| 1 | /* |
| 2 | ** String scanning. |
| 3 | ** Copyright (C) 2005-2021 Mike Pall. See Copyright Notice in luajit.h |
| 4 | */ |
| 5 | |
| 6 | #include <math.h> |
| 7 | |
| 8 | #define lj_strscan_c |
| 9 | #define LUA_CORE |
| 10 | |
| 11 | #include "lj_obj.h" |
| 12 | #include "lj_char.h" |
| 13 | #include "lj_strscan.h" |
| 14 | |
| 15 | /* -- Scanning numbers ---------------------------------------------------- */ |
| 16 | |
| 17 | /* |
| 18 | ** Rationale for the builtin string to number conversion library: |
| 19 | ** |
| 20 | ** It removes a dependency on libc's strtod(), which is a true portability |
| 21 | ** nightmare. Mainly due to the plethora of supported OS and toolchain |
| 22 | ** combinations. Sadly, the various implementations |
| 23 | ** a) are often buggy, incomplete (no hex floats) and/or imprecise, |
| 24 | ** b) sometimes crash or hang on certain inputs, |
| 25 | ** c) return non-standard NaNs that need to be filtered out, and |
| 26 | ** d) fail if the locale-specific decimal separator is not a dot, |
| 27 | ** which can only be fixed with atrocious workarounds. |
| 28 | ** |
| 29 | ** Also, most of the strtod() implementations are hopelessly bloated, |
| 30 | ** which is not just an I-cache hog, but a problem for static linkage |
| 31 | ** on embedded systems, too. |
| 32 | ** |
| 33 | ** OTOH the builtin conversion function is very compact. Even though it |
| 34 | ** does a lot more, like parsing long longs, octal or imaginary numbers |
| 35 | ** and returning the result in different formats: |
| 36 | ** a) It needs less than 3 KB (!) of machine code (on x64 with -Os), |
| 37 | ** b) it doesn't perform any dynamic allocation and, |
| 38 | ** c) it needs only around 600 bytes of stack space. |
| 39 | ** |
| 40 | ** The builtin function is faster than strtod() for typical inputs, e.g. |
| 41 | ** "123", "1.5" or "1e6". Arguably, it's slower for very large exponents, |
| 42 | ** which are not very common (this could be fixed, if needed). |
| 43 | ** |
| 44 | ** And most importantly, the builtin function is equally precise on all |
| 45 | ** platforms. It correctly converts and rounds any input to a double. |
| 46 | ** If this is not the case, please send a bug report -- but PLEASE verify |
| 47 | ** that the implementation you're comparing to is not the culprit! |
| 48 | ** |
| 49 | ** The implementation quickly pre-scans the entire string first and |
| 50 | ** handles simple integers on-the-fly. Otherwise, it dispatches to the |
| 51 | ** base-specific parser. Hex and octal is straightforward. |
| 52 | ** |
| 53 | ** Decimal to binary conversion uses a fixed-length circular buffer in |
| 54 | ** base 100. Some simple cases are handled directly. For other cases, the |
| 55 | ** number in the buffer is up-scaled or down-scaled until the integer part |
| 56 | ** is in the proper range. Then the integer part is rounded and converted |
| 57 | ** to a double which is finally rescaled to the result. Denormals need |
| 58 | ** special treatment to prevent incorrect 'double rounding'. |
| 59 | */ |
| 60 | |
| 61 | /* Definitions for circular decimal digit buffer (base 100 = 2 digits/byte). */ |
| 62 | #define STRSCAN_DIG 1024 |
| 63 | #define STRSCAN_MAXDIG 800 /* 772 + extra are sufficient. */ |
| 64 | #define STRSCAN_DDIG (STRSCAN_DIG/2) |
| 65 | #define STRSCAN_DMASK (STRSCAN_DDIG-1) |
| 66 | |
| 67 | /* Helpers for circular buffer. */ |
| 68 | #define DNEXT(a) (((a)+1) & STRSCAN_DMASK) |
| 69 | #define DPREV(a) (((a)-1) & STRSCAN_DMASK) |
| 70 | #define DLEN(lo, hi) ((int32_t)(((lo)-(hi)) & STRSCAN_DMASK)) |
| 71 | |
| 72 | #define casecmp(c, k) (((c) | 0x20) == k) |
| 73 | |
| 74 | /* Final conversion to double. */ |
| 75 | static void strscan_double(uint64_t x, TValue *o, int32_t ex2, int32_t neg) |
| 76 | { |
| 77 | double n; |
| 78 | |
| 79 | /* Avoid double rounding for denormals. */ |
| 80 | if (LJ_UNLIKELY(ex2 <= -1075 && x != 0)) { |
| 81 | /* NYI: all of this generates way too much code on 32 bit CPUs. */ |
| 82 | #if (defined(__GNUC__) || defined(__clang__)) && LJ_64 |
| 83 | int32_t b = (int32_t)(__builtin_clzll(x)^63); |
| 84 | #else |
| 85 | int32_t b = (x>>32) ? 32+(int32_t)lj_fls((uint32_t)(x>>32)) : |
| 86 | (int32_t)lj_fls((uint32_t)x); |
| 87 | #endif |
| 88 | if ((int32_t)b + ex2 <= -1023 && (int32_t)b + ex2 >= -1075) { |
| 89 | uint64_t rb = (uint64_t)1 << (-1075-ex2); |
| 90 | if ((x & rb) && ((x & (rb+rb+rb-1)))) x += rb+rb; |
| 91 | x = (x & ~(rb+rb-1)); |
| 92 | } |
| 93 | } |
| 94 | |
| 95 | /* Convert to double using a signed int64_t conversion, then rescale. */ |
| 96 | lj_assertX((int64_t)x >= 0, "bad double conversion" ); |
| 97 | n = (double)(int64_t)x; |
| 98 | if (neg) n = -n; |
| 99 | if (ex2) n = ldexp(n, ex2); |
| 100 | o->n = n; |
| 101 | } |
| 102 | |
| 103 | /* Parse hexadecimal number. */ |
| 104 | static StrScanFmt strscan_hex(const uint8_t *p, TValue *o, |
| 105 | StrScanFmt fmt, uint32_t opt, |
| 106 | int32_t ex2, int32_t neg, uint32_t dig) |
| 107 | { |
| 108 | uint64_t x = 0; |
| 109 | uint32_t i; |
| 110 | |
| 111 | /* Scan hex digits. */ |
| 112 | for (i = dig > 16 ? 16 : dig ; i; i--, p++) { |
| 113 | uint32_t d = (*p != '.' ? *p : *++p); if (d > '9') d += 9; |
| 114 | x = (x << 4) + (d & 15); |
| 115 | } |
| 116 | |
| 117 | /* Summarize rounding-effect of excess digits. */ |
| 118 | for (i = 16; i < dig; i++, p++) |
| 119 | x |= ((*p != '.' ? *p : *++p) != '0'), ex2 += 4; |
| 120 | |
| 121 | /* Format-specific handling. */ |
| 122 | switch (fmt) { |
| 123 | case STRSCAN_INT: |
| 124 | if (!(opt & STRSCAN_OPT_TONUM) && x < 0x80000000u+neg) { |
| 125 | o->i = neg ? -(int32_t)x : (int32_t)x; |
| 126 | return STRSCAN_INT; /* Fast path for 32 bit integers. */ |
| 127 | } |
| 128 | if (!(opt & STRSCAN_OPT_C)) { fmt = STRSCAN_NUM; break; } |
| 129 | /* fallthrough */ |
| 130 | case STRSCAN_U32: |
| 131 | if (dig > 8) return STRSCAN_ERROR; |
| 132 | o->i = neg ? -(int32_t)x : (int32_t)x; |
| 133 | return STRSCAN_U32; |
| 134 | case STRSCAN_I64: |
| 135 | case STRSCAN_U64: |
| 136 | if (dig > 16) return STRSCAN_ERROR; |
| 137 | o->u64 = neg ? (uint64_t)-(int64_t)x : x; |
| 138 | return fmt; |
| 139 | default: |
| 140 | break; |
| 141 | } |
| 142 | |
| 143 | /* Reduce range, then convert to double. */ |
| 144 | if ((x & U64x(c0000000,0000000))) { x = (x >> 2) | (x & 3); ex2 += 2; } |
| 145 | strscan_double(x, o, ex2, neg); |
| 146 | return fmt; |
| 147 | } |
| 148 | |
| 149 | /* Parse octal number. */ |
| 150 | static StrScanFmt strscan_oct(const uint8_t *p, TValue *o, |
| 151 | StrScanFmt fmt, int32_t neg, uint32_t dig) |
| 152 | { |
| 153 | uint64_t x = 0; |
| 154 | |
| 155 | /* Scan octal digits. */ |
| 156 | if (dig > 22 || (dig == 22 && *p > '1')) return STRSCAN_ERROR; |
| 157 | while (dig-- > 0) { |
| 158 | if (!(*p >= '0' && *p <= '7')) return STRSCAN_ERROR; |
| 159 | x = (x << 3) + (*p++ & 7); |
| 160 | } |
| 161 | |
| 162 | /* Format-specific handling. */ |
| 163 | switch (fmt) { |
| 164 | case STRSCAN_INT: |
| 165 | if (x >= 0x80000000u+neg) fmt = STRSCAN_U32; |
| 166 | /* fallthrough */ |
| 167 | case STRSCAN_U32: |
| 168 | if ((x >> 32)) return STRSCAN_ERROR; |
| 169 | o->i = neg ? -(int32_t)x : (int32_t)x; |
| 170 | break; |
| 171 | default: |
| 172 | case STRSCAN_I64: |
| 173 | case STRSCAN_U64: |
| 174 | o->u64 = neg ? (uint64_t)-(int64_t)x : x; |
| 175 | break; |
| 176 | } |
| 177 | return fmt; |
| 178 | } |
| 179 | |
| 180 | /* Parse decimal number. */ |
| 181 | static StrScanFmt strscan_dec(const uint8_t *p, TValue *o, |
| 182 | StrScanFmt fmt, uint32_t opt, |
| 183 | int32_t ex10, int32_t neg, uint32_t dig) |
| 184 | { |
| 185 | uint8_t xi[STRSCAN_DDIG], *xip = xi; |
| 186 | |
| 187 | if (dig) { |
| 188 | uint32_t i = dig; |
| 189 | if (i > STRSCAN_MAXDIG) { |
| 190 | ex10 += (int32_t)(i - STRSCAN_MAXDIG); |
| 191 | i = STRSCAN_MAXDIG; |
| 192 | } |
| 193 | /* Scan unaligned leading digit. */ |
| 194 | if (((ex10^i) & 1)) |
| 195 | *xip++ = ((*p != '.' ? *p : *++p) & 15), i--, p++; |
| 196 | /* Scan aligned double-digits. */ |
| 197 | for ( ; i > 1; i -= 2) { |
| 198 | uint32_t d = 10 * ((*p != '.' ? *p : *++p) & 15); p++; |
| 199 | *xip++ = d + ((*p != '.' ? *p : *++p) & 15); p++; |
| 200 | } |
| 201 | /* Scan and realign trailing digit. */ |
| 202 | if (i) *xip++ = 10 * ((*p != '.' ? *p : *++p) & 15), ex10--, dig++, p++; |
| 203 | |
| 204 | /* Summarize rounding-effect of excess digits. */ |
| 205 | if (dig > STRSCAN_MAXDIG) { |
| 206 | do { |
| 207 | if ((*p != '.' ? *p : *++p) != '0') { xip[-1] |= 1; break; } |
| 208 | p++; |
| 209 | } while (--dig > STRSCAN_MAXDIG); |
| 210 | dig = STRSCAN_MAXDIG; |
| 211 | } else { /* Simplify exponent. */ |
| 212 | while (ex10 > 0 && dig <= 18) *xip++ = 0, ex10 -= 2, dig += 2; |
| 213 | } |
| 214 | } else { /* Only got zeros. */ |
| 215 | ex10 = 0; |
| 216 | xi[0] = 0; |
| 217 | } |
| 218 | |
| 219 | /* Fast path for numbers in integer format (but handles e.g. 1e6, too). */ |
| 220 | if (dig <= 20 && ex10 == 0) { |
| 221 | uint8_t *xis; |
| 222 | uint64_t x = xi[0]; |
| 223 | double n; |
| 224 | for (xis = xi+1; xis < xip; xis++) x = x * 100 + *xis; |
| 225 | if (!(dig == 20 && (xi[0] > 18 || (int64_t)x >= 0))) { /* No overflow? */ |
| 226 | /* Format-specific handling. */ |
| 227 | switch (fmt) { |
| 228 | case STRSCAN_INT: |
| 229 | if (!(opt & STRSCAN_OPT_TONUM) && x < 0x80000000u+neg) { |
| 230 | o->i = neg ? -(int32_t)x : (int32_t)x; |
| 231 | return STRSCAN_INT; /* Fast path for 32 bit integers. */ |
| 232 | } |
| 233 | if (!(opt & STRSCAN_OPT_C)) { fmt = STRSCAN_NUM; goto plainnumber; } |
| 234 | /* fallthrough */ |
| 235 | case STRSCAN_U32: |
| 236 | if ((x >> 32) != 0) return STRSCAN_ERROR; |
| 237 | o->i = neg ? -(int32_t)x : (int32_t)x; |
| 238 | return STRSCAN_U32; |
| 239 | case STRSCAN_I64: |
| 240 | case STRSCAN_U64: |
| 241 | o->u64 = neg ? (uint64_t)-(int64_t)x : x; |
| 242 | return fmt; |
| 243 | default: |
| 244 | plainnumber: /* Fast path for plain numbers < 2^63. */ |
| 245 | if ((int64_t)x < 0) break; |
| 246 | n = (double)(int64_t)x; |
| 247 | if (neg) n = -n; |
| 248 | o->n = n; |
| 249 | return fmt; |
| 250 | } |
| 251 | } |
| 252 | } |
| 253 | |
| 254 | /* Slow non-integer path. */ |
| 255 | if (fmt == STRSCAN_INT) { |
| 256 | if ((opt & STRSCAN_OPT_C)) return STRSCAN_ERROR; |
| 257 | fmt = STRSCAN_NUM; |
| 258 | } else if (fmt > STRSCAN_INT) { |
| 259 | return STRSCAN_ERROR; |
| 260 | } |
| 261 | { |
| 262 | uint32_t hi = 0, lo = (uint32_t)(xip-xi); |
| 263 | int32_t ex2 = 0, idig = (int32_t)lo + (ex10 >> 1); |
| 264 | |
| 265 | lj_assertX(lo > 0 && (ex10 & 1) == 0, "bad lo %d ex10 %d" , lo, ex10); |
| 266 | |
| 267 | /* Handle simple overflow/underflow. */ |
| 268 | if (idig > 310/2) { if (neg) setminfV(o); else setpinfV(o); return fmt; } |
| 269 | else if (idig < -326/2) { o->n = neg ? -0.0 : 0.0; return fmt; } |
| 270 | |
| 271 | /* Scale up until we have at least 17 or 18 integer part digits. */ |
| 272 | while (idig < 9 && idig < DLEN(lo, hi)) { |
| 273 | uint32_t i, cy = 0; |
| 274 | ex2 -= 6; |
| 275 | for (i = DPREV(lo); ; i = DPREV(i)) { |
| 276 | uint32_t d = (xi[i] << 6) + cy; |
| 277 | cy = (((d >> 2) * 5243) >> 17); d = d - cy * 100; /* Div/mod 100. */ |
| 278 | xi[i] = (uint8_t)d; |
| 279 | if (i == hi) break; |
| 280 | if (d == 0 && i == DPREV(lo)) lo = i; |
| 281 | } |
| 282 | if (cy) { |
| 283 | hi = DPREV(hi); |
| 284 | if (xi[DPREV(lo)] == 0) lo = DPREV(lo); |
| 285 | else if (hi == lo) { lo = DPREV(lo); xi[DPREV(lo)] |= xi[lo]; } |
| 286 | xi[hi] = (uint8_t)cy; idig++; |
| 287 | } |
| 288 | } |
| 289 | |
| 290 | /* Scale down until no more than 17 or 18 integer part digits remain. */ |
| 291 | while (idig > 9) { |
| 292 | uint32_t i = hi, cy = 0; |
| 293 | ex2 += 6; |
| 294 | do { |
| 295 | cy += xi[i]; |
| 296 | xi[i] = (cy >> 6); |
| 297 | cy = 100 * (cy & 0x3f); |
| 298 | if (xi[i] == 0 && i == hi) hi = DNEXT(hi), idig--; |
| 299 | i = DNEXT(i); |
| 300 | } while (i != lo); |
| 301 | while (cy) { |
| 302 | if (hi == lo) { xi[DPREV(lo)] |= 1; break; } |
| 303 | xi[lo] = (cy >> 6); lo = DNEXT(lo); |
| 304 | cy = 100 * (cy & 0x3f); |
| 305 | } |
| 306 | } |
| 307 | |
| 308 | /* Collect integer part digits and convert to rescaled double. */ |
| 309 | { |
| 310 | uint64_t x = xi[hi]; |
| 311 | uint32_t i; |
| 312 | for (i = DNEXT(hi); --idig > 0 && i != lo; i = DNEXT(i)) |
| 313 | x = x * 100 + xi[i]; |
| 314 | if (i == lo) { |
| 315 | while (--idig >= 0) x = x * 100; |
| 316 | } else { /* Gather round bit from remaining digits. */ |
| 317 | x <<= 1; ex2--; |
| 318 | do { |
| 319 | if (xi[i]) { x |= 1; break; } |
| 320 | i = DNEXT(i); |
| 321 | } while (i != lo); |
| 322 | } |
| 323 | strscan_double(x, o, ex2, neg); |
| 324 | } |
| 325 | } |
| 326 | return fmt; |
| 327 | } |
| 328 | |
| 329 | /* Parse binary number. */ |
| 330 | static StrScanFmt strscan_bin(const uint8_t *p, TValue *o, |
| 331 | StrScanFmt fmt, uint32_t opt, |
| 332 | int32_t ex2, int32_t neg, uint32_t dig) |
| 333 | { |
| 334 | uint64_t x = 0; |
| 335 | uint32_t i; |
| 336 | |
| 337 | if (ex2 || dig > 64) return STRSCAN_ERROR; |
| 338 | |
| 339 | /* Scan binary digits. */ |
| 340 | for (i = dig; i; i--, p++) { |
| 341 | if ((*p & ~1) != '0') return STRSCAN_ERROR; |
| 342 | x = (x << 1) | (*p & 1); |
| 343 | } |
| 344 | |
| 345 | /* Format-specific handling. */ |
| 346 | switch (fmt) { |
| 347 | case STRSCAN_INT: |
| 348 | if (!(opt & STRSCAN_OPT_TONUM) && x < 0x80000000u+neg) { |
| 349 | o->i = neg ? -(int32_t)x : (int32_t)x; |
| 350 | return STRSCAN_INT; /* Fast path for 32 bit integers. */ |
| 351 | } |
| 352 | if (!(opt & STRSCAN_OPT_C)) { fmt = STRSCAN_NUM; break; } |
| 353 | /* fallthrough */ |
| 354 | case STRSCAN_U32: |
| 355 | if (dig > 32) return STRSCAN_ERROR; |
| 356 | o->i = neg ? -(int32_t)x : (int32_t)x; |
| 357 | return STRSCAN_U32; |
| 358 | case STRSCAN_I64: |
| 359 | case STRSCAN_U64: |
| 360 | o->u64 = neg ? (uint64_t)-(int64_t)x : x; |
| 361 | return fmt; |
| 362 | default: |
| 363 | break; |
| 364 | } |
| 365 | |
| 366 | /* Reduce range, then convert to double. */ |
| 367 | if ((x & U64x(c0000000,0000000))) { x = (x >> 2) | (x & 3); ex2 += 2; } |
| 368 | strscan_double(x, o, ex2, neg); |
| 369 | return fmt; |
| 370 | } |
| 371 | |
| 372 | /* Scan string containing a number. Returns format. Returns value in o. */ |
| 373 | StrScanFmt lj_strscan_scan(const uint8_t *p, MSize len, TValue *o, |
| 374 | uint32_t opt) |
| 375 | { |
| 376 | int32_t neg = 0; |
| 377 | const uint8_t *pe = p + len; |
| 378 | |
| 379 | /* Remove leading space, parse sign and non-numbers. */ |
| 380 | if (LJ_UNLIKELY(!lj_char_isdigit(*p))) { |
| 381 | while (lj_char_isspace(*p)) p++; |
| 382 | if (*p == '+' || *p == '-') neg = (*p++ == '-'); |
| 383 | if (LJ_UNLIKELY(*p >= 'A')) { /* Parse "inf", "infinity" or "nan". */ |
| 384 | TValue tmp; |
| 385 | setnanV(&tmp); |
| 386 | if (casecmp(p[0],'i') && casecmp(p[1],'n') && casecmp(p[2],'f')) { |
| 387 | if (neg) setminfV(&tmp); else setpinfV(&tmp); |
| 388 | p += 3; |
| 389 | if (casecmp(p[0],'i') && casecmp(p[1],'n') && casecmp(p[2],'i') && |
| 390 | casecmp(p[3],'t') && casecmp(p[4],'y')) p += 5; |
| 391 | } else if (casecmp(p[0],'n') && casecmp(p[1],'a') && casecmp(p[2],'n')) { |
| 392 | p += 3; |
| 393 | } |
| 394 | while (lj_char_isspace(*p)) p++; |
| 395 | if (*p || p < pe) return STRSCAN_ERROR; |
| 396 | o->u64 = tmp.u64; |
| 397 | return STRSCAN_NUM; |
| 398 | } |
| 399 | } |
| 400 | |
| 401 | /* Parse regular number. */ |
| 402 | { |
| 403 | StrScanFmt fmt = STRSCAN_INT; |
| 404 | int cmask = LJ_CHAR_DIGIT; |
| 405 | int base = (opt & STRSCAN_OPT_C) && *p == '0' ? 0 : 10; |
| 406 | const uint8_t *sp, *dp = NULL; |
| 407 | uint32_t dig = 0, hasdig = 0, x = 0; |
| 408 | int32_t ex = 0; |
| 409 | |
| 410 | /* Determine base and skip leading zeros. */ |
| 411 | if (LJ_UNLIKELY(*p <= '0')) { |
| 412 | if (*p == '0') { |
| 413 | if (casecmp(p[1], 'x')) |
| 414 | base = 16, cmask = LJ_CHAR_XDIGIT, p += 2; |
| 415 | else if (casecmp(p[1], 'b')) |
| 416 | base = 2, cmask = LJ_CHAR_DIGIT, p += 2; |
| 417 | } |
| 418 | for ( ; ; p++) { |
| 419 | if (*p == '0') { |
| 420 | hasdig = 1; |
| 421 | } else if (*p == '.') { |
| 422 | if (dp) return STRSCAN_ERROR; |
| 423 | dp = p; |
| 424 | } else { |
| 425 | break; |
| 426 | } |
| 427 | } |
| 428 | } |
| 429 | |
| 430 | /* Preliminary digit and decimal point scan. */ |
| 431 | for (sp = p; ; p++) { |
| 432 | if (LJ_LIKELY(lj_char_isa(*p, cmask))) { |
| 433 | x = x * 10 + (*p & 15); /* For fast path below. */ |
| 434 | dig++; |
| 435 | } else if (*p == '.') { |
| 436 | if (dp) return STRSCAN_ERROR; |
| 437 | dp = p; |
| 438 | } else { |
| 439 | break; |
| 440 | } |
| 441 | } |
| 442 | if (!(hasdig | dig)) return STRSCAN_ERROR; |
| 443 | |
| 444 | /* Handle decimal point. */ |
| 445 | if (dp) { |
| 446 | if (base == 2) return STRSCAN_ERROR; |
| 447 | fmt = STRSCAN_NUM; |
| 448 | if (dig) { |
| 449 | ex = (int32_t)(dp-(p-1)); dp = p-1; |
| 450 | while (ex < 0 && *dp-- == '0') ex++, dig--; /* Skip trailing zeros. */ |
| 451 | if (base == 16) ex *= 4; |
| 452 | } |
| 453 | } |
| 454 | |
| 455 | /* Parse exponent. */ |
| 456 | if (base >= 10 && casecmp(*p, (uint32_t)(base == 16 ? 'p' : 'e'))) { |
| 457 | uint32_t xx; |
| 458 | int negx = 0; |
| 459 | fmt = STRSCAN_NUM; p++; |
| 460 | if (*p == '+' || *p == '-') negx = (*p++ == '-'); |
| 461 | if (!lj_char_isdigit(*p)) return STRSCAN_ERROR; |
| 462 | xx = (*p++ & 15); |
| 463 | while (lj_char_isdigit(*p)) { |
| 464 | if (xx < 65536) xx = xx * 10 + (*p & 15); |
| 465 | p++; |
| 466 | } |
| 467 | ex += negx ? -(int32_t)xx : (int32_t)xx; |
| 468 | } |
| 469 | |
| 470 | /* Parse suffix. */ |
| 471 | if (*p) { |
| 472 | /* I (IMAG), U (U32), LL (I64), ULL/LLU (U64), L (long), UL/LU (ulong). */ |
| 473 | /* NYI: f (float). Not needed until cp_number() handles non-integers. */ |
| 474 | if (casecmp(*p, 'i')) { |
| 475 | if (!(opt & STRSCAN_OPT_IMAG)) return STRSCAN_ERROR; |
| 476 | p++; fmt = STRSCAN_IMAG; |
| 477 | } else if (fmt == STRSCAN_INT) { |
| 478 | if (casecmp(*p, 'u')) p++, fmt = STRSCAN_U32; |
| 479 | if (casecmp(*p, 'l')) { |
| 480 | p++; |
| 481 | if (casecmp(*p, 'l')) p++, fmt += STRSCAN_I64 - STRSCAN_INT; |
| 482 | else if (!(opt & STRSCAN_OPT_C)) return STRSCAN_ERROR; |
| 483 | else if (sizeof(long) == 8) fmt += STRSCAN_I64 - STRSCAN_INT; |
| 484 | } |
| 485 | if (casecmp(*p, 'u') && (fmt == STRSCAN_INT || fmt == STRSCAN_I64)) |
| 486 | p++, fmt += STRSCAN_U32 - STRSCAN_INT; |
| 487 | if ((fmt == STRSCAN_U32 && !(opt & STRSCAN_OPT_C)) || |
| 488 | (fmt >= STRSCAN_I64 && !(opt & STRSCAN_OPT_LL))) |
| 489 | return STRSCAN_ERROR; |
| 490 | } |
| 491 | while (lj_char_isspace(*p)) p++; |
| 492 | if (*p) return STRSCAN_ERROR; |
| 493 | } |
| 494 | if (p < pe) return STRSCAN_ERROR; |
| 495 | |
| 496 | /* Fast path for decimal 32 bit integers. */ |
| 497 | if (fmt == STRSCAN_INT && base == 10 && |
| 498 | (dig < 10 || (dig == 10 && *sp <= '2' && x < 0x80000000u+neg))) { |
| 499 | if ((opt & STRSCAN_OPT_TONUM)) { |
| 500 | o->n = neg ? -(double)x : (double)x; |
| 501 | return STRSCAN_NUM; |
| 502 | } else { |
| 503 | o->i = neg ? -(int32_t)x : (int32_t)x; |
| 504 | return STRSCAN_INT; |
| 505 | } |
| 506 | } |
| 507 | |
| 508 | /* Dispatch to base-specific parser. */ |
| 509 | if (base == 0 && !(fmt == STRSCAN_NUM || fmt == STRSCAN_IMAG)) |
| 510 | return strscan_oct(sp, o, fmt, neg, dig); |
| 511 | if (base == 16) |
| 512 | fmt = strscan_hex(sp, o, fmt, opt, ex, neg, dig); |
| 513 | else if (base == 2) |
| 514 | fmt = strscan_bin(sp, o, fmt, opt, ex, neg, dig); |
| 515 | else |
| 516 | fmt = strscan_dec(sp, o, fmt, opt, ex, neg, dig); |
| 517 | |
| 518 | /* Try to convert number to integer, if requested. */ |
| 519 | if (fmt == STRSCAN_NUM && (opt & STRSCAN_OPT_TOINT)) { |
| 520 | double n = o->n; |
| 521 | int32_t i = lj_num2int(n); |
| 522 | if (n == (lua_Number)i) { o->i = i; return STRSCAN_INT; } |
| 523 | } |
| 524 | return fmt; |
| 525 | } |
| 526 | } |
| 527 | |
| 528 | int LJ_FASTCALL lj_strscan_num(GCstr *str, TValue *o) |
| 529 | { |
| 530 | StrScanFmt fmt = lj_strscan_scan((const uint8_t *)strdata(str), str->len, o, |
| 531 | STRSCAN_OPT_TONUM); |
| 532 | lj_assertX(fmt == STRSCAN_ERROR || fmt == STRSCAN_NUM, "bad scan format" ); |
| 533 | return (fmt != STRSCAN_ERROR); |
| 534 | } |
| 535 | |
| 536 | #if LJ_DUALNUM |
| 537 | int LJ_FASTCALL lj_strscan_number(GCstr *str, TValue *o) |
| 538 | { |
| 539 | StrScanFmt fmt = lj_strscan_scan((const uint8_t *)strdata(str), str->len, o, |
| 540 | STRSCAN_OPT_TOINT); |
| 541 | lj_assertX(fmt == STRSCAN_ERROR || fmt == STRSCAN_NUM || fmt == STRSCAN_INT, |
| 542 | "bad scan format" ); |
| 543 | if (fmt == STRSCAN_INT) setitype(o, LJ_TISNUM); |
| 544 | return (fmt != STRSCAN_ERROR); |
| 545 | } |
| 546 | #endif |
| 547 | |
| 548 | #undef DNEXT |
| 549 | #undef DPREV |
| 550 | #undef DLEN |
| 551 | |
| 552 | |