| 1 | /* |
| 2 | ** C type conversions. |
| 3 | ** Copyright (C) 2005-2021 Mike Pall. See Copyright Notice in luajit.h |
| 4 | */ |
| 5 | |
| 6 | #include "lj_obj.h" |
| 7 | |
| 8 | #if LJ_HASFFI |
| 9 | |
| 10 | #include "lj_err.h" |
| 11 | #include "lj_tab.h" |
| 12 | #include "lj_ctype.h" |
| 13 | #include "lj_cdata.h" |
| 14 | #include "lj_cconv.h" |
| 15 | #include "lj_ccallback.h" |
| 16 | |
| 17 | /* -- Conversion errors --------------------------------------------------- */ |
| 18 | |
| 19 | /* Bad conversion. */ |
| 20 | LJ_NORET static void cconv_err_conv(CTState *cts, CType *d, CType *s, |
| 21 | CTInfo flags) |
| 22 | { |
| 23 | const char *dst = strdata(lj_ctype_repr(cts->L, ctype_typeid(cts, d), NULL)); |
| 24 | const char *src; |
| 25 | if ((flags & CCF_FROMTV)) |
| 26 | src = lj_obj_typename[1+(ctype_isnum(s->info) ? LUA_TNUMBER : |
| 27 | ctype_isarray(s->info) ? LUA_TSTRING : LUA_TNIL)]; |
| 28 | else |
| 29 | src = strdata(lj_ctype_repr(cts->L, ctype_typeid(cts, s), NULL)); |
| 30 | if (CCF_GETARG(flags)) |
| 31 | lj_err_argv(cts->L, CCF_GETARG(flags), LJ_ERR_FFI_BADCONV, src, dst); |
| 32 | else |
| 33 | lj_err_callerv(cts->L, LJ_ERR_FFI_BADCONV, src, dst); |
| 34 | } |
| 35 | |
| 36 | /* Bad conversion from TValue. */ |
| 37 | LJ_NORET static void cconv_err_convtv(CTState *cts, CType *d, TValue *o, |
| 38 | CTInfo flags) |
| 39 | { |
| 40 | const char *dst = strdata(lj_ctype_repr(cts->L, ctype_typeid(cts, d), NULL)); |
| 41 | const char *src = lj_typename(o); |
| 42 | if (CCF_GETARG(flags)) |
| 43 | lj_err_argv(cts->L, CCF_GETARG(flags), LJ_ERR_FFI_BADCONV, src, dst); |
| 44 | else |
| 45 | lj_err_callerv(cts->L, LJ_ERR_FFI_BADCONV, src, dst); |
| 46 | } |
| 47 | |
| 48 | /* Initializer overflow. */ |
| 49 | LJ_NORET static void cconv_err_initov(CTState *cts, CType *d) |
| 50 | { |
| 51 | const char *dst = strdata(lj_ctype_repr(cts->L, ctype_typeid(cts, d), NULL)); |
| 52 | lj_err_callerv(cts->L, LJ_ERR_FFI_INITOV, dst); |
| 53 | } |
| 54 | |
| 55 | /* -- C type compatibility checks ----------------------------------------- */ |
| 56 | |
| 57 | /* Get raw type and qualifiers for a child type. Resolves enums, too. */ |
| 58 | static CType *cconv_childqual(CTState *cts, CType *ct, CTInfo *qual) |
| 59 | { |
| 60 | ct = ctype_child(cts, ct); |
| 61 | for (;;) { |
| 62 | if (ctype_isattrib(ct->info)) { |
| 63 | if (ctype_attrib(ct->info) == CTA_QUAL) *qual |= ct->size; |
| 64 | } else if (!ctype_isenum(ct->info)) { |
| 65 | break; |
| 66 | } |
| 67 | ct = ctype_child(cts, ct); |
| 68 | } |
| 69 | *qual |= (ct->info & CTF_QUAL); |
| 70 | return ct; |
| 71 | } |
| 72 | |
| 73 | /* Check for compatible types when converting to a pointer. |
| 74 | ** Note: these checks are more relaxed than what C99 mandates. |
| 75 | */ |
| 76 | int lj_cconv_compatptr(CTState *cts, CType *d, CType *s, CTInfo flags) |
| 77 | { |
| 78 | if (!((flags & CCF_CAST) || d == s)) { |
| 79 | CTInfo dqual = 0, squal = 0; |
| 80 | d = cconv_childqual(cts, d, &dqual); |
| 81 | if (!ctype_isstruct(s->info)) |
| 82 | s = cconv_childqual(cts, s, &squal); |
| 83 | if ((flags & CCF_SAME)) { |
| 84 | if (dqual != squal) |
| 85 | return 0; /* Different qualifiers. */ |
| 86 | } else if (!(flags & CCF_IGNQUAL)) { |
| 87 | if ((dqual & squal) != squal) |
| 88 | return 0; /* Discarded qualifiers. */ |
| 89 | if (ctype_isvoid(d->info) || ctype_isvoid(s->info)) |
| 90 | return 1; /* Converting to/from void * is always ok. */ |
| 91 | } |
| 92 | if (ctype_type(d->info) != ctype_type(s->info) || |
| 93 | d->size != s->size) |
| 94 | return 0; /* Different type or different size. */ |
| 95 | if (ctype_isnum(d->info)) { |
| 96 | if (((d->info ^ s->info) & (CTF_BOOL|CTF_FP))) |
| 97 | return 0; /* Different numeric types. */ |
| 98 | } else if (ctype_ispointer(d->info)) { |
| 99 | /* Check child types for compatibility. */ |
| 100 | return lj_cconv_compatptr(cts, d, s, flags|CCF_SAME); |
| 101 | } else if (ctype_isstruct(d->info)) { |
| 102 | if (d != s) |
| 103 | return 0; /* Must be exact same type for struct/union. */ |
| 104 | } else if (ctype_isfunc(d->info)) { |
| 105 | /* NYI: structural equality of functions. */ |
| 106 | } |
| 107 | } |
| 108 | return 1; /* Types are compatible. */ |
| 109 | } |
| 110 | |
| 111 | /* -- C type to C type conversion ----------------------------------------- */ |
| 112 | |
| 113 | /* Convert C type to C type. Caveat: expects to get the raw CType! |
| 114 | ** |
| 115 | ** Note: This is only used by the interpreter and not optimized at all. |
| 116 | ** The JIT compiler will do a much better job specializing for each case. |
| 117 | */ |
| 118 | void lj_cconv_ct_ct(CTState *cts, CType *d, CType *s, |
| 119 | uint8_t *dp, uint8_t *sp, CTInfo flags) |
| 120 | { |
| 121 | CTSize dsize = d->size, ssize = s->size; |
| 122 | CTInfo dinfo = d->info, sinfo = s->info; |
| 123 | void *tmpptr; |
| 124 | |
| 125 | lj_assertCTS(!ctype_isenum(dinfo) && !ctype_isenum(sinfo), |
| 126 | "unresolved enum" ); |
| 127 | lj_assertCTS(!ctype_isattrib(dinfo) && !ctype_isattrib(sinfo), |
| 128 | "unstripped attribute" ); |
| 129 | |
| 130 | if (ctype_type(dinfo) > CT_MAYCONVERT || ctype_type(sinfo) > CT_MAYCONVERT) |
| 131 | goto err_conv; |
| 132 | |
| 133 | /* Some basic sanity checks. */ |
| 134 | lj_assertCTS(!ctype_isnum(dinfo) || dsize > 0, "bad size for number type" ); |
| 135 | lj_assertCTS(!ctype_isnum(sinfo) || ssize > 0, "bad size for number type" ); |
| 136 | lj_assertCTS(!ctype_isbool(dinfo) || dsize == 1 || dsize == 4, |
| 137 | "bad size for bool type" ); |
| 138 | lj_assertCTS(!ctype_isbool(sinfo) || ssize == 1 || ssize == 4, |
| 139 | "bad size for bool type" ); |
| 140 | lj_assertCTS(!ctype_isinteger(dinfo) || (1u<<lj_fls(dsize)) == dsize, |
| 141 | "bad size for integer type" ); |
| 142 | lj_assertCTS(!ctype_isinteger(sinfo) || (1u<<lj_fls(ssize)) == ssize, |
| 143 | "bad size for integer type" ); |
| 144 | |
| 145 | switch (cconv_idx2(dinfo, sinfo)) { |
| 146 | /* Destination is a bool. */ |
| 147 | case CCX(B, B): |
| 148 | /* Source operand is already normalized. */ |
| 149 | if (dsize == 1) *dp = *sp; else *(int *)dp = *sp; |
| 150 | break; |
| 151 | case CCX(B, I): { |
| 152 | MSize i; |
| 153 | uint8_t b = 0; |
| 154 | for (i = 0; i < ssize; i++) b |= sp[i]; |
| 155 | b = (b != 0); |
| 156 | if (dsize == 1) *dp = b; else *(int *)dp = b; |
| 157 | break; |
| 158 | } |
| 159 | case CCX(B, F): { |
| 160 | uint8_t b; |
| 161 | if (ssize == sizeof(double)) b = (*(double *)sp != 0); |
| 162 | else if (ssize == sizeof(float)) b = (*(float *)sp != 0); |
| 163 | else goto err_conv; /* NYI: long double. */ |
| 164 | if (dsize == 1) *dp = b; else *(int *)dp = b; |
| 165 | break; |
| 166 | } |
| 167 | |
| 168 | /* Destination is an integer. */ |
| 169 | case CCX(I, B): |
| 170 | case CCX(I, I): |
| 171 | conv_I_I: |
| 172 | if (dsize > ssize) { /* Zero-extend or sign-extend LSB. */ |
| 173 | #if LJ_LE |
| 174 | uint8_t fill = (!(sinfo & CTF_UNSIGNED) && (sp[ssize-1]&0x80)) ? 0xff : 0; |
| 175 | memcpy(dp, sp, ssize); |
| 176 | memset(dp + ssize, fill, dsize-ssize); |
| 177 | #else |
| 178 | uint8_t fill = (!(sinfo & CTF_UNSIGNED) && (sp[0]&0x80)) ? 0xff : 0; |
| 179 | memset(dp, fill, dsize-ssize); |
| 180 | memcpy(dp + (dsize-ssize), sp, ssize); |
| 181 | #endif |
| 182 | } else { /* Copy LSB. */ |
| 183 | #if LJ_LE |
| 184 | memcpy(dp, sp, dsize); |
| 185 | #else |
| 186 | memcpy(dp, sp + (ssize-dsize), dsize); |
| 187 | #endif |
| 188 | } |
| 189 | break; |
| 190 | case CCX(I, F): { |
| 191 | double n; /* Always convert via double. */ |
| 192 | conv_I_F: |
| 193 | /* Convert source to double. */ |
| 194 | if (ssize == sizeof(double)) n = *(double *)sp; |
| 195 | else if (ssize == sizeof(float)) n = (double)*(float *)sp; |
| 196 | else goto err_conv; /* NYI: long double. */ |
| 197 | /* Then convert double to integer. */ |
| 198 | /* The conversion must exactly match the semantics of JIT-compiled code! */ |
| 199 | if (dsize < 4 || (dsize == 4 && !(dinfo & CTF_UNSIGNED))) { |
| 200 | int32_t i = (int32_t)n; |
| 201 | if (dsize == 4) *(int32_t *)dp = i; |
| 202 | else if (dsize == 2) *(int16_t *)dp = (int16_t)i; |
| 203 | else *(int8_t *)dp = (int8_t)i; |
| 204 | } else if (dsize == 4) { |
| 205 | *(uint32_t *)dp = (uint32_t)n; |
| 206 | } else if (dsize == 8) { |
| 207 | if (!(dinfo & CTF_UNSIGNED)) |
| 208 | *(int64_t *)dp = (int64_t)n; |
| 209 | else |
| 210 | *(uint64_t *)dp = lj_num2u64(n); |
| 211 | } else { |
| 212 | goto err_conv; /* NYI: conversion to >64 bit integers. */ |
| 213 | } |
| 214 | break; |
| 215 | } |
| 216 | case CCX(I, C): |
| 217 | s = ctype_child(cts, s); |
| 218 | sinfo = s->info; |
| 219 | ssize = s->size; |
| 220 | goto conv_I_F; /* Just convert re. */ |
| 221 | case CCX(I, P): |
| 222 | if (!(flags & CCF_CAST)) goto err_conv; |
| 223 | sinfo = CTINFO(CT_NUM, CTF_UNSIGNED); |
| 224 | goto conv_I_I; |
| 225 | case CCX(I, A): |
| 226 | if (!(flags & CCF_CAST)) goto err_conv; |
| 227 | sinfo = CTINFO(CT_NUM, CTF_UNSIGNED); |
| 228 | ssize = CTSIZE_PTR; |
| 229 | tmpptr = sp; |
| 230 | sp = (uint8_t *)&tmpptr; |
| 231 | goto conv_I_I; |
| 232 | |
| 233 | /* Destination is a floating-point number. */ |
| 234 | case CCX(F, B): |
| 235 | case CCX(F, I): { |
| 236 | double n; /* Always convert via double. */ |
| 237 | conv_F_I: |
| 238 | /* First convert source to double. */ |
| 239 | /* The conversion must exactly match the semantics of JIT-compiled code! */ |
| 240 | if (ssize < 4 || (ssize == 4 && !(sinfo & CTF_UNSIGNED))) { |
| 241 | int32_t i; |
| 242 | if (ssize == 4) { |
| 243 | i = *(int32_t *)sp; |
| 244 | } else if (!(sinfo & CTF_UNSIGNED)) { |
| 245 | if (ssize == 2) i = *(int16_t *)sp; |
| 246 | else i = *(int8_t *)sp; |
| 247 | } else { |
| 248 | if (ssize == 2) i = *(uint16_t *)sp; |
| 249 | else i = *(uint8_t *)sp; |
| 250 | } |
| 251 | n = (double)i; |
| 252 | } else if (ssize == 4) { |
| 253 | n = (double)*(uint32_t *)sp; |
| 254 | } else if (ssize == 8) { |
| 255 | if (!(sinfo & CTF_UNSIGNED)) n = (double)*(int64_t *)sp; |
| 256 | else n = (double)*(uint64_t *)sp; |
| 257 | } else { |
| 258 | goto err_conv; /* NYI: conversion from >64 bit integers. */ |
| 259 | } |
| 260 | /* Convert double to destination. */ |
| 261 | if (dsize == sizeof(double)) *(double *)dp = n; |
| 262 | else if (dsize == sizeof(float)) *(float *)dp = (float)n; |
| 263 | else goto err_conv; /* NYI: long double. */ |
| 264 | break; |
| 265 | } |
| 266 | case CCX(F, F): { |
| 267 | double n; /* Always convert via double. */ |
| 268 | conv_F_F: |
| 269 | if (ssize == dsize) goto copyval; |
| 270 | /* Convert source to double. */ |
| 271 | if (ssize == sizeof(double)) n = *(double *)sp; |
| 272 | else if (ssize == sizeof(float)) n = (double)*(float *)sp; |
| 273 | else goto err_conv; /* NYI: long double. */ |
| 274 | /* Convert double to destination. */ |
| 275 | if (dsize == sizeof(double)) *(double *)dp = n; |
| 276 | else if (dsize == sizeof(float)) *(float *)dp = (float)n; |
| 277 | else goto err_conv; /* NYI: long double. */ |
| 278 | break; |
| 279 | } |
| 280 | case CCX(F, C): |
| 281 | s = ctype_child(cts, s); |
| 282 | sinfo = s->info; |
| 283 | ssize = s->size; |
| 284 | goto conv_F_F; /* Ignore im, and convert from re. */ |
| 285 | |
| 286 | /* Destination is a complex number. */ |
| 287 | case CCX(C, I): |
| 288 | d = ctype_child(cts, d); |
| 289 | dinfo = d->info; |
| 290 | dsize = d->size; |
| 291 | memset(dp + dsize, 0, dsize); /* Clear im. */ |
| 292 | goto conv_F_I; /* Convert to re. */ |
| 293 | case CCX(C, F): |
| 294 | d = ctype_child(cts, d); |
| 295 | dinfo = d->info; |
| 296 | dsize = d->size; |
| 297 | memset(dp + dsize, 0, dsize); /* Clear im. */ |
| 298 | goto conv_F_F; /* Convert to re. */ |
| 299 | |
| 300 | case CCX(C, C): |
| 301 | if (dsize != ssize) { /* Different types: convert re/im separately. */ |
| 302 | CType *dc = ctype_child(cts, d); |
| 303 | CType *sc = ctype_child(cts, s); |
| 304 | lj_cconv_ct_ct(cts, dc, sc, dp, sp, flags); |
| 305 | lj_cconv_ct_ct(cts, dc, sc, dp + dc->size, sp + sc->size, flags); |
| 306 | return; |
| 307 | } |
| 308 | goto copyval; /* Otherwise this is easy. */ |
| 309 | |
| 310 | /* Destination is a vector. */ |
| 311 | case CCX(V, I): |
| 312 | case CCX(V, F): |
| 313 | case CCX(V, C): { |
| 314 | CType *dc = ctype_child(cts, d); |
| 315 | CTSize esize; |
| 316 | /* First convert the scalar to the first element. */ |
| 317 | lj_cconv_ct_ct(cts, dc, s, dp, sp, flags); |
| 318 | /* Then replicate it to the other elements (splat). */ |
| 319 | for (sp = dp, esize = dc->size; dsize > esize; dsize -= esize) { |
| 320 | dp += esize; |
| 321 | memcpy(dp, sp, esize); |
| 322 | } |
| 323 | break; |
| 324 | } |
| 325 | |
| 326 | case CCX(V, V): |
| 327 | /* Copy same-sized vectors, even for different lengths/element-types. */ |
| 328 | if (dsize != ssize) goto err_conv; |
| 329 | goto copyval; |
| 330 | |
| 331 | /* Destination is a pointer. */ |
| 332 | case CCX(P, I): |
| 333 | if (!(flags & CCF_CAST)) goto err_conv; |
| 334 | dinfo = CTINFO(CT_NUM, CTF_UNSIGNED); |
| 335 | goto conv_I_I; |
| 336 | |
| 337 | case CCX(P, F): |
| 338 | if (!(flags & CCF_CAST) || !(flags & CCF_FROMTV)) goto err_conv; |
| 339 | /* The signed conversion is cheaper. x64 really has 47 bit pointers. */ |
| 340 | dinfo = CTINFO(CT_NUM, (LJ_64 && dsize == 8) ? 0 : CTF_UNSIGNED); |
| 341 | goto conv_I_F; |
| 342 | |
| 343 | case CCX(P, P): |
| 344 | if (!lj_cconv_compatptr(cts, d, s, flags)) goto err_conv; |
| 345 | cdata_setptr(dp, dsize, cdata_getptr(sp, ssize)); |
| 346 | break; |
| 347 | |
| 348 | case CCX(P, A): |
| 349 | case CCX(P, S): |
| 350 | if (!lj_cconv_compatptr(cts, d, s, flags)) goto err_conv; |
| 351 | cdata_setptr(dp, dsize, sp); |
| 352 | break; |
| 353 | |
| 354 | /* Destination is an array. */ |
| 355 | case CCX(A, A): |
| 356 | if ((flags & CCF_CAST) || (d->info & CTF_VLA) || dsize != ssize || |
| 357 | d->size == CTSIZE_INVALID || !lj_cconv_compatptr(cts, d, s, flags)) |
| 358 | goto err_conv; |
| 359 | goto copyval; |
| 360 | |
| 361 | /* Destination is a struct/union. */ |
| 362 | case CCX(S, S): |
| 363 | if ((flags & CCF_CAST) || (d->info & CTF_VLA) || d != s) |
| 364 | goto err_conv; /* Must be exact same type. */ |
| 365 | copyval: /* Copy value. */ |
| 366 | lj_assertCTS(dsize == ssize, "value copy with different sizes" ); |
| 367 | memcpy(dp, sp, dsize); |
| 368 | break; |
| 369 | |
| 370 | default: |
| 371 | err_conv: |
| 372 | cconv_err_conv(cts, d, s, flags); |
| 373 | } |
| 374 | } |
| 375 | |
| 376 | /* -- C type to TValue conversion ----------------------------------------- */ |
| 377 | |
| 378 | /* Convert C type to TValue. Caveat: expects to get the raw CType! */ |
| 379 | int lj_cconv_tv_ct(CTState *cts, CType *s, CTypeID sid, |
| 380 | TValue *o, uint8_t *sp) |
| 381 | { |
| 382 | CTInfo sinfo = s->info; |
| 383 | if (ctype_isnum(sinfo)) { |
| 384 | if (!ctype_isbool(sinfo)) { |
| 385 | if (ctype_isinteger(sinfo) && s->size > 4) goto copyval; |
| 386 | if (LJ_DUALNUM && ctype_isinteger(sinfo)) { |
| 387 | int32_t i; |
| 388 | lj_cconv_ct_ct(cts, ctype_get(cts, CTID_INT32), s, |
| 389 | (uint8_t *)&i, sp, 0); |
| 390 | if ((sinfo & CTF_UNSIGNED) && i < 0) |
| 391 | setnumV(o, (lua_Number)(uint32_t)i); |
| 392 | else |
| 393 | setintV(o, i); |
| 394 | } else { |
| 395 | lj_cconv_ct_ct(cts, ctype_get(cts, CTID_DOUBLE), s, |
| 396 | (uint8_t *)&o->n, sp, 0); |
| 397 | /* Numbers are NOT canonicalized here! Beware of uninitialized data. */ |
| 398 | lj_assertCTS(tvisnum(o), "non-canonical NaN passed" ); |
| 399 | } |
| 400 | } else { |
| 401 | uint32_t b = s->size == 1 ? (*sp != 0) : (*(int *)sp != 0); |
| 402 | setboolV(o, b); |
| 403 | setboolV(&cts->g->tmptv2, b); /* Remember for trace recorder. */ |
| 404 | } |
| 405 | return 0; |
| 406 | } else if (ctype_isrefarray(sinfo) || ctype_isstruct(sinfo)) { |
| 407 | /* Create reference. */ |
| 408 | setcdataV(cts->L, o, lj_cdata_newref(cts, sp, sid)); |
| 409 | return 1; /* Need GC step. */ |
| 410 | } else { |
| 411 | GCcdata *cd; |
| 412 | CTSize sz; |
| 413 | copyval: /* Copy value. */ |
| 414 | sz = s->size; |
| 415 | lj_assertCTS(sz != CTSIZE_INVALID, "value copy with invalid size" ); |
| 416 | /* Attributes are stripped, qualifiers are kept (but mostly ignored). */ |
| 417 | cd = lj_cdata_new(cts, ctype_typeid(cts, s), sz); |
| 418 | setcdataV(cts->L, o, cd); |
| 419 | memcpy(cdataptr(cd), sp, sz); |
| 420 | return 1; /* Need GC step. */ |
| 421 | } |
| 422 | } |
| 423 | |
| 424 | /* Convert bitfield to TValue. */ |
| 425 | int lj_cconv_tv_bf(CTState *cts, CType *s, TValue *o, uint8_t *sp) |
| 426 | { |
| 427 | CTInfo info = s->info; |
| 428 | CTSize pos, bsz; |
| 429 | uint32_t val; |
| 430 | lj_assertCTS(ctype_isbitfield(info), "bitfield expected" ); |
| 431 | /* NYI: packed bitfields may cause misaligned reads. */ |
| 432 | switch (ctype_bitcsz(info)) { |
| 433 | case 4: val = *(uint32_t *)sp; break; |
| 434 | case 2: val = *(uint16_t *)sp; break; |
| 435 | case 1: val = *(uint8_t *)sp; break; |
| 436 | default: |
| 437 | lj_assertCTS(0, "bad bitfield container size %d" , ctype_bitcsz(info)); |
| 438 | val = 0; |
| 439 | break; |
| 440 | } |
| 441 | /* Check if a packed bitfield crosses a container boundary. */ |
| 442 | pos = ctype_bitpos(info); |
| 443 | bsz = ctype_bitbsz(info); |
| 444 | lj_assertCTS(pos < 8*ctype_bitcsz(info), "bad bitfield position" ); |
| 445 | lj_assertCTS(bsz > 0 && bsz <= 8*ctype_bitcsz(info), "bad bitfield size" ); |
| 446 | if (pos + bsz > 8*ctype_bitcsz(info)) |
| 447 | lj_err_caller(cts->L, LJ_ERR_FFI_NYIPACKBIT); |
| 448 | if (!(info & CTF_BOOL)) { |
| 449 | CTSize shift = 32 - bsz; |
| 450 | if (!(info & CTF_UNSIGNED)) { |
| 451 | setintV(o, (int32_t)(val << (shift-pos)) >> shift); |
| 452 | } else { |
| 453 | val = (val << (shift-pos)) >> shift; |
| 454 | if (!LJ_DUALNUM || (int32_t)val < 0) |
| 455 | setnumV(o, (lua_Number)(uint32_t)val); |
| 456 | else |
| 457 | setintV(o, (int32_t)val); |
| 458 | } |
| 459 | } else { |
| 460 | uint32_t b = (val >> pos) & 1; |
| 461 | lj_assertCTS(bsz == 1, "bad bool bitfield size" ); |
| 462 | setboolV(o, b); |
| 463 | setboolV(&cts->g->tmptv2, b); /* Remember for trace recorder. */ |
| 464 | } |
| 465 | return 0; /* No GC step needed. */ |
| 466 | } |
| 467 | |
| 468 | /* -- TValue to C type conversion ----------------------------------------- */ |
| 469 | |
| 470 | /* Convert table to array. */ |
| 471 | static void cconv_array_tab(CTState *cts, CType *d, |
| 472 | uint8_t *dp, GCtab *t, CTInfo flags) |
| 473 | { |
| 474 | int32_t i; |
| 475 | CType *dc = ctype_rawchild(cts, d); /* Array element type. */ |
| 476 | CTSize size = d->size, esize = dc->size, ofs = 0; |
| 477 | for (i = 0; ; i++) { |
| 478 | TValue *tv = (TValue *)lj_tab_getint(t, i); |
| 479 | if (!tv || tvisnil(tv)) { |
| 480 | if (i == 0) continue; /* Try again for 1-based tables. */ |
| 481 | break; /* Stop at first nil. */ |
| 482 | } |
| 483 | if (ofs >= size) |
| 484 | cconv_err_initov(cts, d); |
| 485 | lj_cconv_ct_tv(cts, dc, dp + ofs, tv, flags); |
| 486 | ofs += esize; |
| 487 | } |
| 488 | if (size != CTSIZE_INVALID) { /* Only fill up arrays with known size. */ |
| 489 | if (ofs == esize) { /* Replicate a single element. */ |
| 490 | for (; ofs < size; ofs += esize) memcpy(dp + ofs, dp, esize); |
| 491 | } else { /* Otherwise fill the remainder with zero. */ |
| 492 | memset(dp + ofs, 0, size - ofs); |
| 493 | } |
| 494 | } |
| 495 | } |
| 496 | |
| 497 | /* Convert table to sub-struct/union. */ |
| 498 | static void cconv_substruct_tab(CTState *cts, CType *d, uint8_t *dp, |
| 499 | GCtab *t, int32_t *ip, CTInfo flags) |
| 500 | { |
| 501 | CTypeID id = d->sib; |
| 502 | while (id) { |
| 503 | CType *df = ctype_get(cts, id); |
| 504 | id = df->sib; |
| 505 | if (ctype_isfield(df->info) || ctype_isbitfield(df->info)) { |
| 506 | TValue *tv; |
| 507 | int32_t i = *ip, iz = i; |
| 508 | if (!gcref(df->name)) continue; /* Ignore unnamed fields. */ |
| 509 | if (i >= 0) { |
| 510 | retry: |
| 511 | tv = (TValue *)lj_tab_getint(t, i); |
| 512 | if (!tv || tvisnil(tv)) { |
| 513 | if (i == 0) { i = 1; goto retry; } /* 1-based tables. */ |
| 514 | if (iz == 0) { *ip = i = -1; goto tryname; } /* Init named fields. */ |
| 515 | break; /* Stop at first nil. */ |
| 516 | } |
| 517 | *ip = i + 1; |
| 518 | } else { |
| 519 | tryname: |
| 520 | tv = (TValue *)lj_tab_getstr(t, gco2str(gcref(df->name))); |
| 521 | if (!tv || tvisnil(tv)) continue; |
| 522 | } |
| 523 | if (ctype_isfield(df->info)) |
| 524 | lj_cconv_ct_tv(cts, ctype_rawchild(cts, df), dp+df->size, tv, flags); |
| 525 | else |
| 526 | lj_cconv_bf_tv(cts, df, dp+df->size, tv); |
| 527 | if ((d->info & CTF_UNION)) break; |
| 528 | } else if (ctype_isxattrib(df->info, CTA_SUBTYPE)) { |
| 529 | cconv_substruct_tab(cts, ctype_rawchild(cts, df), |
| 530 | dp+df->size, t, ip, flags); |
| 531 | } /* Ignore all other entries in the chain. */ |
| 532 | } |
| 533 | } |
| 534 | |
| 535 | /* Convert table to struct/union. */ |
| 536 | static void cconv_struct_tab(CTState *cts, CType *d, |
| 537 | uint8_t *dp, GCtab *t, CTInfo flags) |
| 538 | { |
| 539 | int32_t i = 0; |
| 540 | memset(dp, 0, d->size); /* Much simpler to clear the struct first. */ |
| 541 | cconv_substruct_tab(cts, d, dp, t, &i, flags); |
| 542 | } |
| 543 | |
| 544 | /* Convert TValue to C type. Caveat: expects to get the raw CType! */ |
| 545 | void lj_cconv_ct_tv(CTState *cts, CType *d, |
| 546 | uint8_t *dp, TValue *o, CTInfo flags) |
| 547 | { |
| 548 | CTypeID sid = CTID_P_VOID; |
| 549 | CType *s; |
| 550 | void *tmpptr; |
| 551 | uint8_t tmpbool, *sp = (uint8_t *)&tmpptr; |
| 552 | if (LJ_LIKELY(tvisint(o))) { |
| 553 | sp = (uint8_t *)&o->i; |
| 554 | sid = CTID_INT32; |
| 555 | flags |= CCF_FROMTV; |
| 556 | } else if (LJ_LIKELY(tvisnum(o))) { |
| 557 | sp = (uint8_t *)&o->n; |
| 558 | sid = CTID_DOUBLE; |
| 559 | flags |= CCF_FROMTV; |
| 560 | } else if (tviscdata(o)) { |
| 561 | sp = cdataptr(cdataV(o)); |
| 562 | sid = cdataV(o)->ctypeid; |
| 563 | s = ctype_get(cts, sid); |
| 564 | if (ctype_isref(s->info)) { /* Resolve reference for value. */ |
| 565 | lj_assertCTS(s->size == CTSIZE_PTR, "ref is not pointer-sized" ); |
| 566 | sp = *(void **)sp; |
| 567 | sid = ctype_cid(s->info); |
| 568 | } |
| 569 | s = ctype_raw(cts, sid); |
| 570 | if (ctype_isfunc(s->info)) { |
| 571 | sid = lj_ctype_intern(cts, CTINFO(CT_PTR, CTALIGN_PTR|sid), CTSIZE_PTR); |
| 572 | } else { |
| 573 | if (ctype_isenum(s->info)) s = ctype_child(cts, s); |
| 574 | goto doconv; |
| 575 | } |
| 576 | } else if (tvisstr(o)) { |
| 577 | GCstr *str = strV(o); |
| 578 | if (ctype_isenum(d->info)) { /* Match string against enum constant. */ |
| 579 | CTSize ofs; |
| 580 | CType *cct = lj_ctype_getfield(cts, d, str, &ofs); |
| 581 | if (!cct || !ctype_isconstval(cct->info)) |
| 582 | goto err_conv; |
| 583 | lj_assertCTS(d->size == 4, "only 32 bit enum supported" ); /* NYI */ |
| 584 | sp = (uint8_t *)&cct->size; |
| 585 | sid = ctype_cid(cct->info); |
| 586 | } else if (ctype_isrefarray(d->info)) { /* Copy string to array. */ |
| 587 | CType *dc = ctype_rawchild(cts, d); |
| 588 | CTSize sz = str->len+1; |
| 589 | if (!ctype_isinteger(dc->info) || dc->size != 1) |
| 590 | goto err_conv; |
| 591 | if (d->size != 0 && d->size < sz) |
| 592 | sz = d->size; |
| 593 | memcpy(dp, strdata(str), sz); |
| 594 | return; |
| 595 | } else { /* Otherwise pass it as a const char[]. */ |
| 596 | sp = (uint8_t *)strdata(str); |
| 597 | sid = CTID_A_CCHAR; |
| 598 | flags |= CCF_FROMTV; |
| 599 | } |
| 600 | } else if (tvistab(o)) { |
| 601 | if (ctype_isarray(d->info)) { |
| 602 | cconv_array_tab(cts, d, dp, tabV(o), flags); |
| 603 | return; |
| 604 | } else if (ctype_isstruct(d->info)) { |
| 605 | cconv_struct_tab(cts, d, dp, tabV(o), flags); |
| 606 | return; |
| 607 | } else { |
| 608 | goto err_conv; |
| 609 | } |
| 610 | } else if (tvisbool(o)) { |
| 611 | tmpbool = boolV(o); |
| 612 | sp = &tmpbool; |
| 613 | sid = CTID_BOOL; |
| 614 | } else if (tvisnil(o)) { |
| 615 | tmpptr = (void *)0; |
| 616 | flags |= CCF_FROMTV; |
| 617 | } else if (tvisudata(o)) { |
| 618 | GCudata *ud = udataV(o); |
| 619 | tmpptr = uddata(ud); |
| 620 | if (ud->udtype == UDTYPE_IO_FILE) |
| 621 | tmpptr = *(void **)tmpptr; |
| 622 | } else if (tvislightud(o)) { |
| 623 | tmpptr = lightudV(cts->g, o); |
| 624 | } else if (tvisfunc(o)) { |
| 625 | void *p = lj_ccallback_new(cts, d, funcV(o)); |
| 626 | if (p) { |
| 627 | *(void **)dp = p; |
| 628 | return; |
| 629 | } |
| 630 | goto err_conv; |
| 631 | } else { |
| 632 | err_conv: |
| 633 | cconv_err_convtv(cts, d, o, flags); |
| 634 | } |
| 635 | s = ctype_get(cts, sid); |
| 636 | doconv: |
| 637 | if (ctype_isenum(d->info)) d = ctype_child(cts, d); |
| 638 | lj_cconv_ct_ct(cts, d, s, dp, sp, flags); |
| 639 | } |
| 640 | |
| 641 | /* Convert TValue to bitfield. */ |
| 642 | void lj_cconv_bf_tv(CTState *cts, CType *d, uint8_t *dp, TValue *o) |
| 643 | { |
| 644 | CTInfo info = d->info; |
| 645 | CTSize pos, bsz; |
| 646 | uint32_t val, mask; |
| 647 | lj_assertCTS(ctype_isbitfield(info), "bitfield expected" ); |
| 648 | if ((info & CTF_BOOL)) { |
| 649 | uint8_t tmpbool; |
| 650 | lj_assertCTS(ctype_bitbsz(info) == 1, "bad bool bitfield size" ); |
| 651 | lj_cconv_ct_tv(cts, ctype_get(cts, CTID_BOOL), &tmpbool, o, 0); |
| 652 | val = tmpbool; |
| 653 | } else { |
| 654 | CTypeID did = (info & CTF_UNSIGNED) ? CTID_UINT32 : CTID_INT32; |
| 655 | lj_cconv_ct_tv(cts, ctype_get(cts, did), (uint8_t *)&val, o, 0); |
| 656 | } |
| 657 | pos = ctype_bitpos(info); |
| 658 | bsz = ctype_bitbsz(info); |
| 659 | lj_assertCTS(pos < 8*ctype_bitcsz(info), "bad bitfield position" ); |
| 660 | lj_assertCTS(bsz > 0 && bsz <= 8*ctype_bitcsz(info), "bad bitfield size" ); |
| 661 | /* Check if a packed bitfield crosses a container boundary. */ |
| 662 | if (pos + bsz > 8*ctype_bitcsz(info)) |
| 663 | lj_err_caller(cts->L, LJ_ERR_FFI_NYIPACKBIT); |
| 664 | mask = ((1u << bsz) - 1u) << pos; |
| 665 | val = (val << pos) & mask; |
| 666 | /* NYI: packed bitfields may cause misaligned reads/writes. */ |
| 667 | switch (ctype_bitcsz(info)) { |
| 668 | case 4: *(uint32_t *)dp = (*(uint32_t *)dp & ~mask) | (uint32_t)val; break; |
| 669 | case 2: *(uint16_t *)dp = (*(uint16_t *)dp & ~mask) | (uint16_t)val; break; |
| 670 | case 1: *(uint8_t *)dp = (*(uint8_t *)dp & ~mask) | (uint8_t)val; break; |
| 671 | default: |
| 672 | lj_assertCTS(0, "bad bitfield container size %d" , ctype_bitcsz(info)); |
| 673 | break; |
| 674 | } |
| 675 | } |
| 676 | |
| 677 | /* -- Initialize C type with TValues -------------------------------------- */ |
| 678 | |
| 679 | /* Initialize an array with TValues. */ |
| 680 | static void cconv_array_init(CTState *cts, CType *d, CTSize sz, uint8_t *dp, |
| 681 | TValue *o, MSize len) |
| 682 | { |
| 683 | CType *dc = ctype_rawchild(cts, d); /* Array element type. */ |
| 684 | CTSize ofs, esize = dc->size; |
| 685 | MSize i; |
| 686 | if (len*esize > sz) |
| 687 | cconv_err_initov(cts, d); |
| 688 | for (i = 0, ofs = 0; i < len; i++, ofs += esize) |
| 689 | lj_cconv_ct_tv(cts, dc, dp + ofs, o + i, 0); |
| 690 | if (ofs == esize) { /* Replicate a single element. */ |
| 691 | for (; ofs < sz; ofs += esize) memcpy(dp + ofs, dp, esize); |
| 692 | } else { /* Otherwise fill the remainder with zero. */ |
| 693 | memset(dp + ofs, 0, sz - ofs); |
| 694 | } |
| 695 | } |
| 696 | |
| 697 | /* Initialize a sub-struct/union with TValues. */ |
| 698 | static void cconv_substruct_init(CTState *cts, CType *d, uint8_t *dp, |
| 699 | TValue *o, MSize len, MSize *ip) |
| 700 | { |
| 701 | CTypeID id = d->sib; |
| 702 | while (id) { |
| 703 | CType *df = ctype_get(cts, id); |
| 704 | id = df->sib; |
| 705 | if (ctype_isfield(df->info) || ctype_isbitfield(df->info)) { |
| 706 | MSize i = *ip; |
| 707 | if (!gcref(df->name)) continue; /* Ignore unnamed fields. */ |
| 708 | if (i >= len) break; |
| 709 | *ip = i + 1; |
| 710 | if (ctype_isfield(df->info)) |
| 711 | lj_cconv_ct_tv(cts, ctype_rawchild(cts, df), dp+df->size, o + i, 0); |
| 712 | else |
| 713 | lj_cconv_bf_tv(cts, df, dp+df->size, o + i); |
| 714 | if ((d->info & CTF_UNION)) break; |
| 715 | } else if (ctype_isxattrib(df->info, CTA_SUBTYPE)) { |
| 716 | cconv_substruct_init(cts, ctype_rawchild(cts, df), |
| 717 | dp+df->size, o, len, ip); |
| 718 | if ((d->info & CTF_UNION)) break; |
| 719 | } /* Ignore all other entries in the chain. */ |
| 720 | } |
| 721 | } |
| 722 | |
| 723 | /* Initialize a struct/union with TValues. */ |
| 724 | static void cconv_struct_init(CTState *cts, CType *d, CTSize sz, uint8_t *dp, |
| 725 | TValue *o, MSize len) |
| 726 | { |
| 727 | MSize i = 0; |
| 728 | memset(dp, 0, sz); /* Much simpler to clear the struct first. */ |
| 729 | cconv_substruct_init(cts, d, dp, o, len, &i); |
| 730 | if (i < len) |
| 731 | cconv_err_initov(cts, d); |
| 732 | } |
| 733 | |
| 734 | /* Check whether to use a multi-value initializer. |
| 735 | ** This is true if an aggregate is to be initialized with a value. |
| 736 | ** Valarrays are treated as values here so ct_tv handles (V|C, I|F). |
| 737 | */ |
| 738 | int lj_cconv_multi_init(CTState *cts, CType *d, TValue *o) |
| 739 | { |
| 740 | if (!(ctype_isrefarray(d->info) || ctype_isstruct(d->info))) |
| 741 | return 0; /* Destination is not an aggregate. */ |
| 742 | if (tvistab(o) || (tvisstr(o) && !ctype_isstruct(d->info))) |
| 743 | return 0; /* Initializer is not a value. */ |
| 744 | if (tviscdata(o) && lj_ctype_rawref(cts, cdataV(o)->ctypeid) == d) |
| 745 | return 0; /* Source and destination are identical aggregates. */ |
| 746 | return 1; /* Otherwise the initializer is a value. */ |
| 747 | } |
| 748 | |
| 749 | /* Initialize C type with TValues. Caveat: expects to get the raw CType! */ |
| 750 | void lj_cconv_ct_init(CTState *cts, CType *d, CTSize sz, |
| 751 | uint8_t *dp, TValue *o, MSize len) |
| 752 | { |
| 753 | if (len == 0) |
| 754 | memset(dp, 0, sz); |
| 755 | else if (len == 1 && !lj_cconv_multi_init(cts, d, o)) |
| 756 | lj_cconv_ct_tv(cts, d, dp, o, 0); |
| 757 | else if (ctype_isarray(d->info)) /* Also handles valarray init with len>1. */ |
| 758 | cconv_array_init(cts, d, sz, dp, o, len); |
| 759 | else if (ctype_isstruct(d->info)) |
| 760 | cconv_struct_init(cts, d, sz, dp, o, len); |
| 761 | else |
| 762 | cconv_err_initov(cts, d); |
| 763 | } |
| 764 | |
| 765 | #endif |
| 766 | |