| 1 | /* Copyright (c) 2006, 2010, Oracle and/or its affiliates. All rights reserved. |
| 2 | |
| 3 | This program is free software; you can redistribute it and/or modify |
| 4 | it under the terms of the GNU General Public License as published by |
| 5 | the Free Software Foundation; version 2 of the License. |
| 6 | |
| 7 | This program is distributed in the hope that it will be useful, |
| 8 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 9 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 10 | GNU General Public License for more details. |
| 11 | |
| 12 | You should have received a copy of the GNU General Public License |
| 13 | along with this program; if not, write to the Free Software |
| 14 | Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ |
| 15 | |
| 16 | /* |
| 17 | Analog of DYNAMIC_ARRAY that never reallocs |
| 18 | (so no pointer into the array may ever become invalid). |
| 19 | |
| 20 | Memory is allocated in non-contiguous chunks. |
| 21 | This data structure is not space efficient for sparse arrays. |
| 22 | |
| 23 | Every element is aligned to sizeof(element) boundary |
| 24 | (to avoid false sharing if element is big enough). |
| 25 | |
| 26 | LF_DYNARRAY is a recursive structure. On the zero level |
| 27 | LF_DYNARRAY::level[0] it's an array of LF_DYNARRAY_LEVEL_LENGTH elements, |
| 28 | on the first level it's an array of LF_DYNARRAY_LEVEL_LENGTH pointers |
| 29 | to arrays of elements, on the second level it's an array of pointers |
| 30 | to arrays of pointers to arrays of elements. And so on. |
| 31 | |
| 32 | With four levels the number of elements is limited to 4311810304 |
| 33 | (but as in all functions index is uint, the real limit is 2^32-1) |
| 34 | |
| 35 | Actually, it's wait-free, not lock-free ;-) |
| 36 | */ |
| 37 | |
| 38 | #include <my_global.h> |
| 39 | #include <m_string.h> |
| 40 | #include <my_sys.h> |
| 41 | #include <lf.h> |
| 42 | |
| 43 | void lf_dynarray_init(LF_DYNARRAY *array, uint element_size) |
| 44 | { |
| 45 | bzero(array, sizeof(*array)); |
| 46 | array->size_of_element= element_size; |
| 47 | } |
| 48 | |
| 49 | static void recursive_free(void **alloc, int level) |
| 50 | { |
| 51 | if (!alloc) |
| 52 | return; |
| 53 | |
| 54 | if (level) |
| 55 | { |
| 56 | int i; |
| 57 | for (i= 0; i < LF_DYNARRAY_LEVEL_LENGTH; i++) |
| 58 | recursive_free(alloc[i], level-1); |
| 59 | my_free(alloc); |
| 60 | } |
| 61 | else |
| 62 | my_free(alloc[-1]); |
| 63 | } |
| 64 | |
| 65 | void lf_dynarray_destroy(LF_DYNARRAY *array) |
| 66 | { |
| 67 | int i; |
| 68 | for (i= 0; i < LF_DYNARRAY_LEVELS; i++) |
| 69 | recursive_free(array->level[i], i); |
| 70 | } |
| 71 | |
| 72 | static const ulong dynarray_idxes_in_prev_levels[LF_DYNARRAY_LEVELS]= |
| 73 | { |
| 74 | 0, /* +1 here to to avoid -1's below */ |
| 75 | LF_DYNARRAY_LEVEL_LENGTH, |
| 76 | LF_DYNARRAY_LEVEL_LENGTH * LF_DYNARRAY_LEVEL_LENGTH + |
| 77 | LF_DYNARRAY_LEVEL_LENGTH, |
| 78 | LF_DYNARRAY_LEVEL_LENGTH * LF_DYNARRAY_LEVEL_LENGTH * |
| 79 | LF_DYNARRAY_LEVEL_LENGTH + LF_DYNARRAY_LEVEL_LENGTH * |
| 80 | LF_DYNARRAY_LEVEL_LENGTH + LF_DYNARRAY_LEVEL_LENGTH |
| 81 | }; |
| 82 | |
| 83 | static const ulong dynarray_idxes_in_prev_level[LF_DYNARRAY_LEVELS]= |
| 84 | { |
| 85 | 0, /* +1 here to to avoid -1's below */ |
| 86 | LF_DYNARRAY_LEVEL_LENGTH, |
| 87 | LF_DYNARRAY_LEVEL_LENGTH * LF_DYNARRAY_LEVEL_LENGTH, |
| 88 | LF_DYNARRAY_LEVEL_LENGTH * LF_DYNARRAY_LEVEL_LENGTH * |
| 89 | LF_DYNARRAY_LEVEL_LENGTH, |
| 90 | }; |
| 91 | |
| 92 | /* |
| 93 | Returns a valid lvalue pointer to the element number 'idx'. |
| 94 | Allocates memory if necessary. |
| 95 | */ |
| 96 | void *lf_dynarray_lvalue(LF_DYNARRAY *array, uint idx) |
| 97 | { |
| 98 | void * ptr, * volatile * ptr_ptr= 0; |
| 99 | int i; |
| 100 | |
| 101 | for (i= LF_DYNARRAY_LEVELS-1; idx < dynarray_idxes_in_prev_levels[i]; i--) |
| 102 | /* no-op */; |
| 103 | ptr_ptr= &array->level[i]; |
| 104 | idx-= dynarray_idxes_in_prev_levels[i]; |
| 105 | for (; i > 0; i--) |
| 106 | { |
| 107 | if (!(ptr= *ptr_ptr)) |
| 108 | { |
| 109 | void *alloc= my_malloc(LF_DYNARRAY_LEVEL_LENGTH * sizeof(void *), |
| 110 | MYF(MY_WME|MY_ZEROFILL)); |
| 111 | if (unlikely(!alloc)) |
| 112 | return(NULL); |
| 113 | if (my_atomic_casptr(ptr_ptr, &ptr, alloc)) |
| 114 | ptr= alloc; |
| 115 | else |
| 116 | my_free(alloc); |
| 117 | } |
| 118 | ptr_ptr= ((void **)ptr) + idx / dynarray_idxes_in_prev_level[i]; |
| 119 | idx%= dynarray_idxes_in_prev_level[i]; |
| 120 | } |
| 121 | if (!(ptr= *ptr_ptr)) |
| 122 | { |
| 123 | uchar *alloc, *data; |
| 124 | alloc= my_malloc(LF_DYNARRAY_LEVEL_LENGTH * array->size_of_element + |
| 125 | MY_MAX(array->size_of_element, sizeof(void *)), |
| 126 | MYF(MY_WME|MY_ZEROFILL)); |
| 127 | if (unlikely(!alloc)) |
| 128 | return(NULL); |
| 129 | /* reserve the space for free() address */ |
| 130 | data= alloc + sizeof(void *); |
| 131 | { /* alignment */ |
| 132 | intptr mod= ((intptr)data) % array->size_of_element; |
| 133 | if (mod) |
| 134 | data+= array->size_of_element - mod; |
| 135 | } |
| 136 | ((void **)data)[-1]= alloc; /* free() will need the original pointer */ |
| 137 | if (my_atomic_casptr(ptr_ptr, &ptr, data)) |
| 138 | ptr= data; |
| 139 | else |
| 140 | my_free(alloc); |
| 141 | } |
| 142 | return ((uchar*)ptr) + array->size_of_element * idx; |
| 143 | } |
| 144 | |
| 145 | /* |
| 146 | Returns a pointer to the element number 'idx' |
| 147 | or NULL if an element does not exists |
| 148 | */ |
| 149 | void *lf_dynarray_value(LF_DYNARRAY *array, uint idx) |
| 150 | { |
| 151 | void * ptr, * volatile * ptr_ptr= 0; |
| 152 | int i; |
| 153 | |
| 154 | for (i= LF_DYNARRAY_LEVELS-1; idx < dynarray_idxes_in_prev_levels[i]; i--) |
| 155 | /* no-op */; |
| 156 | ptr_ptr= &array->level[i]; |
| 157 | idx-= dynarray_idxes_in_prev_levels[i]; |
| 158 | for (; i > 0; i--) |
| 159 | { |
| 160 | if (!(ptr= *ptr_ptr)) |
| 161 | return(NULL); |
| 162 | ptr_ptr= ((void **)ptr) + idx / dynarray_idxes_in_prev_level[i]; |
| 163 | idx %= dynarray_idxes_in_prev_level[i]; |
| 164 | } |
| 165 | if (!(ptr= *ptr_ptr)) |
| 166 | return(NULL); |
| 167 | return ((uchar*)ptr) + array->size_of_element * idx; |
| 168 | } |
| 169 | |
| 170 | static int recursive_iterate(LF_DYNARRAY *array, void *ptr, int level, |
| 171 | lf_dynarray_func func, void *arg) |
| 172 | { |
| 173 | int res, i; |
| 174 | if (!ptr) |
| 175 | return 0; |
| 176 | if (!level) |
| 177 | return func(ptr, arg); |
| 178 | for (i= 0; i < LF_DYNARRAY_LEVEL_LENGTH; i++) |
| 179 | if ((res= recursive_iterate(array, ((void **)ptr)[i], level-1, func, arg))) |
| 180 | return res; |
| 181 | return 0; |
| 182 | } |
| 183 | |
| 184 | /* |
| 185 | Calls func(array, arg) on every array of LF_DYNARRAY_LEVEL_LENGTH elements |
| 186 | in lf_dynarray. |
| 187 | |
| 188 | DESCRIPTION |
| 189 | lf_dynarray consists of a set of arrays, LF_DYNARRAY_LEVEL_LENGTH elements |
| 190 | each. lf_dynarray_iterate() calls user-supplied function on every array |
| 191 | from the set. It is the fastest way to scan the array, faster than |
| 192 | for (i=0; i < N; i++) { func(lf_dynarray_value(dynarray, i)); } |
| 193 | |
| 194 | NOTE |
| 195 | if func() returns non-zero, the scan is aborted |
| 196 | */ |
| 197 | int lf_dynarray_iterate(LF_DYNARRAY *array, lf_dynarray_func func, void *arg) |
| 198 | { |
| 199 | int i, res; |
| 200 | for (i= 0; i < LF_DYNARRAY_LEVELS; i++) |
| 201 | if ((res= recursive_iterate(array, array->level[i], i, func, arg))) |
| 202 | return res; |
| 203 | return 0; |
| 204 | } |
| 205 | |
| 206 | |