| 1 | /* Copyright (c) 2000, 2013, Oracle and/or its affiliates. |
| 2 | Copyright (c) 2017, MariaDB Corporation. |
| 3 | |
| 4 | This program is free software; you can redistribute it and/or modify |
| 5 | it under the terms of the GNU General Public License as published by |
| 6 | the Free Software Foundation; version 2 of the License. |
| 7 | |
| 8 | This program is distributed in the hope that it will be useful, |
| 9 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 10 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 11 | GNU General Public License for more details. |
| 12 | |
| 13 | You should have received a copy of the GNU General Public License |
| 14 | along with this program; if not, write to the Free Software |
| 15 | Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ |
| 16 | |
| 17 | |
| 18 | |
| 19 | /** |
| 20 | @file |
| 21 | The file contains the following modules: |
| 22 | |
| 23 | Simple Key Cache Module |
| 24 | |
| 25 | Partitioned Key Cache Module |
| 26 | |
| 27 | Key Cache Interface Module |
| 28 | |
| 29 | */ |
| 30 | |
| 31 | #include "mysys_priv.h" |
| 32 | #include "mysys_err.h" |
| 33 | #include <keycache.h> |
| 34 | #include "my_static.h" |
| 35 | #include <m_string.h> |
| 36 | #include <my_bit.h> |
| 37 | #include <errno.h> |
| 38 | #include <stdarg.h> |
| 39 | #include "probes_mysql.h" |
| 40 | |
| 41 | /****************************************************************************** |
| 42 | Simple Key Cache Module |
| 43 | |
| 44 | The module contains implementations of all key cache interface functions |
| 45 | employed by partitioned key caches. |
| 46 | |
| 47 | ******************************************************************************/ |
| 48 | |
| 49 | /* |
| 50 | These functions handle keyblock cacheing for ISAM and MyISAM tables. |
| 51 | |
| 52 | One cache can handle many files. |
| 53 | It must contain buffers of the same blocksize. |
| 54 | |
| 55 | init_key_cache() should be used to init cache handler. |
| 56 | |
| 57 | The free list (free_block_list) is a stack like structure. |
| 58 | When a block is freed by free_block(), it is pushed onto the stack. |
| 59 | When a new block is required it is first tried to pop one from the stack. |
| 60 | If the stack is empty, it is tried to get a never-used block from the pool. |
| 61 | If this is empty too, then a block is taken from the LRU ring, flushing it |
| 62 | to disk, if necessary. This is handled in find_key_block(). |
| 63 | With the new free list, the blocks can have three temperatures: |
| 64 | hot, warm and cold (which is free). This is remembered in the block header |
| 65 | by the enum BLOCK_TEMPERATURE temperature variable. Remembering the |
| 66 | temperature is necessary to correctly count the number of warm blocks, |
| 67 | which is required to decide when blocks are allowed to become hot. Whenever |
| 68 | a block is inserted to another (sub-)chain, we take the old and new |
| 69 | temperature into account to decide if we got one more or less warm block. |
| 70 | blocks_unused is the sum of never used blocks in the pool and of currently |
| 71 | free blocks. blocks_used is the number of blocks fetched from the pool and |
| 72 | as such gives the maximum number of in-use blocks at any time. |
| 73 | |
| 74 | Key Cache Locking |
| 75 | ================= |
| 76 | |
| 77 | All key cache locking is done with a single mutex per key cache: |
| 78 | keycache->cache_lock. This mutex is locked almost all the time |
| 79 | when executing code in this file (mf_keycache.c). |
| 80 | However it is released for I/O and some copy operations. |
| 81 | |
| 82 | The cache_lock is also released when waiting for some event. Waiting |
| 83 | and signalling is done via condition variables. In most cases the |
| 84 | thread waits on its thread->suspend condition variable. Every thread |
| 85 | has a my_thread_var structure, which contains this variable and a |
| 86 | '*next' and '**prev' pointer. These pointers are used to insert the |
| 87 | thread into a wait queue. |
| 88 | |
| 89 | A thread can wait for one block and thus be in one wait queue at a |
| 90 | time only. |
| 91 | |
| 92 | Before starting to wait on its condition variable with |
| 93 | mysql_cond_wait(), the thread enters itself to a specific wait queue |
| 94 | with link_into_queue() (double linked with '*next' + '**prev') or |
| 95 | wait_on_queue() (single linked with '*next'). |
| 96 | |
| 97 | Another thread, when releasing a resource, looks up the waiting thread |
| 98 | in the related wait queue. It sends a signal with |
| 99 | mysql_cond_signal() to the waiting thread. |
| 100 | |
| 101 | NOTE: Depending on the particular wait situation, either the sending |
| 102 | thread removes the waiting thread from the wait queue with |
| 103 | unlink_from_queue() or release_whole_queue() respectively, or the waiting |
| 104 | thread removes itself. |
| 105 | |
| 106 | There is one exception from this locking scheme when one thread wants |
| 107 | to reuse a block for some other address. This works by first marking |
| 108 | the block reserved (status= BLOCK_IN_SWITCH) and then waiting for all |
| 109 | threads that are reading the block to finish. Each block has a |
| 110 | reference to a condition variable (condvar). It holds a reference to |
| 111 | the thread->suspend condition variable for the waiting thread (if such |
| 112 | a thread exists). When that thread is signaled, the reference is |
| 113 | cleared. The number of readers of a block is registered in |
| 114 | block->hash_link->requests. See wait_for_readers() / remove_reader() |
| 115 | for details. This is similar to the above, but it clearly means that |
| 116 | only one thread can wait for a particular block. There is no queue in |
| 117 | this case. Strangely enough block->convar is used for waiting for the |
| 118 | assigned hash_link only. More precisely it is used to wait for all |
| 119 | requests to be unregistered from the assigned hash_link. |
| 120 | |
| 121 | The resize_queue serves two purposes: |
| 122 | 1. Threads that want to do a resize wait there if in_resize is set. |
| 123 | This is not used in the server. The server refuses a second resize |
| 124 | request if one is already active. keycache->in_init is used for the |
| 125 | synchronization. See set_var.cc. |
| 126 | 2. Threads that want to access blocks during resize wait here during |
| 127 | the re-initialization phase. |
| 128 | When the resize is done, all threads on the queue are signalled. |
| 129 | Hypothetical resizers can compete for resizing, and read/write |
| 130 | requests will restart to request blocks from the freshly resized |
| 131 | cache. If the cache has been resized too small, it is disabled and |
| 132 | 'can_be_used' is false. In this case read/write requests bypass the |
| 133 | cache. Since they increment and decrement 'cnt_for_resize_op', the |
| 134 | next resizer can wait on the queue 'waiting_for_resize_cnt' until all |
| 135 | I/O finished. |
| 136 | */ |
| 137 | |
| 138 | /* declare structures that is used by st_key_cache */ |
| 139 | |
| 140 | struct st_block_link; |
| 141 | typedef struct st_block_link BLOCK_LINK; |
| 142 | struct st_keycache_page; |
| 143 | typedef struct st_keycache_page KEYCACHE_PAGE; |
| 144 | struct st_hash_link; |
| 145 | typedef struct st_hash_link HASH_LINK; |
| 146 | |
| 147 | /* info about requests in a waiting queue */ |
| 148 | typedef struct st_keycache_wqueue |
| 149 | { |
| 150 | struct st_my_thread_var *last_thread; /* circular list of waiting threads */ |
| 151 | } KEYCACHE_WQUEUE; |
| 152 | |
| 153 | /* Default size of hash for changed files */ |
| 154 | #define MIN_CHANGED_BLOCKS_HASH_SIZE 128 |
| 155 | |
| 156 | /* Control block for a simple (non-partitioned) key cache */ |
| 157 | |
| 158 | typedef struct st_simple_key_cache_cb |
| 159 | { |
| 160 | my_bool key_cache_inited; /* <=> control block is allocated */ |
| 161 | my_bool in_resize; /* true during resize operation */ |
| 162 | my_bool resize_in_flush; /* true during flush of resize operation */ |
| 163 | my_bool can_be_used; /* usage of cache for read/write is allowed */ |
| 164 | size_t key_cache_mem_size; /* specified size of the cache memory */ |
| 165 | uint key_cache_block_size; /* size of the page buffer of a cache block */ |
| 166 | ulong min_warm_blocks; /* min number of warm blocks; */ |
| 167 | ulong age_threshold; /* age threshold for hot blocks */ |
| 168 | ulonglong keycache_time; /* total number of block link operations */ |
| 169 | uint hash_entries; /* max number of entries in the hash table */ |
| 170 | uint changed_blocks_hash_size; /* Number of hash buckets for file blocks */ |
| 171 | int hash_links; /* max number of hash links */ |
| 172 | int hash_links_used; /* number of hash links currently used */ |
| 173 | int disk_blocks; /* max number of blocks in the cache */ |
| 174 | ulong blocks_used; /* maximum number of concurrently used blocks */ |
| 175 | ulong blocks_unused; /* number of currently unused blocks */ |
| 176 | ulong blocks_changed; /* number of currently dirty blocks */ |
| 177 | ulong warm_blocks; /* number of blocks in warm sub-chain */ |
| 178 | ulong cnt_for_resize_op; /* counter to block resize operation */ |
| 179 | long blocks_available; /* number of blocks available in the LRU chain */ |
| 180 | HASH_LINK **hash_root; /* arr. of entries into hash table buckets */ |
| 181 | HASH_LINK *hash_link_root; /* memory for hash table links */ |
| 182 | HASH_LINK *free_hash_list; /* list of free hash links */ |
| 183 | BLOCK_LINK *free_block_list; /* list of free blocks */ |
| 184 | BLOCK_LINK *block_root; /* memory for block links */ |
| 185 | uchar *block_mem; /* memory for block buffers */ |
| 186 | BLOCK_LINK *used_last; /* ptr to the last block of the LRU chain */ |
| 187 | BLOCK_LINK *used_ins; /* ptr to the insertion block in LRU chain */ |
| 188 | mysql_mutex_t cache_lock; /* to lock access to the cache structure */ |
| 189 | KEYCACHE_WQUEUE resize_queue; /* threads waiting during resize operation */ |
| 190 | /* |
| 191 | Waiting for a zero resize count. Using a queue for symmetry though |
| 192 | only one thread can wait here. |
| 193 | */ |
| 194 | KEYCACHE_WQUEUE waiting_for_resize_cnt; |
| 195 | KEYCACHE_WQUEUE waiting_for_hash_link; /* waiting for a free hash link */ |
| 196 | KEYCACHE_WQUEUE waiting_for_block; /* requests waiting for a free block */ |
| 197 | BLOCK_LINK **changed_blocks; /* hash for dirty file bl.*/ |
| 198 | BLOCK_LINK **file_blocks; /* hash for other file bl.*/ |
| 199 | |
| 200 | /* Statistics variables. These are reset in reset_key_cache_counters(). */ |
| 201 | ulong global_blocks_changed; /* number of currently dirty blocks */ |
| 202 | ulonglong global_cache_w_requests;/* number of write requests (write hits) */ |
| 203 | ulonglong global_cache_write; /* number of writes from cache to files */ |
| 204 | ulonglong global_cache_r_requests;/* number of read requests (read hits) */ |
| 205 | ulonglong global_cache_read; /* number of reads from files to cache */ |
| 206 | |
| 207 | int blocks; /* max number of blocks in the cache */ |
| 208 | uint hash_factor; /* factor used to calculate hash function */ |
| 209 | my_bool in_init; /* Set to 1 in MySQL during init/resize */ |
| 210 | } SIMPLE_KEY_CACHE_CB; |
| 211 | |
| 212 | /* |
| 213 | Some compilation flags have been added specifically for this module |
| 214 | to control the following: |
| 215 | - not to let a thread to yield the control when reading directly |
| 216 | from key cache, which might improve performance in many cases; |
| 217 | to enable this add: |
| 218 | #define SERIALIZED_READ_FROM_CACHE |
| 219 | - to set an upper bound for number of threads simultaneously |
| 220 | using the key cache; this setting helps to determine an optimal |
| 221 | size for hash table and improve performance when the number of |
| 222 | blocks in the key cache much less than the number of threads |
| 223 | accessing it; |
| 224 | to set this number equal to <N> add |
| 225 | #define MAX_THREADS <N> |
| 226 | - to substitute calls of mysql_cond_wait for calls of |
| 227 | mysql_cond_timedwait (wait with timeout set up); |
| 228 | this setting should be used only when you want to trap a deadlock |
| 229 | situation, which theoretically should not happen; |
| 230 | to set timeout equal to <T> seconds add |
| 231 | #define KEYCACHE_TIMEOUT <T> |
| 232 | - to enable the module traps and to send debug information from |
| 233 | key cache module to a special debug log add: |
| 234 | #define KEYCACHE_DEBUG |
| 235 | the name of this debug log file <LOG NAME> can be set through: |
| 236 | #define KEYCACHE_DEBUG_LOG <LOG NAME> |
| 237 | if the name is not defined, it's set by default; |
| 238 | if the KEYCACHE_DEBUG flag is not set up and we are in a debug |
| 239 | mode, i.e. when ! defined(DBUG_OFF), the debug information from the |
| 240 | module is sent to the regular debug log. |
| 241 | |
| 242 | Example of the settings: |
| 243 | #define SERIALIZED_READ_FROM_CACHE |
| 244 | #define MAX_THREADS 100 |
| 245 | #define KEYCACHE_TIMEOUT 1 |
| 246 | #define KEYCACHE_DEBUG |
| 247 | #define KEYCACHE_DEBUG_LOG "my_key_cache_debug.log" |
| 248 | */ |
| 249 | |
| 250 | #define STRUCT_PTR(TYPE, MEMBER, a) \ |
| 251 | (TYPE *) ((char *) (a) - offsetof(TYPE, MEMBER)) |
| 252 | |
| 253 | /* types of condition variables */ |
| 254 | #define COND_FOR_REQUESTED 0 |
| 255 | #define COND_FOR_SAVED 1 |
| 256 | #define COND_FOR_READERS 2 |
| 257 | |
| 258 | typedef mysql_cond_t KEYCACHE_CONDVAR; |
| 259 | |
| 260 | /* descriptor of the page in the key cache block buffer */ |
| 261 | struct st_keycache_page |
| 262 | { |
| 263 | int file; /* file to which the page belongs to */ |
| 264 | my_off_t filepos; /* position of the page in the file */ |
| 265 | }; |
| 266 | |
| 267 | /* element in the chain of a hash table bucket */ |
| 268 | struct st_hash_link |
| 269 | { |
| 270 | struct st_hash_link *next, **prev; /* to connect links in the same bucket */ |
| 271 | struct st_block_link *block; /* reference to the block for the page: */ |
| 272 | File file; /* from such a file */ |
| 273 | my_off_t diskpos; /* with such an offset */ |
| 274 | uint requests; /* number of requests for the page */ |
| 275 | }; |
| 276 | |
| 277 | /* simple states of a block */ |
| 278 | #define BLOCK_ERROR 1U/* an error occurred when performing file i/o */ |
| 279 | #define BLOCK_READ 2U/* file block is in the block buffer */ |
| 280 | #define BLOCK_IN_SWITCH 4U/* block is preparing to read new page */ |
| 281 | #define BLOCK_REASSIGNED 8U/* blk does not accept requests for old page */ |
| 282 | #define BLOCK_IN_FLUSH 16U/* block is selected for flush */ |
| 283 | #define BLOCK_CHANGED 32U/* block buffer contains a dirty page */ |
| 284 | #define BLOCK_IN_USE 64U/* block is not free */ |
| 285 | #define BLOCK_IN_EVICTION 128U/* block is selected for eviction */ |
| 286 | #define BLOCK_IN_FLUSHWRITE 256U/* block is in write to file */ |
| 287 | #define BLOCK_FOR_UPDATE 512U/* block is selected for buffer modification */ |
| 288 | |
| 289 | /* page status, returned by find_key_block */ |
| 290 | #define PAGE_READ 0 |
| 291 | #define PAGE_TO_BE_READ 1 |
| 292 | #define PAGE_WAIT_TO_BE_READ 2 |
| 293 | |
| 294 | /* block temperature determines in which (sub-)chain the block currently is */ |
| 295 | enum BLOCK_TEMPERATURE { BLOCK_COLD /*free*/ , BLOCK_WARM , BLOCK_HOT }; |
| 296 | |
| 297 | /* key cache block */ |
| 298 | struct st_block_link |
| 299 | { |
| 300 | struct st_block_link |
| 301 | *next_used, **prev_used; /* to connect links in the LRU chain (ring) */ |
| 302 | struct st_block_link |
| 303 | *next_changed, **prev_changed; /* for lists of file dirty/clean blocks */ |
| 304 | struct st_hash_link *hash_link; /* backward ptr to referring hash_link */ |
| 305 | KEYCACHE_WQUEUE wqueue[2]; /* queues on waiting requests for new/old pages */ |
| 306 | uint requests; /* number of requests for the block */ |
| 307 | uchar *buffer; /* buffer for the block page */ |
| 308 | uint offset; /* beginning of modified data in the buffer */ |
| 309 | uint length; /* end of data in the buffer */ |
| 310 | uint status; /* state of the block */ |
| 311 | enum BLOCK_TEMPERATURE temperature; /* block temperature: cold, warm, hot */ |
| 312 | uint hits_left; /* number of hits left until promotion */ |
| 313 | ulonglong last_hit_time; /* timestamp of the last hit */ |
| 314 | KEYCACHE_CONDVAR *condvar; /* condition variable for 'no readers' event */ |
| 315 | }; |
| 316 | |
| 317 | KEY_CACHE dflt_key_cache_var; |
| 318 | KEY_CACHE *dflt_key_cache= &dflt_key_cache_var; |
| 319 | |
| 320 | #define FLUSH_CACHE 2000 /* sort this many blocks at once */ |
| 321 | |
| 322 | static int flush_all_key_blocks(SIMPLE_KEY_CACHE_CB *keycache); |
| 323 | static void end_simple_key_cache(SIMPLE_KEY_CACHE_CB *keycache, my_bool cleanup); |
| 324 | static void wait_on_queue(KEYCACHE_WQUEUE *wqueue, |
| 325 | mysql_mutex_t *mutex); |
| 326 | static void release_whole_queue(KEYCACHE_WQUEUE *wqueue); |
| 327 | static void free_block(SIMPLE_KEY_CACHE_CB *keycache, BLOCK_LINK *block); |
| 328 | #ifndef DBUG_OFF |
| 329 | static void test_key_cache(SIMPLE_KEY_CACHE_CB *keycache, |
| 330 | const char *where, my_bool lock); |
| 331 | #endif |
| 332 | #define KEYCACHE_BASE_EXPR(f, pos) \ |
| 333 | ((ulong) ((pos) / keycache->key_cache_block_size) + (ulong) (f)) |
| 334 | #define KEYCACHE_HASH(f, pos) \ |
| 335 | ((KEYCACHE_BASE_EXPR(f, pos) / keycache->hash_factor) & \ |
| 336 | (keycache->hash_entries-1)) |
| 337 | #define FILE_HASH(f, cache) ((uint) (f) & (cache->changed_blocks_hash_size-1)) |
| 338 | |
| 339 | #define DEFAULT_KEYCACHE_DEBUG_LOG "keycache_debug.log" |
| 340 | |
| 341 | #if defined(KEYCACHE_DEBUG) && ! defined(KEYCACHE_DEBUG_LOG) |
| 342 | #define KEYCACHE_DEBUG_LOG DEFAULT_KEYCACHE_DEBUG_LOG |
| 343 | #endif |
| 344 | |
| 345 | #if defined(KEYCACHE_DEBUG_LOG) |
| 346 | static FILE *keycache_debug_log=NULL; |
| 347 | static void keycache_debug_print(const char *fmt,...); |
| 348 | #define KEYCACHE_DEBUG_OPEN \ |
| 349 | if (!keycache_debug_log) \ |
| 350 | { \ |
| 351 | keycache_debug_log= fopen(KEYCACHE_DEBUG_LOG, "w"); \ |
| 352 | (void) setvbuf(keycache_debug_log, NULL, _IOLBF, BUFSIZ); \ |
| 353 | } |
| 354 | |
| 355 | #define KEYCACHE_DEBUG_CLOSE \ |
| 356 | if (keycache_debug_log) \ |
| 357 | { \ |
| 358 | fclose(keycache_debug_log); \ |
| 359 | keycache_debug_log= 0; \ |
| 360 | } |
| 361 | #else |
| 362 | #define KEYCACHE_DEBUG_OPEN |
| 363 | #define KEYCACHE_DEBUG_CLOSE |
| 364 | #endif /* defined(KEYCACHE_DEBUG_LOG) */ |
| 365 | |
| 366 | #if defined(KEYCACHE_DEBUG_LOG) && defined(KEYCACHE_DEBUG) |
| 367 | #define KEYCACHE_DBUG_PRINT(l, m) \ |
| 368 | { if (keycache_debug_log) fprintf(keycache_debug_log, "%s: ", l); \ |
| 369 | keycache_debug_print m; } |
| 370 | |
| 371 | #define KEYCACHE_DBUG_ASSERT(a) \ |
| 372 | { if (! (a) && keycache_debug_log) fclose(keycache_debug_log); \ |
| 373 | assert(a); } |
| 374 | #else |
| 375 | #define KEYCACHE_DBUG_PRINT(l, m) DBUG_PRINT(l, m) |
| 376 | #define KEYCACHE_DBUG_ASSERT(a) DBUG_ASSERT(a) |
| 377 | #endif /* defined(KEYCACHE_DEBUG_LOG) && defined(KEYCACHE_DEBUG) */ |
| 378 | |
| 379 | #if defined(KEYCACHE_DEBUG) || !defined(DBUG_OFF) |
| 380 | static long keycache_thread_id; |
| 381 | #define KEYCACHE_THREAD_TRACE(l) \ |
| 382 | KEYCACHE_DBUG_PRINT(l,("|thread %ld",keycache_thread_id)) |
| 383 | |
| 384 | #define KEYCACHE_THREAD_TRACE_BEGIN(l) \ |
| 385 | { struct st_my_thread_var *thread_var= my_thread_var; \ |
| 386 | keycache_thread_id= thread_var->id; \ |
| 387 | KEYCACHE_DBUG_PRINT(l,("[thread %ld",keycache_thread_id)) } |
| 388 | |
| 389 | #define KEYCACHE_THREAD_TRACE_END(l) \ |
| 390 | KEYCACHE_DBUG_PRINT(l,("]thread %ld",keycache_thread_id)) |
| 391 | #else |
| 392 | #define KEYCACHE_THREAD_TRACE_BEGIN(l) |
| 393 | #define KEYCACHE_THREAD_TRACE_END(l) |
| 394 | #define KEYCACHE_THREAD_TRACE(l) |
| 395 | #endif /* defined(KEYCACHE_DEBUG) || !defined(DBUG_OFF) */ |
| 396 | |
| 397 | #define BLOCK_NUMBER(b) \ |
| 398 | ((uint) (((char*)(b)-(char *) keycache->block_root)/sizeof(BLOCK_LINK))) |
| 399 | #define HASH_LINK_NUMBER(h) \ |
| 400 | ((uint) (((char*)(h)-(char *) keycache->hash_link_root)/sizeof(HASH_LINK))) |
| 401 | |
| 402 | #if (defined(KEYCACHE_TIMEOUT) && !defined(__WIN__)) || defined(KEYCACHE_DEBUG) |
| 403 | static int keycache_pthread_cond_wait(mysql_cond_t *cond, |
| 404 | mysql_mutex_t *mutex); |
| 405 | #else |
| 406 | #define keycache_pthread_cond_wait(C, M) mysql_cond_wait(C, M) |
| 407 | #endif |
| 408 | |
| 409 | #if defined(KEYCACHE_DEBUG) |
| 410 | static int keycache_pthread_mutex_lock(mysql_mutex_t *mutex); |
| 411 | static void keycache_pthread_mutex_unlock(mysql_mutex_t *mutex); |
| 412 | static int keycache_pthread_cond_signal(mysql_cond_t *cond); |
| 413 | #else |
| 414 | #define keycache_pthread_mutex_lock(M) mysql_mutex_lock(M) |
| 415 | #define keycache_pthread_mutex_unlock(M) mysql_mutex_unlock(M) |
| 416 | #define keycache_pthread_cond_signal(C) mysql_cond_signal(C) |
| 417 | #endif /* defined(KEYCACHE_DEBUG) */ |
| 418 | |
| 419 | #if !defined(DBUG_OFF) |
| 420 | #if defined(inline) |
| 421 | #undef inline |
| 422 | #endif |
| 423 | #define inline /* disabled inline for easier debugging */ |
| 424 | static int fail_hlink(HASH_LINK *hlink); |
| 425 | static int cache_empty(SIMPLE_KEY_CACHE_CB *keycache); |
| 426 | #endif |
| 427 | #ifdef DBUG_ASSERT_EXISTS |
| 428 | static int fail_block(BLOCK_LINK *block); |
| 429 | #endif |
| 430 | |
| 431 | static inline uint next_power(uint value) |
| 432 | { |
| 433 | return (uint) my_round_up_to_next_power((uint32) value) << 1; |
| 434 | } |
| 435 | |
| 436 | |
| 437 | /* |
| 438 | Initialize a simple key cache |
| 439 | |
| 440 | SYNOPSIS |
| 441 | init_simple_key_cache() |
| 442 | keycache pointer to the control block of a simple key cache |
| 443 | key_cache_block_size size of blocks to keep cached data |
| 444 | use_mem memory to use for the key cache buferrs/structures |
| 445 | division_limit division limit (may be zero) |
| 446 | age_threshold age threshold (may be zero) |
| 447 | |
| 448 | DESCRIPTION |
| 449 | This function is the implementation of the init_key_cache interface |
| 450 | function that is employed by simple (non-partitioned) key caches. |
| 451 | The function builds a simple key cache and initializes the control block |
| 452 | structure of the type SIMPLE_KEY_CACHE_CB that is used for this key cache. |
| 453 | The parameter keycache is supposed to point to this structure. |
| 454 | The parameter key_cache_block_size specifies the size of the blocks in |
| 455 | the key cache to be built. The parameters division_limit and age_threshold |
| 456 | determine the initial values of those characteristics of the key cache |
| 457 | that are used for midpoint insertion strategy. The parameter use_mem |
| 458 | specifies the total amount of memory to be allocated for key cache blocks |
| 459 | and auxiliary structures. |
| 460 | |
| 461 | RETURN VALUE |
| 462 | number of blocks in the key cache, if successful, |
| 463 | <= 0 - otherwise. |
| 464 | |
| 465 | NOTES. |
| 466 | if keycache->key_cache_inited != 0 we assume that the key cache |
| 467 | is already initialized. This is for now used by myisamchk, but shouldn't |
| 468 | be something that a program should rely on! |
| 469 | |
| 470 | It's assumed that no two threads call this function simultaneously |
| 471 | referring to the same key cache handle. |
| 472 | */ |
| 473 | |
| 474 | static |
| 475 | int init_simple_key_cache(SIMPLE_KEY_CACHE_CB *keycache, |
| 476 | uint key_cache_block_size, |
| 477 | size_t use_mem, uint division_limit, |
| 478 | uint age_threshold, uint changed_blocks_hash_size) |
| 479 | { |
| 480 | ulong blocks, hash_links; |
| 481 | size_t length; |
| 482 | int error; |
| 483 | DBUG_ENTER("init_simple_key_cache" ); |
| 484 | DBUG_ASSERT(key_cache_block_size >= 512); |
| 485 | |
| 486 | KEYCACHE_DEBUG_OPEN; |
| 487 | if (keycache->key_cache_inited && keycache->disk_blocks > 0) |
| 488 | { |
| 489 | DBUG_PRINT("warning" ,("key cache already in use" )); |
| 490 | DBUG_RETURN(0); |
| 491 | } |
| 492 | |
| 493 | keycache->blocks_used= keycache->blocks_unused= 0; |
| 494 | keycache->global_blocks_changed= 0; |
| 495 | keycache->global_cache_w_requests= keycache->global_cache_r_requests= 0; |
| 496 | keycache->global_cache_read= keycache->global_cache_write= 0; |
| 497 | keycache->disk_blocks= -1; |
| 498 | if (! keycache->key_cache_inited) |
| 499 | { |
| 500 | keycache->key_cache_inited= 1; |
| 501 | keycache->hash_factor= 1; |
| 502 | /* |
| 503 | Initialize these variables once only. |
| 504 | Their value must survive re-initialization during resizing. |
| 505 | */ |
| 506 | keycache->in_resize= 0; |
| 507 | keycache->resize_in_flush= 0; |
| 508 | keycache->cnt_for_resize_op= 0; |
| 509 | keycache->waiting_for_resize_cnt.last_thread= NULL; |
| 510 | keycache->in_init= 0; |
| 511 | mysql_mutex_init(key_KEY_CACHE_cache_lock, |
| 512 | &keycache->cache_lock, MY_MUTEX_INIT_FAST); |
| 513 | keycache->resize_queue.last_thread= NULL; |
| 514 | } |
| 515 | |
| 516 | keycache->key_cache_mem_size= use_mem; |
| 517 | keycache->key_cache_block_size= key_cache_block_size; |
| 518 | DBUG_PRINT("info" , ("key_cache_block_size: %u" , |
| 519 | key_cache_block_size)); |
| 520 | |
| 521 | blocks= (ulong) (use_mem / (sizeof(BLOCK_LINK) + 2 * sizeof(HASH_LINK) + |
| 522 | sizeof(HASH_LINK*) * 5/4 + key_cache_block_size)); |
| 523 | |
| 524 | /* Changed blocks hash needs to be a power of 2 */ |
| 525 | changed_blocks_hash_size= my_round_up_to_next_power(MY_MAX(changed_blocks_hash_size, |
| 526 | MIN_CHANGED_BLOCKS_HASH_SIZE)); |
| 527 | |
| 528 | /* It doesn't make sense to have too few blocks (less than 8) */ |
| 529 | if (blocks >= 8) |
| 530 | { |
| 531 | for ( ; ; ) |
| 532 | { |
| 533 | /* Set my_hash_entries to the next bigger 2 power */ |
| 534 | if ((keycache->hash_entries= next_power(blocks)) < blocks * 5/4) |
| 535 | keycache->hash_entries<<= 1; |
| 536 | hash_links= 2 * blocks; |
| 537 | #if defined(MAX_THREADS) |
| 538 | if (hash_links < MAX_THREADS + blocks - 1) |
| 539 | hash_links= MAX_THREADS + blocks - 1; |
| 540 | #endif |
| 541 | while ((length= (ALIGN_SIZE(blocks * sizeof(BLOCK_LINK)) + |
| 542 | ALIGN_SIZE(hash_links * sizeof(HASH_LINK)) + |
| 543 | ALIGN_SIZE(sizeof(HASH_LINK*) * |
| 544 | keycache->hash_entries) + |
| 545 | sizeof(BLOCK_LINK*)* (changed_blocks_hash_size*2))) + |
| 546 | ((size_t) blocks * keycache->key_cache_block_size) > use_mem && blocks > 8) |
| 547 | blocks--; |
| 548 | /* Allocate memory for cache page buffers */ |
| 549 | if ((keycache->block_mem= |
| 550 | my_large_malloc((size_t) blocks * keycache->key_cache_block_size, |
| 551 | MYF(0)))) |
| 552 | { |
| 553 | /* |
| 554 | Allocate memory for blocks, hash_links and hash entries; |
| 555 | For each block 2 hash links are allocated |
| 556 | */ |
| 557 | if (my_multi_malloc_large(MYF(MY_ZEROFILL), |
| 558 | &keycache->block_root, |
| 559 | (ulonglong) (blocks * sizeof(BLOCK_LINK)), |
| 560 | &keycache->hash_root, |
| 561 | (ulonglong) (sizeof(HASH_LINK*) * |
| 562 | keycache->hash_entries), |
| 563 | &keycache->hash_link_root, |
| 564 | (ulonglong) (hash_links * sizeof(HASH_LINK)), |
| 565 | &keycache->changed_blocks, |
| 566 | (ulonglong) (sizeof(BLOCK_LINK*) * |
| 567 | changed_blocks_hash_size), |
| 568 | &keycache->file_blocks, |
| 569 | (ulonglong) (sizeof(BLOCK_LINK*) * |
| 570 | changed_blocks_hash_size), |
| 571 | NullS)) |
| 572 | break; |
| 573 | my_large_free(keycache->block_mem); |
| 574 | keycache->block_mem= 0; |
| 575 | } |
| 576 | if (blocks < 8) |
| 577 | { |
| 578 | my_errno= ENOMEM; |
| 579 | my_error(EE_OUTOFMEMORY, MYF(ME_FATALERROR), |
| 580 | blocks * keycache->key_cache_block_size); |
| 581 | goto err; |
| 582 | } |
| 583 | blocks= blocks / 4*3; |
| 584 | } |
| 585 | keycache->blocks_unused= blocks; |
| 586 | keycache->disk_blocks= (int) blocks; |
| 587 | keycache->hash_links= hash_links; |
| 588 | keycache->hash_links_used= 0; |
| 589 | keycache->free_hash_list= NULL; |
| 590 | keycache->blocks_used= keycache->blocks_changed= 0; |
| 591 | |
| 592 | keycache->global_blocks_changed= 0; |
| 593 | keycache->blocks_available=0; /* For debugging */ |
| 594 | |
| 595 | /* The LRU chain is empty after initialization */ |
| 596 | keycache->used_last= NULL; |
| 597 | keycache->used_ins= NULL; |
| 598 | keycache->free_block_list= NULL; |
| 599 | keycache->keycache_time= 0; |
| 600 | keycache->warm_blocks= 0; |
| 601 | keycache->min_warm_blocks= (division_limit ? |
| 602 | blocks * division_limit / 100 + 1 : |
| 603 | blocks); |
| 604 | keycache->age_threshold= (age_threshold ? |
| 605 | blocks * age_threshold / 100 : |
| 606 | blocks); |
| 607 | keycache->changed_blocks_hash_size= changed_blocks_hash_size; |
| 608 | keycache->can_be_used= 1; |
| 609 | |
| 610 | keycache->waiting_for_hash_link.last_thread= NULL; |
| 611 | keycache->waiting_for_block.last_thread= NULL; |
| 612 | DBUG_PRINT("exit" , |
| 613 | ("disk_blocks: %d block_root: %p hash_entries: %d\ |
| 614 | hash_root: %p hash_links: %d hash_link_root: %p" , |
| 615 | keycache->disk_blocks, keycache->block_root, |
| 616 | keycache->hash_entries, keycache->hash_root, |
| 617 | keycache->hash_links, keycache->hash_link_root)); |
| 618 | } |
| 619 | else |
| 620 | { |
| 621 | /* key_buffer_size is specified too small. Disable the cache. */ |
| 622 | keycache->can_be_used= 0; |
| 623 | } |
| 624 | |
| 625 | keycache->blocks= keycache->disk_blocks > 0 ? keycache->disk_blocks : 0; |
| 626 | DBUG_RETURN((int) keycache->disk_blocks); |
| 627 | |
| 628 | err: |
| 629 | error= my_errno; |
| 630 | keycache->disk_blocks= 0; |
| 631 | keycache->blocks= 0; |
| 632 | if (keycache->block_mem) |
| 633 | { |
| 634 | my_large_free((uchar*) keycache->block_mem); |
| 635 | keycache->block_mem= NULL; |
| 636 | } |
| 637 | if (keycache->block_root) |
| 638 | { |
| 639 | my_free(keycache->block_root); |
| 640 | keycache->block_root= NULL; |
| 641 | } |
| 642 | my_errno= error; |
| 643 | keycache->can_be_used= 0; |
| 644 | DBUG_RETURN(0); |
| 645 | } |
| 646 | |
| 647 | |
| 648 | /* |
| 649 | Prepare for resizing a simple key cache |
| 650 | |
| 651 | SYNOPSIS |
| 652 | prepare_resize_simple_key_cache() |
| 653 | keycache pointer to the control block of a simple key cache |
| 654 | release_lock <=> release the key cache lock before return |
| 655 | |
| 656 | DESCRIPTION |
| 657 | This function flushes all dirty pages from a simple key cache and after |
| 658 | this it destroys the key cache calling end_simple_key_cache. The function |
| 659 | takes the parameter keycache as a pointer to the control block |
| 660 | structure of the type SIMPLE_KEY_CACHE_CB for this key cache. |
| 661 | The parameter release_lock says whether the key cache lock must be |
| 662 | released before return from the function. |
| 663 | |
| 664 | RETURN VALUE |
| 665 | 0 - on success, |
| 666 | 1 - otherwise. |
| 667 | |
| 668 | NOTES |
| 669 | This function is the called by resize_simple_key_cache and |
| 670 | resize_partitioned_key_cache that resize simple and partitioned key caches |
| 671 | respectively. |
| 672 | */ |
| 673 | |
| 674 | static |
| 675 | int prepare_resize_simple_key_cache(SIMPLE_KEY_CACHE_CB *keycache, |
| 676 | my_bool release_lock) |
| 677 | { |
| 678 | int res= 0; |
| 679 | DBUG_ENTER("prepare_resize_simple_key_cache" ); |
| 680 | |
| 681 | keycache_pthread_mutex_lock(&keycache->cache_lock); |
| 682 | |
| 683 | /* |
| 684 | We may need to wait for another thread which is doing a resize |
| 685 | already. This cannot happen in the MySQL server though. It allows |
| 686 | one resizer only. In set_var.cc keycache->in_init is used to block |
| 687 | multiple attempts. |
| 688 | */ |
| 689 | while (keycache->in_resize) |
| 690 | { |
| 691 | /* purecov: begin inspected */ |
| 692 | wait_on_queue(&keycache->resize_queue, &keycache->cache_lock); |
| 693 | /* purecov: end */ |
| 694 | } |
| 695 | |
| 696 | /* |
| 697 | Mark the operation in progress. This blocks other threads from doing |
| 698 | a resize in parallel. It prohibits new blocks to enter the cache. |
| 699 | Read/write requests can bypass the cache during the flush phase. |
| 700 | */ |
| 701 | keycache->in_resize= 1; |
| 702 | |
| 703 | /* Need to flush only if keycache is enabled. */ |
| 704 | if (keycache->can_be_used) |
| 705 | { |
| 706 | /* Start the flush phase. */ |
| 707 | keycache->resize_in_flush= 1; |
| 708 | |
| 709 | if (flush_all_key_blocks(keycache)) |
| 710 | { |
| 711 | /* TODO: if this happens, we should write a warning in the log file ! */ |
| 712 | keycache->resize_in_flush= 0; |
| 713 | keycache->can_be_used= 0; |
| 714 | res= 1; |
| 715 | goto finish; |
| 716 | } |
| 717 | DBUG_SLOW_ASSERT(cache_empty(keycache)); |
| 718 | |
| 719 | /* End the flush phase. */ |
| 720 | keycache->resize_in_flush= 0; |
| 721 | } |
| 722 | |
| 723 | /* |
| 724 | Some direct read/write operations (bypassing the cache) may still be |
| 725 | unfinished. Wait until they are done. If the key cache can be used, |
| 726 | direct I/O is done in increments of key_cache_block_size. That is, |
| 727 | every block is checked if it is in the cache. We need to wait for |
| 728 | pending I/O before re-initializing the cache, because we may change |
| 729 | the block size. Otherwise they could check for blocks at file |
| 730 | positions where the new block division has none. We do also want to |
| 731 | wait for I/O done when (if) the cache was disabled. It must not |
| 732 | run in parallel with normal cache operation. |
| 733 | */ |
| 734 | while (keycache->cnt_for_resize_op) |
| 735 | wait_on_queue(&keycache->waiting_for_resize_cnt, &keycache->cache_lock); |
| 736 | |
| 737 | end_simple_key_cache(keycache, 0); |
| 738 | |
| 739 | finish: |
| 740 | if (release_lock) |
| 741 | keycache_pthread_mutex_unlock(&keycache->cache_lock); |
| 742 | DBUG_RETURN(res); |
| 743 | } |
| 744 | |
| 745 | |
| 746 | /* |
| 747 | Finalize resizing a simple key cache |
| 748 | |
| 749 | SYNOPSIS |
| 750 | finish_resize_simple_key_cache() |
| 751 | keycache pointer to the control block of a simple key cache |
| 752 | |
| 753 | DESCRIPTION |
| 754 | This function performs finalizing actions for the operation of |
| 755 | resizing a simple key cache. The function takes the parameter |
| 756 | keycache as a pointer to the control block structure of the type |
| 757 | SIMPLE_KEY_CACHE_CB for this key cache. The function sets the flag |
| 758 | in_resize in this structure to FALSE. |
| 759 | |
| 760 | RETURN VALUE |
| 761 | none |
| 762 | |
| 763 | NOTES |
| 764 | This function is the called by resize_simple_key_cache and |
| 765 | resize_partitioned_key_cache that resize simple and partitioned key caches |
| 766 | respectively. |
| 767 | */ |
| 768 | |
| 769 | static |
| 770 | void finish_resize_simple_key_cache(SIMPLE_KEY_CACHE_CB *keycache) |
| 771 | { |
| 772 | DBUG_ENTER("finish_resize_simple_key_cache" ); |
| 773 | |
| 774 | mysql_mutex_assert_owner(&keycache->cache_lock); |
| 775 | |
| 776 | /* |
| 777 | Mark the resize finished. This allows other threads to start a |
| 778 | resize or to request new cache blocks. |
| 779 | */ |
| 780 | keycache->in_resize= 0; |
| 781 | |
| 782 | |
| 783 | /* Signal waiting threads. */ |
| 784 | release_whole_queue(&keycache->resize_queue); |
| 785 | |
| 786 | |
| 787 | keycache_pthread_mutex_unlock(&keycache->cache_lock); |
| 788 | |
| 789 | DBUG_VOID_RETURN; |
| 790 | } |
| 791 | |
| 792 | |
| 793 | /* |
| 794 | Resize a simple key cache |
| 795 | |
| 796 | SYNOPSIS |
| 797 | resize_simple_key_cache() |
| 798 | keycache pointer to the control block of a simple key cache |
| 799 | key_cache_block_size size of blocks to keep cached data |
| 800 | use_mem memory to use for the key cache buffers/structures |
| 801 | division_limit new division limit (if not zero) |
| 802 | age_threshold new age threshold (if not zero) |
| 803 | |
| 804 | DESCRIPTION |
| 805 | This function is the implementation of the resize_key_cache interface |
| 806 | function that is employed by simple (non-partitioned) key caches. |
| 807 | The function takes the parameter keycache as a pointer to the |
| 808 | control block structure of the type SIMPLE_KEY_CACHE_CB for the simple key |
| 809 | cache to be resized. |
| 810 | The parameter key_cache_block_size specifies the new size of the blocks in |
| 811 | the key cache. The parameters division_limit and age_threshold |
| 812 | determine the new initial values of those characteristics of the key cache |
| 813 | that are used for midpoint insertion strategy. The parameter use_mem |
| 814 | specifies the total amount of memory to be allocated for key cache blocks |
| 815 | and auxiliary structures in the new key cache. |
| 816 | |
| 817 | RETURN VALUE |
| 818 | number of blocks in the key cache, if successful, |
| 819 | 0 - otherwise. |
| 820 | |
| 821 | NOTES. |
| 822 | The function first calls the function prepare_resize_simple_key_cache |
| 823 | to flush all dirty blocks from key cache, to free memory used |
| 824 | for key cache blocks and auxiliary structures. After this the |
| 825 | function builds a new key cache with new parameters. |
| 826 | |
| 827 | This implementation doesn't block the calls and executions of other |
| 828 | functions from the key cache interface. However it assumes that the |
| 829 | calls of resize_simple_key_cache itself are serialized. |
| 830 | |
| 831 | The function starts the operation only when all other threads |
| 832 | performing operations with the key cache let her to proceed |
| 833 | (when cnt_for_resize=0). |
| 834 | */ |
| 835 | |
| 836 | static |
| 837 | int resize_simple_key_cache(SIMPLE_KEY_CACHE_CB *keycache, |
| 838 | uint key_cache_block_size, |
| 839 | size_t use_mem, uint division_limit, |
| 840 | uint age_threshold, uint changed_blocks_hash_size) |
| 841 | { |
| 842 | int blocks= 0; |
| 843 | DBUG_ENTER("resize_simple_key_cache" ); |
| 844 | |
| 845 | DBUG_ASSERT(keycache->key_cache_inited); |
| 846 | |
| 847 | /* |
| 848 | Note that the cache_lock mutex and the resize_queue are left untouched. |
| 849 | We do not lose the cache_lock and will release it only at the end of |
| 850 | this function. |
| 851 | */ |
| 852 | if (prepare_resize_simple_key_cache(keycache, 0)) |
| 853 | goto finish; |
| 854 | |
| 855 | /* The following will work even if use_mem is 0 */ |
| 856 | blocks= init_simple_key_cache(keycache, key_cache_block_size, use_mem, |
| 857 | division_limit, age_threshold, |
| 858 | changed_blocks_hash_size); |
| 859 | |
| 860 | finish: |
| 861 | finish_resize_simple_key_cache(keycache); |
| 862 | |
| 863 | DBUG_RETURN(blocks); |
| 864 | } |
| 865 | |
| 866 | |
| 867 | /* |
| 868 | Increment counter blocking resize key cache operation |
| 869 | */ |
| 870 | static inline void inc_counter_for_resize_op(SIMPLE_KEY_CACHE_CB *keycache) |
| 871 | { |
| 872 | keycache->cnt_for_resize_op++; |
| 873 | } |
| 874 | |
| 875 | |
| 876 | /* |
| 877 | Decrement counter blocking resize key cache operation; |
| 878 | Signal the operation to proceed when counter becomes equal zero |
| 879 | */ |
| 880 | static inline void dec_counter_for_resize_op(SIMPLE_KEY_CACHE_CB *keycache) |
| 881 | { |
| 882 | if (!--keycache->cnt_for_resize_op) |
| 883 | release_whole_queue(&keycache->waiting_for_resize_cnt); |
| 884 | } |
| 885 | |
| 886 | |
| 887 | /* |
| 888 | Change key cache parameters of a simple key cache |
| 889 | |
| 890 | SYNOPSIS |
| 891 | change_simple_key_cache_param() |
| 892 | keycache pointer to the control block of a simple key cache |
| 893 | division_limit new division limit (if not zero) |
| 894 | age_threshold new age threshold (if not zero) |
| 895 | |
| 896 | DESCRIPTION |
| 897 | This function is the implementation of the change_key_cache_param interface |
| 898 | function that is employed by simple (non-partitioned) key caches. |
| 899 | The function takes the parameter keycache as a pointer to the |
| 900 | control block structure of the type SIMPLE_KEY_CACHE_CB for the simple key |
| 901 | cache where new values of the division limit and the age threshold used |
| 902 | for midpoint insertion strategy are to be set. The parameters |
| 903 | division_limit and age_threshold provide these new values. |
| 904 | |
| 905 | RETURN VALUE |
| 906 | none |
| 907 | |
| 908 | NOTES. |
| 909 | Presently the function resets the key cache parameters concerning |
| 910 | midpoint insertion strategy - division_limit and age_threshold. |
| 911 | This function changes some parameters of a given key cache without |
| 912 | reformatting it. The function does not touch the contents the key |
| 913 | cache blocks. |
| 914 | */ |
| 915 | |
| 916 | static |
| 917 | void change_simple_key_cache_param(SIMPLE_KEY_CACHE_CB *keycache, uint division_limit, |
| 918 | uint age_threshold) |
| 919 | { |
| 920 | DBUG_ENTER("change_simple_key_cache_param" ); |
| 921 | keycache_pthread_mutex_lock(&keycache->cache_lock); |
| 922 | if (division_limit) |
| 923 | keycache->min_warm_blocks= (keycache->disk_blocks * |
| 924 | division_limit / 100 + 1); |
| 925 | if (age_threshold) |
| 926 | keycache->age_threshold= (keycache->disk_blocks * |
| 927 | age_threshold / 100); |
| 928 | keycache_pthread_mutex_unlock(&keycache->cache_lock); |
| 929 | DBUG_VOID_RETURN; |
| 930 | } |
| 931 | |
| 932 | |
| 933 | /* |
| 934 | Destroy a simple key cache |
| 935 | |
| 936 | SYNOPSIS |
| 937 | end_simple_key_cache() |
| 938 | keycache pointer to the control block of a simple key cache |
| 939 | cleanup <=> complete free (free also mutex for key cache) |
| 940 | |
| 941 | DESCRIPTION |
| 942 | This function is the implementation of the end_key_cache interface |
| 943 | function that is employed by simple (non-partitioned) key caches. |
| 944 | The function takes the parameter keycache as a pointer to the |
| 945 | control block structure of the type SIMPLE_KEY_CACHE_CB for the simple key |
| 946 | cache to be destroyed. |
| 947 | The function frees the memory allocated for the key cache blocks and |
| 948 | auxiliary structures. If the value of the parameter cleanup is TRUE |
| 949 | then even the key cache mutex is freed. |
| 950 | |
| 951 | RETURN VALUE |
| 952 | none |
| 953 | */ |
| 954 | |
| 955 | static |
| 956 | void end_simple_key_cache(SIMPLE_KEY_CACHE_CB *keycache, my_bool cleanup) |
| 957 | { |
| 958 | DBUG_ENTER("end_simple_key_cache" ); |
| 959 | DBUG_PRINT("enter" , ("key_cache: %p" , keycache)); |
| 960 | |
| 961 | if (!keycache->key_cache_inited) |
| 962 | DBUG_VOID_RETURN; |
| 963 | |
| 964 | if (keycache->disk_blocks > 0) |
| 965 | { |
| 966 | if (keycache->block_mem) |
| 967 | { |
| 968 | my_large_free((uchar*) keycache->block_mem); |
| 969 | keycache->block_mem= NULL; |
| 970 | my_free(keycache->block_root); |
| 971 | keycache->block_root= NULL; |
| 972 | } |
| 973 | keycache->disk_blocks= -1; |
| 974 | /* Reset blocks_changed to be safe if flush_all_key_blocks is called */ |
| 975 | keycache->blocks_changed= 0; |
| 976 | } |
| 977 | |
| 978 | DBUG_PRINT("status" , ("used: %lu changed: %lu w_requests: %lu " |
| 979 | "writes: %lu r_requests: %lu reads: %lu" , |
| 980 | keycache->blocks_used, keycache->global_blocks_changed, |
| 981 | (ulong) keycache->global_cache_w_requests, |
| 982 | (ulong) keycache->global_cache_write, |
| 983 | (ulong) keycache->global_cache_r_requests, |
| 984 | (ulong) keycache->global_cache_read)); |
| 985 | |
| 986 | /* |
| 987 | Reset these values to be able to detect a disabled key cache. |
| 988 | See Bug#44068 (RESTORE can disable the MyISAM Key Cache). |
| 989 | */ |
| 990 | keycache->blocks_used= 0; |
| 991 | keycache->blocks_unused= 0; |
| 992 | |
| 993 | if (cleanup) |
| 994 | { |
| 995 | mysql_mutex_destroy(&keycache->cache_lock); |
| 996 | keycache->key_cache_inited= keycache->can_be_used= 0; |
| 997 | KEYCACHE_DEBUG_CLOSE; |
| 998 | } |
| 999 | DBUG_VOID_RETURN; |
| 1000 | } /* end_key_cache */ |
| 1001 | |
| 1002 | |
| 1003 | /* |
| 1004 | Link a thread into double-linked queue of waiting threads. |
| 1005 | |
| 1006 | SYNOPSIS |
| 1007 | link_into_queue() |
| 1008 | wqueue pointer to the queue structure |
| 1009 | thread pointer to the thread to be added to the queue |
| 1010 | |
| 1011 | RETURN VALUE |
| 1012 | none |
| 1013 | |
| 1014 | NOTES. |
| 1015 | Queue is represented by a circular list of the thread structures |
| 1016 | The list is double-linked of the type (**prev,*next), accessed by |
| 1017 | a pointer to the last element. |
| 1018 | */ |
| 1019 | |
| 1020 | static void link_into_queue(KEYCACHE_WQUEUE *wqueue, |
| 1021 | struct st_my_thread_var *thread) |
| 1022 | { |
| 1023 | struct st_my_thread_var *last; |
| 1024 | DBUG_ASSERT(!thread->next && !thread->prev); |
| 1025 | |
| 1026 | if (! (last= wqueue->last_thread)) |
| 1027 | { |
| 1028 | /* Queue is empty */ |
| 1029 | thread->next= thread; |
| 1030 | thread->prev= &thread->next; |
| 1031 | } |
| 1032 | else |
| 1033 | { |
| 1034 | DBUG_ASSERT(last->next->prev == &last->next); |
| 1035 | /* Add backlink to previous element */ |
| 1036 | thread->prev= last->next->prev; |
| 1037 | /* Fix first in list to point backwords to current */ |
| 1038 | last->next->prev= &thread->next; |
| 1039 | /* Next should point to the first element in list */ |
| 1040 | thread->next= last->next; |
| 1041 | /* Fix old element to point to new one */ |
| 1042 | last->next= thread; |
| 1043 | } |
| 1044 | wqueue->last_thread= thread; |
| 1045 | } |
| 1046 | |
| 1047 | /* |
| 1048 | Unlink a thread from double-linked queue of waiting threads |
| 1049 | |
| 1050 | SYNOPSIS |
| 1051 | unlink_from_queue() |
| 1052 | wqueue pointer to the queue structure |
| 1053 | thread pointer to the thread to be removed from the queue |
| 1054 | |
| 1055 | RETURN VALUE |
| 1056 | none |
| 1057 | |
| 1058 | NOTES. |
| 1059 | See NOTES for link_into_queue |
| 1060 | */ |
| 1061 | |
| 1062 | static void unlink_from_queue(KEYCACHE_WQUEUE *wqueue, |
| 1063 | struct st_my_thread_var *thread) |
| 1064 | { |
| 1065 | KEYCACHE_DBUG_PRINT("unlink_from_queue" , ("thread %ld" , (ulong) thread->id)); |
| 1066 | DBUG_ASSERT(thread->next && thread->prev); |
| 1067 | |
| 1068 | if (thread->next == thread) |
| 1069 | { |
| 1070 | /* The queue contains only one member */ |
| 1071 | wqueue->last_thread= NULL; |
| 1072 | } |
| 1073 | else |
| 1074 | { |
| 1075 | /* Remove current element from list */ |
| 1076 | thread->next->prev= thread->prev; |
| 1077 | *thread->prev= thread->next; |
| 1078 | /* If first element, change list pointer to point to previous element */ |
| 1079 | if (wqueue->last_thread == thread) |
| 1080 | wqueue->last_thread= STRUCT_PTR(struct st_my_thread_var, next, |
| 1081 | thread->prev); |
| 1082 | } |
| 1083 | thread->next= NULL; |
| 1084 | #ifdef DBUG_ASSERT_EXISTS |
| 1085 | /* |
| 1086 | This makes it easier to see it's not in a chain during debugging. |
| 1087 | And some DBUG_ASSERT() rely on it. |
| 1088 | */ |
| 1089 | thread->prev= NULL; |
| 1090 | #endif |
| 1091 | } |
| 1092 | |
| 1093 | |
| 1094 | /* |
| 1095 | Add a thread to single-linked queue of waiting threads |
| 1096 | |
| 1097 | SYNOPSIS |
| 1098 | wait_on_queue() |
| 1099 | wqueue Pointer to the queue structure. |
| 1100 | mutex Cache_lock to acquire after awake. |
| 1101 | |
| 1102 | RETURN VALUE |
| 1103 | none |
| 1104 | |
| 1105 | NOTES. |
| 1106 | Queue is represented by a circular list of the thread structures |
| 1107 | The list is single-linked of the type (*next), accessed by a pointer |
| 1108 | to the last element. |
| 1109 | |
| 1110 | The function protects against stray signals by verifying that the |
| 1111 | current thread is unlinked from the queue when awaking. However, |
| 1112 | since several threads can wait for the same event, it might be |
| 1113 | necessary for the caller of the function to check again if the |
| 1114 | condition for awake is indeed matched. |
| 1115 | */ |
| 1116 | |
| 1117 | static void wait_on_queue(KEYCACHE_WQUEUE *wqueue, |
| 1118 | mysql_mutex_t *mutex) |
| 1119 | { |
| 1120 | struct st_my_thread_var *last; |
| 1121 | struct st_my_thread_var *thread= my_thread_var; |
| 1122 | DBUG_ASSERT(!thread->next); |
| 1123 | DBUG_ASSERT(!thread->prev); /* Not required, but must be true anyway. */ |
| 1124 | mysql_mutex_assert_owner(mutex); |
| 1125 | |
| 1126 | /* Add to queue. */ |
| 1127 | if (! (last= wqueue->last_thread)) |
| 1128 | thread->next= thread; |
| 1129 | else |
| 1130 | { |
| 1131 | thread->next= last->next; |
| 1132 | last->next= thread; |
| 1133 | } |
| 1134 | wqueue->last_thread= thread; |
| 1135 | |
| 1136 | /* |
| 1137 | Wait until thread is removed from queue by the signaling thread. |
| 1138 | The loop protects against stray signals. |
| 1139 | */ |
| 1140 | do |
| 1141 | { |
| 1142 | KEYCACHE_DBUG_PRINT("wait" , ("suspend thread %ld" , (ulong) thread->id)); |
| 1143 | keycache_pthread_cond_wait(&thread->suspend, mutex); |
| 1144 | } |
| 1145 | while (thread->next); |
| 1146 | } |
| 1147 | |
| 1148 | |
| 1149 | /* |
| 1150 | Remove all threads from queue signaling them to proceed |
| 1151 | |
| 1152 | SYNOPSIS |
| 1153 | release_whole_queue() |
| 1154 | wqueue pointer to the queue structure |
| 1155 | |
| 1156 | RETURN VALUE |
| 1157 | none |
| 1158 | |
| 1159 | NOTES. |
| 1160 | See notes for wait_on_queue(). |
| 1161 | When removed from the queue each thread is signaled via condition |
| 1162 | variable thread->suspend. |
| 1163 | */ |
| 1164 | |
| 1165 | static void release_whole_queue(KEYCACHE_WQUEUE *wqueue) |
| 1166 | { |
| 1167 | struct st_my_thread_var *last; |
| 1168 | struct st_my_thread_var *next; |
| 1169 | struct st_my_thread_var *thread; |
| 1170 | |
| 1171 | /* Queue may be empty. */ |
| 1172 | if (!(last= wqueue->last_thread)) |
| 1173 | return; |
| 1174 | |
| 1175 | next= last->next; /* First (oldest) element */ |
| 1176 | do |
| 1177 | { |
| 1178 | thread=next; |
| 1179 | DBUG_ASSERT(thread && thread->init == 1); |
| 1180 | KEYCACHE_DBUG_PRINT("release_whole_queue: signal" , |
| 1181 | ("thread %ld" , (ulong) thread->id)); |
| 1182 | /* Take thread from queue. */ |
| 1183 | next= thread->next; |
| 1184 | thread->next= NULL; |
| 1185 | |
| 1186 | /* Signal the thread. */ |
| 1187 | keycache_pthread_cond_signal(&thread->suspend); |
| 1188 | } |
| 1189 | while (thread != last); |
| 1190 | |
| 1191 | /* Now queue is definitely empty. */ |
| 1192 | wqueue->last_thread= NULL; |
| 1193 | } |
| 1194 | |
| 1195 | |
| 1196 | /* |
| 1197 | Unlink a block from the chain of dirty/clean blocks |
| 1198 | */ |
| 1199 | |
| 1200 | static inline void unlink_changed(BLOCK_LINK *block) |
| 1201 | { |
| 1202 | DBUG_ASSERT(block->prev_changed && *block->prev_changed == block); |
| 1203 | if (block->next_changed) |
| 1204 | block->next_changed->prev_changed= block->prev_changed; |
| 1205 | *block->prev_changed= block->next_changed; |
| 1206 | |
| 1207 | #ifdef DBUG_ASSERT_EXISTS |
| 1208 | /* |
| 1209 | This makes it easier to see it's not in a chain during debugging. |
| 1210 | And some DBUG_ASSERT() rely on it. |
| 1211 | */ |
| 1212 | block->next_changed= NULL; |
| 1213 | block->prev_changed= NULL; |
| 1214 | #endif |
| 1215 | } |
| 1216 | |
| 1217 | |
| 1218 | /* |
| 1219 | Link a block into the chain of dirty/clean blocks |
| 1220 | */ |
| 1221 | |
| 1222 | static inline void link_changed(BLOCK_LINK *block, BLOCK_LINK **phead) |
| 1223 | { |
| 1224 | DBUG_ASSERT(!block->next_changed); |
| 1225 | DBUG_ASSERT(!block->prev_changed); |
| 1226 | block->prev_changed= phead; |
| 1227 | if ((block->next_changed= *phead)) |
| 1228 | (*phead)->prev_changed= &block->next_changed; |
| 1229 | *phead= block; |
| 1230 | } |
| 1231 | |
| 1232 | |
| 1233 | /* |
| 1234 | Link a block in a chain of clean blocks of a file. |
| 1235 | |
| 1236 | SYNOPSIS |
| 1237 | link_to_file_list() |
| 1238 | keycache Key cache handle |
| 1239 | block Block to relink |
| 1240 | file File to be linked to |
| 1241 | unlink If to unlink first |
| 1242 | |
| 1243 | DESCRIPTION |
| 1244 | Unlink a block from whichever chain it is linked in, if it's |
| 1245 | asked for, and link it to the chain of clean blocks of the |
| 1246 | specified file. |
| 1247 | |
| 1248 | NOTE |
| 1249 | Please do never set/clear BLOCK_CHANGED outside of |
| 1250 | link_to_file_list() or link_to_changed_list(). |
| 1251 | You would risk to damage correct counting of changed blocks |
| 1252 | and to find blocks in the wrong hash. |
| 1253 | |
| 1254 | RETURN |
| 1255 | void |
| 1256 | */ |
| 1257 | |
| 1258 | static void link_to_file_list(SIMPLE_KEY_CACHE_CB *keycache, |
| 1259 | BLOCK_LINK *block, int file, |
| 1260 | my_bool unlink_block) |
| 1261 | { |
| 1262 | DBUG_ASSERT(block->status & BLOCK_IN_USE); |
| 1263 | DBUG_ASSERT(block->hash_link && block->hash_link->block == block); |
| 1264 | DBUG_ASSERT(block->hash_link->file == file); |
| 1265 | if (unlink_block) |
| 1266 | unlink_changed(block); |
| 1267 | link_changed(block, &keycache->file_blocks[FILE_HASH(file, keycache)]); |
| 1268 | if (block->status & BLOCK_CHANGED) |
| 1269 | { |
| 1270 | block->status&= ~BLOCK_CHANGED; |
| 1271 | keycache->blocks_changed--; |
| 1272 | keycache->global_blocks_changed--; |
| 1273 | } |
| 1274 | } |
| 1275 | |
| 1276 | |
| 1277 | /* |
| 1278 | Re-link a block from the clean chain to the dirty chain of a file. |
| 1279 | |
| 1280 | SYNOPSIS |
| 1281 | link_to_changed_list() |
| 1282 | keycache key cache handle |
| 1283 | block block to relink |
| 1284 | |
| 1285 | DESCRIPTION |
| 1286 | Unlink a block from the chain of clean blocks of a file |
| 1287 | and link it to the chain of dirty blocks of the same file. |
| 1288 | |
| 1289 | NOTE |
| 1290 | Please do never set/clear BLOCK_CHANGED outside of |
| 1291 | link_to_file_list() or link_to_changed_list(). |
| 1292 | You would risk to damage correct counting of changed blocks |
| 1293 | and to find blocks in the wrong hash. |
| 1294 | |
| 1295 | RETURN |
| 1296 | void |
| 1297 | */ |
| 1298 | |
| 1299 | static void link_to_changed_list(SIMPLE_KEY_CACHE_CB *keycache, |
| 1300 | BLOCK_LINK *block) |
| 1301 | { |
| 1302 | DBUG_ASSERT(block->status & BLOCK_IN_USE); |
| 1303 | DBUG_ASSERT(!(block->status & BLOCK_CHANGED)); |
| 1304 | DBUG_ASSERT(block->hash_link && block->hash_link->block == block); |
| 1305 | |
| 1306 | unlink_changed(block); |
| 1307 | link_changed(block, |
| 1308 | &keycache->changed_blocks[FILE_HASH(block->hash_link->file, keycache)]); |
| 1309 | block->status|=BLOCK_CHANGED; |
| 1310 | keycache->blocks_changed++; |
| 1311 | keycache->global_blocks_changed++; |
| 1312 | } |
| 1313 | |
| 1314 | |
| 1315 | /* |
| 1316 | Link a block to the LRU chain at the beginning or at the end of |
| 1317 | one of two parts. |
| 1318 | |
| 1319 | SYNOPSIS |
| 1320 | link_block() |
| 1321 | keycache pointer to a key cache data structure |
| 1322 | block pointer to the block to link to the LRU chain |
| 1323 | hot <-> to link the block into the hot subchain |
| 1324 | at_end <-> to link the block at the end of the subchain |
| 1325 | |
| 1326 | RETURN VALUE |
| 1327 | none |
| 1328 | |
| 1329 | NOTES. |
| 1330 | The LRU ring is represented by a circular list of block structures. |
| 1331 | The list is double-linked of the type (**prev,*next) type. |
| 1332 | The LRU ring is divided into two parts - hot and warm. |
| 1333 | There are two pointers to access the last blocks of these two |
| 1334 | parts. The beginning of the warm part follows right after the |
| 1335 | end of the hot part. |
| 1336 | Only blocks of the warm part can be used for eviction. |
| 1337 | The first block from the beginning of this subchain is always |
| 1338 | taken for eviction (keycache->last_used->next) |
| 1339 | |
| 1340 | LRU chain: +------+ H O T +------+ |
| 1341 | +----| end |----...<----| beg |----+ |
| 1342 | | +------+last +------+ | |
| 1343 | v<-link in latest hot (new end) | |
| 1344 | | link in latest warm (new end)->^ |
| 1345 | | +------+ W A R M +------+ | |
| 1346 | +----| beg |---->...----| end |----+ |
| 1347 | +------+ +------+ins |
| 1348 | first for eviction |
| 1349 | |
| 1350 | It is also possible that the block is selected for eviction and thus |
| 1351 | not linked in the LRU ring. |
| 1352 | */ |
| 1353 | |
| 1354 | static void link_block(SIMPLE_KEY_CACHE_CB *keycache, BLOCK_LINK *block, |
| 1355 | my_bool hot, my_bool at_end) |
| 1356 | { |
| 1357 | BLOCK_LINK *ins; |
| 1358 | BLOCK_LINK **pins; |
| 1359 | |
| 1360 | DBUG_ASSERT((block->status & ~BLOCK_CHANGED) == (BLOCK_READ | BLOCK_IN_USE)); |
| 1361 | DBUG_ASSERT(block->hash_link); /*backptr to block NULL from free_block()*/ |
| 1362 | DBUG_ASSERT(!block->requests); |
| 1363 | DBUG_ASSERT(block->prev_changed && *block->prev_changed == block); |
| 1364 | DBUG_ASSERT(!block->next_used); |
| 1365 | DBUG_ASSERT(!block->prev_used); |
| 1366 | if (!hot && keycache->waiting_for_block.last_thread) |
| 1367 | { |
| 1368 | /* Signal that in the LRU warm sub-chain an available block has appeared */ |
| 1369 | struct st_my_thread_var *last_thread= |
| 1370 | keycache->waiting_for_block.last_thread; |
| 1371 | struct st_my_thread_var *first_thread= last_thread->next; |
| 1372 | struct st_my_thread_var *next_thread= first_thread; |
| 1373 | HASH_LINK *hash_link= (HASH_LINK *) first_thread->keycache_link; |
| 1374 | struct st_my_thread_var *thread; |
| 1375 | do |
| 1376 | { |
| 1377 | thread= next_thread; |
| 1378 | next_thread= thread->next; |
| 1379 | /* |
| 1380 | We notify about the event all threads that ask |
| 1381 | for the same page as the first thread in the queue |
| 1382 | */ |
| 1383 | if ((HASH_LINK *) thread->keycache_link == hash_link) |
| 1384 | { |
| 1385 | KEYCACHE_DBUG_PRINT("link_block: signal" , |
| 1386 | ("thread %ld" , (ulong) thread->id)); |
| 1387 | keycache_pthread_cond_signal(&thread->suspend); |
| 1388 | unlink_from_queue(&keycache->waiting_for_block, thread); |
| 1389 | block->requests++; |
| 1390 | } |
| 1391 | } |
| 1392 | while (thread != last_thread); |
| 1393 | hash_link->block= block; |
| 1394 | /* |
| 1395 | NOTE: We assigned the block to the hash_link and signalled the |
| 1396 | requesting thread(s). But it is possible that other threads runs |
| 1397 | first. These threads see the hash_link assigned to a block which |
| 1398 | is assigned to another hash_link and not marked BLOCK_IN_SWITCH. |
| 1399 | This can be a problem for functions that do not select the block |
| 1400 | via its hash_link: flush and free. They do only see a block which |
| 1401 | is in a "normal" state and don't know that it will be evicted soon. |
| 1402 | |
| 1403 | We cannot set BLOCK_IN_SWITCH here because only one of the |
| 1404 | requesting threads must handle the eviction. All others must wait |
| 1405 | for it to complete. If we set the flag here, the threads would not |
| 1406 | know who is in charge of the eviction. Without the flag, the first |
| 1407 | thread takes the stick and sets the flag. |
| 1408 | |
| 1409 | But we need to note in the block that is has been selected for |
| 1410 | eviction. It must not be freed. The evicting thread will not |
| 1411 | expect the block in the free list. Before freeing we could also |
| 1412 | check if block->requests > 1. But I think including another flag |
| 1413 | in the check of block->status is slightly more efficient and |
| 1414 | probably easier to read. |
| 1415 | */ |
| 1416 | block->status|= BLOCK_IN_EVICTION; |
| 1417 | KEYCACHE_THREAD_TRACE("link_block: after signaling" ); |
| 1418 | #if defined(KEYCACHE_DEBUG) |
| 1419 | KEYCACHE_DBUG_PRINT("link_block" , |
| 1420 | ("linked,unlinked block %u status=%x #requests=%u #available=%u" , |
| 1421 | BLOCK_NUMBER(block), block->status, |
| 1422 | block->requests, keycache->blocks_available)); |
| 1423 | #endif |
| 1424 | return; |
| 1425 | } |
| 1426 | pins= hot ? &keycache->used_ins : &keycache->used_last; |
| 1427 | ins= *pins; |
| 1428 | if (ins) |
| 1429 | { |
| 1430 | ins->next_used->prev_used= &block->next_used; |
| 1431 | block->next_used= ins->next_used; |
| 1432 | block->prev_used= &ins->next_used; |
| 1433 | ins->next_used= block; |
| 1434 | if (at_end) |
| 1435 | *pins= block; |
| 1436 | } |
| 1437 | else |
| 1438 | { |
| 1439 | /* The LRU ring is empty. Let the block point to itself. */ |
| 1440 | keycache->used_last= keycache->used_ins= block->next_used= block; |
| 1441 | block->prev_used= &block->next_used; |
| 1442 | } |
| 1443 | KEYCACHE_THREAD_TRACE("link_block" ); |
| 1444 | #if defined(KEYCACHE_DEBUG) |
| 1445 | keycache->blocks_available++; |
| 1446 | KEYCACHE_DBUG_PRINT("link_block" , |
| 1447 | ("linked block %u:%1u status=%x #requests=%u #available=%u" , |
| 1448 | BLOCK_NUMBER(block), at_end, block->status, |
| 1449 | block->requests, keycache->blocks_available)); |
| 1450 | KEYCACHE_DBUG_ASSERT((ulong) keycache->blocks_available <= |
| 1451 | keycache->blocks_used); |
| 1452 | #endif |
| 1453 | } |
| 1454 | |
| 1455 | |
| 1456 | /* |
| 1457 | Unlink a block from the LRU chain |
| 1458 | |
| 1459 | SYNOPSIS |
| 1460 | unlink_block() |
| 1461 | keycache pointer to a key cache data structure |
| 1462 | block pointer to the block to unlink from the LRU chain |
| 1463 | |
| 1464 | RETURN VALUE |
| 1465 | none |
| 1466 | |
| 1467 | NOTES. |
| 1468 | See NOTES for link_block |
| 1469 | */ |
| 1470 | |
| 1471 | static void unlink_block(SIMPLE_KEY_CACHE_CB *keycache, BLOCK_LINK *block) |
| 1472 | { |
| 1473 | DBUG_ASSERT((block->status & ~BLOCK_CHANGED) == (BLOCK_READ | BLOCK_IN_USE)); |
| 1474 | DBUG_ASSERT(block->hash_link); /*backptr to block NULL from free_block()*/ |
| 1475 | DBUG_ASSERT(!block->requests); |
| 1476 | DBUG_ASSERT(block->prev_changed && *block->prev_changed == block); |
| 1477 | DBUG_ASSERT(block->next_used && block->prev_used && |
| 1478 | (block->next_used->prev_used == &block->next_used) && |
| 1479 | (*block->prev_used == block)); |
| 1480 | if (block->next_used == block) |
| 1481 | /* The list contains only one member */ |
| 1482 | keycache->used_last= keycache->used_ins= NULL; |
| 1483 | else |
| 1484 | { |
| 1485 | block->next_used->prev_used= block->prev_used; |
| 1486 | *block->prev_used= block->next_used; |
| 1487 | if (keycache->used_last == block) |
| 1488 | keycache->used_last= STRUCT_PTR(BLOCK_LINK, next_used, block->prev_used); |
| 1489 | if (keycache->used_ins == block) |
| 1490 | keycache->used_ins=STRUCT_PTR(BLOCK_LINK, next_used, block->prev_used); |
| 1491 | } |
| 1492 | block->next_used= NULL; |
| 1493 | #ifdef DBUG_ASSERT_EXISTS |
| 1494 | /* |
| 1495 | This makes it easier to see it's not in a chain during debugging. |
| 1496 | And some DBUG_ASSERT() rely on it. |
| 1497 | */ |
| 1498 | block->prev_used= NULL; |
| 1499 | #endif |
| 1500 | |
| 1501 | KEYCACHE_THREAD_TRACE("unlink_block" ); |
| 1502 | #if defined(KEYCACHE_DEBUG) |
| 1503 | KEYCACHE_DBUG_ASSERT(keycache->blocks_available != 0); |
| 1504 | keycache->blocks_available--; |
| 1505 | KEYCACHE_DBUG_PRINT("unlink_block" , |
| 1506 | ("unlinked block %u status=%x #requests=%u #available=%u" , |
| 1507 | BLOCK_NUMBER(block), block->status, |
| 1508 | block->requests, keycache->blocks_available)); |
| 1509 | #endif |
| 1510 | } |
| 1511 | |
| 1512 | |
| 1513 | /* |
| 1514 | Register requests for a block. |
| 1515 | |
| 1516 | SYNOPSIS |
| 1517 | reg_requests() |
| 1518 | keycache Pointer to a key cache data structure. |
| 1519 | block Pointer to the block to register a request on. |
| 1520 | count Number of requests. Always 1. |
| 1521 | |
| 1522 | NOTE |
| 1523 | The first request unlinks the block from the LRU ring. This means |
| 1524 | that it is protected against eveiction. |
| 1525 | |
| 1526 | RETURN |
| 1527 | void |
| 1528 | */ |
| 1529 | static void reg_requests(SIMPLE_KEY_CACHE_CB *keycache, |
| 1530 | BLOCK_LINK *block, int count) |
| 1531 | { |
| 1532 | DBUG_ASSERT(block->status & BLOCK_IN_USE); |
| 1533 | DBUG_ASSERT(block->hash_link); |
| 1534 | |
| 1535 | if (!block->requests) |
| 1536 | unlink_block(keycache, block); |
| 1537 | block->requests+=count; |
| 1538 | } |
| 1539 | |
| 1540 | |
| 1541 | /* |
| 1542 | Unregister request for a block |
| 1543 | linking it to the LRU chain if it's the last request |
| 1544 | |
| 1545 | SYNOPSIS |
| 1546 | unreg_request() |
| 1547 | keycache pointer to a key cache data structure |
| 1548 | block pointer to the block to link to the LRU chain |
| 1549 | at_end <-> to link the block at the end of the LRU chain |
| 1550 | |
| 1551 | RETURN VALUE |
| 1552 | none |
| 1553 | |
| 1554 | NOTES. |
| 1555 | Every linking to the LRU ring decrements by one a special block |
| 1556 | counter (if it's positive). If the at_end parameter is TRUE the block is |
| 1557 | added either at the end of warm sub-chain or at the end of hot sub-chain. |
| 1558 | It is added to the hot subchain if its counter is zero and number of |
| 1559 | blocks in warm sub-chain is not less than some low limit (determined by |
| 1560 | the division_limit parameter). Otherwise the block is added to the warm |
| 1561 | sub-chain. If the at_end parameter is FALSE the block is always added |
| 1562 | at beginning of the warm sub-chain. |
| 1563 | Thus a warm block can be promoted to the hot sub-chain when its counter |
| 1564 | becomes zero for the first time. |
| 1565 | At the same time the block at the very beginning of the hot subchain |
| 1566 | might be moved to the beginning of the warm subchain if it stays untouched |
| 1567 | for a too long time (this time is determined by parameter age_threshold). |
| 1568 | |
| 1569 | It is also possible that the block is selected for eviction and thus |
| 1570 | not linked in the LRU ring. |
| 1571 | */ |
| 1572 | |
| 1573 | static void unreg_request(SIMPLE_KEY_CACHE_CB *keycache, |
| 1574 | BLOCK_LINK *block, int at_end) |
| 1575 | { |
| 1576 | DBUG_ASSERT(block->status & (BLOCK_READ | BLOCK_IN_USE)); |
| 1577 | DBUG_ASSERT(block->hash_link); /*backptr to block NULL from free_block()*/ |
| 1578 | DBUG_ASSERT(block->requests); |
| 1579 | DBUG_ASSERT(block->prev_changed && *block->prev_changed == block); |
| 1580 | DBUG_ASSERT(!block->next_used); |
| 1581 | DBUG_ASSERT(!block->prev_used); |
| 1582 | /* |
| 1583 | Unregister the request, but do not link erroneous blocks into the |
| 1584 | LRU ring. |
| 1585 | */ |
| 1586 | if (!--block->requests && !(block->status & BLOCK_ERROR)) |
| 1587 | { |
| 1588 | my_bool hot; |
| 1589 | if (block->hits_left) |
| 1590 | block->hits_left--; |
| 1591 | hot= !block->hits_left && at_end && |
| 1592 | keycache->warm_blocks > keycache->min_warm_blocks; |
| 1593 | if (hot) |
| 1594 | { |
| 1595 | if (block->temperature == BLOCK_WARM) |
| 1596 | keycache->warm_blocks--; |
| 1597 | block->temperature= BLOCK_HOT; |
| 1598 | KEYCACHE_DBUG_PRINT("unreg_request" , ("#warm_blocks: %lu" , |
| 1599 | keycache->warm_blocks)); |
| 1600 | } |
| 1601 | link_block(keycache, block, hot, (my_bool)at_end); |
| 1602 | block->last_hit_time= keycache->keycache_time; |
| 1603 | keycache->keycache_time++; |
| 1604 | /* |
| 1605 | At this place, the block might be in the LRU ring or not. If an |
| 1606 | evicter was waiting for a block, it was selected for eviction and |
| 1607 | not linked in the LRU ring. |
| 1608 | */ |
| 1609 | |
| 1610 | /* |
| 1611 | Check if we should link a hot block to the warm block sub-chain. |
| 1612 | It is possible that we select the same block as above. But it can |
| 1613 | also be another block. In any case a block from the LRU ring is |
| 1614 | selected. In other words it works even if the above block was |
| 1615 | selected for eviction and not linked in the LRU ring. Since this |
| 1616 | happens only if the LRU ring is empty, the block selected below |
| 1617 | would be NULL and the rest of the function skipped. |
| 1618 | */ |
| 1619 | block= keycache->used_ins; |
| 1620 | if (block && keycache->keycache_time - block->last_hit_time > |
| 1621 | keycache->age_threshold) |
| 1622 | { |
| 1623 | unlink_block(keycache, block); |
| 1624 | link_block(keycache, block, 0, 0); |
| 1625 | if (block->temperature != BLOCK_WARM) |
| 1626 | { |
| 1627 | keycache->warm_blocks++; |
| 1628 | block->temperature= BLOCK_WARM; |
| 1629 | } |
| 1630 | KEYCACHE_DBUG_PRINT("unreg_request" , ("#warm_blocks: %lu" , |
| 1631 | keycache->warm_blocks)); |
| 1632 | } |
| 1633 | } |
| 1634 | } |
| 1635 | |
| 1636 | /* |
| 1637 | Remove a reader of the page in block |
| 1638 | */ |
| 1639 | |
| 1640 | static void remove_reader(BLOCK_LINK *block) |
| 1641 | { |
| 1642 | DBUG_ASSERT(block->status & (BLOCK_READ | BLOCK_IN_USE)); |
| 1643 | DBUG_ASSERT(block->hash_link && block->hash_link->block == block); |
| 1644 | DBUG_ASSERT(block->prev_changed && *block->prev_changed == block); |
| 1645 | DBUG_ASSERT(!block->next_used); |
| 1646 | DBUG_ASSERT(!block->prev_used); |
| 1647 | DBUG_ASSERT(block->hash_link->requests); |
| 1648 | if (! --block->hash_link->requests && block->condvar) |
| 1649 | keycache_pthread_cond_signal(block->condvar); |
| 1650 | } |
| 1651 | |
| 1652 | |
| 1653 | /* |
| 1654 | Wait until the last reader of the page in block |
| 1655 | signals on its termination |
| 1656 | */ |
| 1657 | |
| 1658 | static void wait_for_readers(SIMPLE_KEY_CACHE_CB *keycache, |
| 1659 | BLOCK_LINK *block) |
| 1660 | { |
| 1661 | struct st_my_thread_var *thread= my_thread_var; |
| 1662 | DBUG_ASSERT(block->status & (BLOCK_READ | BLOCK_IN_USE)); |
| 1663 | DBUG_ASSERT(!(block->status & (BLOCK_IN_FLUSH | BLOCK_CHANGED))); |
| 1664 | DBUG_ASSERT(block->hash_link); |
| 1665 | DBUG_ASSERT(block->hash_link->block == block); |
| 1666 | /* Linked in file_blocks or changed_blocks hash. */ |
| 1667 | DBUG_ASSERT(block->prev_changed && *block->prev_changed == block); |
| 1668 | /* Not linked in LRU ring. */ |
| 1669 | DBUG_ASSERT(!block->next_used); |
| 1670 | DBUG_ASSERT(!block->prev_used); |
| 1671 | while (block->hash_link->requests) |
| 1672 | { |
| 1673 | KEYCACHE_DBUG_PRINT("wait_for_readers: wait" , |
| 1674 | ("suspend thread %ld block %u" , |
| 1675 | (ulong) thread->id, BLOCK_NUMBER(block))); |
| 1676 | /* There must be no other waiter. We have no queue here. */ |
| 1677 | DBUG_ASSERT(!block->condvar); |
| 1678 | block->condvar= &thread->suspend; |
| 1679 | keycache_pthread_cond_wait(&thread->suspend, &keycache->cache_lock); |
| 1680 | block->condvar= NULL; |
| 1681 | } |
| 1682 | } |
| 1683 | |
| 1684 | |
| 1685 | /* |
| 1686 | Add a hash link to a bucket in the hash_table |
| 1687 | */ |
| 1688 | |
| 1689 | static inline void link_hash(HASH_LINK **start, HASH_LINK *hash_link) |
| 1690 | { |
| 1691 | if (*start) |
| 1692 | (*start)->prev= &hash_link->next; |
| 1693 | hash_link->next= *start; |
| 1694 | hash_link->prev= start; |
| 1695 | *start= hash_link; |
| 1696 | } |
| 1697 | |
| 1698 | |
| 1699 | /* |
| 1700 | Remove a hash link from the hash table |
| 1701 | */ |
| 1702 | |
| 1703 | static void unlink_hash(SIMPLE_KEY_CACHE_CB *keycache, HASH_LINK *hash_link) |
| 1704 | { |
| 1705 | KEYCACHE_DBUG_PRINT("unlink_hash" , ("fd: %u pos_ %lu #requests=%u" , |
| 1706 | (uint) hash_link->file,(ulong) hash_link->diskpos, hash_link->requests)); |
| 1707 | KEYCACHE_DBUG_ASSERT(hash_link->requests == 0); |
| 1708 | if ((*hash_link->prev= hash_link->next)) |
| 1709 | hash_link->next->prev= hash_link->prev; |
| 1710 | hash_link->block= NULL; |
| 1711 | if (keycache->waiting_for_hash_link.last_thread) |
| 1712 | { |
| 1713 | /* Signal that a free hash link has appeared */ |
| 1714 | struct st_my_thread_var *last_thread= |
| 1715 | keycache->waiting_for_hash_link.last_thread; |
| 1716 | struct st_my_thread_var *first_thread= last_thread->next; |
| 1717 | struct st_my_thread_var *next_thread= first_thread; |
| 1718 | KEYCACHE_PAGE *first_page= (KEYCACHE_PAGE *) (first_thread->keycache_link); |
| 1719 | struct st_my_thread_var *thread; |
| 1720 | |
| 1721 | hash_link->file= first_page->file; |
| 1722 | hash_link->diskpos= first_page->filepos; |
| 1723 | do |
| 1724 | { |
| 1725 | KEYCACHE_PAGE *page; |
| 1726 | thread= next_thread; |
| 1727 | page= (KEYCACHE_PAGE *) thread->keycache_link; |
| 1728 | next_thread= thread->next; |
| 1729 | /* |
| 1730 | We notify about the event all threads that ask |
| 1731 | for the same page as the first thread in the queue |
| 1732 | */ |
| 1733 | if (page->file == hash_link->file && page->filepos == hash_link->diskpos) |
| 1734 | { |
| 1735 | KEYCACHE_DBUG_PRINT("unlink_hash: signal" , |
| 1736 | ("thread %ld" , (ulong) thread->id)); |
| 1737 | keycache_pthread_cond_signal(&thread->suspend); |
| 1738 | unlink_from_queue(&keycache->waiting_for_hash_link, thread); |
| 1739 | } |
| 1740 | } |
| 1741 | while (thread != last_thread); |
| 1742 | link_hash(&keycache->hash_root[KEYCACHE_HASH(hash_link->file, |
| 1743 | hash_link->diskpos)], |
| 1744 | hash_link); |
| 1745 | return; |
| 1746 | } |
| 1747 | hash_link->next= keycache->free_hash_list; |
| 1748 | keycache->free_hash_list= hash_link; |
| 1749 | } |
| 1750 | |
| 1751 | |
| 1752 | /* |
| 1753 | Get the hash link for a page |
| 1754 | */ |
| 1755 | |
| 1756 | static HASH_LINK *get_hash_link(SIMPLE_KEY_CACHE_CB *keycache, |
| 1757 | int file, my_off_t filepos) |
| 1758 | { |
| 1759 | reg1 HASH_LINK *hash_link, **start; |
| 1760 | #if defined(KEYCACHE_DEBUG) |
| 1761 | int cnt; |
| 1762 | #endif |
| 1763 | |
| 1764 | KEYCACHE_DBUG_PRINT("get_hash_link" , ("fd: %u pos: %lu" , |
| 1765 | (uint) file,(ulong) filepos)); |
| 1766 | |
| 1767 | restart: |
| 1768 | /* |
| 1769 | Find the bucket in the hash table for the pair (file, filepos); |
| 1770 | start contains the head of the bucket list, |
| 1771 | hash_link points to the first member of the list |
| 1772 | */ |
| 1773 | hash_link= *(start= &keycache->hash_root[KEYCACHE_HASH(file, filepos)]); |
| 1774 | #if defined(KEYCACHE_DEBUG) |
| 1775 | cnt= 0; |
| 1776 | #endif |
| 1777 | /* Look for an element for the pair (file, filepos) in the bucket chain */ |
| 1778 | while (hash_link && |
| 1779 | (hash_link->diskpos != filepos || hash_link->file != file)) |
| 1780 | { |
| 1781 | hash_link= hash_link->next; |
| 1782 | #if defined(KEYCACHE_DEBUG) |
| 1783 | cnt++; |
| 1784 | if (! (cnt <= keycache->hash_links_used)) |
| 1785 | { |
| 1786 | int i; |
| 1787 | for (i=0, hash_link= *start ; |
| 1788 | i < cnt ; i++, hash_link= hash_link->next) |
| 1789 | { |
| 1790 | KEYCACHE_DBUG_PRINT("get_hash_link" , ("fd: %u pos: %lu" , |
| 1791 | (uint) hash_link->file,(ulong) hash_link->diskpos)); |
| 1792 | } |
| 1793 | } |
| 1794 | KEYCACHE_DBUG_ASSERT(cnt <= keycache->hash_links_used); |
| 1795 | #endif |
| 1796 | } |
| 1797 | if (! hash_link) |
| 1798 | { |
| 1799 | /* There is no hash link in the hash table for the pair (file, filepos) */ |
| 1800 | if (keycache->free_hash_list) |
| 1801 | { |
| 1802 | hash_link= keycache->free_hash_list; |
| 1803 | keycache->free_hash_list= hash_link->next; |
| 1804 | } |
| 1805 | else if (keycache->hash_links_used < keycache->hash_links) |
| 1806 | { |
| 1807 | hash_link= &keycache->hash_link_root[keycache->hash_links_used++]; |
| 1808 | } |
| 1809 | else |
| 1810 | { |
| 1811 | /* Wait for a free hash link */ |
| 1812 | struct st_my_thread_var *thread= my_thread_var; |
| 1813 | KEYCACHE_PAGE page; |
| 1814 | KEYCACHE_DBUG_PRINT("get_hash_link" , ("waiting" )); |
| 1815 | page.file= file; |
| 1816 | page.filepos= filepos; |
| 1817 | thread->keycache_link= (void *) &page; |
| 1818 | link_into_queue(&keycache->waiting_for_hash_link, thread); |
| 1819 | KEYCACHE_DBUG_PRINT("get_hash_link: wait" , |
| 1820 | ("suspend thread %ld" , (ulong) thread->id)); |
| 1821 | keycache_pthread_cond_wait(&thread->suspend, |
| 1822 | &keycache->cache_lock); |
| 1823 | thread->keycache_link= NULL; |
| 1824 | goto restart; |
| 1825 | } |
| 1826 | hash_link->file= file; |
| 1827 | hash_link->diskpos= filepos; |
| 1828 | link_hash(start, hash_link); |
| 1829 | } |
| 1830 | /* Register the request for the page */ |
| 1831 | hash_link->requests++; |
| 1832 | |
| 1833 | return hash_link; |
| 1834 | } |
| 1835 | |
| 1836 | |
| 1837 | /* |
| 1838 | Get a block for the file page requested by a keycache read/write operation; |
| 1839 | If the page is not in the cache return a free block, if there is none |
| 1840 | return the lru block after saving its buffer if the page is dirty. |
| 1841 | |
| 1842 | SYNOPSIS |
| 1843 | |
| 1844 | find_key_block() |
| 1845 | keycache pointer to a key cache data structure |
| 1846 | file handler for the file to read page from |
| 1847 | filepos position of the page in the file |
| 1848 | init_hits_left how initialize the block counter for the page |
| 1849 | wrmode <-> get for writing |
| 1850 | page_st out {PAGE_READ,PAGE_TO_BE_READ,PAGE_WAIT_TO_BE_READ} |
| 1851 | |
| 1852 | RETURN VALUE |
| 1853 | Pointer to the found block if successful, 0 - otherwise |
| 1854 | |
| 1855 | NOTES. |
| 1856 | For the page from file positioned at filepos the function checks whether |
| 1857 | the page is in the key cache specified by the first parameter. |
| 1858 | If this is the case it immediately returns the block. |
| 1859 | If not, the function first chooses a block for this page. If there is |
| 1860 | no not used blocks in the key cache yet, the function takes the block |
| 1861 | at the very beginning of the warm sub-chain. It saves the page in that |
| 1862 | block if it's dirty before returning the pointer to it. |
| 1863 | The function returns in the page_st parameter the following values: |
| 1864 | PAGE_READ - if page already in the block, |
| 1865 | PAGE_TO_BE_READ - if it is to be read yet by the current thread |
| 1866 | WAIT_TO_BE_READ - if it is to be read by another thread |
| 1867 | If an error occurs THE BLOCK_ERROR bit is set in the block status. |
| 1868 | It might happen that there are no blocks in LRU chain (in warm part) - |
| 1869 | all blocks are unlinked for some read/write operations. Then the function |
| 1870 | waits until first of this operations links any block back. |
| 1871 | */ |
| 1872 | |
| 1873 | static BLOCK_LINK *find_key_block(SIMPLE_KEY_CACHE_CB *keycache, |
| 1874 | File file, my_off_t filepos, |
| 1875 | int init_hits_left, |
| 1876 | int wrmode, int *page_st) |
| 1877 | { |
| 1878 | HASH_LINK *hash_link; |
| 1879 | BLOCK_LINK *block; |
| 1880 | int error= 0; |
| 1881 | int page_status; |
| 1882 | |
| 1883 | DBUG_ENTER("find_key_block" ); |
| 1884 | KEYCACHE_THREAD_TRACE("find_key_block:begin" ); |
| 1885 | DBUG_PRINT("enter" , ("fd: %d pos: %lu wrmode: %d" , |
| 1886 | file, (ulong) filepos, wrmode)); |
| 1887 | KEYCACHE_DBUG_PRINT("find_key_block" , ("fd: %d pos: %lu wrmode: %d" , |
| 1888 | file, (ulong) filepos, |
| 1889 | wrmode)); |
| 1890 | #if !defined(DBUG_OFF) && defined(EXTRA_DEBUG) |
| 1891 | DBUG_EXECUTE("check_keycache2" , |
| 1892 | test_key_cache(keycache, "start of find_key_block" , 0);); |
| 1893 | #endif |
| 1894 | |
| 1895 | restart: |
| 1896 | /* |
| 1897 | If the flush phase of a resize operation fails, the cache is left |
| 1898 | unusable. This will be detected only after "goto restart". |
| 1899 | */ |
| 1900 | if (!keycache->can_be_used) |
| 1901 | DBUG_RETURN(0); |
| 1902 | |
| 1903 | /* |
| 1904 | Find the hash_link for the requested file block (file, filepos). We |
| 1905 | do always get a hash_link here. It has registered our request so |
| 1906 | that no other thread can use it for another file block until we |
| 1907 | release the request (which is done by remove_reader() usually). The |
| 1908 | hash_link can have a block assigned to it or not. If there is a |
| 1909 | block, it may be assigned to this hash_link or not. In cases where a |
| 1910 | block is evicted from the cache, it is taken from the LRU ring and |
| 1911 | referenced by the new hash_link. But the block can still be assigned |
| 1912 | to its old hash_link for some time if it needs to be flushed first, |
| 1913 | or if there are other threads still reading it. |
| 1914 | |
| 1915 | Summary: |
| 1916 | hash_link is always returned. |
| 1917 | hash_link->block can be: |
| 1918 | - NULL or |
| 1919 | - not assigned to this hash_link or |
| 1920 | - assigned to this hash_link. If assigned, the block can have |
| 1921 | - invalid data (when freshly assigned) or |
| 1922 | - valid data. Valid data can be |
| 1923 | - changed over the file contents (dirty) or |
| 1924 | - not changed (clean). |
| 1925 | */ |
| 1926 | hash_link= get_hash_link(keycache, file, filepos); |
| 1927 | DBUG_ASSERT((hash_link->file == file) && (hash_link->diskpos == filepos)); |
| 1928 | |
| 1929 | page_status= -1; |
| 1930 | if ((block= hash_link->block) && |
| 1931 | block->hash_link == hash_link && (block->status & BLOCK_READ)) |
| 1932 | { |
| 1933 | /* Assigned block with valid (changed or unchanged) contents. */ |
| 1934 | page_status= PAGE_READ; |
| 1935 | } |
| 1936 | /* |
| 1937 | else (page_status == -1) |
| 1938 | - block == NULL or |
| 1939 | - block not assigned to this hash_link or |
| 1940 | - block assigned but not yet read from file (invalid data). |
| 1941 | */ |
| 1942 | |
| 1943 | if (keycache->in_resize) |
| 1944 | { |
| 1945 | /* This is a request during a resize operation */ |
| 1946 | |
| 1947 | if (!block) |
| 1948 | { |
| 1949 | struct st_my_thread_var *thread; |
| 1950 | |
| 1951 | /* |
| 1952 | The file block is not in the cache. We don't need it in the |
| 1953 | cache: we are going to read or write directly to file. Cancel |
| 1954 | the request. We can simply decrement hash_link->requests because |
| 1955 | we did not release cache_lock since increasing it. So no other |
| 1956 | thread can wait for our request to become released. |
| 1957 | */ |
| 1958 | if (hash_link->requests == 1) |
| 1959 | { |
| 1960 | /* |
| 1961 | We are the only one to request this hash_link (this file/pos). |
| 1962 | Free the hash_link. |
| 1963 | */ |
| 1964 | hash_link->requests--; |
| 1965 | unlink_hash(keycache, hash_link); |
| 1966 | DBUG_RETURN(0); |
| 1967 | } |
| 1968 | |
| 1969 | /* |
| 1970 | More requests on the hash_link. Someone tries to evict a block |
| 1971 | for this hash_link (could have started before resizing started). |
| 1972 | This means that the LRU ring is empty. Otherwise a block could |
| 1973 | be assigned immediately. Behave like a thread that wants to |
| 1974 | evict a block for this file/pos. Add to the queue of threads |
| 1975 | waiting for a block. Wait until there is one assigned. |
| 1976 | |
| 1977 | Refresh the request on the hash-link so that it cannot be reused |
| 1978 | for another file/pos. |
| 1979 | */ |
| 1980 | thread= my_thread_var; |
| 1981 | thread->keycache_link= (void *) hash_link; |
| 1982 | link_into_queue(&keycache->waiting_for_block, thread); |
| 1983 | do |
| 1984 | { |
| 1985 | KEYCACHE_DBUG_PRINT("find_key_block: wait" , |
| 1986 | ("suspend thread %ld" , (ulong) thread->id)); |
| 1987 | keycache_pthread_cond_wait(&thread->suspend, |
| 1988 | &keycache->cache_lock); |
| 1989 | } while (thread->next); |
| 1990 | thread->keycache_link= NULL; |
| 1991 | /* |
| 1992 | A block should now be assigned to the hash_link. But it may |
| 1993 | still need to be evicted. Anyway, we should re-check the |
| 1994 | situation. page_status must be set correctly. |
| 1995 | */ |
| 1996 | hash_link->requests--; |
| 1997 | goto restart; |
| 1998 | } /* end of if (!block) */ |
| 1999 | |
| 2000 | /* |
| 2001 | There is a block for this file/pos in the cache. Register a |
| 2002 | request on it. This unlinks it from the LRU ring (if it is there) |
| 2003 | and hence protects it against eviction (if not already in |
| 2004 | eviction). We need this for returning the block to the caller, for |
| 2005 | calling remove_reader() (for debugging purposes), and for calling |
| 2006 | free_block(). The only case where we don't need the request is if |
| 2007 | the block is in eviction. In that case we have to unregister the |
| 2008 | request later. |
| 2009 | */ |
| 2010 | reg_requests(keycache, block, 1); |
| 2011 | |
| 2012 | if (page_status != PAGE_READ) |
| 2013 | { |
| 2014 | /* |
| 2015 | - block not assigned to this hash_link or |
| 2016 | - block assigned but not yet read from file (invalid data). |
| 2017 | |
| 2018 | This must be a block in eviction. It will be read soon. We need |
| 2019 | to wait here until this happened. Otherwise the caller could |
| 2020 | access a wrong block or a block which is in read. While waiting |
| 2021 | we cannot lose hash_link nor block. We have registered a request |
| 2022 | on the hash_link. Everything can happen to the block but changes |
| 2023 | in the hash_link -> block relationship. In other words: |
| 2024 | everything can happen to the block but free or another completed |
| 2025 | eviction. |
| 2026 | |
| 2027 | Note that we bahave like a secondary requestor here. We just |
| 2028 | cannot return with PAGE_WAIT_TO_BE_READ. This would work for |
| 2029 | read requests and writes on dirty blocks that are not in flush |
| 2030 | only. Waiting here on COND_FOR_REQUESTED works in all |
| 2031 | situations. |
| 2032 | */ |
| 2033 | DBUG_ASSERT(((block->hash_link != hash_link) && |
| 2034 | (block->status & (BLOCK_IN_EVICTION | BLOCK_IN_SWITCH))) || |
| 2035 | ((block->hash_link == hash_link) && |
| 2036 | !(block->status & BLOCK_READ))); |
| 2037 | wait_on_queue(&block->wqueue[COND_FOR_REQUESTED], &keycache->cache_lock); |
| 2038 | /* |
| 2039 | Here we can trust that the block has been assigned to this |
| 2040 | hash_link (block->hash_link == hash_link) and read into the |
| 2041 | buffer (BLOCK_READ). The worst things possible here are that the |
| 2042 | block is in free (BLOCK_REASSIGNED). But the block is still |
| 2043 | assigned to the hash_link. The freeing thread waits until we |
| 2044 | release our request on the hash_link. The block must not be |
| 2045 | again in eviction because we registered an request on it before |
| 2046 | starting to wait. |
| 2047 | */ |
| 2048 | DBUG_ASSERT(block->hash_link == hash_link); |
| 2049 | DBUG_ASSERT(block->status & (BLOCK_READ | BLOCK_IN_USE)); |
| 2050 | DBUG_ASSERT(!(block->status & (BLOCK_IN_EVICTION | BLOCK_IN_SWITCH))); |
| 2051 | } |
| 2052 | /* |
| 2053 | The block is in the cache. Assigned to the hash_link. Valid data. |
| 2054 | Note that in case of page_st == PAGE_READ, the block can be marked |
| 2055 | for eviction. In any case it can be marked for freeing. |
| 2056 | */ |
| 2057 | |
| 2058 | if (!wrmode) |
| 2059 | { |
| 2060 | /* A reader can just read the block. */ |
| 2061 | *page_st= PAGE_READ; |
| 2062 | DBUG_ASSERT((hash_link->file == file) && |
| 2063 | (hash_link->diskpos == filepos) && |
| 2064 | (block->hash_link == hash_link)); |
| 2065 | DBUG_RETURN(block); |
| 2066 | } |
| 2067 | |
| 2068 | /* |
| 2069 | This is a writer. No two writers for the same block can exist. |
| 2070 | This must be assured by locks outside of the key cache. |
| 2071 | */ |
| 2072 | DBUG_ASSERT(!(block->status & BLOCK_FOR_UPDATE) || fail_block(block)); |
| 2073 | |
| 2074 | while (block->status & BLOCK_IN_FLUSH) |
| 2075 | { |
| 2076 | /* |
| 2077 | Wait until the block is flushed to file. Do not release the |
| 2078 | request on the hash_link yet to prevent that the block is freed |
| 2079 | or reassigned while we wait. While we wait, several things can |
| 2080 | happen to the block, including another flush. But the block |
| 2081 | cannot be reassigned to another hash_link until we release our |
| 2082 | request on it. But it can be marked BLOCK_REASSIGNED from free |
| 2083 | or eviction, while they wait for us to release the hash_link. |
| 2084 | */ |
| 2085 | wait_on_queue(&block->wqueue[COND_FOR_SAVED], &keycache->cache_lock); |
| 2086 | /* |
| 2087 | If the flush phase failed, the resize could have finished while |
| 2088 | we waited here. |
| 2089 | */ |
| 2090 | if (!keycache->in_resize) |
| 2091 | { |
| 2092 | remove_reader(block); |
| 2093 | unreg_request(keycache, block, 1); |
| 2094 | goto restart; |
| 2095 | } |
| 2096 | DBUG_ASSERT(block->status & (BLOCK_READ | BLOCK_IN_USE)); |
| 2097 | DBUG_ASSERT(!(block->status & BLOCK_FOR_UPDATE) || fail_block(block)); |
| 2098 | DBUG_ASSERT(block->hash_link == hash_link); |
| 2099 | } |
| 2100 | |
| 2101 | if (block->status & BLOCK_CHANGED) |
| 2102 | { |
| 2103 | /* |
| 2104 | We want to write a block with changed contents. If the cache |
| 2105 | block size is bigger than the callers block size (e.g. MyISAM), |
| 2106 | the caller may replace part of the block only. Changes of the |
| 2107 | other part of the block must be preserved. Since the block has |
| 2108 | not yet been selected for flush, we can still add our changes. |
| 2109 | */ |
| 2110 | *page_st= PAGE_READ; |
| 2111 | DBUG_ASSERT((hash_link->file == file) && |
| 2112 | (hash_link->diskpos == filepos) && |
| 2113 | (block->hash_link == hash_link)); |
| 2114 | DBUG_RETURN(block); |
| 2115 | } |
| 2116 | |
| 2117 | /* |
| 2118 | This is a write request for a clean block. We do not want to have |
| 2119 | new dirty blocks in the cache while resizing. We will free the |
| 2120 | block and write directly to file. If the block is in eviction or |
| 2121 | in free, we just let it go. |
| 2122 | |
| 2123 | Unregister from the hash_link. This must be done before freeing |
| 2124 | the block. And it must be done if not freeing the block. Because |
| 2125 | we could have waited above, we need to call remove_reader(). Other |
| 2126 | threads could wait for us to release our request on the hash_link. |
| 2127 | */ |
| 2128 | remove_reader(block); |
| 2129 | |
| 2130 | /* If the block is not in eviction and not in free, we can free it. */ |
| 2131 | if (!(block->status & (BLOCK_IN_EVICTION | BLOCK_IN_SWITCH | |
| 2132 | BLOCK_REASSIGNED))) |
| 2133 | { |
| 2134 | /* |
| 2135 | Free block as we are going to write directly to file. |
| 2136 | Although we have an exlusive lock for the updated key part, |
| 2137 | the control can be yielded by the current thread as we might |
| 2138 | have unfinished readers of other key parts in the block |
| 2139 | buffer. Still we are guaranteed not to have any readers |
| 2140 | of the key part we are writing into until the block is |
| 2141 | removed from the cache as we set the BLOCK_REASSIGNED |
| 2142 | flag (see the code below that handles reading requests). |
| 2143 | */ |
| 2144 | free_block(keycache, block); |
| 2145 | } |
| 2146 | else |
| 2147 | { |
| 2148 | /* |
| 2149 | The block will be evicted/freed soon. Don't touch it in any way. |
| 2150 | Unregister the request that we registered above. |
| 2151 | */ |
| 2152 | unreg_request(keycache, block, 1); |
| 2153 | |
| 2154 | /* |
| 2155 | The block is still assigned to the hash_link (the file/pos that |
| 2156 | we are going to write to). Wait until the eviction/free is |
| 2157 | complete. Otherwise the direct write could complete before all |
| 2158 | readers are done with the block. So they could read outdated |
| 2159 | data. |
| 2160 | |
| 2161 | Since we released our request on the hash_link, it can be reused |
| 2162 | for another file/pos. Hence we cannot just check for |
| 2163 | block->hash_link == hash_link. As long as the resize is |
| 2164 | proceeding the block cannot be reassigned to the same file/pos |
| 2165 | again. So we can terminate the loop when the block is no longer |
| 2166 | assigned to this file/pos. |
| 2167 | */ |
| 2168 | do |
| 2169 | { |
| 2170 | wait_on_queue(&block->wqueue[COND_FOR_SAVED], |
| 2171 | &keycache->cache_lock); |
| 2172 | /* |
| 2173 | If the flush phase failed, the resize could have finished |
| 2174 | while we waited here. |
| 2175 | */ |
| 2176 | if (!keycache->in_resize) |
| 2177 | goto restart; |
| 2178 | } while (block->hash_link && |
| 2179 | (block->hash_link->file == file) && |
| 2180 | (block->hash_link->diskpos == filepos)); |
| 2181 | } |
| 2182 | DBUG_RETURN(0); |
| 2183 | } |
| 2184 | |
| 2185 | if (page_status == PAGE_READ && |
| 2186 | (block->status & (BLOCK_IN_EVICTION | BLOCK_IN_SWITCH | |
| 2187 | BLOCK_REASSIGNED))) |
| 2188 | { |
| 2189 | /* |
| 2190 | This is a request for a block to be removed from cache. The block |
| 2191 | is assigned to this hash_link and contains valid data, but is |
| 2192 | marked for eviction or to be freed. Possible reasons why it has |
| 2193 | not yet been evicted/freed can be a flush before reassignment |
| 2194 | (BLOCK_IN_SWITCH), readers of the block have not finished yet |
| 2195 | (BLOCK_REASSIGNED), or the evicting thread did not yet awake after |
| 2196 | the block has been selected for it (BLOCK_IN_EVICTION). |
| 2197 | */ |
| 2198 | |
| 2199 | KEYCACHE_DBUG_PRINT("find_key_block" , |
| 2200 | ("request for old page in block %u " |
| 2201 | "wrmode: %d block->status: %d" , |
| 2202 | BLOCK_NUMBER(block), wrmode, block->status)); |
| 2203 | /* |
| 2204 | Only reading requests can proceed until the old dirty page is flushed, |
| 2205 | all others are to be suspended, then resubmitted |
| 2206 | */ |
| 2207 | if (!wrmode && !(block->status & BLOCK_REASSIGNED)) |
| 2208 | { |
| 2209 | /* |
| 2210 | This is a read request and the block not yet reassigned. We can |
| 2211 | register our request and proceed. This unlinks the block from |
| 2212 | the LRU ring and protects it against eviction. |
| 2213 | */ |
| 2214 | reg_requests(keycache, block, 1); |
| 2215 | } |
| 2216 | else |
| 2217 | { |
| 2218 | /* |
| 2219 | Either this is a write request for a block that is in eviction |
| 2220 | or in free. We must not use it any more. Instead we must evict |
| 2221 | another block. But we cannot do this before the eviction/free is |
| 2222 | done. Otherwise we would find the same hash_link + block again |
| 2223 | and again. |
| 2224 | |
| 2225 | Or this is a read request for a block in eviction/free that does |
| 2226 | not require a flush, but waits for readers to finish with the |
| 2227 | block. We do not read this block to let the eviction/free happen |
| 2228 | as soon as possible. Again we must wait so that we don't find |
| 2229 | the same hash_link + block again and again. |
| 2230 | */ |
| 2231 | DBUG_ASSERT(hash_link->requests); |
| 2232 | hash_link->requests--; |
| 2233 | KEYCACHE_DBUG_PRINT("find_key_block" , |
| 2234 | ("request waiting for old page to be saved" )); |
| 2235 | wait_on_queue(&block->wqueue[COND_FOR_SAVED], &keycache->cache_lock); |
| 2236 | KEYCACHE_DBUG_PRINT("find_key_block" , |
| 2237 | ("request for old page resubmitted" )); |
| 2238 | /* |
| 2239 | The block is no longer assigned to this hash_link. |
| 2240 | Get another one. |
| 2241 | */ |
| 2242 | goto restart; |
| 2243 | } |
| 2244 | } |
| 2245 | else |
| 2246 | { |
| 2247 | /* |
| 2248 | This is a request for a new block or for a block not to be removed. |
| 2249 | Either |
| 2250 | - block == NULL or |
| 2251 | - block not assigned to this hash_link or |
| 2252 | - block assigned but not yet read from file, |
| 2253 | or |
| 2254 | - block assigned with valid (changed or unchanged) data and |
| 2255 | - it will not be reassigned/freed. |
| 2256 | */ |
| 2257 | if (! block) |
| 2258 | { |
| 2259 | /* No block is assigned to the hash_link yet. */ |
| 2260 | if (keycache->blocks_unused) |
| 2261 | { |
| 2262 | if (keycache->free_block_list) |
| 2263 | { |
| 2264 | /* There is a block in the free list. */ |
| 2265 | block= keycache->free_block_list; |
| 2266 | keycache->free_block_list= block->next_used; |
| 2267 | block->next_used= NULL; |
| 2268 | } |
| 2269 | else |
| 2270 | { |
| 2271 | size_t block_mem_offset; |
| 2272 | /* There are some never used blocks, take first of them */ |
| 2273 | DBUG_ASSERT(keycache->blocks_used < |
| 2274 | (ulong) keycache->disk_blocks); |
| 2275 | block= &keycache->block_root[keycache->blocks_used]; |
| 2276 | block_mem_offset= |
| 2277 | ((size_t) keycache->blocks_used) * keycache->key_cache_block_size; |
| 2278 | block->buffer= ADD_TO_PTR(keycache->block_mem, |
| 2279 | block_mem_offset, |
| 2280 | uchar*); |
| 2281 | keycache->blocks_used++; |
| 2282 | DBUG_ASSERT(!block->next_used); |
| 2283 | } |
| 2284 | DBUG_ASSERT(!block->prev_used); |
| 2285 | DBUG_ASSERT(!block->next_changed); |
| 2286 | DBUG_ASSERT(!block->prev_changed); |
| 2287 | DBUG_ASSERT(!block->hash_link); |
| 2288 | DBUG_ASSERT(!block->status); |
| 2289 | DBUG_ASSERT(!block->requests); |
| 2290 | keycache->blocks_unused--; |
| 2291 | block->status= BLOCK_IN_USE; |
| 2292 | block->length= 0; |
| 2293 | block->offset= keycache->key_cache_block_size; |
| 2294 | block->requests= 1; |
| 2295 | block->temperature= BLOCK_COLD; |
| 2296 | block->hits_left= init_hits_left; |
| 2297 | block->last_hit_time= 0; |
| 2298 | block->hash_link= hash_link; |
| 2299 | hash_link->block= block; |
| 2300 | link_to_file_list(keycache, block, file, 0); |
| 2301 | page_status= PAGE_TO_BE_READ; |
| 2302 | KEYCACHE_DBUG_PRINT("find_key_block" , |
| 2303 | ("got free or never used block %u" , |
| 2304 | BLOCK_NUMBER(block))); |
| 2305 | } |
| 2306 | else |
| 2307 | { |
| 2308 | /* |
| 2309 | There are no free blocks and no never used blocks, use a block |
| 2310 | from the LRU ring. |
| 2311 | */ |
| 2312 | |
| 2313 | if (! keycache->used_last) |
| 2314 | { |
| 2315 | /* |
| 2316 | The LRU ring is empty. Wait until a new block is added to |
| 2317 | it. Several threads might wait here for the same hash_link, |
| 2318 | all of them must get the same block. While waiting for a |
| 2319 | block, after a block is selected for this hash_link, other |
| 2320 | threads can run first before this one awakes. During this |
| 2321 | time interval other threads find this hash_link pointing to |
| 2322 | the block, which is still assigned to another hash_link. In |
| 2323 | this case the block is not marked BLOCK_IN_SWITCH yet, but |
| 2324 | it is marked BLOCK_IN_EVICTION. |
| 2325 | */ |
| 2326 | |
| 2327 | struct st_my_thread_var *thread= my_thread_var; |
| 2328 | thread->keycache_link= (void *) hash_link; |
| 2329 | link_into_queue(&keycache->waiting_for_block, thread); |
| 2330 | do |
| 2331 | { |
| 2332 | KEYCACHE_DBUG_PRINT("find_key_block: wait" , |
| 2333 | ("suspend thread %ld" , (ulong) thread->id)); |
| 2334 | keycache_pthread_cond_wait(&thread->suspend, |
| 2335 | &keycache->cache_lock); |
| 2336 | } |
| 2337 | while (thread->next); |
| 2338 | thread->keycache_link= NULL; |
| 2339 | /* Assert that block has a request registered. */ |
| 2340 | DBUG_ASSERT(hash_link->block->requests); |
| 2341 | /* Assert that block is not in LRU ring. */ |
| 2342 | DBUG_ASSERT(!hash_link->block->next_used); |
| 2343 | DBUG_ASSERT(!hash_link->block->prev_used); |
| 2344 | } |
| 2345 | /* |
| 2346 | If we waited above, hash_link->block has been assigned by |
| 2347 | link_block(). Otherwise it is still NULL. In the latter case |
| 2348 | we need to grab a block from the LRU ring ourselves. |
| 2349 | */ |
| 2350 | block= hash_link->block; |
| 2351 | if (! block) |
| 2352 | { |
| 2353 | /* Select the last block from the LRU ring. */ |
| 2354 | block= keycache->used_last->next_used; |
| 2355 | block->hits_left= init_hits_left; |
| 2356 | block->last_hit_time= 0; |
| 2357 | hash_link->block= block; |
| 2358 | /* |
| 2359 | Register a request on the block. This unlinks it from the |
| 2360 | LRU ring and protects it against eviction. |
| 2361 | */ |
| 2362 | DBUG_ASSERT(!block->requests); |
| 2363 | reg_requests(keycache, block,1); |
| 2364 | /* |
| 2365 | We do not need to set block->status|= BLOCK_IN_EVICTION here |
| 2366 | because we will set block->status|= BLOCK_IN_SWITCH |
| 2367 | immediately without releasing the lock in between. This does |
| 2368 | also support debugging. When looking at the block, one can |
| 2369 | see if the block has been selected by link_block() after the |
| 2370 | LRU ring was empty, or if it was grabbed directly from the |
| 2371 | LRU ring in this branch. |
| 2372 | */ |
| 2373 | } |
| 2374 | |
| 2375 | /* |
| 2376 | If we had to wait above, there is a small chance that another |
| 2377 | thread grabbed this block for the same file block already. But |
| 2378 | in most cases the first condition is true. |
| 2379 | */ |
| 2380 | if (block->hash_link != hash_link && |
| 2381 | ! (block->status & BLOCK_IN_SWITCH) ) |
| 2382 | { |
| 2383 | /* this is a primary request for a new page */ |
| 2384 | block->status|= BLOCK_IN_SWITCH; |
| 2385 | |
| 2386 | KEYCACHE_DBUG_PRINT("find_key_block" , |
| 2387 | ("got block %u for new page" , BLOCK_NUMBER(block))); |
| 2388 | |
| 2389 | if (block->status & BLOCK_CHANGED) |
| 2390 | { |
| 2391 | /* The block contains a dirty page - push it out of the cache */ |
| 2392 | |
| 2393 | KEYCACHE_DBUG_PRINT("find_key_block" , ("block is dirty" )); |
| 2394 | if (block->status & BLOCK_IN_FLUSH) |
| 2395 | { |
| 2396 | /* |
| 2397 | The block is marked for flush. If we do not wait here, |
| 2398 | it could happen that we write the block, reassign it to |
| 2399 | another file block, then, before the new owner can read |
| 2400 | the new file block, the flusher writes the cache block |
| 2401 | (which still has the old contents) to the new file block! |
| 2402 | */ |
| 2403 | wait_on_queue(&block->wqueue[COND_FOR_SAVED], |
| 2404 | &keycache->cache_lock); |
| 2405 | /* |
| 2406 | The block is marked BLOCK_IN_SWITCH. It should be left |
| 2407 | alone except for reading. No free, no write. |
| 2408 | */ |
| 2409 | DBUG_ASSERT(block->status & (BLOCK_READ | BLOCK_IN_USE)); |
| 2410 | DBUG_ASSERT(!(block->status & (BLOCK_REASSIGNED | |
| 2411 | BLOCK_CHANGED | |
| 2412 | BLOCK_FOR_UPDATE))); |
| 2413 | } |
| 2414 | else |
| 2415 | { |
| 2416 | block->status|= BLOCK_IN_FLUSH | BLOCK_IN_FLUSHWRITE; |
| 2417 | /* |
| 2418 | BLOCK_IN_EVICTION may be true or not. Other flags must |
| 2419 | have a fixed value. |
| 2420 | */ |
| 2421 | DBUG_ASSERT((block->status & ~BLOCK_IN_EVICTION) == |
| 2422 | (BLOCK_READ | BLOCK_IN_SWITCH | |
| 2423 | BLOCK_IN_FLUSH | BLOCK_IN_FLUSHWRITE | |
| 2424 | BLOCK_CHANGED | BLOCK_IN_USE)); |
| 2425 | DBUG_ASSERT(block->hash_link); |
| 2426 | |
| 2427 | keycache_pthread_mutex_unlock(&keycache->cache_lock); |
| 2428 | /* |
| 2429 | The call is thread safe because only the current |
| 2430 | thread might change the block->hash_link value |
| 2431 | */ |
| 2432 | error= (int)my_pwrite(block->hash_link->file, |
| 2433 | block->buffer + block->offset, |
| 2434 | block->length - block->offset, |
| 2435 | block->hash_link->diskpos + block->offset, |
| 2436 | MYF(MY_NABP | MY_WAIT_IF_FULL)); |
| 2437 | keycache_pthread_mutex_lock(&keycache->cache_lock); |
| 2438 | |
| 2439 | /* Block status must not have changed. */ |
| 2440 | DBUG_ASSERT((block->status & ~BLOCK_IN_EVICTION) == |
| 2441 | (BLOCK_READ | BLOCK_IN_SWITCH | |
| 2442 | BLOCK_IN_FLUSH | BLOCK_IN_FLUSHWRITE | |
| 2443 | BLOCK_CHANGED | BLOCK_IN_USE) || fail_block(block)); |
| 2444 | keycache->global_cache_write++; |
| 2445 | } |
| 2446 | } |
| 2447 | |
| 2448 | block->status|= BLOCK_REASSIGNED; |
| 2449 | /* |
| 2450 | The block comes from the LRU ring. It must have a hash_link |
| 2451 | assigned. |
| 2452 | */ |
| 2453 | DBUG_ASSERT(block->hash_link); |
| 2454 | if (block->hash_link) |
| 2455 | { |
| 2456 | /* |
| 2457 | All pending requests for this page must be resubmitted. |
| 2458 | This must be done before waiting for readers. They could |
| 2459 | wait for the flush to complete. And we must also do it |
| 2460 | after the wait. Flushers might try to free the block while |
| 2461 | we wait. They would wait until the reassignment is |
| 2462 | complete. Also the block status must reflect the correct |
| 2463 | situation: The block is not changed nor in flush any more. |
| 2464 | Note that we must not change the BLOCK_CHANGED flag |
| 2465 | outside of link_to_file_list() so that it is always in the |
| 2466 | correct queue and the *blocks_changed counters are |
| 2467 | correct. |
| 2468 | */ |
| 2469 | block->status&= ~(BLOCK_IN_FLUSH | BLOCK_IN_FLUSHWRITE); |
| 2470 | link_to_file_list(keycache, block, block->hash_link->file, 1); |
| 2471 | release_whole_queue(&block->wqueue[COND_FOR_SAVED]); |
| 2472 | /* |
| 2473 | The block is still assigned to its old hash_link. |
| 2474 | Wait until all pending read requests |
| 2475 | for this page are executed |
| 2476 | (we could have avoided this waiting, if we had read |
| 2477 | a page in the cache in a sweep, without yielding control) |
| 2478 | */ |
| 2479 | wait_for_readers(keycache, block); |
| 2480 | DBUG_ASSERT(block->hash_link && block->hash_link->block == block && |
| 2481 | block->prev_changed); |
| 2482 | /* The reader must not have been a writer. */ |
| 2483 | DBUG_ASSERT(!(block->status & BLOCK_CHANGED)); |
| 2484 | |
| 2485 | /* Wake flushers that might have found the block in between. */ |
| 2486 | release_whole_queue(&block->wqueue[COND_FOR_SAVED]); |
| 2487 | |
| 2488 | /* Remove the hash link for the old file block from the hash. */ |
| 2489 | unlink_hash(keycache, block->hash_link); |
| 2490 | |
| 2491 | /* |
| 2492 | For sanity checks link_to_file_list() asserts that block |
| 2493 | and hash_link refer to each other. Hence we need to assign |
| 2494 | the hash_link first, but then we would not know if it was |
| 2495 | linked before. Hence we would not know if to unlink it. So |
| 2496 | unlink it here and call link_to_file_list(..., FALSE). |
| 2497 | */ |
| 2498 | unlink_changed(block); |
| 2499 | } |
| 2500 | block->status= error ? BLOCK_ERROR : BLOCK_IN_USE ; |
| 2501 | block->length= 0; |
| 2502 | block->offset= keycache->key_cache_block_size; |
| 2503 | block->hash_link= hash_link; |
| 2504 | link_to_file_list(keycache, block, file, 0); |
| 2505 | page_status= PAGE_TO_BE_READ; |
| 2506 | |
| 2507 | KEYCACHE_DBUG_ASSERT(block->hash_link->block == block); |
| 2508 | KEYCACHE_DBUG_ASSERT(hash_link->block->hash_link == hash_link); |
| 2509 | } |
| 2510 | else |
| 2511 | { |
| 2512 | /* |
| 2513 | Either (block->hash_link == hash_link), |
| 2514 | or (block->status & BLOCK_IN_SWITCH). |
| 2515 | |
| 2516 | This is for secondary requests for a new file block only. |
| 2517 | Either it is already assigned to the new hash_link meanwhile |
| 2518 | (if we had to wait due to empty LRU), or it is already in |
| 2519 | eviction by another thread. Since this block has been |
| 2520 | grabbed from the LRU ring and attached to this hash_link, |
| 2521 | another thread cannot grab the same block from the LRU ring |
| 2522 | anymore. If the block is in eviction already, it must become |
| 2523 | attached to the same hash_link and as such destined for the |
| 2524 | same file block. |
| 2525 | */ |
| 2526 | KEYCACHE_DBUG_PRINT("find_key_block" , |
| 2527 | ("block->hash_link: %p hash_link: %p " |
| 2528 | "block->status: %u" , block->hash_link, |
| 2529 | hash_link, block->status )); |
| 2530 | page_status= (((block->hash_link == hash_link) && |
| 2531 | (block->status & BLOCK_READ)) ? |
| 2532 | PAGE_READ : PAGE_WAIT_TO_BE_READ); |
| 2533 | } |
| 2534 | } |
| 2535 | } |
| 2536 | else |
| 2537 | { |
| 2538 | /* |
| 2539 | Block is not NULL. This hash_link points to a block. |
| 2540 | Either |
| 2541 | - block not assigned to this hash_link (yet) or |
| 2542 | - block assigned but not yet read from file, |
| 2543 | or |
| 2544 | - block assigned with valid (changed or unchanged) data and |
| 2545 | - it will not be reassigned/freed. |
| 2546 | |
| 2547 | The first condition means hash_link points to a block in |
| 2548 | eviction. This is not necessarily marked by BLOCK_IN_SWITCH yet. |
| 2549 | But then it is marked BLOCK_IN_EVICTION. See the NOTE in |
| 2550 | link_block(). In both cases it is destined for this hash_link |
| 2551 | and its file block address. When this hash_link got its block |
| 2552 | address, the block was removed from the LRU ring and cannot be |
| 2553 | selected for eviction (for another hash_link) again. |
| 2554 | |
| 2555 | Register a request on the block. This is another protection |
| 2556 | against eviction. |
| 2557 | */ |
| 2558 | DBUG_ASSERT(((block->hash_link != hash_link) && |
| 2559 | (block->status & (BLOCK_IN_EVICTION | BLOCK_IN_SWITCH))) || |
| 2560 | ((block->hash_link == hash_link) && |
| 2561 | !(block->status & BLOCK_READ)) || |
| 2562 | ((block->status & BLOCK_READ) && |
| 2563 | !(block->status & (BLOCK_IN_EVICTION | BLOCK_IN_SWITCH)))); |
| 2564 | reg_requests(keycache, block, 1); |
| 2565 | KEYCACHE_DBUG_PRINT("find_key_block" , |
| 2566 | ("block->hash_link: %p hash_link: %p " |
| 2567 | "block->status: %u" , block->hash_link, |
| 2568 | hash_link, block->status )); |
| 2569 | page_status= (((block->hash_link == hash_link) && |
| 2570 | (block->status & BLOCK_READ)) ? |
| 2571 | PAGE_READ : PAGE_WAIT_TO_BE_READ); |
| 2572 | } |
| 2573 | } |
| 2574 | |
| 2575 | KEYCACHE_DBUG_ASSERT(page_status != -1); |
| 2576 | /* Same assert basically, but be very sure. */ |
| 2577 | KEYCACHE_DBUG_ASSERT(block); |
| 2578 | /* Assert that block has a request and is not in LRU ring. */ |
| 2579 | DBUG_ASSERT(block->requests); |
| 2580 | DBUG_ASSERT(!block->next_used); |
| 2581 | DBUG_ASSERT(!block->prev_used); |
| 2582 | /* Assert that we return the correct block. */ |
| 2583 | DBUG_ASSERT((page_status == PAGE_WAIT_TO_BE_READ) || |
| 2584 | ((block->hash_link->file == file) && |
| 2585 | (block->hash_link->diskpos == filepos))); |
| 2586 | *page_st=page_status; |
| 2587 | KEYCACHE_DBUG_PRINT("find_key_block" , |
| 2588 | ("fd: %d pos: %lu block->status: %u page_status: %d" , |
| 2589 | file, (ulong) filepos, block->status, |
| 2590 | page_status)); |
| 2591 | |
| 2592 | #if !defined(DBUG_OFF) && defined(EXTRA_DEBUG) |
| 2593 | DBUG_EXECUTE("check_keycache2" , |
| 2594 | test_key_cache(keycache, "end of find_key_block" ,0);); |
| 2595 | #endif |
| 2596 | KEYCACHE_THREAD_TRACE("find_key_block:end" ); |
| 2597 | DBUG_RETURN(block); |
| 2598 | } |
| 2599 | |
| 2600 | |
| 2601 | /* |
| 2602 | Read into a key cache block buffer from disk. |
| 2603 | |
| 2604 | SYNOPSIS |
| 2605 | |
| 2606 | read_block_{primary|secondary}() |
| 2607 | keycache pointer to a key cache data structure |
| 2608 | block block to which buffer the data is to be read |
| 2609 | read_length size of data to be read |
| 2610 | min_length at least so much data must be read |
| 2611 | |
| 2612 | RETURN VALUE |
| 2613 | None |
| 2614 | |
| 2615 | NOTES. |
| 2616 | The function either reads a page data from file to the block buffer, |
| 2617 | or waits until another thread reads it. What page to read is determined |
| 2618 | by a block parameter - reference to a hash link for this page. |
| 2619 | If an error occurs THE BLOCK_ERROR bit is set in the block status. |
| 2620 | We do not report error when the size of successfully read |
| 2621 | portion is less than read_length, but not less than min_length. |
| 2622 | */ |
| 2623 | |
| 2624 | static void read_block_primary(SIMPLE_KEY_CACHE_CB *keycache, |
| 2625 | BLOCK_LINK *block, uint read_length, |
| 2626 | uint min_length) |
| 2627 | { |
| 2628 | size_t got_length; |
| 2629 | |
| 2630 | /* On entry cache_lock is locked */ |
| 2631 | |
| 2632 | KEYCACHE_THREAD_TRACE("read_block_primary" ); |
| 2633 | |
| 2634 | /* |
| 2635 | This code is executed only by threads that submitted primary |
| 2636 | requests. Until block->status contains BLOCK_READ, all other |
| 2637 | request for the block become secondary requests. For a primary |
| 2638 | request the block must be properly initialized. |
| 2639 | */ |
| 2640 | DBUG_ASSERT(((block->status & ~BLOCK_FOR_UPDATE) == BLOCK_IN_USE) || |
| 2641 | fail_block(block)); |
| 2642 | DBUG_ASSERT((block->length == 0) || fail_block(block)); |
| 2643 | DBUG_ASSERT((block->offset == keycache->key_cache_block_size) || |
| 2644 | fail_block(block)); |
| 2645 | DBUG_ASSERT((block->requests > 0) || fail_block(block)); |
| 2646 | |
| 2647 | KEYCACHE_DBUG_PRINT("read_block_primary" , |
| 2648 | ("page to be read by primary request" )); |
| 2649 | |
| 2650 | keycache->global_cache_read++; |
| 2651 | /* Page is not in buffer yet, is to be read from disk */ |
| 2652 | keycache_pthread_mutex_unlock(&keycache->cache_lock); |
| 2653 | /* |
| 2654 | Here other threads may step in and register as secondary readers. |
| 2655 | They will register in block->wqueue[COND_FOR_REQUESTED]. |
| 2656 | */ |
| 2657 | got_length= my_pread(block->hash_link->file, block->buffer, |
| 2658 | read_length, block->hash_link->diskpos, MYF(0)); |
| 2659 | keycache_pthread_mutex_lock(&keycache->cache_lock); |
| 2660 | /* |
| 2661 | The block can now have been marked for free (in case of |
| 2662 | FLUSH_RELEASE). Otherwise the state must be unchanged. |
| 2663 | */ |
| 2664 | DBUG_ASSERT(((block->status & ~(BLOCK_REASSIGNED | |
| 2665 | BLOCK_FOR_UPDATE)) == BLOCK_IN_USE) || |
| 2666 | fail_block(block)); |
| 2667 | DBUG_ASSERT((block->length == 0) || fail_block(block)); |
| 2668 | DBUG_ASSERT((block->offset == keycache->key_cache_block_size) || |
| 2669 | fail_block(block)); |
| 2670 | DBUG_ASSERT((block->requests > 0) || fail_block(block)); |
| 2671 | |
| 2672 | if (got_length < min_length) |
| 2673 | block->status|= BLOCK_ERROR; |
| 2674 | else |
| 2675 | { |
| 2676 | block->status|= BLOCK_READ; |
| 2677 | block->length= (uint)got_length; |
| 2678 | /* |
| 2679 | Do not set block->offset here. If this block is marked |
| 2680 | BLOCK_CHANGED later, we want to flush only the modified part. So |
| 2681 | only a writer may set block->offset down from |
| 2682 | keycache->key_cache_block_size. |
| 2683 | */ |
| 2684 | } |
| 2685 | KEYCACHE_DBUG_PRINT("read_block_primary" , |
| 2686 | ("primary request: new page in cache" )); |
| 2687 | /* Signal that all pending requests for this page now can be processed */ |
| 2688 | release_whole_queue(&block->wqueue[COND_FOR_REQUESTED]); |
| 2689 | |
| 2690 | DBUG_ASSERT(keycache->can_be_used); |
| 2691 | } |
| 2692 | |
| 2693 | |
| 2694 | static void read_block_secondary(SIMPLE_KEY_CACHE_CB *keycache, |
| 2695 | BLOCK_LINK *block) |
| 2696 | { |
| 2697 | KEYCACHE_THREAD_TRACE("read_block_secondary" ); |
| 2698 | |
| 2699 | /* |
| 2700 | This code is executed only by threads that submitted secondary |
| 2701 | requests. At this point it could happen that the cache block is |
| 2702 | not yet assigned to the hash_link for the requested file block. |
| 2703 | But at awake from the wait this should be the case. Unfortunately |
| 2704 | we cannot assert this here because we do not know the hash_link |
| 2705 | for the requested file block nor the file and position. So we have |
| 2706 | to assert this in the caller. |
| 2707 | */ |
| 2708 | KEYCACHE_DBUG_PRINT("read_block_secondary" , |
| 2709 | ("secondary request waiting for new page to be read" )); |
| 2710 | |
| 2711 | wait_on_queue(&block->wqueue[COND_FOR_REQUESTED], &keycache->cache_lock); |
| 2712 | |
| 2713 | KEYCACHE_DBUG_PRINT("read_block_secondary" , |
| 2714 | ("secondary request: new page in cache" )); |
| 2715 | |
| 2716 | DBUG_ASSERT(keycache->can_be_used); |
| 2717 | DBUG_ASSERT(block->status & (BLOCK_READ | BLOCK_IN_USE)); |
| 2718 | } |
| 2719 | |
| 2720 | |
| 2721 | /* |
| 2722 | Read a block of data from a simple key cache into a buffer |
| 2723 | |
| 2724 | SYNOPSIS |
| 2725 | |
| 2726 | simple_key_cache_read() |
| 2727 | keycache pointer to the control block of a simple key cache |
| 2728 | file handler for the file for the block of data to be read |
| 2729 | filepos position of the block of data in the file |
| 2730 | level determines the weight of the data |
| 2731 | buff buffer to where the data must be placed |
| 2732 | length length of the buffer |
| 2733 | block_length length of the read data from a key cache block |
| 2734 | return_buffer return pointer to the key cache buffer with the data |
| 2735 | |
| 2736 | DESCRIPTION |
| 2737 | This function is the implementation of the key_cache_read interface |
| 2738 | function that is employed by simple (non-partitioned) key caches. |
| 2739 | The function takes the parameter keycache as a pointer to the |
| 2740 | control block structure of the type SIMPLE_KEY_CACHE_CB for a simple key |
| 2741 | cache. |
| 2742 | In a general case the function reads a block of data from the key cache |
| 2743 | into the buffer buff of the size specified by the parameter length. The |
| 2744 | beginning of the block of data to be read is specified by the parameters |
| 2745 | file and filepos. The length of the read data is the same as the length |
| 2746 | of the buffer. The data is read into the buffer in key_cache_block_size |
| 2747 | increments. If the next portion of the data is not found in any key cache |
| 2748 | block, first it is read from file into the key cache. |
| 2749 | If the parameter return_buffer is not ignored and its value is TRUE, and |
| 2750 | the data to be read of the specified size block_length can be read from one |
| 2751 | key cache buffer, then the function returns a pointer to the data in the |
| 2752 | key cache buffer. |
| 2753 | The function takse into account parameters block_length and return buffer |
| 2754 | only in a single-threaded environment. |
| 2755 | The parameter 'level' is used only by the midpoint insertion strategy |
| 2756 | when the data or its portion cannot be found in the key cache. |
| 2757 | |
| 2758 | RETURN VALUE |
| 2759 | Returns address from where the data is placed if successful, 0 - otherwise. |
| 2760 | |
| 2761 | NOTES |
| 2762 | Filepos must be a multiple of 'block_length', but it doesn't |
| 2763 | have to be a multiple of key_cache_block_size; |
| 2764 | */ |
| 2765 | |
| 2766 | uchar *simple_key_cache_read(SIMPLE_KEY_CACHE_CB *keycache, |
| 2767 | File file, my_off_t filepos, int level, |
| 2768 | uchar *buff, uint length, |
| 2769 | uint block_length __attribute__((unused)), |
| 2770 | int return_buffer __attribute__((unused))) |
| 2771 | { |
| 2772 | my_bool locked_and_incremented= FALSE; |
| 2773 | int error=0; |
| 2774 | uchar *start= buff; |
| 2775 | DBUG_ENTER("simple_key_cache_read" ); |
| 2776 | DBUG_PRINT("enter" , ("fd: %u pos: %lu length: %u" , |
| 2777 | (uint) file, (ulong) filepos, length)); |
| 2778 | |
| 2779 | if (keycache->key_cache_inited) |
| 2780 | { |
| 2781 | /* Key cache is used */ |
| 2782 | reg1 BLOCK_LINK *block; |
| 2783 | uint read_length; |
| 2784 | uint offset; |
| 2785 | int page_st; |
| 2786 | |
| 2787 | if (MYSQL_KEYCACHE_READ_START_ENABLED()) |
| 2788 | { |
| 2789 | MYSQL_KEYCACHE_READ_START(my_filename(file), length, |
| 2790 | (ulong) (keycache->blocks_used * |
| 2791 | keycache->key_cache_block_size), |
| 2792 | (ulong) (keycache->blocks_unused * |
| 2793 | keycache->key_cache_block_size)); |
| 2794 | } |
| 2795 | |
| 2796 | /* |
| 2797 | When the key cache is once initialized, we use the cache_lock to |
| 2798 | reliably distinguish the cases of normal operation, resizing, and |
| 2799 | disabled cache. We always increment and decrement |
| 2800 | 'cnt_for_resize_op' so that a resizer can wait for pending I/O. |
| 2801 | */ |
| 2802 | keycache_pthread_mutex_lock(&keycache->cache_lock); |
| 2803 | /* |
| 2804 | Cache resizing has two phases: Flushing and re-initializing. In |
| 2805 | the flush phase read requests are allowed to bypass the cache for |
| 2806 | blocks not in the cache. find_key_block() returns NULL in this |
| 2807 | case. |
| 2808 | |
| 2809 | After the flush phase new I/O requests must wait until the |
| 2810 | re-initialization is done. The re-initialization can be done only |
| 2811 | if no I/O request is in progress. The reason is that |
| 2812 | key_cache_block_size can change. With enabled cache, I/O is done |
| 2813 | in chunks of key_cache_block_size. Every chunk tries to use a |
| 2814 | cache block first. If the block size changes in the middle, a |
| 2815 | block could be missed and old data could be read. |
| 2816 | */ |
| 2817 | while (keycache->in_resize && !keycache->resize_in_flush) |
| 2818 | wait_on_queue(&keycache->resize_queue, &keycache->cache_lock); |
| 2819 | /* Register the I/O for the next resize. */ |
| 2820 | inc_counter_for_resize_op(keycache); |
| 2821 | locked_and_incremented= TRUE; |
| 2822 | /* Requested data may not always be aligned to cache blocks. */ |
| 2823 | offset= (uint) (filepos % keycache->key_cache_block_size); |
| 2824 | /* Read data in key_cache_block_size increments */ |
| 2825 | do |
| 2826 | { |
| 2827 | /* Cache could be disabled in a later iteration. */ |
| 2828 | if (!keycache->can_be_used) |
| 2829 | { |
| 2830 | KEYCACHE_DBUG_PRINT("key_cache_read" , ("keycache cannot be used" )); |
| 2831 | goto no_key_cache; |
| 2832 | } |
| 2833 | /* Start reading at the beginning of the cache block. */ |
| 2834 | filepos-= offset; |
| 2835 | /* Do not read beyond the end of the cache block. */ |
| 2836 | read_length= length; |
| 2837 | set_if_smaller(read_length, keycache->key_cache_block_size-offset); |
| 2838 | KEYCACHE_DBUG_ASSERT(read_length > 0); |
| 2839 | |
| 2840 | /* Request the cache block that matches file/pos. */ |
| 2841 | keycache->global_cache_r_requests++; |
| 2842 | |
| 2843 | MYSQL_KEYCACHE_READ_BLOCK(keycache->key_cache_block_size); |
| 2844 | |
| 2845 | block=find_key_block(keycache, file, filepos, level, 0, &page_st); |
| 2846 | if (!block) |
| 2847 | { |
| 2848 | /* |
| 2849 | This happens only for requests submitted during key cache |
| 2850 | resize. The block is not in the cache and shall not go in. |
| 2851 | Read directly from file. |
| 2852 | */ |
| 2853 | keycache->global_cache_read++; |
| 2854 | keycache_pthread_mutex_unlock(&keycache->cache_lock); |
| 2855 | error= (my_pread(file, (uchar*) buff, read_length, |
| 2856 | filepos + offset, MYF(MY_NABP)) != 0); |
| 2857 | keycache_pthread_mutex_lock(&keycache->cache_lock); |
| 2858 | goto next_block; |
| 2859 | } |
| 2860 | if (!(block->status & BLOCK_ERROR)) |
| 2861 | { |
| 2862 | if (page_st == PAGE_TO_BE_READ) |
| 2863 | { |
| 2864 | MYSQL_KEYCACHE_READ_MISS(); |
| 2865 | read_block_primary(keycache, block, |
| 2866 | keycache->key_cache_block_size, read_length+offset); |
| 2867 | } |
| 2868 | else if (page_st == PAGE_WAIT_TO_BE_READ) |
| 2869 | { |
| 2870 | MYSQL_KEYCACHE_READ_MISS(); |
| 2871 | /* The requested page is to be read into the block buffer */ |
| 2872 | read_block_secondary(keycache, block); |
| 2873 | |
| 2874 | /* |
| 2875 | A secondary request must now have the block assigned to the |
| 2876 | requested file block. |
| 2877 | */ |
| 2878 | DBUG_ASSERT(block->hash_link->file == file); |
| 2879 | DBUG_ASSERT(block->hash_link->diskpos == filepos); |
| 2880 | } |
| 2881 | else if (block->length < read_length + offset) |
| 2882 | { |
| 2883 | /* |
| 2884 | Impossible if nothing goes wrong: |
| 2885 | this could only happen if we are using a file with |
| 2886 | small key blocks and are trying to read outside the file |
| 2887 | */ |
| 2888 | my_errno= -1; |
| 2889 | block->status|= BLOCK_ERROR; |
| 2890 | } |
| 2891 | else |
| 2892 | { |
| 2893 | MYSQL_KEYCACHE_READ_HIT(); |
| 2894 | } |
| 2895 | } |
| 2896 | |
| 2897 | /* block status may have added BLOCK_ERROR in the above 'if'. */ |
| 2898 | if (!(block->status & BLOCK_ERROR)) |
| 2899 | { |
| 2900 | { |
| 2901 | DBUG_ASSERT(block->status & (BLOCK_READ | BLOCK_IN_USE)); |
| 2902 | #if !defined(SERIALIZED_READ_FROM_CACHE) |
| 2903 | keycache_pthread_mutex_unlock(&keycache->cache_lock); |
| 2904 | #endif |
| 2905 | |
| 2906 | /* Copy data from the cache buffer */ |
| 2907 | memcpy(buff, block->buffer+offset, (size_t) read_length); |
| 2908 | |
| 2909 | #if !defined(SERIALIZED_READ_FROM_CACHE) |
| 2910 | keycache_pthread_mutex_lock(&keycache->cache_lock); |
| 2911 | DBUG_ASSERT(block->status & (BLOCK_READ | BLOCK_IN_USE)); |
| 2912 | #endif |
| 2913 | } |
| 2914 | } |
| 2915 | |
| 2916 | remove_reader(block); |
| 2917 | |
| 2918 | /* Error injection for coverage testing. */ |
| 2919 | DBUG_EXECUTE_IF("key_cache_read_block_error" , |
| 2920 | block->status|= BLOCK_ERROR;); |
| 2921 | |
| 2922 | /* Do not link erroneous blocks into the LRU ring, but free them. */ |
| 2923 | if (!(block->status & BLOCK_ERROR)) |
| 2924 | { |
| 2925 | /* |
| 2926 | Link the block into the LRU ring if it's the last submitted |
| 2927 | request for the block. This enables eviction for the block. |
| 2928 | */ |
| 2929 | unreg_request(keycache, block, 1); |
| 2930 | } |
| 2931 | else |
| 2932 | { |
| 2933 | free_block(keycache, block); |
| 2934 | error= 1; |
| 2935 | break; |
| 2936 | } |
| 2937 | |
| 2938 | next_block: |
| 2939 | buff+= read_length; |
| 2940 | filepos+= read_length+offset; |
| 2941 | offset= 0; |
| 2942 | |
| 2943 | } while ((length-= read_length)); |
| 2944 | if (MYSQL_KEYCACHE_READ_DONE_ENABLED()) |
| 2945 | { |
| 2946 | MYSQL_KEYCACHE_READ_DONE((ulong) (keycache->blocks_used * |
| 2947 | keycache->key_cache_block_size), |
| 2948 | (ulong) (keycache->blocks_unused * |
| 2949 | keycache->key_cache_block_size)); |
| 2950 | } |
| 2951 | goto end; |
| 2952 | } |
| 2953 | KEYCACHE_DBUG_PRINT("key_cache_read" , ("keycache not initialized" )); |
| 2954 | |
| 2955 | no_key_cache: |
| 2956 | /* Key cache is not used */ |
| 2957 | |
| 2958 | keycache->global_cache_r_requests++; |
| 2959 | keycache->global_cache_read++; |
| 2960 | |
| 2961 | if (locked_and_incremented) |
| 2962 | keycache_pthread_mutex_unlock(&keycache->cache_lock); |
| 2963 | if (my_pread(file, (uchar*) buff, length, filepos, MYF(MY_NABP))) |
| 2964 | error= 1; |
| 2965 | if (locked_and_incremented) |
| 2966 | keycache_pthread_mutex_lock(&keycache->cache_lock); |
| 2967 | |
| 2968 | end: |
| 2969 | if (locked_and_incremented) |
| 2970 | { |
| 2971 | dec_counter_for_resize_op(keycache); |
| 2972 | keycache_pthread_mutex_unlock(&keycache->cache_lock); |
| 2973 | } |
| 2974 | DBUG_PRINT("exit" , ("error: %d" , error )); |
| 2975 | DBUG_RETURN(error ? (uchar*) 0 : start); |
| 2976 | } |
| 2977 | |
| 2978 | |
| 2979 | /* |
| 2980 | Insert a block of file data from a buffer into a simple key cache |
| 2981 | |
| 2982 | SYNOPSIS |
| 2983 | simple_key_cache_insert() |
| 2984 | keycache pointer to the control block of a simple key cache |
| 2985 | file handler for the file to insert data from |
| 2986 | filepos position of the block of data in the file to insert |
| 2987 | level determines the weight of the data |
| 2988 | buff buffer to read data from |
| 2989 | length length of the data in the buffer |
| 2990 | |
| 2991 | DESCRIPTION |
| 2992 | This function is the implementation of the key_cache_insert interface |
| 2993 | function that is employed by simple (non-partitioned) key caches. |
| 2994 | The function takes the parameter keycache as a pointer to the |
| 2995 | control block structure of the type SIMPLE_KEY_CACHE_CB for a simple key |
| 2996 | cache. |
| 2997 | The function writes a block of file data from a buffer into the key cache. |
| 2998 | The buffer is specified with the parameters buff and length - the pointer |
| 2999 | to the beginning of the buffer and its size respectively. It's assumed |
| 3000 | the buffer contains the data from 'file' allocated from the position |
| 3001 | filepos. The data is copied from the buffer in key_cache_block_size |
| 3002 | increments. |
| 3003 | The parameter level is used to set one characteristic for the key buffers |
| 3004 | loaded with the data from buff. The characteristic is used only by the |
| 3005 | midpoint insertion strategy. |
| 3006 | |
| 3007 | RETURN VALUE |
| 3008 | 0 if a success, 1 - otherwise. |
| 3009 | |
| 3010 | NOTES |
| 3011 | The function is used by MyISAM to move all blocks from a index file to |
| 3012 | the key cache. It can be performed in parallel with reading the file data |
| 3013 | from the key buffers by other threads. |
| 3014 | |
| 3015 | */ |
| 3016 | |
| 3017 | static |
| 3018 | int simple_key_cache_insert(SIMPLE_KEY_CACHE_CB *keycache, |
| 3019 | File file, my_off_t filepos, int level, |
| 3020 | uchar *buff, uint length) |
| 3021 | { |
| 3022 | int error= 0; |
| 3023 | DBUG_ENTER("key_cache_insert" ); |
| 3024 | DBUG_PRINT("enter" , ("fd: %u pos: %lu length: %u" , |
| 3025 | (uint) file,(ulong) filepos, length)); |
| 3026 | |
| 3027 | if (keycache->key_cache_inited) |
| 3028 | { |
| 3029 | /* Key cache is used */ |
| 3030 | reg1 BLOCK_LINK *block; |
| 3031 | uint read_length; |
| 3032 | uint offset; |
| 3033 | int page_st; |
| 3034 | my_bool locked_and_incremented= FALSE; |
| 3035 | |
| 3036 | /* |
| 3037 | When the keycache is once initialized, we use the cache_lock to |
| 3038 | reliably distinguish the cases of normal operation, resizing, and |
| 3039 | disabled cache. We always increment and decrement |
| 3040 | 'cnt_for_resize_op' so that a resizer can wait for pending I/O. |
| 3041 | */ |
| 3042 | keycache_pthread_mutex_lock(&keycache->cache_lock); |
| 3043 | /* |
| 3044 | We do not load index data into a disabled cache nor into an |
| 3045 | ongoing resize. |
| 3046 | */ |
| 3047 | if (!keycache->can_be_used || keycache->in_resize) |
| 3048 | goto no_key_cache; |
| 3049 | /* Register the pseudo I/O for the next resize. */ |
| 3050 | inc_counter_for_resize_op(keycache); |
| 3051 | locked_and_incremented= TRUE; |
| 3052 | /* Loaded data may not always be aligned to cache blocks. */ |
| 3053 | offset= (uint) (filepos % keycache->key_cache_block_size); |
| 3054 | /* Load data in key_cache_block_size increments. */ |
| 3055 | do |
| 3056 | { |
| 3057 | /* Cache could be disabled or resizing in a later iteration. */ |
| 3058 | if (!keycache->can_be_used || keycache->in_resize) |
| 3059 | goto no_key_cache; |
| 3060 | /* Start loading at the beginning of the cache block. */ |
| 3061 | filepos-= offset; |
| 3062 | /* Do not load beyond the end of the cache block. */ |
| 3063 | read_length= length; |
| 3064 | set_if_smaller(read_length, keycache->key_cache_block_size-offset); |
| 3065 | KEYCACHE_DBUG_ASSERT(read_length > 0); |
| 3066 | |
| 3067 | /* The block has been read by the caller already. */ |
| 3068 | keycache->global_cache_read++; |
| 3069 | /* Request the cache block that matches file/pos. */ |
| 3070 | keycache->global_cache_r_requests++; |
| 3071 | block= find_key_block(keycache, file, filepos, level, 0, &page_st); |
| 3072 | if (!block) |
| 3073 | { |
| 3074 | /* |
| 3075 | This happens only for requests submitted during key cache |
| 3076 | resize. The block is not in the cache and shall not go in. |
| 3077 | Stop loading index data. |
| 3078 | */ |
| 3079 | goto no_key_cache; |
| 3080 | } |
| 3081 | if (!(block->status & BLOCK_ERROR)) |
| 3082 | { |
| 3083 | if (page_st == PAGE_WAIT_TO_BE_READ) |
| 3084 | { |
| 3085 | /* |
| 3086 | this is a secondary request for a block to be read into the |
| 3087 | cache. The block is in eviction. It is not yet assigned to |
| 3088 | the requested file block (It does not point to the right |
| 3089 | hash_link). So we cannot call remove_reader() on the block. |
| 3090 | And we cannot access the hash_link directly here. We need to |
| 3091 | wait until the assignment is complete. read_block_secondary() |
| 3092 | executes the correct wait. |
| 3093 | */ |
| 3094 | read_block_secondary(keycache, block); |
| 3095 | |
| 3096 | /* |
| 3097 | A secondary request must now have the block assigned to the |
| 3098 | requested file block. |
| 3099 | */ |
| 3100 | DBUG_ASSERT(block->hash_link->file == file); |
| 3101 | DBUG_ASSERT(block->hash_link->diskpos == filepos); |
| 3102 | } |
| 3103 | else if (page_st == PAGE_TO_BE_READ && |
| 3104 | (offset || (read_length < keycache->key_cache_block_size))) |
| 3105 | { |
| 3106 | /* |
| 3107 | this is a primary request for a block to be read into the |
| 3108 | cache and the supplied data does not fill the whole block. |
| 3109 | |
| 3110 | This function is called on behalf of a LOAD INDEX INTO CACHE |
| 3111 | statement, which is a read-only task and allows other |
| 3112 | readers. It is possible that a parallel running reader tries |
| 3113 | to access this block. If it needs more data than has been |
| 3114 | supplied here, it would report an error. To be sure that we |
| 3115 | have all data in the block that is available in the file, we |
| 3116 | read the block ourselves. |
| 3117 | |
| 3118 | Though reading again what the caller did read already is an |
| 3119 | expensive operation, we need to do this for correctness. |
| 3120 | */ |
| 3121 | read_block_primary(keycache, block, keycache->key_cache_block_size, |
| 3122 | read_length + offset); |
| 3123 | } |
| 3124 | else if (page_st == PAGE_TO_BE_READ) |
| 3125 | { |
| 3126 | /* |
| 3127 | This is a new block in the cache. If we come here, we have |
| 3128 | data for the whole block. |
| 3129 | */ |
| 3130 | DBUG_ASSERT(block->hash_link->requests); |
| 3131 | DBUG_ASSERT(block->status & BLOCK_IN_USE); |
| 3132 | DBUG_ASSERT((page_st == PAGE_TO_BE_READ) || |
| 3133 | (block->status & BLOCK_READ)); |
| 3134 | |
| 3135 | #if !defined(SERIALIZED_READ_FROM_CACHE) |
| 3136 | keycache_pthread_mutex_unlock(&keycache->cache_lock); |
| 3137 | /* |
| 3138 | Here other threads may step in and register as secondary readers. |
| 3139 | They will register in block->wqueue[COND_FOR_REQUESTED]. |
| 3140 | */ |
| 3141 | #endif |
| 3142 | |
| 3143 | /* Copy data from buff */ |
| 3144 | memcpy(block->buffer+offset, buff, (size_t) read_length); |
| 3145 | |
| 3146 | #if !defined(SERIALIZED_READ_FROM_CACHE) |
| 3147 | keycache_pthread_mutex_lock(&keycache->cache_lock); |
| 3148 | DBUG_ASSERT(block->status & BLOCK_IN_USE); |
| 3149 | DBUG_ASSERT((page_st == PAGE_TO_BE_READ) || |
| 3150 | (block->status & BLOCK_READ)); |
| 3151 | #endif |
| 3152 | /* |
| 3153 | After the data is in the buffer, we can declare the block |
| 3154 | valid. Now other threads do not need to register as |
| 3155 | secondary readers any more. They can immediately access the |
| 3156 | block. |
| 3157 | */ |
| 3158 | block->status|= BLOCK_READ; |
| 3159 | block->length= read_length+offset; |
| 3160 | /* |
| 3161 | Do not set block->offset here. If this block is marked |
| 3162 | BLOCK_CHANGED later, we want to flush only the modified part. So |
| 3163 | only a writer may set block->offset down from |
| 3164 | keycache->key_cache_block_size. |
| 3165 | */ |
| 3166 | KEYCACHE_DBUG_PRINT("key_cache_insert" , |
| 3167 | ("primary request: new page in cache" )); |
| 3168 | /* Signal all pending requests. */ |
| 3169 | release_whole_queue(&block->wqueue[COND_FOR_REQUESTED]); |
| 3170 | } |
| 3171 | else |
| 3172 | { |
| 3173 | /* |
| 3174 | page_st == PAGE_READ. The block is in the buffer. All data |
| 3175 | must already be present. Blocks are always read with all |
| 3176 | data available on file. Assert that the block does not have |
| 3177 | less contents than the preloader supplies. If the caller has |
| 3178 | data beyond block->length, it means that a file write has |
| 3179 | been done while this block was in cache and not extended |
| 3180 | with the new data. If the condition is met, we can simply |
| 3181 | ignore the block. |
| 3182 | */ |
| 3183 | DBUG_ASSERT((page_st == PAGE_READ) && |
| 3184 | (read_length + offset <= block->length)); |
| 3185 | } |
| 3186 | |
| 3187 | /* |
| 3188 | A secondary request must now have the block assigned to the |
| 3189 | requested file block. It does not hurt to check it for primary |
| 3190 | requests too. |
| 3191 | */ |
| 3192 | DBUG_ASSERT(block->hash_link->file == file); |
| 3193 | DBUG_ASSERT(block->hash_link->diskpos == filepos); |
| 3194 | DBUG_ASSERT(block->status & (BLOCK_READ | BLOCK_IN_USE)); |
| 3195 | } /* end of if (!(block->status & BLOCK_ERROR)) */ |
| 3196 | |
| 3197 | remove_reader(block); |
| 3198 | |
| 3199 | /* Error injection for coverage testing. */ |
| 3200 | DBUG_EXECUTE_IF("key_cache_insert_block_error" , |
| 3201 | block->status|= BLOCK_ERROR; errno=EIO;); |
| 3202 | |
| 3203 | /* Do not link erroneous blocks into the LRU ring, but free them. */ |
| 3204 | if (!(block->status & BLOCK_ERROR)) |
| 3205 | { |
| 3206 | /* |
| 3207 | Link the block into the LRU ring if it's the last submitted |
| 3208 | request for the block. This enables eviction for the block. |
| 3209 | */ |
| 3210 | unreg_request(keycache, block, 1); |
| 3211 | } |
| 3212 | else |
| 3213 | { |
| 3214 | free_block(keycache, block); |
| 3215 | error= 1; |
| 3216 | break; |
| 3217 | } |
| 3218 | |
| 3219 | buff+= read_length; |
| 3220 | filepos+= read_length+offset; |
| 3221 | offset= 0; |
| 3222 | |
| 3223 | } while ((length-= read_length)); |
| 3224 | |
| 3225 | no_key_cache: |
| 3226 | if (locked_and_incremented) |
| 3227 | dec_counter_for_resize_op(keycache); |
| 3228 | keycache_pthread_mutex_unlock(&keycache->cache_lock); |
| 3229 | } |
| 3230 | DBUG_RETURN(error); |
| 3231 | } |
| 3232 | |
| 3233 | |
| 3234 | /* |
| 3235 | Write a buffer into a simple key cache |
| 3236 | |
| 3237 | SYNOPSIS |
| 3238 | |
| 3239 | simple_key_cache_write() |
| 3240 | keycache pointer to the control block of a simple key cache |
| 3241 | file handler for the file to write data to |
| 3242 | file_extra maps of key cache partitions containing |
| 3243 | dirty pages from file |
| 3244 | filepos position in the file to write data to |
| 3245 | level determines the weight of the data |
| 3246 | buff buffer with the data |
| 3247 | length length of the buffer |
| 3248 | dont_write if is 0 then all dirty pages involved in writing |
| 3249 | should have been flushed from key cache |
| 3250 | |
| 3251 | DESCRIPTION |
| 3252 | This function is the implementation of the key_cache_write interface |
| 3253 | function that is employed by simple (non-partitioned) key caches. |
| 3254 | The function takes the parameter keycache as a pointer to the |
| 3255 | control block structure of the type SIMPLE_KEY_CACHE_CB for a simple key |
| 3256 | cache. |
| 3257 | In a general case the function copies data from a buffer into the key |
| 3258 | cache. The buffer is specified with the parameters buff and length - |
| 3259 | the pointer to the beginning of the buffer and its size respectively. |
| 3260 | It's assumed the buffer contains the data to be written into 'file' |
| 3261 | starting from the position filepos. The data is copied from the buffer |
| 3262 | in key_cache_block_size increments. |
| 3263 | If the value of the parameter dont_write is FALSE then the function |
| 3264 | also writes the data into file. |
| 3265 | The parameter level is used to set one characteristic for the key buffers |
| 3266 | filled with the data from buff. The characteristic is employed only by |
| 3267 | the midpoint insertion strategy. |
| 3268 | The parameter file_extra currently makes sense only for simple key caches |
| 3269 | that are elements of a partitioned key cache. It provides a pointer to the |
| 3270 | shared bitmap of the partitions that may contains dirty pages for the file. |
| 3271 | This bitmap is used to optimize the function |
| 3272 | flush_partitioned_key_cache_blocks. |
| 3273 | |
| 3274 | RETURN VALUE |
| 3275 | 0 if a success, 1 - otherwise. |
| 3276 | |
| 3277 | NOTES |
| 3278 | This implementation exploits the fact that the function is called only |
| 3279 | when a thread has got an exclusive lock for the key file. |
| 3280 | */ |
| 3281 | |
| 3282 | static |
| 3283 | int simple_key_cache_write(SIMPLE_KEY_CACHE_CB *keycache, |
| 3284 | File file, void * __attribute__((unused)), |
| 3285 | my_off_t filepos, int level, |
| 3286 | uchar *buff, uint length, |
| 3287 | uint block_length __attribute__((unused)), |
| 3288 | int dont_write) |
| 3289 | { |
| 3290 | my_bool locked_and_incremented= FALSE; |
| 3291 | int error=0; |
| 3292 | DBUG_ENTER("simple_key_cache_write" ); |
| 3293 | DBUG_PRINT("enter" , |
| 3294 | ("fd: %u pos: %lu length: %u block_length: %u" |
| 3295 | " key_block_length: %u" , |
| 3296 | (uint) file, (ulong) filepos, length, block_length, |
| 3297 | keycache ? keycache->key_cache_block_size : 0)); |
| 3298 | |
| 3299 | if (!dont_write) |
| 3300 | { |
| 3301 | /* purecov: begin inspected */ |
| 3302 | /* Not used in the server. */ |
| 3303 | /* Force writing from buff into disk. */ |
| 3304 | keycache->global_cache_w_requests++; |
| 3305 | keycache->global_cache_write++; |
| 3306 | if (my_pwrite(file, buff, length, filepos, MYF(MY_NABP | MY_WAIT_IF_FULL))) |
| 3307 | DBUG_RETURN(1); |
| 3308 | /* purecov: end */ |
| 3309 | } |
| 3310 | |
| 3311 | #if !defined(DBUG_OFF) && defined(EXTRA_DEBUG) |
| 3312 | DBUG_EXECUTE("check_keycache" , |
| 3313 | test_key_cache(keycache, "start of key_cache_write" , 1);); |
| 3314 | #endif |
| 3315 | |
| 3316 | if (keycache->key_cache_inited) |
| 3317 | { |
| 3318 | /* Key cache is used */ |
| 3319 | reg1 BLOCK_LINK *block; |
| 3320 | uint read_length; |
| 3321 | uint offset; |
| 3322 | int page_st; |
| 3323 | |
| 3324 | if (MYSQL_KEYCACHE_WRITE_START_ENABLED()) |
| 3325 | { |
| 3326 | MYSQL_KEYCACHE_WRITE_START(my_filename(file), length, |
| 3327 | (ulong) (keycache->blocks_used * |
| 3328 | keycache->key_cache_block_size), |
| 3329 | (ulong) (keycache->blocks_unused * |
| 3330 | keycache->key_cache_block_size)); |
| 3331 | } |
| 3332 | |
| 3333 | /* |
| 3334 | When the key cache is once initialized, we use the cache_lock to |
| 3335 | reliably distinguish the cases of normal operation, resizing, and |
| 3336 | disabled cache. We always increment and decrement |
| 3337 | 'cnt_for_resize_op' so that a resizer can wait for pending I/O. |
| 3338 | */ |
| 3339 | keycache_pthread_mutex_lock(&keycache->cache_lock); |
| 3340 | /* |
| 3341 | Cache resizing has two phases: Flushing and re-initializing. In |
| 3342 | the flush phase write requests can modify dirty blocks that are |
| 3343 | not yet in flush. Otherwise they are allowed to bypass the cache. |
| 3344 | find_key_block() returns NULL in both cases (clean blocks and |
| 3345 | non-cached blocks). |
| 3346 | |
| 3347 | After the flush phase new I/O requests must wait until the |
| 3348 | re-initialization is done. The re-initialization can be done only |
| 3349 | if no I/O request is in progress. The reason is that |
| 3350 | key_cache_block_size can change. With enabled cache I/O is done in |
| 3351 | chunks of key_cache_block_size. Every chunk tries to use a cache |
| 3352 | block first. If the block size changes in the middle, a block |
| 3353 | could be missed and data could be written below a cached block. |
| 3354 | */ |
| 3355 | while (keycache->in_resize && !keycache->resize_in_flush) |
| 3356 | wait_on_queue(&keycache->resize_queue, &keycache->cache_lock); |
| 3357 | /* Register the I/O for the next resize. */ |
| 3358 | inc_counter_for_resize_op(keycache); |
| 3359 | locked_and_incremented= TRUE; |
| 3360 | /* Requested data may not always be aligned to cache blocks. */ |
| 3361 | offset= (uint) (filepos % keycache->key_cache_block_size); |
| 3362 | /* Write data in key_cache_block_size increments. */ |
| 3363 | do |
| 3364 | { |
| 3365 | /* Cache could be disabled in a later iteration. */ |
| 3366 | if (!keycache->can_be_used) |
| 3367 | goto no_key_cache; |
| 3368 | |
| 3369 | MYSQL_KEYCACHE_WRITE_BLOCK(keycache->key_cache_block_size); |
| 3370 | /* Start writing at the beginning of the cache block. */ |
| 3371 | filepos-= offset; |
| 3372 | /* Do not write beyond the end of the cache block. */ |
| 3373 | read_length= length; |
| 3374 | set_if_smaller(read_length, keycache->key_cache_block_size-offset); |
| 3375 | KEYCACHE_DBUG_ASSERT(read_length > 0); |
| 3376 | |
| 3377 | /* Request the cache block that matches file/pos. */ |
| 3378 | keycache->global_cache_w_requests++; |
| 3379 | block= find_key_block(keycache, file, filepos, level, 1, &page_st); |
| 3380 | if (!block) |
| 3381 | { |
| 3382 | /* |
| 3383 | This happens only for requests submitted during key cache |
| 3384 | resize. The block is not in the cache and shall not go in. |
| 3385 | Write directly to file. |
| 3386 | */ |
| 3387 | if (dont_write) |
| 3388 | { |
| 3389 | /* Used in the server. */ |
| 3390 | keycache->global_cache_write++; |
| 3391 | keycache_pthread_mutex_unlock(&keycache->cache_lock); |
| 3392 | if (my_pwrite(file, (uchar*) buff, read_length, filepos + offset, |
| 3393 | MYF(MY_NABP | MY_WAIT_IF_FULL))) |
| 3394 | error=1; |
| 3395 | keycache_pthread_mutex_lock(&keycache->cache_lock); |
| 3396 | } |
| 3397 | goto next_block; |
| 3398 | } |
| 3399 | /* |
| 3400 | Prevent block from flushing and from being selected for to be |
| 3401 | freed. This must be set when we release the cache_lock. |
| 3402 | However, we must not set the status of the block before it is |
| 3403 | assigned to this file/pos. |
| 3404 | */ |
| 3405 | if (page_st != PAGE_WAIT_TO_BE_READ) |
| 3406 | block->status|= BLOCK_FOR_UPDATE; |
| 3407 | /* |
| 3408 | We must read the file block first if it is not yet in the cache |
| 3409 | and we do not replace all of its contents. |
| 3410 | |
| 3411 | In cases where the cache block is big enough to contain (parts |
| 3412 | of) index blocks of different indexes, our request can be |
| 3413 | secondary (PAGE_WAIT_TO_BE_READ). In this case another thread is |
| 3414 | reading the file block. If the read completes after us, it |
| 3415 | overwrites our new contents with the old contents. So we have to |
| 3416 | wait for the other thread to complete the read of this block. |
| 3417 | read_block_primary|secondary() takes care for the wait. |
| 3418 | */ |
| 3419 | if (!(block->status & BLOCK_ERROR)) |
| 3420 | { |
| 3421 | if (page_st == PAGE_TO_BE_READ && |
| 3422 | (offset || read_length < keycache->key_cache_block_size)) |
| 3423 | { |
| 3424 | read_block_primary(keycache, block, |
| 3425 | offset + read_length >= keycache->key_cache_block_size? |
| 3426 | offset : keycache->key_cache_block_size, |
| 3427 | offset); |
| 3428 | /* |
| 3429 | Prevent block from flushing and from being selected for to be |
| 3430 | freed. This must be set when we release the cache_lock. |
| 3431 | Here we set it in case we could not set it above. |
| 3432 | */ |
| 3433 | block->status|= BLOCK_FOR_UPDATE; |
| 3434 | } |
| 3435 | else if (page_st == PAGE_WAIT_TO_BE_READ) |
| 3436 | { |
| 3437 | read_block_secondary(keycache, block); |
| 3438 | block->status|= BLOCK_FOR_UPDATE; |
| 3439 | } |
| 3440 | } |
| 3441 | /* |
| 3442 | The block should always be assigned to the requested file block |
| 3443 | here. It need not be BLOCK_READ when overwriting the whole block. |
| 3444 | */ |
| 3445 | DBUG_ASSERT(block->hash_link->file == file); |
| 3446 | DBUG_ASSERT(block->hash_link->diskpos == filepos); |
| 3447 | DBUG_ASSERT(block->status & BLOCK_IN_USE); |
| 3448 | DBUG_ASSERT((page_st == PAGE_TO_BE_READ) || (block->status & BLOCK_READ)); |
| 3449 | /* |
| 3450 | The block to be written must not be marked BLOCK_REASSIGNED. |
| 3451 | Otherwise it could be freed in dirty state or reused without |
| 3452 | another flush during eviction. It must also not be in flush. |
| 3453 | Otherwise the old contens may have been flushed already and |
| 3454 | the flusher could clear BLOCK_CHANGED without flushing the |
| 3455 | new changes again. |
| 3456 | */ |
| 3457 | DBUG_ASSERT(!(block->status & BLOCK_REASSIGNED)); |
| 3458 | |
| 3459 | while (block->status & BLOCK_IN_FLUSHWRITE) |
| 3460 | { |
| 3461 | /* |
| 3462 | Another thread is flushing the block. It was dirty already. |
| 3463 | Wait until the block is flushed to file. Otherwise we could |
| 3464 | modify the buffer contents just while it is written to file. |
| 3465 | An unpredictable file block contents would be the result. |
| 3466 | While we wait, several things can happen to the block, |
| 3467 | including another flush. But the block cannot be reassigned to |
| 3468 | another hash_link until we release our request on it. |
| 3469 | */ |
| 3470 | wait_on_queue(&block->wqueue[COND_FOR_SAVED], &keycache->cache_lock); |
| 3471 | DBUG_ASSERT(keycache->can_be_used); |
| 3472 | DBUG_ASSERT(block->status & (BLOCK_READ | BLOCK_IN_USE)); |
| 3473 | /* Still must not be marked for free. */ |
| 3474 | DBUG_ASSERT(!(block->status & BLOCK_REASSIGNED)); |
| 3475 | DBUG_ASSERT(block->hash_link && (block->hash_link->block == block)); |
| 3476 | } |
| 3477 | |
| 3478 | /* |
| 3479 | We could perhaps release the cache_lock during access of the |
| 3480 | data like in the other functions. Locks outside of the key cache |
| 3481 | assure that readers and a writer do not access the same range of |
| 3482 | data. Parallel accesses should happen only if the cache block |
| 3483 | contains multiple index block(fragment)s. So different parts of |
| 3484 | the buffer would be read/written. An attempt to flush during |
| 3485 | memcpy() is prevented with BLOCK_FOR_UPDATE. |
| 3486 | */ |
| 3487 | if (!(block->status & BLOCK_ERROR)) |
| 3488 | { |
| 3489 | #if !defined(SERIALIZED_READ_FROM_CACHE) |
| 3490 | keycache_pthread_mutex_unlock(&keycache->cache_lock); |
| 3491 | #endif |
| 3492 | memcpy(block->buffer+offset, buff, (size_t) read_length); |
| 3493 | |
| 3494 | #if !defined(SERIALIZED_READ_FROM_CACHE) |
| 3495 | keycache_pthread_mutex_lock(&keycache->cache_lock); |
| 3496 | #endif |
| 3497 | } |
| 3498 | |
| 3499 | if (!dont_write) |
| 3500 | { |
| 3501 | /* Not used in the server. buff has been written to disk at start. */ |
| 3502 | if ((block->status & BLOCK_CHANGED) && |
| 3503 | (!offset && read_length >= keycache->key_cache_block_size)) |
| 3504 | link_to_file_list(keycache, block, block->hash_link->file, 1); |
| 3505 | } |
| 3506 | else if (! (block->status & BLOCK_CHANGED)) |
| 3507 | link_to_changed_list(keycache, block); |
| 3508 | block->status|=BLOCK_READ; |
| 3509 | /* |
| 3510 | Allow block to be selected for to be freed. Since it is marked |
| 3511 | BLOCK_CHANGED too, it won't be selected for to be freed without |
| 3512 | a flush. |
| 3513 | */ |
| 3514 | block->status&= ~BLOCK_FOR_UPDATE; |
| 3515 | set_if_smaller(block->offset, offset); |
| 3516 | set_if_bigger(block->length, read_length+offset); |
| 3517 | |
| 3518 | /* Threads may be waiting for the changes to be complete. */ |
| 3519 | release_whole_queue(&block->wqueue[COND_FOR_REQUESTED]); |
| 3520 | |
| 3521 | /* |
| 3522 | If only a part of the cache block is to be replaced, and the |
| 3523 | rest has been read from file, then the cache lock has been |
| 3524 | released for I/O and it could be possible that another thread |
| 3525 | wants to evict or free the block and waits for it to be |
| 3526 | released. So we must not just decrement hash_link->requests, but |
| 3527 | also wake a waiting thread. |
| 3528 | */ |
| 3529 | remove_reader(block); |
| 3530 | |
| 3531 | /* Error injection for coverage testing. */ |
| 3532 | DBUG_EXECUTE_IF("key_cache_write_block_error" , |
| 3533 | block->status|= BLOCK_ERROR;); |
| 3534 | |
| 3535 | /* Do not link erroneous blocks into the LRU ring, but free them. */ |
| 3536 | if (!(block->status & BLOCK_ERROR)) |
| 3537 | { |
| 3538 | /* |
| 3539 | Link the block into the LRU ring if it's the last submitted |
| 3540 | request for the block. This enables eviction for the block. |
| 3541 | */ |
| 3542 | unreg_request(keycache, block, 1); |
| 3543 | } |
| 3544 | else |
| 3545 | { |
| 3546 | /* Pretend a "clean" block to avoid complications. */ |
| 3547 | block->status&= ~(BLOCK_CHANGED); |
| 3548 | free_block(keycache, block); |
| 3549 | error= 1; |
| 3550 | break; |
| 3551 | } |
| 3552 | |
| 3553 | next_block: |
| 3554 | buff+= read_length; |
| 3555 | filepos+= read_length+offset; |
| 3556 | offset= 0; |
| 3557 | |
| 3558 | } while ((length-= read_length)); |
| 3559 | goto end; |
| 3560 | } |
| 3561 | |
| 3562 | no_key_cache: |
| 3563 | /* Key cache is not used */ |
| 3564 | if (dont_write) |
| 3565 | { |
| 3566 | /* Used in the server. */ |
| 3567 | keycache->global_cache_w_requests++; |
| 3568 | keycache->global_cache_write++; |
| 3569 | if (locked_and_incremented) |
| 3570 | keycache_pthread_mutex_unlock(&keycache->cache_lock); |
| 3571 | if (my_pwrite(file, (uchar*) buff, length, filepos, |
| 3572 | MYF(MY_NABP | MY_WAIT_IF_FULL))) |
| 3573 | error=1; |
| 3574 | if (locked_and_incremented) |
| 3575 | keycache_pthread_mutex_lock(&keycache->cache_lock); |
| 3576 | } |
| 3577 | |
| 3578 | end: |
| 3579 | if (locked_and_incremented) |
| 3580 | { |
| 3581 | dec_counter_for_resize_op(keycache); |
| 3582 | keycache_pthread_mutex_unlock(&keycache->cache_lock); |
| 3583 | } |
| 3584 | |
| 3585 | if (MYSQL_KEYCACHE_WRITE_DONE_ENABLED()) |
| 3586 | { |
| 3587 | MYSQL_KEYCACHE_WRITE_DONE((ulong) (keycache->blocks_used * |
| 3588 | keycache->key_cache_block_size), |
| 3589 | (ulong) (keycache->blocks_unused * |
| 3590 | keycache->key_cache_block_size)); |
| 3591 | } |
| 3592 | |
| 3593 | #if !defined(DBUG_OFF) && defined(EXTRA_DEBUG) |
| 3594 | DBUG_EXECUTE("exec" , |
| 3595 | test_key_cache(keycache, "end of key_cache_write" , 1);); |
| 3596 | #endif |
| 3597 | DBUG_RETURN(error); |
| 3598 | } |
| 3599 | |
| 3600 | |
| 3601 | /* |
| 3602 | Free block. |
| 3603 | |
| 3604 | SYNOPSIS |
| 3605 | free_block() |
| 3606 | keycache Pointer to a key cache data structure |
| 3607 | block Pointer to the block to free |
| 3608 | |
| 3609 | DESCRIPTION |
| 3610 | Remove reference to block from hash table. |
| 3611 | Remove block from the chain of clean blocks. |
| 3612 | Add block to the free list. |
| 3613 | |
| 3614 | NOTE |
| 3615 | Block must not be free (status == 0). |
| 3616 | Block must not be in free_block_list. |
| 3617 | Block must not be in the LRU ring. |
| 3618 | Block must not be in eviction (BLOCK_IN_EVICTION | BLOCK_IN_SWITCH). |
| 3619 | Block must not be in free (BLOCK_REASSIGNED). |
| 3620 | Block must not be in flush (BLOCK_IN_FLUSH). |
| 3621 | Block must not be dirty (BLOCK_CHANGED). |
| 3622 | Block must not be in changed_blocks (dirty) hash. |
| 3623 | Block must be in file_blocks (clean) hash. |
| 3624 | Block must refer to a hash_link. |
| 3625 | Block must have a request registered on it. |
| 3626 | */ |
| 3627 | |
| 3628 | static void free_block(SIMPLE_KEY_CACHE_CB *keycache, BLOCK_LINK *block) |
| 3629 | { |
| 3630 | KEYCACHE_THREAD_TRACE("free block" ); |
| 3631 | KEYCACHE_DBUG_PRINT("free_block" , |
| 3632 | ("block %u to be freed, hash_link %p status: %u" , |
| 3633 | BLOCK_NUMBER(block), block->hash_link, |
| 3634 | block->status)); |
| 3635 | /* |
| 3636 | Assert that the block is not free already. And that it is in a clean |
| 3637 | state. Note that the block might just be assigned to a hash_link and |
| 3638 | not yet read (BLOCK_READ may not be set here). In this case a reader |
| 3639 | is registered in the hash_link and free_block() will wait for it |
| 3640 | below. |
| 3641 | */ |
| 3642 | DBUG_ASSERT((block->status & BLOCK_IN_USE) && |
| 3643 | !(block->status & (BLOCK_IN_EVICTION | BLOCK_IN_SWITCH | |
| 3644 | BLOCK_REASSIGNED | BLOCK_IN_FLUSH | |
| 3645 | BLOCK_CHANGED | BLOCK_FOR_UPDATE))); |
| 3646 | /* Assert that the block is in a file_blocks chain. */ |
| 3647 | DBUG_ASSERT(block->prev_changed && *block->prev_changed == block); |
| 3648 | /* Assert that the block is not in the LRU ring. */ |
| 3649 | DBUG_ASSERT(!block->next_used && !block->prev_used); |
| 3650 | /* |
| 3651 | IMHO the below condition (if()) makes no sense. I can't see how it |
| 3652 | could be possible that free_block() is entered with a NULL hash_link |
| 3653 | pointer. The only place where it can become NULL is in free_block() |
| 3654 | (or before its first use ever, but for those blocks free_block() is |
| 3655 | not called). I don't remove the conditional as it cannot harm, but |
| 3656 | place an DBUG_ASSERT to confirm my hypothesis. Eventually the |
| 3657 | condition (if()) can be removed. |
| 3658 | */ |
| 3659 | DBUG_ASSERT(block->hash_link && block->hash_link->block == block); |
| 3660 | if (block->hash_link) |
| 3661 | { |
| 3662 | /* |
| 3663 | While waiting for readers to finish, new readers might request the |
| 3664 | block. But since we set block->status|= BLOCK_REASSIGNED, they |
| 3665 | will wait on block->wqueue[COND_FOR_SAVED]. They must be signalled |
| 3666 | later. |
| 3667 | */ |
| 3668 | block->status|= BLOCK_REASSIGNED; |
| 3669 | wait_for_readers(keycache, block); |
| 3670 | /* |
| 3671 | The block must not have been freed by another thread. Repeat some |
| 3672 | checks. An additional requirement is that it must be read now |
| 3673 | (BLOCK_READ). |
| 3674 | */ |
| 3675 | DBUG_ASSERT(block->hash_link && block->hash_link->block == block); |
| 3676 | DBUG_ASSERT((block->status & (BLOCK_READ | BLOCK_IN_USE | |
| 3677 | BLOCK_REASSIGNED)) && |
| 3678 | !(block->status & (BLOCK_IN_EVICTION | BLOCK_IN_SWITCH | |
| 3679 | BLOCK_IN_FLUSH | BLOCK_CHANGED | |
| 3680 | BLOCK_FOR_UPDATE))); |
| 3681 | DBUG_ASSERT(block->prev_changed && *block->prev_changed == block); |
| 3682 | DBUG_ASSERT(!block->prev_used); |
| 3683 | /* |
| 3684 | Unset BLOCK_REASSIGNED again. If we hand the block to an evicting |
| 3685 | thread (through unreg_request() below), other threads must not see |
| 3686 | this flag. They could become confused. |
| 3687 | */ |
| 3688 | block->status&= ~BLOCK_REASSIGNED; |
| 3689 | /* |
| 3690 | Do not release the hash_link until the block is off all lists. |
| 3691 | At least not if we hand it over for eviction in unreg_request(). |
| 3692 | */ |
| 3693 | } |
| 3694 | |
| 3695 | /* |
| 3696 | Unregister the block request and link the block into the LRU ring. |
| 3697 | This enables eviction for the block. If the LRU ring was empty and |
| 3698 | threads are waiting for a block, then the block wil be handed over |
| 3699 | for eviction immediately. Otherwise we will unlink it from the LRU |
| 3700 | ring again, without releasing the lock in between. So decrementing |
| 3701 | the request counter and updating statistics are the only relevant |
| 3702 | operation in this case. Assert that there are no other requests |
| 3703 | registered. |
| 3704 | */ |
| 3705 | DBUG_ASSERT(block->requests == 1); |
| 3706 | unreg_request(keycache, block, 0); |
| 3707 | /* |
| 3708 | Note that even without releasing the cache lock it is possible that |
| 3709 | the block is immediately selected for eviction by link_block() and |
| 3710 | thus not added to the LRU ring. In this case we must not touch the |
| 3711 | block any more. |
| 3712 | */ |
| 3713 | if (block->status & BLOCK_IN_EVICTION) |
| 3714 | return; |
| 3715 | |
| 3716 | /* Error blocks are not put into the LRU ring. */ |
| 3717 | if (!(block->status & BLOCK_ERROR)) |
| 3718 | { |
| 3719 | /* Here the block must be in the LRU ring. Unlink it again. */ |
| 3720 | DBUG_ASSERT(block->next_used && block->prev_used && |
| 3721 | *block->prev_used == block); |
| 3722 | unlink_block(keycache, block); |
| 3723 | } |
| 3724 | if (block->temperature == BLOCK_WARM) |
| 3725 | keycache->warm_blocks--; |
| 3726 | block->temperature= BLOCK_COLD; |
| 3727 | |
| 3728 | /* Remove from file_blocks hash. */ |
| 3729 | unlink_changed(block); |
| 3730 | |
| 3731 | /* Remove reference to block from hash table. */ |
| 3732 | unlink_hash(keycache, block->hash_link); |
| 3733 | block->hash_link= NULL; |
| 3734 | |
| 3735 | block->status= 0; |
| 3736 | block->length= 0; |
| 3737 | block->offset= keycache->key_cache_block_size; |
| 3738 | KEYCACHE_THREAD_TRACE("free block" ); |
| 3739 | KEYCACHE_DBUG_PRINT("free_block" , ("block is freed" )); |
| 3740 | |
| 3741 | /* Enforced by unlink_changed(), but just to be sure. */ |
| 3742 | DBUG_ASSERT(!block->next_changed && !block->prev_changed); |
| 3743 | /* Enforced by unlink_block(): not in LRU ring nor in free_block_list. */ |
| 3744 | DBUG_ASSERT(!block->next_used && !block->prev_used); |
| 3745 | /* Insert the free block in the free list. */ |
| 3746 | block->next_used= keycache->free_block_list; |
| 3747 | keycache->free_block_list= block; |
| 3748 | /* Keep track of the number of currently unused blocks. */ |
| 3749 | keycache->blocks_unused++; |
| 3750 | |
| 3751 | /* All pending requests for this page must be resubmitted. */ |
| 3752 | release_whole_queue(&block->wqueue[COND_FOR_SAVED]); |
| 3753 | } |
| 3754 | |
| 3755 | |
| 3756 | static int cmp_sec_link(BLOCK_LINK **a, BLOCK_LINK **b) |
| 3757 | { |
| 3758 | return (((*a)->hash_link->diskpos < (*b)->hash_link->diskpos) ? -1 : |
| 3759 | ((*a)->hash_link->diskpos > (*b)->hash_link->diskpos) ? 1 : 0); |
| 3760 | } |
| 3761 | |
| 3762 | |
| 3763 | /* |
| 3764 | Flush a portion of changed blocks to disk, |
| 3765 | free used blocks if requested |
| 3766 | */ |
| 3767 | |
| 3768 | static int flush_cached_blocks(SIMPLE_KEY_CACHE_CB *keycache, |
| 3769 | File file, BLOCK_LINK **cache, |
| 3770 | BLOCK_LINK **end, |
| 3771 | enum flush_type type) |
| 3772 | { |
| 3773 | int error; |
| 3774 | int last_errno= 0; |
| 3775 | uint count= (uint) (end-cache); |
| 3776 | |
| 3777 | /* Don't lock the cache during the flush */ |
| 3778 | keycache_pthread_mutex_unlock(&keycache->cache_lock); |
| 3779 | /* |
| 3780 | As all blocks referred in 'cache' are marked by BLOCK_IN_FLUSH |
| 3781 | we are guarunteed no thread will change them |
| 3782 | */ |
| 3783 | my_qsort((uchar*) cache, count, sizeof(*cache), (qsort_cmp) cmp_sec_link); |
| 3784 | |
| 3785 | keycache_pthread_mutex_lock(&keycache->cache_lock); |
| 3786 | /* |
| 3787 | Note: Do not break the loop. We have registered a request on every |
| 3788 | block in 'cache'. These must be unregistered by free_block() or |
| 3789 | unreg_request(). |
| 3790 | */ |
| 3791 | for ( ; cache != end ; cache++) |
| 3792 | { |
| 3793 | BLOCK_LINK *block= *cache; |
| 3794 | |
| 3795 | KEYCACHE_DBUG_PRINT("flush_cached_blocks" , |
| 3796 | ("block %u to be flushed" , BLOCK_NUMBER(block))); |
| 3797 | /* |
| 3798 | If the block contents is going to be changed, we abandon the flush |
| 3799 | for this block. flush_key_blocks_int() will restart its search and |
| 3800 | handle the block properly. |
| 3801 | */ |
| 3802 | if (!(block->status & BLOCK_FOR_UPDATE)) |
| 3803 | { |
| 3804 | /* Blocks coming here must have a certain status. */ |
| 3805 | DBUG_ASSERT(block->hash_link); |
| 3806 | DBUG_ASSERT(block->hash_link->block == block); |
| 3807 | DBUG_ASSERT(block->hash_link->file == file); |
| 3808 | DBUG_ASSERT((block->status & ~BLOCK_IN_EVICTION) == |
| 3809 | (BLOCK_READ | BLOCK_IN_FLUSH | BLOCK_CHANGED | BLOCK_IN_USE)); |
| 3810 | block->status|= BLOCK_IN_FLUSHWRITE; |
| 3811 | keycache_pthread_mutex_unlock(&keycache->cache_lock); |
| 3812 | error= (int)my_pwrite(file, block->buffer + block->offset, |
| 3813 | block->length - block->offset, |
| 3814 | block->hash_link->diskpos + block->offset, |
| 3815 | MYF(MY_NABP | MY_WAIT_IF_FULL)); |
| 3816 | keycache_pthread_mutex_lock(&keycache->cache_lock); |
| 3817 | keycache->global_cache_write++; |
| 3818 | if (error) |
| 3819 | { |
| 3820 | block->status|= BLOCK_ERROR; |
| 3821 | if (!last_errno) |
| 3822 | last_errno= errno ? errno : -1; |
| 3823 | } |
| 3824 | block->status&= ~BLOCK_IN_FLUSHWRITE; |
| 3825 | /* Block must not have changed status except BLOCK_FOR_UPDATE. */ |
| 3826 | DBUG_ASSERT(block->hash_link); |
| 3827 | DBUG_ASSERT(block->hash_link->block == block); |
| 3828 | DBUG_ASSERT(block->hash_link->file == file); |
| 3829 | DBUG_ASSERT((block->status & ~(BLOCK_FOR_UPDATE | BLOCK_IN_EVICTION)) == |
| 3830 | (BLOCK_READ | BLOCK_IN_FLUSH | BLOCK_CHANGED | BLOCK_IN_USE)); |
| 3831 | /* |
| 3832 | Set correct status and link in right queue for free or later use. |
| 3833 | free_block() must not see BLOCK_CHANGED and it may need to wait |
| 3834 | for readers of the block. These should not see the block in the |
| 3835 | wrong hash. If not freeing the block, we need to have it in the |
| 3836 | right queue anyway. |
| 3837 | */ |
| 3838 | link_to_file_list(keycache, block, file, 1); |
| 3839 | } |
| 3840 | block->status&= ~BLOCK_IN_FLUSH; |
| 3841 | /* |
| 3842 | Let to proceed for possible waiting requests to write to the block page. |
| 3843 | It might happen only during an operation to resize the key cache. |
| 3844 | */ |
| 3845 | release_whole_queue(&block->wqueue[COND_FOR_SAVED]); |
| 3846 | /* type will never be FLUSH_IGNORE_CHANGED here */ |
| 3847 | if (!(type == FLUSH_KEEP || type == FLUSH_FORCE_WRITE) && |
| 3848 | !(block->status & (BLOCK_IN_EVICTION | BLOCK_IN_SWITCH | |
| 3849 | BLOCK_FOR_UPDATE))) |
| 3850 | { |
| 3851 | /* |
| 3852 | Note that a request has been registered against the block in |
| 3853 | flush_key_blocks_int(). |
| 3854 | */ |
| 3855 | free_block(keycache, block); |
| 3856 | } |
| 3857 | else |
| 3858 | { |
| 3859 | /* |
| 3860 | Link the block into the LRU ring if it's the last submitted |
| 3861 | request for the block. This enables eviction for the block. |
| 3862 | Note that a request has been registered against the block in |
| 3863 | flush_key_blocks_int(). |
| 3864 | */ |
| 3865 | unreg_request(keycache, block, 1); |
| 3866 | } |
| 3867 | |
| 3868 | } /* end of for ( ; cache != end ; cache++) */ |
| 3869 | return last_errno; |
| 3870 | } |
| 3871 | |
| 3872 | |
| 3873 | /* |
| 3874 | Flush all key blocks for a file to disk, but don't do any mutex locks |
| 3875 | |
| 3876 | SYNOPSIS |
| 3877 | flush_key_blocks_int() |
| 3878 | keycache pointer to a key cache data structure |
| 3879 | file handler for the file to flush to |
| 3880 | flush_type type of the flush |
| 3881 | |
| 3882 | NOTES |
| 3883 | This function doesn't do any mutex locks because it needs to be called both |
| 3884 | from flush_key_blocks and flush_all_key_blocks (the later one does the |
| 3885 | mutex lock in the resize_key_cache() function). |
| 3886 | |
| 3887 | We do only care about changed blocks that exist when the function is |
| 3888 | entered. We do not guarantee that all changed blocks of the file are |
| 3889 | flushed if more blocks change while this function is running. |
| 3890 | |
| 3891 | RETURN |
| 3892 | 0 ok |
| 3893 | 1 error |
| 3894 | */ |
| 3895 | |
| 3896 | static int flush_key_blocks_int(SIMPLE_KEY_CACHE_CB *keycache, |
| 3897 | File file, enum flush_type type) |
| 3898 | { |
| 3899 | BLOCK_LINK *cache_buff[FLUSH_CACHE],**cache; |
| 3900 | int last_errno= 0; |
| 3901 | int last_errcnt= 0; |
| 3902 | DBUG_ENTER("flush_key_blocks_int" ); |
| 3903 | DBUG_PRINT("enter" ,("file: %d blocks_used: %lu blocks_changed: %lu" , |
| 3904 | file, keycache->blocks_used, keycache->blocks_changed)); |
| 3905 | |
| 3906 | #if !defined(DBUG_OFF) && defined(EXTRA_DEBUG) |
| 3907 | DBUG_EXECUTE("check_keycache" , |
| 3908 | test_key_cache(keycache, "start of flush_key_blocks" , 0);); |
| 3909 | #endif |
| 3910 | |
| 3911 | DBUG_ASSERT(type != FLUSH_KEEP_LAZY); |
| 3912 | cache= cache_buff; |
| 3913 | if (keycache->disk_blocks > 0 && |
| 3914 | (!my_disable_flush_key_blocks || type != FLUSH_KEEP)) |
| 3915 | { |
| 3916 | /* Key cache exists and flush is not disabled */ |
| 3917 | int error= 0; |
| 3918 | uint count= FLUSH_CACHE; |
| 3919 | BLOCK_LINK **pos,**end; |
| 3920 | BLOCK_LINK *first_in_switch= NULL; |
| 3921 | BLOCK_LINK *last_in_flush; |
| 3922 | BLOCK_LINK *last_for_update; |
| 3923 | BLOCK_LINK *block, *next; |
| 3924 | #if defined(KEYCACHE_DEBUG) |
| 3925 | uint cnt=0; |
| 3926 | #endif |
| 3927 | |
| 3928 | if (type != FLUSH_IGNORE_CHANGED) |
| 3929 | { |
| 3930 | /* |
| 3931 | Count how many key blocks we have to cache to be able |
| 3932 | to flush all dirty pages with minimum seek moves |
| 3933 | */ |
| 3934 | count= 0; |
| 3935 | for (block= keycache->changed_blocks[FILE_HASH(file, keycache)] ; |
| 3936 | block ; |
| 3937 | block= block->next_changed) |
| 3938 | { |
| 3939 | if ((block->hash_link->file == file) && |
| 3940 | !(block->status & BLOCK_IN_FLUSH)) |
| 3941 | { |
| 3942 | count++; |
| 3943 | KEYCACHE_DBUG_ASSERT(count<= keycache->blocks_used); |
| 3944 | } |
| 3945 | } |
| 3946 | /* |
| 3947 | Allocate a new buffer only if its bigger than the one we have. |
| 3948 | Assure that we always have some entries for the case that new |
| 3949 | changed blocks appear while we need to wait for something. |
| 3950 | */ |
| 3951 | if ((count > FLUSH_CACHE) && |
| 3952 | !(cache= (BLOCK_LINK**) my_malloc(sizeof(BLOCK_LINK*)*count, |
| 3953 | MYF(0)))) |
| 3954 | cache= cache_buff; |
| 3955 | /* |
| 3956 | After a restart there could be more changed blocks than now. |
| 3957 | So we should not let count become smaller than the fixed buffer. |
| 3958 | */ |
| 3959 | if (cache == cache_buff) |
| 3960 | count= FLUSH_CACHE; |
| 3961 | } |
| 3962 | |
| 3963 | /* Retrieve the blocks and write them to a buffer to be flushed */ |
| 3964 | restart: |
| 3965 | last_in_flush= NULL; |
| 3966 | last_for_update= NULL; |
| 3967 | end= (pos= cache)+count; |
| 3968 | for (block= keycache->changed_blocks[FILE_HASH(file, keycache)] ; |
| 3969 | block ; |
| 3970 | block= next) |
| 3971 | { |
| 3972 | #if defined(KEYCACHE_DEBUG) |
| 3973 | cnt++; |
| 3974 | KEYCACHE_DBUG_ASSERT(cnt <= keycache->blocks_used); |
| 3975 | #endif |
| 3976 | next= block->next_changed; |
| 3977 | if (block->hash_link->file == file) |
| 3978 | { |
| 3979 | if (!(block->status & (BLOCK_IN_FLUSH | BLOCK_FOR_UPDATE))) |
| 3980 | { |
| 3981 | /* |
| 3982 | Note: The special handling of BLOCK_IN_SWITCH is obsolete |
| 3983 | since we set BLOCK_IN_FLUSH if the eviction includes a |
| 3984 | flush. It can be removed in a later version. |
| 3985 | */ |
| 3986 | if (!(block->status & BLOCK_IN_SWITCH)) |
| 3987 | { |
| 3988 | /* |
| 3989 | We care only for the blocks for which flushing was not |
| 3990 | initiated by another thread and which are not in eviction. |
| 3991 | Registering a request on the block unlinks it from the LRU |
| 3992 | ring and protects against eviction. |
| 3993 | */ |
| 3994 | reg_requests(keycache, block, 1); |
| 3995 | if (type != FLUSH_IGNORE_CHANGED) |
| 3996 | { |
| 3997 | /* It's not a temporary file */ |
| 3998 | if (pos == end) |
| 3999 | { |
| 4000 | /* |
| 4001 | This should happen relatively seldom. Remove the |
| 4002 | request because we won't do anything with the block |
| 4003 | but restart and pick it again in the next iteration. |
| 4004 | */ |
| 4005 | unreg_request(keycache, block, 0); |
| 4006 | /* |
| 4007 | This happens only if there is not enough |
| 4008 | memory for the big block |
| 4009 | */ |
| 4010 | if ((error= flush_cached_blocks(keycache, file, cache, |
| 4011 | end,type))) |
| 4012 | { |
| 4013 | /* Do not loop infinitely trying to flush in vain. */ |
| 4014 | if ((last_errno == error) && (++last_errcnt > 5)) |
| 4015 | goto err; |
| 4016 | last_errno= error; |
| 4017 | } |
| 4018 | /* |
| 4019 | Restart the scan as some other thread might have changed |
| 4020 | the changed blocks chain: the blocks that were in switch |
| 4021 | state before the flush started have to be excluded |
| 4022 | */ |
| 4023 | goto restart; |
| 4024 | } |
| 4025 | /* |
| 4026 | Mark the block with BLOCK_IN_FLUSH in order not to let |
| 4027 | other threads to use it for new pages and interfere with |
| 4028 | our sequence of flushing dirty file pages. We must not |
| 4029 | set this flag before actually putting the block on the |
| 4030 | write burst array called 'cache'. |
| 4031 | */ |
| 4032 | block->status|= BLOCK_IN_FLUSH; |
| 4033 | /* Add block to the array for a write burst. */ |
| 4034 | *pos++= block; |
| 4035 | } |
| 4036 | else |
| 4037 | { |
| 4038 | /* It's a temporary file */ |
| 4039 | DBUG_ASSERT(!(block->status & BLOCK_REASSIGNED)); |
| 4040 | /* |
| 4041 | free_block() must not be called with BLOCK_CHANGED. Note |
| 4042 | that we must not change the BLOCK_CHANGED flag outside of |
| 4043 | link_to_file_list() so that it is always in the correct |
| 4044 | queue and the *blocks_changed counters are correct. |
| 4045 | */ |
| 4046 | link_to_file_list(keycache, block, file, 1); |
| 4047 | if (!(block->status & (BLOCK_IN_EVICTION | BLOCK_IN_SWITCH))) |
| 4048 | { |
| 4049 | /* A request has been registered against the block above. */ |
| 4050 | free_block(keycache, block); |
| 4051 | } |
| 4052 | else |
| 4053 | { |
| 4054 | /* |
| 4055 | Link the block into the LRU ring if it's the last |
| 4056 | submitted request for the block. This enables eviction |
| 4057 | for the block. A request has been registered against |
| 4058 | the block above. |
| 4059 | */ |
| 4060 | unreg_request(keycache, block, 1); |
| 4061 | } |
| 4062 | } |
| 4063 | } |
| 4064 | else |
| 4065 | { |
| 4066 | /* |
| 4067 | Link the block into a list of blocks 'in switch'. |
| 4068 | |
| 4069 | WARNING: Here we introduce a place where a changed block |
| 4070 | is not in the changed_blocks hash! This is acceptable for |
| 4071 | a BLOCK_IN_SWITCH. Never try this for another situation. |
| 4072 | Other parts of the key cache code rely on changed blocks |
| 4073 | being in the changed_blocks hash. |
| 4074 | */ |
| 4075 | unlink_changed(block); |
| 4076 | link_changed(block, &first_in_switch); |
| 4077 | } |
| 4078 | } |
| 4079 | else if (type != FLUSH_KEEP) |
| 4080 | { |
| 4081 | /* |
| 4082 | During the normal flush at end of statement (FLUSH_KEEP) we |
| 4083 | do not need to ensure that blocks in flush or update by |
| 4084 | other threads are flushed. They will be flushed by them |
| 4085 | later. In all other cases we must assure that we do not have |
| 4086 | any changed block of this file in the cache when this |
| 4087 | function returns. |
| 4088 | */ |
| 4089 | if (block->status & BLOCK_IN_FLUSH) |
| 4090 | { |
| 4091 | /* Remember the last block found to be in flush. */ |
| 4092 | last_in_flush= block; |
| 4093 | } |
| 4094 | else |
| 4095 | { |
| 4096 | /* Remember the last block found to be selected for update. */ |
| 4097 | last_for_update= block; |
| 4098 | } |
| 4099 | } |
| 4100 | } |
| 4101 | } |
| 4102 | if (pos != cache) |
| 4103 | { |
| 4104 | if ((error= flush_cached_blocks(keycache, file, cache, pos, type))) |
| 4105 | { |
| 4106 | /* Do not loop inifnitely trying to flush in vain. */ |
| 4107 | if ((last_errno == error) && (++last_errcnt > 5)) |
| 4108 | goto err; |
| 4109 | last_errno= error; |
| 4110 | } |
| 4111 | /* |
| 4112 | Do not restart here during the normal flush at end of statement |
| 4113 | (FLUSH_KEEP). We have now flushed at least all blocks that were |
| 4114 | changed when entering this function. In all other cases we must |
| 4115 | assure that we do not have any changed block of this file in the |
| 4116 | cache when this function returns. |
| 4117 | */ |
| 4118 | if (type != FLUSH_KEEP) |
| 4119 | goto restart; |
| 4120 | } |
| 4121 | if (last_in_flush) |
| 4122 | { |
| 4123 | /* |
| 4124 | There are no blocks to be flushed by this thread, but blocks in |
| 4125 | flush by other threads. Wait until one of the blocks is flushed. |
| 4126 | Re-check the condition for last_in_flush. We may have unlocked |
| 4127 | the cache_lock in flush_cached_blocks(). The state of the block |
| 4128 | could have changed. |
| 4129 | */ |
| 4130 | if (last_in_flush->status & BLOCK_IN_FLUSH) |
| 4131 | wait_on_queue(&last_in_flush->wqueue[COND_FOR_SAVED], |
| 4132 | &keycache->cache_lock); |
| 4133 | /* Be sure not to lose a block. They may be flushed in random order. */ |
| 4134 | goto restart; |
| 4135 | } |
| 4136 | if (last_for_update) |
| 4137 | { |
| 4138 | /* |
| 4139 | There are no blocks to be flushed by this thread, but blocks for |
| 4140 | update by other threads. Wait until one of the blocks is updated. |
| 4141 | Re-check the condition for last_for_update. We may have unlocked |
| 4142 | the cache_lock in flush_cached_blocks(). The state of the block |
| 4143 | could have changed. |
| 4144 | */ |
| 4145 | if (last_for_update->status & BLOCK_FOR_UPDATE) |
| 4146 | wait_on_queue(&last_for_update->wqueue[COND_FOR_REQUESTED], |
| 4147 | &keycache->cache_lock); |
| 4148 | /* The block is now changed. Flush it. */ |
| 4149 | goto restart; |
| 4150 | } |
| 4151 | |
| 4152 | /* |
| 4153 | Wait until the list of blocks in switch is empty. The threads that |
| 4154 | are switching these blocks will relink them to clean file chains |
| 4155 | while we wait and thus empty the 'first_in_switch' chain. |
| 4156 | */ |
| 4157 | while (first_in_switch) |
| 4158 | { |
| 4159 | #if defined(KEYCACHE_DEBUG) |
| 4160 | cnt= 0; |
| 4161 | #endif |
| 4162 | wait_on_queue(&first_in_switch->wqueue[COND_FOR_SAVED], |
| 4163 | &keycache->cache_lock); |
| 4164 | #if defined(KEYCACHE_DEBUG) |
| 4165 | cnt++; |
| 4166 | KEYCACHE_DBUG_ASSERT(cnt <= keycache->blocks_used); |
| 4167 | #endif |
| 4168 | /* |
| 4169 | Do not restart here. We have flushed all blocks that were |
| 4170 | changed when entering this function and were not marked for |
| 4171 | eviction. Other threads have now flushed all remaining blocks in |
| 4172 | the course of their eviction. |
| 4173 | */ |
| 4174 | } |
| 4175 | |
| 4176 | if (! (type == FLUSH_KEEP || type == FLUSH_FORCE_WRITE)) |
| 4177 | { |
| 4178 | BLOCK_LINK *last_in_switch= NULL; |
| 4179 | uint total_found= 0; |
| 4180 | uint found; |
| 4181 | last_for_update= NULL; |
| 4182 | |
| 4183 | /* |
| 4184 | Finally free all clean blocks for this file. |
| 4185 | During resize this may be run by two threads in parallel. |
| 4186 | */ |
| 4187 | do |
| 4188 | { |
| 4189 | found= 0; |
| 4190 | for (block= keycache->file_blocks[FILE_HASH(file, keycache)] ; |
| 4191 | block ; |
| 4192 | block= next) |
| 4193 | { |
| 4194 | /* Remember the next block. After freeing we cannot get at it. */ |
| 4195 | next= block->next_changed; |
| 4196 | |
| 4197 | /* Changed blocks cannot appear in the file_blocks hash. */ |
| 4198 | DBUG_ASSERT(!(block->status & BLOCK_CHANGED)); |
| 4199 | if (block->hash_link->file == file) |
| 4200 | { |
| 4201 | /* We must skip blocks that will be changed. */ |
| 4202 | if (block->status & BLOCK_FOR_UPDATE) |
| 4203 | { |
| 4204 | last_for_update= block; |
| 4205 | continue; |
| 4206 | } |
| 4207 | |
| 4208 | /* |
| 4209 | We must not free blocks in eviction (BLOCK_IN_EVICTION | |
| 4210 | BLOCK_IN_SWITCH) or blocks intended to be freed |
| 4211 | (BLOCK_REASSIGNED). |
| 4212 | */ |
| 4213 | if (!(block->status & (BLOCK_IN_EVICTION | BLOCK_IN_SWITCH | |
| 4214 | BLOCK_REASSIGNED))) |
| 4215 | { |
| 4216 | struct st_hash_link *UNINIT_VAR(next_hash_link); |
| 4217 | my_off_t UNINIT_VAR(next_diskpos); |
| 4218 | File UNINIT_VAR(next_file); |
| 4219 | uint UNINIT_VAR(next_status); |
| 4220 | uint UNINIT_VAR(hash_requests); |
| 4221 | |
| 4222 | total_found++; |
| 4223 | found++; |
| 4224 | KEYCACHE_DBUG_ASSERT(found <= keycache->blocks_used); |
| 4225 | |
| 4226 | /* |
| 4227 | Register a request. This unlinks the block from the LRU |
| 4228 | ring and protects it against eviction. This is required |
| 4229 | by free_block(). |
| 4230 | */ |
| 4231 | reg_requests(keycache, block, 1); |
| 4232 | |
| 4233 | /* |
| 4234 | free_block() may need to wait for readers of the block. |
| 4235 | This is the moment where the other thread can move the |
| 4236 | 'next' block from the chain. free_block() needs to wait |
| 4237 | if there are requests for the block pending. |
| 4238 | */ |
| 4239 | if (next && (hash_requests= block->hash_link->requests)) |
| 4240 | { |
| 4241 | /* Copy values from the 'next' block and its hash_link. */ |
| 4242 | next_status= next->status; |
| 4243 | next_hash_link= next->hash_link; |
| 4244 | next_diskpos= next_hash_link->diskpos; |
| 4245 | next_file= next_hash_link->file; |
| 4246 | DBUG_ASSERT(next == next_hash_link->block); |
| 4247 | } |
| 4248 | |
| 4249 | free_block(keycache, block); |
| 4250 | /* |
| 4251 | If we had to wait and the state of the 'next' block |
| 4252 | changed, break the inner loop. 'next' may no longer be |
| 4253 | part of the current chain. |
| 4254 | |
| 4255 | We do not want to break the loop after every free_block(), |
| 4256 | not even only after waits. The chain might be quite long |
| 4257 | and contain blocks for many files. Traversing it again and |
| 4258 | again to find more blocks for this file could become quite |
| 4259 | inefficient. |
| 4260 | */ |
| 4261 | if (next && hash_requests && |
| 4262 | ((next_status != next->status) || |
| 4263 | (next_hash_link != next->hash_link) || |
| 4264 | (next_file != next_hash_link->file) || |
| 4265 | (next_diskpos != next_hash_link->diskpos) || |
| 4266 | (next != next_hash_link->block))) |
| 4267 | break; |
| 4268 | } |
| 4269 | else |
| 4270 | { |
| 4271 | last_in_switch= block; |
| 4272 | } |
| 4273 | } |
| 4274 | } /* end for block in file_blocks */ |
| 4275 | } while (found); |
| 4276 | |
| 4277 | /* |
| 4278 | If any clean block has been found, we may have waited for it to |
| 4279 | become free. In this case it could be possible that another clean |
| 4280 | block became dirty. This is possible if the write request existed |
| 4281 | before the flush started (BLOCK_FOR_UPDATE). Re-check the hashes. |
| 4282 | */ |
| 4283 | if (total_found) |
| 4284 | goto restart; |
| 4285 | |
| 4286 | /* |
| 4287 | To avoid an infinite loop, wait until one of the blocks marked |
| 4288 | for update is updated. |
| 4289 | */ |
| 4290 | if (last_for_update) |
| 4291 | { |
| 4292 | /* We did not wait. Block must not have changed status. */ |
| 4293 | DBUG_ASSERT(last_for_update->status & BLOCK_FOR_UPDATE); |
| 4294 | wait_on_queue(&last_for_update->wqueue[COND_FOR_REQUESTED], |
| 4295 | &keycache->cache_lock); |
| 4296 | goto restart; |
| 4297 | } |
| 4298 | |
| 4299 | /* |
| 4300 | To avoid an infinite loop wait until one of the blocks marked |
| 4301 | for eviction is switched. |
| 4302 | */ |
| 4303 | if (last_in_switch) |
| 4304 | { |
| 4305 | /* We did not wait. Block must not have changed status. */ |
| 4306 | DBUG_ASSERT(last_in_switch->status & (BLOCK_IN_EVICTION | |
| 4307 | BLOCK_IN_SWITCH | |
| 4308 | BLOCK_REASSIGNED)); |
| 4309 | wait_on_queue(&last_in_switch->wqueue[COND_FOR_SAVED], |
| 4310 | &keycache->cache_lock); |
| 4311 | goto restart; |
| 4312 | } |
| 4313 | |
| 4314 | } /* if (! (type == FLUSH_KEEP || type == FLUSH_FORCE_WRITE)) */ |
| 4315 | |
| 4316 | } /* if (keycache->disk_blocks > 0 */ |
| 4317 | |
| 4318 | DBUG_EXECUTE("check_keycache" , |
| 4319 | test_key_cache(keycache, "end of flush_key_blocks" , 0);); |
| 4320 | err: |
| 4321 | if (cache != cache_buff) |
| 4322 | my_free(cache); |
| 4323 | if (last_errno) |
| 4324 | errno=last_errno; /* Return first error */ |
| 4325 | DBUG_RETURN(last_errno != 0); |
| 4326 | } |
| 4327 | |
| 4328 | |
| 4329 | /* |
| 4330 | Flush all blocks for a file from key buffers of a simple key cache |
| 4331 | |
| 4332 | SYNOPSIS |
| 4333 | |
| 4334 | flush_simple_key_blocks() |
| 4335 | keycache pointer to the control block of a simple key cache |
| 4336 | file handler for the file to flush to |
| 4337 | file_extra maps of key cache partitions containing |
| 4338 | dirty pages from file (not used) |
| 4339 | flush_type type of the flush operation |
| 4340 | |
| 4341 | DESCRIPTION |
| 4342 | This function is the implementation of the flush_key_blocks interface |
| 4343 | function that is employed by simple (non-partitioned) key caches. |
| 4344 | The function takes the parameter keycache as a pointer to the |
| 4345 | control block structure of the type S_KEY_CACHE_CB for a simple key |
| 4346 | cache. |
| 4347 | In a general case the function flushes the data from all dirty key |
| 4348 | buffers related to the file 'file' into this file. The function does |
| 4349 | exactly this if the value of the parameter type is FLUSH_KEEP. If the |
| 4350 | value of this parameter is FLUSH_RELEASE, the function additionally |
| 4351 | releases the key buffers containing data from 'file' for new usage. |
| 4352 | If the value of the parameter type is FLUSH_IGNORE_CHANGED the function |
| 4353 | just releases the key buffers containing data from 'file'. |
| 4354 | The parameter file_extra currently is not used by this function. |
| 4355 | |
| 4356 | RETURN |
| 4357 | 0 ok |
| 4358 | 1 error |
| 4359 | |
| 4360 | NOTES |
| 4361 | This implementation exploits the fact that the function is called only |
| 4362 | when a thread has got an exclusive lock for the key file. |
| 4363 | */ |
| 4364 | |
| 4365 | static |
| 4366 | int flush_simple_key_cache_blocks(SIMPLE_KEY_CACHE_CB *keycache, |
| 4367 | File file, |
| 4368 | void * __attribute__((unused)), |
| 4369 | enum flush_type type) |
| 4370 | { |
| 4371 | int res= 0; |
| 4372 | DBUG_ENTER("flush_key_blocks" ); |
| 4373 | DBUG_PRINT("enter" , ("keycache: %p" , keycache)); |
| 4374 | |
| 4375 | if (!keycache->key_cache_inited) |
| 4376 | DBUG_RETURN(0); |
| 4377 | |
| 4378 | keycache_pthread_mutex_lock(&keycache->cache_lock); |
| 4379 | /* While waiting for lock, keycache could have been ended. */ |
| 4380 | if (keycache->disk_blocks > 0) |
| 4381 | { |
| 4382 | inc_counter_for_resize_op(keycache); |
| 4383 | res= flush_key_blocks_int(keycache, file, type); |
| 4384 | dec_counter_for_resize_op(keycache); |
| 4385 | } |
| 4386 | keycache_pthread_mutex_unlock(&keycache->cache_lock); |
| 4387 | DBUG_RETURN(res); |
| 4388 | } |
| 4389 | |
| 4390 | |
| 4391 | /* |
| 4392 | Flush all blocks in the key cache to disk. |
| 4393 | |
| 4394 | SYNOPSIS |
| 4395 | flush_all_key_blocks() |
| 4396 | keycache pointer to key cache root structure |
| 4397 | |
| 4398 | DESCRIPTION |
| 4399 | |
| 4400 | Flushing of the whole key cache is done in two phases. |
| 4401 | |
| 4402 | 1. Flush all changed blocks, waiting for them if necessary. Loop |
| 4403 | until there is no changed block left in the cache. |
| 4404 | |
| 4405 | 2. Free all clean blocks. Normally this means free all blocks. The |
| 4406 | changed blocks were flushed in phase 1 and became clean. However we |
| 4407 | may need to wait for blocks that are read by other threads. While we |
| 4408 | wait, a clean block could become changed if that operation started |
| 4409 | before the resize operation started. To be safe we must restart at |
| 4410 | phase 1. |
| 4411 | |
| 4412 | When we can run through the changed_blocks and file_blocks hashes |
| 4413 | without finding a block any more, then we are done. |
| 4414 | |
| 4415 | Note that we hold keycache->cache_lock all the time unless we need |
| 4416 | to wait for something. |
| 4417 | |
| 4418 | RETURN |
| 4419 | 0 OK |
| 4420 | != 0 Error |
| 4421 | */ |
| 4422 | |
| 4423 | static int flush_all_key_blocks(SIMPLE_KEY_CACHE_CB *keycache) |
| 4424 | { |
| 4425 | BLOCK_LINK *block; |
| 4426 | uint total_found; |
| 4427 | uint found; |
| 4428 | uint idx; |
| 4429 | uint changed_blocks_hash_size= keycache->changed_blocks_hash_size; |
| 4430 | DBUG_ENTER("flush_all_key_blocks" ); |
| 4431 | |
| 4432 | do |
| 4433 | { |
| 4434 | mysql_mutex_assert_owner(&keycache->cache_lock); |
| 4435 | total_found= 0; |
| 4436 | |
| 4437 | /* |
| 4438 | Phase1: Flush all changed blocks, waiting for them if necessary. |
| 4439 | Loop until there is no changed block left in the cache. |
| 4440 | */ |
| 4441 | do |
| 4442 | { |
| 4443 | found= 0; |
| 4444 | /* Step over the whole changed_blocks hash array. */ |
| 4445 | for (idx= 0; idx < changed_blocks_hash_size; idx++) |
| 4446 | { |
| 4447 | /* |
| 4448 | If an array element is non-empty, use the first block from its |
| 4449 | chain to find a file for flush. All changed blocks for this |
| 4450 | file are flushed. So the same block will not appear at this |
| 4451 | place again with the next iteration. New writes for blocks are |
| 4452 | not accepted during the flush. If multiple files share the |
| 4453 | same hash bucket, one of them will be flushed per iteration |
| 4454 | of the outer loop of phase 1. |
| 4455 | */ |
| 4456 | while ((block= keycache->changed_blocks[idx])) |
| 4457 | { |
| 4458 | found++; |
| 4459 | /* |
| 4460 | Flush dirty blocks but do not free them yet. They can be used |
| 4461 | for reading until all other blocks are flushed too. |
| 4462 | */ |
| 4463 | if (flush_key_blocks_int(keycache, block->hash_link->file, |
| 4464 | FLUSH_FORCE_WRITE)) |
| 4465 | DBUG_RETURN(1); |
| 4466 | } |
| 4467 | } |
| 4468 | } while (found); |
| 4469 | |
| 4470 | /* |
| 4471 | Phase 2: Free all clean blocks. Normally this means free all |
| 4472 | blocks. The changed blocks were flushed in phase 1 and became |
| 4473 | clean. However we may need to wait for blocks that are read by |
| 4474 | other threads. While we wait, a clean block could become changed |
| 4475 | if that operation started before the resize operation started. To |
| 4476 | be safe we must restart at phase 1. |
| 4477 | */ |
| 4478 | do |
| 4479 | { |
| 4480 | found= 0; |
| 4481 | /* Step over the whole file_blocks hash array. */ |
| 4482 | for (idx= 0; idx < changed_blocks_hash_size; idx++) |
| 4483 | { |
| 4484 | /* |
| 4485 | If an array element is non-empty, use the first block from its |
| 4486 | chain to find a file for flush. All blocks for this file are |
| 4487 | freed. So the same block will not appear at this place again |
| 4488 | with the next iteration. If multiple files share the |
| 4489 | same hash bucket, one of them will be flushed per iteration |
| 4490 | of the outer loop of phase 2. |
| 4491 | */ |
| 4492 | while ((block= keycache->file_blocks[idx])) |
| 4493 | { |
| 4494 | total_found++; |
| 4495 | found++; |
| 4496 | if (flush_key_blocks_int(keycache, block->hash_link->file, |
| 4497 | FLUSH_RELEASE)) |
| 4498 | DBUG_RETURN(1); |
| 4499 | } |
| 4500 | } |
| 4501 | } while (found); |
| 4502 | |
| 4503 | /* |
| 4504 | If any clean block has been found, we may have waited for it to |
| 4505 | become free. In this case it could be possible that another clean |
| 4506 | block became dirty. This is possible if the write request existed |
| 4507 | before the resize started (BLOCK_FOR_UPDATE). Re-check the hashes. |
| 4508 | */ |
| 4509 | } while (total_found); |
| 4510 | |
| 4511 | #ifndef DBUG_OFF |
| 4512 | /* Now there should not exist any block any more. */ |
| 4513 | for (idx= 0; idx < changed_blocks_hash_size; idx++) |
| 4514 | { |
| 4515 | DBUG_ASSERT(!keycache->changed_blocks[idx]); |
| 4516 | DBUG_ASSERT(!keycache->file_blocks[idx]); |
| 4517 | } |
| 4518 | #endif |
| 4519 | |
| 4520 | DBUG_RETURN(0); |
| 4521 | } |
| 4522 | |
| 4523 | |
| 4524 | /* |
| 4525 | Reset the counters of a simple key cache |
| 4526 | |
| 4527 | SYNOPSIS |
| 4528 | reset_simple_key_cache_counters() |
| 4529 | name the name of a key cache |
| 4530 | keycache pointer to the control block of a simple key cache |
| 4531 | |
| 4532 | DESCRIPTION |
| 4533 | This function is the implementation of the reset_key_cache_counters |
| 4534 | interface function that is employed by simple (non-partitioned) key caches. |
| 4535 | The function takes the parameter keycache as a pointer to the |
| 4536 | control block structure of the type S_KEY_CACHE_CB for a simple key cache. |
| 4537 | This function resets the values of all statistical counters for the key |
| 4538 | cache to 0. |
| 4539 | The parameter name is currently not used. |
| 4540 | |
| 4541 | RETURN |
| 4542 | 0 on success (always because it can't fail) |
| 4543 | */ |
| 4544 | |
| 4545 | static |
| 4546 | int reset_simple_key_cache_counters(const char *name __attribute__((unused)), |
| 4547 | SIMPLE_KEY_CACHE_CB *keycache) |
| 4548 | { |
| 4549 | DBUG_ENTER("reset_simple_key_cache_counters" ); |
| 4550 | if (!keycache->key_cache_inited) |
| 4551 | { |
| 4552 | DBUG_PRINT("info" , ("Key cache %s not initialized." , name)); |
| 4553 | DBUG_RETURN(0); |
| 4554 | } |
| 4555 | DBUG_PRINT("info" , ("Resetting counters for key cache %s." , name)); |
| 4556 | |
| 4557 | keycache->global_blocks_changed= 0; /* Key_blocks_not_flushed */ |
| 4558 | keycache->global_cache_r_requests= 0; /* Key_read_requests */ |
| 4559 | keycache->global_cache_read= 0; /* Key_reads */ |
| 4560 | keycache->global_cache_w_requests= 0; /* Key_write_requests */ |
| 4561 | keycache->global_cache_write= 0; /* Key_writes */ |
| 4562 | DBUG_RETURN(0); |
| 4563 | } |
| 4564 | |
| 4565 | |
| 4566 | #ifndef DBUG_OFF |
| 4567 | /* |
| 4568 | Test if disk-cache is ok |
| 4569 | */ |
| 4570 | static |
| 4571 | void test_key_cache(SIMPLE_KEY_CACHE_CB *keycache __attribute__((unused)), |
| 4572 | const char *where __attribute__((unused)), |
| 4573 | my_bool lock __attribute__((unused))) |
| 4574 | { |
| 4575 | /* TODO */ |
| 4576 | } |
| 4577 | #endif |
| 4578 | |
| 4579 | #if defined(KEYCACHE_TIMEOUT) |
| 4580 | |
| 4581 | #define KEYCACHE_DUMP_FILE "keycache_dump.txt" |
| 4582 | #define MAX_QUEUE_LEN 100 |
| 4583 | |
| 4584 | |
| 4585 | static void keycache_dump(SIMPLE_KEY_CACHE_CB *keycache) |
| 4586 | { |
| 4587 | FILE *keycache_dump_file=fopen(KEYCACHE_DUMP_FILE, "w" ); |
| 4588 | struct st_my_thread_var *last; |
| 4589 | struct st_my_thread_var *thread; |
| 4590 | BLOCK_LINK *block; |
| 4591 | HASH_LINK *hash_link; |
| 4592 | KEYCACHE_PAGE *page; |
| 4593 | uint i; |
| 4594 | |
| 4595 | fprintf(keycache_dump_file, "thread:%lu\n" , (ulong) thread->id); |
| 4596 | |
| 4597 | i=0; |
| 4598 | thread=last=waiting_for_hash_link.last_thread; |
| 4599 | fprintf(keycache_dump_file, "queue of threads waiting for hash link\n" ); |
| 4600 | if (thread) |
| 4601 | do |
| 4602 | { |
| 4603 | thread=thread->next; |
| 4604 | page= (KEYCACHE_PAGE *) thread->keycache_link; |
| 4605 | fprintf(keycache_dump_file, |
| 4606 | "thread:%lu, (file,filepos)=(%u,%lu)\n" , |
| 4607 | (ulong) thread->id,(uint) page->file,(ulong) page->filepos); |
| 4608 | if (++i == MAX_QUEUE_LEN) |
| 4609 | break; |
| 4610 | } |
| 4611 | while (thread != last); |
| 4612 | |
| 4613 | i=0; |
| 4614 | thread=last=waiting_for_block.last_thread; |
| 4615 | fprintf(keycache_dump_file, "queue of threads waiting for block\n" ); |
| 4616 | if (thread) |
| 4617 | do |
| 4618 | { |
| 4619 | thread=thread->next; |
| 4620 | hash_link= (HASH_LINK *) thread->keycache_link; |
| 4621 | fprintf(keycache_dump_file, |
| 4622 | "thread:%lu hash_link:%u (file,filepos)=(%u,%lu)\n" , |
| 4623 | (ulong) thread->id, (uint) HASH_LINK_NUMBER(hash_link), |
| 4624 | (uint) hash_link->file,(ulong) hash_link->diskpos); |
| 4625 | if (++i == MAX_QUEUE_LEN) |
| 4626 | break; |
| 4627 | } |
| 4628 | while (thread != last); |
| 4629 | |
| 4630 | for (i=0 ; i< keycache->blocks_used ; i++) |
| 4631 | { |
| 4632 | int j; |
| 4633 | block= &keycache->block_root[i]; |
| 4634 | hash_link= block->hash_link; |
| 4635 | fprintf(keycache_dump_file, |
| 4636 | "block:%u hash_link:%d status:%x #requests=%u waiting_for_readers:%d\n" , |
| 4637 | i, (int) (hash_link ? HASH_LINK_NUMBER(hash_link) : -1), |
| 4638 | block->status, block->requests, block->condvar ? 1 : 0); |
| 4639 | for (j=0 ; j < 2; j++) |
| 4640 | { |
| 4641 | KEYCACHE_WQUEUE *wqueue=&block->wqueue[j]; |
| 4642 | thread= last= wqueue->last_thread; |
| 4643 | fprintf(keycache_dump_file, "queue #%d\n" , j); |
| 4644 | if (thread) |
| 4645 | { |
| 4646 | do |
| 4647 | { |
| 4648 | thread=thread->next; |
| 4649 | fprintf(keycache_dump_file, |
| 4650 | "thread:%lu\n" , (ulong) thread->id); |
| 4651 | if (++i == MAX_QUEUE_LEN) |
| 4652 | break; |
| 4653 | } |
| 4654 | while (thread != last); |
| 4655 | } |
| 4656 | } |
| 4657 | } |
| 4658 | fprintf(keycache_dump_file, "LRU chain:" ); |
| 4659 | block= keycache= used_last; |
| 4660 | if (block) |
| 4661 | { |
| 4662 | do |
| 4663 | { |
| 4664 | block= block->next_used; |
| 4665 | fprintf(keycache_dump_file, |
| 4666 | "block:%u, " , BLOCK_NUMBER(block)); |
| 4667 | } |
| 4668 | while (block != keycache->used_last); |
| 4669 | } |
| 4670 | fprintf(keycache_dump_file, "\n" ); |
| 4671 | |
| 4672 | fclose(keycache_dump_file); |
| 4673 | } |
| 4674 | |
| 4675 | #endif /* defined(KEYCACHE_TIMEOUT) */ |
| 4676 | |
| 4677 | #if defined(KEYCACHE_TIMEOUT) && !defined(__WIN__) |
| 4678 | |
| 4679 | |
| 4680 | static int keycache_pthread_cond_wait(mysql_cond_t *cond, |
| 4681 | mysql_mutex_t *mutex) |
| 4682 | { |
| 4683 | int rc; |
| 4684 | struct timeval now; /* time when we started waiting */ |
| 4685 | struct timespec timeout; /* timeout value for the wait function */ |
| 4686 | struct timezone tz; |
| 4687 | #if defined(KEYCACHE_DEBUG) |
| 4688 | int cnt=0; |
| 4689 | #endif |
| 4690 | |
| 4691 | /* Get current time */ |
| 4692 | gettimeofday(&now, &tz); |
| 4693 | /* Prepare timeout value */ |
| 4694 | timeout.tv_sec= now.tv_sec + KEYCACHE_TIMEOUT; |
| 4695 | /* |
| 4696 | timeval uses microseconds. |
| 4697 | timespec uses nanoseconds. |
| 4698 | 1 nanosecond = 1000 micro seconds |
| 4699 | */ |
| 4700 | timeout.tv_nsec= now.tv_usec * 1000; |
| 4701 | KEYCACHE_THREAD_TRACE_END("started waiting" ); |
| 4702 | #if defined(KEYCACHE_DEBUG) |
| 4703 | cnt++; |
| 4704 | if (cnt % 100 == 0) |
| 4705 | fprintf(keycache_debug_log, "waiting...\n" ); |
| 4706 | fflush(keycache_debug_log); |
| 4707 | #endif |
| 4708 | rc= mysql_cond_timedwait(cond, mutex, &timeout); |
| 4709 | KEYCACHE_THREAD_TRACE_BEGIN("finished waiting" ); |
| 4710 | if (rc == ETIMEDOUT || rc == ETIME) |
| 4711 | { |
| 4712 | #if defined(KEYCACHE_DEBUG) |
| 4713 | fprintf(keycache_debug_log,"aborted by keycache timeout\n" ); |
| 4714 | fclose(keycache_debug_log); |
| 4715 | abort(); |
| 4716 | #endif |
| 4717 | keycache_dump(); |
| 4718 | } |
| 4719 | |
| 4720 | #if defined(KEYCACHE_DEBUG) |
| 4721 | KEYCACHE_DBUG_ASSERT(rc != ETIMEDOUT); |
| 4722 | #else |
| 4723 | assert(rc != ETIMEDOUT); |
| 4724 | #endif |
| 4725 | return rc; |
| 4726 | } |
| 4727 | #else |
| 4728 | #if defined(KEYCACHE_DEBUG) |
| 4729 | static int keycache_pthread_cond_wait(mysql_cond_t *cond, |
| 4730 | mysql_mutex_t *mutex) |
| 4731 | { |
| 4732 | int rc; |
| 4733 | KEYCACHE_THREAD_TRACE_END("started waiting" ); |
| 4734 | rc= mysql_cond_wait(cond, mutex); |
| 4735 | KEYCACHE_THREAD_TRACE_BEGIN("finished waiting" ); |
| 4736 | return rc; |
| 4737 | } |
| 4738 | #endif |
| 4739 | #endif /* defined(KEYCACHE_TIMEOUT) && !defined(__WIN__) */ |
| 4740 | |
| 4741 | #if defined(KEYCACHE_DEBUG) |
| 4742 | |
| 4743 | |
| 4744 | static int keycache_pthread_mutex_lock(mysql_mutex_t *mutex) |
| 4745 | { |
| 4746 | int rc; |
| 4747 | rc= mysql_mutex_lock(mutex); |
| 4748 | KEYCACHE_THREAD_TRACE_BEGIN("" ); |
| 4749 | return rc; |
| 4750 | } |
| 4751 | |
| 4752 | |
| 4753 | static void keycache_pthread_mutex_unlock(mysql_mutex_t *mutex) |
| 4754 | { |
| 4755 | KEYCACHE_THREAD_TRACE_END("" ); |
| 4756 | mysql_mutex_unlock(mutex); |
| 4757 | } |
| 4758 | |
| 4759 | |
| 4760 | static int keycache_pthread_cond_signal(mysql_cond_t *cond) |
| 4761 | { |
| 4762 | int rc; |
| 4763 | KEYCACHE_THREAD_TRACE("signal" ); |
| 4764 | rc= mysql_cond_signal(cond); |
| 4765 | return rc; |
| 4766 | } |
| 4767 | |
| 4768 | |
| 4769 | #if defined(KEYCACHE_DEBUG_LOG) |
| 4770 | |
| 4771 | |
| 4772 | static void keycache_debug_print(const char * fmt,...) |
| 4773 | { |
| 4774 | va_list args; |
| 4775 | va_start(args,fmt); |
| 4776 | if (keycache_debug_log) |
| 4777 | { |
| 4778 | (void) vfprintf(keycache_debug_log, fmt, args); |
| 4779 | (void) fputc('\n',keycache_debug_log); |
| 4780 | } |
| 4781 | va_end(args); |
| 4782 | } |
| 4783 | #endif /* defined(KEYCACHE_DEBUG_LOG) */ |
| 4784 | |
| 4785 | #if defined(KEYCACHE_DEBUG_LOG) |
| 4786 | |
| 4787 | |
| 4788 | void keycache_debug_log_close(void) |
| 4789 | { |
| 4790 | if (keycache_debug_log) |
| 4791 | fclose(keycache_debug_log); |
| 4792 | } |
| 4793 | #endif /* defined(KEYCACHE_DEBUG_LOG) */ |
| 4794 | |
| 4795 | #endif /* defined(KEYCACHE_DEBUG) */ |
| 4796 | |
| 4797 | #ifdef DBUG_ASSERT_EXISTS |
| 4798 | #define F_B_PRT(_f_, _v_) DBUG_PRINT("assert_fail", (_f_, _v_)) |
| 4799 | |
| 4800 | static int fail_block(BLOCK_LINK *block __attribute__((unused))) |
| 4801 | { |
| 4802 | #ifndef DBUG_OFF |
| 4803 | F_B_PRT("block->next_used: %p\n" , block->next_used); |
| 4804 | F_B_PRT("block->prev_used: %p\n" , block->prev_used); |
| 4805 | F_B_PRT("block->next_changed: %p\n" , block->next_changed); |
| 4806 | F_B_PRT("block->prev_changed: %p\n" , block->prev_changed); |
| 4807 | F_B_PRT("block->hash_link: %p\n" , block->hash_link); |
| 4808 | F_B_PRT("block->status: %u\n" , block->status); |
| 4809 | F_B_PRT("block->length: %u\n" , block->length); |
| 4810 | F_B_PRT("block->offset: %u\n" , block->offset); |
| 4811 | F_B_PRT("block->requests: %u\n" , block->requests); |
| 4812 | F_B_PRT("block->temperature: %u\n" , block->temperature); |
| 4813 | #endif |
| 4814 | return 0; /* Let the assert fail. */ |
| 4815 | } |
| 4816 | #endif |
| 4817 | |
| 4818 | #ifndef DBUG_OFF |
| 4819 | static int fail_hlink(HASH_LINK *hlink __attribute__((unused))) |
| 4820 | { |
| 4821 | F_B_PRT("hlink->next: %p\n" , hlink->next); |
| 4822 | F_B_PRT("hlink->prev: %p\n" , hlink->prev); |
| 4823 | F_B_PRT("hlink->block: %p\n" , hlink->block); |
| 4824 | F_B_PRT("hlink->diskpos: %lu\n" , (ulong) hlink->diskpos); |
| 4825 | F_B_PRT("hlink->file: %d\n" , hlink->file); |
| 4826 | return 0; /* Let the assert fail. */ |
| 4827 | } |
| 4828 | |
| 4829 | static int cache_empty(SIMPLE_KEY_CACHE_CB *keycache) |
| 4830 | { |
| 4831 | int errcnt= 0; |
| 4832 | int idx; |
| 4833 | if (keycache->disk_blocks <= 0) |
| 4834 | return 1; |
| 4835 | for (idx= 0; idx < keycache->disk_blocks; idx++) |
| 4836 | { |
| 4837 | BLOCK_LINK *block= keycache->block_root + idx; |
| 4838 | if (block->status || block->requests || block->hash_link) |
| 4839 | { |
| 4840 | fprintf(stderr, "block index: %u\n" , idx); |
| 4841 | fail_block(block); |
| 4842 | errcnt++; |
| 4843 | } |
| 4844 | } |
| 4845 | for (idx= 0; idx < keycache->hash_links; idx++) |
| 4846 | { |
| 4847 | HASH_LINK *hash_link= keycache->hash_link_root + idx; |
| 4848 | if (hash_link->requests || hash_link->block) |
| 4849 | { |
| 4850 | fprintf(stderr, "hash_link index: %u\n" , idx); |
| 4851 | fail_hlink(hash_link); |
| 4852 | errcnt++; |
| 4853 | } |
| 4854 | } |
| 4855 | if (errcnt) |
| 4856 | { |
| 4857 | fprintf(stderr, "blocks: %d used: %lu\n" , |
| 4858 | keycache->disk_blocks, keycache->blocks_used); |
| 4859 | fprintf(stderr, "hash_links: %d used: %d\n" , |
| 4860 | keycache->hash_links, keycache->hash_links_used); |
| 4861 | fprintf(stderr, "\n" ); |
| 4862 | } |
| 4863 | return !errcnt; |
| 4864 | } |
| 4865 | #endif |
| 4866 | |
| 4867 | |
| 4868 | /* |
| 4869 | Get statistics for a simple key cache |
| 4870 | |
| 4871 | SYNOPSIS |
| 4872 | get_simple_key_cache_statistics() |
| 4873 | keycache pointer to the control block of a simple key cache |
| 4874 | partition_no partition number (not used) |
| 4875 | key_cache_stats OUT pointer to the structure for the returned statistics |
| 4876 | |
| 4877 | DESCRIPTION |
| 4878 | This function is the implementation of the get_key_cache_statistics |
| 4879 | interface function that is employed by simple (non-partitioned) key caches. |
| 4880 | The function takes the parameter keycache as a pointer to the |
| 4881 | control block structure of the type SIMPLE_KEY_CACHE_CB for a simple key |
| 4882 | cache. This function returns the statistical data for the key cache. |
| 4883 | The parameter partition_no is not used by this function. |
| 4884 | |
| 4885 | RETURN |
| 4886 | none |
| 4887 | */ |
| 4888 | |
| 4889 | static |
| 4890 | void get_simple_key_cache_statistics(SIMPLE_KEY_CACHE_CB *keycache, |
| 4891 | uint partition_no __attribute__((unused)), |
| 4892 | KEY_CACHE_STATISTICS *keycache_stats) |
| 4893 | { |
| 4894 | DBUG_ENTER("simple_get_key_cache_statistics" ); |
| 4895 | |
| 4896 | keycache_stats->mem_size= (longlong) keycache->key_cache_mem_size; |
| 4897 | keycache_stats->block_size= (longlong) keycache->key_cache_block_size; |
| 4898 | keycache_stats->blocks_used= keycache->blocks_used; |
| 4899 | keycache_stats->blocks_unused= keycache->blocks_unused; |
| 4900 | keycache_stats->blocks_changed= keycache->global_blocks_changed; |
| 4901 | keycache_stats->blocks_warm= keycache->warm_blocks; |
| 4902 | keycache_stats->read_requests= keycache->global_cache_r_requests; |
| 4903 | keycache_stats->reads= keycache->global_cache_read; |
| 4904 | keycache_stats->write_requests= keycache->global_cache_w_requests; |
| 4905 | keycache_stats->writes= keycache->global_cache_write; |
| 4906 | DBUG_VOID_RETURN; |
| 4907 | } |
| 4908 | |
| 4909 | |
| 4910 | /* |
| 4911 | The array of pointer to the key cache interface functions used for simple |
| 4912 | key caches. Any simple key cache objects including those incorporated into |
| 4913 | partitioned keys caches exploit this array. |
| 4914 | |
| 4915 | The current implementation of these functions allows to call them from |
| 4916 | the MySQL server code directly. We don't do it though. |
| 4917 | */ |
| 4918 | |
| 4919 | static KEY_CACHE_FUNCS simple_key_cache_funcs = |
| 4920 | { |
| 4921 | (INIT_KEY_CACHE) init_simple_key_cache, |
| 4922 | (RESIZE_KEY_CACHE) resize_simple_key_cache, |
| 4923 | (CHANGE_KEY_CACHE_PARAM) change_simple_key_cache_param, |
| 4924 | (KEY_CACHE_READ) simple_key_cache_read, |
| 4925 | (KEY_CACHE_INSERT) simple_key_cache_insert, |
| 4926 | (KEY_CACHE_WRITE) simple_key_cache_write, |
| 4927 | (FLUSH_KEY_BLOCKS) flush_simple_key_cache_blocks, |
| 4928 | (RESET_KEY_CACHE_COUNTERS) reset_simple_key_cache_counters, |
| 4929 | (END_KEY_CACHE) end_simple_key_cache, |
| 4930 | (GET_KEY_CACHE_STATISTICS) get_simple_key_cache_statistics, |
| 4931 | }; |
| 4932 | |
| 4933 | |
| 4934 | /****************************************************************************** |
| 4935 | Partitioned Key Cache Module |
| 4936 | |
| 4937 | The module contains implementations of all key cache interface functions |
| 4938 | employed by partitioned key caches. |
| 4939 | |
| 4940 | A partitioned key cache is a collection of structures for simple key caches |
| 4941 | called key cache partitions. Any page from a file can be placed into a buffer |
| 4942 | of only one partition. The number of the partition is calculated from |
| 4943 | the file number and the position of the page in the file, and it's always the |
| 4944 | same for the page. The function that maps pages into partitions takes care |
| 4945 | of even distribution of pages among partitions. |
| 4946 | |
| 4947 | Partition key cache mitigate one of the major problem of simple key cache: |
| 4948 | thread contention for key cache lock (mutex). Every call of a key cache |
| 4949 | interface function must acquire this lock. So threads compete for this lock |
| 4950 | even in the case when they have acquired shared locks for the file and |
| 4951 | pages they want read from are in the key cache buffers. |
| 4952 | When working with a partitioned key cache any key cache interface function |
| 4953 | that needs only one page has to acquire the key cache lock only for the |
| 4954 | partition the page is ascribed to. This makes the chances for threads not |
| 4955 | compete for the same key cache lock better. Unfortunately if we use a |
| 4956 | partitioned key cache with N partitions for B-tree indexes we can't say |
| 4957 | that the chances becomes N times less. The fact is that any index lookup |
| 4958 | operation requires reading from the root page that, for any index, is always |
| 4959 | ascribed to the same partition. To resolve this problem we should have |
| 4960 | employed more sophisticated mechanisms of working with root pages. |
| 4961 | |
| 4962 | Currently the number of partitions in a partitioned key cache is limited |
| 4963 | by 64. We could increase this limit. Simultaneously we would have to increase |
| 4964 | accordingly the size of the bitmap dirty_part_map from the MYISAM_SHARE |
| 4965 | structure. |
| 4966 | |
| 4967 | ******************************************************************************/ |
| 4968 | |
| 4969 | /* Control block for a partitioned key cache */ |
| 4970 | |
| 4971 | typedef struct st_partitioned_key_cache_cb |
| 4972 | { |
| 4973 | my_bool key_cache_inited; /*<=> control block is allocated */ |
| 4974 | SIMPLE_KEY_CACHE_CB **partition_array; /* the key cache partitions */ |
| 4975 | size_t key_cache_mem_size; /* specified size of the cache memory */ |
| 4976 | uint key_cache_block_size; /* size of the page buffer of a cache block */ |
| 4977 | uint partitions; /* number of partitions in the key cache */ |
| 4978 | } PARTITIONED_KEY_CACHE_CB; |
| 4979 | |
| 4980 | static |
| 4981 | void end_partitioned_key_cache(PARTITIONED_KEY_CACHE_CB *keycache, |
| 4982 | my_bool cleanup); |
| 4983 | |
| 4984 | static int |
| 4985 | reset_partitioned_key_cache_counters(const char *name, |
| 4986 | PARTITIONED_KEY_CACHE_CB *keycache); |
| 4987 | |
| 4988 | /* |
| 4989 | Determine the partition to which the index block to read is ascribed |
| 4990 | |
| 4991 | SYNOPSIS |
| 4992 | get_key_cache_partition() |
| 4993 | keycache pointer to the control block of a partitioned key cache |
| 4994 | file handler for the file for the block of data to be read |
| 4995 | filepos position of the block of data in the file |
| 4996 | |
| 4997 | DESCRIPTION |
| 4998 | The function determines the number of the partition in whose buffer the |
| 4999 | block from 'file' at the position filepos has to be placed for reading. |
| 5000 | The function returns the control block of the simple key cache for this |
| 5001 | partition to the caller. |
| 5002 | |
| 5003 | RETURN VALUE |
| 5004 | The pointer to the control block of the partition to which the specified |
| 5005 | file block is ascribed. |
| 5006 | */ |
| 5007 | |
| 5008 | static |
| 5009 | SIMPLE_KEY_CACHE_CB * |
| 5010 | get_key_cache_partition(PARTITIONED_KEY_CACHE_CB *keycache, |
| 5011 | File file, my_off_t filepos) |
| 5012 | { |
| 5013 | uint i= KEYCACHE_BASE_EXPR(file, filepos) % keycache->partitions; |
| 5014 | return keycache->partition_array[i]; |
| 5015 | } |
| 5016 | |
| 5017 | |
| 5018 | /* |
| 5019 | Determine the partition to which the index block to write is ascribed |
| 5020 | |
| 5021 | SYNOPSIS |
| 5022 | get_key_cache_partition() |
| 5023 | keycache pointer to the control block of a partitioned key cache |
| 5024 | file handler for the file for the block of data to be read |
| 5025 | filepos position of the block of data in the file |
| 5026 | dirty_part_map pointer to the bitmap of dirty partitions for the file |
| 5027 | |
| 5028 | DESCRIPTION |
| 5029 | The function determines the number of the partition in whose buffer the |
| 5030 | block from 'file' at the position filepos has to be placed for writing and |
| 5031 | marks the partition as dirty in the dirty_part_map bitmap. |
| 5032 | The function returns the control block of the simple key cache for this |
| 5033 | partition to the caller. |
| 5034 | |
| 5035 | RETURN VALUE |
| 5036 | The pointer to the control block of the partition to which the specified |
| 5037 | file block is ascribed. |
| 5038 | */ |
| 5039 | |
| 5040 | static SIMPLE_KEY_CACHE_CB |
| 5041 | *get_key_cache_partition_for_write(PARTITIONED_KEY_CACHE_CB *keycache, |
| 5042 | File file, my_off_t filepos, |
| 5043 | ulonglong* dirty_part_map) |
| 5044 | { |
| 5045 | uint i= KEYCACHE_BASE_EXPR( file, filepos) % keycache->partitions; |
| 5046 | *dirty_part_map|= 1ULL << i; |
| 5047 | return keycache->partition_array[i]; |
| 5048 | } |
| 5049 | |
| 5050 | |
| 5051 | /* |
| 5052 | Initialize a partitioned key cache |
| 5053 | |
| 5054 | SYNOPSIS |
| 5055 | init_partitioned_key_cache() |
| 5056 | keycache pointer to the control block of a partitioned key cache |
| 5057 | key_cache_block_size size of blocks to keep cached data |
| 5058 | use_mem total memory to use for all key cache partitions |
| 5059 | division_limit division limit (may be zero) |
| 5060 | age_threshold age threshold (may be zero) |
| 5061 | |
| 5062 | DESCRIPTION |
| 5063 | This function is the implementation of the init_key_cache |
| 5064 | interface function that is employed by partitioned key caches. |
| 5065 | |
| 5066 | The function builds and initializes an array of simple key caches, |
| 5067 | and then initializes the control block structure of the type |
| 5068 | PARTITIONED_KEY_CACHE_CB that is used for a partitioned key |
| 5069 | cache. The parameter keycache is supposed to point to this |
| 5070 | structure. The number of partitions in the partitioned key cache |
| 5071 | to be built must be passed through the field 'partitions' of this |
| 5072 | structure. |
| 5073 | The parameter key_cache_block_size specifies the size of the |
| 5074 | blocks in the the simple key caches to be built. |
| 5075 | The parameters division_limit and age_threshold determine the initial |
| 5076 | values of those characteristics of the simple key caches that are used for |
| 5077 | midpoint insertion strategy. The parameter use_mem specifies the total |
| 5078 | amount of memory to be allocated for the key cache blocks in all simple key |
| 5079 | caches and for all auxiliary structures. |
| 5080 | |
| 5081 | RETURN VALUE |
| 5082 | total number of blocks in key cache partitions, if successful, |
| 5083 | <= 0 - otherwise. |
| 5084 | |
| 5085 | NOTES |
| 5086 | If keycache->key_cache_inited != 0 then we assume that the memory for |
| 5087 | the array of partitions has been already allocated. |
| 5088 | |
| 5089 | It's assumed that no two threads call this function simultaneously |
| 5090 | referring to the same key cache handle. |
| 5091 | */ |
| 5092 | |
| 5093 | static |
| 5094 | int init_partitioned_key_cache(PARTITIONED_KEY_CACHE_CB *keycache, |
| 5095 | uint key_cache_block_size, |
| 5096 | size_t use_mem, uint division_limit, |
| 5097 | uint age_threshold, uint changed_blocks_hash_size) |
| 5098 | { |
| 5099 | int i; |
| 5100 | size_t mem_per_cache; |
| 5101 | size_t mem_decr; |
| 5102 | int cnt; |
| 5103 | SIMPLE_KEY_CACHE_CB *partition; |
| 5104 | SIMPLE_KEY_CACHE_CB **partition_ptr; |
| 5105 | uint partitions= keycache->partitions; |
| 5106 | int blocks= 0; |
| 5107 | DBUG_ENTER("partitioned_init_key_cache" ); |
| 5108 | |
| 5109 | keycache->key_cache_block_size = key_cache_block_size; |
| 5110 | |
| 5111 | if (keycache->key_cache_inited) |
| 5112 | partition_ptr= keycache->partition_array; |
| 5113 | else |
| 5114 | { |
| 5115 | if(!(partition_ptr= |
| 5116 | (SIMPLE_KEY_CACHE_CB **) my_malloc(sizeof(SIMPLE_KEY_CACHE_CB *) * |
| 5117 | partitions, MYF(MY_WME)))) |
| 5118 | DBUG_RETURN(-1); |
| 5119 | bzero(partition_ptr, sizeof(SIMPLE_KEY_CACHE_CB *) * partitions); |
| 5120 | keycache->partition_array= partition_ptr; |
| 5121 | } |
| 5122 | |
| 5123 | mem_per_cache = use_mem / partitions; |
| 5124 | mem_decr= mem_per_cache / 5; |
| 5125 | |
| 5126 | for (i= 0; i < (int) partitions; i++) |
| 5127 | { |
| 5128 | my_bool key_cache_inited= keycache->key_cache_inited; |
| 5129 | if (key_cache_inited) |
| 5130 | partition= *partition_ptr; |
| 5131 | else |
| 5132 | { |
| 5133 | if (!(partition= |
| 5134 | (SIMPLE_KEY_CACHE_CB *) my_malloc(sizeof(SIMPLE_KEY_CACHE_CB), |
| 5135 | MYF(MY_WME)))) |
| 5136 | continue; |
| 5137 | partition->key_cache_inited= 0; |
| 5138 | } |
| 5139 | |
| 5140 | cnt= init_simple_key_cache(partition, key_cache_block_size, mem_per_cache, |
| 5141 | division_limit, age_threshold, |
| 5142 | changed_blocks_hash_size); |
| 5143 | if (cnt <= 0) |
| 5144 | { |
| 5145 | end_simple_key_cache(partition, 1); |
| 5146 | if (!key_cache_inited) |
| 5147 | { |
| 5148 | my_free(partition); |
| 5149 | partition= 0; |
| 5150 | } |
| 5151 | if ((i == 0 && cnt < 0) || i > 0) |
| 5152 | { |
| 5153 | /* |
| 5154 | Here we have two cases: |
| 5155 | 1. i == 0 and cnt < 0 |
| 5156 | cnt < 0 => mem_per_cache is not big enough to allocate minimal |
| 5157 | number of key blocks in the key cache of the partition. |
| 5158 | Decrease the the number of the partitions by 1 and start again. |
| 5159 | 2. i > 0 |
| 5160 | There is not enough memory for one of the succeeding partitions. |
| 5161 | Just skip this partition decreasing the number of partitions in |
| 5162 | the key cache by one. |
| 5163 | Do not change the value of mem_per_cache in both cases. |
| 5164 | */ |
| 5165 | if (key_cache_inited) |
| 5166 | { |
| 5167 | my_free(partition); |
| 5168 | partition= 0; |
| 5169 | if(key_cache_inited) |
| 5170 | memmove(partition_ptr, partition_ptr+1, |
| 5171 | sizeof(partition_ptr)*(partitions-i-1)); |
| 5172 | } |
| 5173 | if (!--partitions) |
| 5174 | break; |
| 5175 | } |
| 5176 | else |
| 5177 | { |
| 5178 | /* |
| 5179 | We come here when i == 0 && cnt == 0. |
| 5180 | cnt == 0 => the memory allocator fails to allocate a block of |
| 5181 | memory of the size mem_per_cache. Decrease the value of |
| 5182 | mem_per_cache without changing the current number of partitions |
| 5183 | and start again. Make sure that such a decrease may happen not |
| 5184 | more than 5 times in total. |
| 5185 | */ |
| 5186 | if (use_mem <= mem_decr) |
| 5187 | break; |
| 5188 | use_mem-= mem_decr; |
| 5189 | } |
| 5190 | i--; |
| 5191 | mem_per_cache= use_mem/partitions; |
| 5192 | continue; |
| 5193 | } |
| 5194 | else |
| 5195 | { |
| 5196 | blocks+= cnt; |
| 5197 | *partition_ptr++= partition; |
| 5198 | } |
| 5199 | } |
| 5200 | |
| 5201 | keycache->partitions= partitions= (uint) (partition_ptr-keycache->partition_array); |
| 5202 | keycache->key_cache_mem_size= mem_per_cache * partitions; |
| 5203 | for (i= 0; i < (int) partitions; i++) |
| 5204 | keycache->partition_array[i]->hash_factor= partitions; |
| 5205 | |
| 5206 | keycache->key_cache_inited= 1; |
| 5207 | |
| 5208 | if (!partitions) |
| 5209 | blocks= -1; |
| 5210 | |
| 5211 | DBUG_RETURN(blocks); |
| 5212 | } |
| 5213 | |
| 5214 | |
| 5215 | /* |
| 5216 | Resize a partitioned key cache |
| 5217 | |
| 5218 | SYNOPSIS |
| 5219 | resize_partitioned_key_cache() |
| 5220 | keycache pointer to the control block of a partitioned key cache |
| 5221 | key_cache_block_size size of blocks to keep cached data |
| 5222 | use_mem total memory to use for the new key cache |
| 5223 | division_limit new division limit (if not zero) |
| 5224 | age_threshold new age threshold (if not zero) |
| 5225 | |
| 5226 | DESCRIPTION |
| 5227 | This function is the implementation of the resize_key_cache interface |
| 5228 | function that is employed by partitioned key caches. |
| 5229 | The function takes the parameter keycache as a pointer to the |
| 5230 | control block structure of the type PARTITIONED_KEY_CACHE_CB for the |
| 5231 | partitioned key cache to be resized. |
| 5232 | The parameter key_cache_block_size specifies the new size of the blocks in |
| 5233 | the simple key caches that comprise the partitioned key cache. |
| 5234 | The parameters division_limit and age_threshold determine the new initial |
| 5235 | values of those characteristics of the simple key cache that are used for |
| 5236 | midpoint insertion strategy. The parameter use-mem specifies the total |
| 5237 | amount of memory to be allocated for the key cache blocks in all new |
| 5238 | simple key caches and for all auxiliary structures. |
| 5239 | |
| 5240 | RETURN VALUE |
| 5241 | number of blocks in the key cache, if successful, |
| 5242 | 0 - otherwise. |
| 5243 | |
| 5244 | NOTES. |
| 5245 | The function first calls prepare_resize_simple_key_cache for each simple |
| 5246 | key cache effectively flushing all dirty pages from it and destroying |
| 5247 | the key cache. Then init_partitioned_key_cache is called. This call builds |
| 5248 | a new array of simple key caches containing the same number of elements |
| 5249 | as the old one. After this the function calls the function |
| 5250 | finish_resize_simple_key_cache for each simple key cache from this array. |
| 5251 | |
| 5252 | This implementation doesn't block the calls and executions of other |
| 5253 | functions from the key cache interface. However it assumes that the |
| 5254 | calls of resize_partitioned_key_cache itself are serialized. |
| 5255 | */ |
| 5256 | |
| 5257 | static |
| 5258 | int resize_partitioned_key_cache(PARTITIONED_KEY_CACHE_CB *keycache, |
| 5259 | uint key_cache_block_size, |
| 5260 | size_t use_mem, uint division_limit, |
| 5261 | uint age_threshold, |
| 5262 | uint changed_blocks_hash_size) |
| 5263 | { |
| 5264 | uint i; |
| 5265 | uint partitions= keycache->partitions; |
| 5266 | my_bool cleanup= use_mem == 0; |
| 5267 | int blocks= -1; |
| 5268 | int err= 0; |
| 5269 | DBUG_ENTER("partitioned_resize_key_cache" ); |
| 5270 | if (cleanup) |
| 5271 | { |
| 5272 | end_partitioned_key_cache(keycache, 0); |
| 5273 | DBUG_RETURN(-1); |
| 5274 | } |
| 5275 | for (i= 0; i < partitions; i++) |
| 5276 | { |
| 5277 | err|= prepare_resize_simple_key_cache(keycache->partition_array[i], 1); |
| 5278 | } |
| 5279 | if (!err) |
| 5280 | blocks= init_partitioned_key_cache(keycache, key_cache_block_size, |
| 5281 | use_mem, division_limit, age_threshold, |
| 5282 | changed_blocks_hash_size); |
| 5283 | if (blocks > 0) |
| 5284 | { |
| 5285 | for (i= 0; i < partitions; i++) |
| 5286 | { |
| 5287 | keycache_pthread_mutex_lock(&keycache->partition_array[i]->cache_lock); |
| 5288 | finish_resize_simple_key_cache(keycache->partition_array[i]); |
| 5289 | } |
| 5290 | } |
| 5291 | DBUG_RETURN(blocks); |
| 5292 | } |
| 5293 | |
| 5294 | |
| 5295 | /* |
| 5296 | Change key cache parameters of a partitioned key cache |
| 5297 | |
| 5298 | SYNOPSIS |
| 5299 | partitioned_change_key_cache_param() |
| 5300 | keycache pointer to the control block of a partitioned key cache |
| 5301 | division_limit new division limit (if not zero) |
| 5302 | age_threshold new age threshold (if not zero) |
| 5303 | |
| 5304 | DESCRIPTION |
| 5305 | This function is the implementation of the change_key_cache_param interface |
| 5306 | function that is employed by partitioned key caches. |
| 5307 | The function takes the parameter keycache as a pointer to the |
| 5308 | control block structure of the type PARTITIONED_KEY_CACHE_CB for the simple |
| 5309 | key cache where new values of the division limit and the age threshold used |
| 5310 | for midpoint insertion strategy are to be set. The parameters |
| 5311 | division_limit and age_threshold provide these new values. |
| 5312 | |
| 5313 | RETURN VALUE |
| 5314 | none |
| 5315 | |
| 5316 | NOTES |
| 5317 | The function just calls change_simple_key_cache_param for each element from |
| 5318 | the array of simple caches that comprise the partitioned key cache. |
| 5319 | */ |
| 5320 | |
| 5321 | static |
| 5322 | void change_partitioned_key_cache_param(PARTITIONED_KEY_CACHE_CB *keycache, |
| 5323 | uint division_limit, |
| 5324 | uint age_threshold) |
| 5325 | { |
| 5326 | uint i; |
| 5327 | uint partitions= keycache->partitions; |
| 5328 | DBUG_ENTER("partitioned_change_key_cache_param" ); |
| 5329 | for (i= 0; i < partitions; i++) |
| 5330 | { |
| 5331 | change_simple_key_cache_param(keycache->partition_array[i], division_limit, |
| 5332 | age_threshold); |
| 5333 | } |
| 5334 | DBUG_VOID_RETURN; |
| 5335 | } |
| 5336 | |
| 5337 | |
| 5338 | /* |
| 5339 | Destroy a partitioned key cache |
| 5340 | |
| 5341 | SYNOPSIS |
| 5342 | end_partitioned_key_cache() |
| 5343 | keycache pointer to the control block of a partitioned key cache |
| 5344 | cleanup <=> complete free (free also control block structures |
| 5345 | for all simple key caches) |
| 5346 | |
| 5347 | DESCRIPTION |
| 5348 | This function is the implementation of the end_key_cache interface |
| 5349 | function that is employed by partitioned key caches. |
| 5350 | The function takes the parameter keycache as a pointer to the |
| 5351 | control block structure of the type PARTITIONED_KEY_CACHE_CB for the |
| 5352 | partitioned key cache to be destroyed. |
| 5353 | The function frees the memory allocated for the cache blocks and |
| 5354 | auxiliary structures used by simple key caches that comprise the |
| 5355 | partitioned key cache. If the value of the parameter cleanup is TRUE |
| 5356 | then even the memory used for control blocks of the simple key caches |
| 5357 | and the array of pointers to them are freed. |
| 5358 | |
| 5359 | RETURN VALUE |
| 5360 | none |
| 5361 | */ |
| 5362 | |
| 5363 | static |
| 5364 | void end_partitioned_key_cache(PARTITIONED_KEY_CACHE_CB *keycache, |
| 5365 | my_bool cleanup) |
| 5366 | { |
| 5367 | uint i; |
| 5368 | uint partitions= keycache->partitions; |
| 5369 | DBUG_ENTER("partitioned_end_key_cache" ); |
| 5370 | DBUG_PRINT("enter" , ("key_cache: %p" , keycache)); |
| 5371 | |
| 5372 | for (i= 0; i < partitions; i++) |
| 5373 | { |
| 5374 | end_simple_key_cache(keycache->partition_array[i], cleanup); |
| 5375 | } |
| 5376 | if (cleanup) |
| 5377 | { |
| 5378 | for (i= 0; i < partitions; i++) |
| 5379 | my_free(keycache->partition_array[i]); |
| 5380 | my_free(keycache->partition_array); |
| 5381 | keycache->key_cache_inited= 0; |
| 5382 | } |
| 5383 | DBUG_VOID_RETURN; |
| 5384 | } |
| 5385 | |
| 5386 | |
| 5387 | /* |
| 5388 | Read a block of data from a partitioned key cache into a buffer |
| 5389 | |
| 5390 | SYNOPSIS |
| 5391 | |
| 5392 | partitioned_key_cache_read() |
| 5393 | keycache pointer to the control block of a partitioned key cache |
| 5394 | file handler for the file for the block of data to be read |
| 5395 | filepos position of the block of data in the file |
| 5396 | level determines the weight of the data |
| 5397 | buff buffer to where the data must be placed |
| 5398 | length length of the buffer |
| 5399 | block_length length of the read data from a key cache block |
| 5400 | return_buffer return pointer to the key cache buffer with the data |
| 5401 | |
| 5402 | DESCRIPTION |
| 5403 | This function is the implementation of the key_cache_read interface |
| 5404 | function that is employed by partitioned key caches. |
| 5405 | The function takes the parameter keycache as a pointer to the |
| 5406 | control block structure of the type PARTITIONED_KEY_CACHE_CB for a |
| 5407 | partitioned key cache. |
| 5408 | In a general case the function reads a block of data from the key cache |
| 5409 | into the buffer buff of the size specified by the parameter length. The |
| 5410 | beginning of the block of data to be read is specified by the parameters |
| 5411 | file and filepos. The length of the read data is the same as the length |
| 5412 | of the buffer. The data is read into the buffer in key_cache_block_size |
| 5413 | increments. To read each portion the function first finds out in what |
| 5414 | partition of the key cache this portion(page) is to be saved, and calls |
| 5415 | simple_key_cache_read with the pointer to the corresponding simple key as |
| 5416 | its first parameter. |
| 5417 | If the parameter return_buffer is not ignored and its value is TRUE, and |
| 5418 | the data to be read of the specified size block_length can be read from one |
| 5419 | key cache buffer, then the function returns a pointer to the data in the |
| 5420 | key cache buffer. |
| 5421 | The function takes into account parameters block_length and return buffer |
| 5422 | only in a single-threaded environment. |
| 5423 | The parameter 'level' is used only by the midpoint insertion strategy |
| 5424 | when the data or its portion cannot be found in the key cache. |
| 5425 | |
| 5426 | RETURN VALUE |
| 5427 | Returns address from where the data is placed if successful, 0 - otherwise. |
| 5428 | */ |
| 5429 | |
| 5430 | static |
| 5431 | uchar *partitioned_key_cache_read(PARTITIONED_KEY_CACHE_CB *keycache, |
| 5432 | File file, my_off_t filepos, int level, |
| 5433 | uchar *buff, uint length, |
| 5434 | uint block_length __attribute__((unused)), |
| 5435 | int return_buffer __attribute__((unused))) |
| 5436 | { |
| 5437 | uint r_length; |
| 5438 | uint offset= (uint) (filepos % keycache->key_cache_block_size); |
| 5439 | uchar *start= buff; |
| 5440 | DBUG_ENTER("partitioned_key_cache_read" ); |
| 5441 | DBUG_PRINT("enter" , ("fd: %u pos: %lu length: %u" , |
| 5442 | (uint) file, (ulong) filepos, length)); |
| 5443 | |
| 5444 | |
| 5445 | /* Read data in key_cache_block_size increments */ |
| 5446 | do |
| 5447 | { |
| 5448 | SIMPLE_KEY_CACHE_CB *partition= get_key_cache_partition(keycache, |
| 5449 | file, filepos); |
| 5450 | uchar *ret_buff= 0; |
| 5451 | r_length= length; |
| 5452 | set_if_smaller(r_length, keycache->key_cache_block_size - offset); |
| 5453 | ret_buff= simple_key_cache_read((void *) partition, |
| 5454 | file, filepos, level, |
| 5455 | buff, r_length, |
| 5456 | block_length, return_buffer); |
| 5457 | if (ret_buff == 0) |
| 5458 | DBUG_RETURN(0); |
| 5459 | filepos+= r_length; |
| 5460 | buff+= r_length; |
| 5461 | offset= 0; |
| 5462 | } while ((length-= r_length)); |
| 5463 | |
| 5464 | DBUG_RETURN(start); |
| 5465 | } |
| 5466 | |
| 5467 | |
| 5468 | /* |
| 5469 | Insert a block of file data from a buffer into a partitioned key cache |
| 5470 | |
| 5471 | SYNOPSIS |
| 5472 | partitioned_key_cache_insert() |
| 5473 | keycache pointer to the control block of a partitioned key cache |
| 5474 | file handler for the file to insert data from |
| 5475 | filepos position of the block of data in the file to insert |
| 5476 | level determines the weight of the data |
| 5477 | buff buffer to read data from |
| 5478 | length length of the data in the buffer |
| 5479 | |
| 5480 | DESCRIPTION |
| 5481 | This function is the implementation of the key_cache_insert interface |
| 5482 | function that is employed by partitioned key caches. |
| 5483 | The function takes the parameter keycache as a pointer to the |
| 5484 | control block structure of the type PARTITIONED_KEY_CACHE_CB for a |
| 5485 | partitioned key cache. |
| 5486 | The function writes a block of file data from a buffer into the key cache. |
| 5487 | The buffer is specified with the parameters buff and length - the pointer |
| 5488 | to the beginning of the buffer and its size respectively. It's assumed |
| 5489 | that the buffer contains the data from 'file' allocated from the position |
| 5490 | filepos. The data is copied from the buffer in key_cache_block_size |
| 5491 | increments. For every portion of data the function finds out in what simple |
| 5492 | key cache from the array of partitions the data must be stored, and after |
| 5493 | this calls simple_key_cache_insert to copy the data into a key buffer of |
| 5494 | this simple key cache. |
| 5495 | The parameter level is used to set one characteristic for the key buffers |
| 5496 | loaded with the data from buff. The characteristic is used only by the |
| 5497 | midpoint insertion strategy. |
| 5498 | |
| 5499 | RETURN VALUE |
| 5500 | 0 if a success, 1 - otherwise. |
| 5501 | |
| 5502 | NOTES |
| 5503 | The function is used by MyISAM to move all blocks from a index file to |
| 5504 | the key cache. It can be performed in parallel with reading the file data |
| 5505 | from the key buffers by other threads. |
| 5506 | */ |
| 5507 | |
| 5508 | static |
| 5509 | int partitioned_key_cache_insert(PARTITIONED_KEY_CACHE_CB *keycache, |
| 5510 | File file, my_off_t filepos, int level, |
| 5511 | uchar *buff, uint length) |
| 5512 | { |
| 5513 | uint w_length; |
| 5514 | uint offset= (uint) (filepos % keycache->key_cache_block_size); |
| 5515 | DBUG_ENTER("partitioned_key_cache_insert" ); |
| 5516 | DBUG_PRINT("enter" , ("fd: %u pos: %lu length: %u" , |
| 5517 | (uint) file,(ulong) filepos, length)); |
| 5518 | |
| 5519 | |
| 5520 | /* Write data in key_cache_block_size increments */ |
| 5521 | do |
| 5522 | { |
| 5523 | SIMPLE_KEY_CACHE_CB *partition= get_key_cache_partition(keycache, |
| 5524 | file, filepos); |
| 5525 | w_length= length; |
| 5526 | set_if_smaller(w_length, keycache->key_cache_block_size - offset); |
| 5527 | if (simple_key_cache_insert((void *) partition, |
| 5528 | file, filepos, level, |
| 5529 | buff, w_length)) |
| 5530 | DBUG_RETURN(1); |
| 5531 | |
| 5532 | filepos+= w_length; |
| 5533 | buff+= w_length; |
| 5534 | offset = 0; |
| 5535 | } while ((length-= w_length)); |
| 5536 | |
| 5537 | DBUG_RETURN(0); |
| 5538 | } |
| 5539 | |
| 5540 | |
| 5541 | /* |
| 5542 | Write data from a buffer into a partitioned key cache |
| 5543 | |
| 5544 | SYNOPSIS |
| 5545 | |
| 5546 | partitioned_key_cache_write() |
| 5547 | keycache pointer to the control block of a partitioned key cache |
| 5548 | file handler for the file to write data to |
| 5549 | filepos position in the file to write data to |
| 5550 | level determines the weight of the data |
| 5551 | buff buffer with the data |
| 5552 | length length of the buffer |
| 5553 | dont_write if is 0 then all dirty pages involved in writing |
| 5554 | should have been flushed from key cache |
| 5555 | file_extra maps of key cache partitions containing |
| 5556 | dirty pages from file |
| 5557 | |
| 5558 | DESCRIPTION |
| 5559 | This function is the implementation of the key_cache_write interface |
| 5560 | function that is employed by partitioned key caches. |
| 5561 | The function takes the parameter keycache as a pointer to the |
| 5562 | control block structure of the type PARTITIONED_KEY_CACHE_CB for a |
| 5563 | partitioned key cache. |
| 5564 | In a general case the function copies data from a buffer into the key |
| 5565 | cache. The buffer is specified with the parameters buff and length - |
| 5566 | the pointer to the beginning of the buffer and its size respectively. |
| 5567 | It's assumed the buffer contains the data to be written into 'file' |
| 5568 | starting from the position filepos. The data is copied from the buffer |
| 5569 | in key_cache_block_size increments. For every portion of data the |
| 5570 | function finds out in what simple key cache from the array of partitions |
| 5571 | the data must be stored, and after this calls simple_key_cache_write to |
| 5572 | copy the data into a key buffer of this simple key cache. |
| 5573 | If the value of the parameter dont_write is FALSE then the function |
| 5574 | also writes the data into file. |
| 5575 | The parameter level is used to set one characteristic for the key buffers |
| 5576 | filled with the data from buff. The characteristic is employed only by |
| 5577 | the midpoint insertion strategy. |
| 5578 | The parameter file_expra provides a pointer to the shared bitmap of |
| 5579 | the partitions that may contains dirty pages for the file. This bitmap |
| 5580 | is used to optimize the function flush_partitioned_key_cache_blocks. |
| 5581 | |
| 5582 | RETURN VALUE |
| 5583 | 0 if a success, 1 - otherwise. |
| 5584 | |
| 5585 | NOTES |
| 5586 | This implementation exploits the fact that the function is called only |
| 5587 | when a thread has got an exclusive lock for the key file. |
| 5588 | */ |
| 5589 | |
| 5590 | static |
| 5591 | int partitioned_key_cache_write(PARTITIONED_KEY_CACHE_CB *keycache, |
| 5592 | File file, void *, |
| 5593 | my_off_t filepos, int level, |
| 5594 | uchar *buff, uint length, |
| 5595 | uint block_length __attribute__((unused)), |
| 5596 | int dont_write) |
| 5597 | { |
| 5598 | uint w_length; |
| 5599 | ulonglong *part_map= (ulonglong *) file_extra; |
| 5600 | uint offset= (uint) (filepos % keycache->key_cache_block_size); |
| 5601 | DBUG_ENTER("partitioned_key_cache_write" ); |
| 5602 | DBUG_PRINT("enter" , |
| 5603 | ("fd: %u pos: %lu length: %u block_length: %u" |
| 5604 | " key_block_length: %u" , |
| 5605 | (uint) file, (ulong) filepos, length, block_length, |
| 5606 | keycache ? keycache->key_cache_block_size : 0)); |
| 5607 | |
| 5608 | |
| 5609 | /* Write data in key_cache_block_size increments */ |
| 5610 | do |
| 5611 | { |
| 5612 | SIMPLE_KEY_CACHE_CB *partition= get_key_cache_partition_for_write(keycache, |
| 5613 | file, |
| 5614 | filepos, |
| 5615 | part_map); |
| 5616 | w_length = length; |
| 5617 | set_if_smaller(w_length, keycache->key_cache_block_size - offset ); |
| 5618 | if (simple_key_cache_write(partition, |
| 5619 | file, 0, filepos, level, |
| 5620 | buff, w_length, block_length, |
| 5621 | dont_write)) |
| 5622 | DBUG_RETURN(1); |
| 5623 | |
| 5624 | filepos+= w_length; |
| 5625 | buff+= w_length; |
| 5626 | offset= 0; |
| 5627 | } while ((length-= w_length)); |
| 5628 | |
| 5629 | DBUG_RETURN(0); |
| 5630 | } |
| 5631 | |
| 5632 | |
| 5633 | /* |
| 5634 | Flush all blocks for a file from key buffers of a partitioned key cache |
| 5635 | |
| 5636 | SYNOPSIS |
| 5637 | |
| 5638 | flush_partitioned_key_cache_blocks() |
| 5639 | keycache pointer to the control block of a partitioned key cache |
| 5640 | file handler for the file to flush to |
| 5641 | file_extra maps of key cache partitions containing |
| 5642 | dirty pages from file (not used) |
| 5643 | flush_type type of the flush operation |
| 5644 | |
| 5645 | DESCRIPTION |
| 5646 | This function is the implementation of the flush_key_blocks interface |
| 5647 | function that is employed by partitioned key caches. |
| 5648 | The function takes the parameter keycache as a pointer to the |
| 5649 | control block structure of the type PARTITIONED_KEY_CACHE_CB for a |
| 5650 | partitioned key cache. |
| 5651 | In a general case the function flushes the data from all dirty key |
| 5652 | buffers related to the file 'file' into this file. The function does |
| 5653 | exactly this if the value of the parameter type is FLUSH_KEEP. If the |
| 5654 | value of this parameter is FLUSH_RELEASE, the function additionally |
| 5655 | releases the key buffers containing data from 'file' for new usage. |
| 5656 | If the value of the parameter type is FLUSH_IGNORE_CHANGED the function |
| 5657 | just releases the key buffers containing data from 'file'. |
| 5658 | The function performs the operation by calling the function |
| 5659 | flush_simple_key_cache_blocks for the elements of the array of the |
| 5660 | simple key caches that comprise the partitioned key_cache. If the value |
| 5661 | of the parameter type is FLUSH_KEEP s_flush_key_blocks is called only |
| 5662 | for the partitions with possibly dirty pages marked in the bitmap |
| 5663 | pointed to by the parameter file_extra. |
| 5664 | |
| 5665 | RETURN |
| 5666 | 0 ok |
| 5667 | 1 error |
| 5668 | |
| 5669 | NOTES |
| 5670 | This implementation exploits the fact that the function is called only |
| 5671 | when a thread has got an exclusive lock for the key file. |
| 5672 | */ |
| 5673 | |
| 5674 | static |
| 5675 | int flush_partitioned_key_cache_blocks(PARTITIONED_KEY_CACHE_CB *keycache, |
| 5676 | File file, void *, |
| 5677 | enum flush_type type) |
| 5678 | { |
| 5679 | uint i; |
| 5680 | uint partitions= keycache->partitions; |
| 5681 | int err= 0; |
| 5682 | ulonglong *dirty_part_map= (ulonglong *) file_extra; |
| 5683 | DBUG_ENTER("partitioned_flush_key_blocks" ); |
| 5684 | DBUG_PRINT("enter" , ("keycache: %p" , keycache)); |
| 5685 | |
| 5686 | for (i= 0; i < partitions; i++) |
| 5687 | { |
| 5688 | SIMPLE_KEY_CACHE_CB *partition= keycache->partition_array[i]; |
| 5689 | if ((type == FLUSH_KEEP || type == FLUSH_FORCE_WRITE) && |
| 5690 | !((*dirty_part_map) & ((ulonglong) 1 << i))) |
| 5691 | continue; |
| 5692 | err|= MY_TEST(flush_simple_key_cache_blocks(partition, file, 0, type)); |
| 5693 | } |
| 5694 | *dirty_part_map= 0; |
| 5695 | |
| 5696 | DBUG_RETURN(err); |
| 5697 | } |
| 5698 | |
| 5699 | |
| 5700 | /* |
| 5701 | Reset the counters of a partitioned key cache |
| 5702 | |
| 5703 | SYNOPSIS |
| 5704 | reset_partitioned_key_cache_counters() |
| 5705 | name the name of a key cache |
| 5706 | keycache pointer to the control block of a partitioned key cache |
| 5707 | |
| 5708 | DESCRIPTION |
| 5709 | This function is the implementation of the reset_key_cache_counters |
| 5710 | interface function that is employed by partitioned key caches. |
| 5711 | The function takes the parameter keycache as a pointer to the |
| 5712 | control block structure of the type PARTITIONED_KEY_CACHE_CB for a partitioned |
| 5713 | key cache. |
| 5714 | This function resets the values of the statistical counters of the simple |
| 5715 | key caches comprising partitioned key cache to 0. It does it by calling |
| 5716 | reset_simple_key_cache_counters for each key cache partition. |
| 5717 | The parameter name is currently not used. |
| 5718 | |
| 5719 | RETURN |
| 5720 | 0 on success (always because it can't fail) |
| 5721 | */ |
| 5722 | |
| 5723 | static int |
| 5724 | reset_partitioned_key_cache_counters(const char *name __attribute__((unused)), |
| 5725 | PARTITIONED_KEY_CACHE_CB *keycache) |
| 5726 | { |
| 5727 | uint i; |
| 5728 | uint partitions= keycache->partitions; |
| 5729 | DBUG_ENTER("partitioned_reset_key_cache_counters" ); |
| 5730 | |
| 5731 | for (i = 0; i < partitions; i++) |
| 5732 | { |
| 5733 | reset_simple_key_cache_counters(name, keycache->partition_array[i]); |
| 5734 | } |
| 5735 | DBUG_RETURN(0); |
| 5736 | } |
| 5737 | |
| 5738 | |
| 5739 | /* |
| 5740 | Get statistics for a partition key cache |
| 5741 | |
| 5742 | SYNOPSIS |
| 5743 | get_partitioned_key_cache_statistics() |
| 5744 | keycache pointer to the control block of a partitioned key cache |
| 5745 | partition_no partition number to get statistics for |
| 5746 | key_cache_stats OUT pointer to the structure for the returned statistics |
| 5747 | |
| 5748 | DESCRIPTION |
| 5749 | This function is the implementation of the get_key_cache_statistics |
| 5750 | interface function that is employed by partitioned key caches. |
| 5751 | The function takes the parameter keycache as a pointer to the |
| 5752 | control block structure of the type PARTITIONED_KEY_CACHE_CB for |
| 5753 | a partitioned key cache. |
| 5754 | If the value of the parameter partition_no is equal to 0 then aggregated |
| 5755 | statistics for all partitions is returned in the fields of the |
| 5756 | structure key_cache_stat of the type KEY_CACHE_STATISTICS . Otherwise |
| 5757 | the function returns data for the partition number partition_no of the |
| 5758 | key cache in the structure key_cache_stat. (Here partitions are numbered |
| 5759 | starting from 1.) |
| 5760 | |
| 5761 | RETURN |
| 5762 | none |
| 5763 | */ |
| 5764 | |
| 5765 | static |
| 5766 | void |
| 5767 | get_partitioned_key_cache_statistics(PARTITIONED_KEY_CACHE_CB *keycache, |
| 5768 | uint partition_no, |
| 5769 | KEY_CACHE_STATISTICS *keycache_stats) |
| 5770 | { |
| 5771 | uint i; |
| 5772 | SIMPLE_KEY_CACHE_CB *partition; |
| 5773 | uint partitions= keycache->partitions; |
| 5774 | DBUG_ENTER("get_partitioned_key_cache_statistics" ); |
| 5775 | |
| 5776 | if (partition_no != 0) |
| 5777 | { |
| 5778 | partition= keycache->partition_array[partition_no-1]; |
| 5779 | get_simple_key_cache_statistics((void *) partition, 0, keycache_stats); |
| 5780 | DBUG_VOID_RETURN; |
| 5781 | } |
| 5782 | bzero(keycache_stats, sizeof(KEY_CACHE_STATISTICS)); |
| 5783 | keycache_stats->mem_size= (longlong) keycache->key_cache_mem_size; |
| 5784 | keycache_stats->block_size= (longlong) keycache->key_cache_block_size; |
| 5785 | for (i = 0; i < partitions; i++) |
| 5786 | { |
| 5787 | partition= keycache->partition_array[i]; |
| 5788 | keycache_stats->blocks_used+= partition->blocks_used; |
| 5789 | keycache_stats->blocks_unused+= partition->blocks_unused; |
| 5790 | keycache_stats->blocks_changed+= partition->global_blocks_changed; |
| 5791 | keycache_stats->blocks_warm+= partition->warm_blocks; |
| 5792 | keycache_stats->read_requests+= partition->global_cache_r_requests; |
| 5793 | keycache_stats->reads+= partition->global_cache_read; |
| 5794 | keycache_stats->write_requests+= partition->global_cache_w_requests; |
| 5795 | keycache_stats->writes+= partition->global_cache_write; |
| 5796 | } |
| 5797 | DBUG_VOID_RETURN; |
| 5798 | } |
| 5799 | |
| 5800 | /* |
| 5801 | The array of pointers to the key cache interface functions used by |
| 5802 | partitioned key caches. Any partitioned key cache object caches exploits |
| 5803 | this array. |
| 5804 | |
| 5805 | The current implementation of these functions does not allow to call |
| 5806 | them from the MySQL server code directly. The key cache interface |
| 5807 | wrappers must be used for this purpose. |
| 5808 | */ |
| 5809 | |
| 5810 | static KEY_CACHE_FUNCS partitioned_key_cache_funcs = |
| 5811 | { |
| 5812 | (INIT_KEY_CACHE) init_partitioned_key_cache, |
| 5813 | (RESIZE_KEY_CACHE) resize_partitioned_key_cache, |
| 5814 | (CHANGE_KEY_CACHE_PARAM) change_partitioned_key_cache_param, |
| 5815 | (KEY_CACHE_READ) partitioned_key_cache_read, |
| 5816 | (KEY_CACHE_INSERT) partitioned_key_cache_insert, |
| 5817 | (KEY_CACHE_WRITE) partitioned_key_cache_write, |
| 5818 | (FLUSH_KEY_BLOCKS) flush_partitioned_key_cache_blocks, |
| 5819 | (RESET_KEY_CACHE_COUNTERS) reset_partitioned_key_cache_counters, |
| 5820 | (END_KEY_CACHE) end_partitioned_key_cache, |
| 5821 | (GET_KEY_CACHE_STATISTICS) get_partitioned_key_cache_statistics, |
| 5822 | }; |
| 5823 | |
| 5824 | |
| 5825 | /****************************************************************************** |
| 5826 | Key Cache Interface Module |
| 5827 | |
| 5828 | The module contains wrappers for all key cache interface functions. |
| 5829 | |
| 5830 | Currently there are key caches of two types: simple key caches and |
| 5831 | partitioned key caches. Each type (class) has its own implementation of the |
| 5832 | basic key cache operations used the MyISAM storage engine. The pointers |
| 5833 | to the implementation functions are stored in two static structures of the |
| 5834 | type KEY_CACHE_FUNC: simple_key_cache_funcs - for simple key caches, and |
| 5835 | partitioned_key_cache_funcs - for partitioned key caches. When a key cache |
| 5836 | object is created the constructor procedure init_key_cache places a pointer |
| 5837 | to the corresponding table into one of its fields. The procedure also |
| 5838 | initializes a control block for the key cache oject and saves the pointer |
| 5839 | to this block in another field of the key cache object. |
| 5840 | When a key cache wrapper function is invoked for a key cache object to |
| 5841 | perform a basic key cache operation it looks into the interface table |
| 5842 | associated with the key cache oject and calls the corresponding |
| 5843 | implementation of the operation. It passes the saved key cache control |
| 5844 | block to this implementation. If, for some reasons, the control block |
| 5845 | has not been fully initialized yet, the wrapper function either does not |
| 5846 | do anything or, in the case when it perform a read/write operation, the |
| 5847 | function do it directly through the system i/o functions. |
| 5848 | |
| 5849 | As we can see the model with which the key cache interface is supported |
| 5850 | as quite conventional for interfaces in general. |
| 5851 | |
| 5852 | ******************************************************************************/ |
| 5853 | |
| 5854 | static |
| 5855 | int repartition_key_cache_internal(KEY_CACHE *keycache, |
| 5856 | uint key_cache_block_size, size_t use_mem, |
| 5857 | uint division_limit, uint age_threshold, |
| 5858 | uint changed_blocks_hash_size, |
| 5859 | uint partitions, my_bool use_op_lock); |
| 5860 | |
| 5861 | /* |
| 5862 | Initialize a key cache : internal |
| 5863 | |
| 5864 | SYNOPSIS |
| 5865 | init_key_cache_internal() |
| 5866 | keycache pointer to the key cache to be initialized |
| 5867 | key_cache_block_size size of blocks to keep cached data |
| 5868 | use_mem total memory to use for cache buffers/structures |
| 5869 | division_limit division limit (may be zero) |
| 5870 | age_threshold age threshold (may be zero) |
| 5871 | changed_blocks_hash_size Number of hash buckets to hold a link of different |
| 5872 | files. Should be proportional to number of different |
| 5873 | files sused. |
| 5874 | partitions Number of partitions in the key cache |
| 5875 | use_op_lock if TRUE use keycache->op_lock, otherwise - ignore it |
| 5876 | |
| 5877 | DESCRIPTION |
| 5878 | The function performs the actions required from init_key_cache(). |
| 5879 | It has an additional parameter: use_op_lock. When the parameter |
| 5880 | is TRUE than the function initializes keycache->op_lock if needed, |
| 5881 | then locks it, and unlocks it before the return. Otherwise the actions |
| 5882 | with the lock are omitted. |
| 5883 | |
| 5884 | RETURN VALUE |
| 5885 | total number of blocks in key cache partitions, if successful, |
| 5886 | <= 0 - otherwise. |
| 5887 | |
| 5888 | NOTES |
| 5889 | if keycache->key_cache_inited != 0 we assume that the memory |
| 5890 | for the control block of the key cache has been already allocated. |
| 5891 | */ |
| 5892 | |
| 5893 | static |
| 5894 | int init_key_cache_internal(KEY_CACHE *keycache, uint key_cache_block_size, |
| 5895 | size_t use_mem, uint division_limit, |
| 5896 | uint age_threshold, uint changed_blocks_hash_size, |
| 5897 | uint partitions, |
| 5898 | my_bool use_op_lock) |
| 5899 | { |
| 5900 | void *keycache_cb; |
| 5901 | int blocks; |
| 5902 | if (keycache->key_cache_inited) |
| 5903 | { |
| 5904 | if (use_op_lock) |
| 5905 | pthread_mutex_lock(&keycache->op_lock); |
| 5906 | keycache_cb= keycache->keycache_cb; |
| 5907 | } |
| 5908 | else |
| 5909 | { |
| 5910 | if (partitions == 0) |
| 5911 | { |
| 5912 | if (!(keycache_cb= (void *) my_malloc(sizeof(SIMPLE_KEY_CACHE_CB), |
| 5913 | MYF(0)))) |
| 5914 | return 0; |
| 5915 | ((SIMPLE_KEY_CACHE_CB *) keycache_cb)->key_cache_inited= 0; |
| 5916 | keycache->key_cache_type= SIMPLE_KEY_CACHE; |
| 5917 | keycache->interface_funcs= &simple_key_cache_funcs; |
| 5918 | } |
| 5919 | else |
| 5920 | { |
| 5921 | if (!(keycache_cb= (void *) my_malloc(sizeof(PARTITIONED_KEY_CACHE_CB), |
| 5922 | MYF(0)))) |
| 5923 | return 0; |
| 5924 | ((PARTITIONED_KEY_CACHE_CB *) keycache_cb)->key_cache_inited= 0; |
| 5925 | keycache->key_cache_type= PARTITIONED_KEY_CACHE; |
| 5926 | keycache->interface_funcs= &partitioned_key_cache_funcs; |
| 5927 | } |
| 5928 | /* |
| 5929 | Initialize op_lock if it's not initialized before. |
| 5930 | The mutex may have been initialized before if we are being called |
| 5931 | from repartition_key_cache_internal(). |
| 5932 | */ |
| 5933 | if (use_op_lock) |
| 5934 | pthread_mutex_init(&keycache->op_lock, MY_MUTEX_INIT_FAST); |
| 5935 | keycache->keycache_cb= keycache_cb; |
| 5936 | keycache->key_cache_inited= 1; |
| 5937 | if (use_op_lock) |
| 5938 | pthread_mutex_lock(&keycache->op_lock); |
| 5939 | } |
| 5940 | |
| 5941 | if (partitions != 0) |
| 5942 | { |
| 5943 | ((PARTITIONED_KEY_CACHE_CB *) keycache_cb)->partitions= partitions; |
| 5944 | } |
| 5945 | keycache->can_be_used= 0; |
| 5946 | blocks= keycache->interface_funcs->init(keycache_cb, key_cache_block_size, |
| 5947 | use_mem, division_limit, |
| 5948 | age_threshold, changed_blocks_hash_size); |
| 5949 | keycache->partitions= partitions ? |
| 5950 | ((PARTITIONED_KEY_CACHE_CB *) keycache_cb)->partitions : |
| 5951 | 0; |
| 5952 | DBUG_ASSERT(partitions <= MAX_KEY_CACHE_PARTITIONS); |
| 5953 | keycache->key_cache_mem_size= |
| 5954 | keycache->partitions ? |
| 5955 | ((PARTITIONED_KEY_CACHE_CB *) keycache_cb)->key_cache_mem_size : |
| 5956 | ((SIMPLE_KEY_CACHE_CB *) keycache_cb)->key_cache_mem_size; |
| 5957 | if (blocks > 0) |
| 5958 | keycache->can_be_used= 1; |
| 5959 | if (use_op_lock) |
| 5960 | pthread_mutex_unlock(&keycache->op_lock); |
| 5961 | return blocks; |
| 5962 | } |
| 5963 | |
| 5964 | |
| 5965 | /* |
| 5966 | Initialize a key cache |
| 5967 | |
| 5968 | SYNOPSIS |
| 5969 | init_key_cache() |
| 5970 | keycache pointer to the key cache to be initialized |
| 5971 | key_cache_block_size size of blocks to keep cached data |
| 5972 | use_mem total memory to use for cache buffers/structures |
| 5973 | division_limit division limit (may be zero) |
| 5974 | age_threshold age threshold (may be zero) |
| 5975 | partitions number of partitions in the key cache |
| 5976 | |
| 5977 | DESCRIPTION |
| 5978 | The function creates a control block structure for a key cache and |
| 5979 | places the pointer to this block in the structure keycache. |
| 5980 | If the value of the parameter 'partitions' is 0 then a simple key cache |
| 5981 | is created. Otherwise a partitioned key cache with the specified number |
| 5982 | of partitions is created. |
| 5983 | The parameter key_cache_block_size specifies the size of the blocks in |
| 5984 | the key cache to be created. The parameters division_limit and |
| 5985 | age_threshold determine the initial values of those characteristics of |
| 5986 | the key cache that are used for midpoint insertion strategy. The parameter |
| 5987 | use_mem specifies the total amount of memory to be allocated for the |
| 5988 | key cache buffers and for all auxiliary structures. |
| 5989 | The function calls init_key_cache_internal() to perform all these actions |
| 5990 | with the last parameter set to TRUE. |
| 5991 | |
| 5992 | RETURN VALUE |
| 5993 | total number of blocks in key cache partitions, if successful, |
| 5994 | <= 0 - otherwise. |
| 5995 | |
| 5996 | NOTES |
| 5997 | It's assumed that no two threads call this function simultaneously |
| 5998 | referring to the same key cache handle. |
| 5999 | */ |
| 6000 | |
| 6001 | int init_key_cache(KEY_CACHE *keycache, uint key_cache_block_size, |
| 6002 | size_t use_mem, uint division_limit, |
| 6003 | uint age_threshold, uint changed_blocks_hash_size, |
| 6004 | uint partitions) |
| 6005 | { |
| 6006 | return init_key_cache_internal(keycache, key_cache_block_size, use_mem, |
| 6007 | division_limit, age_threshold, |
| 6008 | changed_blocks_hash_size, partitions, 1); |
| 6009 | } |
| 6010 | |
| 6011 | |
| 6012 | /* |
| 6013 | Resize a key cache |
| 6014 | |
| 6015 | SYNOPSIS |
| 6016 | resize_key_cache() |
| 6017 | keycache pointer to the key cache to be resized |
| 6018 | key_cache_block_size size of blocks to keep cached data |
| 6019 | use_mem total memory to use for the new key cache |
| 6020 | division_limit new division limit (if not zero) |
| 6021 | age_threshold new age threshold (if not zero) |
| 6022 | |
| 6023 | DESCRIPTION |
| 6024 | The function operates over the key cache key cache. |
| 6025 | The parameter key_cache_block_size specifies the new size of the block |
| 6026 | buffers in the key cache. The parameters division_limit and age_threshold |
| 6027 | determine the new initial values of those characteristics of the key cache |
| 6028 | that are used for midpoint insertion strategy. The parameter use_mem |
| 6029 | specifies the total amount of memory to be allocated for the key cache |
| 6030 | buffers and for all auxiliary structures. |
| 6031 | |
| 6032 | RETURN VALUE |
| 6033 | number of blocks in the key cache, if successful, |
| 6034 | 0 - otherwise. |
| 6035 | |
| 6036 | NOTES |
| 6037 | The function does not block the calls and executions of other functions |
| 6038 | from the key cache interface. However it assumes that the calls of |
| 6039 | resize_key_cache itself are serialized. |
| 6040 | |
| 6041 | Currently the function is called when the values of the variables |
| 6042 | key_buffer_size and/or key_cache_block_size are being reset for |
| 6043 | the key cache keycache. |
| 6044 | */ |
| 6045 | |
| 6046 | int resize_key_cache(KEY_CACHE *keycache, uint key_cache_block_size, |
| 6047 | size_t use_mem, uint division_limit, uint age_threshold, |
| 6048 | uint changed_blocks_hash_size) |
| 6049 | { |
| 6050 | int blocks= -1; |
| 6051 | if (keycache->key_cache_inited) |
| 6052 | { |
| 6053 | pthread_mutex_lock(&keycache->op_lock); |
| 6054 | if ((uint) keycache->param_partitions != keycache->partitions && use_mem) |
| 6055 | blocks= repartition_key_cache_internal(keycache, |
| 6056 | key_cache_block_size, use_mem, |
| 6057 | division_limit, age_threshold, |
| 6058 | changed_blocks_hash_size, |
| 6059 | (uint) keycache->param_partitions, |
| 6060 | 0); |
| 6061 | else |
| 6062 | { |
| 6063 | blocks= keycache->interface_funcs->resize(keycache->keycache_cb, |
| 6064 | key_cache_block_size, |
| 6065 | use_mem, division_limit, |
| 6066 | age_threshold, |
| 6067 | changed_blocks_hash_size); |
| 6068 | |
| 6069 | if (keycache->partitions) |
| 6070 | keycache->partitions= |
| 6071 | ((PARTITIONED_KEY_CACHE_CB *)(keycache->keycache_cb))->partitions; |
| 6072 | } |
| 6073 | |
| 6074 | keycache->key_cache_mem_size= |
| 6075 | keycache->partitions ? |
| 6076 | ((PARTITIONED_KEY_CACHE_CB *)(keycache->keycache_cb))->key_cache_mem_size : |
| 6077 | ((SIMPLE_KEY_CACHE_CB *)(keycache->keycache_cb))->key_cache_mem_size; |
| 6078 | |
| 6079 | keycache->can_be_used= (blocks >= 0); |
| 6080 | pthread_mutex_unlock(&keycache->op_lock); |
| 6081 | } |
| 6082 | return blocks; |
| 6083 | } |
| 6084 | |
| 6085 | |
| 6086 | /* |
| 6087 | Change key cache parameters of a key cache |
| 6088 | |
| 6089 | SYNOPSIS |
| 6090 | change_key_cache_param() |
| 6091 | keycache pointer to the key cache to change parameters for |
| 6092 | division_limit new division limit (if not zero) |
| 6093 | age_threshold new age threshold (if not zero) |
| 6094 | |
| 6095 | DESCRIPTION |
| 6096 | The function sets new values of the division limit and the age threshold |
| 6097 | used when the key cache keycach employs midpoint insertion strategy. |
| 6098 | The parameters division_limit and age_threshold provide these new values. |
| 6099 | |
| 6100 | RETURN VALUE |
| 6101 | none |
| 6102 | |
| 6103 | NOTES |
| 6104 | Currently the function is called when the values of the variables |
| 6105 | key_cache_division_limit and/or key_cache_age_threshold are being reset |
| 6106 | for the key cache keycache. |
| 6107 | */ |
| 6108 | |
| 6109 | void change_key_cache_param(KEY_CACHE *keycache, uint division_limit, |
| 6110 | uint age_threshold) |
| 6111 | { |
| 6112 | if (keycache->key_cache_inited) |
| 6113 | { |
| 6114 | pthread_mutex_lock(&keycache->op_lock); |
| 6115 | keycache->interface_funcs->change_param(keycache->keycache_cb, |
| 6116 | division_limit, |
| 6117 | age_threshold); |
| 6118 | pthread_mutex_unlock(&keycache->op_lock); |
| 6119 | } |
| 6120 | } |
| 6121 | |
| 6122 | |
| 6123 | /* |
| 6124 | Destroy a key cache : internal |
| 6125 | |
| 6126 | SYNOPSIS |
| 6127 | end_key_cache_internal() |
| 6128 | keycache pointer to the key cache to be destroyed |
| 6129 | cleanup <=> complete free |
| 6130 | use_op_lock if TRUE use keycache->op_lock, otherwise - ignore it |
| 6131 | |
| 6132 | DESCRIPTION |
| 6133 | The function performs the actions required from end_key_cache(). |
| 6134 | It has an additional parameter: use_op_lock. When the parameter |
| 6135 | is TRUE than the function destroys keycache->op_lock if cleanup is true. |
| 6136 | Otherwise the action with the lock is omitted. |
| 6137 | |
| 6138 | RETURN VALUE |
| 6139 | none |
| 6140 | */ |
| 6141 | |
| 6142 | static |
| 6143 | void end_key_cache_internal(KEY_CACHE *keycache, my_bool cleanup, |
| 6144 | my_bool use_op_lock) |
| 6145 | { |
| 6146 | if (keycache->key_cache_inited) |
| 6147 | { |
| 6148 | keycache->interface_funcs->end(keycache->keycache_cb, cleanup); |
| 6149 | if (cleanup) |
| 6150 | { |
| 6151 | if (keycache->keycache_cb) |
| 6152 | { |
| 6153 | my_free(keycache->keycache_cb); |
| 6154 | keycache->keycache_cb= 0; |
| 6155 | } |
| 6156 | /* |
| 6157 | We do not destroy op_lock if we are going to reuse the same key cache. |
| 6158 | This happens if we are called from repartition_key_cache_internal(). |
| 6159 | */ |
| 6160 | if (use_op_lock) |
| 6161 | pthread_mutex_destroy(&keycache->op_lock); |
| 6162 | keycache->key_cache_inited= 0; |
| 6163 | } |
| 6164 | keycache->can_be_used= 0; |
| 6165 | } |
| 6166 | } |
| 6167 | |
| 6168 | |
| 6169 | /* |
| 6170 | Destroy a key cache |
| 6171 | |
| 6172 | SYNOPSIS |
| 6173 | end_key_cache() |
| 6174 | keycache pointer to the key cache to be destroyed |
| 6175 | cleanup <=> complete free |
| 6176 | |
| 6177 | DESCRIPTION |
| 6178 | The function frees the memory allocated for the cache blocks and |
| 6179 | auxiliary structures used by the key cache keycache. If the value |
| 6180 | of the parameter cleanup is TRUE then all resources used by the key |
| 6181 | cache are to be freed. |
| 6182 | The function calls end_key_cache_internal() to perform all these actions |
| 6183 | with the last parameter set to TRUE. |
| 6184 | |
| 6185 | RETURN VALUE |
| 6186 | none |
| 6187 | */ |
| 6188 | |
| 6189 | void end_key_cache(KEY_CACHE *keycache, my_bool cleanup) |
| 6190 | { |
| 6191 | end_key_cache_internal(keycache, cleanup, 1); |
| 6192 | } |
| 6193 | |
| 6194 | |
| 6195 | /* |
| 6196 | Read a block of data from a key cache into a buffer |
| 6197 | |
| 6198 | SYNOPSIS |
| 6199 | |
| 6200 | key_cache_read() |
| 6201 | keycache pointer to the key cache to read data from |
| 6202 | file handler for the file for the block of data to be read |
| 6203 | filepos position of the block of data in the file |
| 6204 | level determines the weight of the data |
| 6205 | buff buffer to where the data must be placed |
| 6206 | length length of the buffer |
| 6207 | block_length length of the data read from a key cache block |
| 6208 | return_buffer return pointer to the key cache buffer with the data |
| 6209 | |
| 6210 | DESCRIPTION |
| 6211 | The function operates over buffers of the key cache keycache. |
| 6212 | In a general case the function reads a block of data from the key cache |
| 6213 | into the buffer buff of the size specified by the parameter length. The |
| 6214 | beginning of the block of data to be read is specified by the parameters |
| 6215 | file and filepos. The length of the read data is the same as the length |
| 6216 | of the buffer. |
| 6217 | If the parameter return_buffer is not ignored and its value is TRUE, and |
| 6218 | the data to be read of the specified size block_length can be read from one |
| 6219 | key cache buffer, then the function returns a pointer to the data in the |
| 6220 | key cache buffer. |
| 6221 | The parameter 'level' is used only by the midpoint insertion strategy |
| 6222 | when the data or its portion cannot be found in the key cache. |
| 6223 | The function reads data into the buffer directly from file if the control |
| 6224 | block of the key cache has not been initialized yet. |
| 6225 | |
| 6226 | RETURN VALUE |
| 6227 | Returns address from where the data is placed if successful, 0 - otherwise. |
| 6228 | |
| 6229 | NOTES. |
| 6230 | Filepos must be a multiple of 'block_length', but it doesn't |
| 6231 | have to be a multiple of key_cache_block_size; |
| 6232 | */ |
| 6233 | |
| 6234 | uchar *key_cache_read(KEY_CACHE *keycache, |
| 6235 | File file, my_off_t filepos, int level, |
| 6236 | uchar *buff, uint length, |
| 6237 | uint block_length, int return_buffer) |
| 6238 | { |
| 6239 | if (keycache->can_be_used) |
| 6240 | return keycache->interface_funcs->read(keycache->keycache_cb, |
| 6241 | file, filepos, level, |
| 6242 | buff, length, |
| 6243 | block_length, return_buffer); |
| 6244 | |
| 6245 | /* We can't use mutex here as the key cache may not be initialized */ |
| 6246 | |
| 6247 | if (my_pread(file, (uchar*) buff, length, filepos, MYF(MY_NABP))) |
| 6248 | return (uchar *) 0; |
| 6249 | |
| 6250 | return buff; |
| 6251 | } |
| 6252 | |
| 6253 | |
| 6254 | /* |
| 6255 | Insert a block of file data from a buffer into a key cache |
| 6256 | |
| 6257 | SYNOPSIS |
| 6258 | key_cache_insert() |
| 6259 | keycache pointer to the key cache to insert data into |
| 6260 | file handler for the file to insert data from |
| 6261 | filepos position of the block of data in the file to insert |
| 6262 | level determines the weight of the data |
| 6263 | buff buffer to read data from |
| 6264 | length length of the data in the buffer |
| 6265 | |
| 6266 | DESCRIPTION |
| 6267 | The function operates over buffers of the key cache keycache. |
| 6268 | The function writes a block of file data from a buffer into the key cache. |
| 6269 | The buffer is specified with the parameters buff and length - the pointer |
| 6270 | to the beginning of the buffer and its size respectively. It's assumed |
| 6271 | that the buffer contains the data from 'file' allocated from the position |
| 6272 | filepos. |
| 6273 | The parameter level is used to set one characteristic for the key buffers |
| 6274 | loaded with the data from buff. The characteristic is used only by the |
| 6275 | midpoint insertion strategy. |
| 6276 | |
| 6277 | RETURN VALUE |
| 6278 | 0 if a success, 1 - otherwise. |
| 6279 | |
| 6280 | NOTES |
| 6281 | The function is used by MyISAM to move all blocks from a index file to |
| 6282 | the key cache. |
| 6283 | It is assumed that it may be performed in parallel with reading the file |
| 6284 | data from the key buffers by other threads. |
| 6285 | */ |
| 6286 | |
| 6287 | int key_cache_insert(KEY_CACHE *keycache, |
| 6288 | File file, my_off_t filepos, int level, |
| 6289 | uchar *buff, uint length) |
| 6290 | { |
| 6291 | if (keycache->can_be_used) |
| 6292 | return keycache->interface_funcs->insert(keycache->keycache_cb, |
| 6293 | file, filepos, level, |
| 6294 | buff, length); |
| 6295 | return 0; |
| 6296 | } |
| 6297 | |
| 6298 | |
| 6299 | /* |
| 6300 | Write data from a buffer into a key cache |
| 6301 | |
| 6302 | SYNOPSIS |
| 6303 | |
| 6304 | key_cache_write() |
| 6305 | keycache pointer to the key cache to write data to |
| 6306 | file handler for the file to write data to |
| 6307 | filepos position in the file to write data to |
| 6308 | level determines the weight of the data |
| 6309 | buff buffer with the data |
| 6310 | length length of the buffer |
| 6311 | dont_write if is 0 then all dirty pages involved in writing |
| 6312 | should have been flushed from key cache |
| 6313 | file_extra pointer to optional file attributes |
| 6314 | |
| 6315 | DESCRIPTION |
| 6316 | The function operates over buffers of the key cache keycache. |
| 6317 | In a general case the function writes data from a buffer into the key |
| 6318 | cache. The buffer is specified with the parameters buff and length - |
| 6319 | the pointer to the beginning of the buffer and its size respectively. |
| 6320 | It's assumed the buffer contains the data to be written into 'file' |
| 6321 | starting from the position filepos. |
| 6322 | If the value of the parameter dont_write is FALSE then the function |
| 6323 | also writes the data into file. |
| 6324 | The parameter level is used to set one characteristic for the key buffers |
| 6325 | filled with the data from buff. The characteristic is employed only by |
| 6326 | the midpoint insertion strategy. |
| 6327 | The parameter file_expra may point to additional file attributes used |
| 6328 | for optimization or other purposes. |
| 6329 | The function writes data from the buffer directly into file if the control |
| 6330 | block of the key cache has not been initialized yet. |
| 6331 | |
| 6332 | RETURN VALUE |
| 6333 | 0 if a success, 1 - otherwise. |
| 6334 | |
| 6335 | NOTES |
| 6336 | This implementation may exploit the fact that the function is called only |
| 6337 | when a thread has got an exclusive lock for the key file. |
| 6338 | */ |
| 6339 | |
| 6340 | int key_cache_write(KEY_CACHE *keycache, |
| 6341 | File file, void *, |
| 6342 | my_off_t filepos, int level, |
| 6343 | uchar *buff, uint length, |
| 6344 | uint block_length, int force_write) |
| 6345 | { |
| 6346 | if (keycache->can_be_used) |
| 6347 | return keycache->interface_funcs->write(keycache->keycache_cb, |
| 6348 | file, file_extra, |
| 6349 | filepos, level, |
| 6350 | buff, length, |
| 6351 | block_length, force_write); |
| 6352 | |
| 6353 | /* We can't use mutex here as the key cache may not be initialized */ |
| 6354 | if (my_pwrite(file, buff, length, filepos, MYF(MY_NABP | MY_WAIT_IF_FULL))) |
| 6355 | return 1; |
| 6356 | |
| 6357 | return 0; |
| 6358 | } |
| 6359 | |
| 6360 | |
| 6361 | /* |
| 6362 | Flush all blocks for a file from key buffers of a key cache |
| 6363 | |
| 6364 | SYNOPSIS |
| 6365 | |
| 6366 | flush_key_blocks() |
| 6367 | keycache pointer to the key cache whose blocks are to be flushed |
| 6368 | file handler for the file to flush to |
| 6369 | file_extra maps of key cache (used for partitioned key caches) |
| 6370 | flush_type type of the flush operation |
| 6371 | |
| 6372 | DESCRIPTION |
| 6373 | The function operates over buffers of the key cache keycache. |
| 6374 | In a general case the function flushes the data from all dirty key |
| 6375 | buffers related to the file 'file' into this file. The function does |
| 6376 | exactly this if the value of the parameter type is FLUSH_KEEP. If the |
| 6377 | value of this parameter is FLUSH_RELEASE, the function additionally |
| 6378 | releases the key buffers containing data from 'file' for new usage. |
| 6379 | If the value of the parameter type is FLUSH_IGNORE_CHANGED the function |
| 6380 | just releases the key buffers containing data from 'file'. |
| 6381 | If the value of the parameter type is FLUSH_KEEP the function may use |
| 6382 | the value of the parameter file_extra pointing to possibly dirty |
| 6383 | partitions to optimize the operation for partitioned key caches. |
| 6384 | |
| 6385 | RETURN |
| 6386 | 0 ok |
| 6387 | 1 error |
| 6388 | |
| 6389 | NOTES |
| 6390 | Any implementation of the function may exploit the fact that the function |
| 6391 | is called only when a thread has got an exclusive lock for the key file. |
| 6392 | */ |
| 6393 | |
| 6394 | int flush_key_blocks(KEY_CACHE *keycache, |
| 6395 | int file, void *, |
| 6396 | enum flush_type type) |
| 6397 | { |
| 6398 | if (keycache->can_be_used) |
| 6399 | return keycache->interface_funcs->flush(keycache->keycache_cb, |
| 6400 | file, file_extra, type); |
| 6401 | return 0; |
| 6402 | } |
| 6403 | |
| 6404 | |
| 6405 | /* |
| 6406 | Reset the counters of a key cache |
| 6407 | |
| 6408 | SYNOPSIS |
| 6409 | reset_key_cache_counters() |
| 6410 | name the name of a key cache (unused) |
| 6411 | keycache pointer to the key cache for which to reset counters |
| 6412 | |
| 6413 | DESCRIPTION |
| 6414 | This function resets the values of the statistical counters for the key |
| 6415 | cache keycache. |
| 6416 | The parameter name is currently not used. |
| 6417 | |
| 6418 | RETURN |
| 6419 | 0 on success (always because it can't fail) |
| 6420 | |
| 6421 | NOTES |
| 6422 | This procedure is used by process_key_caches() to reset the counters of all |
| 6423 | currently used key caches, both the default one and the named ones. |
| 6424 | */ |
| 6425 | |
| 6426 | int reset_key_cache_counters(const char *name __attribute__((unused)), |
| 6427 | KEY_CACHE *keycache, |
| 6428 | void *unused __attribute__((unused))) |
| 6429 | { |
| 6430 | int rc= 0; |
| 6431 | if (keycache->key_cache_inited) |
| 6432 | { |
| 6433 | pthread_mutex_lock(&keycache->op_lock); |
| 6434 | rc= keycache->interface_funcs->reset_counters(name, |
| 6435 | keycache->keycache_cb); |
| 6436 | pthread_mutex_unlock(&keycache->op_lock); |
| 6437 | } |
| 6438 | return rc; |
| 6439 | } |
| 6440 | |
| 6441 | |
| 6442 | /* |
| 6443 | Get statistics for a key cache |
| 6444 | |
| 6445 | SYNOPSIS |
| 6446 | get_key_cache_statistics() |
| 6447 | keycache pointer to the key cache to get statistics for |
| 6448 | partition_no partition number to get statistics for |
| 6449 | key_cache_stats OUT pointer to the structure for the returned statistics |
| 6450 | |
| 6451 | DESCRIPTION |
| 6452 | If the value of the parameter partition_no is equal to 0 then statistics |
| 6453 | for the whole key cache keycache (aggregated statistics) is returned in the |
| 6454 | fields of the structure key_cache_stat of the type KEY_CACHE_STATISTICS. |
| 6455 | Otherwise the value of the parameter partition_no makes sense only for |
| 6456 | a partitioned key cache. In this case the function returns statistics |
| 6457 | for the partition with the specified number partition_no. |
| 6458 | |
| 6459 | RETURN |
| 6460 | none |
| 6461 | */ |
| 6462 | |
| 6463 | void get_key_cache_statistics(KEY_CACHE *keycache, uint partition_no, |
| 6464 | KEY_CACHE_STATISTICS *key_cache_stats) |
| 6465 | { |
| 6466 | if (keycache->key_cache_inited) |
| 6467 | { |
| 6468 | pthread_mutex_lock(&keycache->op_lock); |
| 6469 | keycache->interface_funcs->get_stats(keycache->keycache_cb, |
| 6470 | partition_no, key_cache_stats); |
| 6471 | pthread_mutex_unlock(&keycache->op_lock); |
| 6472 | } |
| 6473 | } |
| 6474 | |
| 6475 | |
| 6476 | /* |
| 6477 | Repartition a key cache : internal |
| 6478 | |
| 6479 | SYNOPSIS |
| 6480 | repartition_key_cache_internal() |
| 6481 | keycache pointer to the key cache to be repartitioned |
| 6482 | key_cache_block_size size of blocks to keep cached data |
| 6483 | use_mem total memory to use for the new key cache |
| 6484 | division_limit new division limit (if not zero) |
| 6485 | age_threshold new age threshold (if not zero) |
| 6486 | partitions new number of partitions in the key cache |
| 6487 | use_op_lock if TRUE use keycache->op_lock, otherwise - ignore it |
| 6488 | |
| 6489 | DESCRIPTION |
| 6490 | The function performs the actions required from repartition_key_cache(). |
| 6491 | It has an additional parameter: use_op_lock. When the parameter |
| 6492 | is TRUE then the function locks keycache->op_lock at start and |
| 6493 | unlocks it before the return. Otherwise the actions with the lock |
| 6494 | are omitted. |
| 6495 | |
| 6496 | RETURN VALUE |
| 6497 | number of blocks in the key cache, if successful, |
| 6498 | 0 - otherwise. |
| 6499 | */ |
| 6500 | |
| 6501 | static |
| 6502 | int repartition_key_cache_internal(KEY_CACHE *keycache, |
| 6503 | uint key_cache_block_size, size_t use_mem, |
| 6504 | uint division_limit, uint age_threshold, |
| 6505 | uint changed_blocks_hash_size, |
| 6506 | uint partitions, my_bool use_op_lock) |
| 6507 | { |
| 6508 | uint blocks= -1; |
| 6509 | if (keycache->key_cache_inited) |
| 6510 | { |
| 6511 | if (use_op_lock) |
| 6512 | pthread_mutex_lock(&keycache->op_lock); |
| 6513 | keycache->interface_funcs->resize(keycache->keycache_cb, |
| 6514 | key_cache_block_size, 0, |
| 6515 | division_limit, age_threshold, |
| 6516 | changed_blocks_hash_size); |
| 6517 | end_key_cache_internal(keycache, 1, 0); |
| 6518 | blocks= init_key_cache_internal(keycache, key_cache_block_size, use_mem, |
| 6519 | division_limit, age_threshold, |
| 6520 | changed_blocks_hash_size, partitions, |
| 6521 | 0); |
| 6522 | if (use_op_lock) |
| 6523 | pthread_mutex_unlock(&keycache->op_lock); |
| 6524 | } |
| 6525 | return blocks; |
| 6526 | } |
| 6527 | |
| 6528 | /* |
| 6529 | Repartition a key cache |
| 6530 | |
| 6531 | SYNOPSIS |
| 6532 | repartition_key_cache() |
| 6533 | keycache pointer to the key cache to be repartitioned |
| 6534 | key_cache_block_size size of blocks to keep cached data |
| 6535 | use_mem total memory to use for the new key cache |
| 6536 | division_limit new division limit (if not zero) |
| 6537 | age_threshold new age threshold (if not zero) |
| 6538 | partitions new number of partitions in the key cache |
| 6539 | |
| 6540 | DESCRIPTION |
| 6541 | The function operates over the key cache keycache. |
| 6542 | The parameter partitions specifies the number of partitions in the key |
| 6543 | cache after repartitioning. If the value of this parameter is 0 then |
| 6544 | a simple key cache must be created instead of the old one. |
| 6545 | The parameter key_cache_block_size specifies the new size of the block |
| 6546 | buffers in the key cache. The parameters division_limit and age_threshold |
| 6547 | determine the new initial values of those characteristics of the key cache |
| 6548 | that are used for midpoint insertion strategy. The parameter use_mem |
| 6549 | specifies the total amount of memory to be allocated for the new key |
| 6550 | cache buffers and for all auxiliary structures. |
| 6551 | The function calls repartition_key_cache_internal() to perform all these |
| 6552 | actions with the last parameter set to TRUE. |
| 6553 | |
| 6554 | RETURN VALUE |
| 6555 | number of blocks in the key cache, if successful, |
| 6556 | 0 - otherwise. |
| 6557 | |
| 6558 | NOTES |
| 6559 | Currently the function is called when the value of the variable |
| 6560 | key_cache_partitions is being reset for the key cache keycache. |
| 6561 | */ |
| 6562 | |
| 6563 | int repartition_key_cache(KEY_CACHE *keycache, uint key_cache_block_size, |
| 6564 | size_t use_mem, uint division_limit, |
| 6565 | uint age_threshold, uint changed_blocks_hash_size, |
| 6566 | uint partitions) |
| 6567 | { |
| 6568 | return repartition_key_cache_internal(keycache, key_cache_block_size, use_mem, |
| 6569 | division_limit, age_threshold, |
| 6570 | changed_blocks_hash_size, |
| 6571 | partitions, 1); |
| 6572 | } |
| 6573 | |
| 6574 | |