| 1 | /* Prototype declarations for math functions; helper file for <math.h>. | 
| 2 |    Copyright (C) 1996-2018 Free Software Foundation, Inc. | 
| 3 |    This file is part of the GNU C Library. | 
| 4 |  | 
| 5 |    The GNU C Library is free software; you can redistribute it and/or | 
| 6 |    modify it under the terms of the GNU Lesser General Public | 
| 7 |    License as published by the Free Software Foundation; either | 
| 8 |    version 2.1 of the License, or (at your option) any later version. | 
| 9 |  | 
| 10 |    The GNU C Library is distributed in the hope that it will be useful, | 
| 11 |    but WITHOUT ANY WARRANTY; without even the implied warranty of | 
| 12 |    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
| 13 |    Lesser General Public License for more details. | 
| 14 |  | 
| 15 |    You should have received a copy of the GNU Lesser General Public | 
| 16 |    License along with the GNU C Library; if not, see | 
| 17 |    <http://www.gnu.org/licenses/>.  */ | 
| 18 |  | 
| 19 | /* NOTE: Because of the special way this file is used by <math.h>, this | 
| 20 |    file must NOT be protected from multiple inclusion as header files | 
| 21 |    usually are. | 
| 22 |  | 
| 23 |    This file provides prototype declarations for the math functions. | 
| 24 |    Most functions are declared using the macro: | 
| 25 |  | 
| 26 |    __MATHCALL (NAME,[_r], (ARGS...)); | 
| 27 |  | 
| 28 |    This means there is a function `NAME' returning `double' and a function | 
| 29 |    `NAMEf' returning `float'.  Each place `_Mdouble_' appears in the | 
| 30 |    prototype, that is actually `double' in the prototype for `NAME' and | 
| 31 |    `float' in the prototype for `NAMEf'.  Reentrant variant functions are | 
| 32 |    called `NAME_r' and `NAMEf_r'. | 
| 33 |  | 
| 34 |    Functions returning other types like `int' are declared using the macro: | 
| 35 |  | 
| 36 |    __MATHDECL (TYPE, NAME,[_r], (ARGS...)); | 
| 37 |  | 
| 38 |    This is just like __MATHCALL but for a function returning `TYPE' | 
| 39 |    instead of `_Mdouble_'.  In all of these cases, there is still | 
| 40 |    both a `NAME' and a `NAMEf' that takes `float' arguments. | 
| 41 |  | 
| 42 |    Note that there must be no whitespace before the argument passed for | 
| 43 |    NAME, to make token pasting work with -traditional.  */ | 
| 44 |  | 
| 45 | #ifndef _MATH_H | 
| 46 | # error "Never include <bits/mathcalls.h> directly; include <math.h> instead." | 
| 47 | #endif | 
| 48 |  | 
| 49 |  | 
| 50 | /* Trigonometric functions.  */ | 
| 51 |  | 
| 52 | /* Arc cosine of X.  */ | 
| 53 | __MATHCALL (acos,, (_Mdouble_ __x)); | 
| 54 | /* Arc sine of X.  */ | 
| 55 | __MATHCALL (asin,, (_Mdouble_ __x)); | 
| 56 | /* Arc tangent of X.  */ | 
| 57 | __MATHCALL (atan,, (_Mdouble_ __x)); | 
| 58 | /* Arc tangent of Y/X.  */ | 
| 59 | __MATHCALL (atan2,, (_Mdouble_ __y, _Mdouble_ __x)); | 
| 60 |  | 
| 61 | /* Cosine of X.  */ | 
| 62 | __MATHCALL_VEC (cos,, (_Mdouble_ __x)); | 
| 63 | /* Sine of X.  */ | 
| 64 | __MATHCALL_VEC (sin,, (_Mdouble_ __x)); | 
| 65 | /* Tangent of X.  */ | 
| 66 | __MATHCALL (tan,, (_Mdouble_ __x)); | 
| 67 |  | 
| 68 | /* Hyperbolic functions.  */ | 
| 69 |  | 
| 70 | /* Hyperbolic cosine of X.  */ | 
| 71 | __MATHCALL (cosh,, (_Mdouble_ __x)); | 
| 72 | /* Hyperbolic sine of X.  */ | 
| 73 | __MATHCALL (sinh,, (_Mdouble_ __x)); | 
| 74 | /* Hyperbolic tangent of X.  */ | 
| 75 | __MATHCALL (tanh,, (_Mdouble_ __x)); | 
| 76 |  | 
| 77 | #ifdef __USE_GNU | 
| 78 | /* Cosine and sine of X.  */ | 
| 79 | __MATHDECL_VEC (void,sincos,, | 
| 80 | 		(_Mdouble_ __x, _Mdouble_ *__sinx, _Mdouble_ *__cosx)); | 
| 81 | #endif | 
| 82 |  | 
| 83 | #if defined __USE_XOPEN_EXTENDED || defined __USE_ISOC99 | 
| 84 | /* Hyperbolic arc cosine of X.  */ | 
| 85 | __MATHCALL (acosh,, (_Mdouble_ __x)); | 
| 86 | /* Hyperbolic arc sine of X.  */ | 
| 87 | __MATHCALL (asinh,, (_Mdouble_ __x)); | 
| 88 | /* Hyperbolic arc tangent of X.  */ | 
| 89 | __MATHCALL (atanh,, (_Mdouble_ __x)); | 
| 90 | #endif | 
| 91 |  | 
| 92 | /* Exponential and logarithmic functions.  */ | 
| 93 |  | 
| 94 | /* Exponential function of X.  */ | 
| 95 | __MATHCALL_VEC (exp,, (_Mdouble_ __x)); | 
| 96 |  | 
| 97 | /* Break VALUE into a normalized fraction and an integral power of 2.  */ | 
| 98 | __MATHCALL (frexp,, (_Mdouble_ __x, int *__exponent)); | 
| 99 |  | 
| 100 | /* X times (two to the EXP power).  */ | 
| 101 | __MATHCALL (ldexp,, (_Mdouble_ __x, int __exponent)); | 
| 102 |  | 
| 103 | /* Natural logarithm of X.  */ | 
| 104 | __MATHCALL_VEC (log,, (_Mdouble_ __x)); | 
| 105 |  | 
| 106 | /* Base-ten logarithm of X.  */ | 
| 107 | __MATHCALL (log10,, (_Mdouble_ __x)); | 
| 108 |  | 
| 109 | /* Break VALUE into integral and fractional parts.  */ | 
| 110 | __MATHCALL (modf,, (_Mdouble_ __x, _Mdouble_ *__iptr)) __nonnull ((2)); | 
| 111 |  | 
| 112 | #if __GLIBC_USE (IEC_60559_FUNCS_EXT) | 
| 113 | /* Compute exponent to base ten.  */ | 
| 114 | __MATHCALL (exp10,, (_Mdouble_ __x)); | 
| 115 | #endif | 
| 116 |  | 
| 117 | #if defined __USE_XOPEN_EXTENDED || defined __USE_ISOC99 | 
| 118 | /* Return exp(X) - 1.  */ | 
| 119 | __MATHCALL (expm1,, (_Mdouble_ __x)); | 
| 120 |  | 
| 121 | /* Return log(1 + X).  */ | 
| 122 | __MATHCALL (log1p,, (_Mdouble_ __x)); | 
| 123 |  | 
| 124 | /* Return the base 2 signed integral exponent of X.  */ | 
| 125 | __MATHCALL (logb,, (_Mdouble_ __x)); | 
| 126 | #endif | 
| 127 |  | 
| 128 | #ifdef __USE_ISOC99 | 
| 129 | /* Compute base-2 exponential of X.  */ | 
| 130 | __MATHCALL (exp2,, (_Mdouble_ __x)); | 
| 131 |  | 
| 132 | /* Compute base-2 logarithm of X.  */ | 
| 133 | __MATHCALL (log2,, (_Mdouble_ __x)); | 
| 134 | #endif | 
| 135 |  | 
| 136 |  | 
| 137 | /* Power functions.  */ | 
| 138 |  | 
| 139 | /* Return X to the Y power.  */ | 
| 140 | __MATHCALL_VEC (pow,, (_Mdouble_ __x, _Mdouble_ __y)); | 
| 141 |  | 
| 142 | /* Return the square root of X.  */ | 
| 143 | __MATHCALL (sqrt,, (_Mdouble_ __x)); | 
| 144 |  | 
| 145 | #if defined __USE_XOPEN || defined __USE_ISOC99 | 
| 146 | /* Return `sqrt(X*X + Y*Y)'.  */ | 
| 147 | __MATHCALL (hypot,, (_Mdouble_ __x, _Mdouble_ __y)); | 
| 148 | #endif | 
| 149 |  | 
| 150 | #if defined __USE_XOPEN_EXTENDED || defined __USE_ISOC99 | 
| 151 | /* Return the cube root of X.  */ | 
| 152 | __MATHCALL (cbrt,, (_Mdouble_ __x)); | 
| 153 | #endif | 
| 154 |  | 
| 155 |  | 
| 156 | /* Nearest integer, absolute value, and remainder functions.  */ | 
| 157 |  | 
| 158 | /* Smallest integral value not less than X.  */ | 
| 159 | __MATHCALLX (ceil,, (_Mdouble_ __x), (__const__)); | 
| 160 |  | 
| 161 | /* Absolute value of X.  */ | 
| 162 | __MATHCALLX (fabs,, (_Mdouble_ __x), (__const__)); | 
| 163 |  | 
| 164 | /* Largest integer not greater than X.  */ | 
| 165 | __MATHCALLX (floor,, (_Mdouble_ __x), (__const__)); | 
| 166 |  | 
| 167 | /* Floating-point modulo remainder of X/Y.  */ | 
| 168 | __MATHCALL (fmod,, (_Mdouble_ __x, _Mdouble_ __y)); | 
| 169 |  | 
| 170 | #ifdef __USE_MISC | 
| 171 | # if ((!defined __cplusplus \ | 
| 172 |        || __cplusplus < 201103L /* isinf conflicts with C++11.  */ \ | 
| 173 |        || __MATH_DECLARING_DOUBLE == 0)) /* isinff or isinfl don't.  */ \ | 
| 174 |       && !__MATH_DECLARING_FLOATN | 
| 175 | /* Return 0 if VALUE is finite or NaN, +1 if it | 
| 176 |    is +Infinity, -1 if it is -Infinity.  */ | 
| 177 | __MATHDECL_1 (int,isinf,, (_Mdouble_ __value)) __attribute__ ((__const__)); | 
| 178 | # endif | 
| 179 |  | 
| 180 | # if !__MATH_DECLARING_FLOATN | 
| 181 | /* Return nonzero if VALUE is finite and not NaN.  */ | 
| 182 | __MATHDECL_1 (int,finite,, (_Mdouble_ __value)) __attribute__ ((__const__)); | 
| 183 |  | 
| 184 | /* Return the remainder of X/Y.  */ | 
| 185 | __MATHCALL (drem,, (_Mdouble_ __x, _Mdouble_ __y)); | 
| 186 |  | 
| 187 |  | 
| 188 | /* Return the fractional part of X after dividing out `ilogb (X)'.  */ | 
| 189 | __MATHCALL (significand,, (_Mdouble_ __x)); | 
| 190 | # endif | 
| 191 |  | 
| 192 | #endif /* Use misc.  */ | 
| 193 |  | 
| 194 | #ifdef __USE_ISOC99 | 
| 195 | /* Return X with its signed changed to Y's.  */ | 
| 196 | __MATHCALLX (copysign,, (_Mdouble_ __x, _Mdouble_ __y), (__const__)); | 
| 197 | #endif | 
| 198 |  | 
| 199 | #ifdef __USE_ISOC99 | 
| 200 | /* Return representation of qNaN for double type.  */ | 
| 201 | __MATHCALLX (nan,, (const char *__tagb), (__const__)); | 
| 202 | #endif | 
| 203 |  | 
| 204 |  | 
| 205 | #if defined __USE_MISC || (defined __USE_XOPEN && !defined __USE_XOPEN2K) | 
| 206 | # if ((!defined __cplusplus \ | 
| 207 |        || __cplusplus < 201103L /* isnan conflicts with C++11.  */ \ | 
| 208 |        || __MATH_DECLARING_DOUBLE == 0)) /* isnanf or isnanl don't.  */ \ | 
| 209 |       && !__MATH_DECLARING_FLOATN | 
| 210 | /* Return nonzero if VALUE is not a number.  */ | 
| 211 | __MATHDECL_1 (int,isnan,, (_Mdouble_ __value)) __attribute__ ((__const__)); | 
| 212 | # endif | 
| 213 | #endif | 
| 214 |  | 
| 215 | #if defined __USE_MISC || (defined __USE_XOPEN && __MATH_DECLARING_DOUBLE) | 
| 216 | /* Bessel functions.  */ | 
| 217 | __MATHCALL (j0,, (_Mdouble_)); | 
| 218 | __MATHCALL (j1,, (_Mdouble_)); | 
| 219 | __MATHCALL (jn,, (int, _Mdouble_)); | 
| 220 | __MATHCALL (y0,, (_Mdouble_)); | 
| 221 | __MATHCALL (y1,, (_Mdouble_)); | 
| 222 | __MATHCALL (yn,, (int, _Mdouble_)); | 
| 223 | #endif | 
| 224 |  | 
| 225 |  | 
| 226 | #if defined __USE_XOPEN || defined __USE_ISOC99 | 
| 227 | /* Error and gamma functions.  */ | 
| 228 | __MATHCALL (erf,, (_Mdouble_)); | 
| 229 | __MATHCALL (erfc,, (_Mdouble_)); | 
| 230 | __MATHCALL (lgamma,, (_Mdouble_)); | 
| 231 | #endif | 
| 232 |  | 
| 233 | #ifdef __USE_ISOC99 | 
| 234 | /* True gamma function.  */ | 
| 235 | __MATHCALL (tgamma,, (_Mdouble_)); | 
| 236 | #endif | 
| 237 |  | 
| 238 | #if defined __USE_MISC || (defined __USE_XOPEN && !defined __USE_XOPEN2K) | 
| 239 | # if !__MATH_DECLARING_FLOATN | 
| 240 | /* Obsolete alias for `lgamma'.  */ | 
| 241 | __MATHCALL (gamma,, (_Mdouble_)); | 
| 242 | # endif | 
| 243 | #endif | 
| 244 |  | 
| 245 | #ifdef __USE_MISC | 
| 246 | /* Reentrant version of lgamma.  This function uses the global variable | 
| 247 |    `signgam'.  The reentrant version instead takes a pointer and stores | 
| 248 |    the value through it.  */ | 
| 249 | __MATHCALL (lgamma,_r, (_Mdouble_, int *__signgamp)); | 
| 250 | #endif | 
| 251 |  | 
| 252 |  | 
| 253 | #if defined __USE_XOPEN_EXTENDED || defined __USE_ISOC99 | 
| 254 | /* Return the integer nearest X in the direction of the | 
| 255 |    prevailing rounding mode.  */ | 
| 256 | __MATHCALL (rint,, (_Mdouble_ __x)); | 
| 257 |  | 
| 258 | /* Return X + epsilon if X < Y, X - epsilon if X > Y.  */ | 
| 259 | __MATHCALL (nextafter,, (_Mdouble_ __x, _Mdouble_ __y)); | 
| 260 | # if defined __USE_ISOC99 && !defined __LDBL_COMPAT && !__MATH_DECLARING_FLOATN | 
| 261 | __MATHCALL (nexttoward,, (_Mdouble_ __x, long double __y)); | 
| 262 | # endif | 
| 263 |  | 
| 264 | # if __GLIBC_USE (IEC_60559_BFP_EXT) || __MATH_DECLARING_FLOATN | 
| 265 | /* Return X - epsilon.  */ | 
| 266 | __MATHCALL (nextdown,, (_Mdouble_ __x)); | 
| 267 | /* Return X + epsilon.  */ | 
| 268 | __MATHCALL (nextup,, (_Mdouble_ __x)); | 
| 269 | # endif | 
| 270 |  | 
| 271 | /* Return the remainder of integer divison X / Y with infinite precision.  */ | 
| 272 | __MATHCALL (remainder,, (_Mdouble_ __x, _Mdouble_ __y)); | 
| 273 |  | 
| 274 | # ifdef __USE_ISOC99 | 
| 275 | /* Return X times (2 to the Nth power).  */ | 
| 276 | __MATHCALL (scalbn,, (_Mdouble_ __x, int __n)); | 
| 277 | # endif | 
| 278 |  | 
| 279 | /* Return the binary exponent of X, which must be nonzero.  */ | 
| 280 | __MATHDECL (int,ilogb,, (_Mdouble_ __x)); | 
| 281 | #endif | 
| 282 |  | 
| 283 | #if __GLIBC_USE (IEC_60559_BFP_EXT) || __MATH_DECLARING_FLOATN | 
| 284 | /* Like ilogb, but returning long int.  */ | 
| 285 | __MATHDECL (long int, llogb,, (_Mdouble_ __x)); | 
| 286 | #endif | 
| 287 |  | 
| 288 | #ifdef __USE_ISOC99 | 
| 289 | /* Return X times (2 to the Nth power).  */ | 
| 290 | __MATHCALL (scalbln,, (_Mdouble_ __x, long int __n)); | 
| 291 |  | 
| 292 | /* Round X to integral value in floating-point format using current | 
| 293 |    rounding direction, but do not raise inexact exception.  */ | 
| 294 | __MATHCALL (nearbyint,, (_Mdouble_ __x)); | 
| 295 |  | 
| 296 | /* Round X to nearest integral value, rounding halfway cases away from | 
| 297 |    zero.  */ | 
| 298 | __MATHCALLX (round,, (_Mdouble_ __x), (__const__)); | 
| 299 |  | 
| 300 | /* Round X to the integral value in floating-point format nearest but | 
| 301 |    not larger in magnitude.  */ | 
| 302 | __MATHCALLX (trunc,, (_Mdouble_ __x), (__const__)); | 
| 303 |  | 
| 304 | /* Compute remainder of X and Y and put in *QUO a value with sign of x/y | 
| 305 |    and magnitude congruent `mod 2^n' to the magnitude of the integral | 
| 306 |    quotient x/y, with n >= 3.  */ | 
| 307 | __MATHCALL (remquo,, (_Mdouble_ __x, _Mdouble_ __y, int *__quo)); | 
| 308 |  | 
| 309 |  | 
| 310 | /* Conversion functions.  */ | 
| 311 |  | 
| 312 | /* Round X to nearest integral value according to current rounding | 
| 313 |    direction.  */ | 
| 314 | __MATHDECL (long int,lrint,, (_Mdouble_ __x)); | 
| 315 | __extension__ | 
| 316 | __MATHDECL (long long int,llrint,, (_Mdouble_ __x)); | 
| 317 |  | 
| 318 | /* Round X to nearest integral value, rounding halfway cases away from | 
| 319 |    zero.  */ | 
| 320 | __MATHDECL (long int,lround,, (_Mdouble_ __x)); | 
| 321 | __extension__ | 
| 322 | __MATHDECL (long long int,llround,, (_Mdouble_ __x)); | 
| 323 |  | 
| 324 |  | 
| 325 | /* Return positive difference between X and Y.  */ | 
| 326 | __MATHCALL (fdim,, (_Mdouble_ __x, _Mdouble_ __y)); | 
| 327 |  | 
| 328 | /* Return maximum numeric value from X and Y.  */ | 
| 329 | __MATHCALLX (fmax,, (_Mdouble_ __x, _Mdouble_ __y), (__const__)); | 
| 330 |  | 
| 331 | /* Return minimum numeric value from X and Y.  */ | 
| 332 | __MATHCALLX (fmin,, (_Mdouble_ __x, _Mdouble_ __y), (__const__)); | 
| 333 |  | 
| 334 | /* Multiply-add function computed as a ternary operation.  */ | 
| 335 | __MATHCALL (fma,, (_Mdouble_ __x, _Mdouble_ __y, _Mdouble_ __z)); | 
| 336 | #endif /* Use ISO C99.  */ | 
| 337 |  | 
| 338 | #if __GLIBC_USE (IEC_60559_BFP_EXT) || __MATH_DECLARING_FLOATN | 
| 339 | /* Round X to nearest integer value, rounding halfway cases to even.  */ | 
| 340 | __MATHCALLX (roundeven,, (_Mdouble_ __x), (__const__)); | 
| 341 |  | 
| 342 | /* Round X to nearest signed integer value, not raising inexact, with | 
| 343 |    control of rounding direction and width of result.  */ | 
| 344 | __MATHDECL (__intmax_t, fromfp,, (_Mdouble_ __x, int __round, | 
| 345 | 				  unsigned int __width)); | 
| 346 |  | 
| 347 | /* Round X to nearest unsigned integer value, not raising inexact, | 
| 348 |    with control of rounding direction and width of result.  */ | 
| 349 | __MATHDECL (__uintmax_t, ufromfp,, (_Mdouble_ __x, int __round, | 
| 350 | 				    unsigned int __width)); | 
| 351 |  | 
| 352 | /* Round X to nearest signed integer value, raising inexact for | 
| 353 |    non-integers, with control of rounding direction and width of | 
| 354 |    result.  */ | 
| 355 | __MATHDECL (__intmax_t, fromfpx,, (_Mdouble_ __x, int __round, | 
| 356 | 				   unsigned int __width)); | 
| 357 |  | 
| 358 | /* Round X to nearest unsigned integer value, raising inexact for | 
| 359 |    non-integers, with control of rounding direction and width of | 
| 360 |    result.  */ | 
| 361 | __MATHDECL (__uintmax_t, ufromfpx,, (_Mdouble_ __x, int __round, | 
| 362 | 				     unsigned int __width)); | 
| 363 |  | 
| 364 | /* Return value with maximum magnitude.  */ | 
| 365 | __MATHCALLX (fmaxmag,, (_Mdouble_ __x, _Mdouble_ __y), (__const__)); | 
| 366 |  | 
| 367 | /* Return value with minimum magnitude.  */ | 
| 368 | __MATHCALLX (fminmag,, (_Mdouble_ __x, _Mdouble_ __y), (__const__)); | 
| 369 |  | 
| 370 | /* Total order operation.  */ | 
| 371 | __MATHDECL_1 (int, totalorder,, (_Mdouble_ __x, _Mdouble_ __y)) | 
| 372 |      __attribute__ ((__const__)); | 
| 373 |  | 
| 374 | /* Total order operation on absolute values.  */ | 
| 375 | __MATHDECL_1 (int, totalordermag,, (_Mdouble_ __x, _Mdouble_ __y)) | 
| 376 |      __attribute__ ((__const__)); | 
| 377 |  | 
| 378 | /* Canonicalize floating-point representation.  */ | 
| 379 | __MATHDECL_1 (int, canonicalize,, (_Mdouble_ *__cx, const _Mdouble_ *__x)); | 
| 380 |  | 
| 381 | /* Get NaN payload.  */ | 
| 382 | __MATHCALL (getpayload,, (const _Mdouble_ *__x)); | 
| 383 |  | 
| 384 | /* Set quiet NaN payload.  */ | 
| 385 | __MATHDECL_1 (int, setpayload,, (_Mdouble_ *__x, _Mdouble_ __payload)); | 
| 386 |  | 
| 387 | /* Set signaling NaN payload.  */ | 
| 388 | __MATHDECL_1 (int, setpayloadsig,, (_Mdouble_ *__x, _Mdouble_ __payload)); | 
| 389 | #endif | 
| 390 |  | 
| 391 | #if (defined __USE_MISC || (defined __USE_XOPEN_EXTENDED \ | 
| 392 | 			    && __MATH_DECLARING_DOUBLE	  \ | 
| 393 | 			    && !defined __USE_XOPEN2K8))  \ | 
| 394 |      && !__MATH_DECLARING_FLOATN | 
| 395 | /* Return X times (2 to the Nth power).  */ | 
| 396 | __MATHCALL (scalb,, (_Mdouble_ __x, _Mdouble_ __n)); | 
| 397 | #endif | 
| 398 |  |