1 | /* |
2 | * xxHash - Fast Hash algorithm |
3 | * Copyright (C) 2012-2016, Yann Collet |
4 | * |
5 | * BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) |
6 | * |
7 | * Redistribution and use in source and binary forms, with or without |
8 | * modification, are permitted provided that the following conditions are |
9 | * met: |
10 | * |
11 | * * Redistributions of source code must retain the above copyright |
12 | * notice, this list of conditions and the following disclaimer. |
13 | * * Redistributions in binary form must reproduce the above |
14 | * copyright notice, this list of conditions and the following disclaimer |
15 | * in the documentation and/or other materials provided with the |
16 | * distribution. |
17 | * |
18 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
19 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
20 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
21 | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
22 | * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
23 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
24 | * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
25 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
26 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
27 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
28 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
29 | * |
30 | * You can contact the author at : |
31 | * - xxHash homepage: http://www.xxhash.com |
32 | * - xxHash source repository : https://github.com/Cyan4973/xxHash |
33 | */ |
34 | |
35 | |
36 | /* ************************************* |
37 | * Tuning parameters |
38 | ***************************************/ |
39 | /*!XXH_FORCE_MEMORY_ACCESS : |
40 | * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable. |
41 | * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal. |
42 | * The below switch allow to select different access method for improved performance. |
43 | * Method 0 (default) : use `memcpy()`. Safe and portable. |
44 | * Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable). |
45 | * This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`. |
46 | * Method 2 : direct access. This method doesn't depend on compiler but violate C standard. |
47 | * It can generate buggy code on targets which do not support unaligned memory accesses. |
48 | * But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6) |
49 | * See http://stackoverflow.com/a/32095106/646947 for details. |
50 | * Prefer these methods in priority order (0 > 1 > 2) |
51 | */ |
52 | #ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */ |
53 | # if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) ) |
54 | # define XXH_FORCE_MEMORY_ACCESS 2 |
55 | # elif defined(__INTEL_COMPILER) || \ |
56 | (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) )) |
57 | # define XXH_FORCE_MEMORY_ACCESS 1 |
58 | # endif |
59 | #endif |
60 | |
61 | /*!XXH_ACCEPT_NULL_INPUT_POINTER : |
62 | * If the input pointer is a null pointer, xxHash default behavior is to trigger a memory access error, since it is a bad pointer. |
63 | * When this option is enabled, xxHash output for null input pointers will be the same as a null-length input. |
64 | * By default, this option is disabled. To enable it, uncomment below define : |
65 | */ |
66 | /* #define XXH_ACCEPT_NULL_INPUT_POINTER 1 */ |
67 | |
68 | /*!XXH_FORCE_NATIVE_FORMAT : |
69 | * By default, xxHash library provides endian-independent Hash values, based on little-endian convention. |
70 | * Results are therefore identical for little-endian and big-endian CPU. |
71 | * This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format. |
72 | * Should endian-independence be of no importance for your application, you may set the #define below to 1, |
73 | * to improve speed for Big-endian CPU. |
74 | * This option has no impact on Little_Endian CPU. |
75 | */ |
76 | #ifndef XXH_FORCE_NATIVE_FORMAT /* can be defined externally */ |
77 | # define XXH_FORCE_NATIVE_FORMAT 0 |
78 | #endif |
79 | |
80 | /*!XXH_FORCE_ALIGN_CHECK : |
81 | * This is a minor performance trick, only useful with lots of very small keys. |
82 | * It means : check for aligned/unaligned input. |
83 | * The check costs one initial branch per hash; set to 0 when the input data |
84 | * is guaranteed to be aligned. |
85 | */ |
86 | #ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */ |
87 | # if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64) |
88 | # define XXH_FORCE_ALIGN_CHECK 0 |
89 | # else |
90 | # define XXH_FORCE_ALIGN_CHECK 1 |
91 | # endif |
92 | #endif |
93 | |
94 | |
95 | /* ************************************* |
96 | * Includes & Memory related functions |
97 | ***************************************/ |
98 | /*! Modify the local functions below should you wish to use some other memory routines |
99 | * for malloc(), free() */ |
100 | #include <stdlib.h> |
101 | static void* XXH_malloc(size_t s) { return malloc(s); } |
102 | static void XXH_free (void* p) { free(p); } |
103 | /*! and for memcpy() */ |
104 | #include <string.h> |
105 | static void* XXH_memcpy(void* dest, const void* src, size_t size) { return memcpy(dest,src,size); } |
106 | |
107 | #define XXH_STATIC_LINKING_ONLY |
108 | #include "xxhash.h" |
109 | |
110 | |
111 | /* ************************************* |
112 | * Compiler Specific Options |
113 | ***************************************/ |
114 | #ifdef _MSC_VER /* Visual Studio */ |
115 | # pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ |
116 | # define FORCE_INLINE static __forceinline |
117 | #else |
118 | # if defined (__cplusplus) || defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */ |
119 | # ifdef __GNUC__ |
120 | # define FORCE_INLINE static inline __attribute__((always_inline)) |
121 | # else |
122 | # define FORCE_INLINE static inline |
123 | # endif |
124 | # else |
125 | # define FORCE_INLINE static |
126 | # endif /* __STDC_VERSION__ */ |
127 | #endif |
128 | |
129 | |
130 | /* ************************************* |
131 | * Basic Types |
132 | ***************************************/ |
133 | #ifndef MEM_MODULE |
134 | # if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) |
135 | # include <stdint.h> |
136 | typedef uint8_t BYTE; |
137 | typedef uint16_t U16; |
138 | typedef uint32_t U32; |
139 | typedef int32_t S32; |
140 | # else |
141 | typedef unsigned char BYTE; |
142 | typedef unsigned short U16; |
143 | typedef unsigned int U32; |
144 | typedef signed int S32; |
145 | # endif |
146 | #endif |
147 | |
148 | #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2)) |
149 | |
150 | /* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */ |
151 | static U32 XXH_read32(const void* memPtr) { return *(const U32*) memPtr; } |
152 | |
153 | #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1)) |
154 | |
155 | /* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */ |
156 | /* currently only defined for gcc and icc */ |
157 | typedef union { U32 u32; } __attribute__((packed)) unalign; |
158 | static U32 XXH_read32(const void* ptr) { return ((const unalign*)ptr)->u32; } |
159 | |
160 | #else |
161 | |
162 | /* portable and safe solution. Generally efficient. |
163 | * see : http://stackoverflow.com/a/32095106/646947 |
164 | */ |
165 | static U32 XXH_read32(const void* memPtr) |
166 | { |
167 | U32 val; |
168 | memcpy(&val, memPtr, sizeof(val)); |
169 | return val; |
170 | } |
171 | |
172 | #endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */ |
173 | |
174 | |
175 | /* **************************************** |
176 | * Compiler-specific Functions and Macros |
177 | ******************************************/ |
178 | #define XXH_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__) |
179 | |
180 | /* Note : although _rotl exists for minGW (GCC under windows), performance seems poor */ |
181 | #if defined(_MSC_VER) |
182 | # define XXH_rotl32(x,r) _rotl(x,r) |
183 | # define XXH_rotl64(x,r) _rotl64(x,r) |
184 | #else |
185 | # define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r))) |
186 | # define XXH_rotl64(x,r) ((x << r) | (x >> (64 - r))) |
187 | #endif |
188 | |
189 | #if defined(_MSC_VER) /* Visual Studio */ |
190 | # define XXH_swap32 _byteswap_ulong |
191 | #elif XXH_GCC_VERSION >= 403 |
192 | # define XXH_swap32 __builtin_bswap32 |
193 | #else |
194 | static U32 XXH_swap32 (U32 x) |
195 | { |
196 | return ((x << 24) & 0xff000000 ) | |
197 | ((x << 8) & 0x00ff0000 ) | |
198 | ((x >> 8) & 0x0000ff00 ) | |
199 | ((x >> 24) & 0x000000ff ); |
200 | } |
201 | #endif |
202 | |
203 | |
204 | /* ************************************* |
205 | * Architecture Macros |
206 | ***************************************/ |
207 | typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess; |
208 | |
209 | /* XXH_CPU_LITTLE_ENDIAN can be defined externally, for example on the compiler command line */ |
210 | #ifndef XXH_CPU_LITTLE_ENDIAN |
211 | static const int g_one = 1; |
212 | # define XXH_CPU_LITTLE_ENDIAN (*(const char*)(&g_one)) |
213 | #endif |
214 | |
215 | |
216 | /* *************************** |
217 | * Memory reads |
218 | *****************************/ |
219 | typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment; |
220 | |
221 | FORCE_INLINE U32 XXH_readLE32_align(const void* ptr, XXH_endianess endian, XXH_alignment align) |
222 | { |
223 | if (align==XXH_unaligned) |
224 | return endian==XXH_littleEndian ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr)); |
225 | else |
226 | return endian==XXH_littleEndian ? *(const U32*)ptr : XXH_swap32(*(const U32*)ptr); |
227 | } |
228 | |
229 | FORCE_INLINE U32 XXH_readLE32(const void* ptr, XXH_endianess endian) |
230 | { |
231 | return XXH_readLE32_align(ptr, endian, XXH_unaligned); |
232 | } |
233 | |
234 | static U32 XXH_readBE32(const void* ptr) |
235 | { |
236 | return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr); |
237 | } |
238 | |
239 | |
240 | /* ************************************* |
241 | * Macros |
242 | ***************************************/ |
243 | #define XXH_STATIC_ASSERT(c) { enum { XXH_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */ |
244 | XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; } |
245 | |
246 | |
247 | /* ******************************************************************* |
248 | * 32-bits hash functions |
249 | *********************************************************************/ |
250 | static const U32 PRIME32_1 = 2654435761U; |
251 | static const U32 PRIME32_2 = 2246822519U; |
252 | static const U32 PRIME32_3 = 3266489917U; |
253 | static const U32 PRIME32_4 = 668265263U; |
254 | static const U32 PRIME32_5 = 374761393U; |
255 | |
256 | static U32 XXH32_round(U32 seed, U32 input) |
257 | { |
258 | seed += input * PRIME32_2; |
259 | seed = XXH_rotl32(seed, 13); |
260 | seed *= PRIME32_1; |
261 | return seed; |
262 | } |
263 | |
264 | FORCE_INLINE U32 XXH32_endian_align(const void* input, size_t len, U32 seed, XXH_endianess endian, XXH_alignment align) |
265 | { |
266 | const BYTE* p = (const BYTE*)input; |
267 | const BYTE* bEnd = p + len; |
268 | U32 h32; |
269 | #define XXH_get32bits(p) XXH_readLE32_align(p, endian, align) |
270 | |
271 | #ifdef XXH_ACCEPT_NULL_INPUT_POINTER |
272 | if (p==NULL) { |
273 | len=0; |
274 | bEnd=p=(const BYTE*)(size_t)16; |
275 | } |
276 | #endif |
277 | |
278 | if (len>=16) { |
279 | const BYTE* const limit = bEnd - 16; |
280 | U32 v1 = seed + PRIME32_1 + PRIME32_2; |
281 | U32 v2 = seed + PRIME32_2; |
282 | U32 v3 = seed + 0; |
283 | U32 v4 = seed - PRIME32_1; |
284 | |
285 | do { |
286 | v1 = XXH32_round(v1, XXH_get32bits(p)); p+=4; |
287 | v2 = XXH32_round(v2, XXH_get32bits(p)); p+=4; |
288 | v3 = XXH32_round(v3, XXH_get32bits(p)); p+=4; |
289 | v4 = XXH32_round(v4, XXH_get32bits(p)); p+=4; |
290 | } while (p<=limit); |
291 | |
292 | h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18); |
293 | } else { |
294 | h32 = seed + PRIME32_5; |
295 | } |
296 | |
297 | h32 += (U32) len; |
298 | |
299 | while (p+4<=bEnd) { |
300 | h32 += XXH_get32bits(p) * PRIME32_3; |
301 | h32 = XXH_rotl32(h32, 17) * PRIME32_4 ; |
302 | p+=4; |
303 | } |
304 | |
305 | while (p<bEnd) { |
306 | h32 += (*p) * PRIME32_5; |
307 | h32 = XXH_rotl32(h32, 11) * PRIME32_1 ; |
308 | p++; |
309 | } |
310 | |
311 | h32 ^= h32 >> 15; |
312 | h32 *= PRIME32_2; |
313 | h32 ^= h32 >> 13; |
314 | h32 *= PRIME32_3; |
315 | h32 ^= h32 >> 16; |
316 | |
317 | return h32; |
318 | } |
319 | |
320 | |
321 | XXH_PUBLIC_API unsigned int XXH32 (const void* input, size_t len, unsigned int seed) |
322 | { |
323 | #if 0 |
324 | /* Simple version, good for code maintenance, but unfortunately slow for small inputs */ |
325 | XXH32_state_t state; |
326 | XXH32_reset(&state, seed); |
327 | XXH32_update(&state, input, len); |
328 | return XXH32_digest(&state); |
329 | #else |
330 | XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; |
331 | |
332 | if (XXH_FORCE_ALIGN_CHECK) { |
333 | if ((((size_t)input) & 3) == 0) { /* Input is 4-bytes aligned, leverage the speed benefit */ |
334 | if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
335 | return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned); |
336 | else |
337 | return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned); |
338 | } } |
339 | |
340 | if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
341 | return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned); |
342 | else |
343 | return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned); |
344 | #endif |
345 | } |
346 | |
347 | |
348 | |
349 | /*====== Hash streaming ======*/ |
350 | |
351 | XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void) |
352 | { |
353 | return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t)); |
354 | } |
355 | XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr) |
356 | { |
357 | XXH_free(statePtr); |
358 | return XXH_OK; |
359 | } |
360 | |
361 | XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dstState, const XXH32_state_t* srcState) |
362 | { |
363 | memcpy(dstState, srcState, sizeof(*dstState)); |
364 | } |
365 | |
366 | XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, unsigned int seed) |
367 | { |
368 | XXH32_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */ |
369 | memset(&state, 0, sizeof(state)-4); /* do not write into reserved, for future removal */ |
370 | state.v1 = seed + PRIME32_1 + PRIME32_2; |
371 | state.v2 = seed + PRIME32_2; |
372 | state.v3 = seed + 0; |
373 | state.v4 = seed - PRIME32_1; |
374 | memcpy(statePtr, &state, sizeof(state)); |
375 | return XXH_OK; |
376 | } |
377 | |
378 | |
379 | FORCE_INLINE XXH_errorcode XXH32_update_endian (XXH32_state_t* state, const void* input, size_t len, XXH_endianess endian) |
380 | { |
381 | const BYTE* p = (const BYTE*)input; |
382 | const BYTE* const bEnd = p + len; |
383 | |
384 | #ifdef XXH_ACCEPT_NULL_INPUT_POINTER |
385 | if (input==NULL) return XXH_ERROR; |
386 | #endif |
387 | |
388 | state->total_len_32 += (unsigned)len; |
389 | state->large_len |= (len>=16) | (state->total_len_32>=16); |
390 | |
391 | if (state->memsize + len < 16) { /* fill in tmp buffer */ |
392 | XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, len); |
393 | state->memsize += (unsigned)len; |
394 | return XXH_OK; |
395 | } |
396 | |
397 | if (state->memsize) { /* some data left from previous update */ |
398 | XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, 16-state->memsize); |
399 | { const U32* p32 = state->mem32; |
400 | state->v1 = XXH32_round(state->v1, XXH_readLE32(p32, endian)); p32++; |
401 | state->v2 = XXH32_round(state->v2, XXH_readLE32(p32, endian)); p32++; |
402 | state->v3 = XXH32_round(state->v3, XXH_readLE32(p32, endian)); p32++; |
403 | state->v4 = XXH32_round(state->v4, XXH_readLE32(p32, endian)); p32++; |
404 | } |
405 | p += 16-state->memsize; |
406 | state->memsize = 0; |
407 | } |
408 | |
409 | if (p <= bEnd-16) { |
410 | const BYTE* const limit = bEnd - 16; |
411 | U32 v1 = state->v1; |
412 | U32 v2 = state->v2; |
413 | U32 v3 = state->v3; |
414 | U32 v4 = state->v4; |
415 | |
416 | do { |
417 | v1 = XXH32_round(v1, XXH_readLE32(p, endian)); p+=4; |
418 | v2 = XXH32_round(v2, XXH_readLE32(p, endian)); p+=4; |
419 | v3 = XXH32_round(v3, XXH_readLE32(p, endian)); p+=4; |
420 | v4 = XXH32_round(v4, XXH_readLE32(p, endian)); p+=4; |
421 | } while (p<=limit); |
422 | |
423 | state->v1 = v1; |
424 | state->v2 = v2; |
425 | state->v3 = v3; |
426 | state->v4 = v4; |
427 | } |
428 | |
429 | if (p < bEnd) { |
430 | XXH_memcpy(state->mem32, p, (size_t)(bEnd-p)); |
431 | state->memsize = (unsigned)(bEnd-p); |
432 | } |
433 | |
434 | return XXH_OK; |
435 | } |
436 | |
437 | XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* state_in, const void* input, size_t len) |
438 | { |
439 | XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; |
440 | |
441 | if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
442 | return XXH32_update_endian(state_in, input, len, XXH_littleEndian); |
443 | else |
444 | return XXH32_update_endian(state_in, input, len, XXH_bigEndian); |
445 | } |
446 | |
447 | |
448 | |
449 | FORCE_INLINE U32 XXH32_digest_endian (const XXH32_state_t* state, XXH_endianess endian) |
450 | { |
451 | const BYTE * p = (const BYTE*)state->mem32; |
452 | const BYTE* const bEnd = (const BYTE*)(state->mem32) + state->memsize; |
453 | U32 h32; |
454 | |
455 | if (state->large_len) { |
456 | h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18); |
457 | } else { |
458 | h32 = state->v3 /* == seed */ + PRIME32_5; |
459 | } |
460 | |
461 | h32 += state->total_len_32; |
462 | |
463 | while (p+4<=bEnd) { |
464 | h32 += XXH_readLE32(p, endian) * PRIME32_3; |
465 | h32 = XXH_rotl32(h32, 17) * PRIME32_4; |
466 | p+=4; |
467 | } |
468 | |
469 | while (p<bEnd) { |
470 | h32 += (*p) * PRIME32_5; |
471 | h32 = XXH_rotl32(h32, 11) * PRIME32_1; |
472 | p++; |
473 | } |
474 | |
475 | h32 ^= h32 >> 15; |
476 | h32 *= PRIME32_2; |
477 | h32 ^= h32 >> 13; |
478 | h32 *= PRIME32_3; |
479 | h32 ^= h32 >> 16; |
480 | |
481 | return h32; |
482 | } |
483 | |
484 | |
485 | XXH_PUBLIC_API unsigned int XXH32_digest (const XXH32_state_t* state_in) |
486 | { |
487 | XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; |
488 | |
489 | if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
490 | return XXH32_digest_endian(state_in, XXH_littleEndian); |
491 | else |
492 | return XXH32_digest_endian(state_in, XXH_bigEndian); |
493 | } |
494 | |
495 | |
496 | /*====== Canonical representation ======*/ |
497 | |
498 | /*! Default XXH result types are basic unsigned 32 and 64 bits. |
499 | * The canonical representation follows human-readable write convention, aka big-endian (large digits first). |
500 | * These functions allow transformation of hash result into and from its canonical format. |
501 | * This way, hash values can be written into a file or buffer, and remain comparable across different systems and programs. |
502 | */ |
503 | |
504 | XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash) |
505 | { |
506 | XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t)); |
507 | if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash); |
508 | memcpy(dst, &hash, sizeof(*dst)); |
509 | } |
510 | |
511 | XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src) |
512 | { |
513 | return XXH_readBE32(src); |
514 | } |
515 | |
516 | |
517 | #ifndef XXH_NO_LONG_LONG |
518 | |
519 | /* ******************************************************************* |
520 | * 64-bits hash functions |
521 | *********************************************************************/ |
522 | |
523 | /*====== Memory access ======*/ |
524 | |
525 | #ifndef MEM_MODULE |
526 | # define MEM_MODULE |
527 | # if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) |
528 | # include <stdint.h> |
529 | typedef uint64_t U64; |
530 | # else |
531 | typedef unsigned long long U64; /* if your compiler doesn't support unsigned long long, replace by another 64-bit type here. Note that xxhash.h will also need to be updated. */ |
532 | # endif |
533 | #endif |
534 | |
535 | |
536 | #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2)) |
537 | |
538 | /* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */ |
539 | static U64 XXH_read64(const void* memPtr) { return *(const U64*) memPtr; } |
540 | |
541 | #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1)) |
542 | |
543 | /* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */ |
544 | /* currently only defined for gcc and icc */ |
545 | typedef union { U32 u32; U64 u64; } __attribute__((packed)) unalign64; |
546 | static U64 XXH_read64(const void* ptr) { return ((const unalign64*)ptr)->u64; } |
547 | |
548 | #else |
549 | |
550 | /* portable and safe solution. Generally efficient. |
551 | * see : http://stackoverflow.com/a/32095106/646947 |
552 | */ |
553 | |
554 | static U64 XXH_read64(const void* memPtr) |
555 | { |
556 | U64 val; |
557 | memcpy(&val, memPtr, sizeof(val)); |
558 | return val; |
559 | } |
560 | |
561 | #endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */ |
562 | |
563 | #if defined(_MSC_VER) /* Visual Studio */ |
564 | # define XXH_swap64 _byteswap_uint64 |
565 | #elif XXH_GCC_VERSION >= 403 |
566 | # define XXH_swap64 __builtin_bswap64 |
567 | #else |
568 | static U64 XXH_swap64 (U64 x) |
569 | { |
570 | return ((x << 56) & 0xff00000000000000ULL) | |
571 | ((x << 40) & 0x00ff000000000000ULL) | |
572 | ((x << 24) & 0x0000ff0000000000ULL) | |
573 | ((x << 8) & 0x000000ff00000000ULL) | |
574 | ((x >> 8) & 0x00000000ff000000ULL) | |
575 | ((x >> 24) & 0x0000000000ff0000ULL) | |
576 | ((x >> 40) & 0x000000000000ff00ULL) | |
577 | ((x >> 56) & 0x00000000000000ffULL); |
578 | } |
579 | #endif |
580 | |
581 | FORCE_INLINE U64 XXH_readLE64_align(const void* ptr, XXH_endianess endian, XXH_alignment align) |
582 | { |
583 | if (align==XXH_unaligned) |
584 | return endian==XXH_littleEndian ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr)); |
585 | else |
586 | return endian==XXH_littleEndian ? *(const U64*)ptr : XXH_swap64(*(const U64*)ptr); |
587 | } |
588 | |
589 | FORCE_INLINE U64 XXH_readLE64(const void* ptr, XXH_endianess endian) |
590 | { |
591 | return XXH_readLE64_align(ptr, endian, XXH_unaligned); |
592 | } |
593 | |
594 | static U64 XXH_readBE64(const void* ptr) |
595 | { |
596 | return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr); |
597 | } |
598 | |
599 | |
600 | /*====== xxh64 ======*/ |
601 | |
602 | static const U64 PRIME64_1 = 11400714785074694791ULL; |
603 | static const U64 PRIME64_2 = 14029467366897019727ULL; |
604 | static const U64 PRIME64_3 = 1609587929392839161ULL; |
605 | static const U64 PRIME64_4 = 9650029242287828579ULL; |
606 | static const U64 PRIME64_5 = 2870177450012600261ULL; |
607 | |
608 | static U64 XXH64_round(U64 acc, U64 input) |
609 | { |
610 | acc += input * PRIME64_2; |
611 | acc = XXH_rotl64(acc, 31); |
612 | acc *= PRIME64_1; |
613 | return acc; |
614 | } |
615 | |
616 | static U64 XXH64_mergeRound(U64 acc, U64 val) |
617 | { |
618 | val = XXH64_round(0, val); |
619 | acc ^= val; |
620 | acc = acc * PRIME64_1 + PRIME64_4; |
621 | return acc; |
622 | } |
623 | |
624 | FORCE_INLINE U64 XXH64_endian_align(const void* input, size_t len, U64 seed, XXH_endianess endian, XXH_alignment align) |
625 | { |
626 | const BYTE* p = (const BYTE*)input; |
627 | const BYTE* bEnd = p + len; |
628 | U64 h64; |
629 | #define XXH_get64bits(p) XXH_readLE64_align(p, endian, align) |
630 | |
631 | #ifdef XXH_ACCEPT_NULL_INPUT_POINTER |
632 | if (p==NULL) { |
633 | len=0; |
634 | bEnd=p=(const BYTE*)(size_t)32; |
635 | } |
636 | #endif |
637 | |
638 | if (len>=32) { |
639 | const BYTE* const limit = bEnd - 32; |
640 | U64 v1 = seed + PRIME64_1 + PRIME64_2; |
641 | U64 v2 = seed + PRIME64_2; |
642 | U64 v3 = seed + 0; |
643 | U64 v4 = seed - PRIME64_1; |
644 | |
645 | do { |
646 | v1 = XXH64_round(v1, XXH_get64bits(p)); p+=8; |
647 | v2 = XXH64_round(v2, XXH_get64bits(p)); p+=8; |
648 | v3 = XXH64_round(v3, XXH_get64bits(p)); p+=8; |
649 | v4 = XXH64_round(v4, XXH_get64bits(p)); p+=8; |
650 | } while (p<=limit); |
651 | |
652 | h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18); |
653 | h64 = XXH64_mergeRound(h64, v1); |
654 | h64 = XXH64_mergeRound(h64, v2); |
655 | h64 = XXH64_mergeRound(h64, v3); |
656 | h64 = XXH64_mergeRound(h64, v4); |
657 | |
658 | } else { |
659 | h64 = seed + PRIME64_5; |
660 | } |
661 | |
662 | h64 += (U64) len; |
663 | |
664 | while (p+8<=bEnd) { |
665 | U64 const k1 = XXH64_round(0, XXH_get64bits(p)); |
666 | h64 ^= k1; |
667 | h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4; |
668 | p+=8; |
669 | } |
670 | |
671 | if (p+4<=bEnd) { |
672 | h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1; |
673 | h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3; |
674 | p+=4; |
675 | } |
676 | |
677 | while (p<bEnd) { |
678 | h64 ^= (*p) * PRIME64_5; |
679 | h64 = XXH_rotl64(h64, 11) * PRIME64_1; |
680 | p++; |
681 | } |
682 | |
683 | h64 ^= h64 >> 33; |
684 | h64 *= PRIME64_2; |
685 | h64 ^= h64 >> 29; |
686 | h64 *= PRIME64_3; |
687 | h64 ^= h64 >> 32; |
688 | |
689 | return h64; |
690 | } |
691 | |
692 | |
693 | XXH_PUBLIC_API unsigned long long XXH64 (const void* input, size_t len, unsigned long long seed) |
694 | { |
695 | #if 0 |
696 | /* Simple version, good for code maintenance, but unfortunately slow for small inputs */ |
697 | XXH64_state_t state; |
698 | XXH64_reset(&state, seed); |
699 | XXH64_update(&state, input, len); |
700 | return XXH64_digest(&state); |
701 | #else |
702 | XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; |
703 | |
704 | if (XXH_FORCE_ALIGN_CHECK) { |
705 | if ((((size_t)input) & 7)==0) { /* Input is aligned, let's leverage the speed advantage */ |
706 | if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
707 | return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned); |
708 | else |
709 | return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned); |
710 | } } |
711 | |
712 | if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
713 | return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned); |
714 | else |
715 | return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned); |
716 | #endif |
717 | } |
718 | |
719 | /*====== Hash Streaming ======*/ |
720 | |
721 | XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void) |
722 | { |
723 | return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t)); |
724 | } |
725 | XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr) |
726 | { |
727 | XXH_free(statePtr); |
728 | return XXH_OK; |
729 | } |
730 | |
731 | XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dstState, const XXH64_state_t* srcState) |
732 | { |
733 | memcpy(dstState, srcState, sizeof(*dstState)); |
734 | } |
735 | |
736 | XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, unsigned long long seed) |
737 | { |
738 | XXH64_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */ |
739 | memset(&state, 0, sizeof(state)-8); /* do not write into reserved, for future removal */ |
740 | state.v1 = seed + PRIME64_1 + PRIME64_2; |
741 | state.v2 = seed + PRIME64_2; |
742 | state.v3 = seed + 0; |
743 | state.v4 = seed - PRIME64_1; |
744 | memcpy(statePtr, &state, sizeof(state)); |
745 | return XXH_OK; |
746 | } |
747 | |
748 | FORCE_INLINE XXH_errorcode XXH64_update_endian (XXH64_state_t* state, const void* input, size_t len, XXH_endianess endian) |
749 | { |
750 | const BYTE* p = (const BYTE*)input; |
751 | const BYTE* const bEnd = p + len; |
752 | |
753 | #ifdef XXH_ACCEPT_NULL_INPUT_POINTER |
754 | if (input==NULL) return XXH_ERROR; |
755 | #endif |
756 | |
757 | state->total_len += len; |
758 | |
759 | if (state->memsize + len < 32) { /* fill in tmp buffer */ |
760 | XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, len); |
761 | state->memsize += (U32)len; |
762 | return XXH_OK; |
763 | } |
764 | |
765 | if (state->memsize) { /* tmp buffer is full */ |
766 | XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, 32-state->memsize); |
767 | state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64+0, endian)); |
768 | state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64+1, endian)); |
769 | state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64+2, endian)); |
770 | state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64+3, endian)); |
771 | p += 32-state->memsize; |
772 | state->memsize = 0; |
773 | } |
774 | |
775 | if (p+32 <= bEnd) { |
776 | const BYTE* const limit = bEnd - 32; |
777 | U64 v1 = state->v1; |
778 | U64 v2 = state->v2; |
779 | U64 v3 = state->v3; |
780 | U64 v4 = state->v4; |
781 | |
782 | do { |
783 | v1 = XXH64_round(v1, XXH_readLE64(p, endian)); p+=8; |
784 | v2 = XXH64_round(v2, XXH_readLE64(p, endian)); p+=8; |
785 | v3 = XXH64_round(v3, XXH_readLE64(p, endian)); p+=8; |
786 | v4 = XXH64_round(v4, XXH_readLE64(p, endian)); p+=8; |
787 | } while (p<=limit); |
788 | |
789 | state->v1 = v1; |
790 | state->v2 = v2; |
791 | state->v3 = v3; |
792 | state->v4 = v4; |
793 | } |
794 | |
795 | if (p < bEnd) { |
796 | XXH_memcpy(state->mem64, p, (size_t)(bEnd-p)); |
797 | state->memsize = (unsigned)(bEnd-p); |
798 | } |
799 | |
800 | return XXH_OK; |
801 | } |
802 | |
803 | XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* state_in, const void* input, size_t len) |
804 | { |
805 | XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; |
806 | |
807 | if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
808 | return XXH64_update_endian(state_in, input, len, XXH_littleEndian); |
809 | else |
810 | return XXH64_update_endian(state_in, input, len, XXH_bigEndian); |
811 | } |
812 | |
813 | FORCE_INLINE U64 XXH64_digest_endian (const XXH64_state_t* state, XXH_endianess endian) |
814 | { |
815 | const BYTE * p = (const BYTE*)state->mem64; |
816 | const BYTE* const bEnd = (const BYTE*)state->mem64 + state->memsize; |
817 | U64 h64; |
818 | |
819 | if (state->total_len >= 32) { |
820 | U64 const v1 = state->v1; |
821 | U64 const v2 = state->v2; |
822 | U64 const v3 = state->v3; |
823 | U64 const v4 = state->v4; |
824 | |
825 | h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18); |
826 | h64 = XXH64_mergeRound(h64, v1); |
827 | h64 = XXH64_mergeRound(h64, v2); |
828 | h64 = XXH64_mergeRound(h64, v3); |
829 | h64 = XXH64_mergeRound(h64, v4); |
830 | } else { |
831 | h64 = state->v3 + PRIME64_5; |
832 | } |
833 | |
834 | h64 += (U64) state->total_len; |
835 | |
836 | while (p+8<=bEnd) { |
837 | U64 const k1 = XXH64_round(0, XXH_readLE64(p, endian)); |
838 | h64 ^= k1; |
839 | h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4; |
840 | p+=8; |
841 | } |
842 | |
843 | if (p+4<=bEnd) { |
844 | h64 ^= (U64)(XXH_readLE32(p, endian)) * PRIME64_1; |
845 | h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3; |
846 | p+=4; |
847 | } |
848 | |
849 | while (p<bEnd) { |
850 | h64 ^= (*p) * PRIME64_5; |
851 | h64 = XXH_rotl64(h64, 11) * PRIME64_1; |
852 | p++; |
853 | } |
854 | |
855 | h64 ^= h64 >> 33; |
856 | h64 *= PRIME64_2; |
857 | h64 ^= h64 >> 29; |
858 | h64 *= PRIME64_3; |
859 | h64 ^= h64 >> 32; |
860 | |
861 | return h64; |
862 | } |
863 | |
864 | XXH_PUBLIC_API unsigned long long XXH64_digest (const XXH64_state_t* state_in) |
865 | { |
866 | XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN; |
867 | |
868 | if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT) |
869 | return XXH64_digest_endian(state_in, XXH_littleEndian); |
870 | else |
871 | return XXH64_digest_endian(state_in, XXH_bigEndian); |
872 | } |
873 | |
874 | |
875 | /*====== Canonical representation ======*/ |
876 | |
877 | XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash) |
878 | { |
879 | XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t)); |
880 | if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash); |
881 | memcpy(dst, &hash, sizeof(*dst)); |
882 | } |
883 | |
884 | XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src) |
885 | { |
886 | return XXH_readBE64(src); |
887 | } |
888 | |
889 | #endif /* XXH_NO_LONG_LONG */ |
890 | |