1/*
2** String formatting for floating-point numbers.
3** Copyright (C) 2005-2021 Mike Pall. See Copyright Notice in luajit.h
4** Contributed by Peter Cawley.
5*/
6
7#include <stdio.h>
8
9#define lj_strfmt_num_c
10#define LUA_CORE
11
12#include "lj_obj.h"
13#include "lj_buf.h"
14#include "lj_str.h"
15#include "lj_strfmt.h"
16
17/* -- Precomputed tables -------------------------------------------------- */
18
19/* Rescale factors to push the exponent of a number towards zero. */
20#define RESCALE_EXPONENTS(P, N) \
21 P(308), P(289), P(270), P(250), P(231), P(212), P(193), P(173), P(154), \
22 P(135), P(115), P(96), P(77), P(58), P(38), P(0), P(0), P(0), N(39), N(58), \
23 N(77), N(96), N(116), N(135), N(154), N(174), N(193), N(212), N(231), \
24 N(251), N(270), N(289)
25
26#define ONE_E_P(X) 1e+0 ## X
27#define ONE_E_N(X) 1e-0 ## X
28static const int16_t rescale_e[] = { RESCALE_EXPONENTS(-, +) };
29static const double rescale_n[] = { RESCALE_EXPONENTS(ONE_E_P, ONE_E_N) };
30#undef ONE_E_N
31#undef ONE_E_P
32
33/*
34** For p in range -70 through 57, this table encodes pairs (m, e) such that
35** 4*2^p <= (uint8_t)m*10^e, and is the smallest value for which this holds.
36*/
37static const int8_t four_ulp_m_e[] = {
38 34, -21, 68, -21, 14, -20, 28, -20, 55, -20, 2, -19, 3, -19, 5, -19, 9, -19,
39 -82, -18, 35, -18, 7, -17, -117, -17, 28, -17, 56, -17, 112, -16, -33, -16,
40 45, -16, 89, -16, -78, -15, 36, -15, 72, -15, -113, -14, 29, -14, 57, -14,
41 114, -13, -28, -13, 46, -13, 91, -12, -74, -12, 37, -12, 73, -12, 15, -11, 3,
42 -11, 59, -11, 2, -10, 3, -10, 5, -10, 1, -9, -69, -9, 38, -9, 75, -9, 15, -7,
43 3, -7, 6, -7, 12, -6, -17, -7, 48, -7, 96, -7, -65, -6, 39, -6, 77, -6, -103,
44 -5, 31, -5, 62, -5, 123, -4, -11, -4, 49, -4, 98, -4, -60, -3, 4, -2, 79, -3,
45 16, -2, 32, -2, 63, -2, 2, -1, 25, 0, 5, 1, 1, 2, 2, 2, 4, 2, 8, 2, 16, 2,
46 32, 2, 64, 2, -128, 2, 26, 2, 52, 2, 103, 3, -51, 3, 41, 4, 82, 4, -92, 4,
47 33, 4, 66, 4, -124, 5, 27, 5, 53, 5, 105, 6, 21, 6, 42, 6, 84, 6, 17, 7, 34,
48 7, 68, 7, 2, 8, 3, 8, 6, 8, 108, 9, -41, 9, 43, 10, 86, 9, -84, 10, 35, 10,
49 69, 10, -118, 11, 28, 11, 55, 12, 11, 13, 22, 13, 44, 13, 88, 13, -80, 13,
50 36, 13, 71, 13, -115, 14, 29, 14, 57, 14, 113, 15, -30, 15, 46, 15, 91, 15,
51 19, 16, 37, 16, 73, 16, 2, 17, 3, 17, 6, 17
52};
53
54/* min(2^32-1, 10^e-1) for e in range 0 through 10 */
55static uint32_t ndigits_dec_threshold[] = {
56 0, 9U, 99U, 999U, 9999U, 99999U, 999999U,
57 9999999U, 99999999U, 999999999U, 0xffffffffU
58};
59
60/* -- Helper functions ---------------------------------------------------- */
61
62/* Compute the number of digits in the decimal representation of x. */
63static MSize ndigits_dec(uint32_t x)
64{
65 MSize t = ((lj_fls(x | 1) * 77) >> 8) + 1; /* 2^8/77 is roughly log2(10) */
66 return t + (x > ndigits_dec_threshold[t]);
67}
68
69#define WINT_R(x, sh, sc) \
70 { uint32_t d = (x*(((1<<sh)+sc-1)/sc))>>sh; x -= d*sc; *p++ = (char)('0'+d); }
71
72/* Write 9-digit unsigned integer to buffer. */
73static char *lj_strfmt_wuint9(char *p, uint32_t u)
74{
75 uint32_t v = u / 10000, w;
76 u -= v * 10000;
77 w = v / 10000;
78 v -= w * 10000;
79 *p++ = (char)('0'+w);
80 WINT_R(v, 23, 1000)
81 WINT_R(v, 12, 100)
82 WINT_R(v, 10, 10)
83 *p++ = (char)('0'+v);
84 WINT_R(u, 23, 1000)
85 WINT_R(u, 12, 100)
86 WINT_R(u, 10, 10)
87 *p++ = (char)('0'+u);
88 return p;
89}
90#undef WINT_R
91
92/* -- Extended precision arithmetic --------------------------------------- */
93
94/*
95** The "nd" format is a fixed-precision decimal representation for numbers. It
96** consists of up to 64 uint32_t values, with each uint32_t storing a value
97** in the range [0, 1e9). A number in "nd" format consists of three variables:
98**
99** uint32_t nd[64];
100** uint32_t ndlo;
101** uint32_t ndhi;
102**
103** The integral part of the number is stored in nd[0 ... ndhi], the value of
104** which is sum{i in [0, ndhi] | nd[i] * 10^(9*i)}. If the fractional part of
105** the number is zero, ndlo is zero. Otherwise, the fractional part is stored
106** in nd[ndlo ... 63], the value of which is taken to be
107** sum{i in [ndlo, 63] | nd[i] * 10^(9*(i-64))}.
108**
109** If the array part had 128 elements rather than 64, then every double would
110** have an exact representation in "nd" format. With 64 elements, all integral
111** doubles have an exact representation, and all non-integral doubles have
112** enough digits to make both %.99e and %.99f do the right thing.
113*/
114
115#if LJ_64
116#define ND_MUL2K_MAX_SHIFT 29
117#define ND_MUL2K_DIV1E9(val) ((uint32_t)((val) / 1000000000))
118#else
119#define ND_MUL2K_MAX_SHIFT 11
120#define ND_MUL2K_DIV1E9(val) ((uint32_t)((val) >> 9) / 1953125)
121#endif
122
123/* Multiply nd by 2^k and add carry_in (ndlo is assumed to be zero). */
124static uint32_t nd_mul2k(uint32_t* nd, uint32_t ndhi, uint32_t k,
125 uint32_t carry_in, SFormat sf)
126{
127 uint32_t i, ndlo = 0, start = 1;
128 /* Performance hacks. */
129 if (k > ND_MUL2K_MAX_SHIFT*2 && STRFMT_FP(sf) != STRFMT_FP(STRFMT_T_FP_F)) {
130 start = ndhi - (STRFMT_PREC(sf) + 17) / 8;
131 }
132 /* Real logic. */
133 while (k >= ND_MUL2K_MAX_SHIFT) {
134 for (i = ndlo; i <= ndhi; i++) {
135 uint64_t val = ((uint64_t)nd[i] << ND_MUL2K_MAX_SHIFT) | carry_in;
136 carry_in = ND_MUL2K_DIV1E9(val);
137 nd[i] = (uint32_t)val - carry_in * 1000000000;
138 }
139 if (carry_in) {
140 nd[++ndhi] = carry_in; carry_in = 0;
141 if (start++ == ndlo) ++ndlo;
142 }
143 k -= ND_MUL2K_MAX_SHIFT;
144 }
145 if (k) {
146 for (i = ndlo; i <= ndhi; i++) {
147 uint64_t val = ((uint64_t)nd[i] << k) | carry_in;
148 carry_in = ND_MUL2K_DIV1E9(val);
149 nd[i] = (uint32_t)val - carry_in * 1000000000;
150 }
151 if (carry_in) nd[++ndhi] = carry_in;
152 }
153 return ndhi;
154}
155
156/* Divide nd by 2^k (ndlo is assumed to be zero). */
157static uint32_t nd_div2k(uint32_t* nd, uint32_t ndhi, uint32_t k, SFormat sf)
158{
159 uint32_t ndlo = 0, stop1 = ~0, stop2 = ~0;
160 /* Performance hacks. */
161 if (!ndhi) {
162 if (!nd[0]) {
163 return 0;
164 } else {
165 uint32_t s = lj_ffs(nd[0]);
166 if (s >= k) { nd[0] >>= k; return 0; }
167 nd[0] >>= s; k -= s;
168 }
169 }
170 if (k > 18) {
171 if (STRFMT_FP(sf) == STRFMT_FP(STRFMT_T_FP_F)) {
172 stop1 = 63 - (int32_t)STRFMT_PREC(sf) / 9;
173 } else {
174 int32_t floorlog2 = ndhi * 29 + lj_fls(nd[ndhi]) - k;
175 int32_t floorlog10 = (int32_t)(floorlog2 * 0.30102999566398114);
176 stop1 = 62 + (floorlog10 - (int32_t)STRFMT_PREC(sf)) / 9;
177 stop2 = 61 + ndhi - (int32_t)STRFMT_PREC(sf) / 8;
178 }
179 }
180 /* Real logic. */
181 while (k >= 9) {
182 uint32_t i = ndhi, carry = 0;
183 for (;;) {
184 uint32_t val = nd[i];
185 nd[i] = (val >> 9) + carry;
186 carry = (val & 0x1ff) * 1953125;
187 if (i == ndlo) break;
188 i = (i - 1) & 0x3f;
189 }
190 if (ndlo != stop1 && ndlo != stop2) {
191 if (carry) { ndlo = (ndlo - 1) & 0x3f; nd[ndlo] = carry; }
192 if (!nd[ndhi]) { ndhi = (ndhi - 1) & 0x3f; stop2--; }
193 } else if (!nd[ndhi]) {
194 if (ndhi != ndlo) { ndhi = (ndhi - 1) & 0x3f; stop2--; }
195 else return ndlo;
196 }
197 k -= 9;
198 }
199 if (k) {
200 uint32_t mask = (1U << k) - 1, mul = 1000000000 >> k, i = ndhi, carry = 0;
201 for (;;) {
202 uint32_t val = nd[i];
203 nd[i] = (val >> k) + carry;
204 carry = (val & mask) * mul;
205 if (i == ndlo) break;
206 i = (i - 1) & 0x3f;
207 }
208 if (carry) { ndlo = (ndlo - 1) & 0x3f; nd[ndlo] = carry; }
209 }
210 return ndlo;
211}
212
213/* Add m*10^e to nd (assumes ndlo <= e/9 <= ndhi and 0 <= m <= 9). */
214static uint32_t nd_add_m10e(uint32_t* nd, uint32_t ndhi, uint8_t m, int32_t e)
215{
216 uint32_t i, carry;
217 if (e >= 0) {
218 i = (uint32_t)e/9;
219 carry = m * (ndigits_dec_threshold[e - (int32_t)i*9] + 1);
220 } else {
221 int32_t f = (e-8)/9;
222 i = (uint32_t)(64 + f);
223 carry = m * (ndigits_dec_threshold[e - f*9] + 1);
224 }
225 for (;;) {
226 uint32_t val = nd[i] + carry;
227 if (LJ_UNLIKELY(val >= 1000000000)) {
228 val -= 1000000000;
229 nd[i] = val;
230 if (LJ_UNLIKELY(i == ndhi)) {
231 ndhi = (ndhi + 1) & 0x3f;
232 nd[ndhi] = 1;
233 break;
234 }
235 carry = 1;
236 i = (i + 1) & 0x3f;
237 } else {
238 nd[i] = val;
239 break;
240 }
241 }
242 return ndhi;
243}
244
245/* Test whether two "nd" values are equal in their most significant digits. */
246static int nd_similar(uint32_t* nd, uint32_t ndhi, uint32_t* ref, MSize hilen,
247 MSize prec)
248{
249 char nd9[9], ref9[9];
250 if (hilen <= prec) {
251 if (LJ_UNLIKELY(nd[ndhi] != *ref)) return 0;
252 prec -= hilen; ref--; ndhi = (ndhi - 1) & 0x3f;
253 if (prec >= 9) {
254 if (LJ_UNLIKELY(nd[ndhi] != *ref)) return 0;
255 prec -= 9; ref--; ndhi = (ndhi - 1) & 0x3f;
256 }
257 } else {
258 prec -= hilen - 9;
259 }
260 lj_assertX(prec < 9, "bad precision %d", prec);
261 lj_strfmt_wuint9(nd9, nd[ndhi]);
262 lj_strfmt_wuint9(ref9, *ref);
263 return !memcmp(nd9, ref9, prec) && (nd9[prec] < '5') == (ref9[prec] < '5');
264}
265
266/* -- Formatted conversions to buffer ------------------------------------- */
267
268/* Write formatted floating-point number to either sb or p. */
269static char *lj_strfmt_wfnum(SBuf *sb, SFormat sf, lua_Number n, char *p)
270{
271 MSize width = STRFMT_WIDTH(sf), prec = STRFMT_PREC(sf), len;
272 TValue t;
273 t.n = n;
274 if (LJ_UNLIKELY((t.u32.hi << 1) >= 0xffe00000)) {
275 /* Handle non-finite values uniformly for %a, %e, %f, %g. */
276 int prefix = 0, ch = (sf & STRFMT_F_UPPER) ? 0x202020 : 0;
277 if (((t.u32.hi & 0x000fffff) | t.u32.lo) != 0) {
278 ch ^= ('n' << 16) | ('a' << 8) | 'n';
279 if ((sf & STRFMT_F_SPACE)) prefix = ' ';
280 } else {
281 ch ^= ('i' << 16) | ('n' << 8) | 'f';
282 if ((t.u32.hi & 0x80000000)) prefix = '-';
283 else if ((sf & STRFMT_F_PLUS)) prefix = '+';
284 else if ((sf & STRFMT_F_SPACE)) prefix = ' ';
285 }
286 len = 3 + (prefix != 0);
287 if (!p) p = lj_buf_more(sb, width > len ? width : len);
288 if (!(sf & STRFMT_F_LEFT)) while (width-- > len) *p++ = ' ';
289 if (prefix) *p++ = prefix;
290 *p++ = (char)(ch >> 16); *p++ = (char)(ch >> 8); *p++ = (char)ch;
291 } else if (STRFMT_FP(sf) == STRFMT_FP(STRFMT_T_FP_A)) {
292 /* %a */
293 const char *hexdig = (sf & STRFMT_F_UPPER) ? "0123456789ABCDEFPX"
294 : "0123456789abcdefpx";
295 int32_t e = (t.u32.hi >> 20) & 0x7ff;
296 char prefix = 0, eprefix = '+';
297 if (t.u32.hi & 0x80000000) prefix = '-';
298 else if ((sf & STRFMT_F_PLUS)) prefix = '+';
299 else if ((sf & STRFMT_F_SPACE)) prefix = ' ';
300 t.u32.hi &= 0xfffff;
301 if (e) {
302 t.u32.hi |= 0x100000;
303 e -= 1023;
304 } else if (t.u32.lo | t.u32.hi) {
305 /* Non-zero denormal - normalise it. */
306 uint32_t shift = t.u32.hi ? 20-lj_fls(t.u32.hi) : 52-lj_fls(t.u32.lo);
307 e = -1022 - shift;
308 t.u64 <<= shift;
309 }
310 /* abs(n) == t.u64 * 2^(e - 52) */
311 /* If n != 0, bit 52 of t.u64 is set, and is the highest set bit. */
312 if ((int32_t)prec < 0) {
313 /* Default precision: use smallest precision giving exact result. */
314 prec = t.u32.lo ? 13-lj_ffs(t.u32.lo)/4 : 5-lj_ffs(t.u32.hi|0x100000)/4;
315 } else if (prec < 13) {
316 /* Precision is sufficiently low as to maybe require rounding. */
317 t.u64 += (((uint64_t)1) << (51 - prec*4));
318 }
319 if (e < 0) {
320 eprefix = '-';
321 e = -e;
322 }
323 len = 5 + ndigits_dec((uint32_t)e) + prec + (prefix != 0)
324 + ((prec | (sf & STRFMT_F_ALT)) != 0);
325 if (!p) p = lj_buf_more(sb, width > len ? width : len);
326 if (!(sf & (STRFMT_F_LEFT | STRFMT_F_ZERO))) {
327 while (width-- > len) *p++ = ' ';
328 }
329 if (prefix) *p++ = prefix;
330 *p++ = '0';
331 *p++ = hexdig[17]; /* x or X */
332 if ((sf & (STRFMT_F_LEFT | STRFMT_F_ZERO)) == STRFMT_F_ZERO) {
333 while (width-- > len) *p++ = '0';
334 }
335 *p++ = '0' + (t.u32.hi >> 20); /* Usually '1', sometimes '0' or '2'. */
336 if ((prec | (sf & STRFMT_F_ALT))) {
337 /* Emit fractional part. */
338 char *q = p + 1 + prec;
339 *p = '.';
340 if (prec < 13) t.u64 >>= (52 - prec*4);
341 else while (prec > 13) p[prec--] = '0';
342 while (prec) { p[prec--] = hexdig[t.u64 & 15]; t.u64 >>= 4; }
343 p = q;
344 }
345 *p++ = hexdig[16]; /* p or P */
346 *p++ = eprefix; /* + or - */
347 p = lj_strfmt_wint(p, e);
348 } else {
349 /* %e or %f or %g - begin by converting n to "nd" format. */
350 uint32_t nd[64];
351 uint32_t ndhi = 0, ndlo, i;
352 int32_t e = (t.u32.hi >> 20) & 0x7ff, ndebias = 0;
353 char prefix = 0, *q;
354 if (t.u32.hi & 0x80000000) prefix = '-';
355 else if ((sf & STRFMT_F_PLUS)) prefix = '+';
356 else if ((sf & STRFMT_F_SPACE)) prefix = ' ';
357 prec += ((int32_t)prec >> 31) & 7; /* Default precision is 6. */
358 if (STRFMT_FP(sf) == STRFMT_FP(STRFMT_T_FP_G)) {
359 /* %g - decrement precision if non-zero (to make it like %e). */
360 prec--;
361 prec ^= (uint32_t)((int32_t)prec >> 31);
362 }
363 if ((sf & STRFMT_T_FP_E) && prec < 14 && n != 0) {
364 /* Precision is sufficiently low that rescaling will probably work. */
365 if ((ndebias = rescale_e[e >> 6])) {
366 t.n = n * rescale_n[e >> 6];
367 if (LJ_UNLIKELY(!e)) t.n *= 1e10, ndebias -= 10;
368 t.u64 -= 2; /* Convert 2ulp below (later we convert 2ulp above). */
369 nd[0] = 0x100000 | (t.u32.hi & 0xfffff);
370 e = ((t.u32.hi >> 20) & 0x7ff) - 1075 - (ND_MUL2K_MAX_SHIFT < 29);
371 goto load_t_lo; rescale_failed:
372 t.n = n;
373 e = (t.u32.hi >> 20) & 0x7ff;
374 ndebias = ndhi = 0;
375 }
376 }
377 nd[0] = t.u32.hi & 0xfffff;
378 if (e == 0) e++; else nd[0] |= 0x100000;
379 e -= 1043;
380 if (t.u32.lo) {
381 e -= 32 + (ND_MUL2K_MAX_SHIFT < 29); load_t_lo:
382#if ND_MUL2K_MAX_SHIFT >= 29
383 nd[0] = (nd[0] << 3) | (t.u32.lo >> 29);
384 ndhi = nd_mul2k(nd, ndhi, 29, t.u32.lo & 0x1fffffff, sf);
385#elif ND_MUL2K_MAX_SHIFT >= 11
386 ndhi = nd_mul2k(nd, ndhi, 11, t.u32.lo >> 21, sf);
387 ndhi = nd_mul2k(nd, ndhi, 11, (t.u32.lo >> 10) & 0x7ff, sf);
388 ndhi = nd_mul2k(nd, ndhi, 11, (t.u32.lo << 1) & 0x7ff, sf);
389#else
390#error "ND_MUL2K_MAX_SHIFT too small"
391#endif
392 }
393 if (e >= 0) {
394 ndhi = nd_mul2k(nd, ndhi, (uint32_t)e, 0, sf);
395 ndlo = 0;
396 } else {
397 ndlo = nd_div2k(nd, ndhi, (uint32_t)-e, sf);
398 if (ndhi && !nd[ndhi]) ndhi--;
399 }
400 /* abs(n) == nd * 10^ndebias (for slightly loose interpretation of ==) */
401 if ((sf & STRFMT_T_FP_E)) {
402 /* %e or %g - assume %e and start by calculating nd's exponent (nde). */
403 char eprefix = '+';
404 int32_t nde = -1;
405 MSize hilen;
406 if (ndlo && !nd[ndhi]) {
407 ndhi = 64; do {} while (!nd[--ndhi]);
408 nde -= 64 * 9;
409 }
410 hilen = ndigits_dec(nd[ndhi]);
411 nde += ndhi * 9 + hilen;
412 if (ndebias) {
413 /*
414 ** Rescaling was performed, but this introduced some error, and might
415 ** have pushed us across a rounding boundary. We check whether this
416 ** error affected the result by introducing even more error (2ulp in
417 ** either direction), and seeing whether a rounding boundary was
418 ** crossed. Having already converted the -2ulp case, we save off its
419 ** most significant digits, convert the +2ulp case, and compare them.
420 */
421 int32_t eidx = e + 70 + (ND_MUL2K_MAX_SHIFT < 29)
422 + (t.u32.lo >= 0xfffffffe && !(~t.u32.hi << 12));
423 const int8_t *m_e = four_ulp_m_e + eidx * 2;
424 lj_assertG_(G(sbufL(sb)), 0 <= eidx && eidx < 128, "bad eidx %d", eidx);
425 nd[33] = nd[ndhi];
426 nd[32] = nd[(ndhi - 1) & 0x3f];
427 nd[31] = nd[(ndhi - 2) & 0x3f];
428 nd_add_m10e(nd, ndhi, (uint8_t)*m_e, m_e[1]);
429 if (LJ_UNLIKELY(!nd_similar(nd, ndhi, nd + 33, hilen, prec + 1))) {
430 goto rescale_failed;
431 }
432 }
433 if ((int32_t)(prec - nde) < (0x3f & -(int32_t)ndlo) * 9) {
434 /* Precision is sufficiently low as to maybe require rounding. */
435 ndhi = nd_add_m10e(nd, ndhi, 5, nde - prec - 1);
436 nde += (hilen != ndigits_dec(nd[ndhi]));
437 }
438 nde += ndebias;
439 if ((sf & STRFMT_T_FP_F)) {
440 /* %g */
441 if ((int32_t)prec >= nde && nde >= -4) {
442 if (nde < 0) ndhi = 0;
443 prec -= nde;
444 goto g_format_like_f;
445 } else if (!(sf & STRFMT_F_ALT) && prec && width > 5) {
446 /* Decrease precision in order to strip trailing zeroes. */
447 char tail[9];
448 uint32_t maxprec = hilen - 1 + ((ndhi - ndlo) & 0x3f) * 9;
449 if (prec >= maxprec) prec = maxprec;
450 else ndlo = (ndhi - (((int32_t)(prec - hilen) + 9) / 9)) & 0x3f;
451 i = prec - hilen - (((ndhi - ndlo) & 0x3f) * 9) + 10;
452 lj_strfmt_wuint9(tail, nd[ndlo]);
453 while (prec && tail[--i] == '0') {
454 prec--;
455 if (!i) {
456 if (ndlo == ndhi) { prec = 0; break; }
457 lj_strfmt_wuint9(tail, nd[++ndlo]);
458 i = 9;
459 }
460 }
461 }
462 }
463 if (nde < 0) {
464 /* Make nde non-negative. */
465 eprefix = '-';
466 nde = -nde;
467 }
468 len = 3 + prec + (prefix != 0) + ndigits_dec((uint32_t)nde) + (nde < 10)
469 + ((prec | (sf & STRFMT_F_ALT)) != 0);
470 if (!p) p = lj_buf_more(sb, (width > len ? width : len) + 5);
471 if (!(sf & (STRFMT_F_LEFT | STRFMT_F_ZERO))) {
472 while (width-- > len) *p++ = ' ';
473 }
474 if (prefix) *p++ = prefix;
475 if ((sf & (STRFMT_F_LEFT | STRFMT_F_ZERO)) == STRFMT_F_ZERO) {
476 while (width-- > len) *p++ = '0';
477 }
478 q = lj_strfmt_wint(p + 1, nd[ndhi]);
479 p[0] = p[1]; /* Put leading digit in the correct place. */
480 if ((prec | (sf & STRFMT_F_ALT))) {
481 /* Emit fractional part. */
482 p[1] = '.'; p += 2;
483 prec -= (MSize)(q - p); p = q; /* Account for digits already emitted. */
484 /* Then emit chunks of 9 digits (this may emit 8 digits too many). */
485 for (i = ndhi; (int32_t)prec > 0 && i != ndlo; prec -= 9) {
486 i = (i - 1) & 0x3f;
487 p = lj_strfmt_wuint9(p, nd[i]);
488 }
489 if ((sf & STRFMT_T_FP_F) && !(sf & STRFMT_F_ALT)) {
490 /* %g (and not %#g) - strip trailing zeroes. */
491 p += (int32_t)prec & ((int32_t)prec >> 31);
492 while (p[-1] == '0') p--;
493 if (p[-1] == '.') p--;
494 } else {
495 /* %e (or %#g) - emit trailing zeroes. */
496 while ((int32_t)prec > 0) { *p++ = '0'; prec--; }
497 p += (int32_t)prec;
498 }
499 } else {
500 p++;
501 }
502 *p++ = (sf & STRFMT_F_UPPER) ? 'E' : 'e';
503 *p++ = eprefix; /* + or - */
504 if (nde < 10) *p++ = '0'; /* Always at least two digits of exponent. */
505 p = lj_strfmt_wint(p, nde);
506 } else {
507 /* %f (or, shortly, %g in %f style) */
508 if (prec < (MSize)(0x3f & -(int32_t)ndlo) * 9) {
509 /* Precision is sufficiently low as to maybe require rounding. */
510 ndhi = nd_add_m10e(nd, ndhi, 5, 0 - prec - 1);
511 }
512 g_format_like_f:
513 if ((sf & STRFMT_T_FP_E) && !(sf & STRFMT_F_ALT) && prec && width) {
514 /* Decrease precision in order to strip trailing zeroes. */
515 if (ndlo) {
516 /* nd has a fractional part; we need to look at its digits. */
517 char tail[9];
518 uint32_t maxprec = (64 - ndlo) * 9;
519 if (prec >= maxprec) prec = maxprec;
520 else ndlo = 64 - (prec + 8) / 9;
521 i = prec - ((63 - ndlo) * 9);
522 lj_strfmt_wuint9(tail, nd[ndlo]);
523 while (prec && tail[--i] == '0') {
524 prec--;
525 if (!i) {
526 if (ndlo == 63) { prec = 0; break; }
527 lj_strfmt_wuint9(tail, nd[++ndlo]);
528 i = 9;
529 }
530 }
531 } else {
532 /* nd has no fractional part, so precision goes straight to zero. */
533 prec = 0;
534 }
535 }
536 len = ndhi * 9 + ndigits_dec(nd[ndhi]) + prec + (prefix != 0)
537 + ((prec | (sf & STRFMT_F_ALT)) != 0);
538 if (!p) p = lj_buf_more(sb, (width > len ? width : len) + 8);
539 if (!(sf & (STRFMT_F_LEFT | STRFMT_F_ZERO))) {
540 while (width-- > len) *p++ = ' ';
541 }
542 if (prefix) *p++ = prefix;
543 if ((sf & (STRFMT_F_LEFT | STRFMT_F_ZERO)) == STRFMT_F_ZERO) {
544 while (width-- > len) *p++ = '0';
545 }
546 /* Emit integer part. */
547 p = lj_strfmt_wint(p, nd[ndhi]);
548 i = ndhi;
549 while (i) p = lj_strfmt_wuint9(p, nd[--i]);
550 if ((prec | (sf & STRFMT_F_ALT))) {
551 /* Emit fractional part. */
552 *p++ = '.';
553 /* Emit chunks of 9 digits (this may emit 8 digits too many). */
554 while ((int32_t)prec > 0 && i != ndlo) {
555 i = (i - 1) & 0x3f;
556 p = lj_strfmt_wuint9(p, nd[i]);
557 prec -= 9;
558 }
559 if ((sf & STRFMT_T_FP_E) && !(sf & STRFMT_F_ALT)) {
560 /* %g (and not %#g) - strip trailing zeroes. */
561 p += (int32_t)prec & ((int32_t)prec >> 31);
562 while (p[-1] == '0') p--;
563 if (p[-1] == '.') p--;
564 } else {
565 /* %f (or %#g) - emit trailing zeroes. */
566 while ((int32_t)prec > 0) { *p++ = '0'; prec--; }
567 p += (int32_t)prec;
568 }
569 }
570 }
571 }
572 if ((sf & STRFMT_F_LEFT)) while (width-- > len) *p++ = ' ';
573 return p;
574}
575
576/* Add formatted floating-point number to buffer. */
577SBuf *lj_strfmt_putfnum(SBuf *sb, SFormat sf, lua_Number n)
578{
579 setsbufP(sb, lj_strfmt_wfnum(sb, sf, n, NULL));
580 return sb;
581}
582
583/* -- Conversions to strings ---------------------------------------------- */
584
585/* Convert number to string. */
586GCstr * LJ_FASTCALL lj_strfmt_num(lua_State *L, cTValue *o)
587{
588 char buf[STRFMT_MAXBUF_NUM];
589 MSize len = (MSize)(lj_strfmt_wfnum(NULL, STRFMT_G14, o->n, buf) - buf);
590 return lj_str_new(L, buf, len);
591}
592
593