast<size_t>(width) * |
| 10071 | static_cast<size_t>(num_lines) * |
| 10072 | pixel_data_size); |
| 10073 | |
| 10074 | unsigned long dstLen = outBuf.size(); |
| 10075 | assert(dstLen > 0); |
| 10076 | tinyexr::DecompressZfp(reinterpret_cast<float *>(&outBuf.at(0)), width, |
| 10077 | num_lines, num_channels, data_ptr, |
| 10078 | static_cast<unsigned long>(data_len), |
| 10079 | zfp_compression_param); |
| 10080 | |
| 10081 | // For ZFP_COMPRESSION: |
| 10082 | // pixel sample data for channel 0 for scanline 0 |
| 10083 | // pixel sample data for channel 1 for scanline 0 |
| 10084 | // pixel sample data for channel ... for scanline 0 |
| 10085 | // pixel sample data for channel n for scanline 0 |
| 10086 | // pixel sample data for channel 0 for scanline 1 |
| 10087 | // pixel sample data for channel 1 for scanline 1 |
| 10088 | // pixel sample data for channel ... for scanline 1 |
| 10089 | // pixel sample data for channel n for scanline 1 |
| 10090 | // ... |
| 10091 | for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) { |
| 10092 | assert(channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT); |
| 10093 | if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) { |
| 10094 | assert(requested_pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT); |
| 10095 | for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) { |
| 10096 | const float *line_ptr = reinterpret_cast<float *>( |
| 10097 | &outBuf.at(v * pixel_data_size * static_cast<size_t>(width) + |
| 10098 | channel_offset_list[c] * static_cast<size_t>(width))); |
| 10099 | for (size_t u = 0; u < static_cast<size_t>(width); u++) { |
| 10100 | float val; |
| 10101 | tinyexr::cpy4(&val, line_ptr + u); |
| 10102 | |
| 10103 | tinyexr::swap4(reinterpret_cast<unsigned int *>(&val)); |
| 10104 | |
| 10105 | float *image = reinterpret_cast<float **>(out_images)[c]; |
| 10106 | if (line_order == 0) { |
| 10107 | image += (static_cast<size_t>(line_no) + v) * |
| 10108 | static_cast<size_t>(x_stride) + |
| 10109 | u; |
| 10110 | } else { |
| 10111 | image += (static_cast<size_t>(height) - 1U - |
| 10112 | (static_cast<size_t>(line_no) + v)) * |
| 10113 | static_cast<size_t>(x_stride) + |
| 10114 | u; |
| 10115 | } |
| 10116 | *image = val; |
| 10117 | } |
| 10118 | } |
| 10119 | } else { |
| 10120 | assert(0); |
| 10121 | return false; |
| 10122 | } |
| 10123 | } |
| 10124 | #else |
| 10125 | (void)attributes; |
| 10126 | (void)num_attributes; |
| 10127 | (void)num_channels; |
| 10128 | assert(0); |
| 10129 | return false; |
| 10130 | #endif |
| 10131 | } else if (compression_type == TINYEXR_COMPRESSIONTYPE_NONE) { |
| 10132 | for (size_t c = 0; c < num_channels; c++) { |
| 10133 | for (size_t v = 0; v < static_cast<size_t>(num_lines); v++) { |
| 10134 | if (channels[c].pixel_type == TINYEXR_PIXELTYPE_HALF) { |
| 10135 | const unsigned short *line_ptr = |
| 10136 | reinterpret_cast<const unsigned short *>( |
| 10137 | data_ptr + v * pixel_data_size * size_t(width) + |
| 10138 | channel_offset_list[c] * static_cast<size_t>(width)); |
| 10139 | |
| 10140 | if (requested_pixel_types[c] == TINYEXR_PIXELTYPE_HALF) { |
| 10141 | unsigned short *outLine = |
| 10142 | reinterpret_cast<unsigned short *>(out_images[c]); |
| 10143 | if (line_order == 0) { |
| 10144 | outLine += (size_t(y) + v) * size_t(x_stride); |
| 10145 | } else { |
| 10146 | outLine += |
| 10147 | (size_t(height) - 1 - (size_t(y) + v)) * size_t(x_stride); |
| 10148 | } |
| 10149 | |
| 10150 | for (int u = 0; u < width; u++) { |
| 10151 | tinyexr::FP16 hf; |
| 10152 | |
| 10153 | // hf.u = line_ptr[u]; |
| 10154 | tinyexr::cpy2(&(hf.u), line_ptr + u); |
| 10155 | |
| 10156 | tinyexr::swap2(reinterpret_cast<unsigned short *>(&hf.u)); |
| 10157 | |
| 10158 | outLine[u] = hf.u; |
| 10159 | } |
| 10160 | } else if (requested_pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT) { |
| 10161 | float *outLine = reinterpret_cast<float *>(out_images[c]); |
| 10162 | if (line_order == 0) { |
| 10163 | outLine += (size_t(y) + v) * size_t(x_stride); |
| 10164 | } else { |
| 10165 | outLine += |
| 10166 | (size_t(height) - 1 - (size_t(y) + v)) * size_t(x_stride); |
| 10167 | } |
| 10168 | |
| 10169 | if (reinterpret_cast<const unsigned char *>(line_ptr + width) > |
| 10170 | (data_ptr + data_len)) { |
| 10171 | // Insufficient data size |
| 10172 | return false; |
| 10173 | } |
| 10174 | |
| 10175 | for (int u = 0; u < width; u++) { |
| 10176 | tinyexr::FP16 hf; |
| 10177 | |
| 10178 | // address may not be aliged. use byte-wise copy for safety.#76 |
| 10179 | // hf.u = line_ptr[u]; |
| 10180 | tinyexr::cpy2(&(hf.u), line_ptr + u); |
| 10181 | |
| 10182 | tinyexr::swap2(reinterpret_cast<unsigned short *>(&hf.u)); |
| 10183 | |
| 10184 | tinyexr::FP32 f32 = half_to_float(hf); |
| 10185 | |
| 10186 | outLine[u] = f32.f; |
| 10187 | } |
| 10188 | } else { |
| 10189 | assert(0); |
| 10190 | return false; |
| 10191 | } |
| 10192 | } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) { |
| 10193 | const float *line_ptr = reinterpret_cast<const float *>( |
| 10194 | data_ptr + v * pixel_data_size * size_t(width) + |
| 10195 | channel_offset_list[c] * static_cast<size_t>(width)); |
| 10196 | |
| 10197 | float *outLine = reinterpret_cast<float *>(out_images[c]); |
| 10198 | if (line_order == 0) { |
| 10199 | outLine += (size_t(y) + v) * size_t(x_stride); |
| 10200 | } else { |
| 10201 | outLine += |
| 10202 | (size_t(height) - 1 - (size_t(y) + v)) * size_t(x_stride); |
| 10203 | } |
| 10204 | |
| 10205 | if (reinterpret_cast<const unsigned char *>(line_ptr + width) > |
| 10206 | (data_ptr + data_len)) { |
| 10207 | // Insufficient data size |
| 10208 | return false; |
| 10209 | } |
| 10210 | |
| 10211 | for (int u = 0; u < width; u++) { |
| 10212 | float val; |
| 10213 | tinyexr::cpy4(&val, line_ptr + u); |
| 10214 | |
| 10215 | tinyexr::swap4(reinterpret_cast<unsigned int *>(&val)); |
| 10216 | |
| 10217 | outLine[u] = val; |
| 10218 | } |
| 10219 | } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_UINT) { |
| 10220 | const unsigned int *line_ptr = reinterpret_cast<const unsigned int *>( |
| 10221 | data_ptr + v * pixel_data_size * size_t(width) + |
| 10222 | channel_offset_list[c] * static_cast<size_t>(width)); |
| 10223 | |
| 10224 | unsigned int *outLine = |
| 10225 | reinterpret_cast<unsigned int *>(out_images[c]); |
| 10226 | if (line_order == 0) { |
| 10227 | outLine += (size_t(y) + v) * size_t(x_stride); |
| 10228 | } else { |
| 10229 | outLine += |
| 10230 | (size_t(height) - 1 - (size_t(y) + v)) * size_t(x_stride); |
| 10231 | } |
| 10232 | |
| 10233 | for (int u = 0; u < width; u++) { |
| 10234 | if (reinterpret_cast<const unsigned char *>(line_ptr + u) >= |
| 10235 | (data_ptr + data_len)) { |
| 10236 | // Corrupsed data? |
| 10237 | return false; |
| 10238 | } |
| 10239 | |
| 10240 | unsigned int val; |
| 10241 | tinyexr::cpy4(&val, line_ptr + u); |
| 10242 | |
| 10243 | tinyexr::swap4(reinterpret_cast<unsigned int *>(&val)); |
| 10244 | |
| 10245 | outLine[u] = val; |
| 10246 | } |
| 10247 | } |
| 10248 | } |
| 10249 | } |
| 10250 | } |
| 10251 | |
| 10252 | return true; |
| 10253 | } |
| 10254 | |
| 10255 | static void DecodeTiledPixelData( |
| 10256 | unsigned char **out_images, int *width, int *height, |
| 10257 | const int *requested_pixel_types, const unsigned char *data_ptr, |
| 10258 | size_t data_len, int compression_type, int line_order, int data_width, |
| 10259 | int data_height, int tile_offset_x, int tile_offset_y, int tile_size_x, |
| 10260 | int tile_size_y, size_t pixel_data_size, size_t num_attributes, |
| 10261 | const EXRAttribute *attributes, size_t num_channels, |
| 10262 | const EXRChannelInfo *channels, |
| 10263 | const std::vector<size_t> &channel_offset_list) { |
| 10264 | assert(tile_offset_x * tile_size_x < data_width); |
| 10265 | assert(tile_offset_y * tile_size_y < data_height); |
| 10266 | |
| 10267 | // Compute actual image size in a tile. |
| 10268 | if ((tile_offset_x + 1) * tile_size_x >= data_width) { |
| 10269 | (*width) = data_width - (tile_offset_x * tile_size_x); |
| 10270 | } else { |
| 10271 | (*width) = tile_size_x; |
| 10272 | } |
| 10273 | |
| 10274 | if ((tile_offset_y + 1) * tile_size_y >= data_height) { |
| 10275 | (*height) = data_height - (tile_offset_y * tile_size_y); |
| 10276 | } else { |
| 10277 | (*height) = tile_size_y; |
| 10278 | } |
| 10279 | |
| 10280 | // Image size = tile size. |
| 10281 | DecodePixelData(out_images, requested_pixel_types, data_ptr, data_len, |
| 10282 | compression_type, line_order, (*width), tile_size_y, |
| 10283 | /* stride */ tile_size_x, /* y */ 0, /* line_no */ 0, |
| 10284 | (*height), pixel_data_size, num_attributes, attributes, |
| 10285 | num_channels, channels, channel_offset_list); |
| 10286 | } |
| 10287 | |
| 10288 | static bool ComputeChannelLayout(std::vector<size_t> *channel_offset_list, |
| 10289 | int *pixel_data_size, size_t *channel_offset, |
| 10290 | int num_channels, |
| 10291 | const EXRChannelInfo *channels) { |
| 10292 | channel_offset_list->resize(static_cast<size_t>(num_channels)); |
| 10293 | |
| 10294 | (*pixel_data_size) = 0; |
| 10295 | (*channel_offset) = 0; |
| 10296 | |
| 10297 | for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) { |
| 10298 | (*channel_offset_list)[c] = (*channel_offset); |
| 10299 | if (channels[c].pixel_type == TINYEXR_PIXELTYPE_HALF) { |
| 10300 | (*pixel_data_size) += sizeof(unsigned short); |
| 10301 | (*channel_offset) += sizeof(unsigned short); |
| 10302 | } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) { |
| 10303 | (*pixel_data_size) += sizeof(float); |
| 10304 | (*channel_offset) += sizeof(float); |
| 10305 | } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_UINT) { |
| 10306 | (*pixel_data_size) += sizeof(unsigned int); |
| 10307 | (*channel_offset) += sizeof(unsigned int); |
| 10308 | } else { |
| 10309 | // ??? |
| 10310 | return false; |
| 10311 | } |
| 10312 | } |
| 10313 | return true; |
| 10314 | } |
| 10315 | |
| 10316 | static unsigned char **AllocateImage(int num_channels, |
| 10317 | const EXRChannelInfo *channels, |
| 10318 | const int *requested_pixel_types, |
| 10319 | int data_width, int data_height) { |
| 10320 | unsigned char **images = |
| 10321 | reinterpret_cast<unsigned char **>(static_cast<float **>( |
| 10322 | malloc(sizeof(float *) * static_cast<size_t>(num_channels)))); |
| 10323 | |
| 10324 | for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) { |
| 10325 | size_t data_len = |
| 10326 | static_cast<size_t>(data_width) * static_cast<size_t>(data_height); |
| 10327 | if (channels[c].pixel_type == TINYEXR_PIXELTYPE_HALF) { |
| 10328 | // pixel_data_size += sizeof(unsigned short); |
| 10329 | // channel_offset += sizeof(unsigned short); |
| 10330 | // Alloc internal image for half type. |
| 10331 | if (requested_pixel_types[c] == TINYEXR_PIXELTYPE_HALF) { |
| 10332 | images[c] = |
| 10333 | reinterpret_cast<unsigned char *>(static_cast<unsigned short *>( |
| 10334 | malloc(sizeof(unsigned short) * data_len))); |
| 10335 | } else if (requested_pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT) { |
| 10336 | images[c] = reinterpret_cast<unsigned char *>( |
| 10337 | static_cast<float *>(malloc(sizeof(float) * data_len))); |
| 10338 | } else { |
| 10339 | assert(0); |
| 10340 | } |
| 10341 | } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_FLOAT) { |
| 10342 | // pixel_data_size += sizeof(float); |
| 10343 | // channel_offset += sizeof(float); |
| 10344 | images[c] = reinterpret_cast<unsigned char *>( |
| 10345 | static_cast<float *>(malloc(sizeof(float) * data_len))); |
| 10346 | } else if (channels[c].pixel_type == TINYEXR_PIXELTYPE_UINT) { |
| 10347 | // pixel_data_size += sizeof(unsigned int); |
| 10348 | // channel_offset += sizeof(unsigned int); |
| 10349 | images[c] = reinterpret_cast<unsigned char *>( |
| 10350 | static_cast<unsigned int *>(malloc(sizeof(unsigned int) * data_len))); |
| 10351 | } else { |
| 10352 | assert(0); |
| 10353 | } |
| 10354 | } |
| 10355 | |
| 10356 | return images; |
| 10357 | } |
| 10358 | |
| 10359 | static int (HeaderInfo *info, bool *, |
| 10360 | const EXRVersion *version, std::string *err, |
| 10361 | const unsigned char *buf, size_t size) { |
| 10362 | const char *marker = reinterpret_cast<const char *>(&buf[0]); |
| 10363 | |
| 10364 | if (empty_header) { |
| 10365 | (*empty_header) = false; |
| 10366 | } |
| 10367 | |
| 10368 | if (version->multipart) { |
| 10369 | if (size > 0 && marker[0] == '\0') { |
| 10370 | // End of header list. |
| 10371 | if (empty_header) { |
| 10372 | (*empty_header) = true; |
| 10373 | } |
| 10374 | return TINYEXR_SUCCESS; |
| 10375 | } |
| 10376 | } |
| 10377 | |
| 10378 | // According to the spec, the header of every OpenEXR file must contain at |
| 10379 | // least the following attributes: |
| 10380 | // |
| 10381 | // channels chlist |
| 10382 | // compression compression |
| 10383 | // dataWindow box2i |
| 10384 | // displayWindow box2i |
| 10385 | // lineOrder lineOrder |
| 10386 | // pixelAspectRatio float |
| 10387 | // screenWindowCenter v2f |
| 10388 | // screenWindowWidth float |
| 10389 | bool has_channels = false; |
| 10390 | bool has_compression = false; |
| 10391 | bool has_data_window = false; |
| 10392 | bool has_display_window = false; |
| 10393 | bool has_line_order = false; |
| 10394 | bool has_pixel_aspect_ratio = false; |
| 10395 | bool has_screen_window_center = false; |
| 10396 | bool has_screen_window_width = false; |
| 10397 | |
| 10398 | info->data_window[0] = 0; |
| 10399 | info->data_window[1] = 0; |
| 10400 | info->data_window[2] = 0; |
| 10401 | info->data_window[3] = 0; |
| 10402 | info->line_order = 0; // @fixme |
| 10403 | info->display_window[0] = 0; |
| 10404 | info->display_window[1] = 0; |
| 10405 | info->display_window[2] = 0; |
| 10406 | info->display_window[3] = 0; |
| 10407 | info->screen_window_center[0] = 0.0f; |
| 10408 | info->screen_window_center[1] = 0.0f; |
| 10409 | info->screen_window_width = -1.0f; |
| 10410 | info->pixel_aspect_ratio = -1.0f; |
| 10411 | |
| 10412 | info->tile_size_x = -1; |
| 10413 | info->tile_size_y = -1; |
| 10414 | info->tile_level_mode = -1; |
| 10415 | info->tile_rounding_mode = -1; |
| 10416 | |
| 10417 | info->attributes.clear(); |
| 10418 | |
| 10419 | // Read attributes |
| 10420 | size_t orig_size = size; |
| 10421 | for (size_t nattr = 0; nattr < TINYEXR_MAX_HEADER_ATTRIBUTES; nattr++) { |
| 10422 | if (0 == size) { |
| 10423 | if (err) { |
| 10424 | (*err) += "Insufficient data size for attributes.\n" ; |
| 10425 | } |
| 10426 | return TINYEXR_ERROR_INVALID_DATA; |
| 10427 | } else if (marker[0] == '\0') { |
| 10428 | size--; |
| 10429 | break; |
| 10430 | } |
| 10431 | |
| 10432 | std::string attr_name; |
| 10433 | std::string attr_type; |
| 10434 | std::vector<unsigned char> data; |
| 10435 | size_t marker_size; |
| 10436 | if (!tinyexr::ReadAttribute(&attr_name, &attr_type, &data, &marker_size, |
| 10437 | marker, size)) { |
| 10438 | if (err) { |
| 10439 | (*err) += "Failed to read attribute.\n" ; |
| 10440 | } |
| 10441 | return TINYEXR_ERROR_INVALID_DATA; |
| 10442 | } |
| 10443 | marker += marker_size; |
| 10444 | size -= marker_size; |
| 10445 | |
| 10446 | if (version->tiled && attr_name.compare("tiles" ) == 0) { |
| 10447 | unsigned int x_size, y_size; |
| 10448 | unsigned char tile_mode; |
| 10449 | assert(data.size() == 9); |
| 10450 | memcpy(&x_size, &data.at(0), sizeof(int)); |
| 10451 | memcpy(&y_size, &data.at(4), sizeof(int)); |
| 10452 | tile_mode = data[8]; |
| 10453 | tinyexr::swap4(&x_size); |
| 10454 | tinyexr::swap4(&y_size); |
| 10455 | |
| 10456 | info->tile_size_x = static_cast<int>(x_size); |
| 10457 | info->tile_size_y = static_cast<int>(y_size); |
| 10458 | |
| 10459 | // mode = levelMode + roundingMode * 16 |
| 10460 | info->tile_level_mode = tile_mode & 0x3; |
| 10461 | info->tile_rounding_mode = (tile_mode >> 4) & 0x1; |
| 10462 | |
| 10463 | } else if (attr_name.compare("compression" ) == 0) { |
| 10464 | bool ok = false; |
| 10465 | if (data[0] < TINYEXR_COMPRESSIONTYPE_PIZ) { |
| 10466 | ok = true; |
| 10467 | } |
| 10468 | |
| 10469 | if (data[0] == TINYEXR_COMPRESSIONTYPE_PIZ) { |
| 10470 | #if TINYEXR_USE_PIZ |
| 10471 | ok = true; |
| 10472 | #else |
| 10473 | if (err) { |
| 10474 | (*err) = "PIZ compression is not supported." ; |
| 10475 | } |
| 10476 | return TINYEXR_ERROR_UNSUPPORTED_FORMAT; |
| 10477 | #endif |
| 10478 | } |
| 10479 | |
| 10480 | if (data[0] == TINYEXR_COMPRESSIONTYPE_ZFP) { |
| 10481 | #if TINYEXR_USE_ZFP |
| 10482 | ok = true; |
| 10483 | #else |
| 10484 | if (err) { |
| 10485 | (*err) = "ZFP compression is not supported." ; |
| 10486 | } |
| 10487 | return TINYEXR_ERROR_UNSUPPORTED_FORMAT; |
| 10488 | #endif |
| 10489 | } |
| 10490 | |
| 10491 | if (!ok) { |
| 10492 | if (err) { |
| 10493 | (*err) = "Unknown compression type." ; |
| 10494 | } |
| 10495 | return TINYEXR_ERROR_UNSUPPORTED_FORMAT; |
| 10496 | } |
| 10497 | |
| 10498 | info->compression_type = static_cast<int>(data[0]); |
| 10499 | has_compression = true; |
| 10500 | |
| 10501 | } else if (attr_name.compare("channels" ) == 0) { |
| 10502 | // name: zero-terminated string, from 1 to 255 bytes long |
| 10503 | // pixel type: int, possible values are: UINT = 0 HALF = 1 FLOAT = 2 |
| 10504 | // pLinear: unsigned char, possible values are 0 and 1 |
| 10505 | // reserved: three chars, should be zero |
| 10506 | // xSampling: int |
| 10507 | // ySampling: int |
| 10508 | |
| 10509 | if (!ReadChannelInfo(info->channels, data)) { |
| 10510 | if (err) { |
| 10511 | (*err) += "Failed to parse channel info.\n" ; |
| 10512 | } |
| 10513 | return TINYEXR_ERROR_INVALID_DATA; |
| 10514 | } |
| 10515 | |
| 10516 | if (info->channels.size() < 1) { |
| 10517 | if (err) { |
| 10518 | (*err) += "# of channels is zero.\n" ; |
| 10519 | } |
| 10520 | return TINYEXR_ERROR_INVALID_DATA; |
| 10521 | } |
| 10522 | |
| 10523 | has_channels = true; |
| 10524 | |
| 10525 | } else if (attr_name.compare("dataWindow" ) == 0) { |
| 10526 | if (data.size() >= 16) { |
| 10527 | memcpy(&info->data_window[0], &data.at(0), sizeof(int)); |
| 10528 | memcpy(&info->data_window[1], &data.at(4), sizeof(int)); |
| 10529 | memcpy(&info->data_window[2], &data.at(8), sizeof(int)); |
| 10530 | memcpy(&info->data_window[3], &data.at(12), sizeof(int)); |
| 10531 | tinyexr::swap4(reinterpret_cast<unsigned int *>(&info->data_window[0])); |
| 10532 | tinyexr::swap4(reinterpret_cast<unsigned int *>(&info->data_window[1])); |
| 10533 | tinyexr::swap4(reinterpret_cast<unsigned int *>(&info->data_window[2])); |
| 10534 | tinyexr::swap4(reinterpret_cast<unsigned int *>(&info->data_window[3])); |
| 10535 | has_data_window = true; |
| 10536 | } |
| 10537 | } else if (attr_name.compare("displayWindow" ) == 0) { |
| 10538 | if (data.size() >= 16) { |
| 10539 | memcpy(&info->display_window[0], &data.at(0), sizeof(int)); |
| 10540 | memcpy(&info->display_window[1], &data.at(4), sizeof(int)); |
| 10541 | memcpy(&info->display_window[2], &data.at(8), sizeof(int)); |
| 10542 | memcpy(&info->display_window[3], &data.at(12), sizeof(int)); |
| 10543 | tinyexr::swap4( |
| 10544 | reinterpret_cast<unsigned int *>(&info->display_window[0])); |
| 10545 | tinyexr::swap4( |
| 10546 | reinterpret_cast<unsigned int *>(&info->display_window[1])); |
| 10547 | tinyexr::swap4( |
| 10548 | reinterpret_cast<unsigned int *>(&info->display_window[2])); |
| 10549 | tinyexr::swap4( |
| 10550 | reinterpret_cast<unsigned int *>(&info->display_window[3])); |
| 10551 | |
| 10552 | has_display_window = true; |
| 10553 | } |
| 10554 | } else if (attr_name.compare("lineOrder" ) == 0) { |
| 10555 | if (data.size() >= 1) { |
| 10556 | info->line_order = static_cast<int>(data[0]); |
| 10557 | has_line_order = true; |
| 10558 | } |
| 10559 | } else if (attr_name.compare("pixelAspectRatio" ) == 0) { |
| 10560 | if (data.size() >= sizeof(float)) { |
| 10561 | memcpy(&info->pixel_aspect_ratio, &data.at(0), sizeof(float)); |
| 10562 | tinyexr::swap4( |
| 10563 | reinterpret_cast<unsigned int *>(&info->pixel_aspect_ratio)); |
| 10564 | has_pixel_aspect_ratio = true; |
| 10565 | } |
| 10566 | } else if (attr_name.compare("screenWindowCenter" ) == 0) { |
| 10567 | if (data.size() >= 8) { |
| 10568 | memcpy(&info->screen_window_center[0], &data.at(0), sizeof(float)); |
| 10569 | memcpy(&info->screen_window_center[1], &data.at(4), sizeof(float)); |
| 10570 | tinyexr::swap4( |
| 10571 | reinterpret_cast<unsigned int *>(&info->screen_window_center[0])); |
| 10572 | tinyexr::swap4( |
| 10573 | reinterpret_cast<unsigned int *>(&info->screen_window_center[1])); |
| 10574 | has_screen_window_center = true; |
| 10575 | } |
| 10576 | } else if (attr_name.compare("screenWindowWidth" ) == 0) { |
| 10577 | if (data.size() >= sizeof(float)) { |
| 10578 | memcpy(&info->screen_window_width, &data.at(0), sizeof(float)); |
| 10579 | tinyexr::swap4( |
| 10580 | reinterpret_cast<unsigned int *>(&info->screen_window_width)); |
| 10581 | |
| 10582 | has_screen_window_width = true; |
| 10583 | } |
| 10584 | } else if (attr_name.compare("chunkCount" ) == 0) { |
| 10585 | if (data.size() >= sizeof(int)) { |
| 10586 | memcpy(&info->chunk_count, &data.at(0), sizeof(int)); |
| 10587 | tinyexr::swap4(reinterpret_cast<unsigned int *>(&info->chunk_count)); |
| 10588 | } |
| 10589 | } else { |
| 10590 | // Custom attribute(up to TINYEXR_MAX_CUSTOM_ATTRIBUTES) |
| 10591 | if (info->attributes.size() < TINYEXR_MAX_CUSTOM_ATTRIBUTES) { |
| 10592 | EXRAttribute attrib; |
| 10593 | #ifdef _MSC_VER |
| 10594 | strncpy_s(attrib.name, attr_name.c_str(), 255); |
| 10595 | strncpy_s(attrib.type, attr_type.c_str(), 255); |
| 10596 | #else |
| 10597 | strncpy(attrib.name, attr_name.c_str(), 255); |
| 10598 | strncpy(attrib.type, attr_type.c_str(), 255); |
| 10599 | #endif |
| 10600 | attrib.name[255] = '\0'; |
| 10601 | attrib.type[255] = '\0'; |
| 10602 | attrib.size = static_cast<int>(data.size()); |
| 10603 | attrib.value = static_cast<unsigned char *>(malloc(data.size())); |
| 10604 | memcpy(reinterpret_cast<char *>(attrib.value), &data.at(0), |
| 10605 | data.size()); |
| 10606 | info->attributes.push_back(attrib); |
| 10607 | } |
| 10608 | } |
| 10609 | } |
| 10610 | |
| 10611 | // Check if required attributes exist |
| 10612 | { |
| 10613 | std::stringstream ss_err; |
| 10614 | |
| 10615 | if (!has_compression) { |
| 10616 | ss_err << "\"compression\" attribute not found in the header." |
| 10617 | << std::endl; |
| 10618 | } |
| 10619 | |
| 10620 | if (!has_channels) { |
| 10621 | ss_err << "\"channels\" attribute not found in the header." << std::endl; |
| 10622 | } |
| 10623 | |
| 10624 | if (!has_line_order) { |
| 10625 | ss_err << "\"lineOrder\" attribute not found in the header." << std::endl; |
| 10626 | } |
| 10627 | |
| 10628 | if (!has_display_window) { |
| 10629 | ss_err << "\"displayWindow\" attribute not found in the header." |
| 10630 | << std::endl; |
| 10631 | } |
| 10632 | |
| 10633 | if (!has_data_window) { |
| 10634 | ss_err << "\"dataWindow\" attribute not found in the header or invalid." |
| 10635 | << std::endl; |
| 10636 | } |
| 10637 | |
| 10638 | if (!has_pixel_aspect_ratio) { |
| 10639 | ss_err << "\"pixelAspectRatio\" attribute not found in the header." |
| 10640 | << std::endl; |
| 10641 | } |
| 10642 | |
| 10643 | if (!has_screen_window_width) { |
| 10644 | ss_err << "\"screenWindowWidth\" attribute not found in the header." |
| 10645 | << std::endl; |
| 10646 | } |
| 10647 | |
| 10648 | if (!has_screen_window_center) { |
| 10649 | ss_err << "\"screenWindowCenter\" attribute not found in the header." |
| 10650 | << std::endl; |
| 10651 | } |
| 10652 | |
| 10653 | if (!(ss_err.str().empty())) { |
| 10654 | if (err) { |
| 10655 | (*err) += ss_err.str(); |
| 10656 | } |
| 10657 | return TINYEXR_ERROR_INVALID_HEADER; |
| 10658 | } |
| 10659 | } |
| 10660 | |
| 10661 | info->header_len = static_cast<unsigned int>(orig_size - size); |
| 10662 | |
| 10663 | return TINYEXR_SUCCESS; |
| 10664 | } |
| 10665 | |
| 10666 | // C++ HeaderInfo to C EXRHeader conversion. |
| 10667 | static void (EXRHeader *, const HeaderInfo &info) { |
| 10668 | exr_header->pixel_aspect_ratio = info.pixel_aspect_ratio; |
| 10669 | exr_header->screen_window_center[0] = info.screen_window_center[0]; |
| 10670 | exr_header->screen_window_center[1] = info.screen_window_center[1]; |
| 10671 | exr_header->screen_window_width = info.screen_window_width; |
| 10672 | exr_header->chunk_count = info.chunk_count; |
| 10673 | exr_header->display_window[0] = info.display_window[0]; |
| 10674 | exr_header->display_window[1] = info.display_window[1]; |
| 10675 | exr_header->display_window[2] = info.display_window[2]; |
| 10676 | exr_header->display_window[3] = info.display_window[3]; |
| 10677 | exr_header->data_window[0] = info.data_window[0]; |
| 10678 | exr_header->data_window[1] = info.data_window[1]; |
| 10679 | exr_header->data_window[2] = info.data_window[2]; |
| 10680 | exr_header->data_window[3] = info.data_window[3]; |
| 10681 | exr_header->line_order = info.line_order; |
| 10682 | exr_header->compression_type = info.compression_type; |
| 10683 | |
| 10684 | exr_header->tile_size_x = info.tile_size_x; |
| 10685 | exr_header->tile_size_y = info.tile_size_y; |
| 10686 | exr_header->tile_level_mode = info.tile_level_mode; |
| 10687 | exr_header->tile_rounding_mode = info.tile_rounding_mode; |
| 10688 | |
| 10689 | exr_header->num_channels = static_cast<int>(info.channels.size()); |
| 10690 | |
| 10691 | exr_header->channels = static_cast<EXRChannelInfo *>(malloc( |
| 10692 | sizeof(EXRChannelInfo) * static_cast<size_t>(exr_header->num_channels))); |
| 10693 | for (size_t c = 0; c < static_cast<size_t>(exr_header->num_channels); c++) { |
| 10694 | #ifdef _MSC_VER |
| 10695 | strncpy_s(exr_header->channels[c].name, info.channels[c].name.c_str(), 255); |
| 10696 | #else |
| 10697 | strncpy(exr_header->channels[c].name, info.channels[c].name.c_str(), 255); |
| 10698 | #endif |
| 10699 | // manually add '\0' for safety. |
| 10700 | exr_header->channels[c].name[255] = '\0'; |
| 10701 | |
| 10702 | exr_header->channels[c].pixel_type = info.channels[c].pixel_type; |
| 10703 | exr_header->channels[c].p_linear = info.channels[c].p_linear; |
| 10704 | exr_header->channels[c].x_sampling = info.channels[c].x_sampling; |
| 10705 | exr_header->channels[c].y_sampling = info.channels[c].y_sampling; |
| 10706 | } |
| 10707 | |
| 10708 | exr_header->pixel_types = static_cast<int *>( |
| 10709 | malloc(sizeof(int) * static_cast<size_t>(exr_header->num_channels))); |
| 10710 | for (size_t c = 0; c < static_cast<size_t>(exr_header->num_channels); c++) { |
| 10711 | exr_header->pixel_types[c] = info.channels[c].pixel_type; |
| 10712 | } |
| 10713 | |
| 10714 | // Initially fill with values of `pixel_types` |
| 10715 | exr_header->requested_pixel_types = static_cast<int *>( |
| 10716 | malloc(sizeof(int) * static_cast<size_t>(exr_header->num_channels))); |
| 10717 | for (size_t c = 0; c < static_cast<size_t>(exr_header->num_channels); c++) { |
| 10718 | exr_header->requested_pixel_types[c] = info.channels[c].pixel_type; |
| 10719 | } |
| 10720 | |
| 10721 | exr_header->num_custom_attributes = static_cast<int>(info.attributes.size()); |
| 10722 | |
| 10723 | if (exr_header->num_custom_attributes > 0) { |
| 10724 | // TODO(syoyo): Report warning when # of attributes exceeds |
| 10725 | // `TINYEXR_MAX_CUSTOM_ATTRIBUTES` |
| 10726 | if (exr_header->num_custom_attributes > TINYEXR_MAX_CUSTOM_ATTRIBUTES) { |
| 10727 | exr_header->num_custom_attributes = TINYEXR_MAX_CUSTOM_ATTRIBUTES; |
| 10728 | } |
| 10729 | |
| 10730 | exr_header->custom_attributes = static_cast<EXRAttribute *>(malloc( |
| 10731 | sizeof(EXRAttribute) * size_t(exr_header->num_custom_attributes))); |
| 10732 | |
| 10733 | for (size_t i = 0; i < info.attributes.size(); i++) { |
| 10734 | memcpy(exr_header->custom_attributes[i].name, info.attributes[i].name, |
| 10735 | 256); |
| 10736 | memcpy(exr_header->custom_attributes[i].type, info.attributes[i].type, |
| 10737 | 256); |
| 10738 | exr_header->custom_attributes[i].size = info.attributes[i].size; |
| 10739 | // Just copy poiner |
| 10740 | exr_header->custom_attributes[i].value = info.attributes[i].value; |
| 10741 | } |
| 10742 | |
| 10743 | } else { |
| 10744 | exr_header->custom_attributes = NULL; |
| 10745 | } |
| 10746 | |
| 10747 | exr_header->header_len = info.header_len; |
| 10748 | } |
| 10749 | |
| 10750 | static int (EXRImage *exr_image, const EXRHeader *, |
| 10751 | const std::vector<tinyexr::tinyexr_uint64> &offsets, |
| 10752 | const unsigned char *head, const size_t size, |
| 10753 | std::string *err) { |
| 10754 | int num_channels = exr_header->num_channels; |
| 10755 | |
| 10756 | int num_scanline_blocks = 1; |
| 10757 | if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZIP) { |
| 10758 | num_scanline_blocks = 16; |
| 10759 | } else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) { |
| 10760 | num_scanline_blocks = 32; |
| 10761 | } else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) { |
| 10762 | num_scanline_blocks = 16; |
| 10763 | } |
| 10764 | |
| 10765 | int data_width = exr_header->data_window[2] - exr_header->data_window[0] + 1; |
| 10766 | int data_height = exr_header->data_window[3] - exr_header->data_window[1] + 1; |
| 10767 | |
| 10768 | if ((data_width < 0) || (data_height < 0)) { |
| 10769 | if (err) { |
| 10770 | std::stringstream ss; |
| 10771 | ss << "Invalid data width or data height: " << data_width << ", " |
| 10772 | << data_height << std::endl; |
| 10773 | (*err) += ss.str(); |
| 10774 | } |
| 10775 | return TINYEXR_ERROR_INVALID_DATA; |
| 10776 | } |
| 10777 | |
| 10778 | // Do not allow too large data_width and data_height. header invalid? |
| 10779 | { |
| 10780 | const int threshold = 1024 * 8192; // heuristics |
| 10781 | if ((data_width > threshold) || (data_height > threshold)) { |
| 10782 | if (err) { |
| 10783 | std::stringstream ss; |
| 10784 | ss << "data_with or data_height too large. data_width: " << data_width |
| 10785 | << ", " |
| 10786 | << "data_height = " << data_height << std::endl; |
| 10787 | (*err) += ss.str(); |
| 10788 | } |
| 10789 | return TINYEXR_ERROR_INVALID_DATA; |
| 10790 | } |
| 10791 | } |
| 10792 | |
| 10793 | size_t num_blocks = offsets.size(); |
| 10794 | |
| 10795 | std::vector<size_t> channel_offset_list; |
| 10796 | int pixel_data_size = 0; |
| 10797 | size_t channel_offset = 0; |
| 10798 | if (!tinyexr::ComputeChannelLayout(&channel_offset_list, &pixel_data_size, |
| 10799 | &channel_offset, num_channels, |
| 10800 | exr_header->channels)) { |
| 10801 | if (err) { |
| 10802 | (*err) += "Failed to compute channel layout.\n" ; |
| 10803 | } |
| 10804 | return TINYEXR_ERROR_INVALID_DATA; |
| 10805 | } |
| 10806 | |
| 10807 | bool invalid_data = false; // TODO(LTE): Use atomic lock for MT safety. |
| 10808 | |
| 10809 | if (exr_header->tiled) { |
| 10810 | // value check |
| 10811 | if (exr_header->tile_size_x < 0) { |
| 10812 | if (err) { |
| 10813 | std::stringstream ss; |
| 10814 | ss << "Invalid tile size x : " << exr_header->tile_size_x << "\n" ; |
| 10815 | (*err) += ss.str(); |
| 10816 | } |
| 10817 | return TINYEXR_ERROR_INVALID_HEADER; |
| 10818 | } |
| 10819 | |
| 10820 | if (exr_header->tile_size_y < 0) { |
| 10821 | if (err) { |
| 10822 | std::stringstream ss; |
| 10823 | ss << "Invalid tile size y : " << exr_header->tile_size_y << "\n" ; |
| 10824 | (*err) += ss.str(); |
| 10825 | } |
| 10826 | return TINYEXR_ERROR_INVALID_HEADER; |
| 10827 | } |
| 10828 | |
| 10829 | size_t num_tiles = offsets.size(); // = # of blocks |
| 10830 | |
| 10831 | exr_image->tiles = static_cast<EXRTile *>( |
| 10832 | calloc(sizeof(EXRTile), static_cast<size_t>(num_tiles))); |
| 10833 | |
| 10834 | for (size_t tile_idx = 0; tile_idx < num_tiles; tile_idx++) { |
| 10835 | // Allocate memory for each tile. |
| 10836 | exr_image->tiles[tile_idx].images = tinyexr::AllocateImage( |
| 10837 | num_channels, exr_header->channels, exr_header->requested_pixel_types, |
| 10838 | exr_header->tile_size_x, exr_header->tile_size_y); |
| 10839 | |
| 10840 | // 16 byte: tile coordinates |
| 10841 | // 4 byte : data size |
| 10842 | // ~ : data(uncompressed or compressed) |
| 10843 | if (offsets[tile_idx] + sizeof(int) * 5 > size) { |
| 10844 | if (err) { |
| 10845 | (*err) += "Insufficient data size.\n" ; |
| 10846 | } |
| 10847 | return TINYEXR_ERROR_INVALID_DATA; |
| 10848 | } |
| 10849 | |
| 10850 | size_t data_size = size_t(size - (offsets[tile_idx] + sizeof(int) * 5)); |
| 10851 | const unsigned char *data_ptr = |
| 10852 | reinterpret_cast<const unsigned char *>(head + offsets[tile_idx]); |
| 10853 | |
| 10854 | int tile_coordinates[4]; |
| 10855 | memcpy(tile_coordinates, data_ptr, sizeof(int) * 4); |
| 10856 | tinyexr::swap4(reinterpret_cast<unsigned int *>(&tile_coordinates[0])); |
| 10857 | tinyexr::swap4(reinterpret_cast<unsigned int *>(&tile_coordinates[1])); |
| 10858 | tinyexr::swap4(reinterpret_cast<unsigned int *>(&tile_coordinates[2])); |
| 10859 | tinyexr::swap4(reinterpret_cast<unsigned int *>(&tile_coordinates[3])); |
| 10860 | |
| 10861 | // @todo{ LoD } |
| 10862 | if (tile_coordinates[2] != 0) { |
| 10863 | return TINYEXR_ERROR_UNSUPPORTED_FEATURE; |
| 10864 | } |
| 10865 | if (tile_coordinates[3] != 0) { |
| 10866 | return TINYEXR_ERROR_UNSUPPORTED_FEATURE; |
| 10867 | } |
| 10868 | |
| 10869 | int data_len; |
| 10870 | memcpy(&data_len, data_ptr + 16, |
| 10871 | sizeof(int)); // 16 = sizeof(tile_coordinates) |
| 10872 | tinyexr::swap4(reinterpret_cast<unsigned int *>(&data_len)); |
| 10873 | |
| 10874 | if (data_len < 4 || size_t(data_len) > data_size) { |
| 10875 | if (err) { |
| 10876 | (*err) += "Insufficient data length.\n" ; |
| 10877 | } |
| 10878 | return TINYEXR_ERROR_INVALID_DATA; |
| 10879 | } |
| 10880 | |
| 10881 | // Move to data addr: 20 = 16 + 4; |
| 10882 | data_ptr += 20; |
| 10883 | |
| 10884 | tinyexr::DecodeTiledPixelData( |
| 10885 | exr_image->tiles[tile_idx].images, |
| 10886 | &(exr_image->tiles[tile_idx].width), |
| 10887 | &(exr_image->tiles[tile_idx].height), |
| 10888 | exr_header->requested_pixel_types, data_ptr, |
| 10889 | static_cast<size_t>(data_len), exr_header->compression_type, |
| 10890 | exr_header->line_order, data_width, data_height, tile_coordinates[0], |
| 10891 | tile_coordinates[1], exr_header->tile_size_x, exr_header->tile_size_y, |
| 10892 | static_cast<size_t>(pixel_data_size), |
| 10893 | static_cast<size_t>(exr_header->num_custom_attributes), |
| 10894 | exr_header->custom_attributes, |
| 10895 | static_cast<size_t>(exr_header->num_channels), exr_header->channels, |
| 10896 | channel_offset_list); |
| 10897 | |
| 10898 | exr_image->tiles[tile_idx].offset_x = tile_coordinates[0]; |
| 10899 | exr_image->tiles[tile_idx].offset_y = tile_coordinates[1]; |
| 10900 | exr_image->tiles[tile_idx].level_x = tile_coordinates[2]; |
| 10901 | exr_image->tiles[tile_idx].level_y = tile_coordinates[3]; |
| 10902 | |
| 10903 | exr_image->num_tiles = static_cast<int>(num_tiles); |
| 10904 | } |
| 10905 | } else { // scanline format |
| 10906 | |
| 10907 | // Don't allow too large image(256GB * pixel_data_size or more). Workaround |
| 10908 | // for #104. |
| 10909 | size_t total_data_len = |
| 10910 | size_t(data_width) * size_t(data_height) * size_t(num_channels); |
| 10911 | if ((total_data_len == 0) || (total_data_len >= 0x4000000000)) { |
| 10912 | if (err) { |
| 10913 | std::stringstream ss; |
| 10914 | ss << "Image data size is zero or too large: width = " << data_width |
| 10915 | << ", height = " << data_height << ", channels = " << num_channels |
| 10916 | << std::endl; |
| 10917 | (*err) += ss.str(); |
| 10918 | } |
| 10919 | return TINYEXR_ERROR_INVALID_DATA; |
| 10920 | } |
| 10921 | |
| 10922 | exr_image->images = tinyexr::AllocateImage( |
| 10923 | num_channels, exr_header->channels, exr_header->requested_pixel_types, |
| 10924 | data_width, data_height); |
| 10925 | |
| 10926 | #ifdef _OPENMP |
| 10927 | #pragma omp parallel for |
| 10928 | #endif |
| 10929 | for (int y = 0; y < static_cast<int>(num_blocks); y++) { |
| 10930 | size_t y_idx = static_cast<size_t>(y); |
| 10931 | |
| 10932 | if (offsets[y_idx] + sizeof(int) * 2 > size) { |
| 10933 | invalid_data = true; |
| 10934 | } else { |
| 10935 | // 4 byte: scan line |
| 10936 | // 4 byte: data size |
| 10937 | // ~ : pixel data(uncompressed or compressed) |
| 10938 | size_t data_size = size_t(size - (offsets[y_idx] + sizeof(int) * 2)); |
| 10939 | const unsigned char *data_ptr = |
| 10940 | reinterpret_cast<const unsigned char *>(head + offsets[y_idx]); |
| 10941 | |
| 10942 | int line_no; |
| 10943 | memcpy(&line_no, data_ptr, sizeof(int)); |
| 10944 | int data_len; |
| 10945 | memcpy(&data_len, data_ptr + 4, sizeof(int)); |
| 10946 | tinyexr::swap4(reinterpret_cast<unsigned int *>(&line_no)); |
| 10947 | tinyexr::swap4(reinterpret_cast<unsigned int *>(&data_len)); |
| 10948 | |
| 10949 | if (size_t(data_len) > data_size) { |
| 10950 | invalid_data = true; |
| 10951 | } else if (data_len == 0) { |
| 10952 | // TODO(syoyo): May be ok to raise the threshold for example `data_len |
| 10953 | // < 4` |
| 10954 | invalid_data = true; |
| 10955 | } else { |
| 10956 | // line_no may be negative. |
| 10957 | int end_line_no = (std::min)(line_no + num_scanline_blocks, |
| 10958 | (exr_header->data_window[3] + 1)); |
| 10959 | |
| 10960 | int num_lines = end_line_no - line_no; |
| 10961 | |
| 10962 | if (num_lines <= 0) { |
| 10963 | invalid_data = true; |
| 10964 | } else { |
| 10965 | // Move to data addr: 8 = 4 + 4; |
| 10966 | data_ptr += 8; |
| 10967 | |
| 10968 | // Adjust line_no with data_window.bmin.y |
| 10969 | |
| 10970 | // overflow check |
| 10971 | tinyexr_int64 lno = static_cast<tinyexr_int64>(line_no) - static_cast<tinyexr_int64>(exr_header->data_window[1]); |
| 10972 | if (lno > std::numeric_limits<int>::max()) { |
| 10973 | line_no = -1; // invalid |
| 10974 | } else if (lno < -std::numeric_limits<int>::max()) { |
| 10975 | line_no = -1; // invalid |
| 10976 | } else { |
| 10977 | line_no -= exr_header->data_window[1]; |
| 10978 | } |
| 10979 | |
| 10980 | if (line_no < 0) { |
| 10981 | invalid_data = true; |
| 10982 | } else { |
| 10983 | if (!tinyexr::DecodePixelData( |
| 10984 | exr_image->images, exr_header->requested_pixel_types, |
| 10985 | data_ptr, static_cast<size_t>(data_len), |
| 10986 | exr_header->compression_type, exr_header->line_order, |
| 10987 | data_width, data_height, data_width, y, line_no, |
| 10988 | num_lines, static_cast<size_t>(pixel_data_size), |
| 10989 | static_cast<size_t>(exr_header->num_custom_attributes), |
| 10990 | exr_header->custom_attributes, |
| 10991 | static_cast<size_t>(exr_header->num_channels), |
| 10992 | exr_header->channels, channel_offset_list)) { |
| 10993 | invalid_data = true; |
| 10994 | } |
| 10995 | } |
| 10996 | } |
| 10997 | } |
| 10998 | } |
| 10999 | } // omp parallel |
| 11000 | } |
| 11001 | |
| 11002 | if (invalid_data) { |
| 11003 | if (err) { |
| 11004 | std::stringstream ss; |
| 11005 | (*err) += "Invalid data found when decoding pixels.\n" ; |
| 11006 | } |
| 11007 | return TINYEXR_ERROR_INVALID_DATA; |
| 11008 | } |
| 11009 | |
| 11010 | // Overwrite `pixel_type` with `requested_pixel_type`. |
| 11011 | { |
| 11012 | for (int c = 0; c < exr_header->num_channels; c++) { |
| 11013 | exr_header->pixel_types[c] = exr_header->requested_pixel_types[c]; |
| 11014 | } |
| 11015 | } |
| 11016 | |
| 11017 | { |
| 11018 | exr_image->num_channels = num_channels; |
| 11019 | |
| 11020 | exr_image->width = data_width; |
| 11021 | exr_image->height = data_height; |
| 11022 | } |
| 11023 | |
| 11024 | return TINYEXR_SUCCESS; |
| 11025 | } |
| 11026 | |
| 11027 | static bool ReconstructLineOffsets( |
| 11028 | std::vector<tinyexr::tinyexr_uint64> *offsets, size_t n, |
| 11029 | const unsigned char *head, const unsigned char *marker, const size_t size) { |
| 11030 | assert(head < marker); |
| 11031 | assert(offsets->size() == n); |
| 11032 | |
| 11033 | for (size_t i = 0; i < n; i++) { |
| 11034 | size_t offset = static_cast<size_t>(marker - head); |
| 11035 | // Offset should not exceed whole EXR file/data size. |
| 11036 | if ((offset + sizeof(tinyexr::tinyexr_uint64)) >= size) { |
| 11037 | return false; |
| 11038 | } |
| 11039 | |
| 11040 | int y; |
| 11041 | unsigned int data_len; |
| 11042 | |
| 11043 | memcpy(&y, marker, sizeof(int)); |
| 11044 | memcpy(&data_len, marker + 4, sizeof(unsigned int)); |
| 11045 | |
| 11046 | if (data_len >= size) { |
| 11047 | return false; |
| 11048 | } |
| 11049 | |
| 11050 | tinyexr::swap4(reinterpret_cast<unsigned int *>(&y)); |
| 11051 | tinyexr::swap4(reinterpret_cast<unsigned int *>(&data_len)); |
| 11052 | |
| 11053 | (*offsets)[i] = offset; |
| 11054 | |
| 11055 | marker += data_len + 8; // 8 = 4 bytes(y) + 4 bytes(data_len) |
| 11056 | } |
| 11057 | |
| 11058 | return true; |
| 11059 | } |
| 11060 | |
| 11061 | static int (EXRImage *exr_image, const EXRHeader *, |
| 11062 | const unsigned char *head, |
| 11063 | const unsigned char *marker, const size_t size, |
| 11064 | const char **err) { |
| 11065 | if (exr_image == NULL || exr_header == NULL || head == NULL || |
| 11066 | marker == NULL || (size <= tinyexr::kEXRVersionSize)) { |
| 11067 | tinyexr::SetErrorMessage("Invalid argument for DecodeEXRImage()." , err); |
| 11068 | return TINYEXR_ERROR_INVALID_ARGUMENT; |
| 11069 | } |
| 11070 | |
| 11071 | int num_scanline_blocks = 1; |
| 11072 | if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZIP) { |
| 11073 | num_scanline_blocks = 16; |
| 11074 | } else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) { |
| 11075 | num_scanline_blocks = 32; |
| 11076 | } else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) { |
| 11077 | num_scanline_blocks = 16; |
| 11078 | } |
| 11079 | |
| 11080 | int data_width = exr_header->data_window[2] - exr_header->data_window[0]; |
| 11081 | if (data_width >= std::numeric_limits<int>::max()) { |
| 11082 | // Issue 63 |
| 11083 | tinyexr::SetErrorMessage("Invalid data width value" , err); |
| 11084 | return TINYEXR_ERROR_INVALID_DATA; |
| 11085 | } |
| 11086 | data_width++; |
| 11087 | |
| 11088 | int data_height = exr_header->data_window[3] - exr_header->data_window[1]; |
| 11089 | if (data_height >= std::numeric_limits<int>::max()) { |
| 11090 | tinyexr::SetErrorMessage("Invalid data height value" , err); |
| 11091 | return TINYEXR_ERROR_INVALID_DATA; |
| 11092 | } |
| 11093 | data_height++; |
| 11094 | |
| 11095 | if ((data_width < 0) || (data_height < 0)) { |
| 11096 | tinyexr::SetErrorMessage("data width or data height is negative." , err); |
| 11097 | return TINYEXR_ERROR_INVALID_DATA; |
| 11098 | } |
| 11099 | |
| 11100 | // Do not allow too large data_width and data_height. header invalid? |
| 11101 | { |
| 11102 | const int threshold = 1024 * 8192; // heuristics |
| 11103 | if (data_width > threshold) { |
| 11104 | tinyexr::SetErrorMessage("data width too large." , err); |
| 11105 | return TINYEXR_ERROR_INVALID_DATA; |
| 11106 | } |
| 11107 | if (data_height > threshold) { |
| 11108 | tinyexr::SetErrorMessage("data height too large." , err); |
| 11109 | return TINYEXR_ERROR_INVALID_DATA; |
| 11110 | } |
| 11111 | } |
| 11112 | |
| 11113 | // Read offset tables. |
| 11114 | size_t num_blocks = 0; |
| 11115 | |
| 11116 | if (exr_header->chunk_count > 0) { |
| 11117 | // Use `chunkCount` attribute. |
| 11118 | num_blocks = static_cast<size_t>(exr_header->chunk_count); |
| 11119 | } else if (exr_header->tiled) { |
| 11120 | // @todo { LoD } |
| 11121 | size_t num_x_tiles = static_cast<size_t>(data_width) / |
| 11122 | static_cast<size_t>(exr_header->tile_size_x); |
| 11123 | if (num_x_tiles * static_cast<size_t>(exr_header->tile_size_x) < |
| 11124 | static_cast<size_t>(data_width)) { |
| 11125 | num_x_tiles++; |
| 11126 | } |
| 11127 | size_t num_y_tiles = static_cast<size_t>(data_height) / |
| 11128 | static_cast<size_t>(exr_header->tile_size_y); |
| 11129 | if (num_y_tiles * static_cast<size_t>(exr_header->tile_size_y) < |
| 11130 | static_cast<size_t>(data_height)) { |
| 11131 | num_y_tiles++; |
| 11132 | } |
| 11133 | |
| 11134 | num_blocks = num_x_tiles * num_y_tiles; |
| 11135 | } else { |
| 11136 | num_blocks = static_cast<size_t>(data_height) / |
| 11137 | static_cast<size_t>(num_scanline_blocks); |
| 11138 | if (num_blocks * static_cast<size_t>(num_scanline_blocks) < |
| 11139 | static_cast<size_t>(data_height)) { |
| 11140 | num_blocks++; |
| 11141 | } |
| 11142 | } |
| 11143 | |
| 11144 | std::vector<tinyexr::tinyexr_uint64> offsets(num_blocks); |
| 11145 | |
| 11146 | for (size_t y = 0; y < num_blocks; y++) { |
| 11147 | tinyexr::tinyexr_uint64 offset; |
| 11148 | // Issue #81 |
| 11149 | if ((marker + sizeof(tinyexr_uint64)) >= (head + size)) { |
| 11150 | tinyexr::SetErrorMessage("Insufficient data size in offset table." , err); |
| 11151 | return TINYEXR_ERROR_INVALID_DATA; |
| 11152 | } |
| 11153 | |
| 11154 | memcpy(&offset, marker, sizeof(tinyexr::tinyexr_uint64)); |
| 11155 | tinyexr::swap8(&offset); |
| 11156 | if (offset >= size) { |
| 11157 | tinyexr::SetErrorMessage("Invalid offset value in DecodeEXRImage." , err); |
| 11158 | return TINYEXR_ERROR_INVALID_DATA; |
| 11159 | } |
| 11160 | marker += sizeof(tinyexr::tinyexr_uint64); // = 8 |
| 11161 | offsets[y] = offset; |
| 11162 | } |
| 11163 | |
| 11164 | // If line offsets are invalid, we try to reconstruct it. |
| 11165 | // See OpenEXR/IlmImf/ImfScanLineInputFile.cpp::readLineOffsets() for details. |
| 11166 | for (size_t y = 0; y < num_blocks; y++) { |
| 11167 | if (offsets[y] <= 0) { |
| 11168 | // TODO(syoyo) Report as warning? |
| 11169 | // if (err) { |
| 11170 | // stringstream ss; |
| 11171 | // ss << "Incomplete lineOffsets." << std::endl; |
| 11172 | // (*err) += ss.str(); |
| 11173 | //} |
| 11174 | bool ret = |
| 11175 | ReconstructLineOffsets(&offsets, num_blocks, head, marker, size); |
| 11176 | if (ret) { |
| 11177 | // OK |
| 11178 | break; |
| 11179 | } else { |
| 11180 | tinyexr::SetErrorMessage( |
| 11181 | "Cannot reconstruct lineOffset table in DecodeEXRImage." , err); |
| 11182 | return TINYEXR_ERROR_INVALID_DATA; |
| 11183 | } |
| 11184 | } |
| 11185 | } |
| 11186 | |
| 11187 | { |
| 11188 | std::string e; |
| 11189 | int ret = DecodeChunk(exr_image, exr_header, offsets, head, size, &e); |
| 11190 | |
| 11191 | if (ret != TINYEXR_SUCCESS) { |
| 11192 | if (!e.empty()) { |
| 11193 | tinyexr::SetErrorMessage(e, err); |
| 11194 | } |
| 11195 | |
| 11196 | // release memory(if exists) |
| 11197 | if ((exr_header->num_channels > 0) && exr_image && exr_image->images) { |
| 11198 | for (size_t c = 0; c < size_t(exr_header->num_channels); c++) { |
| 11199 | if (exr_image->images[c]) { |
| 11200 | free(exr_image->images[c]); |
| 11201 | exr_image->images[c] = NULL; |
| 11202 | } |
| 11203 | } |
| 11204 | free(exr_image->images); |
| 11205 | exr_image->images = NULL; |
| 11206 | } |
| 11207 | } |
| 11208 | |
| 11209 | return ret; |
| 11210 | } |
| 11211 | } |
| 11212 | |
| 11213 | } // namespace tinyexr |
| 11214 | |
| 11215 | int LoadEXR(float **out_rgba, int *width, int *height, const char *filename, |
| 11216 | const char **err) { |
| 11217 | if (out_rgba == NULL) { |
| 11218 | tinyexr::SetErrorMessage("Invalid argument for LoadEXR()" , err); |
| 11219 | return TINYEXR_ERROR_INVALID_ARGUMENT; |
| 11220 | } |
| 11221 | |
| 11222 | EXRVersion exr_version; |
| 11223 | EXRImage exr_image; |
| 11224 | EXRHeader ; |
| 11225 | InitEXRHeader(&exr_header); |
| 11226 | InitEXRImage(&exr_image); |
| 11227 | |
| 11228 | { |
| 11229 | int ret = ParseEXRVersionFromFile(&exr_version, filename); |
| 11230 | if (ret != TINYEXR_SUCCESS) { |
| 11231 | tinyexr::SetErrorMessage("Invalid EXR header." , err); |
| 11232 | return ret; |
| 11233 | } |
| 11234 | |
| 11235 | if (exr_version.multipart || exr_version.non_image) { |
| 11236 | tinyexr::SetErrorMessage( |
| 11237 | "Loading multipart or DeepImage is not supported in LoadEXR() API" , |
| 11238 | err); |
| 11239 | return TINYEXR_ERROR_INVALID_DATA; // @fixme. |
| 11240 | } |
| 11241 | } |
| 11242 | |
| 11243 | { |
| 11244 | int ret = ParseEXRHeaderFromFile(&exr_header, &exr_version, filename, err); |
| 11245 | if (ret != TINYEXR_SUCCESS) { |
| 11246 | FreeEXRHeader(&exr_header); |
| 11247 | return ret; |
| 11248 | } |
| 11249 | } |
| 11250 | |
| 11251 | // Read HALF channel as FLOAT. |
| 11252 | for (int i = 0; i < exr_header.num_channels; i++) { |
| 11253 | if (exr_header.pixel_types[i] == TINYEXR_PIXELTYPE_HALF) { |
| 11254 | exr_header.requested_pixel_types[i] = TINYEXR_PIXELTYPE_FLOAT; |
| 11255 | } |
| 11256 | } |
| 11257 | |
| 11258 | { |
| 11259 | int ret = LoadEXRImageFromFile(&exr_image, &exr_header, filename, err); |
| 11260 | if (ret != TINYEXR_SUCCESS) { |
| 11261 | FreeEXRHeader(&exr_header); |
| 11262 | return ret; |
| 11263 | } |
| 11264 | } |
| 11265 | |
| 11266 | // RGBA |
| 11267 | int idxR = -1; |
| 11268 | int idxG = -1; |
| 11269 | int idxB = -1; |
| 11270 | int idxA = -1; |
| 11271 | for (int c = 0; c < exr_header.num_channels; c++) { |
| 11272 | if (strcmp(exr_header.channels[c].name, "R" ) == 0) { |
| 11273 | idxR = c; |
| 11274 | } else if (strcmp(exr_header.channels[c].name, "G" ) == 0) { |
| 11275 | idxG = c; |
| 11276 | } else if (strcmp(exr_header.channels[c].name, "B" ) == 0) { |
| 11277 | idxB = c; |
| 11278 | } else if (strcmp(exr_header.channels[c].name, "A" ) == 0) { |
| 11279 | idxA = c; |
| 11280 | } |
| 11281 | } |
| 11282 | |
| 11283 | if (exr_header.num_channels == 1) { |
| 11284 | // Grayscale channel only. |
| 11285 | |
| 11286 | (*out_rgba) = reinterpret_cast<float *>( |
| 11287 | malloc(4 * sizeof(float) * static_cast<size_t>(exr_image.width) * |
| 11288 | static_cast<size_t>(exr_image.height))); |
| 11289 | |
| 11290 | if (exr_header.tiled) { |
| 11291 | for (int it = 0; it < exr_image.num_tiles; it++) { |
| 11292 | for (int j = 0; j < exr_header.tile_size_y; j++) { |
| 11293 | for (int i = 0; i < exr_header.tile_size_x; i++) { |
| 11294 | const int ii = |
| 11295 | exr_image.tiles[it].offset_x * exr_header.tile_size_x + i; |
| 11296 | const int jj = |
| 11297 | exr_image.tiles[it].offset_y * exr_header.tile_size_y + j; |
| 11298 | const int idx = ii + jj * exr_image.width; |
| 11299 | |
| 11300 | // out of region check. |
| 11301 | if (ii >= exr_image.width) { |
| 11302 | continue; |
| 11303 | } |
| 11304 | if (jj >= exr_image.height) { |
| 11305 | continue; |
| 11306 | } |
| 11307 | const int srcIdx = i + j * exr_header.tile_size_x; |
| 11308 | unsigned char **src = exr_image.tiles[it].images; |
| 11309 | (*out_rgba)[4 * idx + 0] = |
| 11310 | reinterpret_cast<float **>(src)[0][srcIdx]; |
| 11311 | (*out_rgba)[4 * idx + 1] = |
| 11312 | reinterpret_cast<float **>(src)[0][srcIdx]; |
| 11313 | (*out_rgba)[4 * idx + 2] = |
| 11314 | reinterpret_cast<float **>(src)[0][srcIdx]; |
| 11315 | (*out_rgba)[4 * idx + 3] = |
| 11316 | reinterpret_cast<float **>(src)[0][srcIdx]; |
| 11317 | } |
| 11318 | } |
| 11319 | } |
| 11320 | } else { |
| 11321 | for (int i = 0; i < exr_image.width * exr_image.height; i++) { |
| 11322 | const float val = reinterpret_cast<float **>(exr_image.images)[0][i]; |
| 11323 | (*out_rgba)[4 * i + 0] = val; |
| 11324 | (*out_rgba)[4 * i + 1] = val; |
| 11325 | (*out_rgba)[4 * i + 2] = val; |
| 11326 | (*out_rgba)[4 * i + 3] = val; |
| 11327 | } |
| 11328 | } |
| 11329 | } else { |
| 11330 | // Assume RGB(A) |
| 11331 | |
| 11332 | if (idxR == -1) { |
| 11333 | tinyexr::SetErrorMessage("R channel not found" , err); |
| 11334 | |
| 11335 | // @todo { free exr_image } |
| 11336 | FreeEXRHeader(&exr_header); |
| 11337 | return TINYEXR_ERROR_INVALID_DATA; |
| 11338 | } |
| 11339 | |
| 11340 | if (idxG == -1) { |
| 11341 | tinyexr::SetErrorMessage("G channel not found" , err); |
| 11342 | // @todo { free exr_image } |
| 11343 | FreeEXRHeader(&exr_header); |
| 11344 | return TINYEXR_ERROR_INVALID_DATA; |
| 11345 | } |
| 11346 | |
| 11347 | if (idxB == -1) { |
| 11348 | tinyexr::SetErrorMessage("B channel not found" , err); |
| 11349 | // @todo { free exr_image } |
| 11350 | FreeEXRHeader(&exr_header); |
| 11351 | return TINYEXR_ERROR_INVALID_DATA; |
| 11352 | } |
| 11353 | |
| 11354 | (*out_rgba) = reinterpret_cast<float *>( |
| 11355 | malloc(4 * sizeof(float) * static_cast<size_t>(exr_image.width) * |
| 11356 | static_cast<size_t>(exr_image.height))); |
| 11357 | if (exr_header.tiled) { |
| 11358 | for (int it = 0; it < exr_image.num_tiles; it++) { |
| 11359 | for (int j = 0; j < exr_header.tile_size_y; j++) { |
| 11360 | for (int i = 0; i < exr_header.tile_size_x; i++) { |
| 11361 | const int ii = |
| 11362 | exr_image.tiles[it].offset_x * exr_header.tile_size_x + i; |
| 11363 | const int jj = |
| 11364 | exr_image.tiles[it].offset_y * exr_header.tile_size_y + j; |
| 11365 | const int idx = ii + jj * exr_image.width; |
| 11366 | |
| 11367 | // out of region check. |
| 11368 | if (ii >= exr_image.width) { |
| 11369 | continue; |
| 11370 | } |
| 11371 | if (jj >= exr_image.height) { |
| 11372 | continue; |
| 11373 | } |
| 11374 | const int srcIdx = i + j * exr_header.tile_size_x; |
| 11375 | unsigned char **src = exr_image.tiles[it].images; |
| 11376 | (*out_rgba)[4 * idx + 0] = |
| 11377 | reinterpret_cast<float **>(src)[idxR][srcIdx]; |
| 11378 | (*out_rgba)[4 * idx + 1] = |
| 11379 | reinterpret_cast<float **>(src)[idxG][srcIdx]; |
| 11380 | (*out_rgba)[4 * idx + 2] = |
| 11381 | reinterpret_cast<float **>(src)[idxB][srcIdx]; |
| 11382 | if (idxA != -1) { |
| 11383 | (*out_rgba)[4 * idx + 3] = |
| 11384 | reinterpret_cast<float **>(src)[idxA][srcIdx]; |
| 11385 | } else { |
| 11386 | (*out_rgba)[4 * idx + 3] = 1.0; |
| 11387 | } |
| 11388 | } |
| 11389 | } |
| 11390 | } |
| 11391 | } else { |
| 11392 | for (int i = 0; i < exr_image.width * exr_image.height; i++) { |
| 11393 | (*out_rgba)[4 * i + 0] = |
| 11394 | reinterpret_cast<float **>(exr_image.images)[idxR][i]; |
| 11395 | (*out_rgba)[4 * i + 1] = |
| 11396 | reinterpret_cast<float **>(exr_image.images)[idxG][i]; |
| 11397 | (*out_rgba)[4 * i + 2] = |
| 11398 | reinterpret_cast<float **>(exr_image.images)[idxB][i]; |
| 11399 | if (idxA != -1) { |
| 11400 | (*out_rgba)[4 * i + 3] = |
| 11401 | reinterpret_cast<float **>(exr_image.images)[idxA][i]; |
| 11402 | } else { |
| 11403 | (*out_rgba)[4 * i + 3] = 1.0; |
| 11404 | } |
| 11405 | } |
| 11406 | } |
| 11407 | } |
| 11408 | |
| 11409 | (*width) = exr_image.width; |
| 11410 | (*height) = exr_image.height; |
| 11411 | |
| 11412 | FreeEXRHeader(&exr_header); |
| 11413 | FreeEXRImage(&exr_image); |
| 11414 | |
| 11415 | return TINYEXR_SUCCESS; |
| 11416 | } |
| 11417 | |
| 11418 | int IsEXR(const char *filename) { |
| 11419 | EXRVersion exr_version; |
| 11420 | |
| 11421 | int ret = ParseEXRVersionFromFile(&exr_version, filename); |
| 11422 | if (ret != TINYEXR_SUCCESS) { |
| 11423 | return TINYEXR_ERROR_INVALID_HEADER; |
| 11424 | } |
| 11425 | |
| 11426 | return TINYEXR_SUCCESS; |
| 11427 | } |
| 11428 | |
| 11429 | int (EXRHeader *, const EXRVersion *version, |
| 11430 | const unsigned char *memory, size_t size, |
| 11431 | const char **err) { |
| 11432 | if (memory == NULL || exr_header == NULL) { |
| 11433 | tinyexr::SetErrorMessage( |
| 11434 | "Invalid argument. `memory` or `exr_header` argument is null in " |
| 11435 | "ParseEXRHeaderFromMemory()" , |
| 11436 | err); |
| 11437 | |
| 11438 | // Invalid argument |
| 11439 | return TINYEXR_ERROR_INVALID_ARGUMENT; |
| 11440 | } |
| 11441 | |
| 11442 | if (size < tinyexr::kEXRVersionSize) { |
| 11443 | tinyexr::SetErrorMessage("Insufficient header/data size.\n" , err); |
| 11444 | return TINYEXR_ERROR_INVALID_DATA; |
| 11445 | } |
| 11446 | |
| 11447 | const unsigned char *marker = memory + tinyexr::kEXRVersionSize; |
| 11448 | size_t marker_size = size - tinyexr::kEXRVersionSize; |
| 11449 | |
| 11450 | tinyexr::HeaderInfo info; |
| 11451 | info.clear(); |
| 11452 | |
| 11453 | std::string err_str; |
| 11454 | int ret = ParseEXRHeader(&info, NULL, version, &err_str, marker, marker_size); |
| 11455 | |
| 11456 | if (ret != TINYEXR_SUCCESS) { |
| 11457 | if (err && !err_str.empty()) { |
| 11458 | tinyexr::SetErrorMessage(err_str, err); |
| 11459 | } |
| 11460 | } |
| 11461 | |
| 11462 | ConvertHeader(exr_header, info); |
| 11463 | |
| 11464 | // transfoer `tiled` from version. |
| 11465 | exr_header->tiled = version->tiled; |
| 11466 | |
| 11467 | return ret; |
| 11468 | } |
| 11469 | |
| 11470 | int LoadEXRFromMemory(float **out_rgba, int *width, int *height, |
| 11471 | const unsigned char *memory, size_t size, |
| 11472 | const char **err) { |
| 11473 | if (out_rgba == NULL || memory == NULL) { |
| 11474 | tinyexr::SetErrorMessage("Invalid argument for LoadEXRFromMemory" , err); |
| 11475 | return TINYEXR_ERROR_INVALID_ARGUMENT; |
| 11476 | } |
| 11477 | |
| 11478 | EXRVersion exr_version; |
| 11479 | EXRImage exr_image; |
| 11480 | EXRHeader ; |
| 11481 | |
| 11482 | InitEXRHeader(&exr_header); |
| 11483 | |
| 11484 | int ret = ParseEXRVersionFromMemory(&exr_version, memory, size); |
| 11485 | if (ret != TINYEXR_SUCCESS) { |
| 11486 | tinyexr::SetErrorMessage("Failed to parse EXR version" , err); |
| 11487 | return ret; |
| 11488 | } |
| 11489 | |
| 11490 | ret = ParseEXRHeaderFromMemory(&exr_header, &exr_version, memory, size, err); |
| 11491 | if (ret != TINYEXR_SUCCESS) { |
| 11492 | return ret; |
| 11493 | } |
| 11494 | |
| 11495 | // Read HALF channel as FLOAT. |
| 11496 | for (int i = 0; i < exr_header.num_channels; i++) { |
| 11497 | if (exr_header.pixel_types[i] == TINYEXR_PIXELTYPE_HALF) { |
| 11498 | exr_header.requested_pixel_types[i] = TINYEXR_PIXELTYPE_FLOAT; |
| 11499 | } |
| 11500 | } |
| 11501 | |
| 11502 | InitEXRImage(&exr_image); |
| 11503 | ret = LoadEXRImageFromMemory(&exr_image, &exr_header, memory, size, err); |
| 11504 | if (ret != TINYEXR_SUCCESS) { |
| 11505 | return ret; |
| 11506 | } |
| 11507 | |
| 11508 | // RGBA |
| 11509 | int idxR = -1; |
| 11510 | int idxG = -1; |
| 11511 | int idxB = -1; |
| 11512 | int idxA = -1; |
| 11513 | for (int c = 0; c < exr_header.num_channels; c++) { |
| 11514 | if (strcmp(exr_header.channels[c].name, "R" ) == 0) { |
| 11515 | idxR = c; |
| 11516 | } else if (strcmp(exr_header.channels[c].name, "G" ) == 0) { |
| 11517 | idxG = c; |
| 11518 | } else if (strcmp(exr_header.channels[c].name, "B" ) == 0) { |
| 11519 | idxB = c; |
| 11520 | } else if (strcmp(exr_header.channels[c].name, "A" ) == 0) { |
| 11521 | idxA = c; |
| 11522 | } |
| 11523 | } |
| 11524 | |
| 11525 | // TODO(syoyo): Refactor removing same code as used in LoadEXR(). |
| 11526 | if (exr_header.num_channels == 1) { |
| 11527 | // Grayscale channel only. |
| 11528 | |
| 11529 | (*out_rgba) = reinterpret_cast<float *>( |
| 11530 | malloc(4 * sizeof(float) * static_cast<size_t>(exr_image.width) * |
| 11531 | static_cast<size_t>(exr_image.height))); |
| 11532 | |
| 11533 | if (exr_header.tiled) { |
| 11534 | for (int it = 0; it < exr_image.num_tiles; it++) { |
| 11535 | for (int j = 0; j < exr_header.tile_size_y; j++) { |
| 11536 | for (int i = 0; i < exr_header.tile_size_x; i++) { |
| 11537 | const int ii = |
| 11538 | exr_image.tiles[it].offset_x * exr_header.tile_size_x + i; |
| 11539 | const int jj = |
| 11540 | exr_image.tiles[it].offset_y * exr_header.tile_size_y + j; |
| 11541 | const int idx = ii + jj * exr_image.width; |
| 11542 | |
| 11543 | // out of region check. |
| 11544 | if (ii >= exr_image.width) { |
| 11545 | continue; |
| 11546 | } |
| 11547 | if (jj >= exr_image.height) { |
| 11548 | continue; |
| 11549 | } |
| 11550 | const int srcIdx = i + j * exr_header.tile_size_x; |
| 11551 | unsigned char **src = exr_image.tiles[it].images; |
| 11552 | (*out_rgba)[4 * idx + 0] = |
| 11553 | reinterpret_cast<float **>(src)[0][srcIdx]; |
| 11554 | (*out_rgba)[4 * idx + 1] = |
| 11555 | reinterpret_cast<float **>(src)[0][srcIdx]; |
| 11556 | (*out_rgba)[4 * idx + 2] = |
| 11557 | reinterpret_cast<float **>(src)[0][srcIdx]; |
| 11558 | (*out_rgba)[4 * idx + 3] = |
| 11559 | reinterpret_cast<float **>(src)[0][srcIdx]; |
| 11560 | } |
| 11561 | } |
| 11562 | } |
| 11563 | } else { |
| 11564 | for (int i = 0; i < exr_image.width * exr_image.height; i++) { |
| 11565 | const float val = reinterpret_cast<float **>(exr_image.images)[0][i]; |
| 11566 | (*out_rgba)[4 * i + 0] = val; |
| 11567 | (*out_rgba)[4 * i + 1] = val; |
| 11568 | (*out_rgba)[4 * i + 2] = val; |
| 11569 | (*out_rgba)[4 * i + 3] = val; |
| 11570 | } |
| 11571 | } |
| 11572 | |
| 11573 | } else { |
| 11574 | // TODO(syoyo): Support non RGBA image. |
| 11575 | |
| 11576 | if (idxR == -1) { |
| 11577 | tinyexr::SetErrorMessage("R channel not found" , err); |
| 11578 | |
| 11579 | // @todo { free exr_image } |
| 11580 | return TINYEXR_ERROR_INVALID_DATA; |
| 11581 | } |
| 11582 | |
| 11583 | if (idxG == -1) { |
| 11584 | tinyexr::SetErrorMessage("G channel not found" , err); |
| 11585 | // @todo { free exr_image } |
| 11586 | return TINYEXR_ERROR_INVALID_DATA; |
| 11587 | } |
| 11588 | |
| 11589 | if (idxB == -1) { |
| 11590 | tinyexr::SetErrorMessage("B channel not found" , err); |
| 11591 | // @todo { free exr_image } |
| 11592 | return TINYEXR_ERROR_INVALID_DATA; |
| 11593 | } |
| 11594 | |
| 11595 | (*out_rgba) = reinterpret_cast<float *>( |
| 11596 | malloc(4 * sizeof(float) * static_cast<size_t>(exr_image.width) * |
| 11597 | static_cast<size_t>(exr_image.height))); |
| 11598 | |
| 11599 | if (exr_header.tiled) { |
| 11600 | for (int it = 0; it < exr_image.num_tiles; it++) { |
| 11601 | for (int j = 0; j < exr_header.tile_size_y; j++) |
| 11602 | for (int i = 0; i < exr_header.tile_size_x; i++) { |
| 11603 | const int ii = |
| 11604 | exr_image.tiles[it].offset_x * exr_header.tile_size_x + i; |
| 11605 | const int jj = |
| 11606 | exr_image.tiles[it].offset_y * exr_header.tile_size_y + j; |
| 11607 | const int idx = ii + jj * exr_image.width; |
| 11608 | |
| 11609 | // out of region check. |
| 11610 | if (ii >= exr_image.width) { |
| 11611 | continue; |
| 11612 | } |
| 11613 | if (jj >= exr_image.height) { |
| 11614 | continue; |
| 11615 | } |
| 11616 | const int srcIdx = i + j * exr_header.tile_size_x; |
| 11617 | unsigned char **src = exr_image.tiles[it].images; |
| 11618 | (*out_rgba)[4 * idx + 0] = |
| 11619 | reinterpret_cast<float **>(src)[idxR][srcIdx]; |
| 11620 | (*out_rgba)[4 * idx + 1] = |
| 11621 | reinterpret_cast<float **>(src)[idxG][srcIdx]; |
| 11622 | (*out_rgba)[4 * idx + 2] = |
| 11623 | reinterpret_cast<float **>(src)[idxB][srcIdx]; |
| 11624 | if (idxA != -1) { |
| 11625 | (*out_rgba)[4 * idx + 3] = |
| 11626 | reinterpret_cast<float **>(src)[idxA][srcIdx]; |
| 11627 | } else { |
| 11628 | (*out_rgba)[4 * idx + 3] = 1.0; |
| 11629 | } |
| 11630 | } |
| 11631 | } |
| 11632 | } else { |
| 11633 | for (int i = 0; i < exr_image.width * exr_image.height; i++) { |
| 11634 | (*out_rgba)[4 * i + 0] = |
| 11635 | reinterpret_cast<float **>(exr_image.images)[idxR][i]; |
| 11636 | (*out_rgba)[4 * i + 1] = |
| 11637 | reinterpret_cast<float **>(exr_image.images)[idxG][i]; |
| 11638 | (*out_rgba)[4 * i + 2] = |
| 11639 | reinterpret_cast<float **>(exr_image.images)[idxB][i]; |
| 11640 | if (idxA != -1) { |
| 11641 | (*out_rgba)[4 * i + 3] = |
| 11642 | reinterpret_cast<float **>(exr_image.images)[idxA][i]; |
| 11643 | } else { |
| 11644 | (*out_rgba)[4 * i + 3] = 1.0; |
| 11645 | } |
| 11646 | } |
| 11647 | } |
| 11648 | } |
| 11649 | |
| 11650 | (*width) = exr_image.width; |
| 11651 | (*height) = exr_image.height; |
| 11652 | |
| 11653 | FreeEXRHeader(&exr_header); |
| 11654 | FreeEXRImage(&exr_image); |
| 11655 | |
| 11656 | return TINYEXR_SUCCESS; |
| 11657 | } |
| 11658 | |
| 11659 | int LoadEXRImageFromFile(EXRImage *exr_image, const EXRHeader *, |
| 11660 | const char *filename, const char **err) { |
| 11661 | if (exr_image == NULL) { |
| 11662 | tinyexr::SetErrorMessage("Invalid argument for LoadEXRImageFromFile" , err); |
| 11663 | return TINYEXR_ERROR_INVALID_ARGUMENT; |
| 11664 | } |
| 11665 | |
| 11666 | #ifdef _WIN32 |
| 11667 | FILE *fp = NULL; |
| 11668 | fopen_s(&fp, filename, "rb" ); |
| 11669 | #else |
| 11670 | FILE *fp = fopen(filename, "rb" ); |
| 11671 | #endif |
| 11672 | if (!fp) { |
| 11673 | tinyexr::SetErrorMessage("Cannot read file " + std::string(filename), err); |
| 11674 | return TINYEXR_ERROR_CANT_OPEN_FILE; |
| 11675 | } |
| 11676 | |
| 11677 | size_t filesize; |
| 11678 | // Compute size |
| 11679 | fseek(fp, 0, SEEK_END); |
| 11680 | filesize = static_cast<size_t>(ftell(fp)); |
| 11681 | fseek(fp, 0, SEEK_SET); |
| 11682 | |
| 11683 | if (filesize < 16) { |
| 11684 | tinyexr::SetErrorMessage("File size too short " + std::string(filename), |
| 11685 | err); |
| 11686 | return TINYEXR_ERROR_INVALID_FILE; |
| 11687 | } |
| 11688 | |
| 11689 | std::vector<unsigned char> buf(filesize); // @todo { use mmap } |
| 11690 | { |
| 11691 | size_t ret; |
| 11692 | ret = fread(&buf[0], 1, filesize, fp); |
| 11693 | assert(ret == filesize); |
| 11694 | fclose(fp); |
| 11695 | (void)ret; |
| 11696 | } |
| 11697 | |
| 11698 | return LoadEXRImageFromMemory(exr_image, exr_header, &buf.at(0), filesize, |
| 11699 | err); |
| 11700 | } |
| 11701 | |
| 11702 | int LoadEXRImageFromMemory(EXRImage *exr_image, const EXRHeader *, |
| 11703 | const unsigned char *memory, const size_t size, |
| 11704 | const char **err) { |
| 11705 | if (exr_image == NULL || memory == NULL || |
| 11706 | (size < tinyexr::kEXRVersionSize)) { |
| 11707 | tinyexr::SetErrorMessage("Invalid argument for LoadEXRImageFromMemory" , |
| 11708 | err); |
| 11709 | return TINYEXR_ERROR_INVALID_ARGUMENT; |
| 11710 | } |
| 11711 | |
| 11712 | if (exr_header->header_len == 0) { |
| 11713 | tinyexr::SetErrorMessage("EXRHeader variable is not initialized." , err); |
| 11714 | return TINYEXR_ERROR_INVALID_ARGUMENT; |
| 11715 | } |
| 11716 | |
| 11717 | const unsigned char *head = memory; |
| 11718 | const unsigned char *marker = reinterpret_cast<const unsigned char *>( |
| 11719 | memory + exr_header->header_len + |
| 11720 | 8); // +8 for magic number + version header. |
| 11721 | return tinyexr::DecodeEXRImage(exr_image, exr_header, head, marker, size, |
| 11722 | err); |
| 11723 | } |
| 11724 | |
| 11725 | size_t SaveEXRImageToMemory(const EXRImage *exr_image, |
| 11726 | const EXRHeader *, |
| 11727 | unsigned char **memory_out, const char **err) { |
| 11728 | if (exr_image == NULL || memory_out == NULL || |
| 11729 | exr_header->compression_type < 0) { |
| 11730 | tinyexr::SetErrorMessage("Invalid argument for SaveEXRImageToMemory" , err); |
| 11731 | return 0; |
| 11732 | } |
| 11733 | |
| 11734 | #if !TINYEXR_USE_PIZ |
| 11735 | if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) { |
| 11736 | tinyexr::SetErrorMessage("PIZ compression is not supported in this build" , |
| 11737 | err); |
| 11738 | return 0; |
| 11739 | } |
| 11740 | #endif |
| 11741 | |
| 11742 | #if !TINYEXR_USE_ZFP |
| 11743 | if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) { |
| 11744 | tinyexr::SetErrorMessage("ZFP compression is not supported in this build" , |
| 11745 | err); |
| 11746 | return 0; |
| 11747 | } |
| 11748 | #endif |
| 11749 | |
| 11750 | #if TINYEXR_USE_ZFP |
| 11751 | for (size_t i = 0; i < static_cast<size_t>(exr_header->num_channels); i++) { |
| 11752 | if (exr_header->requested_pixel_types[i] != TINYEXR_PIXELTYPE_FLOAT) { |
| 11753 | tinyexr::SetErrorMessage("Pixel type must be FLOAT for ZFP compression" , |
| 11754 | err); |
| 11755 | return 0; |
| 11756 | } |
| 11757 | } |
| 11758 | #endif |
| 11759 | |
| 11760 | std::vector<unsigned char> memory; |
| 11761 | |
| 11762 | // Header |
| 11763 | { |
| 11764 | const char [] = {0x76, 0x2f, 0x31, 0x01}; |
| 11765 | memory.insert(memory.end(), header, header + 4); |
| 11766 | } |
| 11767 | |
| 11768 | // Version, scanline. |
| 11769 | { |
| 11770 | char marker[] = {2, 0, 0, 0}; |
| 11771 | /* @todo |
| 11772 | if (exr_header->tiled) { |
| 11773 | marker[1] |= 0x2; |
| 11774 | } |
| 11775 | if (exr_header->long_name) { |
| 11776 | marker[1] |= 0x4; |
| 11777 | } |
| 11778 | if (exr_header->non_image) { |
| 11779 | marker[1] |= 0x8; |
| 11780 | } |
| 11781 | if (exr_header->multipart) { |
| 11782 | marker[1] |= 0x10; |
| 11783 | } |
| 11784 | */ |
| 11785 | memory.insert(memory.end(), marker, marker + 4); |
| 11786 | } |
| 11787 | |
| 11788 | int num_scanlines = 1; |
| 11789 | if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZIP) { |
| 11790 | num_scanlines = 16; |
| 11791 | } else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) { |
| 11792 | num_scanlines = 32; |
| 11793 | } else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) { |
| 11794 | num_scanlines = 16; |
| 11795 | } |
| 11796 | |
| 11797 | // Write attributes. |
| 11798 | std::vector<tinyexr::ChannelInfo> channels; |
| 11799 | { |
| 11800 | std::vector<unsigned char> data; |
| 11801 | |
| 11802 | for (int c = 0; c < exr_header->num_channels; c++) { |
| 11803 | tinyexr::ChannelInfo info; |
| 11804 | info.p_linear = 0; |
| 11805 | info.pixel_type = exr_header->requested_pixel_types[c]; |
| 11806 | info.x_sampling = 1; |
| 11807 | info.y_sampling = 1; |
| 11808 | info.name = std::string(exr_header->channels[c].name); |
| 11809 | channels.push_back(info); |
| 11810 | } |
| 11811 | |
| 11812 | tinyexr::WriteChannelInfo(data, channels); |
| 11813 | |
| 11814 | tinyexr::WriteAttributeToMemory(&memory, "channels" , "chlist" , &data.at(0), |
| 11815 | static_cast<int>(data.size())); |
| 11816 | } |
| 11817 | |
| 11818 | { |
| 11819 | int comp = exr_header->compression_type; |
| 11820 | tinyexr::swap4(reinterpret_cast<unsigned int *>(&comp)); |
| 11821 | tinyexr::WriteAttributeToMemory( |
| 11822 | &memory, "compression" , "compression" , |
| 11823 | reinterpret_cast<const unsigned char *>(&comp), 1); |
| 11824 | } |
| 11825 | |
| 11826 | { |
| 11827 | int data[4] = {0, 0, exr_image->width - 1, exr_image->height - 1}; |
| 11828 | tinyexr::swap4(reinterpret_cast<unsigned int *>(&data[0])); |
| 11829 | tinyexr::swap4(reinterpret_cast<unsigned int *>(&data[1])); |
| 11830 | tinyexr::swap4(reinterpret_cast<unsigned int *>(&data[2])); |
| 11831 | tinyexr::swap4(reinterpret_cast<unsigned int *>(&data[3])); |
| 11832 | tinyexr::WriteAttributeToMemory( |
| 11833 | &memory, "dataWindow" , "box2i" , |
| 11834 | reinterpret_cast<const unsigned char *>(data), sizeof(int) * 4); |
| 11835 | tinyexr::WriteAttributeToMemory( |
| 11836 | &memory, "displayWindow" , "box2i" , |
| 11837 | reinterpret_cast<const unsigned char *>(data), sizeof(int) * 4); |
| 11838 | } |
| 11839 | |
| 11840 | { |
| 11841 | unsigned char line_order = 0; // @fixme { read line_order from EXRHeader } |
| 11842 | tinyexr::WriteAttributeToMemory(&memory, "lineOrder" , "lineOrder" , |
| 11843 | &line_order, 1); |
| 11844 | } |
| 11845 | |
| 11846 | { |
| 11847 | float aspectRatio = 1.0f; |
| 11848 | tinyexr::swap4(reinterpret_cast<unsigned int *>(&aspectRatio)); |
| 11849 | tinyexr::WriteAttributeToMemory( |
| 11850 | &memory, "pixelAspectRatio" , "float" , |
| 11851 | reinterpret_cast<const unsigned char *>(&aspectRatio), sizeof(float)); |
| 11852 | } |
| 11853 | |
| 11854 | { |
| 11855 | float center[2] = {0.0f, 0.0f}; |
| 11856 | tinyexr::swap4(reinterpret_cast<unsigned int *>(¢er[0])); |
| 11857 | tinyexr::swap4(reinterpret_cast<unsigned int *>(¢er[1])); |
| 11858 | tinyexr::WriteAttributeToMemory( |
| 11859 | &memory, "screenWindowCenter" , "v2f" , |
| 11860 | reinterpret_cast<const unsigned char *>(center), 2 * sizeof(float)); |
| 11861 | } |
| 11862 | |
| 11863 | { |
| 11864 | float w = static_cast<float>(exr_image->width); |
| 11865 | tinyexr::swap4(reinterpret_cast<unsigned int *>(&w)); |
| 11866 | tinyexr::WriteAttributeToMemory(&memory, "screenWindowWidth" , "float" , |
| 11867 | reinterpret_cast<const unsigned char *>(&w), |
| 11868 | sizeof(float)); |
| 11869 | } |
| 11870 | |
| 11871 | // Custom attributes |
| 11872 | if (exr_header->num_custom_attributes > 0) { |
| 11873 | for (int i = 0; i < exr_header->num_custom_attributes; i++) { |
| 11874 | tinyexr::WriteAttributeToMemory( |
| 11875 | &memory, exr_header->custom_attributes[i].name, |
| 11876 | exr_header->custom_attributes[i].type, |
| 11877 | reinterpret_cast<const unsigned char *>( |
| 11878 | exr_header->custom_attributes[i].value), |
| 11879 | exr_header->custom_attributes[i].size); |
| 11880 | } |
| 11881 | } |
| 11882 | |
| 11883 | { // end of header |
| 11884 | unsigned char e = 0; |
| 11885 | memory.push_back(e); |
| 11886 | } |
| 11887 | |
| 11888 | int num_blocks = exr_image->height / num_scanlines; |
| 11889 | if (num_blocks * num_scanlines < exr_image->height) { |
| 11890 | num_blocks++; |
| 11891 | } |
| 11892 | |
| 11893 | std::vector<tinyexr::tinyexr_uint64> offsets(static_cast<size_t>(num_blocks)); |
| 11894 | |
| 11895 | size_t = memory.size(); |
| 11896 | tinyexr::tinyexr_uint64 offset = |
| 11897 | headerSize + |
| 11898 | static_cast<size_t>(num_blocks) * |
| 11899 | sizeof( |
| 11900 | tinyexr::tinyexr_int64); // sizeof(header) + sizeof(offsetTable) |
| 11901 | |
| 11902 | std::vector<std::vector<unsigned char> > data_list( |
| 11903 | static_cast<size_t>(num_blocks)); |
| 11904 | std::vector<size_t> channel_offset_list( |
| 11905 | static_cast<size_t>(exr_header->num_channels)); |
| 11906 | |
| 11907 | int pixel_data_size = 0; |
| 11908 | size_t channel_offset = 0; |
| 11909 | for (size_t c = 0; c < static_cast<size_t>(exr_header->num_channels); c++) { |
| 11910 | channel_offset_list[c] = channel_offset; |
| 11911 | if (exr_header->requested_pixel_types[c] == TINYEXR_PIXELTYPE_HALF) { |
| 11912 | pixel_data_size += sizeof(unsigned short); |
| 11913 | channel_offset += sizeof(unsigned short); |
| 11914 | } else if (exr_header->requested_pixel_types[c] == |
| 11915 | TINYEXR_PIXELTYPE_FLOAT) { |
| 11916 | pixel_data_size += sizeof(float); |
| 11917 | channel_offset += sizeof(float); |
| 11918 | } else if (exr_header->requested_pixel_types[c] == TINYEXR_PIXELTYPE_UINT) { |
| 11919 | pixel_data_size += sizeof(unsigned int); |
| 11920 | channel_offset += sizeof(unsigned int); |
| 11921 | } else { |
| 11922 | assert(0); |
| 11923 | } |
| 11924 | } |
| 11925 | |
| 11926 | #if TINYEXR_USE_ZFP |
| 11927 | tinyexr::ZFPCompressionParam zfp_compression_param; |
| 11928 | |
| 11929 | // Use ZFP compression parameter from custom attributes(if such a parameter |
| 11930 | // exists) |
| 11931 | { |
| 11932 | bool ret = tinyexr::FindZFPCompressionParam( |
| 11933 | &zfp_compression_param, exr_header->custom_attributes, |
| 11934 | exr_header->num_custom_attributes); |
| 11935 | |
| 11936 | if (!ret) { |
| 11937 | // Use predefined compression parameter. |
| 11938 | zfp_compression_param.type = 0; |
| 11939 | zfp_compression_param.rate = 2; |
| 11940 | } |
| 11941 | } |
| 11942 | #endif |
| 11943 | |
| 11944 | // Use signed int since some OpenMP compiler doesn't allow unsigned type for |
| 11945 | // `parallel for` |
| 11946 | #ifdef _OPENMP |
| 11947 | #pragma omp parallel for |
| 11948 | #endif |
| 11949 | for (int i = 0; i < num_blocks; i++) { |
| 11950 | size_t ii = static_cast<size_t>(i); |
| 11951 | int start_y = num_scanlines * i; |
| 11952 | int endY = (std::min)(num_scanlines * (i + 1), exr_image->height); |
| 11953 | int h = endY - start_y; |
| 11954 | |
| 11955 | std::vector<unsigned char> buf( |
| 11956 | static_cast<size_t>(exr_image->width * h * pixel_data_size)); |
| 11957 | |
| 11958 | for (size_t c = 0; c < static_cast<size_t>(exr_header->num_channels); c++) { |
| 11959 | if (exr_header->pixel_types[c] == TINYEXR_PIXELTYPE_HALF) { |
| 11960 | if (exr_header->requested_pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT) { |
| 11961 | for (int y = 0; y < h; y++) { |
| 11962 | // Assume increasing Y |
| 11963 | float *line_ptr = reinterpret_cast<float *>(&buf.at( |
| 11964 | static_cast<size_t>(pixel_data_size * y * exr_image->width) + |
| 11965 | channel_offset_list[c] * |
| 11966 | static_cast<size_t>(exr_image->width))); |
| 11967 | for (int x = 0; x < exr_image->width; x++) { |
| 11968 | tinyexr::FP16 h16; |
| 11969 | h16.u = reinterpret_cast<unsigned short **>( |
| 11970 | exr_image->images)[c][(y + start_y) * exr_image->width + x]; |
| 11971 | |
| 11972 | tinyexr::FP32 f32 = half_to_float(h16); |
| 11973 | |
| 11974 | tinyexr::swap4(reinterpret_cast<unsigned int *>(&f32.f)); |
| 11975 | |
| 11976 | // line_ptr[x] = f32.f; |
| 11977 | tinyexr::cpy4(line_ptr + x, &(f32.f)); |
| 11978 | } |
| 11979 | } |
| 11980 | } else if (exr_header->requested_pixel_types[c] == |
| 11981 | TINYEXR_PIXELTYPE_HALF) { |
| 11982 | for (int y = 0; y < h; y++) { |
| 11983 | // Assume increasing Y |
| 11984 | unsigned short *line_ptr = reinterpret_cast<unsigned short *>( |
| 11985 | &buf.at(static_cast<size_t>(pixel_data_size * y * |
| 11986 | exr_image->width) + |
| 11987 | channel_offset_list[c] * |
| 11988 | static_cast<size_t>(exr_image->width))); |
| 11989 | for (int x = 0; x < exr_image->width; x++) { |
| 11990 | unsigned short val = reinterpret_cast<unsigned short **>( |
| 11991 | exr_image->images)[c][(y + start_y) * exr_image->width + x]; |
| 11992 | |
| 11993 | tinyexr::swap2(&val); |
| 11994 | |
| 11995 | // line_ptr[x] = val; |
| 11996 | tinyexr::cpy2(line_ptr + x, &val); |
| 11997 | } |
| 11998 | } |
| 11999 | } else { |
| 12000 | assert(0); |
| 12001 | } |
| 12002 | |
| 12003 | } else if (exr_header->pixel_types[c] == TINYEXR_PIXELTYPE_FLOAT) { |
| 12004 | if (exr_header->requested_pixel_types[c] == TINYEXR_PIXELTYPE_HALF) { |
| 12005 | for (int y = 0; y < h; y++) { |
| 12006 | // Assume increasing Y |
| 12007 | unsigned short *line_ptr = reinterpret_cast<unsigned short *>( |
| 12008 | &buf.at(static_cast<size_t>(pixel_data_size * y * |
| 12009 | exr_image->width) + |
| 12010 | channel_offset_list[c] * |
| 12011 | static_cast<size_t>(exr_image->width))); |
| 12012 | for (int x = 0; x < exr_image->width; x++) { |
| 12013 | tinyexr::FP32 f32; |
| 12014 | f32.f = reinterpret_cast<float **>( |
| 12015 | exr_image->images)[c][(y + start_y) * exr_image->width + x]; |
| 12016 | |
| 12017 | tinyexr::FP16 h16; |
| 12018 | h16 = float_to_half_full(f32); |
| 12019 | |
| 12020 | tinyexr::swap2(reinterpret_cast<unsigned short *>(&h16.u)); |
| 12021 | |
| 12022 | // line_ptr[x] = h16.u; |
| 12023 | tinyexr::cpy2(line_ptr + x, &(h16.u)); |
| 12024 | } |
| 12025 | } |
| 12026 | } else if (exr_header->requested_pixel_types[c] == |
| 12027 | TINYEXR_PIXELTYPE_FLOAT) { |
| 12028 | for (int y = 0; y < h; y++) { |
| 12029 | // Assume increasing Y |
| 12030 | float *line_ptr = reinterpret_cast<float *>(&buf.at( |
| 12031 | static_cast<size_t>(pixel_data_size * y * exr_image->width) + |
| 12032 | channel_offset_list[c] * |
| 12033 | static_cast<size_t>(exr_image->width))); |
| 12034 | for (int x = 0; x < exr_image->width; x++) { |
| 12035 | float val = reinterpret_cast<float **>( |
| 12036 | exr_image->images)[c][(y + start_y) * exr_image->width + x]; |
| 12037 | |
| 12038 | tinyexr::swap4(reinterpret_cast<unsigned int *>(&val)); |
| 12039 | |
| 12040 | // line_ptr[x] = val; |
| 12041 | tinyexr::cpy4(line_ptr + x, &val); |
| 12042 | } |
| 12043 | } |
| 12044 | } else { |
| 12045 | assert(0); |
| 12046 | } |
| 12047 | } else if (exr_header->pixel_types[c] == TINYEXR_PIXELTYPE_UINT) { |
| 12048 | for (int y = 0; y < h; y++) { |
| 12049 | // Assume increasing Y |
| 12050 | unsigned int *line_ptr = reinterpret_cast<unsigned int *>(&buf.at( |
| 12051 | static_cast<size_t>(pixel_data_size * y * exr_image->width) + |
| 12052 | channel_offset_list[c] * static_cast<size_t>(exr_image->width))); |
| 12053 | for (int x = 0; x < exr_image->width; x++) { |
| 12054 | unsigned int val = reinterpret_cast<unsigned int **>( |
| 12055 | exr_image->images)[c][(y + start_y) * exr_image->width + x]; |
| 12056 | |
| 12057 | tinyexr::swap4(&val); |
| 12058 | |
| 12059 | // line_ptr[x] = val; |
| 12060 | tinyexr::cpy4(line_ptr + x, &val); |
| 12061 | } |
| 12062 | } |
| 12063 | } |
| 12064 | } |
| 12065 | |
| 12066 | if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_NONE) { |
| 12067 | // 4 byte: scan line |
| 12068 | // 4 byte: data size |
| 12069 | // ~ : pixel data(uncompressed) |
| 12070 | std::vector<unsigned char> (8); |
| 12071 | unsigned int data_len = static_cast<unsigned int>(buf.size()); |
| 12072 | memcpy(&header.at(0), &start_y, sizeof(int)); |
| 12073 | memcpy(&header.at(4), &data_len, sizeof(unsigned int)); |
| 12074 | |
| 12075 | tinyexr::swap4(reinterpret_cast<unsigned int *>(&header.at(0))); |
| 12076 | tinyexr::swap4(reinterpret_cast<unsigned int *>(&header.at(4))); |
| 12077 | |
| 12078 | data_list[ii].insert(data_list[ii].end(), header.begin(), header.end()); |
| 12079 | data_list[ii].insert(data_list[ii].end(), buf.begin(), |
| 12080 | buf.begin() + data_len); |
| 12081 | |
| 12082 | } else if ((exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZIPS) || |
| 12083 | (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZIP)) { |
| 12084 | #if TINYEXR_USE_MINIZ |
| 12085 | std::vector<unsigned char> block(tinyexr::miniz::mz_compressBound( |
| 12086 | static_cast<unsigned long>(buf.size()))); |
| 12087 | #else |
| 12088 | std::vector<unsigned char> block( |
| 12089 | compressBound(static_cast<uLong>(buf.size()))); |
| 12090 | #endif |
| 12091 | tinyexr::tinyexr_uint64 outSize = block.size(); |
| 12092 | |
| 12093 | tinyexr::CompressZip(&block.at(0), outSize, |
| 12094 | reinterpret_cast<const unsigned char *>(&buf.at(0)), |
| 12095 | static_cast<unsigned long>(buf.size())); |
| 12096 | |
| 12097 | // 4 byte: scan line |
| 12098 | // 4 byte: data size |
| 12099 | // ~ : pixel data(compressed) |
| 12100 | std::vector<unsigned char> (8); |
| 12101 | unsigned int data_len = static_cast<unsigned int>(outSize); // truncate |
| 12102 | memcpy(&header.at(0), &start_y, sizeof(int)); |
| 12103 | memcpy(&header.at(4), &data_len, sizeof(unsigned int)); |
| 12104 | |
| 12105 | tinyexr::swap4(reinterpret_cast<unsigned int *>(&header.at(0))); |
| 12106 | tinyexr::swap4(reinterpret_cast<unsigned int *>(&header.at(4))); |
| 12107 | |
| 12108 | data_list[ii].insert(data_list[ii].end(), header.begin(), header.end()); |
| 12109 | data_list[ii].insert(data_list[ii].end(), block.begin(), |
| 12110 | block.begin() + data_len); |
| 12111 | |
| 12112 | } else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_RLE) { |
| 12113 | // (buf.size() * 3) / 2 would be enough. |
| 12114 | std::vector<unsigned char> block((buf.size() * 3) / 2); |
| 12115 | |
| 12116 | tinyexr::tinyexr_uint64 outSize = block.size(); |
| 12117 | |
| 12118 | tinyexr::CompressRle(&block.at(0), outSize, |
| 12119 | reinterpret_cast<const unsigned char *>(&buf.at(0)), |
| 12120 | static_cast<unsigned long>(buf.size())); |
| 12121 | |
| 12122 | // 4 byte: scan line |
| 12123 | // 4 byte: data size |
| 12124 | // ~ : pixel data(compressed) |
| 12125 | std::vector<unsigned char> (8); |
| 12126 | unsigned int data_len = static_cast<unsigned int>(outSize); // truncate |
| 12127 | memcpy(&header.at(0), &start_y, sizeof(int)); |
| 12128 | memcpy(&header.at(4), &data_len, sizeof(unsigned int)); |
| 12129 | |
| 12130 | tinyexr::swap4(reinterpret_cast<unsigned int *>(&header.at(0))); |
| 12131 | tinyexr::swap4(reinterpret_cast<unsigned int *>(&header.at(4))); |
| 12132 | |
| 12133 | data_list[ii].insert(data_list[ii].end(), header.begin(), header.end()); |
| 12134 | data_list[ii].insert(data_list[ii].end(), block.begin(), |
| 12135 | block.begin() + data_len); |
| 12136 | |
| 12137 | } else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) { |
| 12138 | #if TINYEXR_USE_PIZ |
| 12139 | unsigned int bufLen = |
| 12140 | 8192 + static_cast<unsigned int>( |
| 12141 | 2 * static_cast<unsigned int>( |
| 12142 | buf.size())); // @fixme { compute good bound. } |
| 12143 | std::vector<unsigned char> block(bufLen); |
| 12144 | unsigned int outSize = static_cast<unsigned int>(block.size()); |
| 12145 | |
| 12146 | CompressPiz(&block.at(0), &outSize, |
| 12147 | reinterpret_cast<const unsigned char *>(&buf.at(0)), |
| 12148 | buf.size(), channels, exr_image->width, h); |
| 12149 | |
| 12150 | // 4 byte: scan line |
| 12151 | // 4 byte: data size |
| 12152 | // ~ : pixel data(compressed) |
| 12153 | std::vector<unsigned char> (8); |
| 12154 | unsigned int data_len = outSize; |
| 12155 | memcpy(&header.at(0), &start_y, sizeof(int)); |
| 12156 | memcpy(&header.at(4), &data_len, sizeof(unsigned int)); |
| 12157 | |
| 12158 | tinyexr::swap4(reinterpret_cast<unsigned int *>(&header.at(0))); |
| 12159 | tinyexr::swap4(reinterpret_cast<unsigned int *>(&header.at(4))); |
| 12160 | |
| 12161 | data_list[ii].insert(data_list[ii].end(), header.begin(), header.end()); |
| 12162 | data_list[ii].insert(data_list[ii].end(), block.begin(), |
| 12163 | block.begin() + data_len); |
| 12164 | |
| 12165 | #else |
| 12166 | assert(0); |
| 12167 | #endif |
| 12168 | } else if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) { |
| 12169 | #if TINYEXR_USE_ZFP |
| 12170 | std::vector<unsigned char> block; |
| 12171 | unsigned int outSize; |
| 12172 | |
| 12173 | tinyexr::CompressZfp( |
| 12174 | &block, &outSize, reinterpret_cast<const float *>(&buf.at(0)), |
| 12175 | exr_image->width, h, exr_header->num_channels, zfp_compression_param); |
| 12176 | |
| 12177 | // 4 byte: scan line |
| 12178 | // 4 byte: data size |
| 12179 | // ~ : pixel data(compressed) |
| 12180 | std::vector<unsigned char> header(8); |
| 12181 | unsigned int data_len = outSize; |
| 12182 | memcpy(&header.at(0), &start_y, sizeof(int)); |
| 12183 | memcpy(&header.at(4), &data_len, sizeof(unsigned int)); |
| 12184 | |
| 12185 | tinyexr::swap4(reinterpret_cast<unsigned int *>(&header.at(0))); |
| 12186 | tinyexr::swap4(reinterpret_cast<unsigned int *>(&header.at(4))); |
| 12187 | |
| 12188 | data_list[ii].insert(data_list[ii].end(), header.begin(), header.end()); |
| 12189 | data_list[ii].insert(data_list[ii].end(), block.begin(), |
| 12190 | block.begin() + data_len); |
| 12191 | |
| 12192 | #else |
| 12193 | assert(0); |
| 12194 | #endif |
| 12195 | } else { |
| 12196 | assert(0); |
| 12197 | } |
| 12198 | } // omp parallel |
| 12199 | |
| 12200 | for (size_t i = 0; i < static_cast<size_t>(num_blocks); i++) { |
| 12201 | offsets[i] = offset; |
| 12202 | tinyexr::swap8(reinterpret_cast<tinyexr::tinyexr_uint64 *>(&offsets[i])); |
| 12203 | offset += data_list[i].size(); |
| 12204 | } |
| 12205 | |
| 12206 | size_t totalSize = static_cast<size_t>(offset); |
| 12207 | { |
| 12208 | memory.insert( |
| 12209 | memory.end(), reinterpret_cast<unsigned char *>(&offsets.at(0)), |
| 12210 | reinterpret_cast<unsigned char *>(&offsets.at(0)) + |
| 12211 | sizeof(tinyexr::tinyexr_uint64) * static_cast<size_t>(num_blocks)); |
| 12212 | } |
| 12213 | |
| 12214 | if (memory.size() == 0) { |
| 12215 | tinyexr::SetErrorMessage("Output memory size is zero" , err); |
| 12216 | return 0; |
| 12217 | } |
| 12218 | |
| 12219 | (*memory_out) = static_cast<unsigned char *>(malloc(totalSize)); |
| 12220 | memcpy((*memory_out), &memory.at(0), memory.size()); |
| 12221 | unsigned char *memory_ptr = *memory_out + memory.size(); |
| 12222 | |
| 12223 | for (size_t i = 0; i < static_cast<size_t>(num_blocks); i++) { |
| 12224 | memcpy(memory_ptr, &data_list[i].at(0), data_list[i].size()); |
| 12225 | memory_ptr += data_list[i].size(); |
| 12226 | } |
| 12227 | |
| 12228 | return totalSize; // OK |
| 12229 | } |
| 12230 | |
| 12231 | int SaveEXRImageToFile(const EXRImage *exr_image, const EXRHeader *, |
| 12232 | const char *filename, const char **err) { |
| 12233 | if (exr_image == NULL || filename == NULL || |
| 12234 | exr_header->compression_type < 0) { |
| 12235 | tinyexr::SetErrorMessage("Invalid argument for SaveEXRImageToFile" , err); |
| 12236 | return TINYEXR_ERROR_INVALID_ARGUMENT; |
| 12237 | } |
| 12238 | |
| 12239 | #if !TINYEXR_USE_PIZ |
| 12240 | if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_PIZ) { |
| 12241 | tinyexr::SetErrorMessage("PIZ compression is not supported in this build" , |
| 12242 | err); |
| 12243 | return TINYEXR_ERROR_UNSUPPORTED_FEATURE; |
| 12244 | } |
| 12245 | #endif |
| 12246 | |
| 12247 | #if !TINYEXR_USE_ZFP |
| 12248 | if (exr_header->compression_type == TINYEXR_COMPRESSIONTYPE_ZFP) { |
| 12249 | tinyexr::SetErrorMessage("ZFP compression is not supported in this build" , |
| 12250 | err); |
| 12251 | return TINYEXR_ERROR_UNSUPPORTED_FEATURE; |
| 12252 | } |
| 12253 | #endif |
| 12254 | |
| 12255 | #ifdef _WIN32 |
| 12256 | FILE *fp = NULL; |
| 12257 | fopen_s(&fp, filename, "wb" ); |
| 12258 | #else |
| 12259 | FILE *fp = fopen(filename, "wb" ); |
| 12260 | #endif |
| 12261 | if (!fp) { |
| 12262 | tinyexr::SetErrorMessage("Cannot write a file" , err); |
| 12263 | return TINYEXR_ERROR_CANT_WRITE_FILE; |
| 12264 | } |
| 12265 | |
| 12266 | unsigned char *mem = NULL; |
| 12267 | size_t mem_size = SaveEXRImageToMemory(exr_image, exr_header, &mem, err); |
| 12268 | if (mem_size == 0) { |
| 12269 | return TINYEXR_ERROR_SERIALZATION_FAILED; |
| 12270 | } |
| 12271 | |
| 12272 | size_t written_size = 0; |
| 12273 | if ((mem_size > 0) && mem) { |
| 12274 | written_size = fwrite(mem, 1, mem_size, fp); |
| 12275 | } |
| 12276 | free(mem); |
| 12277 | |
| 12278 | fclose(fp); |
| 12279 | |
| 12280 | if (written_size != mem_size) { |
| 12281 | tinyexr::SetErrorMessage("Cannot write a file" , err); |
| 12282 | return TINYEXR_ERROR_CANT_WRITE_FILE; |
| 12283 | } |
| 12284 | |
| 12285 | return TINYEXR_SUCCESS; |
| 12286 | } |
| 12287 | |
| 12288 | int LoadDeepEXR(DeepImage *deep_image, const char *filename, const char **err) { |
| 12289 | if (deep_image == NULL) { |
| 12290 | tinyexr::SetErrorMessage("Invalid argument for LoadDeepEXR" , err); |
| 12291 | return TINYEXR_ERROR_INVALID_ARGUMENT; |
| 12292 | } |
| 12293 | |
| 12294 | #ifdef _MSC_VER |
| 12295 | FILE *fp = NULL; |
| 12296 | errno_t errcode = fopen_s(&fp, filename, "rb" ); |
| 12297 | if ((0 != errcode) || (!fp)) { |
| 12298 | tinyexr::SetErrorMessage("Cannot read a file " + std::string(filename), |
| 12299 | err); |
| 12300 | return TINYEXR_ERROR_CANT_OPEN_FILE; |
| 12301 | } |
| 12302 | #else |
| 12303 | FILE *fp = fopen(filename, "rb" ); |
| 12304 | if (!fp) { |
| 12305 | tinyexr::SetErrorMessage("Cannot read a file " + std::string(filename), |
| 12306 | err); |
| 12307 | return TINYEXR_ERROR_CANT_OPEN_FILE; |
| 12308 | } |
| 12309 | #endif |
| 12310 | |
| 12311 | size_t filesize; |
| 12312 | // Compute size |
| 12313 | fseek(fp, 0, SEEK_END); |
| 12314 | filesize = static_cast<size_t>(ftell(fp)); |
| 12315 | fseek(fp, 0, SEEK_SET); |
| 12316 | |
| 12317 | if (filesize == 0) { |
| 12318 | fclose(fp); |
| 12319 | tinyexr::SetErrorMessage("File size is zero : " + std::string(filename), |
| 12320 | err); |
| 12321 | return TINYEXR_ERROR_INVALID_FILE; |
| 12322 | } |
| 12323 | |
| 12324 | std::vector<char> buf(filesize); // @todo { use mmap } |
| 12325 | { |
| 12326 | size_t ret; |
| 12327 | ret = fread(&buf[0], 1, filesize, fp); |
| 12328 | assert(ret == filesize); |
| 12329 | (void)ret; |
| 12330 | } |
| 12331 | fclose(fp); |
| 12332 | |
| 12333 | const char *head = &buf[0]; |
| 12334 | const char *marker = &buf[0]; |
| 12335 | |
| 12336 | // Header check. |
| 12337 | { |
| 12338 | const char [] = {0x76, 0x2f, 0x31, 0x01}; |
| 12339 | |
| 12340 | if (memcmp(marker, header, 4) != 0) { |
| 12341 | tinyexr::SetErrorMessage("Invalid magic number" , err); |
| 12342 | return TINYEXR_ERROR_INVALID_MAGIC_NUMBER; |
| 12343 | } |
| 12344 | marker += 4; |
| 12345 | } |
| 12346 | |
| 12347 | // Version, scanline. |
| 12348 | { |
| 12349 | // ver 2.0, scanline, deep bit on(0x800) |
| 12350 | // must be [2, 0, 0, 0] |
| 12351 | if (marker[0] != 2 || marker[1] != 8 || marker[2] != 0 || marker[3] != 0) { |
| 12352 | tinyexr::SetErrorMessage("Unsupported version or scanline" , err); |
| 12353 | return TINYEXR_ERROR_UNSUPPORTED_FORMAT; |
| 12354 | } |
| 12355 | |
| 12356 | marker += 4; |
| 12357 | } |
| 12358 | |
| 12359 | int dx = -1; |
| 12360 | int dy = -1; |
| 12361 | int dw = -1; |
| 12362 | int dh = -1; |
| 12363 | int num_scanline_blocks = 1; // 16 for ZIP compression. |
| 12364 | int compression_type = -1; |
| 12365 | int num_channels = -1; |
| 12366 | std::vector<tinyexr::ChannelInfo> channels; |
| 12367 | |
| 12368 | // Read attributes |
| 12369 | size_t size = filesize - tinyexr::kEXRVersionSize; |
| 12370 | for (;;) { |
| 12371 | if (0 == size) { |
| 12372 | return TINYEXR_ERROR_INVALID_DATA; |
| 12373 | } else if (marker[0] == '\0') { |
| 12374 | marker++; |
| 12375 | size--; |
| 12376 | break; |
| 12377 | } |
| 12378 | |
| 12379 | std::string attr_name; |
| 12380 | std::string attr_type; |
| 12381 | std::vector<unsigned char> data; |
| 12382 | size_t marker_size; |
| 12383 | if (!tinyexr::ReadAttribute(&attr_name, &attr_type, &data, &marker_size, |
| 12384 | marker, size)) { |
| 12385 | std::stringstream ss; |
| 12386 | ss << "Failed to parse attribute\n" ; |
| 12387 | tinyexr::SetErrorMessage(ss.str(), err); |
| 12388 | return TINYEXR_ERROR_INVALID_DATA; |
| 12389 | } |
| 12390 | marker += marker_size; |
| 12391 | size -= marker_size; |
| 12392 | |
| 12393 | if (attr_name.compare("compression" ) == 0) { |
| 12394 | compression_type = data[0]; |
| 12395 | if (compression_type > TINYEXR_COMPRESSIONTYPE_PIZ) { |
| 12396 | std::stringstream ss; |
| 12397 | ss << "Unsupported compression type : " << compression_type; |
| 12398 | tinyexr::SetErrorMessage(ss.str(), err); |
| 12399 | return TINYEXR_ERROR_UNSUPPORTED_FORMAT; |
| 12400 | } |
| 12401 | |
| 12402 | if (compression_type == TINYEXR_COMPRESSIONTYPE_ZIP) { |
| 12403 | num_scanline_blocks = 16; |
| 12404 | } |
| 12405 | |
| 12406 | } else if (attr_name.compare("channels" ) == 0) { |
| 12407 | // name: zero-terminated string, from 1 to 255 bytes long |
| 12408 | // pixel type: int, possible values are: UINT = 0 HALF = 1 FLOAT = 2 |
| 12409 | // pLinear: unsigned char, possible values are 0 and 1 |
| 12410 | // reserved: three chars, should be zero |
| 12411 | // xSampling: int |
| 12412 | // ySampling: int |
| 12413 | |
| 12414 | if (!tinyexr::ReadChannelInfo(channels, data)) { |
| 12415 | tinyexr::SetErrorMessage("Failed to parse channel info" , err); |
| 12416 | return TINYEXR_ERROR_INVALID_DATA; |
| 12417 | } |
| 12418 | |
| 12419 | num_channels = static_cast<int>(channels.size()); |
| 12420 | |
| 12421 | if (num_channels < 1) { |
| 12422 | tinyexr::SetErrorMessage("Invalid channels format" , err); |
| 12423 | return TINYEXR_ERROR_INVALID_DATA; |
| 12424 | } |
| 12425 | |
| 12426 | } else if (attr_name.compare("dataWindow" ) == 0) { |
| 12427 | memcpy(&dx, &data.at(0), sizeof(int)); |
| 12428 | memcpy(&dy, &data.at(4), sizeof(int)); |
| 12429 | memcpy(&dw, &data.at(8), sizeof(int)); |
| 12430 | memcpy(&dh, &data.at(12), sizeof(int)); |
| 12431 | tinyexr::swap4(reinterpret_cast<unsigned int *>(&dx)); |
| 12432 | tinyexr::swap4(reinterpret_cast<unsigned int *>(&dy)); |
| 12433 | tinyexr::swap4(reinterpret_cast<unsigned int *>(&dw)); |
| 12434 | tinyexr::swap4(reinterpret_cast<unsigned int *>(&dh)); |
| 12435 | |
| 12436 | } else if (attr_name.compare("displayWindow" ) == 0) { |
| 12437 | int x; |
| 12438 | int y; |
| 12439 | int w; |
| 12440 | int h; |
| 12441 | memcpy(&x, &data.at(0), sizeof(int)); |
| 12442 | memcpy(&y, &data.at(4), sizeof(int)); |
| 12443 | memcpy(&w, &data.at(8), sizeof(int)); |
| 12444 | memcpy(&h, &data.at(12), sizeof(int)); |
| 12445 | tinyexr::swap4(reinterpret_cast<unsigned int *>(&x)); |
| 12446 | tinyexr::swap4(reinterpret_cast<unsigned int *>(&y)); |
| 12447 | tinyexr::swap4(reinterpret_cast<unsigned int *>(&w)); |
| 12448 | tinyexr::swap4(reinterpret_cast<unsigned int *>(&h)); |
| 12449 | } |
| 12450 | } |
| 12451 | |
| 12452 | assert(dx >= 0); |
| 12453 | assert(dy >= 0); |
| 12454 | assert(dw >= 0); |
| 12455 | assert(dh >= 0); |
| 12456 | assert(num_channels >= 1); |
| 12457 | |
| 12458 | int data_width = dw - dx + 1; |
| 12459 | int data_height = dh - dy + 1; |
| 12460 | |
| 12461 | std::vector<float> image( |
| 12462 | static_cast<size_t>(data_width * data_height * 4)); // 4 = RGBA |
| 12463 | |
| 12464 | // Read offset tables. |
| 12465 | int num_blocks = data_height / num_scanline_blocks; |
| 12466 | if (num_blocks * num_scanline_blocks < data_height) { |
| 12467 | num_blocks++; |
| 12468 | } |
| 12469 | |
| 12470 | std::vector<tinyexr::tinyexr_int64> offsets(static_cast<size_t>(num_blocks)); |
| 12471 | |
| 12472 | for (size_t y = 0; y < static_cast<size_t>(num_blocks); y++) { |
| 12473 | tinyexr::tinyexr_int64 offset; |
| 12474 | memcpy(&offset, marker, sizeof(tinyexr::tinyexr_int64)); |
| 12475 | tinyexr::swap8(reinterpret_cast<tinyexr::tinyexr_uint64 *>(&offset)); |
| 12476 | marker += sizeof(tinyexr::tinyexr_int64); // = 8 |
| 12477 | offsets[y] = offset; |
| 12478 | } |
| 12479 | |
| 12480 | #if TINYEXR_USE_PIZ |
| 12481 | if ((compression_type == TINYEXR_COMPRESSIONTYPE_NONE) || |
| 12482 | (compression_type == TINYEXR_COMPRESSIONTYPE_RLE) || |
| 12483 | (compression_type == TINYEXR_COMPRESSIONTYPE_ZIPS) || |
| 12484 | (compression_type == TINYEXR_COMPRESSIONTYPE_ZIP) || |
| 12485 | (compression_type == TINYEXR_COMPRESSIONTYPE_PIZ)) { |
| 12486 | #else |
| 12487 | if ((compression_type == TINYEXR_COMPRESSIONTYPE_NONE) || |
| 12488 | (compression_type == TINYEXR_COMPRESSIONTYPE_RLE) || |
| 12489 | (compression_type == TINYEXR_COMPRESSIONTYPE_ZIPS) || |
| 12490 | (compression_type == TINYEXR_COMPRESSIONTYPE_ZIP)) { |
| 12491 | #endif |
| 12492 | // OK |
| 12493 | } else { |
| 12494 | tinyexr::SetErrorMessage("Unsupported compression format" , err); |
| 12495 | return TINYEXR_ERROR_UNSUPPORTED_FORMAT; |
| 12496 | } |
| 12497 | |
| 12498 | deep_image->image = static_cast<float ***>( |
| 12499 | malloc(sizeof(float **) * static_cast<size_t>(num_channels))); |
| 12500 | for (int c = 0; c < num_channels; c++) { |
| 12501 | deep_image->image[c] = static_cast<float **>( |
| 12502 | malloc(sizeof(float *) * static_cast<size_t>(data_height))); |
| 12503 | for (int y = 0; y < data_height; y++) { |
| 12504 | } |
| 12505 | } |
| 12506 | |
| 12507 | deep_image->offset_table = static_cast<int **>( |
| 12508 | malloc(sizeof(int *) * static_cast<size_t>(data_height))); |
| 12509 | for (int y = 0; y < data_height; y++) { |
| 12510 | deep_image->offset_table[y] = static_cast<int *>( |
| 12511 | malloc(sizeof(int) * static_cast<size_t>(data_width))); |
| 12512 | } |
| 12513 | |
| 12514 | for (size_t y = 0; y < static_cast<size_t>(num_blocks); y++) { |
| 12515 | const unsigned char *data_ptr = |
| 12516 | reinterpret_cast<const unsigned char *>(head + offsets[y]); |
| 12517 | |
| 12518 | // int: y coordinate |
| 12519 | // int64: packed size of pixel offset table |
| 12520 | // int64: packed size of sample data |
| 12521 | // int64: unpacked size of sample data |
| 12522 | // compressed pixel offset table |
| 12523 | // compressed sample data |
| 12524 | int line_no; |
| 12525 | tinyexr::tinyexr_int64 packedOffsetTableSize; |
| 12526 | tinyexr::tinyexr_int64 packedSampleDataSize; |
| 12527 | tinyexr::tinyexr_int64 unpackedSampleDataSize; |
| 12528 | memcpy(&line_no, data_ptr, sizeof(int)); |
| 12529 | memcpy(&packedOffsetTableSize, data_ptr + 4, |
| 12530 | sizeof(tinyexr::tinyexr_int64)); |
| 12531 | memcpy(&packedSampleDataSize, data_ptr + 12, |
| 12532 | sizeof(tinyexr::tinyexr_int64)); |
| 12533 | memcpy(&unpackedSampleDataSize, data_ptr + 20, |
| 12534 | sizeof(tinyexr::tinyexr_int64)); |
| 12535 | |
| 12536 | tinyexr::swap4(reinterpret_cast<unsigned int *>(&line_no)); |
| 12537 | tinyexr::swap8( |
| 12538 | reinterpret_cast<tinyexr::tinyexr_uint64 *>(&packedOffsetTableSize)); |
| 12539 | tinyexr::swap8( |
| 12540 | reinterpret_cast<tinyexr::tinyexr_uint64 *>(&packedSampleDataSize)); |
| 12541 | tinyexr::swap8( |
| 12542 | reinterpret_cast<tinyexr::tinyexr_uint64 *>(&unpackedSampleDataSize)); |
| 12543 | |
| 12544 | std::vector<int> pixelOffsetTable(static_cast<size_t>(data_width)); |
| 12545 | |
| 12546 | // decode pixel offset table. |
| 12547 | { |
| 12548 | unsigned long dstLen = |
| 12549 | static_cast<unsigned long>(pixelOffsetTable.size() * sizeof(int)); |
| 12550 | if (!tinyexr::DecompressZip( |
| 12551 | reinterpret_cast<unsigned char *>(&pixelOffsetTable.at(0)), |
| 12552 | &dstLen, data_ptr + 28, |
| 12553 | static_cast<unsigned long>(packedOffsetTableSize))) { |
| 12554 | return false; |
| 12555 | } |
| 12556 | |
| 12557 | assert(dstLen == pixelOffsetTable.size() * sizeof(int)); |
| 12558 | for (size_t i = 0; i < static_cast<size_t>(data_width); i++) { |
| 12559 | deep_image->offset_table[y][i] = pixelOffsetTable[i]; |
| 12560 | } |
| 12561 | } |
| 12562 | |
| 12563 | std::vector<unsigned char> sample_data( |
| 12564 | static_cast<size_t>(unpackedSampleDataSize)); |
| 12565 | |
| 12566 | // decode sample data. |
| 12567 | { |
| 12568 | unsigned long dstLen = static_cast<unsigned long>(unpackedSampleDataSize); |
| 12569 | if (dstLen) { |
| 12570 | if (!tinyexr::DecompressZip( |
| 12571 | reinterpret_cast<unsigned char *>(&sample_data.at(0)), &dstLen, |
| 12572 | data_ptr + 28 + packedOffsetTableSize, |
| 12573 | static_cast<unsigned long>(packedSampleDataSize))) { |
| 12574 | return false; |
| 12575 | } |
| 12576 | assert(dstLen == static_cast<unsigned long>(unpackedSampleDataSize)); |
| 12577 | } |
| 12578 | } |
| 12579 | |
| 12580 | // decode sample |
| 12581 | int sampleSize = -1; |
| 12582 | std::vector<int> channel_offset_list(static_cast<size_t>(num_channels)); |
| 12583 | { |
| 12584 | int channel_offset = 0; |
| 12585 | for (size_t i = 0; i < static_cast<size_t>(num_channels); i++) { |
| 12586 | channel_offset_list[i] = channel_offset; |
| 12587 | if (channels[i].pixel_type == TINYEXR_PIXELTYPE_UINT) { // UINT |
| 12588 | channel_offset += 4; |
| 12589 | } else if (channels[i].pixel_type == TINYEXR_PIXELTYPE_HALF) { // half |
| 12590 | channel_offset += 2; |
| 12591 | } else if (channels[i].pixel_type == |
| 12592 | TINYEXR_PIXELTYPE_FLOAT) { // float |
| 12593 | channel_offset += 4; |
| 12594 | } else { |
| 12595 | assert(0); |
| 12596 | } |
| 12597 | } |
| 12598 | sampleSize = channel_offset; |
| 12599 | } |
| 12600 | assert(sampleSize >= 2); |
| 12601 | |
| 12602 | assert(static_cast<size_t>( |
| 12603 | pixelOffsetTable[static_cast<size_t>(data_width - 1)] * |
| 12604 | sampleSize) == sample_data.size()); |
| 12605 | int samples_per_line = static_cast<int>(sample_data.size()) / sampleSize; |
| 12606 | |
| 12607 | // |
| 12608 | // Alloc memory |
| 12609 | // |
| 12610 | |
| 12611 | // |
| 12612 | // pixel data is stored as image[channels][pixel_samples] |
| 12613 | // |
| 12614 | { |
| 12615 | tinyexr::tinyexr_uint64 data_offset = 0; |
| 12616 | for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) { |
| 12617 | deep_image->image[c][y] = static_cast<float *>( |
| 12618 | malloc(sizeof(float) * static_cast<size_t>(samples_per_line))); |
| 12619 | |
| 12620 | if (channels[c].pixel_type == 0) { // UINT |
| 12621 | for (size_t x = 0; x < static_cast<size_t>(samples_per_line); x++) { |
| 12622 | unsigned int ui; |
| 12623 | unsigned int *src_ptr = reinterpret_cast<unsigned int *>( |
| 12624 | &sample_data.at(size_t(data_offset) + x * sizeof(int))); |
| 12625 | tinyexr::cpy4(&ui, src_ptr); |
| 12626 | deep_image->image[c][y][x] = static_cast<float>(ui); // @fixme |
| 12627 | } |
| 12628 | data_offset += |
| 12629 | sizeof(unsigned int) * static_cast<size_t>(samples_per_line); |
| 12630 | } else if (channels[c].pixel_type == 1) { // half |
| 12631 | for (size_t x = 0; x < static_cast<size_t>(samples_per_line); x++) { |
| 12632 | tinyexr::FP16 f16; |
| 12633 | const unsigned short *src_ptr = reinterpret_cast<unsigned short *>( |
| 12634 | &sample_data.at(size_t(data_offset) + x * sizeof(short))); |
| 12635 | tinyexr::cpy2(&(f16.u), src_ptr); |
| 12636 | tinyexr::FP32 f32 = half_to_float(f16); |
| 12637 | deep_image->image[c][y][x] = f32.f; |
| 12638 | } |
| 12639 | data_offset += sizeof(short) * static_cast<size_t>(samples_per_line); |
| 12640 | } else { // float |
| 12641 | for (size_t x = 0; x < static_cast<size_t>(samples_per_line); x++) { |
| 12642 | float f; |
| 12643 | const float *src_ptr = reinterpret_cast<float *>( |
| 12644 | &sample_data.at(size_t(data_offset) + x * sizeof(float))); |
| 12645 | tinyexr::cpy4(&f, src_ptr); |
| 12646 | deep_image->image[c][y][x] = f; |
| 12647 | } |
| 12648 | data_offset += sizeof(float) * static_cast<size_t>(samples_per_line); |
| 12649 | } |
| 12650 | } |
| 12651 | } |
| 12652 | } // y |
| 12653 | |
| 12654 | deep_image->width = data_width; |
| 12655 | deep_image->height = data_height; |
| 12656 | |
| 12657 | deep_image->channel_names = static_cast<const char **>( |
| 12658 | malloc(sizeof(const char *) * static_cast<size_t>(num_channels))); |
| 12659 | for (size_t c = 0; c < static_cast<size_t>(num_channels); c++) { |
| 12660 | #ifdef _WIN32 |
| 12661 | deep_image->channel_names[c] = _strdup(channels[c].name.c_str()); |
| 12662 | #else |
| 12663 | deep_image->channel_names[c] = strdup(channels[c].name.c_str()); |
| 12664 | #endif |
| 12665 | } |
| 12666 | deep_image->num_channels = num_channels; |
| 12667 | |
| 12668 | return TINYEXR_SUCCESS; |
| 12669 | } |
| 12670 | |
| 12671 | void InitEXRImage(EXRImage *exr_image) { |
| 12672 | if (exr_image == NULL) { |
| 12673 | return; |
| 12674 | } |
| 12675 | |
| 12676 | exr_image->width = 0; |
| 12677 | exr_image->height = 0; |
| 12678 | exr_image->num_channels = 0; |
| 12679 | |
| 12680 | exr_image->images = NULL; |
| 12681 | exr_image->tiles = NULL; |
| 12682 | |
| 12683 | exr_image->num_tiles = 0; |
| 12684 | } |
| 12685 | |
| 12686 | void FreeEXRErrorMessage(const char *msg) { |
| 12687 | if (msg) { |
| 12688 | free(reinterpret_cast<void *>(const_cast<char *>(msg))); |
| 12689 | } |
| 12690 | return; |
| 12691 | } |
| 12692 | |
| 12693 | void (EXRHeader *) { |
| 12694 | if (exr_header == NULL) { |
| 12695 | return; |
| 12696 | } |
| 12697 | |
| 12698 | memset(exr_header, 0, sizeof(EXRHeader)); |
| 12699 | } |
| 12700 | |
| 12701 | int (EXRHeader *) { |
| 12702 | if (exr_header == NULL) { |
| 12703 | return TINYEXR_ERROR_INVALID_ARGUMENT; |
| 12704 | } |
| 12705 | |
| 12706 | if (exr_header->channels) { |
| 12707 | free(exr_header->channels); |
| 12708 | } |
| 12709 | |
| 12710 | if (exr_header->pixel_types) { |
| 12711 | free(exr_header->pixel_types); |
| 12712 | } |
| 12713 | |
| 12714 | if (exr_header->requested_pixel_types) { |
| 12715 | free(exr_header->requested_pixel_types); |
| 12716 | } |
| 12717 | |
| 12718 | for (int i = 0; i < exr_header->num_custom_attributes; i++) { |
| 12719 | if (exr_header->custom_attributes[i].value) { |
| 12720 | free(exr_header->custom_attributes[i].value); |
| 12721 | } |
| 12722 | } |
| 12723 | |
| 12724 | if (exr_header->custom_attributes) { |
| 12725 | free(exr_header->custom_attributes); |
| 12726 | } |
| 12727 | |
| 12728 | return TINYEXR_SUCCESS; |
| 12729 | } |
| 12730 | |
| 12731 | int FreeEXRImage(EXRImage *exr_image) { |
| 12732 | if (exr_image == NULL) { |
| 12733 | return TINYEXR_ERROR_INVALID_ARGUMENT; |
| 12734 | } |
| 12735 | |
| 12736 | for (int i = 0; i < exr_image->num_channels; i++) { |
| 12737 | if (exr_image->images && exr_image->images[i]) { |
| 12738 | free(exr_image->images[i]); |
| 12739 | } |
| 12740 | } |
| 12741 | |
| 12742 | if (exr_image->images) { |
| 12743 | free(exr_image->images); |
| 12744 | } |
| 12745 | |
| 12746 | if (exr_image->tiles) { |
| 12747 | for (int tid = 0; tid < exr_image->num_tiles; tid++) { |
| 12748 | for (int i = 0; i < exr_image->num_channels; i++) { |
| 12749 | if (exr_image->tiles[tid].images && exr_image->tiles[tid].images[i]) { |
| 12750 | free(exr_image->tiles[tid].images[i]); |
| 12751 | } |
| 12752 | } |
| 12753 | if (exr_image->tiles[tid].images) { |
| 12754 | free(exr_image->tiles[tid].images); |
| 12755 | } |
| 12756 | } |
| 12757 | free(exr_image->tiles); |
| 12758 | } |
| 12759 | |
| 12760 | return TINYEXR_SUCCESS; |
| 12761 | } |
| 12762 | |
| 12763 | int (EXRHeader *, const EXRVersion *exr_version, |
| 12764 | const char *filename, const char **err) { |
| 12765 | if (exr_header == NULL || exr_version == NULL || filename == NULL) { |
| 12766 | tinyexr::SetErrorMessage("Invalid argument for ParseEXRHeaderFromFile" , |
| 12767 | err); |
| 12768 | return TINYEXR_ERROR_INVALID_ARGUMENT; |
| 12769 | } |
| 12770 | |
| 12771 | #ifdef _WIN32 |
| 12772 | FILE *fp = NULL; |
| 12773 | fopen_s(&fp, filename, "rb" ); |
| 12774 | #else |
| 12775 | FILE *fp = fopen(filename, "rb" ); |
| 12776 | #endif |
| 12777 | if (!fp) { |
| 12778 | tinyexr::SetErrorMessage("Cannot read file " + std::string(filename), err); |
| 12779 | return TINYEXR_ERROR_CANT_OPEN_FILE; |
| 12780 | } |
| 12781 | |
| 12782 | size_t filesize; |
| 12783 | // Compute size |
| 12784 | fseek(fp, 0, SEEK_END); |
| 12785 | filesize = static_cast<size_t>(ftell(fp)); |
| 12786 | fseek(fp, 0, SEEK_SET); |
| 12787 | |
| 12788 | std::vector<unsigned char> buf(filesize); // @todo { use mmap } |
| 12789 | { |
| 12790 | size_t ret; |
| 12791 | ret = fread(&buf[0], 1, filesize, fp); |
| 12792 | assert(ret == filesize); |
| 12793 | fclose(fp); |
| 12794 | |
| 12795 | if (ret != filesize) { |
| 12796 | tinyexr::SetErrorMessage("fread() error on " + std::string(filename), |
| 12797 | err); |
| 12798 | return TINYEXR_ERROR_INVALID_FILE; |
| 12799 | } |
| 12800 | } |
| 12801 | |
| 12802 | return ParseEXRHeaderFromMemory(exr_header, exr_version, &buf.at(0), filesize, |
| 12803 | err); |
| 12804 | } |
| 12805 | |
| 12806 | int (EXRHeader ***, |
| 12807 | int *, |
| 12808 | const EXRVersion *exr_version, |
| 12809 | const unsigned char *memory, size_t size, |
| 12810 | const char **err) { |
| 12811 | if (memory == NULL || exr_headers == NULL || num_headers == NULL || |
| 12812 | exr_version == NULL) { |
| 12813 | // Invalid argument |
| 12814 | tinyexr::SetErrorMessage( |
| 12815 | "Invalid argument for ParseEXRMultipartHeaderFromMemory" , err); |
| 12816 | return TINYEXR_ERROR_INVALID_ARGUMENT; |
| 12817 | } |
| 12818 | |
| 12819 | if (size < tinyexr::kEXRVersionSize) { |
| 12820 | tinyexr::SetErrorMessage("Data size too short" , err); |
| 12821 | return TINYEXR_ERROR_INVALID_DATA; |
| 12822 | } |
| 12823 | |
| 12824 | const unsigned char *marker = memory + tinyexr::kEXRVersionSize; |
| 12825 | size_t marker_size = size - tinyexr::kEXRVersionSize; |
| 12826 | |
| 12827 | std::vector<tinyexr::HeaderInfo> infos; |
| 12828 | |
| 12829 | for (;;) { |
| 12830 | tinyexr::HeaderInfo info; |
| 12831 | info.clear(); |
| 12832 | |
| 12833 | std::string err_str; |
| 12834 | bool = false; |
| 12835 | int ret = ParseEXRHeader(&info, &empty_header, exr_version, &err_str, |
| 12836 | marker, marker_size); |
| 12837 | |
| 12838 | if (ret != TINYEXR_SUCCESS) { |
| 12839 | tinyexr::SetErrorMessage(err_str, err); |
| 12840 | return ret; |
| 12841 | } |
| 12842 | |
| 12843 | if (empty_header) { |
| 12844 | marker += 1; // skip '\0' |
| 12845 | break; |
| 12846 | } |
| 12847 | |
| 12848 | // `chunkCount` must exist in the header. |
| 12849 | if (info.chunk_count == 0) { |
| 12850 | tinyexr::SetErrorMessage( |
| 12851 | "`chunkCount' attribute is not found in the header." , err); |
| 12852 | return TINYEXR_ERROR_INVALID_DATA; |
| 12853 | } |
| 12854 | |
| 12855 | infos.push_back(info); |
| 12856 | |
| 12857 | // move to next header. |
| 12858 | marker += info.header_len; |
| 12859 | size -= info.header_len; |
| 12860 | } |
| 12861 | |
| 12862 | // allocate memory for EXRHeader and create array of EXRHeader pointers. |
| 12863 | (*exr_headers) = |
| 12864 | static_cast<EXRHeader **>(malloc(sizeof(EXRHeader *) * infos.size())); |
| 12865 | for (size_t i = 0; i < infos.size(); i++) { |
| 12866 | EXRHeader * = static_cast<EXRHeader *>(malloc(sizeof(EXRHeader))); |
| 12867 | |
| 12868 | ConvertHeader(exr_header, infos[i]); |
| 12869 | |
| 12870 | // transfoer `tiled` from version. |
| 12871 | exr_header->tiled = exr_version->tiled; |
| 12872 | |
| 12873 | (*exr_headers)[i] = exr_header; |
| 12874 | } |
| 12875 | |
| 12876 | (*num_headers) = static_cast<int>(infos.size()); |
| 12877 | |
| 12878 | return TINYEXR_SUCCESS; |
| 12879 | } |
| 12880 | |
| 12881 | int (EXRHeader ***, int *, |
| 12882 | const EXRVersion *exr_version, |
| 12883 | const char *filename, const char **err) { |
| 12884 | if (exr_headers == NULL || num_headers == NULL || exr_version == NULL || |
| 12885 | filename == NULL) { |
| 12886 | tinyexr::SetErrorMessage( |
| 12887 | "Invalid argument for ParseEXRMultipartHeaderFromFile()" , err); |
| 12888 | return TINYEXR_ERROR_INVALID_ARGUMENT; |
| 12889 | } |
| 12890 | |
| 12891 | #ifdef _WIN32 |
| 12892 | FILE *fp = NULL; |
| 12893 | fopen_s(&fp, filename, "rb" ); |
| 12894 | #else |
| 12895 | FILE *fp = fopen(filename, "rb" ); |
| 12896 | #endif |
| 12897 | if (!fp) { |
| 12898 | tinyexr::SetErrorMessage("Cannot read file " + std::string(filename), err); |
| 12899 | return TINYEXR_ERROR_CANT_OPEN_FILE; |
| 12900 | } |
| 12901 | |
| 12902 | size_t filesize; |
| 12903 | // Compute size |
| 12904 | fseek(fp, 0, SEEK_END); |
| 12905 | filesize = static_cast<size_t>(ftell(fp)); |
| 12906 | fseek(fp, 0, SEEK_SET); |
| 12907 | |
| 12908 | std::vector<unsigned char> buf(filesize); // @todo { use mmap } |
| 12909 | { |
| 12910 | size_t ret; |
| 12911 | ret = fread(&buf[0], 1, filesize, fp); |
| 12912 | assert(ret == filesize); |
| 12913 | fclose(fp); |
| 12914 | |
| 12915 | if (ret != filesize) { |
| 12916 | tinyexr::SetErrorMessage("`fread' error. file may be corrupted." , err); |
| 12917 | return TINYEXR_ERROR_INVALID_FILE; |
| 12918 | } |
| 12919 | } |
| 12920 | |
| 12921 | return ParseEXRMultipartHeaderFromMemory( |
| 12922 | exr_headers, num_headers, exr_version, &buf.at(0), filesize, err); |
| 12923 | } |
| 12924 | |
| 12925 | int ParseEXRVersionFromMemory(EXRVersion *version, const unsigned char *memory, |
| 12926 | size_t size) { |
| 12927 | if (version == NULL || memory == NULL) { |
| 12928 | return TINYEXR_ERROR_INVALID_ARGUMENT; |
| 12929 | } |
| 12930 | |
| 12931 | if (size < tinyexr::kEXRVersionSize) { |
| 12932 | return TINYEXR_ERROR_INVALID_DATA; |
| 12933 | } |
| 12934 | |
| 12935 | const unsigned char *marker = memory; |
| 12936 | |
| 12937 | // Header check. |
| 12938 | { |
| 12939 | const char [] = {0x76, 0x2f, 0x31, 0x01}; |
| 12940 | |
| 12941 | if (memcmp(marker, header, 4) != 0) { |
| 12942 | return TINYEXR_ERROR_INVALID_MAGIC_NUMBER; |
| 12943 | } |
| 12944 | marker += 4; |
| 12945 | } |
| 12946 | |
| 12947 | version->tiled = false; |
| 12948 | version->long_name = false; |
| 12949 | version->non_image = false; |
| 12950 | version->multipart = false; |
| 12951 | |
| 12952 | // Parse version header. |
| 12953 | { |
| 12954 | // must be 2 |
| 12955 | if (marker[0] != 2) { |
| 12956 | return TINYEXR_ERROR_INVALID_EXR_VERSION; |
| 12957 | } |
| 12958 | |
| 12959 | if (version == NULL) { |
| 12960 | return TINYEXR_SUCCESS; // May OK |
| 12961 | } |
| 12962 | |
| 12963 | version->version = 2; |
| 12964 | |
| 12965 | if (marker[1] & 0x2) { // 9th bit |
| 12966 | version->tiled = true; |
| 12967 | } |
| 12968 | if (marker[1] & 0x4) { // 10th bit |
| 12969 | version->long_name = true; |
| 12970 | } |
| 12971 | if (marker[1] & 0x8) { // 11th bit |
| 12972 | version->non_image = true; // (deep image) |
| 12973 | } |
| 12974 | if (marker[1] & 0x10) { // 12th bit |
| 12975 | version->multipart = true; |
| 12976 | } |
| 12977 | } |
| 12978 | |
| 12979 | return TINYEXR_SUCCESS; |
| 12980 | } |
| 12981 | |
| 12982 | int ParseEXRVersionFromFile(EXRVersion *version, const char *filename) { |
| 12983 | if (filename == NULL) { |
| 12984 | return TINYEXR_ERROR_INVALID_ARGUMENT; |
| 12985 | } |
| 12986 | |
| 12987 | #ifdef _WIN32 |
| 12988 | FILE *fp = NULL; |
| 12989 | fopen_s(&fp, filename, "rb" ); |
| 12990 | #else |
| 12991 | FILE *fp = fopen(filename, "rb" ); |
| 12992 | #endif |
| 12993 | if (!fp) { |
| 12994 | return TINYEXR_ERROR_CANT_OPEN_FILE; |
| 12995 | } |
| 12996 | |
| 12997 | size_t file_size; |
| 12998 | // Compute size |
| 12999 | fseek(fp, 0, SEEK_END); |
| 13000 | file_size = static_cast<size_t>(ftell(fp)); |
| 13001 | fseek(fp, 0, SEEK_SET); |
| 13002 | |
| 13003 | if (file_size < tinyexr::kEXRVersionSize) { |
| 13004 | return TINYEXR_ERROR_INVALID_FILE; |
| 13005 | } |
| 13006 | |
| 13007 | unsigned char buf[tinyexr::kEXRVersionSize]; |
| 13008 | size_t ret = fread(&buf[0], 1, tinyexr::kEXRVersionSize, fp); |
| 13009 | fclose(fp); |
| 13010 | |
| 13011 | if (ret != tinyexr::kEXRVersionSize) { |
| 13012 | return TINYEXR_ERROR_INVALID_FILE; |
| 13013 | } |
| 13014 | |
| 13015 | return ParseEXRVersionFromMemory(version, buf, tinyexr::kEXRVersionSize); |
| 13016 | } |
| 13017 | |
| 13018 | int LoadEXRMultipartImageFromMemory(EXRImage *exr_images, |
| 13019 | const EXRHeader **, |
| 13020 | unsigned int num_parts, |
| 13021 | const unsigned char *memory, |
| 13022 | const size_t size, const char **err) { |
| 13023 | if (exr_images == NULL || exr_headers == NULL || num_parts == 0 || |
| 13024 | memory == NULL || (size <= tinyexr::kEXRVersionSize)) { |
| 13025 | tinyexr::SetErrorMessage( |
| 13026 | "Invalid argument for LoadEXRMultipartImageFromMemory()" , err); |
| 13027 | return TINYEXR_ERROR_INVALID_ARGUMENT; |
| 13028 | } |
| 13029 | |
| 13030 | // compute total header size. |
| 13031 | size_t = 0; |
| 13032 | for (unsigned int i = 0; i < num_parts; i++) { |
| 13033 | if (exr_headers[i]->header_len == 0) { |
| 13034 | tinyexr::SetErrorMessage("EXRHeader variable is not initialized." , err); |
| 13035 | return TINYEXR_ERROR_INVALID_ARGUMENT; |
| 13036 | } |
| 13037 | |
| 13038 | total_header_size += exr_headers[i]->header_len; |
| 13039 | } |
| 13040 | |
| 13041 | const char *marker = reinterpret_cast<const char *>( |
| 13042 | memory + total_header_size + 4 + |
| 13043 | 4); // +8 for magic number and version header. |
| 13044 | |
| 13045 | marker += 1; // Skip empty header. |
| 13046 | |
| 13047 | // NOTE 1: |
| 13048 | // In multipart image, There is 'part number' before chunk data. |
| 13049 | // 4 byte : part number |
| 13050 | // 4+ : chunk |
| 13051 | // |
| 13052 | // NOTE 2: |
| 13053 | // EXR spec says 'part number' is 'unsigned long' but actually this is |
| 13054 | // 'unsigned int(4 bytes)' in OpenEXR implementation... |
| 13055 | // http://www.openexr.com/openexrfilelayout.pdf |
| 13056 | |
| 13057 | // Load chunk offset table. |
| 13058 | std::vector<std::vector<tinyexr::tinyexr_uint64> > chunk_offset_table_list; |
| 13059 | for (size_t i = 0; i < static_cast<size_t>(num_parts); i++) { |
| 13060 | std::vector<tinyexr::tinyexr_uint64> offset_table( |
| 13061 | static_cast<size_t>(exr_headers[i]->chunk_count)); |
| 13062 | |
| 13063 | for (size_t c = 0; c < offset_table.size(); c++) { |
| 13064 | tinyexr::tinyexr_uint64 offset; |
| 13065 | memcpy(&offset, marker, 8); |
| 13066 | tinyexr::swap8(&offset); |
| 13067 | |
| 13068 | if (offset >= size) { |
| 13069 | tinyexr::SetErrorMessage("Invalid offset size in EXR header chunks." , |
| 13070 | err); |
| 13071 | return TINYEXR_ERROR_INVALID_DATA; |
| 13072 | } |
| 13073 | |
| 13074 | offset_table[c] = offset + 4; // +4 to skip 'part number' |
| 13075 | marker += 8; |
| 13076 | } |
| 13077 | |
| 13078 | chunk_offset_table_list.push_back(offset_table); |
| 13079 | } |
| 13080 | |
| 13081 | // Decode image. |
| 13082 | for (size_t i = 0; i < static_cast<size_t>(num_parts); i++) { |
| 13083 | std::vector<tinyexr::tinyexr_uint64> &offset_table = |
| 13084 | chunk_offset_table_list[i]; |
| 13085 | |
| 13086 | // First check 'part number' is identitical to 'i' |
| 13087 | for (size_t c = 0; c < offset_table.size(); c++) { |
| 13088 | const unsigned char *part_number_addr = |
| 13089 | memory + offset_table[c] - 4; // -4 to move to 'part number' field. |
| 13090 | unsigned int part_no; |
| 13091 | memcpy(&part_no, part_number_addr, sizeof(unsigned int)); // 4 |
| 13092 | tinyexr::swap4(&part_no); |
| 13093 | |
| 13094 | if (part_no != i) { |
| 13095 | tinyexr::SetErrorMessage("Invalid `part number' in EXR header chunks." , |
| 13096 | err); |
| 13097 | return TINYEXR_ERROR_INVALID_DATA; |
| 13098 | } |
| 13099 | } |
| 13100 | |
| 13101 | std::string e; |
| 13102 | int ret = tinyexr::DecodeChunk(&exr_images[i], exr_headers[i], offset_table, |
| 13103 | memory, size, &e); |
| 13104 | if (ret != TINYEXR_SUCCESS) { |
| 13105 | if (!e.empty()) { |
| 13106 | tinyexr::SetErrorMessage(e, err); |
| 13107 | } |
| 13108 | return ret; |
| 13109 | } |
| 13110 | } |
| 13111 | |
| 13112 | return TINYEXR_SUCCESS; |
| 13113 | } |
| 13114 | |
| 13115 | int LoadEXRMultipartImageFromFile(EXRImage *exr_images, |
| 13116 | const EXRHeader **, |
| 13117 | unsigned int num_parts, const char *filename, |
| 13118 | const char **err) { |
| 13119 | if (exr_images == NULL || exr_headers == NULL || num_parts == 0) { |
| 13120 | tinyexr::SetErrorMessage( |
| 13121 | "Invalid argument for LoadEXRMultipartImageFromFile" , err); |
| 13122 | return TINYEXR_ERROR_INVALID_ARGUMENT; |
| 13123 | } |
| 13124 | |
| 13125 | #ifdef _WIN32 |
| 13126 | FILE *fp = NULL; |
| 13127 | fopen_s(&fp, filename, "rb" ); |
| 13128 | #else |
| 13129 | FILE *fp = fopen(filename, "rb" ); |
| 13130 | #endif |
| 13131 | if (!fp) { |
| 13132 | tinyexr::SetErrorMessage("Cannot read file " + std::string(filename), err); |
| 13133 | return TINYEXR_ERROR_CANT_OPEN_FILE; |
| 13134 | } |
| 13135 | |
| 13136 | size_t filesize; |
| 13137 | // Compute size |
| 13138 | fseek(fp, 0, SEEK_END); |
| 13139 | filesize = static_cast<size_t>(ftell(fp)); |
| 13140 | fseek(fp, 0, SEEK_SET); |
| 13141 | |
| 13142 | std::vector<unsigned char> buf(filesize); // @todo { use mmap } |
| 13143 | { |
| 13144 | size_t ret; |
| 13145 | ret = fread(&buf[0], 1, filesize, fp); |
| 13146 | assert(ret == filesize); |
| 13147 | fclose(fp); |
| 13148 | (void)ret; |
| 13149 | } |
| 13150 | |
| 13151 | return LoadEXRMultipartImageFromMemory(exr_images, exr_headers, num_parts, |
| 13152 | &buf.at(0), filesize, err); |
| 13153 | } |
| 13154 | |
| 13155 | int SaveEXR(const float *data, int width, int height, int components, |
| 13156 | const int save_as_fp16, const char *outfilename, const char **err) { |
| 13157 | if ((components == 1) || components == 3 || components == 4) { |
| 13158 | // OK |
| 13159 | } else { |
| 13160 | std::stringstream ss; |
| 13161 | ss << "Unsupported component value : " << components << std::endl; |
| 13162 | |
| 13163 | tinyexr::SetErrorMessage(ss.str(), err); |
| 13164 | return TINYEXR_ERROR_INVALID_ARGUMENT; |
| 13165 | } |
| 13166 | |
| 13167 | EXRHeader ; |
| 13168 | InitEXRHeader(&header); |
| 13169 | |
| 13170 | if ((width < 16) && (height < 16)) { |
| 13171 | // No compression for small image. |
| 13172 | header.compression_type = TINYEXR_COMPRESSIONTYPE_NONE; |
| 13173 | } else { |
| 13174 | header.compression_type = TINYEXR_COMPRESSIONTYPE_ZIP; |
| 13175 | } |
| 13176 | |
| 13177 | EXRImage image; |
| 13178 | InitEXRImage(&image); |
| 13179 | |
| 13180 | image.num_channels = components; |
| 13181 | |
| 13182 | std::vector<float> images[4]; |
| 13183 | |
| 13184 | if (components == 1) { |
| 13185 | images[0].resize(static_cast<size_t>(width * height)); |
| 13186 | memcpy(images[0].data(), data, sizeof(float) * size_t(width * height)); |
| 13187 | } else { |
| 13188 | images[0].resize(static_cast<size_t>(width * height)); |
| 13189 | images[1].resize(static_cast<size_t>(width * height)); |
| 13190 | images[2].resize(static_cast<size_t>(width * height)); |
| 13191 | images[3].resize(static_cast<size_t>(width * height)); |
| 13192 | |
| 13193 | // Split RGB(A)RGB(A)RGB(A)... into R, G and B(and A) layers |
| 13194 | for (size_t i = 0; i < static_cast<size_t>(width * height); i++) { |
| 13195 | images[0][i] = data[static_cast<size_t>(components) * i + 0]; |
| 13196 | images[1][i] = data[static_cast<size_t>(components) * i + 1]; |
| 13197 | images[2][i] = data[static_cast<size_t>(components) * i + 2]; |
| 13198 | if (components == 4) { |
| 13199 | images[3][i] = data[static_cast<size_t>(components) * i + 3]; |
| 13200 | } |
| 13201 | } |
| 13202 | } |
| 13203 | |
| 13204 | float *image_ptr[4] = {0, 0, 0, 0}; |
| 13205 | if (components == 4) { |
| 13206 | image_ptr[0] = &(images[3].at(0)); // A |
| 13207 | image_ptr[1] = &(images[2].at(0)); // B |
| 13208 | image_ptr[2] = &(images[1].at(0)); // G |
| 13209 | image_ptr[3] = &(images[0].at(0)); // R |
| 13210 | } else if (components == 3) { |
| 13211 | image_ptr[0] = &(images[2].at(0)); // B |
| 13212 | image_ptr[1] = &(images[1].at(0)); // G |
| 13213 | image_ptr[2] = &(images[0].at(0)); // R |
| 13214 | } else if (components == 1) { |
| 13215 | image_ptr[0] = &(images[0].at(0)); // A |
| 13216 | } |
| 13217 | |
| 13218 | image.images = reinterpret_cast<unsigned char **>(image_ptr); |
| 13219 | image.width = width; |
| 13220 | image.height = height; |
| 13221 | |
| 13222 | header.num_channels = components; |
| 13223 | header.channels = static_cast<EXRChannelInfo *>(malloc( |
| 13224 | sizeof(EXRChannelInfo) * static_cast<size_t>(header.num_channels))); |
| 13225 | // Must be (A)BGR order, since most of EXR viewers expect this channel order. |
| 13226 | if (components == 4) { |
| 13227 | #ifdef _MSC_VER |
| 13228 | strncpy_s(header.channels[0].name, "A" , 255); |
| 13229 | strncpy_s(header.channels[1].name, "B" , 255); |
| 13230 | strncpy_s(header.channels[2].name, "G" , 255); |
| 13231 | strncpy_s(header.channels[3].name, "R" , 255); |
| 13232 | #else |
| 13233 | strncpy(header.channels[0].name, "A" , 255); |
| 13234 | strncpy(header.channels[1].name, "B" , 255); |
| 13235 | strncpy(header.channels[2].name, "G" , 255); |
| 13236 | strncpy(header.channels[3].name, "R" , 255); |
| 13237 | #endif |
| 13238 | header.channels[0].name[strlen("A" )] = '\0'; |
| 13239 | header.channels[1].name[strlen("B" )] = '\0'; |
| 13240 | header.channels[2].name[strlen("G" )] = '\0'; |
| 13241 | header.channels[3].name[strlen("R" )] = '\0'; |
| 13242 | } else if (components == 3) { |
| 13243 | #ifdef _MSC_VER |
| 13244 | strncpy_s(header.channels[0].name, "B" , 255); |
| 13245 | strncpy_s(header.channels[1].name, "G" , 255); |
| 13246 | strncpy_s(header.channels[2].name, "R" , 255); |
| 13247 | #else |
| 13248 | strncpy(header.channels[0].name, "B" , 255); |
| 13249 | strncpy(header.channels[1].name, "G" , 255); |
| 13250 | strncpy(header.channels[2].name, "R" , 255); |
| 13251 | #endif |
| 13252 | header.channels[0].name[strlen("B" )] = '\0'; |
| 13253 | header.channels[1].name[strlen("G" )] = '\0'; |
| 13254 | header.channels[2].name[strlen("R" )] = '\0'; |
| 13255 | } else { |
| 13256 | #ifdef _MSC_VER |
| 13257 | strncpy_s(header.channels[0].name, "A" , 255); |
| 13258 | #else |
| 13259 | strncpy(header.channels[0].name, "A" , 255); |
| 13260 | #endif |
| 13261 | header.channels[0].name[strlen("A" )] = '\0'; |
| 13262 | } |
| 13263 | |
| 13264 | header.pixel_types = static_cast<int *>( |
| 13265 | malloc(sizeof(int) * static_cast<size_t>(header.num_channels))); |
| 13266 | header.requested_pixel_types = static_cast<int *>( |
| 13267 | malloc(sizeof(int) * static_cast<size_t>(header.num_channels))); |
| 13268 | for (int i = 0; i < header.num_channels; i++) { |
| 13269 | header.pixel_types[i] = |
| 13270 | TINYEXR_PIXELTYPE_FLOAT; // pixel type of input image |
| 13271 | |
| 13272 | if (save_as_fp16 > 0) { |
| 13273 | header.requested_pixel_types[i] = |
| 13274 | TINYEXR_PIXELTYPE_HALF; // save with half(fp16) pixel format |
| 13275 | } else { |
| 13276 | header.requested_pixel_types[i] = |
| 13277 | TINYEXR_PIXELTYPE_FLOAT; // save with float(fp32) pixel format(i.e. |
| 13278 | // no precision reduction) |
| 13279 | } |
| 13280 | } |
| 13281 | |
| 13282 | int ret = SaveEXRImageToFile(&image, &header, outfilename, err); |
| 13283 | if (ret != TINYEXR_SUCCESS) { |
| 13284 | return ret; |
| 13285 | } |
| 13286 | |
| 13287 | free(header.channels); |
| 13288 | free(header.pixel_types); |
| 13289 | free(header.requested_pixel_types); |
| 13290 | |
| 13291 | return ret; |
| 13292 | } |
| 13293 | |
| 13294 | #ifdef __clang__ |
| 13295 | // zero-as-null-ppinter-constant |
| 13296 | #pragma clang diagnostic pop |
| 13297 | #endif |
| 13298 | |
| 13299 | #endif // TINYEXR_IMPLEMENTATION_DEIFNED |
| 13300 | #endif // TINYEXR_IMPLEMENTATION |
| 13301 | |