1 | /* Copyright (c) 2000, 2013, Oracle and/or its affiliates. |
2 | Copyright (c) 2017, MariaDB Corporation. |
3 | |
4 | This program is free software; you can redistribute it and/or modify |
5 | it under the terms of the GNU General Public License as published by |
6 | the Free Software Foundation; version 2 of the License. |
7 | |
8 | This program is distributed in the hope that it will be useful, |
9 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
10 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
11 | GNU General Public License for more details. |
12 | |
13 | You should have received a copy of the GNU General Public License |
14 | along with this program; if not, write to the Free Software |
15 | Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ |
16 | |
17 | |
18 | |
19 | /** |
20 | @file |
21 | The file contains the following modules: |
22 | |
23 | Simple Key Cache Module |
24 | |
25 | Partitioned Key Cache Module |
26 | |
27 | Key Cache Interface Module |
28 | |
29 | */ |
30 | |
31 | #include "mysys_priv.h" |
32 | #include "mysys_err.h" |
33 | #include <keycache.h> |
34 | #include "my_static.h" |
35 | #include <m_string.h> |
36 | #include <my_bit.h> |
37 | #include <errno.h> |
38 | #include <stdarg.h> |
39 | #include "probes_mysql.h" |
40 | |
41 | /****************************************************************************** |
42 | Simple Key Cache Module |
43 | |
44 | The module contains implementations of all key cache interface functions |
45 | employed by partitioned key caches. |
46 | |
47 | ******************************************************************************/ |
48 | |
49 | /* |
50 | These functions handle keyblock cacheing for ISAM and MyISAM tables. |
51 | |
52 | One cache can handle many files. |
53 | It must contain buffers of the same blocksize. |
54 | |
55 | init_key_cache() should be used to init cache handler. |
56 | |
57 | The free list (free_block_list) is a stack like structure. |
58 | When a block is freed by free_block(), it is pushed onto the stack. |
59 | When a new block is required it is first tried to pop one from the stack. |
60 | If the stack is empty, it is tried to get a never-used block from the pool. |
61 | If this is empty too, then a block is taken from the LRU ring, flushing it |
62 | to disk, if necessary. This is handled in find_key_block(). |
63 | With the new free list, the blocks can have three temperatures: |
64 | hot, warm and cold (which is free). This is remembered in the block header |
65 | by the enum BLOCK_TEMPERATURE temperature variable. Remembering the |
66 | temperature is necessary to correctly count the number of warm blocks, |
67 | which is required to decide when blocks are allowed to become hot. Whenever |
68 | a block is inserted to another (sub-)chain, we take the old and new |
69 | temperature into account to decide if we got one more or less warm block. |
70 | blocks_unused is the sum of never used blocks in the pool and of currently |
71 | free blocks. blocks_used is the number of blocks fetched from the pool and |
72 | as such gives the maximum number of in-use blocks at any time. |
73 | |
74 | Key Cache Locking |
75 | ================= |
76 | |
77 | All key cache locking is done with a single mutex per key cache: |
78 | keycache->cache_lock. This mutex is locked almost all the time |
79 | when executing code in this file (mf_keycache.c). |
80 | However it is released for I/O and some copy operations. |
81 | |
82 | The cache_lock is also released when waiting for some event. Waiting |
83 | and signalling is done via condition variables. In most cases the |
84 | thread waits on its thread->suspend condition variable. Every thread |
85 | has a my_thread_var structure, which contains this variable and a |
86 | '*next' and '**prev' pointer. These pointers are used to insert the |
87 | thread into a wait queue. |
88 | |
89 | A thread can wait for one block and thus be in one wait queue at a |
90 | time only. |
91 | |
92 | Before starting to wait on its condition variable with |
93 | mysql_cond_wait(), the thread enters itself to a specific wait queue |
94 | with link_into_queue() (double linked with '*next' + '**prev') or |
95 | wait_on_queue() (single linked with '*next'). |
96 | |
97 | Another thread, when releasing a resource, looks up the waiting thread |
98 | in the related wait queue. It sends a signal with |
99 | mysql_cond_signal() to the waiting thread. |
100 | |
101 | NOTE: Depending on the particular wait situation, either the sending |
102 | thread removes the waiting thread from the wait queue with |
103 | unlink_from_queue() or release_whole_queue() respectively, or the waiting |
104 | thread removes itself. |
105 | |
106 | There is one exception from this locking scheme when one thread wants |
107 | to reuse a block for some other address. This works by first marking |
108 | the block reserved (status= BLOCK_IN_SWITCH) and then waiting for all |
109 | threads that are reading the block to finish. Each block has a |
110 | reference to a condition variable (condvar). It holds a reference to |
111 | the thread->suspend condition variable for the waiting thread (if such |
112 | a thread exists). When that thread is signaled, the reference is |
113 | cleared. The number of readers of a block is registered in |
114 | block->hash_link->requests. See wait_for_readers() / remove_reader() |
115 | for details. This is similar to the above, but it clearly means that |
116 | only one thread can wait for a particular block. There is no queue in |
117 | this case. Strangely enough block->convar is used for waiting for the |
118 | assigned hash_link only. More precisely it is used to wait for all |
119 | requests to be unregistered from the assigned hash_link. |
120 | |
121 | The resize_queue serves two purposes: |
122 | 1. Threads that want to do a resize wait there if in_resize is set. |
123 | This is not used in the server. The server refuses a second resize |
124 | request if one is already active. keycache->in_init is used for the |
125 | synchronization. See set_var.cc. |
126 | 2. Threads that want to access blocks during resize wait here during |
127 | the re-initialization phase. |
128 | When the resize is done, all threads on the queue are signalled. |
129 | Hypothetical resizers can compete for resizing, and read/write |
130 | requests will restart to request blocks from the freshly resized |
131 | cache. If the cache has been resized too small, it is disabled and |
132 | 'can_be_used' is false. In this case read/write requests bypass the |
133 | cache. Since they increment and decrement 'cnt_for_resize_op', the |
134 | next resizer can wait on the queue 'waiting_for_resize_cnt' until all |
135 | I/O finished. |
136 | */ |
137 | |
138 | /* declare structures that is used by st_key_cache */ |
139 | |
140 | struct st_block_link; |
141 | typedef struct st_block_link BLOCK_LINK; |
142 | struct st_keycache_page; |
143 | typedef struct st_keycache_page KEYCACHE_PAGE; |
144 | struct st_hash_link; |
145 | typedef struct st_hash_link HASH_LINK; |
146 | |
147 | /* info about requests in a waiting queue */ |
148 | typedef struct st_keycache_wqueue |
149 | { |
150 | struct st_my_thread_var *last_thread; /* circular list of waiting threads */ |
151 | } KEYCACHE_WQUEUE; |
152 | |
153 | /* Default size of hash for changed files */ |
154 | #define MIN_CHANGED_BLOCKS_HASH_SIZE 128 |
155 | |
156 | /* Control block for a simple (non-partitioned) key cache */ |
157 | |
158 | typedef struct st_simple_key_cache_cb |
159 | { |
160 | my_bool key_cache_inited; /* <=> control block is allocated */ |
161 | my_bool in_resize; /* true during resize operation */ |
162 | my_bool resize_in_flush; /* true during flush of resize operation */ |
163 | my_bool can_be_used; /* usage of cache for read/write is allowed */ |
164 | size_t key_cache_mem_size; /* specified size of the cache memory */ |
165 | uint key_cache_block_size; /* size of the page buffer of a cache block */ |
166 | ulong min_warm_blocks; /* min number of warm blocks; */ |
167 | ulong age_threshold; /* age threshold for hot blocks */ |
168 | ulonglong keycache_time; /* total number of block link operations */ |
169 | uint hash_entries; /* max number of entries in the hash table */ |
170 | uint changed_blocks_hash_size; /* Number of hash buckets for file blocks */ |
171 | int hash_links; /* max number of hash links */ |
172 | int hash_links_used; /* number of hash links currently used */ |
173 | int disk_blocks; /* max number of blocks in the cache */ |
174 | ulong blocks_used; /* maximum number of concurrently used blocks */ |
175 | ulong blocks_unused; /* number of currently unused blocks */ |
176 | ulong blocks_changed; /* number of currently dirty blocks */ |
177 | ulong warm_blocks; /* number of blocks in warm sub-chain */ |
178 | ulong cnt_for_resize_op; /* counter to block resize operation */ |
179 | long blocks_available; /* number of blocks available in the LRU chain */ |
180 | HASH_LINK **hash_root; /* arr. of entries into hash table buckets */ |
181 | HASH_LINK *hash_link_root; /* memory for hash table links */ |
182 | HASH_LINK *free_hash_list; /* list of free hash links */ |
183 | BLOCK_LINK *free_block_list; /* list of free blocks */ |
184 | BLOCK_LINK *block_root; /* memory for block links */ |
185 | uchar *block_mem; /* memory for block buffers */ |
186 | BLOCK_LINK *used_last; /* ptr to the last block of the LRU chain */ |
187 | BLOCK_LINK *used_ins; /* ptr to the insertion block in LRU chain */ |
188 | mysql_mutex_t cache_lock; /* to lock access to the cache structure */ |
189 | KEYCACHE_WQUEUE resize_queue; /* threads waiting during resize operation */ |
190 | /* |
191 | Waiting for a zero resize count. Using a queue for symmetry though |
192 | only one thread can wait here. |
193 | */ |
194 | KEYCACHE_WQUEUE waiting_for_resize_cnt; |
195 | KEYCACHE_WQUEUE waiting_for_hash_link; /* waiting for a free hash link */ |
196 | KEYCACHE_WQUEUE waiting_for_block; /* requests waiting for a free block */ |
197 | BLOCK_LINK **changed_blocks; /* hash for dirty file bl.*/ |
198 | BLOCK_LINK **file_blocks; /* hash for other file bl.*/ |
199 | |
200 | /* Statistics variables. These are reset in reset_key_cache_counters(). */ |
201 | ulong global_blocks_changed; /* number of currently dirty blocks */ |
202 | ulonglong global_cache_w_requests;/* number of write requests (write hits) */ |
203 | ulonglong global_cache_write; /* number of writes from cache to files */ |
204 | ulonglong global_cache_r_requests;/* number of read requests (read hits) */ |
205 | ulonglong global_cache_read; /* number of reads from files to cache */ |
206 | |
207 | int blocks; /* max number of blocks in the cache */ |
208 | uint hash_factor; /* factor used to calculate hash function */ |
209 | my_bool in_init; /* Set to 1 in MySQL during init/resize */ |
210 | } SIMPLE_KEY_CACHE_CB; |
211 | |
212 | /* |
213 | Some compilation flags have been added specifically for this module |
214 | to control the following: |
215 | - not to let a thread to yield the control when reading directly |
216 | from key cache, which might improve performance in many cases; |
217 | to enable this add: |
218 | #define SERIALIZED_READ_FROM_CACHE |
219 | - to set an upper bound for number of threads simultaneously |
220 | using the key cache; this setting helps to determine an optimal |
221 | size for hash table and improve performance when the number of |
222 | blocks in the key cache much less than the number of threads |
223 | accessing it; |
224 | to set this number equal to <N> add |
225 | #define MAX_THREADS <N> |
226 | - to substitute calls of mysql_cond_wait for calls of |
227 | mysql_cond_timedwait (wait with timeout set up); |
228 | this setting should be used only when you want to trap a deadlock |
229 | situation, which theoretically should not happen; |
230 | to set timeout equal to <T> seconds add |
231 | #define KEYCACHE_TIMEOUT <T> |
232 | - to enable the module traps and to send debug information from |
233 | key cache module to a special debug log add: |
234 | #define KEYCACHE_DEBUG |
235 | the name of this debug log file <LOG NAME> can be set through: |
236 | #define KEYCACHE_DEBUG_LOG <LOG NAME> |
237 | if the name is not defined, it's set by default; |
238 | if the KEYCACHE_DEBUG flag is not set up and we are in a debug |
239 | mode, i.e. when ! defined(DBUG_OFF), the debug information from the |
240 | module is sent to the regular debug log. |
241 | |
242 | Example of the settings: |
243 | #define SERIALIZED_READ_FROM_CACHE |
244 | #define MAX_THREADS 100 |
245 | #define KEYCACHE_TIMEOUT 1 |
246 | #define KEYCACHE_DEBUG |
247 | #define KEYCACHE_DEBUG_LOG "my_key_cache_debug.log" |
248 | */ |
249 | |
250 | #define STRUCT_PTR(TYPE, MEMBER, a) \ |
251 | (TYPE *) ((char *) (a) - offsetof(TYPE, MEMBER)) |
252 | |
253 | /* types of condition variables */ |
254 | #define COND_FOR_REQUESTED 0 |
255 | #define COND_FOR_SAVED 1 |
256 | #define COND_FOR_READERS 2 |
257 | |
258 | typedef mysql_cond_t KEYCACHE_CONDVAR; |
259 | |
260 | /* descriptor of the page in the key cache block buffer */ |
261 | struct st_keycache_page |
262 | { |
263 | int file; /* file to which the page belongs to */ |
264 | my_off_t filepos; /* position of the page in the file */ |
265 | }; |
266 | |
267 | /* element in the chain of a hash table bucket */ |
268 | struct st_hash_link |
269 | { |
270 | struct st_hash_link *next, **prev; /* to connect links in the same bucket */ |
271 | struct st_block_link *block; /* reference to the block for the page: */ |
272 | File file; /* from such a file */ |
273 | my_off_t diskpos; /* with such an offset */ |
274 | uint requests; /* number of requests for the page */ |
275 | }; |
276 | |
277 | /* simple states of a block */ |
278 | #define BLOCK_ERROR 1U/* an error occurred when performing file i/o */ |
279 | #define BLOCK_READ 2U/* file block is in the block buffer */ |
280 | #define BLOCK_IN_SWITCH 4U/* block is preparing to read new page */ |
281 | #define BLOCK_REASSIGNED 8U/* blk does not accept requests for old page */ |
282 | #define BLOCK_IN_FLUSH 16U/* block is selected for flush */ |
283 | #define BLOCK_CHANGED 32U/* block buffer contains a dirty page */ |
284 | #define BLOCK_IN_USE 64U/* block is not free */ |
285 | #define BLOCK_IN_EVICTION 128U/* block is selected for eviction */ |
286 | #define BLOCK_IN_FLUSHWRITE 256U/* block is in write to file */ |
287 | #define BLOCK_FOR_UPDATE 512U/* block is selected for buffer modification */ |
288 | |
289 | /* page status, returned by find_key_block */ |
290 | #define PAGE_READ 0 |
291 | #define PAGE_TO_BE_READ 1 |
292 | #define PAGE_WAIT_TO_BE_READ 2 |
293 | |
294 | /* block temperature determines in which (sub-)chain the block currently is */ |
295 | enum BLOCK_TEMPERATURE { BLOCK_COLD /*free*/ , BLOCK_WARM , BLOCK_HOT }; |
296 | |
297 | /* key cache block */ |
298 | struct st_block_link |
299 | { |
300 | struct st_block_link |
301 | *next_used, **prev_used; /* to connect links in the LRU chain (ring) */ |
302 | struct st_block_link |
303 | *next_changed, **prev_changed; /* for lists of file dirty/clean blocks */ |
304 | struct st_hash_link *hash_link; /* backward ptr to referring hash_link */ |
305 | KEYCACHE_WQUEUE wqueue[2]; /* queues on waiting requests for new/old pages */ |
306 | uint requests; /* number of requests for the block */ |
307 | uchar *buffer; /* buffer for the block page */ |
308 | uint offset; /* beginning of modified data in the buffer */ |
309 | uint length; /* end of data in the buffer */ |
310 | uint status; /* state of the block */ |
311 | enum BLOCK_TEMPERATURE temperature; /* block temperature: cold, warm, hot */ |
312 | uint hits_left; /* number of hits left until promotion */ |
313 | ulonglong last_hit_time; /* timestamp of the last hit */ |
314 | KEYCACHE_CONDVAR *condvar; /* condition variable for 'no readers' event */ |
315 | }; |
316 | |
317 | KEY_CACHE dflt_key_cache_var; |
318 | KEY_CACHE *dflt_key_cache= &dflt_key_cache_var; |
319 | |
320 | #define FLUSH_CACHE 2000 /* sort this many blocks at once */ |
321 | |
322 | static int flush_all_key_blocks(SIMPLE_KEY_CACHE_CB *keycache); |
323 | static void end_simple_key_cache(SIMPLE_KEY_CACHE_CB *keycache, my_bool cleanup); |
324 | static void wait_on_queue(KEYCACHE_WQUEUE *wqueue, |
325 | mysql_mutex_t *mutex); |
326 | static void release_whole_queue(KEYCACHE_WQUEUE *wqueue); |
327 | static void free_block(SIMPLE_KEY_CACHE_CB *keycache, BLOCK_LINK *block); |
328 | #ifndef DBUG_OFF |
329 | static void test_key_cache(SIMPLE_KEY_CACHE_CB *keycache, |
330 | const char *where, my_bool lock); |
331 | #endif |
332 | #define KEYCACHE_BASE_EXPR(f, pos) \ |
333 | ((ulong) ((pos) / keycache->key_cache_block_size) + (ulong) (f)) |
334 | #define KEYCACHE_HASH(f, pos) \ |
335 | ((KEYCACHE_BASE_EXPR(f, pos) / keycache->hash_factor) & \ |
336 | (keycache->hash_entries-1)) |
337 | #define FILE_HASH(f, cache) ((uint) (f) & (cache->changed_blocks_hash_size-1)) |
338 | |
339 | #define DEFAULT_KEYCACHE_DEBUG_LOG "keycache_debug.log" |
340 | |
341 | #if defined(KEYCACHE_DEBUG) && ! defined(KEYCACHE_DEBUG_LOG) |
342 | #define KEYCACHE_DEBUG_LOG DEFAULT_KEYCACHE_DEBUG_LOG |
343 | #endif |
344 | |
345 | #if defined(KEYCACHE_DEBUG_LOG) |
346 | static FILE *keycache_debug_log=NULL; |
347 | static void keycache_debug_print(const char *fmt,...); |
348 | #define KEYCACHE_DEBUG_OPEN \ |
349 | if (!keycache_debug_log) \ |
350 | { \ |
351 | keycache_debug_log= fopen(KEYCACHE_DEBUG_LOG, "w"); \ |
352 | (void) setvbuf(keycache_debug_log, NULL, _IOLBF, BUFSIZ); \ |
353 | } |
354 | |
355 | #define KEYCACHE_DEBUG_CLOSE \ |
356 | if (keycache_debug_log) \ |
357 | { \ |
358 | fclose(keycache_debug_log); \ |
359 | keycache_debug_log= 0; \ |
360 | } |
361 | #else |
362 | #define KEYCACHE_DEBUG_OPEN |
363 | #define KEYCACHE_DEBUG_CLOSE |
364 | #endif /* defined(KEYCACHE_DEBUG_LOG) */ |
365 | |
366 | #if defined(KEYCACHE_DEBUG_LOG) && defined(KEYCACHE_DEBUG) |
367 | #define KEYCACHE_DBUG_PRINT(l, m) \ |
368 | { if (keycache_debug_log) fprintf(keycache_debug_log, "%s: ", l); \ |
369 | keycache_debug_print m; } |
370 | |
371 | #define KEYCACHE_DBUG_ASSERT(a) \ |
372 | { if (! (a) && keycache_debug_log) fclose(keycache_debug_log); \ |
373 | assert(a); } |
374 | #else |
375 | #define KEYCACHE_DBUG_PRINT(l, m) DBUG_PRINT(l, m) |
376 | #define KEYCACHE_DBUG_ASSERT(a) DBUG_ASSERT(a) |
377 | #endif /* defined(KEYCACHE_DEBUG_LOG) && defined(KEYCACHE_DEBUG) */ |
378 | |
379 | #if defined(KEYCACHE_DEBUG) || !defined(DBUG_OFF) |
380 | static long keycache_thread_id; |
381 | #define KEYCACHE_THREAD_TRACE(l) \ |
382 | KEYCACHE_DBUG_PRINT(l,("|thread %ld",keycache_thread_id)) |
383 | |
384 | #define KEYCACHE_THREAD_TRACE_BEGIN(l) \ |
385 | { struct st_my_thread_var *thread_var= my_thread_var; \ |
386 | keycache_thread_id= thread_var->id; \ |
387 | KEYCACHE_DBUG_PRINT(l,("[thread %ld",keycache_thread_id)) } |
388 | |
389 | #define KEYCACHE_THREAD_TRACE_END(l) \ |
390 | KEYCACHE_DBUG_PRINT(l,("]thread %ld",keycache_thread_id)) |
391 | #else |
392 | #define KEYCACHE_THREAD_TRACE_BEGIN(l) |
393 | #define KEYCACHE_THREAD_TRACE_END(l) |
394 | #define KEYCACHE_THREAD_TRACE(l) |
395 | #endif /* defined(KEYCACHE_DEBUG) || !defined(DBUG_OFF) */ |
396 | |
397 | #define BLOCK_NUMBER(b) \ |
398 | ((uint) (((char*)(b)-(char *) keycache->block_root)/sizeof(BLOCK_LINK))) |
399 | #define HASH_LINK_NUMBER(h) \ |
400 | ((uint) (((char*)(h)-(char *) keycache->hash_link_root)/sizeof(HASH_LINK))) |
401 | |
402 | #if (defined(KEYCACHE_TIMEOUT) && !defined(__WIN__)) || defined(KEYCACHE_DEBUG) |
403 | static int keycache_pthread_cond_wait(mysql_cond_t *cond, |
404 | mysql_mutex_t *mutex); |
405 | #else |
406 | #define keycache_pthread_cond_wait(C, M) mysql_cond_wait(C, M) |
407 | #endif |
408 | |
409 | #if defined(KEYCACHE_DEBUG) |
410 | static int keycache_pthread_mutex_lock(mysql_mutex_t *mutex); |
411 | static void keycache_pthread_mutex_unlock(mysql_mutex_t *mutex); |
412 | static int keycache_pthread_cond_signal(mysql_cond_t *cond); |
413 | #else |
414 | #define keycache_pthread_mutex_lock(M) mysql_mutex_lock(M) |
415 | #define keycache_pthread_mutex_unlock(M) mysql_mutex_unlock(M) |
416 | #define keycache_pthread_cond_signal(C) mysql_cond_signal(C) |
417 | #endif /* defined(KEYCACHE_DEBUG) */ |
418 | |
419 | #if !defined(DBUG_OFF) |
420 | #if defined(inline) |
421 | #undef inline |
422 | #endif |
423 | #define inline /* disabled inline for easier debugging */ |
424 | static int fail_hlink(HASH_LINK *hlink); |
425 | static int cache_empty(SIMPLE_KEY_CACHE_CB *keycache); |
426 | #endif |
427 | #ifdef DBUG_ASSERT_EXISTS |
428 | static int fail_block(BLOCK_LINK *block); |
429 | #endif |
430 | |
431 | static inline uint next_power(uint value) |
432 | { |
433 | return (uint) my_round_up_to_next_power((uint32) value) << 1; |
434 | } |
435 | |
436 | |
437 | /* |
438 | Initialize a simple key cache |
439 | |
440 | SYNOPSIS |
441 | init_simple_key_cache() |
442 | keycache pointer to the control block of a simple key cache |
443 | key_cache_block_size size of blocks to keep cached data |
444 | use_mem memory to use for the key cache buferrs/structures |
445 | division_limit division limit (may be zero) |
446 | age_threshold age threshold (may be zero) |
447 | |
448 | DESCRIPTION |
449 | This function is the implementation of the init_key_cache interface |
450 | function that is employed by simple (non-partitioned) key caches. |
451 | The function builds a simple key cache and initializes the control block |
452 | structure of the type SIMPLE_KEY_CACHE_CB that is used for this key cache. |
453 | The parameter keycache is supposed to point to this structure. |
454 | The parameter key_cache_block_size specifies the size of the blocks in |
455 | the key cache to be built. The parameters division_limit and age_threshold |
456 | determine the initial values of those characteristics of the key cache |
457 | that are used for midpoint insertion strategy. The parameter use_mem |
458 | specifies the total amount of memory to be allocated for key cache blocks |
459 | and auxiliary structures. |
460 | |
461 | RETURN VALUE |
462 | number of blocks in the key cache, if successful, |
463 | <= 0 - otherwise. |
464 | |
465 | NOTES. |
466 | if keycache->key_cache_inited != 0 we assume that the key cache |
467 | is already initialized. This is for now used by myisamchk, but shouldn't |
468 | be something that a program should rely on! |
469 | |
470 | It's assumed that no two threads call this function simultaneously |
471 | referring to the same key cache handle. |
472 | */ |
473 | |
474 | static |
475 | int init_simple_key_cache(SIMPLE_KEY_CACHE_CB *keycache, |
476 | uint key_cache_block_size, |
477 | size_t use_mem, uint division_limit, |
478 | uint age_threshold, uint changed_blocks_hash_size) |
479 | { |
480 | ulong blocks, hash_links; |
481 | size_t length; |
482 | int error; |
483 | DBUG_ENTER("init_simple_key_cache" ); |
484 | DBUG_ASSERT(key_cache_block_size >= 512); |
485 | |
486 | KEYCACHE_DEBUG_OPEN; |
487 | if (keycache->key_cache_inited && keycache->disk_blocks > 0) |
488 | { |
489 | DBUG_PRINT("warning" ,("key cache already in use" )); |
490 | DBUG_RETURN(0); |
491 | } |
492 | |
493 | keycache->blocks_used= keycache->blocks_unused= 0; |
494 | keycache->global_blocks_changed= 0; |
495 | keycache->global_cache_w_requests= keycache->global_cache_r_requests= 0; |
496 | keycache->global_cache_read= keycache->global_cache_write= 0; |
497 | keycache->disk_blocks= -1; |
498 | if (! keycache->key_cache_inited) |
499 | { |
500 | keycache->key_cache_inited= 1; |
501 | keycache->hash_factor= 1; |
502 | /* |
503 | Initialize these variables once only. |
504 | Their value must survive re-initialization during resizing. |
505 | */ |
506 | keycache->in_resize= 0; |
507 | keycache->resize_in_flush= 0; |
508 | keycache->cnt_for_resize_op= 0; |
509 | keycache->waiting_for_resize_cnt.last_thread= NULL; |
510 | keycache->in_init= 0; |
511 | mysql_mutex_init(key_KEY_CACHE_cache_lock, |
512 | &keycache->cache_lock, MY_MUTEX_INIT_FAST); |
513 | keycache->resize_queue.last_thread= NULL; |
514 | } |
515 | |
516 | keycache->key_cache_mem_size= use_mem; |
517 | keycache->key_cache_block_size= key_cache_block_size; |
518 | DBUG_PRINT("info" , ("key_cache_block_size: %u" , |
519 | key_cache_block_size)); |
520 | |
521 | blocks= (ulong) (use_mem / (sizeof(BLOCK_LINK) + 2 * sizeof(HASH_LINK) + |
522 | sizeof(HASH_LINK*) * 5/4 + key_cache_block_size)); |
523 | |
524 | /* Changed blocks hash needs to be a power of 2 */ |
525 | changed_blocks_hash_size= my_round_up_to_next_power(MY_MAX(changed_blocks_hash_size, |
526 | MIN_CHANGED_BLOCKS_HASH_SIZE)); |
527 | |
528 | /* It doesn't make sense to have too few blocks (less than 8) */ |
529 | if (blocks >= 8) |
530 | { |
531 | for ( ; ; ) |
532 | { |
533 | /* Set my_hash_entries to the next bigger 2 power */ |
534 | if ((keycache->hash_entries= next_power(blocks)) < blocks * 5/4) |
535 | keycache->hash_entries<<= 1; |
536 | hash_links= 2 * blocks; |
537 | #if defined(MAX_THREADS) |
538 | if (hash_links < MAX_THREADS + blocks - 1) |
539 | hash_links= MAX_THREADS + blocks - 1; |
540 | #endif |
541 | while ((length= (ALIGN_SIZE(blocks * sizeof(BLOCK_LINK)) + |
542 | ALIGN_SIZE(hash_links * sizeof(HASH_LINK)) + |
543 | ALIGN_SIZE(sizeof(HASH_LINK*) * |
544 | keycache->hash_entries) + |
545 | sizeof(BLOCK_LINK*)* (changed_blocks_hash_size*2))) + |
546 | ((size_t) blocks * keycache->key_cache_block_size) > use_mem && blocks > 8) |
547 | blocks--; |
548 | /* Allocate memory for cache page buffers */ |
549 | if ((keycache->block_mem= |
550 | my_large_malloc((size_t) blocks * keycache->key_cache_block_size, |
551 | MYF(0)))) |
552 | { |
553 | /* |
554 | Allocate memory for blocks, hash_links and hash entries; |
555 | For each block 2 hash links are allocated |
556 | */ |
557 | if (my_multi_malloc_large(MYF(MY_ZEROFILL), |
558 | &keycache->block_root, |
559 | (ulonglong) (blocks * sizeof(BLOCK_LINK)), |
560 | &keycache->hash_root, |
561 | (ulonglong) (sizeof(HASH_LINK*) * |
562 | keycache->hash_entries), |
563 | &keycache->hash_link_root, |
564 | (ulonglong) (hash_links * sizeof(HASH_LINK)), |
565 | &keycache->changed_blocks, |
566 | (ulonglong) (sizeof(BLOCK_LINK*) * |
567 | changed_blocks_hash_size), |
568 | &keycache->file_blocks, |
569 | (ulonglong) (sizeof(BLOCK_LINK*) * |
570 | changed_blocks_hash_size), |
571 | NullS)) |
572 | break; |
573 | my_large_free(keycache->block_mem); |
574 | keycache->block_mem= 0; |
575 | } |
576 | if (blocks < 8) |
577 | { |
578 | my_errno= ENOMEM; |
579 | my_error(EE_OUTOFMEMORY, MYF(ME_FATALERROR), |
580 | blocks * keycache->key_cache_block_size); |
581 | goto err; |
582 | } |
583 | blocks= blocks / 4*3; |
584 | } |
585 | keycache->blocks_unused= blocks; |
586 | keycache->disk_blocks= (int) blocks; |
587 | keycache->hash_links= hash_links; |
588 | keycache->hash_links_used= 0; |
589 | keycache->free_hash_list= NULL; |
590 | keycache->blocks_used= keycache->blocks_changed= 0; |
591 | |
592 | keycache->global_blocks_changed= 0; |
593 | keycache->blocks_available=0; /* For debugging */ |
594 | |
595 | /* The LRU chain is empty after initialization */ |
596 | keycache->used_last= NULL; |
597 | keycache->used_ins= NULL; |
598 | keycache->free_block_list= NULL; |
599 | keycache->keycache_time= 0; |
600 | keycache->warm_blocks= 0; |
601 | keycache->min_warm_blocks= (division_limit ? |
602 | blocks * division_limit / 100 + 1 : |
603 | blocks); |
604 | keycache->age_threshold= (age_threshold ? |
605 | blocks * age_threshold / 100 : |
606 | blocks); |
607 | keycache->changed_blocks_hash_size= changed_blocks_hash_size; |
608 | keycache->can_be_used= 1; |
609 | |
610 | keycache->waiting_for_hash_link.last_thread= NULL; |
611 | keycache->waiting_for_block.last_thread= NULL; |
612 | DBUG_PRINT("exit" , |
613 | ("disk_blocks: %d block_root: %p hash_entries: %d\ |
614 | hash_root: %p hash_links: %d hash_link_root: %p" , |
615 | keycache->disk_blocks, keycache->block_root, |
616 | keycache->hash_entries, keycache->hash_root, |
617 | keycache->hash_links, keycache->hash_link_root)); |
618 | } |
619 | else |
620 | { |
621 | /* key_buffer_size is specified too small. Disable the cache. */ |
622 | keycache->can_be_used= 0; |
623 | } |
624 | |
625 | keycache->blocks= keycache->disk_blocks > 0 ? keycache->disk_blocks : 0; |
626 | DBUG_RETURN((int) keycache->disk_blocks); |
627 | |
628 | err: |
629 | error= my_errno; |
630 | keycache->disk_blocks= 0; |
631 | keycache->blocks= 0; |
632 | if (keycache->block_mem) |
633 | { |
634 | my_large_free((uchar*) keycache->block_mem); |
635 | keycache->block_mem= NULL; |
636 | } |
637 | if (keycache->block_root) |
638 | { |
639 | my_free(keycache->block_root); |
640 | keycache->block_root= NULL; |
641 | } |
642 | my_errno= error; |
643 | keycache->can_be_used= 0; |
644 | DBUG_RETURN(0); |
645 | } |
646 | |
647 | |
648 | /* |
649 | Prepare for resizing a simple key cache |
650 | |
651 | SYNOPSIS |
652 | prepare_resize_simple_key_cache() |
653 | keycache pointer to the control block of a simple key cache |
654 | release_lock <=> release the key cache lock before return |
655 | |
656 | DESCRIPTION |
657 | This function flushes all dirty pages from a simple key cache and after |
658 | this it destroys the key cache calling end_simple_key_cache. The function |
659 | takes the parameter keycache as a pointer to the control block |
660 | structure of the type SIMPLE_KEY_CACHE_CB for this key cache. |
661 | The parameter release_lock says whether the key cache lock must be |
662 | released before return from the function. |
663 | |
664 | RETURN VALUE |
665 | 0 - on success, |
666 | 1 - otherwise. |
667 | |
668 | NOTES |
669 | This function is the called by resize_simple_key_cache and |
670 | resize_partitioned_key_cache that resize simple and partitioned key caches |
671 | respectively. |
672 | */ |
673 | |
674 | static |
675 | int prepare_resize_simple_key_cache(SIMPLE_KEY_CACHE_CB *keycache, |
676 | my_bool release_lock) |
677 | { |
678 | int res= 0; |
679 | DBUG_ENTER("prepare_resize_simple_key_cache" ); |
680 | |
681 | keycache_pthread_mutex_lock(&keycache->cache_lock); |
682 | |
683 | /* |
684 | We may need to wait for another thread which is doing a resize |
685 | already. This cannot happen in the MySQL server though. It allows |
686 | one resizer only. In set_var.cc keycache->in_init is used to block |
687 | multiple attempts. |
688 | */ |
689 | while (keycache->in_resize) |
690 | { |
691 | /* purecov: begin inspected */ |
692 | wait_on_queue(&keycache->resize_queue, &keycache->cache_lock); |
693 | /* purecov: end */ |
694 | } |
695 | |
696 | /* |
697 | Mark the operation in progress. This blocks other threads from doing |
698 | a resize in parallel. It prohibits new blocks to enter the cache. |
699 | Read/write requests can bypass the cache during the flush phase. |
700 | */ |
701 | keycache->in_resize= 1; |
702 | |
703 | /* Need to flush only if keycache is enabled. */ |
704 | if (keycache->can_be_used) |
705 | { |
706 | /* Start the flush phase. */ |
707 | keycache->resize_in_flush= 1; |
708 | |
709 | if (flush_all_key_blocks(keycache)) |
710 | { |
711 | /* TODO: if this happens, we should write a warning in the log file ! */ |
712 | keycache->resize_in_flush= 0; |
713 | keycache->can_be_used= 0; |
714 | res= 1; |
715 | goto finish; |
716 | } |
717 | DBUG_SLOW_ASSERT(cache_empty(keycache)); |
718 | |
719 | /* End the flush phase. */ |
720 | keycache->resize_in_flush= 0; |
721 | } |
722 | |
723 | /* |
724 | Some direct read/write operations (bypassing the cache) may still be |
725 | unfinished. Wait until they are done. If the key cache can be used, |
726 | direct I/O is done in increments of key_cache_block_size. That is, |
727 | every block is checked if it is in the cache. We need to wait for |
728 | pending I/O before re-initializing the cache, because we may change |
729 | the block size. Otherwise they could check for blocks at file |
730 | positions where the new block division has none. We do also want to |
731 | wait for I/O done when (if) the cache was disabled. It must not |
732 | run in parallel with normal cache operation. |
733 | */ |
734 | while (keycache->cnt_for_resize_op) |
735 | wait_on_queue(&keycache->waiting_for_resize_cnt, &keycache->cache_lock); |
736 | |
737 | end_simple_key_cache(keycache, 0); |
738 | |
739 | finish: |
740 | if (release_lock) |
741 | keycache_pthread_mutex_unlock(&keycache->cache_lock); |
742 | DBUG_RETURN(res); |
743 | } |
744 | |
745 | |
746 | /* |
747 | Finalize resizing a simple key cache |
748 | |
749 | SYNOPSIS |
750 | finish_resize_simple_key_cache() |
751 | keycache pointer to the control block of a simple key cache |
752 | |
753 | DESCRIPTION |
754 | This function performs finalizing actions for the operation of |
755 | resizing a simple key cache. The function takes the parameter |
756 | keycache as a pointer to the control block structure of the type |
757 | SIMPLE_KEY_CACHE_CB for this key cache. The function sets the flag |
758 | in_resize in this structure to FALSE. |
759 | |
760 | RETURN VALUE |
761 | none |
762 | |
763 | NOTES |
764 | This function is the called by resize_simple_key_cache and |
765 | resize_partitioned_key_cache that resize simple and partitioned key caches |
766 | respectively. |
767 | */ |
768 | |
769 | static |
770 | void finish_resize_simple_key_cache(SIMPLE_KEY_CACHE_CB *keycache) |
771 | { |
772 | DBUG_ENTER("finish_resize_simple_key_cache" ); |
773 | |
774 | mysql_mutex_assert_owner(&keycache->cache_lock); |
775 | |
776 | /* |
777 | Mark the resize finished. This allows other threads to start a |
778 | resize or to request new cache blocks. |
779 | */ |
780 | keycache->in_resize= 0; |
781 | |
782 | |
783 | /* Signal waiting threads. */ |
784 | release_whole_queue(&keycache->resize_queue); |
785 | |
786 | |
787 | keycache_pthread_mutex_unlock(&keycache->cache_lock); |
788 | |
789 | DBUG_VOID_RETURN; |
790 | } |
791 | |
792 | |
793 | /* |
794 | Resize a simple key cache |
795 | |
796 | SYNOPSIS |
797 | resize_simple_key_cache() |
798 | keycache pointer to the control block of a simple key cache |
799 | key_cache_block_size size of blocks to keep cached data |
800 | use_mem memory to use for the key cache buffers/structures |
801 | division_limit new division limit (if not zero) |
802 | age_threshold new age threshold (if not zero) |
803 | |
804 | DESCRIPTION |
805 | This function is the implementation of the resize_key_cache interface |
806 | function that is employed by simple (non-partitioned) key caches. |
807 | The function takes the parameter keycache as a pointer to the |
808 | control block structure of the type SIMPLE_KEY_CACHE_CB for the simple key |
809 | cache to be resized. |
810 | The parameter key_cache_block_size specifies the new size of the blocks in |
811 | the key cache. The parameters division_limit and age_threshold |
812 | determine the new initial values of those characteristics of the key cache |
813 | that are used for midpoint insertion strategy. The parameter use_mem |
814 | specifies the total amount of memory to be allocated for key cache blocks |
815 | and auxiliary structures in the new key cache. |
816 | |
817 | RETURN VALUE |
818 | number of blocks in the key cache, if successful, |
819 | 0 - otherwise. |
820 | |
821 | NOTES. |
822 | The function first calls the function prepare_resize_simple_key_cache |
823 | to flush all dirty blocks from key cache, to free memory used |
824 | for key cache blocks and auxiliary structures. After this the |
825 | function builds a new key cache with new parameters. |
826 | |
827 | This implementation doesn't block the calls and executions of other |
828 | functions from the key cache interface. However it assumes that the |
829 | calls of resize_simple_key_cache itself are serialized. |
830 | |
831 | The function starts the operation only when all other threads |
832 | performing operations with the key cache let her to proceed |
833 | (when cnt_for_resize=0). |
834 | */ |
835 | |
836 | static |
837 | int resize_simple_key_cache(SIMPLE_KEY_CACHE_CB *keycache, |
838 | uint key_cache_block_size, |
839 | size_t use_mem, uint division_limit, |
840 | uint age_threshold, uint changed_blocks_hash_size) |
841 | { |
842 | int blocks= 0; |
843 | DBUG_ENTER("resize_simple_key_cache" ); |
844 | |
845 | DBUG_ASSERT(keycache->key_cache_inited); |
846 | |
847 | /* |
848 | Note that the cache_lock mutex and the resize_queue are left untouched. |
849 | We do not lose the cache_lock and will release it only at the end of |
850 | this function. |
851 | */ |
852 | if (prepare_resize_simple_key_cache(keycache, 0)) |
853 | goto finish; |
854 | |
855 | /* The following will work even if use_mem is 0 */ |
856 | blocks= init_simple_key_cache(keycache, key_cache_block_size, use_mem, |
857 | division_limit, age_threshold, |
858 | changed_blocks_hash_size); |
859 | |
860 | finish: |
861 | finish_resize_simple_key_cache(keycache); |
862 | |
863 | DBUG_RETURN(blocks); |
864 | } |
865 | |
866 | |
867 | /* |
868 | Increment counter blocking resize key cache operation |
869 | */ |
870 | static inline void inc_counter_for_resize_op(SIMPLE_KEY_CACHE_CB *keycache) |
871 | { |
872 | keycache->cnt_for_resize_op++; |
873 | } |
874 | |
875 | |
876 | /* |
877 | Decrement counter blocking resize key cache operation; |
878 | Signal the operation to proceed when counter becomes equal zero |
879 | */ |
880 | static inline void dec_counter_for_resize_op(SIMPLE_KEY_CACHE_CB *keycache) |
881 | { |
882 | if (!--keycache->cnt_for_resize_op) |
883 | release_whole_queue(&keycache->waiting_for_resize_cnt); |
884 | } |
885 | |
886 | |
887 | /* |
888 | Change key cache parameters of a simple key cache |
889 | |
890 | SYNOPSIS |
891 | change_simple_key_cache_param() |
892 | keycache pointer to the control block of a simple key cache |
893 | division_limit new division limit (if not zero) |
894 | age_threshold new age threshold (if not zero) |
895 | |
896 | DESCRIPTION |
897 | This function is the implementation of the change_key_cache_param interface |
898 | function that is employed by simple (non-partitioned) key caches. |
899 | The function takes the parameter keycache as a pointer to the |
900 | control block structure of the type SIMPLE_KEY_CACHE_CB for the simple key |
901 | cache where new values of the division limit and the age threshold used |
902 | for midpoint insertion strategy are to be set. The parameters |
903 | division_limit and age_threshold provide these new values. |
904 | |
905 | RETURN VALUE |
906 | none |
907 | |
908 | NOTES. |
909 | Presently the function resets the key cache parameters concerning |
910 | midpoint insertion strategy - division_limit and age_threshold. |
911 | This function changes some parameters of a given key cache without |
912 | reformatting it. The function does not touch the contents the key |
913 | cache blocks. |
914 | */ |
915 | |
916 | static |
917 | void change_simple_key_cache_param(SIMPLE_KEY_CACHE_CB *keycache, uint division_limit, |
918 | uint age_threshold) |
919 | { |
920 | DBUG_ENTER("change_simple_key_cache_param" ); |
921 | keycache_pthread_mutex_lock(&keycache->cache_lock); |
922 | if (division_limit) |
923 | keycache->min_warm_blocks= (keycache->disk_blocks * |
924 | division_limit / 100 + 1); |
925 | if (age_threshold) |
926 | keycache->age_threshold= (keycache->disk_blocks * |
927 | age_threshold / 100); |
928 | keycache_pthread_mutex_unlock(&keycache->cache_lock); |
929 | DBUG_VOID_RETURN; |
930 | } |
931 | |
932 | |
933 | /* |
934 | Destroy a simple key cache |
935 | |
936 | SYNOPSIS |
937 | end_simple_key_cache() |
938 | keycache pointer to the control block of a simple key cache |
939 | cleanup <=> complete free (free also mutex for key cache) |
940 | |
941 | DESCRIPTION |
942 | This function is the implementation of the end_key_cache interface |
943 | function that is employed by simple (non-partitioned) key caches. |
944 | The function takes the parameter keycache as a pointer to the |
945 | control block structure of the type SIMPLE_KEY_CACHE_CB for the simple key |
946 | cache to be destroyed. |
947 | The function frees the memory allocated for the key cache blocks and |
948 | auxiliary structures. If the value of the parameter cleanup is TRUE |
949 | then even the key cache mutex is freed. |
950 | |
951 | RETURN VALUE |
952 | none |
953 | */ |
954 | |
955 | static |
956 | void end_simple_key_cache(SIMPLE_KEY_CACHE_CB *keycache, my_bool cleanup) |
957 | { |
958 | DBUG_ENTER("end_simple_key_cache" ); |
959 | DBUG_PRINT("enter" , ("key_cache: %p" , keycache)); |
960 | |
961 | if (!keycache->key_cache_inited) |
962 | DBUG_VOID_RETURN; |
963 | |
964 | if (keycache->disk_blocks > 0) |
965 | { |
966 | if (keycache->block_mem) |
967 | { |
968 | my_large_free((uchar*) keycache->block_mem); |
969 | keycache->block_mem= NULL; |
970 | my_free(keycache->block_root); |
971 | keycache->block_root= NULL; |
972 | } |
973 | keycache->disk_blocks= -1; |
974 | /* Reset blocks_changed to be safe if flush_all_key_blocks is called */ |
975 | keycache->blocks_changed= 0; |
976 | } |
977 | |
978 | DBUG_PRINT("status" , ("used: %lu changed: %lu w_requests: %lu " |
979 | "writes: %lu r_requests: %lu reads: %lu" , |
980 | keycache->blocks_used, keycache->global_blocks_changed, |
981 | (ulong) keycache->global_cache_w_requests, |
982 | (ulong) keycache->global_cache_write, |
983 | (ulong) keycache->global_cache_r_requests, |
984 | (ulong) keycache->global_cache_read)); |
985 | |
986 | /* |
987 | Reset these values to be able to detect a disabled key cache. |
988 | See Bug#44068 (RESTORE can disable the MyISAM Key Cache). |
989 | */ |
990 | keycache->blocks_used= 0; |
991 | keycache->blocks_unused= 0; |
992 | |
993 | if (cleanup) |
994 | { |
995 | mysql_mutex_destroy(&keycache->cache_lock); |
996 | keycache->key_cache_inited= keycache->can_be_used= 0; |
997 | KEYCACHE_DEBUG_CLOSE; |
998 | } |
999 | DBUG_VOID_RETURN; |
1000 | } /* end_key_cache */ |
1001 | |
1002 | |
1003 | /* |
1004 | Link a thread into double-linked queue of waiting threads. |
1005 | |
1006 | SYNOPSIS |
1007 | link_into_queue() |
1008 | wqueue pointer to the queue structure |
1009 | thread pointer to the thread to be added to the queue |
1010 | |
1011 | RETURN VALUE |
1012 | none |
1013 | |
1014 | NOTES. |
1015 | Queue is represented by a circular list of the thread structures |
1016 | The list is double-linked of the type (**prev,*next), accessed by |
1017 | a pointer to the last element. |
1018 | */ |
1019 | |
1020 | static void link_into_queue(KEYCACHE_WQUEUE *wqueue, |
1021 | struct st_my_thread_var *thread) |
1022 | { |
1023 | struct st_my_thread_var *last; |
1024 | DBUG_ASSERT(!thread->next && !thread->prev); |
1025 | |
1026 | if (! (last= wqueue->last_thread)) |
1027 | { |
1028 | /* Queue is empty */ |
1029 | thread->next= thread; |
1030 | thread->prev= &thread->next; |
1031 | } |
1032 | else |
1033 | { |
1034 | DBUG_ASSERT(last->next->prev == &last->next); |
1035 | /* Add backlink to previous element */ |
1036 | thread->prev= last->next->prev; |
1037 | /* Fix first in list to point backwords to current */ |
1038 | last->next->prev= &thread->next; |
1039 | /* Next should point to the first element in list */ |
1040 | thread->next= last->next; |
1041 | /* Fix old element to point to new one */ |
1042 | last->next= thread; |
1043 | } |
1044 | wqueue->last_thread= thread; |
1045 | } |
1046 | |
1047 | /* |
1048 | Unlink a thread from double-linked queue of waiting threads |
1049 | |
1050 | SYNOPSIS |
1051 | unlink_from_queue() |
1052 | wqueue pointer to the queue structure |
1053 | thread pointer to the thread to be removed from the queue |
1054 | |
1055 | RETURN VALUE |
1056 | none |
1057 | |
1058 | NOTES. |
1059 | See NOTES for link_into_queue |
1060 | */ |
1061 | |
1062 | static void unlink_from_queue(KEYCACHE_WQUEUE *wqueue, |
1063 | struct st_my_thread_var *thread) |
1064 | { |
1065 | KEYCACHE_DBUG_PRINT("unlink_from_queue" , ("thread %ld" , (ulong) thread->id)); |
1066 | DBUG_ASSERT(thread->next && thread->prev); |
1067 | |
1068 | if (thread->next == thread) |
1069 | { |
1070 | /* The queue contains only one member */ |
1071 | wqueue->last_thread= NULL; |
1072 | } |
1073 | else |
1074 | { |
1075 | /* Remove current element from list */ |
1076 | thread->next->prev= thread->prev; |
1077 | *thread->prev= thread->next; |
1078 | /* If first element, change list pointer to point to previous element */ |
1079 | if (wqueue->last_thread == thread) |
1080 | wqueue->last_thread= STRUCT_PTR(struct st_my_thread_var, next, |
1081 | thread->prev); |
1082 | } |
1083 | thread->next= NULL; |
1084 | #ifdef DBUG_ASSERT_EXISTS |
1085 | /* |
1086 | This makes it easier to see it's not in a chain during debugging. |
1087 | And some DBUG_ASSERT() rely on it. |
1088 | */ |
1089 | thread->prev= NULL; |
1090 | #endif |
1091 | } |
1092 | |
1093 | |
1094 | /* |
1095 | Add a thread to single-linked queue of waiting threads |
1096 | |
1097 | SYNOPSIS |
1098 | wait_on_queue() |
1099 | wqueue Pointer to the queue structure. |
1100 | mutex Cache_lock to acquire after awake. |
1101 | |
1102 | RETURN VALUE |
1103 | none |
1104 | |
1105 | NOTES. |
1106 | Queue is represented by a circular list of the thread structures |
1107 | The list is single-linked of the type (*next), accessed by a pointer |
1108 | to the last element. |
1109 | |
1110 | The function protects against stray signals by verifying that the |
1111 | current thread is unlinked from the queue when awaking. However, |
1112 | since several threads can wait for the same event, it might be |
1113 | necessary for the caller of the function to check again if the |
1114 | condition for awake is indeed matched. |
1115 | */ |
1116 | |
1117 | static void wait_on_queue(KEYCACHE_WQUEUE *wqueue, |
1118 | mysql_mutex_t *mutex) |
1119 | { |
1120 | struct st_my_thread_var *last; |
1121 | struct st_my_thread_var *thread= my_thread_var; |
1122 | DBUG_ASSERT(!thread->next); |
1123 | DBUG_ASSERT(!thread->prev); /* Not required, but must be true anyway. */ |
1124 | mysql_mutex_assert_owner(mutex); |
1125 | |
1126 | /* Add to queue. */ |
1127 | if (! (last= wqueue->last_thread)) |
1128 | thread->next= thread; |
1129 | else |
1130 | { |
1131 | thread->next= last->next; |
1132 | last->next= thread; |
1133 | } |
1134 | wqueue->last_thread= thread; |
1135 | |
1136 | /* |
1137 | Wait until thread is removed from queue by the signaling thread. |
1138 | The loop protects against stray signals. |
1139 | */ |
1140 | do |
1141 | { |
1142 | KEYCACHE_DBUG_PRINT("wait" , ("suspend thread %ld" , (ulong) thread->id)); |
1143 | keycache_pthread_cond_wait(&thread->suspend, mutex); |
1144 | } |
1145 | while (thread->next); |
1146 | } |
1147 | |
1148 | |
1149 | /* |
1150 | Remove all threads from queue signaling them to proceed |
1151 | |
1152 | SYNOPSIS |
1153 | release_whole_queue() |
1154 | wqueue pointer to the queue structure |
1155 | |
1156 | RETURN VALUE |
1157 | none |
1158 | |
1159 | NOTES. |
1160 | See notes for wait_on_queue(). |
1161 | When removed from the queue each thread is signaled via condition |
1162 | variable thread->suspend. |
1163 | */ |
1164 | |
1165 | static void release_whole_queue(KEYCACHE_WQUEUE *wqueue) |
1166 | { |
1167 | struct st_my_thread_var *last; |
1168 | struct st_my_thread_var *next; |
1169 | struct st_my_thread_var *thread; |
1170 | |
1171 | /* Queue may be empty. */ |
1172 | if (!(last= wqueue->last_thread)) |
1173 | return; |
1174 | |
1175 | next= last->next; /* First (oldest) element */ |
1176 | do |
1177 | { |
1178 | thread=next; |
1179 | DBUG_ASSERT(thread && thread->init == 1); |
1180 | KEYCACHE_DBUG_PRINT("release_whole_queue: signal" , |
1181 | ("thread %ld" , (ulong) thread->id)); |
1182 | /* Take thread from queue. */ |
1183 | next= thread->next; |
1184 | thread->next= NULL; |
1185 | |
1186 | /* Signal the thread. */ |
1187 | keycache_pthread_cond_signal(&thread->suspend); |
1188 | } |
1189 | while (thread != last); |
1190 | |
1191 | /* Now queue is definitely empty. */ |
1192 | wqueue->last_thread= NULL; |
1193 | } |
1194 | |
1195 | |
1196 | /* |
1197 | Unlink a block from the chain of dirty/clean blocks |
1198 | */ |
1199 | |
1200 | static inline void unlink_changed(BLOCK_LINK *block) |
1201 | { |
1202 | DBUG_ASSERT(block->prev_changed && *block->prev_changed == block); |
1203 | if (block->next_changed) |
1204 | block->next_changed->prev_changed= block->prev_changed; |
1205 | *block->prev_changed= block->next_changed; |
1206 | |
1207 | #ifdef DBUG_ASSERT_EXISTS |
1208 | /* |
1209 | This makes it easier to see it's not in a chain during debugging. |
1210 | And some DBUG_ASSERT() rely on it. |
1211 | */ |
1212 | block->next_changed= NULL; |
1213 | block->prev_changed= NULL; |
1214 | #endif |
1215 | } |
1216 | |
1217 | |
1218 | /* |
1219 | Link a block into the chain of dirty/clean blocks |
1220 | */ |
1221 | |
1222 | static inline void link_changed(BLOCK_LINK *block, BLOCK_LINK **phead) |
1223 | { |
1224 | DBUG_ASSERT(!block->next_changed); |
1225 | DBUG_ASSERT(!block->prev_changed); |
1226 | block->prev_changed= phead; |
1227 | if ((block->next_changed= *phead)) |
1228 | (*phead)->prev_changed= &block->next_changed; |
1229 | *phead= block; |
1230 | } |
1231 | |
1232 | |
1233 | /* |
1234 | Link a block in a chain of clean blocks of a file. |
1235 | |
1236 | SYNOPSIS |
1237 | link_to_file_list() |
1238 | keycache Key cache handle |
1239 | block Block to relink |
1240 | file File to be linked to |
1241 | unlink If to unlink first |
1242 | |
1243 | DESCRIPTION |
1244 | Unlink a block from whichever chain it is linked in, if it's |
1245 | asked for, and link it to the chain of clean blocks of the |
1246 | specified file. |
1247 | |
1248 | NOTE |
1249 | Please do never set/clear BLOCK_CHANGED outside of |
1250 | link_to_file_list() or link_to_changed_list(). |
1251 | You would risk to damage correct counting of changed blocks |
1252 | and to find blocks in the wrong hash. |
1253 | |
1254 | RETURN |
1255 | void |
1256 | */ |
1257 | |
1258 | static void link_to_file_list(SIMPLE_KEY_CACHE_CB *keycache, |
1259 | BLOCK_LINK *block, int file, |
1260 | my_bool unlink_block) |
1261 | { |
1262 | DBUG_ASSERT(block->status & BLOCK_IN_USE); |
1263 | DBUG_ASSERT(block->hash_link && block->hash_link->block == block); |
1264 | DBUG_ASSERT(block->hash_link->file == file); |
1265 | if (unlink_block) |
1266 | unlink_changed(block); |
1267 | link_changed(block, &keycache->file_blocks[FILE_HASH(file, keycache)]); |
1268 | if (block->status & BLOCK_CHANGED) |
1269 | { |
1270 | block->status&= ~BLOCK_CHANGED; |
1271 | keycache->blocks_changed--; |
1272 | keycache->global_blocks_changed--; |
1273 | } |
1274 | } |
1275 | |
1276 | |
1277 | /* |
1278 | Re-link a block from the clean chain to the dirty chain of a file. |
1279 | |
1280 | SYNOPSIS |
1281 | link_to_changed_list() |
1282 | keycache key cache handle |
1283 | block block to relink |
1284 | |
1285 | DESCRIPTION |
1286 | Unlink a block from the chain of clean blocks of a file |
1287 | and link it to the chain of dirty blocks of the same file. |
1288 | |
1289 | NOTE |
1290 | Please do never set/clear BLOCK_CHANGED outside of |
1291 | link_to_file_list() or link_to_changed_list(). |
1292 | You would risk to damage correct counting of changed blocks |
1293 | and to find blocks in the wrong hash. |
1294 | |
1295 | RETURN |
1296 | void |
1297 | */ |
1298 | |
1299 | static void link_to_changed_list(SIMPLE_KEY_CACHE_CB *keycache, |
1300 | BLOCK_LINK *block) |
1301 | { |
1302 | DBUG_ASSERT(block->status & BLOCK_IN_USE); |
1303 | DBUG_ASSERT(!(block->status & BLOCK_CHANGED)); |
1304 | DBUG_ASSERT(block->hash_link && block->hash_link->block == block); |
1305 | |
1306 | unlink_changed(block); |
1307 | link_changed(block, |
1308 | &keycache->changed_blocks[FILE_HASH(block->hash_link->file, keycache)]); |
1309 | block->status|=BLOCK_CHANGED; |
1310 | keycache->blocks_changed++; |
1311 | keycache->global_blocks_changed++; |
1312 | } |
1313 | |
1314 | |
1315 | /* |
1316 | Link a block to the LRU chain at the beginning or at the end of |
1317 | one of two parts. |
1318 | |
1319 | SYNOPSIS |
1320 | link_block() |
1321 | keycache pointer to a key cache data structure |
1322 | block pointer to the block to link to the LRU chain |
1323 | hot <-> to link the block into the hot subchain |
1324 | at_end <-> to link the block at the end of the subchain |
1325 | |
1326 | RETURN VALUE |
1327 | none |
1328 | |
1329 | NOTES. |
1330 | The LRU ring is represented by a circular list of block structures. |
1331 | The list is double-linked of the type (**prev,*next) type. |
1332 | The LRU ring is divided into two parts - hot and warm. |
1333 | There are two pointers to access the last blocks of these two |
1334 | parts. The beginning of the warm part follows right after the |
1335 | end of the hot part. |
1336 | Only blocks of the warm part can be used for eviction. |
1337 | The first block from the beginning of this subchain is always |
1338 | taken for eviction (keycache->last_used->next) |
1339 | |
1340 | LRU chain: +------+ H O T +------+ |
1341 | +----| end |----...<----| beg |----+ |
1342 | | +------+last +------+ | |
1343 | v<-link in latest hot (new end) | |
1344 | | link in latest warm (new end)->^ |
1345 | | +------+ W A R M +------+ | |
1346 | +----| beg |---->...----| end |----+ |
1347 | +------+ +------+ins |
1348 | first for eviction |
1349 | |
1350 | It is also possible that the block is selected for eviction and thus |
1351 | not linked in the LRU ring. |
1352 | */ |
1353 | |
1354 | static void link_block(SIMPLE_KEY_CACHE_CB *keycache, BLOCK_LINK *block, |
1355 | my_bool hot, my_bool at_end) |
1356 | { |
1357 | BLOCK_LINK *ins; |
1358 | BLOCK_LINK **pins; |
1359 | |
1360 | DBUG_ASSERT((block->status & ~BLOCK_CHANGED) == (BLOCK_READ | BLOCK_IN_USE)); |
1361 | DBUG_ASSERT(block->hash_link); /*backptr to block NULL from free_block()*/ |
1362 | DBUG_ASSERT(!block->requests); |
1363 | DBUG_ASSERT(block->prev_changed && *block->prev_changed == block); |
1364 | DBUG_ASSERT(!block->next_used); |
1365 | DBUG_ASSERT(!block->prev_used); |
1366 | if (!hot && keycache->waiting_for_block.last_thread) |
1367 | { |
1368 | /* Signal that in the LRU warm sub-chain an available block has appeared */ |
1369 | struct st_my_thread_var *last_thread= |
1370 | keycache->waiting_for_block.last_thread; |
1371 | struct st_my_thread_var *first_thread= last_thread->next; |
1372 | struct st_my_thread_var *next_thread= first_thread; |
1373 | HASH_LINK *hash_link= (HASH_LINK *) first_thread->keycache_link; |
1374 | struct st_my_thread_var *thread; |
1375 | do |
1376 | { |
1377 | thread= next_thread; |
1378 | next_thread= thread->next; |
1379 | /* |
1380 | We notify about the event all threads that ask |
1381 | for the same page as the first thread in the queue |
1382 | */ |
1383 | if ((HASH_LINK *) thread->keycache_link == hash_link) |
1384 | { |
1385 | KEYCACHE_DBUG_PRINT("link_block: signal" , |
1386 | ("thread %ld" , (ulong) thread->id)); |
1387 | keycache_pthread_cond_signal(&thread->suspend); |
1388 | unlink_from_queue(&keycache->waiting_for_block, thread); |
1389 | block->requests++; |
1390 | } |
1391 | } |
1392 | while (thread != last_thread); |
1393 | hash_link->block= block; |
1394 | /* |
1395 | NOTE: We assigned the block to the hash_link and signalled the |
1396 | requesting thread(s). But it is possible that other threads runs |
1397 | first. These threads see the hash_link assigned to a block which |
1398 | is assigned to another hash_link and not marked BLOCK_IN_SWITCH. |
1399 | This can be a problem for functions that do not select the block |
1400 | via its hash_link: flush and free. They do only see a block which |
1401 | is in a "normal" state and don't know that it will be evicted soon. |
1402 | |
1403 | We cannot set BLOCK_IN_SWITCH here because only one of the |
1404 | requesting threads must handle the eviction. All others must wait |
1405 | for it to complete. If we set the flag here, the threads would not |
1406 | know who is in charge of the eviction. Without the flag, the first |
1407 | thread takes the stick and sets the flag. |
1408 | |
1409 | But we need to note in the block that is has been selected for |
1410 | eviction. It must not be freed. The evicting thread will not |
1411 | expect the block in the free list. Before freeing we could also |
1412 | check if block->requests > 1. But I think including another flag |
1413 | in the check of block->status is slightly more efficient and |
1414 | probably easier to read. |
1415 | */ |
1416 | block->status|= BLOCK_IN_EVICTION; |
1417 | KEYCACHE_THREAD_TRACE("link_block: after signaling" ); |
1418 | #if defined(KEYCACHE_DEBUG) |
1419 | KEYCACHE_DBUG_PRINT("link_block" , |
1420 | ("linked,unlinked block %u status=%x #requests=%u #available=%u" , |
1421 | BLOCK_NUMBER(block), block->status, |
1422 | block->requests, keycache->blocks_available)); |
1423 | #endif |
1424 | return; |
1425 | } |
1426 | pins= hot ? &keycache->used_ins : &keycache->used_last; |
1427 | ins= *pins; |
1428 | if (ins) |
1429 | { |
1430 | ins->next_used->prev_used= &block->next_used; |
1431 | block->next_used= ins->next_used; |
1432 | block->prev_used= &ins->next_used; |
1433 | ins->next_used= block; |
1434 | if (at_end) |
1435 | *pins= block; |
1436 | } |
1437 | else |
1438 | { |
1439 | /* The LRU ring is empty. Let the block point to itself. */ |
1440 | keycache->used_last= keycache->used_ins= block->next_used= block; |
1441 | block->prev_used= &block->next_used; |
1442 | } |
1443 | KEYCACHE_THREAD_TRACE("link_block" ); |
1444 | #if defined(KEYCACHE_DEBUG) |
1445 | keycache->blocks_available++; |
1446 | KEYCACHE_DBUG_PRINT("link_block" , |
1447 | ("linked block %u:%1u status=%x #requests=%u #available=%u" , |
1448 | BLOCK_NUMBER(block), at_end, block->status, |
1449 | block->requests, keycache->blocks_available)); |
1450 | KEYCACHE_DBUG_ASSERT((ulong) keycache->blocks_available <= |
1451 | keycache->blocks_used); |
1452 | #endif |
1453 | } |
1454 | |
1455 | |
1456 | /* |
1457 | Unlink a block from the LRU chain |
1458 | |
1459 | SYNOPSIS |
1460 | unlink_block() |
1461 | keycache pointer to a key cache data structure |
1462 | block pointer to the block to unlink from the LRU chain |
1463 | |
1464 | RETURN VALUE |
1465 | none |
1466 | |
1467 | NOTES. |
1468 | See NOTES for link_block |
1469 | */ |
1470 | |
1471 | static void unlink_block(SIMPLE_KEY_CACHE_CB *keycache, BLOCK_LINK *block) |
1472 | { |
1473 | DBUG_ASSERT((block->status & ~BLOCK_CHANGED) == (BLOCK_READ | BLOCK_IN_USE)); |
1474 | DBUG_ASSERT(block->hash_link); /*backptr to block NULL from free_block()*/ |
1475 | DBUG_ASSERT(!block->requests); |
1476 | DBUG_ASSERT(block->prev_changed && *block->prev_changed == block); |
1477 | DBUG_ASSERT(block->next_used && block->prev_used && |
1478 | (block->next_used->prev_used == &block->next_used) && |
1479 | (*block->prev_used == block)); |
1480 | if (block->next_used == block) |
1481 | /* The list contains only one member */ |
1482 | keycache->used_last= keycache->used_ins= NULL; |
1483 | else |
1484 | { |
1485 | block->next_used->prev_used= block->prev_used; |
1486 | *block->prev_used= block->next_used; |
1487 | if (keycache->used_last == block) |
1488 | keycache->used_last= STRUCT_PTR(BLOCK_LINK, next_used, block->prev_used); |
1489 | if (keycache->used_ins == block) |
1490 | keycache->used_ins=STRUCT_PTR(BLOCK_LINK, next_used, block->prev_used); |
1491 | } |
1492 | block->next_used= NULL; |
1493 | #ifdef DBUG_ASSERT_EXISTS |
1494 | /* |
1495 | This makes it easier to see it's not in a chain during debugging. |
1496 | And some DBUG_ASSERT() rely on it. |
1497 | */ |
1498 | block->prev_used= NULL; |
1499 | #endif |
1500 | |
1501 | KEYCACHE_THREAD_TRACE("unlink_block" ); |
1502 | #if defined(KEYCACHE_DEBUG) |
1503 | KEYCACHE_DBUG_ASSERT(keycache->blocks_available != 0); |
1504 | keycache->blocks_available--; |
1505 | KEYCACHE_DBUG_PRINT("unlink_block" , |
1506 | ("unlinked block %u status=%x #requests=%u #available=%u" , |
1507 | BLOCK_NUMBER(block), block->status, |
1508 | block->requests, keycache->blocks_available)); |
1509 | #endif |
1510 | } |
1511 | |
1512 | |
1513 | /* |
1514 | Register requests for a block. |
1515 | |
1516 | SYNOPSIS |
1517 | reg_requests() |
1518 | keycache Pointer to a key cache data structure. |
1519 | block Pointer to the block to register a request on. |
1520 | count Number of requests. Always 1. |
1521 | |
1522 | NOTE |
1523 | The first request unlinks the block from the LRU ring. This means |
1524 | that it is protected against eveiction. |
1525 | |
1526 | RETURN |
1527 | void |
1528 | */ |
1529 | static void reg_requests(SIMPLE_KEY_CACHE_CB *keycache, |
1530 | BLOCK_LINK *block, int count) |
1531 | { |
1532 | DBUG_ASSERT(block->status & BLOCK_IN_USE); |
1533 | DBUG_ASSERT(block->hash_link); |
1534 | |
1535 | if (!block->requests) |
1536 | unlink_block(keycache, block); |
1537 | block->requests+=count; |
1538 | } |
1539 | |
1540 | |
1541 | /* |
1542 | Unregister request for a block |
1543 | linking it to the LRU chain if it's the last request |
1544 | |
1545 | SYNOPSIS |
1546 | unreg_request() |
1547 | keycache pointer to a key cache data structure |
1548 | block pointer to the block to link to the LRU chain |
1549 | at_end <-> to link the block at the end of the LRU chain |
1550 | |
1551 | RETURN VALUE |
1552 | none |
1553 | |
1554 | NOTES. |
1555 | Every linking to the LRU ring decrements by one a special block |
1556 | counter (if it's positive). If the at_end parameter is TRUE the block is |
1557 | added either at the end of warm sub-chain or at the end of hot sub-chain. |
1558 | It is added to the hot subchain if its counter is zero and number of |
1559 | blocks in warm sub-chain is not less than some low limit (determined by |
1560 | the division_limit parameter). Otherwise the block is added to the warm |
1561 | sub-chain. If the at_end parameter is FALSE the block is always added |
1562 | at beginning of the warm sub-chain. |
1563 | Thus a warm block can be promoted to the hot sub-chain when its counter |
1564 | becomes zero for the first time. |
1565 | At the same time the block at the very beginning of the hot subchain |
1566 | might be moved to the beginning of the warm subchain if it stays untouched |
1567 | for a too long time (this time is determined by parameter age_threshold). |
1568 | |
1569 | It is also possible that the block is selected for eviction and thus |
1570 | not linked in the LRU ring. |
1571 | */ |
1572 | |
1573 | static void unreg_request(SIMPLE_KEY_CACHE_CB *keycache, |
1574 | BLOCK_LINK *block, int at_end) |
1575 | { |
1576 | DBUG_ASSERT(block->status & (BLOCK_READ | BLOCK_IN_USE)); |
1577 | DBUG_ASSERT(block->hash_link); /*backptr to block NULL from free_block()*/ |
1578 | DBUG_ASSERT(block->requests); |
1579 | DBUG_ASSERT(block->prev_changed && *block->prev_changed == block); |
1580 | DBUG_ASSERT(!block->next_used); |
1581 | DBUG_ASSERT(!block->prev_used); |
1582 | /* |
1583 | Unregister the request, but do not link erroneous blocks into the |
1584 | LRU ring. |
1585 | */ |
1586 | if (!--block->requests && !(block->status & BLOCK_ERROR)) |
1587 | { |
1588 | my_bool hot; |
1589 | if (block->hits_left) |
1590 | block->hits_left--; |
1591 | hot= !block->hits_left && at_end && |
1592 | keycache->warm_blocks > keycache->min_warm_blocks; |
1593 | if (hot) |
1594 | { |
1595 | if (block->temperature == BLOCK_WARM) |
1596 | keycache->warm_blocks--; |
1597 | block->temperature= BLOCK_HOT; |
1598 | KEYCACHE_DBUG_PRINT("unreg_request" , ("#warm_blocks: %lu" , |
1599 | keycache->warm_blocks)); |
1600 | } |
1601 | link_block(keycache, block, hot, (my_bool)at_end); |
1602 | block->last_hit_time= keycache->keycache_time; |
1603 | keycache->keycache_time++; |
1604 | /* |
1605 | At this place, the block might be in the LRU ring or not. If an |
1606 | evicter was waiting for a block, it was selected for eviction and |
1607 | not linked in the LRU ring. |
1608 | */ |
1609 | |
1610 | /* |
1611 | Check if we should link a hot block to the warm block sub-chain. |
1612 | It is possible that we select the same block as above. But it can |
1613 | also be another block. In any case a block from the LRU ring is |
1614 | selected. In other words it works even if the above block was |
1615 | selected for eviction and not linked in the LRU ring. Since this |
1616 | happens only if the LRU ring is empty, the block selected below |
1617 | would be NULL and the rest of the function skipped. |
1618 | */ |
1619 | block= keycache->used_ins; |
1620 | if (block && keycache->keycache_time - block->last_hit_time > |
1621 | keycache->age_threshold) |
1622 | { |
1623 | unlink_block(keycache, block); |
1624 | link_block(keycache, block, 0, 0); |
1625 | if (block->temperature != BLOCK_WARM) |
1626 | { |
1627 | keycache->warm_blocks++; |
1628 | block->temperature= BLOCK_WARM; |
1629 | } |
1630 | KEYCACHE_DBUG_PRINT("unreg_request" , ("#warm_blocks: %lu" , |
1631 | keycache->warm_blocks)); |
1632 | } |
1633 | } |
1634 | } |
1635 | |
1636 | /* |
1637 | Remove a reader of the page in block |
1638 | */ |
1639 | |
1640 | static void remove_reader(BLOCK_LINK *block) |
1641 | { |
1642 | DBUG_ASSERT(block->status & (BLOCK_READ | BLOCK_IN_USE)); |
1643 | DBUG_ASSERT(block->hash_link && block->hash_link->block == block); |
1644 | DBUG_ASSERT(block->prev_changed && *block->prev_changed == block); |
1645 | DBUG_ASSERT(!block->next_used); |
1646 | DBUG_ASSERT(!block->prev_used); |
1647 | DBUG_ASSERT(block->hash_link->requests); |
1648 | if (! --block->hash_link->requests && block->condvar) |
1649 | keycache_pthread_cond_signal(block->condvar); |
1650 | } |
1651 | |
1652 | |
1653 | /* |
1654 | Wait until the last reader of the page in block |
1655 | signals on its termination |
1656 | */ |
1657 | |
1658 | static void wait_for_readers(SIMPLE_KEY_CACHE_CB *keycache, |
1659 | BLOCK_LINK *block) |
1660 | { |
1661 | struct st_my_thread_var *thread= my_thread_var; |
1662 | DBUG_ASSERT(block->status & (BLOCK_READ | BLOCK_IN_USE)); |
1663 | DBUG_ASSERT(!(block->status & (BLOCK_IN_FLUSH | BLOCK_CHANGED))); |
1664 | DBUG_ASSERT(block->hash_link); |
1665 | DBUG_ASSERT(block->hash_link->block == block); |
1666 | /* Linked in file_blocks or changed_blocks hash. */ |
1667 | DBUG_ASSERT(block->prev_changed && *block->prev_changed == block); |
1668 | /* Not linked in LRU ring. */ |
1669 | DBUG_ASSERT(!block->next_used); |
1670 | DBUG_ASSERT(!block->prev_used); |
1671 | while (block->hash_link->requests) |
1672 | { |
1673 | KEYCACHE_DBUG_PRINT("wait_for_readers: wait" , |
1674 | ("suspend thread %ld block %u" , |
1675 | (ulong) thread->id, BLOCK_NUMBER(block))); |
1676 | /* There must be no other waiter. We have no queue here. */ |
1677 | DBUG_ASSERT(!block->condvar); |
1678 | block->condvar= &thread->suspend; |
1679 | keycache_pthread_cond_wait(&thread->suspend, &keycache->cache_lock); |
1680 | block->condvar= NULL; |
1681 | } |
1682 | } |
1683 | |
1684 | |
1685 | /* |
1686 | Add a hash link to a bucket in the hash_table |
1687 | */ |
1688 | |
1689 | static inline void link_hash(HASH_LINK **start, HASH_LINK *hash_link) |
1690 | { |
1691 | if (*start) |
1692 | (*start)->prev= &hash_link->next; |
1693 | hash_link->next= *start; |
1694 | hash_link->prev= start; |
1695 | *start= hash_link; |
1696 | } |
1697 | |
1698 | |
1699 | /* |
1700 | Remove a hash link from the hash table |
1701 | */ |
1702 | |
1703 | static void unlink_hash(SIMPLE_KEY_CACHE_CB *keycache, HASH_LINK *hash_link) |
1704 | { |
1705 | KEYCACHE_DBUG_PRINT("unlink_hash" , ("fd: %u pos_ %lu #requests=%u" , |
1706 | (uint) hash_link->file,(ulong) hash_link->diskpos, hash_link->requests)); |
1707 | KEYCACHE_DBUG_ASSERT(hash_link->requests == 0); |
1708 | if ((*hash_link->prev= hash_link->next)) |
1709 | hash_link->next->prev= hash_link->prev; |
1710 | hash_link->block= NULL; |
1711 | if (keycache->waiting_for_hash_link.last_thread) |
1712 | { |
1713 | /* Signal that a free hash link has appeared */ |
1714 | struct st_my_thread_var *last_thread= |
1715 | keycache->waiting_for_hash_link.last_thread; |
1716 | struct st_my_thread_var *first_thread= last_thread->next; |
1717 | struct st_my_thread_var *next_thread= first_thread; |
1718 | KEYCACHE_PAGE *first_page= (KEYCACHE_PAGE *) (first_thread->keycache_link); |
1719 | struct st_my_thread_var *thread; |
1720 | |
1721 | hash_link->file= first_page->file; |
1722 | hash_link->diskpos= first_page->filepos; |
1723 | do |
1724 | { |
1725 | KEYCACHE_PAGE *page; |
1726 | thread= next_thread; |
1727 | page= (KEYCACHE_PAGE *) thread->keycache_link; |
1728 | next_thread= thread->next; |
1729 | /* |
1730 | We notify about the event all threads that ask |
1731 | for the same page as the first thread in the queue |
1732 | */ |
1733 | if (page->file == hash_link->file && page->filepos == hash_link->diskpos) |
1734 | { |
1735 | KEYCACHE_DBUG_PRINT("unlink_hash: signal" , |
1736 | ("thread %ld" , (ulong) thread->id)); |
1737 | keycache_pthread_cond_signal(&thread->suspend); |
1738 | unlink_from_queue(&keycache->waiting_for_hash_link, thread); |
1739 | } |
1740 | } |
1741 | while (thread != last_thread); |
1742 | link_hash(&keycache->hash_root[KEYCACHE_HASH(hash_link->file, |
1743 | hash_link->diskpos)], |
1744 | hash_link); |
1745 | return; |
1746 | } |
1747 | hash_link->next= keycache->free_hash_list; |
1748 | keycache->free_hash_list= hash_link; |
1749 | } |
1750 | |
1751 | |
1752 | /* |
1753 | Get the hash link for a page |
1754 | */ |
1755 | |
1756 | static HASH_LINK *get_hash_link(SIMPLE_KEY_CACHE_CB *keycache, |
1757 | int file, my_off_t filepos) |
1758 | { |
1759 | reg1 HASH_LINK *hash_link, **start; |
1760 | #if defined(KEYCACHE_DEBUG) |
1761 | int cnt; |
1762 | #endif |
1763 | |
1764 | KEYCACHE_DBUG_PRINT("get_hash_link" , ("fd: %u pos: %lu" , |
1765 | (uint) file,(ulong) filepos)); |
1766 | |
1767 | restart: |
1768 | /* |
1769 | Find the bucket in the hash table for the pair (file, filepos); |
1770 | start contains the head of the bucket list, |
1771 | hash_link points to the first member of the list |
1772 | */ |
1773 | hash_link= *(start= &keycache->hash_root[KEYCACHE_HASH(file, filepos)]); |
1774 | #if defined(KEYCACHE_DEBUG) |
1775 | cnt= 0; |
1776 | #endif |
1777 | /* Look for an element for the pair (file, filepos) in the bucket chain */ |
1778 | while (hash_link && |
1779 | (hash_link->diskpos != filepos || hash_link->file != file)) |
1780 | { |
1781 | hash_link= hash_link->next; |
1782 | #if defined(KEYCACHE_DEBUG) |
1783 | cnt++; |
1784 | if (! (cnt <= keycache->hash_links_used)) |
1785 | { |
1786 | int i; |
1787 | for (i=0, hash_link= *start ; |
1788 | i < cnt ; i++, hash_link= hash_link->next) |
1789 | { |
1790 | KEYCACHE_DBUG_PRINT("get_hash_link" , ("fd: %u pos: %lu" , |
1791 | (uint) hash_link->file,(ulong) hash_link->diskpos)); |
1792 | } |
1793 | } |
1794 | KEYCACHE_DBUG_ASSERT(cnt <= keycache->hash_links_used); |
1795 | #endif |
1796 | } |
1797 | if (! hash_link) |
1798 | { |
1799 | /* There is no hash link in the hash table for the pair (file, filepos) */ |
1800 | if (keycache->free_hash_list) |
1801 | { |
1802 | hash_link= keycache->free_hash_list; |
1803 | keycache->free_hash_list= hash_link->next; |
1804 | } |
1805 | else if (keycache->hash_links_used < keycache->hash_links) |
1806 | { |
1807 | hash_link= &keycache->hash_link_root[keycache->hash_links_used++]; |
1808 | } |
1809 | else |
1810 | { |
1811 | /* Wait for a free hash link */ |
1812 | struct st_my_thread_var *thread= my_thread_var; |
1813 | KEYCACHE_PAGE page; |
1814 | KEYCACHE_DBUG_PRINT("get_hash_link" , ("waiting" )); |
1815 | page.file= file; |
1816 | page.filepos= filepos; |
1817 | thread->keycache_link= (void *) &page; |
1818 | link_into_queue(&keycache->waiting_for_hash_link, thread); |
1819 | KEYCACHE_DBUG_PRINT("get_hash_link: wait" , |
1820 | ("suspend thread %ld" , (ulong) thread->id)); |
1821 | keycache_pthread_cond_wait(&thread->suspend, |
1822 | &keycache->cache_lock); |
1823 | thread->keycache_link= NULL; |
1824 | goto restart; |
1825 | } |
1826 | hash_link->file= file; |
1827 | hash_link->diskpos= filepos; |
1828 | link_hash(start, hash_link); |
1829 | } |
1830 | /* Register the request for the page */ |
1831 | hash_link->requests++; |
1832 | |
1833 | return hash_link; |
1834 | } |
1835 | |
1836 | |
1837 | /* |
1838 | Get a block for the file page requested by a keycache read/write operation; |
1839 | If the page is not in the cache return a free block, if there is none |
1840 | return the lru block after saving its buffer if the page is dirty. |
1841 | |
1842 | SYNOPSIS |
1843 | |
1844 | find_key_block() |
1845 | keycache pointer to a key cache data structure |
1846 | file handler for the file to read page from |
1847 | filepos position of the page in the file |
1848 | init_hits_left how initialize the block counter for the page |
1849 | wrmode <-> get for writing |
1850 | page_st out {PAGE_READ,PAGE_TO_BE_READ,PAGE_WAIT_TO_BE_READ} |
1851 | |
1852 | RETURN VALUE |
1853 | Pointer to the found block if successful, 0 - otherwise |
1854 | |
1855 | NOTES. |
1856 | For the page from file positioned at filepos the function checks whether |
1857 | the page is in the key cache specified by the first parameter. |
1858 | If this is the case it immediately returns the block. |
1859 | If not, the function first chooses a block for this page. If there is |
1860 | no not used blocks in the key cache yet, the function takes the block |
1861 | at the very beginning of the warm sub-chain. It saves the page in that |
1862 | block if it's dirty before returning the pointer to it. |
1863 | The function returns in the page_st parameter the following values: |
1864 | PAGE_READ - if page already in the block, |
1865 | PAGE_TO_BE_READ - if it is to be read yet by the current thread |
1866 | WAIT_TO_BE_READ - if it is to be read by another thread |
1867 | If an error occurs THE BLOCK_ERROR bit is set in the block status. |
1868 | It might happen that there are no blocks in LRU chain (in warm part) - |
1869 | all blocks are unlinked for some read/write operations. Then the function |
1870 | waits until first of this operations links any block back. |
1871 | */ |
1872 | |
1873 | static BLOCK_LINK *find_key_block(SIMPLE_KEY_CACHE_CB *keycache, |
1874 | File file, my_off_t filepos, |
1875 | int init_hits_left, |
1876 | int wrmode, int *page_st) |
1877 | { |
1878 | HASH_LINK *hash_link; |
1879 | BLOCK_LINK *block; |
1880 | int error= 0; |
1881 | int page_status; |
1882 | |
1883 | DBUG_ENTER("find_key_block" ); |
1884 | KEYCACHE_THREAD_TRACE("find_key_block:begin" ); |
1885 | DBUG_PRINT("enter" , ("fd: %d pos: %lu wrmode: %d" , |
1886 | file, (ulong) filepos, wrmode)); |
1887 | KEYCACHE_DBUG_PRINT("find_key_block" , ("fd: %d pos: %lu wrmode: %d" , |
1888 | file, (ulong) filepos, |
1889 | wrmode)); |
1890 | #if !defined(DBUG_OFF) && defined(EXTRA_DEBUG) |
1891 | DBUG_EXECUTE("check_keycache2" , |
1892 | test_key_cache(keycache, "start of find_key_block" , 0);); |
1893 | #endif |
1894 | |
1895 | restart: |
1896 | /* |
1897 | If the flush phase of a resize operation fails, the cache is left |
1898 | unusable. This will be detected only after "goto restart". |
1899 | */ |
1900 | if (!keycache->can_be_used) |
1901 | DBUG_RETURN(0); |
1902 | |
1903 | /* |
1904 | Find the hash_link for the requested file block (file, filepos). We |
1905 | do always get a hash_link here. It has registered our request so |
1906 | that no other thread can use it for another file block until we |
1907 | release the request (which is done by remove_reader() usually). The |
1908 | hash_link can have a block assigned to it or not. If there is a |
1909 | block, it may be assigned to this hash_link or not. In cases where a |
1910 | block is evicted from the cache, it is taken from the LRU ring and |
1911 | referenced by the new hash_link. But the block can still be assigned |
1912 | to its old hash_link for some time if it needs to be flushed first, |
1913 | or if there are other threads still reading it. |
1914 | |
1915 | Summary: |
1916 | hash_link is always returned. |
1917 | hash_link->block can be: |
1918 | - NULL or |
1919 | - not assigned to this hash_link or |
1920 | - assigned to this hash_link. If assigned, the block can have |
1921 | - invalid data (when freshly assigned) or |
1922 | - valid data. Valid data can be |
1923 | - changed over the file contents (dirty) or |
1924 | - not changed (clean). |
1925 | */ |
1926 | hash_link= get_hash_link(keycache, file, filepos); |
1927 | DBUG_ASSERT((hash_link->file == file) && (hash_link->diskpos == filepos)); |
1928 | |
1929 | page_status= -1; |
1930 | if ((block= hash_link->block) && |
1931 | block->hash_link == hash_link && (block->status & BLOCK_READ)) |
1932 | { |
1933 | /* Assigned block with valid (changed or unchanged) contents. */ |
1934 | page_status= PAGE_READ; |
1935 | } |
1936 | /* |
1937 | else (page_status == -1) |
1938 | - block == NULL or |
1939 | - block not assigned to this hash_link or |
1940 | - block assigned but not yet read from file (invalid data). |
1941 | */ |
1942 | |
1943 | if (keycache->in_resize) |
1944 | { |
1945 | /* This is a request during a resize operation */ |
1946 | |
1947 | if (!block) |
1948 | { |
1949 | struct st_my_thread_var *thread; |
1950 | |
1951 | /* |
1952 | The file block is not in the cache. We don't need it in the |
1953 | cache: we are going to read or write directly to file. Cancel |
1954 | the request. We can simply decrement hash_link->requests because |
1955 | we did not release cache_lock since increasing it. So no other |
1956 | thread can wait for our request to become released. |
1957 | */ |
1958 | if (hash_link->requests == 1) |
1959 | { |
1960 | /* |
1961 | We are the only one to request this hash_link (this file/pos). |
1962 | Free the hash_link. |
1963 | */ |
1964 | hash_link->requests--; |
1965 | unlink_hash(keycache, hash_link); |
1966 | DBUG_RETURN(0); |
1967 | } |
1968 | |
1969 | /* |
1970 | More requests on the hash_link. Someone tries to evict a block |
1971 | for this hash_link (could have started before resizing started). |
1972 | This means that the LRU ring is empty. Otherwise a block could |
1973 | be assigned immediately. Behave like a thread that wants to |
1974 | evict a block for this file/pos. Add to the queue of threads |
1975 | waiting for a block. Wait until there is one assigned. |
1976 | |
1977 | Refresh the request on the hash-link so that it cannot be reused |
1978 | for another file/pos. |
1979 | */ |
1980 | thread= my_thread_var; |
1981 | thread->keycache_link= (void *) hash_link; |
1982 | link_into_queue(&keycache->waiting_for_block, thread); |
1983 | do |
1984 | { |
1985 | KEYCACHE_DBUG_PRINT("find_key_block: wait" , |
1986 | ("suspend thread %ld" , (ulong) thread->id)); |
1987 | keycache_pthread_cond_wait(&thread->suspend, |
1988 | &keycache->cache_lock); |
1989 | } while (thread->next); |
1990 | thread->keycache_link= NULL; |
1991 | /* |
1992 | A block should now be assigned to the hash_link. But it may |
1993 | still need to be evicted. Anyway, we should re-check the |
1994 | situation. page_status must be set correctly. |
1995 | */ |
1996 | hash_link->requests--; |
1997 | goto restart; |
1998 | } /* end of if (!block) */ |
1999 | |
2000 | /* |
2001 | There is a block for this file/pos in the cache. Register a |
2002 | request on it. This unlinks it from the LRU ring (if it is there) |
2003 | and hence protects it against eviction (if not already in |
2004 | eviction). We need this for returning the block to the caller, for |
2005 | calling remove_reader() (for debugging purposes), and for calling |
2006 | free_block(). The only case where we don't need the request is if |
2007 | the block is in eviction. In that case we have to unregister the |
2008 | request later. |
2009 | */ |
2010 | reg_requests(keycache, block, 1); |
2011 | |
2012 | if (page_status != PAGE_READ) |
2013 | { |
2014 | /* |
2015 | - block not assigned to this hash_link or |
2016 | - block assigned but not yet read from file (invalid data). |
2017 | |
2018 | This must be a block in eviction. It will be read soon. We need |
2019 | to wait here until this happened. Otherwise the caller could |
2020 | access a wrong block or a block which is in read. While waiting |
2021 | we cannot lose hash_link nor block. We have registered a request |
2022 | on the hash_link. Everything can happen to the block but changes |
2023 | in the hash_link -> block relationship. In other words: |
2024 | everything can happen to the block but free or another completed |
2025 | eviction. |
2026 | |
2027 | Note that we bahave like a secondary requestor here. We just |
2028 | cannot return with PAGE_WAIT_TO_BE_READ. This would work for |
2029 | read requests and writes on dirty blocks that are not in flush |
2030 | only. Waiting here on COND_FOR_REQUESTED works in all |
2031 | situations. |
2032 | */ |
2033 | DBUG_ASSERT(((block->hash_link != hash_link) && |
2034 | (block->status & (BLOCK_IN_EVICTION | BLOCK_IN_SWITCH))) || |
2035 | ((block->hash_link == hash_link) && |
2036 | !(block->status & BLOCK_READ))); |
2037 | wait_on_queue(&block->wqueue[COND_FOR_REQUESTED], &keycache->cache_lock); |
2038 | /* |
2039 | Here we can trust that the block has been assigned to this |
2040 | hash_link (block->hash_link == hash_link) and read into the |
2041 | buffer (BLOCK_READ). The worst things possible here are that the |
2042 | block is in free (BLOCK_REASSIGNED). But the block is still |
2043 | assigned to the hash_link. The freeing thread waits until we |
2044 | release our request on the hash_link. The block must not be |
2045 | again in eviction because we registered an request on it before |
2046 | starting to wait. |
2047 | */ |
2048 | DBUG_ASSERT(block->hash_link == hash_link); |
2049 | DBUG_ASSERT(block->status & (BLOCK_READ | BLOCK_IN_USE)); |
2050 | DBUG_ASSERT(!(block->status & (BLOCK_IN_EVICTION | BLOCK_IN_SWITCH))); |
2051 | } |
2052 | /* |
2053 | The block is in the cache. Assigned to the hash_link. Valid data. |
2054 | Note that in case of page_st == PAGE_READ, the block can be marked |
2055 | for eviction. In any case it can be marked for freeing. |
2056 | */ |
2057 | |
2058 | if (!wrmode) |
2059 | { |
2060 | /* A reader can just read the block. */ |
2061 | *page_st= PAGE_READ; |
2062 | DBUG_ASSERT((hash_link->file == file) && |
2063 | (hash_link->diskpos == filepos) && |
2064 | (block->hash_link == hash_link)); |
2065 | DBUG_RETURN(block); |
2066 | } |
2067 | |
2068 | /* |
2069 | This is a writer. No two writers for the same block can exist. |
2070 | This must be assured by locks outside of the key cache. |
2071 | */ |
2072 | DBUG_ASSERT(!(block->status & BLOCK_FOR_UPDATE) || fail_block(block)); |
2073 | |
2074 | while (block->status & BLOCK_IN_FLUSH) |
2075 | { |
2076 | /* |
2077 | Wait until the block is flushed to file. Do not release the |
2078 | request on the hash_link yet to prevent that the block is freed |
2079 | or reassigned while we wait. While we wait, several things can |
2080 | happen to the block, including another flush. But the block |
2081 | cannot be reassigned to another hash_link until we release our |
2082 | request on it. But it can be marked BLOCK_REASSIGNED from free |
2083 | or eviction, while they wait for us to release the hash_link. |
2084 | */ |
2085 | wait_on_queue(&block->wqueue[COND_FOR_SAVED], &keycache->cache_lock); |
2086 | /* |
2087 | If the flush phase failed, the resize could have finished while |
2088 | we waited here. |
2089 | */ |
2090 | if (!keycache->in_resize) |
2091 | { |
2092 | remove_reader(block); |
2093 | unreg_request(keycache, block, 1); |
2094 | goto restart; |
2095 | } |
2096 | DBUG_ASSERT(block->status & (BLOCK_READ | BLOCK_IN_USE)); |
2097 | DBUG_ASSERT(!(block->status & BLOCK_FOR_UPDATE) || fail_block(block)); |
2098 | DBUG_ASSERT(block->hash_link == hash_link); |
2099 | } |
2100 | |
2101 | if (block->status & BLOCK_CHANGED) |
2102 | { |
2103 | /* |
2104 | We want to write a block with changed contents. If the cache |
2105 | block size is bigger than the callers block size (e.g. MyISAM), |
2106 | the caller may replace part of the block only. Changes of the |
2107 | other part of the block must be preserved. Since the block has |
2108 | not yet been selected for flush, we can still add our changes. |
2109 | */ |
2110 | *page_st= PAGE_READ; |
2111 | DBUG_ASSERT((hash_link->file == file) && |
2112 | (hash_link->diskpos == filepos) && |
2113 | (block->hash_link == hash_link)); |
2114 | DBUG_RETURN(block); |
2115 | } |
2116 | |
2117 | /* |
2118 | This is a write request for a clean block. We do not want to have |
2119 | new dirty blocks in the cache while resizing. We will free the |
2120 | block and write directly to file. If the block is in eviction or |
2121 | in free, we just let it go. |
2122 | |
2123 | Unregister from the hash_link. This must be done before freeing |
2124 | the block. And it must be done if not freeing the block. Because |
2125 | we could have waited above, we need to call remove_reader(). Other |
2126 | threads could wait for us to release our request on the hash_link. |
2127 | */ |
2128 | remove_reader(block); |
2129 | |
2130 | /* If the block is not in eviction and not in free, we can free it. */ |
2131 | if (!(block->status & (BLOCK_IN_EVICTION | BLOCK_IN_SWITCH | |
2132 | BLOCK_REASSIGNED))) |
2133 | { |
2134 | /* |
2135 | Free block as we are going to write directly to file. |
2136 | Although we have an exlusive lock for the updated key part, |
2137 | the control can be yielded by the current thread as we might |
2138 | have unfinished readers of other key parts in the block |
2139 | buffer. Still we are guaranteed not to have any readers |
2140 | of the key part we are writing into until the block is |
2141 | removed from the cache as we set the BLOCK_REASSIGNED |
2142 | flag (see the code below that handles reading requests). |
2143 | */ |
2144 | free_block(keycache, block); |
2145 | } |
2146 | else |
2147 | { |
2148 | /* |
2149 | The block will be evicted/freed soon. Don't touch it in any way. |
2150 | Unregister the request that we registered above. |
2151 | */ |
2152 | unreg_request(keycache, block, 1); |
2153 | |
2154 | /* |
2155 | The block is still assigned to the hash_link (the file/pos that |
2156 | we are going to write to). Wait until the eviction/free is |
2157 | complete. Otherwise the direct write could complete before all |
2158 | readers are done with the block. So they could read outdated |
2159 | data. |
2160 | |
2161 | Since we released our request on the hash_link, it can be reused |
2162 | for another file/pos. Hence we cannot just check for |
2163 | block->hash_link == hash_link. As long as the resize is |
2164 | proceeding the block cannot be reassigned to the same file/pos |
2165 | again. So we can terminate the loop when the block is no longer |
2166 | assigned to this file/pos. |
2167 | */ |
2168 | do |
2169 | { |
2170 | wait_on_queue(&block->wqueue[COND_FOR_SAVED], |
2171 | &keycache->cache_lock); |
2172 | /* |
2173 | If the flush phase failed, the resize could have finished |
2174 | while we waited here. |
2175 | */ |
2176 | if (!keycache->in_resize) |
2177 | goto restart; |
2178 | } while (block->hash_link && |
2179 | (block->hash_link->file == file) && |
2180 | (block->hash_link->diskpos == filepos)); |
2181 | } |
2182 | DBUG_RETURN(0); |
2183 | } |
2184 | |
2185 | if (page_status == PAGE_READ && |
2186 | (block->status & (BLOCK_IN_EVICTION | BLOCK_IN_SWITCH | |
2187 | BLOCK_REASSIGNED))) |
2188 | { |
2189 | /* |
2190 | This is a request for a block to be removed from cache. The block |
2191 | is assigned to this hash_link and contains valid data, but is |
2192 | marked for eviction or to be freed. Possible reasons why it has |
2193 | not yet been evicted/freed can be a flush before reassignment |
2194 | (BLOCK_IN_SWITCH), readers of the block have not finished yet |
2195 | (BLOCK_REASSIGNED), or the evicting thread did not yet awake after |
2196 | the block has been selected for it (BLOCK_IN_EVICTION). |
2197 | */ |
2198 | |
2199 | KEYCACHE_DBUG_PRINT("find_key_block" , |
2200 | ("request for old page in block %u " |
2201 | "wrmode: %d block->status: %d" , |
2202 | BLOCK_NUMBER(block), wrmode, block->status)); |
2203 | /* |
2204 | Only reading requests can proceed until the old dirty page is flushed, |
2205 | all others are to be suspended, then resubmitted |
2206 | */ |
2207 | if (!wrmode && !(block->status & BLOCK_REASSIGNED)) |
2208 | { |
2209 | /* |
2210 | This is a read request and the block not yet reassigned. We can |
2211 | register our request and proceed. This unlinks the block from |
2212 | the LRU ring and protects it against eviction. |
2213 | */ |
2214 | reg_requests(keycache, block, 1); |
2215 | } |
2216 | else |
2217 | { |
2218 | /* |
2219 | Either this is a write request for a block that is in eviction |
2220 | or in free. We must not use it any more. Instead we must evict |
2221 | another block. But we cannot do this before the eviction/free is |
2222 | done. Otherwise we would find the same hash_link + block again |
2223 | and again. |
2224 | |
2225 | Or this is a read request for a block in eviction/free that does |
2226 | not require a flush, but waits for readers to finish with the |
2227 | block. We do not read this block to let the eviction/free happen |
2228 | as soon as possible. Again we must wait so that we don't find |
2229 | the same hash_link + block again and again. |
2230 | */ |
2231 | DBUG_ASSERT(hash_link->requests); |
2232 | hash_link->requests--; |
2233 | KEYCACHE_DBUG_PRINT("find_key_block" , |
2234 | ("request waiting for old page to be saved" )); |
2235 | wait_on_queue(&block->wqueue[COND_FOR_SAVED], &keycache->cache_lock); |
2236 | KEYCACHE_DBUG_PRINT("find_key_block" , |
2237 | ("request for old page resubmitted" )); |
2238 | /* |
2239 | The block is no longer assigned to this hash_link. |
2240 | Get another one. |
2241 | */ |
2242 | goto restart; |
2243 | } |
2244 | } |
2245 | else |
2246 | { |
2247 | /* |
2248 | This is a request for a new block or for a block not to be removed. |
2249 | Either |
2250 | - block == NULL or |
2251 | - block not assigned to this hash_link or |
2252 | - block assigned but not yet read from file, |
2253 | or |
2254 | - block assigned with valid (changed or unchanged) data and |
2255 | - it will not be reassigned/freed. |
2256 | */ |
2257 | if (! block) |
2258 | { |
2259 | /* No block is assigned to the hash_link yet. */ |
2260 | if (keycache->blocks_unused) |
2261 | { |
2262 | if (keycache->free_block_list) |
2263 | { |
2264 | /* There is a block in the free list. */ |
2265 | block= keycache->free_block_list; |
2266 | keycache->free_block_list= block->next_used; |
2267 | block->next_used= NULL; |
2268 | } |
2269 | else |
2270 | { |
2271 | size_t block_mem_offset; |
2272 | /* There are some never used blocks, take first of them */ |
2273 | DBUG_ASSERT(keycache->blocks_used < |
2274 | (ulong) keycache->disk_blocks); |
2275 | block= &keycache->block_root[keycache->blocks_used]; |
2276 | block_mem_offset= |
2277 | ((size_t) keycache->blocks_used) * keycache->key_cache_block_size; |
2278 | block->buffer= ADD_TO_PTR(keycache->block_mem, |
2279 | block_mem_offset, |
2280 | uchar*); |
2281 | keycache->blocks_used++; |
2282 | DBUG_ASSERT(!block->next_used); |
2283 | } |
2284 | DBUG_ASSERT(!block->prev_used); |
2285 | DBUG_ASSERT(!block->next_changed); |
2286 | DBUG_ASSERT(!block->prev_changed); |
2287 | DBUG_ASSERT(!block->hash_link); |
2288 | DBUG_ASSERT(!block->status); |
2289 | DBUG_ASSERT(!block->requests); |
2290 | keycache->blocks_unused--; |
2291 | block->status= BLOCK_IN_USE; |
2292 | block->length= 0; |
2293 | block->offset= keycache->key_cache_block_size; |
2294 | block->requests= 1; |
2295 | block->temperature= BLOCK_COLD; |
2296 | block->hits_left= init_hits_left; |
2297 | block->last_hit_time= 0; |
2298 | block->hash_link= hash_link; |
2299 | hash_link->block= block; |
2300 | link_to_file_list(keycache, block, file, 0); |
2301 | page_status= PAGE_TO_BE_READ; |
2302 | KEYCACHE_DBUG_PRINT("find_key_block" , |
2303 | ("got free or never used block %u" , |
2304 | BLOCK_NUMBER(block))); |
2305 | } |
2306 | else |
2307 | { |
2308 | /* |
2309 | There are no free blocks and no never used blocks, use a block |
2310 | from the LRU ring. |
2311 | */ |
2312 | |
2313 | if (! keycache->used_last) |
2314 | { |
2315 | /* |
2316 | The LRU ring is empty. Wait until a new block is added to |
2317 | it. Several threads might wait here for the same hash_link, |
2318 | all of them must get the same block. While waiting for a |
2319 | block, after a block is selected for this hash_link, other |
2320 | threads can run first before this one awakes. During this |
2321 | time interval other threads find this hash_link pointing to |
2322 | the block, which is still assigned to another hash_link. In |
2323 | this case the block is not marked BLOCK_IN_SWITCH yet, but |
2324 | it is marked BLOCK_IN_EVICTION. |
2325 | */ |
2326 | |
2327 | struct st_my_thread_var *thread= my_thread_var; |
2328 | thread->keycache_link= (void *) hash_link; |
2329 | link_into_queue(&keycache->waiting_for_block, thread); |
2330 | do |
2331 | { |
2332 | KEYCACHE_DBUG_PRINT("find_key_block: wait" , |
2333 | ("suspend thread %ld" , (ulong) thread->id)); |
2334 | keycache_pthread_cond_wait(&thread->suspend, |
2335 | &keycache->cache_lock); |
2336 | } |
2337 | while (thread->next); |
2338 | thread->keycache_link= NULL; |
2339 | /* Assert that block has a request registered. */ |
2340 | DBUG_ASSERT(hash_link->block->requests); |
2341 | /* Assert that block is not in LRU ring. */ |
2342 | DBUG_ASSERT(!hash_link->block->next_used); |
2343 | DBUG_ASSERT(!hash_link->block->prev_used); |
2344 | } |
2345 | /* |
2346 | If we waited above, hash_link->block has been assigned by |
2347 | link_block(). Otherwise it is still NULL. In the latter case |
2348 | we need to grab a block from the LRU ring ourselves. |
2349 | */ |
2350 | block= hash_link->block; |
2351 | if (! block) |
2352 | { |
2353 | /* Select the last block from the LRU ring. */ |
2354 | block= keycache->used_last->next_used; |
2355 | block->hits_left= init_hits_left; |
2356 | block->last_hit_time= 0; |
2357 | hash_link->block= block; |
2358 | /* |
2359 | Register a request on the block. This unlinks it from the |
2360 | LRU ring and protects it against eviction. |
2361 | */ |
2362 | DBUG_ASSERT(!block->requests); |
2363 | reg_requests(keycache, block,1); |
2364 | /* |
2365 | We do not need to set block->status|= BLOCK_IN_EVICTION here |
2366 | because we will set block->status|= BLOCK_IN_SWITCH |
2367 | immediately without releasing the lock in between. This does |
2368 | also support debugging. When looking at the block, one can |
2369 | see if the block has been selected by link_block() after the |
2370 | LRU ring was empty, or if it was grabbed directly from the |
2371 | LRU ring in this branch. |
2372 | */ |
2373 | } |
2374 | |
2375 | /* |
2376 | If we had to wait above, there is a small chance that another |
2377 | thread grabbed this block for the same file block already. But |
2378 | in most cases the first condition is true. |
2379 | */ |
2380 | if (block->hash_link != hash_link && |
2381 | ! (block->status & BLOCK_IN_SWITCH) ) |
2382 | { |
2383 | /* this is a primary request for a new page */ |
2384 | block->status|= BLOCK_IN_SWITCH; |
2385 | |
2386 | KEYCACHE_DBUG_PRINT("find_key_block" , |
2387 | ("got block %u for new page" , BLOCK_NUMBER(block))); |
2388 | |
2389 | if (block->status & BLOCK_CHANGED) |
2390 | { |
2391 | /* The block contains a dirty page - push it out of the cache */ |
2392 | |
2393 | KEYCACHE_DBUG_PRINT("find_key_block" , ("block is dirty" )); |
2394 | if (block->status & BLOCK_IN_FLUSH) |
2395 | { |
2396 | /* |
2397 | The block is marked for flush. If we do not wait here, |
2398 | it could happen that we write the block, reassign it to |
2399 | another file block, then, before the new owner can read |
2400 | the new file block, the flusher writes the cache block |
2401 | (which still has the old contents) to the new file block! |
2402 | */ |
2403 | wait_on_queue(&block->wqueue[COND_FOR_SAVED], |
2404 | &keycache->cache_lock); |
2405 | /* |
2406 | The block is marked BLOCK_IN_SWITCH. It should be left |
2407 | alone except for reading. No free, no write. |
2408 | */ |
2409 | DBUG_ASSERT(block->status & (BLOCK_READ | BLOCK_IN_USE)); |
2410 | DBUG_ASSERT(!(block->status & (BLOCK_REASSIGNED | |
2411 | BLOCK_CHANGED | |
2412 | BLOCK_FOR_UPDATE))); |
2413 | } |
2414 | else |
2415 | { |
2416 | block->status|= BLOCK_IN_FLUSH | BLOCK_IN_FLUSHWRITE; |
2417 | /* |
2418 | BLOCK_IN_EVICTION may be true or not. Other flags must |
2419 | have a fixed value. |
2420 | */ |
2421 | DBUG_ASSERT((block->status & ~BLOCK_IN_EVICTION) == |
2422 | (BLOCK_READ | BLOCK_IN_SWITCH | |
2423 | BLOCK_IN_FLUSH | BLOCK_IN_FLUSHWRITE | |
2424 | BLOCK_CHANGED | BLOCK_IN_USE)); |
2425 | DBUG_ASSERT(block->hash_link); |
2426 | |
2427 | keycache_pthread_mutex_unlock(&keycache->cache_lock); |
2428 | /* |
2429 | The call is thread safe because only the current |
2430 | thread might change the block->hash_link value |
2431 | */ |
2432 | error= (int)my_pwrite(block->hash_link->file, |
2433 | block->buffer + block->offset, |
2434 | block->length - block->offset, |
2435 | block->hash_link->diskpos + block->offset, |
2436 | MYF(MY_NABP | MY_WAIT_IF_FULL)); |
2437 | keycache_pthread_mutex_lock(&keycache->cache_lock); |
2438 | |
2439 | /* Block status must not have changed. */ |
2440 | DBUG_ASSERT((block->status & ~BLOCK_IN_EVICTION) == |
2441 | (BLOCK_READ | BLOCK_IN_SWITCH | |
2442 | BLOCK_IN_FLUSH | BLOCK_IN_FLUSHWRITE | |
2443 | BLOCK_CHANGED | BLOCK_IN_USE) || fail_block(block)); |
2444 | keycache->global_cache_write++; |
2445 | } |
2446 | } |
2447 | |
2448 | block->status|= BLOCK_REASSIGNED; |
2449 | /* |
2450 | The block comes from the LRU ring. It must have a hash_link |
2451 | assigned. |
2452 | */ |
2453 | DBUG_ASSERT(block->hash_link); |
2454 | if (block->hash_link) |
2455 | { |
2456 | /* |
2457 | All pending requests for this page must be resubmitted. |
2458 | This must be done before waiting for readers. They could |
2459 | wait for the flush to complete. And we must also do it |
2460 | after the wait. Flushers might try to free the block while |
2461 | we wait. They would wait until the reassignment is |
2462 | complete. Also the block status must reflect the correct |
2463 | situation: The block is not changed nor in flush any more. |
2464 | Note that we must not change the BLOCK_CHANGED flag |
2465 | outside of link_to_file_list() so that it is always in the |
2466 | correct queue and the *blocks_changed counters are |
2467 | correct. |
2468 | */ |
2469 | block->status&= ~(BLOCK_IN_FLUSH | BLOCK_IN_FLUSHWRITE); |
2470 | link_to_file_list(keycache, block, block->hash_link->file, 1); |
2471 | release_whole_queue(&block->wqueue[COND_FOR_SAVED]); |
2472 | /* |
2473 | The block is still assigned to its old hash_link. |
2474 | Wait until all pending read requests |
2475 | for this page are executed |
2476 | (we could have avoided this waiting, if we had read |
2477 | a page in the cache in a sweep, without yielding control) |
2478 | */ |
2479 | wait_for_readers(keycache, block); |
2480 | DBUG_ASSERT(block->hash_link && block->hash_link->block == block && |
2481 | block->prev_changed); |
2482 | /* The reader must not have been a writer. */ |
2483 | DBUG_ASSERT(!(block->status & BLOCK_CHANGED)); |
2484 | |
2485 | /* Wake flushers that might have found the block in between. */ |
2486 | release_whole_queue(&block->wqueue[COND_FOR_SAVED]); |
2487 | |
2488 | /* Remove the hash link for the old file block from the hash. */ |
2489 | unlink_hash(keycache, block->hash_link); |
2490 | |
2491 | /* |
2492 | For sanity checks link_to_file_list() asserts that block |
2493 | and hash_link refer to each other. Hence we need to assign |
2494 | the hash_link first, but then we would not know if it was |
2495 | linked before. Hence we would not know if to unlink it. So |
2496 | unlink it here and call link_to_file_list(..., FALSE). |
2497 | */ |
2498 | unlink_changed(block); |
2499 | } |
2500 | block->status= error ? BLOCK_ERROR : BLOCK_IN_USE ; |
2501 | block->length= 0; |
2502 | block->offset= keycache->key_cache_block_size; |
2503 | block->hash_link= hash_link; |
2504 | link_to_file_list(keycache, block, file, 0); |
2505 | page_status= PAGE_TO_BE_READ; |
2506 | |
2507 | KEYCACHE_DBUG_ASSERT(block->hash_link->block == block); |
2508 | KEYCACHE_DBUG_ASSERT(hash_link->block->hash_link == hash_link); |
2509 | } |
2510 | else |
2511 | { |
2512 | /* |
2513 | Either (block->hash_link == hash_link), |
2514 | or (block->status & BLOCK_IN_SWITCH). |
2515 | |
2516 | This is for secondary requests for a new file block only. |
2517 | Either it is already assigned to the new hash_link meanwhile |
2518 | (if we had to wait due to empty LRU), or it is already in |
2519 | eviction by another thread. Since this block has been |
2520 | grabbed from the LRU ring and attached to this hash_link, |
2521 | another thread cannot grab the same block from the LRU ring |
2522 | anymore. If the block is in eviction already, it must become |
2523 | attached to the same hash_link and as such destined for the |
2524 | same file block. |
2525 | */ |
2526 | KEYCACHE_DBUG_PRINT("find_key_block" , |
2527 | ("block->hash_link: %p hash_link: %p " |
2528 | "block->status: %u" , block->hash_link, |
2529 | hash_link, block->status )); |
2530 | page_status= (((block->hash_link == hash_link) && |
2531 | (block->status & BLOCK_READ)) ? |
2532 | PAGE_READ : PAGE_WAIT_TO_BE_READ); |
2533 | } |
2534 | } |
2535 | } |
2536 | else |
2537 | { |
2538 | /* |
2539 | Block is not NULL. This hash_link points to a block. |
2540 | Either |
2541 | - block not assigned to this hash_link (yet) or |
2542 | - block assigned but not yet read from file, |
2543 | or |
2544 | - block assigned with valid (changed or unchanged) data and |
2545 | - it will not be reassigned/freed. |
2546 | |
2547 | The first condition means hash_link points to a block in |
2548 | eviction. This is not necessarily marked by BLOCK_IN_SWITCH yet. |
2549 | But then it is marked BLOCK_IN_EVICTION. See the NOTE in |
2550 | link_block(). In both cases it is destined for this hash_link |
2551 | and its file block address. When this hash_link got its block |
2552 | address, the block was removed from the LRU ring and cannot be |
2553 | selected for eviction (for another hash_link) again. |
2554 | |
2555 | Register a request on the block. This is another protection |
2556 | against eviction. |
2557 | */ |
2558 | DBUG_ASSERT(((block->hash_link != hash_link) && |
2559 | (block->status & (BLOCK_IN_EVICTION | BLOCK_IN_SWITCH))) || |
2560 | ((block->hash_link == hash_link) && |
2561 | !(block->status & BLOCK_READ)) || |
2562 | ((block->status & BLOCK_READ) && |
2563 | !(block->status & (BLOCK_IN_EVICTION | BLOCK_IN_SWITCH)))); |
2564 | reg_requests(keycache, block, 1); |
2565 | KEYCACHE_DBUG_PRINT("find_key_block" , |
2566 | ("block->hash_link: %p hash_link: %p " |
2567 | "block->status: %u" , block->hash_link, |
2568 | hash_link, block->status )); |
2569 | page_status= (((block->hash_link == hash_link) && |
2570 | (block->status & BLOCK_READ)) ? |
2571 | PAGE_READ : PAGE_WAIT_TO_BE_READ); |
2572 | } |
2573 | } |
2574 | |
2575 | KEYCACHE_DBUG_ASSERT(page_status != -1); |
2576 | /* Same assert basically, but be very sure. */ |
2577 | KEYCACHE_DBUG_ASSERT(block); |
2578 | /* Assert that block has a request and is not in LRU ring. */ |
2579 | DBUG_ASSERT(block->requests); |
2580 | DBUG_ASSERT(!block->next_used); |
2581 | DBUG_ASSERT(!block->prev_used); |
2582 | /* Assert that we return the correct block. */ |
2583 | DBUG_ASSERT((page_status == PAGE_WAIT_TO_BE_READ) || |
2584 | ((block->hash_link->file == file) && |
2585 | (block->hash_link->diskpos == filepos))); |
2586 | *page_st=page_status; |
2587 | KEYCACHE_DBUG_PRINT("find_key_block" , |
2588 | ("fd: %d pos: %lu block->status: %u page_status: %d" , |
2589 | file, (ulong) filepos, block->status, |
2590 | page_status)); |
2591 | |
2592 | #if !defined(DBUG_OFF) && defined(EXTRA_DEBUG) |
2593 | DBUG_EXECUTE("check_keycache2" , |
2594 | test_key_cache(keycache, "end of find_key_block" ,0);); |
2595 | #endif |
2596 | KEYCACHE_THREAD_TRACE("find_key_block:end" ); |
2597 | DBUG_RETURN(block); |
2598 | } |
2599 | |
2600 | |
2601 | /* |
2602 | Read into a key cache block buffer from disk. |
2603 | |
2604 | SYNOPSIS |
2605 | |
2606 | read_block_{primary|secondary}() |
2607 | keycache pointer to a key cache data structure |
2608 | block block to which buffer the data is to be read |
2609 | read_length size of data to be read |
2610 | min_length at least so much data must be read |
2611 | |
2612 | RETURN VALUE |
2613 | None |
2614 | |
2615 | NOTES. |
2616 | The function either reads a page data from file to the block buffer, |
2617 | or waits until another thread reads it. What page to read is determined |
2618 | by a block parameter - reference to a hash link for this page. |
2619 | If an error occurs THE BLOCK_ERROR bit is set in the block status. |
2620 | We do not report error when the size of successfully read |
2621 | portion is less than read_length, but not less than min_length. |
2622 | */ |
2623 | |
2624 | static void read_block_primary(SIMPLE_KEY_CACHE_CB *keycache, |
2625 | BLOCK_LINK *block, uint read_length, |
2626 | uint min_length) |
2627 | { |
2628 | size_t got_length; |
2629 | |
2630 | /* On entry cache_lock is locked */ |
2631 | |
2632 | KEYCACHE_THREAD_TRACE("read_block_primary" ); |
2633 | |
2634 | /* |
2635 | This code is executed only by threads that submitted primary |
2636 | requests. Until block->status contains BLOCK_READ, all other |
2637 | request for the block become secondary requests. For a primary |
2638 | request the block must be properly initialized. |
2639 | */ |
2640 | DBUG_ASSERT(((block->status & ~BLOCK_FOR_UPDATE) == BLOCK_IN_USE) || |
2641 | fail_block(block)); |
2642 | DBUG_ASSERT((block->length == 0) || fail_block(block)); |
2643 | DBUG_ASSERT((block->offset == keycache->key_cache_block_size) || |
2644 | fail_block(block)); |
2645 | DBUG_ASSERT((block->requests > 0) || fail_block(block)); |
2646 | |
2647 | KEYCACHE_DBUG_PRINT("read_block_primary" , |
2648 | ("page to be read by primary request" )); |
2649 | |
2650 | keycache->global_cache_read++; |
2651 | /* Page is not in buffer yet, is to be read from disk */ |
2652 | keycache_pthread_mutex_unlock(&keycache->cache_lock); |
2653 | /* |
2654 | Here other threads may step in and register as secondary readers. |
2655 | They will register in block->wqueue[COND_FOR_REQUESTED]. |
2656 | */ |
2657 | got_length= my_pread(block->hash_link->file, block->buffer, |
2658 | read_length, block->hash_link->diskpos, MYF(0)); |
2659 | keycache_pthread_mutex_lock(&keycache->cache_lock); |
2660 | /* |
2661 | The block can now have been marked for free (in case of |
2662 | FLUSH_RELEASE). Otherwise the state must be unchanged. |
2663 | */ |
2664 | DBUG_ASSERT(((block->status & ~(BLOCK_REASSIGNED | |
2665 | BLOCK_FOR_UPDATE)) == BLOCK_IN_USE) || |
2666 | fail_block(block)); |
2667 | DBUG_ASSERT((block->length == 0) || fail_block(block)); |
2668 | DBUG_ASSERT((block->offset == keycache->key_cache_block_size) || |
2669 | fail_block(block)); |
2670 | DBUG_ASSERT((block->requests > 0) || fail_block(block)); |
2671 | |
2672 | if (got_length < min_length) |
2673 | block->status|= BLOCK_ERROR; |
2674 | else |
2675 | { |
2676 | block->status|= BLOCK_READ; |
2677 | block->length= (uint)got_length; |
2678 | /* |
2679 | Do not set block->offset here. If this block is marked |
2680 | BLOCK_CHANGED later, we want to flush only the modified part. So |
2681 | only a writer may set block->offset down from |
2682 | keycache->key_cache_block_size. |
2683 | */ |
2684 | } |
2685 | KEYCACHE_DBUG_PRINT("read_block_primary" , |
2686 | ("primary request: new page in cache" )); |
2687 | /* Signal that all pending requests for this page now can be processed */ |
2688 | release_whole_queue(&block->wqueue[COND_FOR_REQUESTED]); |
2689 | |
2690 | DBUG_ASSERT(keycache->can_be_used); |
2691 | } |
2692 | |
2693 | |
2694 | static void read_block_secondary(SIMPLE_KEY_CACHE_CB *keycache, |
2695 | BLOCK_LINK *block) |
2696 | { |
2697 | KEYCACHE_THREAD_TRACE("read_block_secondary" ); |
2698 | |
2699 | /* |
2700 | This code is executed only by threads that submitted secondary |
2701 | requests. At this point it could happen that the cache block is |
2702 | not yet assigned to the hash_link for the requested file block. |
2703 | But at awake from the wait this should be the case. Unfortunately |
2704 | we cannot assert this here because we do not know the hash_link |
2705 | for the requested file block nor the file and position. So we have |
2706 | to assert this in the caller. |
2707 | */ |
2708 | KEYCACHE_DBUG_PRINT("read_block_secondary" , |
2709 | ("secondary request waiting for new page to be read" )); |
2710 | |
2711 | wait_on_queue(&block->wqueue[COND_FOR_REQUESTED], &keycache->cache_lock); |
2712 | |
2713 | KEYCACHE_DBUG_PRINT("read_block_secondary" , |
2714 | ("secondary request: new page in cache" )); |
2715 | |
2716 | DBUG_ASSERT(keycache->can_be_used); |
2717 | DBUG_ASSERT(block->status & (BLOCK_READ | BLOCK_IN_USE)); |
2718 | } |
2719 | |
2720 | |
2721 | /* |
2722 | Read a block of data from a simple key cache into a buffer |
2723 | |
2724 | SYNOPSIS |
2725 | |
2726 | simple_key_cache_read() |
2727 | keycache pointer to the control block of a simple key cache |
2728 | file handler for the file for the block of data to be read |
2729 | filepos position of the block of data in the file |
2730 | level determines the weight of the data |
2731 | buff buffer to where the data must be placed |
2732 | length length of the buffer |
2733 | block_length length of the read data from a key cache block |
2734 | return_buffer return pointer to the key cache buffer with the data |
2735 | |
2736 | DESCRIPTION |
2737 | This function is the implementation of the key_cache_read interface |
2738 | function that is employed by simple (non-partitioned) key caches. |
2739 | The function takes the parameter keycache as a pointer to the |
2740 | control block structure of the type SIMPLE_KEY_CACHE_CB for a simple key |
2741 | cache. |
2742 | In a general case the function reads a block of data from the key cache |
2743 | into the buffer buff of the size specified by the parameter length. The |
2744 | beginning of the block of data to be read is specified by the parameters |
2745 | file and filepos. The length of the read data is the same as the length |
2746 | of the buffer. The data is read into the buffer in key_cache_block_size |
2747 | increments. If the next portion of the data is not found in any key cache |
2748 | block, first it is read from file into the key cache. |
2749 | If the parameter return_buffer is not ignored and its value is TRUE, and |
2750 | the data to be read of the specified size block_length can be read from one |
2751 | key cache buffer, then the function returns a pointer to the data in the |
2752 | key cache buffer. |
2753 | The function takse into account parameters block_length and return buffer |
2754 | only in a single-threaded environment. |
2755 | The parameter 'level' is used only by the midpoint insertion strategy |
2756 | when the data or its portion cannot be found in the key cache. |
2757 | |
2758 | RETURN VALUE |
2759 | Returns address from where the data is placed if successful, 0 - otherwise. |
2760 | |
2761 | NOTES |
2762 | Filepos must be a multiple of 'block_length', but it doesn't |
2763 | have to be a multiple of key_cache_block_size; |
2764 | */ |
2765 | |
2766 | uchar *simple_key_cache_read(SIMPLE_KEY_CACHE_CB *keycache, |
2767 | File file, my_off_t filepos, int level, |
2768 | uchar *buff, uint length, |
2769 | uint block_length __attribute__((unused)), |
2770 | int return_buffer __attribute__((unused))) |
2771 | { |
2772 | my_bool locked_and_incremented= FALSE; |
2773 | int error=0; |
2774 | uchar *start= buff; |
2775 | DBUG_ENTER("simple_key_cache_read" ); |
2776 | DBUG_PRINT("enter" , ("fd: %u pos: %lu length: %u" , |
2777 | (uint) file, (ulong) filepos, length)); |
2778 | |
2779 | if (keycache->key_cache_inited) |
2780 | { |
2781 | /* Key cache is used */ |
2782 | reg1 BLOCK_LINK *block; |
2783 | uint read_length; |
2784 | uint offset; |
2785 | int page_st; |
2786 | |
2787 | if (MYSQL_KEYCACHE_READ_START_ENABLED()) |
2788 | { |
2789 | MYSQL_KEYCACHE_READ_START(my_filename(file), length, |
2790 | (ulong) (keycache->blocks_used * |
2791 | keycache->key_cache_block_size), |
2792 | (ulong) (keycache->blocks_unused * |
2793 | keycache->key_cache_block_size)); |
2794 | } |
2795 | |
2796 | /* |
2797 | When the key cache is once initialized, we use the cache_lock to |
2798 | reliably distinguish the cases of normal operation, resizing, and |
2799 | disabled cache. We always increment and decrement |
2800 | 'cnt_for_resize_op' so that a resizer can wait for pending I/O. |
2801 | */ |
2802 | keycache_pthread_mutex_lock(&keycache->cache_lock); |
2803 | /* |
2804 | Cache resizing has two phases: Flushing and re-initializing. In |
2805 | the flush phase read requests are allowed to bypass the cache for |
2806 | blocks not in the cache. find_key_block() returns NULL in this |
2807 | case. |
2808 | |
2809 | After the flush phase new I/O requests must wait until the |
2810 | re-initialization is done. The re-initialization can be done only |
2811 | if no I/O request is in progress. The reason is that |
2812 | key_cache_block_size can change. With enabled cache, I/O is done |
2813 | in chunks of key_cache_block_size. Every chunk tries to use a |
2814 | cache block first. If the block size changes in the middle, a |
2815 | block could be missed and old data could be read. |
2816 | */ |
2817 | while (keycache->in_resize && !keycache->resize_in_flush) |
2818 | wait_on_queue(&keycache->resize_queue, &keycache->cache_lock); |
2819 | /* Register the I/O for the next resize. */ |
2820 | inc_counter_for_resize_op(keycache); |
2821 | locked_and_incremented= TRUE; |
2822 | /* Requested data may not always be aligned to cache blocks. */ |
2823 | offset= (uint) (filepos % keycache->key_cache_block_size); |
2824 | /* Read data in key_cache_block_size increments */ |
2825 | do |
2826 | { |
2827 | /* Cache could be disabled in a later iteration. */ |
2828 | if (!keycache->can_be_used) |
2829 | { |
2830 | KEYCACHE_DBUG_PRINT("key_cache_read" , ("keycache cannot be used" )); |
2831 | goto no_key_cache; |
2832 | } |
2833 | /* Start reading at the beginning of the cache block. */ |
2834 | filepos-= offset; |
2835 | /* Do not read beyond the end of the cache block. */ |
2836 | read_length= length; |
2837 | set_if_smaller(read_length, keycache->key_cache_block_size-offset); |
2838 | KEYCACHE_DBUG_ASSERT(read_length > 0); |
2839 | |
2840 | /* Request the cache block that matches file/pos. */ |
2841 | keycache->global_cache_r_requests++; |
2842 | |
2843 | MYSQL_KEYCACHE_READ_BLOCK(keycache->key_cache_block_size); |
2844 | |
2845 | block=find_key_block(keycache, file, filepos, level, 0, &page_st); |
2846 | if (!block) |
2847 | { |
2848 | /* |
2849 | This happens only for requests submitted during key cache |
2850 | resize. The block is not in the cache and shall not go in. |
2851 | Read directly from file. |
2852 | */ |
2853 | keycache->global_cache_read++; |
2854 | keycache_pthread_mutex_unlock(&keycache->cache_lock); |
2855 | error= (my_pread(file, (uchar*) buff, read_length, |
2856 | filepos + offset, MYF(MY_NABP)) != 0); |
2857 | keycache_pthread_mutex_lock(&keycache->cache_lock); |
2858 | goto next_block; |
2859 | } |
2860 | if (!(block->status & BLOCK_ERROR)) |
2861 | { |
2862 | if (page_st == PAGE_TO_BE_READ) |
2863 | { |
2864 | MYSQL_KEYCACHE_READ_MISS(); |
2865 | read_block_primary(keycache, block, |
2866 | keycache->key_cache_block_size, read_length+offset); |
2867 | } |
2868 | else if (page_st == PAGE_WAIT_TO_BE_READ) |
2869 | { |
2870 | MYSQL_KEYCACHE_READ_MISS(); |
2871 | /* The requested page is to be read into the block buffer */ |
2872 | read_block_secondary(keycache, block); |
2873 | |
2874 | /* |
2875 | A secondary request must now have the block assigned to the |
2876 | requested file block. |
2877 | */ |
2878 | DBUG_ASSERT(block->hash_link->file == file); |
2879 | DBUG_ASSERT(block->hash_link->diskpos == filepos); |
2880 | } |
2881 | else if (block->length < read_length + offset) |
2882 | { |
2883 | /* |
2884 | Impossible if nothing goes wrong: |
2885 | this could only happen if we are using a file with |
2886 | small key blocks and are trying to read outside the file |
2887 | */ |
2888 | my_errno= -1; |
2889 | block->status|= BLOCK_ERROR; |
2890 | } |
2891 | else |
2892 | { |
2893 | MYSQL_KEYCACHE_READ_HIT(); |
2894 | } |
2895 | } |
2896 | |
2897 | /* block status may have added BLOCK_ERROR in the above 'if'. */ |
2898 | if (!(block->status & BLOCK_ERROR)) |
2899 | { |
2900 | { |
2901 | DBUG_ASSERT(block->status & (BLOCK_READ | BLOCK_IN_USE)); |
2902 | #if !defined(SERIALIZED_READ_FROM_CACHE) |
2903 | keycache_pthread_mutex_unlock(&keycache->cache_lock); |
2904 | #endif |
2905 | |
2906 | /* Copy data from the cache buffer */ |
2907 | memcpy(buff, block->buffer+offset, (size_t) read_length); |
2908 | |
2909 | #if !defined(SERIALIZED_READ_FROM_CACHE) |
2910 | keycache_pthread_mutex_lock(&keycache->cache_lock); |
2911 | DBUG_ASSERT(block->status & (BLOCK_READ | BLOCK_IN_USE)); |
2912 | #endif |
2913 | } |
2914 | } |
2915 | |
2916 | remove_reader(block); |
2917 | |
2918 | /* Error injection for coverage testing. */ |
2919 | DBUG_EXECUTE_IF("key_cache_read_block_error" , |
2920 | block->status|= BLOCK_ERROR;); |
2921 | |
2922 | /* Do not link erroneous blocks into the LRU ring, but free them. */ |
2923 | if (!(block->status & BLOCK_ERROR)) |
2924 | { |
2925 | /* |
2926 | Link the block into the LRU ring if it's the last submitted |
2927 | request for the block. This enables eviction for the block. |
2928 | */ |
2929 | unreg_request(keycache, block, 1); |
2930 | } |
2931 | else |
2932 | { |
2933 | free_block(keycache, block); |
2934 | error= 1; |
2935 | break; |
2936 | } |
2937 | |
2938 | next_block: |
2939 | buff+= read_length; |
2940 | filepos+= read_length+offset; |
2941 | offset= 0; |
2942 | |
2943 | } while ((length-= read_length)); |
2944 | if (MYSQL_KEYCACHE_READ_DONE_ENABLED()) |
2945 | { |
2946 | MYSQL_KEYCACHE_READ_DONE((ulong) (keycache->blocks_used * |
2947 | keycache->key_cache_block_size), |
2948 | (ulong) (keycache->blocks_unused * |
2949 | keycache->key_cache_block_size)); |
2950 | } |
2951 | goto end; |
2952 | } |
2953 | KEYCACHE_DBUG_PRINT("key_cache_read" , ("keycache not initialized" )); |
2954 | |
2955 | no_key_cache: |
2956 | /* Key cache is not used */ |
2957 | |
2958 | keycache->global_cache_r_requests++; |
2959 | keycache->global_cache_read++; |
2960 | |
2961 | if (locked_and_incremented) |
2962 | keycache_pthread_mutex_unlock(&keycache->cache_lock); |
2963 | if (my_pread(file, (uchar*) buff, length, filepos, MYF(MY_NABP))) |
2964 | error= 1; |
2965 | if (locked_and_incremented) |
2966 | keycache_pthread_mutex_lock(&keycache->cache_lock); |
2967 | |
2968 | end: |
2969 | if (locked_and_incremented) |
2970 | { |
2971 | dec_counter_for_resize_op(keycache); |
2972 | keycache_pthread_mutex_unlock(&keycache->cache_lock); |
2973 | } |
2974 | DBUG_PRINT("exit" , ("error: %d" , error )); |
2975 | DBUG_RETURN(error ? (uchar*) 0 : start); |
2976 | } |
2977 | |
2978 | |
2979 | /* |
2980 | Insert a block of file data from a buffer into a simple key cache |
2981 | |
2982 | SYNOPSIS |
2983 | simple_key_cache_insert() |
2984 | keycache pointer to the control block of a simple key cache |
2985 | file handler for the file to insert data from |
2986 | filepos position of the block of data in the file to insert |
2987 | level determines the weight of the data |
2988 | buff buffer to read data from |
2989 | length length of the data in the buffer |
2990 | |
2991 | DESCRIPTION |
2992 | This function is the implementation of the key_cache_insert interface |
2993 | function that is employed by simple (non-partitioned) key caches. |
2994 | The function takes the parameter keycache as a pointer to the |
2995 | control block structure of the type SIMPLE_KEY_CACHE_CB for a simple key |
2996 | cache. |
2997 | The function writes a block of file data from a buffer into the key cache. |
2998 | The buffer is specified with the parameters buff and length - the pointer |
2999 | to the beginning of the buffer and its size respectively. It's assumed |
3000 | the buffer contains the data from 'file' allocated from the position |
3001 | filepos. The data is copied from the buffer in key_cache_block_size |
3002 | increments. |
3003 | The parameter level is used to set one characteristic for the key buffers |
3004 | loaded with the data from buff. The characteristic is used only by the |
3005 | midpoint insertion strategy. |
3006 | |
3007 | RETURN VALUE |
3008 | 0 if a success, 1 - otherwise. |
3009 | |
3010 | NOTES |
3011 | The function is used by MyISAM to move all blocks from a index file to |
3012 | the key cache. It can be performed in parallel with reading the file data |
3013 | from the key buffers by other threads. |
3014 | |
3015 | */ |
3016 | |
3017 | static |
3018 | int simple_key_cache_insert(SIMPLE_KEY_CACHE_CB *keycache, |
3019 | File file, my_off_t filepos, int level, |
3020 | uchar *buff, uint length) |
3021 | { |
3022 | int error= 0; |
3023 | DBUG_ENTER("key_cache_insert" ); |
3024 | DBUG_PRINT("enter" , ("fd: %u pos: %lu length: %u" , |
3025 | (uint) file,(ulong) filepos, length)); |
3026 | |
3027 | if (keycache->key_cache_inited) |
3028 | { |
3029 | /* Key cache is used */ |
3030 | reg1 BLOCK_LINK *block; |
3031 | uint read_length; |
3032 | uint offset; |
3033 | int page_st; |
3034 | my_bool locked_and_incremented= FALSE; |
3035 | |
3036 | /* |
3037 | When the keycache is once initialized, we use the cache_lock to |
3038 | reliably distinguish the cases of normal operation, resizing, and |
3039 | disabled cache. We always increment and decrement |
3040 | 'cnt_for_resize_op' so that a resizer can wait for pending I/O. |
3041 | */ |
3042 | keycache_pthread_mutex_lock(&keycache->cache_lock); |
3043 | /* |
3044 | We do not load index data into a disabled cache nor into an |
3045 | ongoing resize. |
3046 | */ |
3047 | if (!keycache->can_be_used || keycache->in_resize) |
3048 | goto no_key_cache; |
3049 | /* Register the pseudo I/O for the next resize. */ |
3050 | inc_counter_for_resize_op(keycache); |
3051 | locked_and_incremented= TRUE; |
3052 | /* Loaded data may not always be aligned to cache blocks. */ |
3053 | offset= (uint) (filepos % keycache->key_cache_block_size); |
3054 | /* Load data in key_cache_block_size increments. */ |
3055 | do |
3056 | { |
3057 | /* Cache could be disabled or resizing in a later iteration. */ |
3058 | if (!keycache->can_be_used || keycache->in_resize) |
3059 | goto no_key_cache; |
3060 | /* Start loading at the beginning of the cache block. */ |
3061 | filepos-= offset; |
3062 | /* Do not load beyond the end of the cache block. */ |
3063 | read_length= length; |
3064 | set_if_smaller(read_length, keycache->key_cache_block_size-offset); |
3065 | KEYCACHE_DBUG_ASSERT(read_length > 0); |
3066 | |
3067 | /* The block has been read by the caller already. */ |
3068 | keycache->global_cache_read++; |
3069 | /* Request the cache block that matches file/pos. */ |
3070 | keycache->global_cache_r_requests++; |
3071 | block= find_key_block(keycache, file, filepos, level, 0, &page_st); |
3072 | if (!block) |
3073 | { |
3074 | /* |
3075 | This happens only for requests submitted during key cache |
3076 | resize. The block is not in the cache and shall not go in. |
3077 | Stop loading index data. |
3078 | */ |
3079 | goto no_key_cache; |
3080 | } |
3081 | if (!(block->status & BLOCK_ERROR)) |
3082 | { |
3083 | if (page_st == PAGE_WAIT_TO_BE_READ) |
3084 | { |
3085 | /* |
3086 | this is a secondary request for a block to be read into the |
3087 | cache. The block is in eviction. It is not yet assigned to |
3088 | the requested file block (It does not point to the right |
3089 | hash_link). So we cannot call remove_reader() on the block. |
3090 | And we cannot access the hash_link directly here. We need to |
3091 | wait until the assignment is complete. read_block_secondary() |
3092 | executes the correct wait. |
3093 | */ |
3094 | read_block_secondary(keycache, block); |
3095 | |
3096 | /* |
3097 | A secondary request must now have the block assigned to the |
3098 | requested file block. |
3099 | */ |
3100 | DBUG_ASSERT(block->hash_link->file == file); |
3101 | DBUG_ASSERT(block->hash_link->diskpos == filepos); |
3102 | } |
3103 | else if (page_st == PAGE_TO_BE_READ && |
3104 | (offset || (read_length < keycache->key_cache_block_size))) |
3105 | { |
3106 | /* |
3107 | this is a primary request for a block to be read into the |
3108 | cache and the supplied data does not fill the whole block. |
3109 | |
3110 | This function is called on behalf of a LOAD INDEX INTO CACHE |
3111 | statement, which is a read-only task and allows other |
3112 | readers. It is possible that a parallel running reader tries |
3113 | to access this block. If it needs more data than has been |
3114 | supplied here, it would report an error. To be sure that we |
3115 | have all data in the block that is available in the file, we |
3116 | read the block ourselves. |
3117 | |
3118 | Though reading again what the caller did read already is an |
3119 | expensive operation, we need to do this for correctness. |
3120 | */ |
3121 | read_block_primary(keycache, block, keycache->key_cache_block_size, |
3122 | read_length + offset); |
3123 | } |
3124 | else if (page_st == PAGE_TO_BE_READ) |
3125 | { |
3126 | /* |
3127 | This is a new block in the cache. If we come here, we have |
3128 | data for the whole block. |
3129 | */ |
3130 | DBUG_ASSERT(block->hash_link->requests); |
3131 | DBUG_ASSERT(block->status & BLOCK_IN_USE); |
3132 | DBUG_ASSERT((page_st == PAGE_TO_BE_READ) || |
3133 | (block->status & BLOCK_READ)); |
3134 | |
3135 | #if !defined(SERIALIZED_READ_FROM_CACHE) |
3136 | keycache_pthread_mutex_unlock(&keycache->cache_lock); |
3137 | /* |
3138 | Here other threads may step in and register as secondary readers. |
3139 | They will register in block->wqueue[COND_FOR_REQUESTED]. |
3140 | */ |
3141 | #endif |
3142 | |
3143 | /* Copy data from buff */ |
3144 | memcpy(block->buffer+offset, buff, (size_t) read_length); |
3145 | |
3146 | #if !defined(SERIALIZED_READ_FROM_CACHE) |
3147 | keycache_pthread_mutex_lock(&keycache->cache_lock); |
3148 | DBUG_ASSERT(block->status & BLOCK_IN_USE); |
3149 | DBUG_ASSERT((page_st == PAGE_TO_BE_READ) || |
3150 | (block->status & BLOCK_READ)); |
3151 | #endif |
3152 | /* |
3153 | After the data is in the buffer, we can declare the block |
3154 | valid. Now other threads do not need to register as |
3155 | secondary readers any more. They can immediately access the |
3156 | block. |
3157 | */ |
3158 | block->status|= BLOCK_READ; |
3159 | block->length= read_length+offset; |
3160 | /* |
3161 | Do not set block->offset here. If this block is marked |
3162 | BLOCK_CHANGED later, we want to flush only the modified part. So |
3163 | only a writer may set block->offset down from |
3164 | keycache->key_cache_block_size. |
3165 | */ |
3166 | KEYCACHE_DBUG_PRINT("key_cache_insert" , |
3167 | ("primary request: new page in cache" )); |
3168 | /* Signal all pending requests. */ |
3169 | release_whole_queue(&block->wqueue[COND_FOR_REQUESTED]); |
3170 | } |
3171 | else |
3172 | { |
3173 | /* |
3174 | page_st == PAGE_READ. The block is in the buffer. All data |
3175 | must already be present. Blocks are always read with all |
3176 | data available on file. Assert that the block does not have |
3177 | less contents than the preloader supplies. If the caller has |
3178 | data beyond block->length, it means that a file write has |
3179 | been done while this block was in cache and not extended |
3180 | with the new data. If the condition is met, we can simply |
3181 | ignore the block. |
3182 | */ |
3183 | DBUG_ASSERT((page_st == PAGE_READ) && |
3184 | (read_length + offset <= block->length)); |
3185 | } |
3186 | |
3187 | /* |
3188 | A secondary request must now have the block assigned to the |
3189 | requested file block. It does not hurt to check it for primary |
3190 | requests too. |
3191 | */ |
3192 | DBUG_ASSERT(block->hash_link->file == file); |
3193 | DBUG_ASSERT(block->hash_link->diskpos == filepos); |
3194 | DBUG_ASSERT(block->status & (BLOCK_READ | BLOCK_IN_USE)); |
3195 | } /* end of if (!(block->status & BLOCK_ERROR)) */ |
3196 | |
3197 | remove_reader(block); |
3198 | |
3199 | /* Error injection for coverage testing. */ |
3200 | DBUG_EXECUTE_IF("key_cache_insert_block_error" , |
3201 | block->status|= BLOCK_ERROR; errno=EIO;); |
3202 | |
3203 | /* Do not link erroneous blocks into the LRU ring, but free them. */ |
3204 | if (!(block->status & BLOCK_ERROR)) |
3205 | { |
3206 | /* |
3207 | Link the block into the LRU ring if it's the last submitted |
3208 | request for the block. This enables eviction for the block. |
3209 | */ |
3210 | unreg_request(keycache, block, 1); |
3211 | } |
3212 | else |
3213 | { |
3214 | free_block(keycache, block); |
3215 | error= 1; |
3216 | break; |
3217 | } |
3218 | |
3219 | buff+= read_length; |
3220 | filepos+= read_length+offset; |
3221 | offset= 0; |
3222 | |
3223 | } while ((length-= read_length)); |
3224 | |
3225 | no_key_cache: |
3226 | if (locked_and_incremented) |
3227 | dec_counter_for_resize_op(keycache); |
3228 | keycache_pthread_mutex_unlock(&keycache->cache_lock); |
3229 | } |
3230 | DBUG_RETURN(error); |
3231 | } |
3232 | |
3233 | |
3234 | /* |
3235 | Write a buffer into a simple key cache |
3236 | |
3237 | SYNOPSIS |
3238 | |
3239 | simple_key_cache_write() |
3240 | keycache pointer to the control block of a simple key cache |
3241 | file handler for the file to write data to |
3242 | file_extra maps of key cache partitions containing |
3243 | dirty pages from file |
3244 | filepos position in the file to write data to |
3245 | level determines the weight of the data |
3246 | buff buffer with the data |
3247 | length length of the buffer |
3248 | dont_write if is 0 then all dirty pages involved in writing |
3249 | should have been flushed from key cache |
3250 | |
3251 | DESCRIPTION |
3252 | This function is the implementation of the key_cache_write interface |
3253 | function that is employed by simple (non-partitioned) key caches. |
3254 | The function takes the parameter keycache as a pointer to the |
3255 | control block structure of the type SIMPLE_KEY_CACHE_CB for a simple key |
3256 | cache. |
3257 | In a general case the function copies data from a buffer into the key |
3258 | cache. The buffer is specified with the parameters buff and length - |
3259 | the pointer to the beginning of the buffer and its size respectively. |
3260 | It's assumed the buffer contains the data to be written into 'file' |
3261 | starting from the position filepos. The data is copied from the buffer |
3262 | in key_cache_block_size increments. |
3263 | If the value of the parameter dont_write is FALSE then the function |
3264 | also writes the data into file. |
3265 | The parameter level is used to set one characteristic for the key buffers |
3266 | filled with the data from buff. The characteristic is employed only by |
3267 | the midpoint insertion strategy. |
3268 | The parameter file_extra currently makes sense only for simple key caches |
3269 | that are elements of a partitioned key cache. It provides a pointer to the |
3270 | shared bitmap of the partitions that may contains dirty pages for the file. |
3271 | This bitmap is used to optimize the function |
3272 | flush_partitioned_key_cache_blocks. |
3273 | |
3274 | RETURN VALUE |
3275 | 0 if a success, 1 - otherwise. |
3276 | |
3277 | NOTES |
3278 | This implementation exploits the fact that the function is called only |
3279 | when a thread has got an exclusive lock for the key file. |
3280 | */ |
3281 | |
3282 | static |
3283 | int simple_key_cache_write(SIMPLE_KEY_CACHE_CB *keycache, |
3284 | File file, void * __attribute__((unused)), |
3285 | my_off_t filepos, int level, |
3286 | uchar *buff, uint length, |
3287 | uint block_length __attribute__((unused)), |
3288 | int dont_write) |
3289 | { |
3290 | my_bool locked_and_incremented= FALSE; |
3291 | int error=0; |
3292 | DBUG_ENTER("simple_key_cache_write" ); |
3293 | DBUG_PRINT("enter" , |
3294 | ("fd: %u pos: %lu length: %u block_length: %u" |
3295 | " key_block_length: %u" , |
3296 | (uint) file, (ulong) filepos, length, block_length, |
3297 | keycache ? keycache->key_cache_block_size : 0)); |
3298 | |
3299 | if (!dont_write) |
3300 | { |
3301 | /* purecov: begin inspected */ |
3302 | /* Not used in the server. */ |
3303 | /* Force writing from buff into disk. */ |
3304 | keycache->global_cache_w_requests++; |
3305 | keycache->global_cache_write++; |
3306 | if (my_pwrite(file, buff, length, filepos, MYF(MY_NABP | MY_WAIT_IF_FULL))) |
3307 | DBUG_RETURN(1); |
3308 | /* purecov: end */ |
3309 | } |
3310 | |
3311 | #if !defined(DBUG_OFF) && defined(EXTRA_DEBUG) |
3312 | DBUG_EXECUTE("check_keycache" , |
3313 | test_key_cache(keycache, "start of key_cache_write" , 1);); |
3314 | #endif |
3315 | |
3316 | if (keycache->key_cache_inited) |
3317 | { |
3318 | /* Key cache is used */ |
3319 | reg1 BLOCK_LINK *block; |
3320 | uint read_length; |
3321 | uint offset; |
3322 | int page_st; |
3323 | |
3324 | if (MYSQL_KEYCACHE_WRITE_START_ENABLED()) |
3325 | { |
3326 | MYSQL_KEYCACHE_WRITE_START(my_filename(file), length, |
3327 | (ulong) (keycache->blocks_used * |
3328 | keycache->key_cache_block_size), |
3329 | (ulong) (keycache->blocks_unused * |
3330 | keycache->key_cache_block_size)); |
3331 | } |
3332 | |
3333 | /* |
3334 | When the key cache is once initialized, we use the cache_lock to |
3335 | reliably distinguish the cases of normal operation, resizing, and |
3336 | disabled cache. We always increment and decrement |
3337 | 'cnt_for_resize_op' so that a resizer can wait for pending I/O. |
3338 | */ |
3339 | keycache_pthread_mutex_lock(&keycache->cache_lock); |
3340 | /* |
3341 | Cache resizing has two phases: Flushing and re-initializing. In |
3342 | the flush phase write requests can modify dirty blocks that are |
3343 | not yet in flush. Otherwise they are allowed to bypass the cache. |
3344 | find_key_block() returns NULL in both cases (clean blocks and |
3345 | non-cached blocks). |
3346 | |
3347 | After the flush phase new I/O requests must wait until the |
3348 | re-initialization is done. The re-initialization can be done only |
3349 | if no I/O request is in progress. The reason is that |
3350 | key_cache_block_size can change. With enabled cache I/O is done in |
3351 | chunks of key_cache_block_size. Every chunk tries to use a cache |
3352 | block first. If the block size changes in the middle, a block |
3353 | could be missed and data could be written below a cached block. |
3354 | */ |
3355 | while (keycache->in_resize && !keycache->resize_in_flush) |
3356 | wait_on_queue(&keycache->resize_queue, &keycache->cache_lock); |
3357 | /* Register the I/O for the next resize. */ |
3358 | inc_counter_for_resize_op(keycache); |
3359 | locked_and_incremented= TRUE; |
3360 | /* Requested data may not always be aligned to cache blocks. */ |
3361 | offset= (uint) (filepos % keycache->key_cache_block_size); |
3362 | /* Write data in key_cache_block_size increments. */ |
3363 | do |
3364 | { |
3365 | /* Cache could be disabled in a later iteration. */ |
3366 | if (!keycache->can_be_used) |
3367 | goto no_key_cache; |
3368 | |
3369 | MYSQL_KEYCACHE_WRITE_BLOCK(keycache->key_cache_block_size); |
3370 | /* Start writing at the beginning of the cache block. */ |
3371 | filepos-= offset; |
3372 | /* Do not write beyond the end of the cache block. */ |
3373 | read_length= length; |
3374 | set_if_smaller(read_length, keycache->key_cache_block_size-offset); |
3375 | KEYCACHE_DBUG_ASSERT(read_length > 0); |
3376 | |
3377 | /* Request the cache block that matches file/pos. */ |
3378 | keycache->global_cache_w_requests++; |
3379 | block= find_key_block(keycache, file, filepos, level, 1, &page_st); |
3380 | if (!block) |
3381 | { |
3382 | /* |
3383 | This happens only for requests submitted during key cache |
3384 | resize. The block is not in the cache and shall not go in. |
3385 | Write directly to file. |
3386 | */ |
3387 | if (dont_write) |
3388 | { |
3389 | /* Used in the server. */ |
3390 | keycache->global_cache_write++; |
3391 | keycache_pthread_mutex_unlock(&keycache->cache_lock); |
3392 | if (my_pwrite(file, (uchar*) buff, read_length, filepos + offset, |
3393 | MYF(MY_NABP | MY_WAIT_IF_FULL))) |
3394 | error=1; |
3395 | keycache_pthread_mutex_lock(&keycache->cache_lock); |
3396 | } |
3397 | goto next_block; |
3398 | } |
3399 | /* |
3400 | Prevent block from flushing and from being selected for to be |
3401 | freed. This must be set when we release the cache_lock. |
3402 | However, we must not set the status of the block before it is |
3403 | assigned to this file/pos. |
3404 | */ |
3405 | if (page_st != PAGE_WAIT_TO_BE_READ) |
3406 | block->status|= BLOCK_FOR_UPDATE; |
3407 | /* |
3408 | We must read the file block first if it is not yet in the cache |
3409 | and we do not replace all of its contents. |
3410 | |
3411 | In cases where the cache block is big enough to contain (parts |
3412 | of) index blocks of different indexes, our request can be |
3413 | secondary (PAGE_WAIT_TO_BE_READ). In this case another thread is |
3414 | reading the file block. If the read completes after us, it |
3415 | overwrites our new contents with the old contents. So we have to |
3416 | wait for the other thread to complete the read of this block. |
3417 | read_block_primary|secondary() takes care for the wait. |
3418 | */ |
3419 | if (!(block->status & BLOCK_ERROR)) |
3420 | { |
3421 | if (page_st == PAGE_TO_BE_READ && |
3422 | (offset || read_length < keycache->key_cache_block_size)) |
3423 | { |
3424 | read_block_primary(keycache, block, |
3425 | offset + read_length >= keycache->key_cache_block_size? |
3426 | offset : keycache->key_cache_block_size, |
3427 | offset); |
3428 | /* |
3429 | Prevent block from flushing and from being selected for to be |
3430 | freed. This must be set when we release the cache_lock. |
3431 | Here we set it in case we could not set it above. |
3432 | */ |
3433 | block->status|= BLOCK_FOR_UPDATE; |
3434 | } |
3435 | else if (page_st == PAGE_WAIT_TO_BE_READ) |
3436 | { |
3437 | read_block_secondary(keycache, block); |
3438 | block->status|= BLOCK_FOR_UPDATE; |
3439 | } |
3440 | } |
3441 | /* |
3442 | The block should always be assigned to the requested file block |
3443 | here. It need not be BLOCK_READ when overwriting the whole block. |
3444 | */ |
3445 | DBUG_ASSERT(block->hash_link->file == file); |
3446 | DBUG_ASSERT(block->hash_link->diskpos == filepos); |
3447 | DBUG_ASSERT(block->status & BLOCK_IN_USE); |
3448 | DBUG_ASSERT((page_st == PAGE_TO_BE_READ) || (block->status & BLOCK_READ)); |
3449 | /* |
3450 | The block to be written must not be marked BLOCK_REASSIGNED. |
3451 | Otherwise it could be freed in dirty state or reused without |
3452 | another flush during eviction. It must also not be in flush. |
3453 | Otherwise the old contens may have been flushed already and |
3454 | the flusher could clear BLOCK_CHANGED without flushing the |
3455 | new changes again. |
3456 | */ |
3457 | DBUG_ASSERT(!(block->status & BLOCK_REASSIGNED)); |
3458 | |
3459 | while (block->status & BLOCK_IN_FLUSHWRITE) |
3460 | { |
3461 | /* |
3462 | Another thread is flushing the block. It was dirty already. |
3463 | Wait until the block is flushed to file. Otherwise we could |
3464 | modify the buffer contents just while it is written to file. |
3465 | An unpredictable file block contents would be the result. |
3466 | While we wait, several things can happen to the block, |
3467 | including another flush. But the block cannot be reassigned to |
3468 | another hash_link until we release our request on it. |
3469 | */ |
3470 | wait_on_queue(&block->wqueue[COND_FOR_SAVED], &keycache->cache_lock); |
3471 | DBUG_ASSERT(keycache->can_be_used); |
3472 | DBUG_ASSERT(block->status & (BLOCK_READ | BLOCK_IN_USE)); |
3473 | /* Still must not be marked for free. */ |
3474 | DBUG_ASSERT(!(block->status & BLOCK_REASSIGNED)); |
3475 | DBUG_ASSERT(block->hash_link && (block->hash_link->block == block)); |
3476 | } |
3477 | |
3478 | /* |
3479 | We could perhaps release the cache_lock during access of the |
3480 | data like in the other functions. Locks outside of the key cache |
3481 | assure that readers and a writer do not access the same range of |
3482 | data. Parallel accesses should happen only if the cache block |
3483 | contains multiple index block(fragment)s. So different parts of |
3484 | the buffer would be read/written. An attempt to flush during |
3485 | memcpy() is prevented with BLOCK_FOR_UPDATE. |
3486 | */ |
3487 | if (!(block->status & BLOCK_ERROR)) |
3488 | { |
3489 | #if !defined(SERIALIZED_READ_FROM_CACHE) |
3490 | keycache_pthread_mutex_unlock(&keycache->cache_lock); |
3491 | #endif |
3492 | memcpy(block->buffer+offset, buff, (size_t) read_length); |
3493 | |
3494 | #if !defined(SERIALIZED_READ_FROM_CACHE) |
3495 | keycache_pthread_mutex_lock(&keycache->cache_lock); |
3496 | #endif |
3497 | } |
3498 | |
3499 | if (!dont_write) |
3500 | { |
3501 | /* Not used in the server. buff has been written to disk at start. */ |
3502 | if ((block->status & BLOCK_CHANGED) && |
3503 | (!offset && read_length >= keycache->key_cache_block_size)) |
3504 | link_to_file_list(keycache, block, block->hash_link->file, 1); |
3505 | } |
3506 | else if (! (block->status & BLOCK_CHANGED)) |
3507 | link_to_changed_list(keycache, block); |
3508 | block->status|=BLOCK_READ; |
3509 | /* |
3510 | Allow block to be selected for to be freed. Since it is marked |
3511 | BLOCK_CHANGED too, it won't be selected for to be freed without |
3512 | a flush. |
3513 | */ |
3514 | block->status&= ~BLOCK_FOR_UPDATE; |
3515 | set_if_smaller(block->offset, offset); |
3516 | set_if_bigger(block->length, read_length+offset); |
3517 | |
3518 | /* Threads may be waiting for the changes to be complete. */ |
3519 | release_whole_queue(&block->wqueue[COND_FOR_REQUESTED]); |
3520 | |
3521 | /* |
3522 | If only a part of the cache block is to be replaced, and the |
3523 | rest has been read from file, then the cache lock has been |
3524 | released for I/O and it could be possible that another thread |
3525 | wants to evict or free the block and waits for it to be |
3526 | released. So we must not just decrement hash_link->requests, but |
3527 | also wake a waiting thread. |
3528 | */ |
3529 | remove_reader(block); |
3530 | |
3531 | /* Error injection for coverage testing. */ |
3532 | DBUG_EXECUTE_IF("key_cache_write_block_error" , |
3533 | block->status|= BLOCK_ERROR;); |
3534 | |
3535 | /* Do not link erroneous blocks into the LRU ring, but free them. */ |
3536 | if (!(block->status & BLOCK_ERROR)) |
3537 | { |
3538 | /* |
3539 | Link the block into the LRU ring if it's the last submitted |
3540 | request for the block. This enables eviction for the block. |
3541 | */ |
3542 | unreg_request(keycache, block, 1); |
3543 | } |
3544 | else |
3545 | { |
3546 | /* Pretend a "clean" block to avoid complications. */ |
3547 | block->status&= ~(BLOCK_CHANGED); |
3548 | free_block(keycache, block); |
3549 | error= 1; |
3550 | break; |
3551 | } |
3552 | |
3553 | next_block: |
3554 | buff+= read_length; |
3555 | filepos+= read_length+offset; |
3556 | offset= 0; |
3557 | |
3558 | } while ((length-= read_length)); |
3559 | goto end; |
3560 | } |
3561 | |
3562 | no_key_cache: |
3563 | /* Key cache is not used */ |
3564 | if (dont_write) |
3565 | { |
3566 | /* Used in the server. */ |
3567 | keycache->global_cache_w_requests++; |
3568 | keycache->global_cache_write++; |
3569 | if (locked_and_incremented) |
3570 | keycache_pthread_mutex_unlock(&keycache->cache_lock); |
3571 | if (my_pwrite(file, (uchar*) buff, length, filepos, |
3572 | MYF(MY_NABP | MY_WAIT_IF_FULL))) |
3573 | error=1; |
3574 | if (locked_and_incremented) |
3575 | keycache_pthread_mutex_lock(&keycache->cache_lock); |
3576 | } |
3577 | |
3578 | end: |
3579 | if (locked_and_incremented) |
3580 | { |
3581 | dec_counter_for_resize_op(keycache); |
3582 | keycache_pthread_mutex_unlock(&keycache->cache_lock); |
3583 | } |
3584 | |
3585 | if (MYSQL_KEYCACHE_WRITE_DONE_ENABLED()) |
3586 | { |
3587 | MYSQL_KEYCACHE_WRITE_DONE((ulong) (keycache->blocks_used * |
3588 | keycache->key_cache_block_size), |
3589 | (ulong) (keycache->blocks_unused * |
3590 | keycache->key_cache_block_size)); |
3591 | } |
3592 | |
3593 | #if !defined(DBUG_OFF) && defined(EXTRA_DEBUG) |
3594 | DBUG_EXECUTE("exec" , |
3595 | test_key_cache(keycache, "end of key_cache_write" , 1);); |
3596 | #endif |
3597 | DBUG_RETURN(error); |
3598 | } |
3599 | |
3600 | |
3601 | /* |
3602 | Free block. |
3603 | |
3604 | SYNOPSIS |
3605 | free_block() |
3606 | keycache Pointer to a key cache data structure |
3607 | block Pointer to the block to free |
3608 | |
3609 | DESCRIPTION |
3610 | Remove reference to block from hash table. |
3611 | Remove block from the chain of clean blocks. |
3612 | Add block to the free list. |
3613 | |
3614 | NOTE |
3615 | Block must not be free (status == 0). |
3616 | Block must not be in free_block_list. |
3617 | Block must not be in the LRU ring. |
3618 | Block must not be in eviction (BLOCK_IN_EVICTION | BLOCK_IN_SWITCH). |
3619 | Block must not be in free (BLOCK_REASSIGNED). |
3620 | Block must not be in flush (BLOCK_IN_FLUSH). |
3621 | Block must not be dirty (BLOCK_CHANGED). |
3622 | Block must not be in changed_blocks (dirty) hash. |
3623 | Block must be in file_blocks (clean) hash. |
3624 | Block must refer to a hash_link. |
3625 | Block must have a request registered on it. |
3626 | */ |
3627 | |
3628 | static void free_block(SIMPLE_KEY_CACHE_CB *keycache, BLOCK_LINK *block) |
3629 | { |
3630 | KEYCACHE_THREAD_TRACE("free block" ); |
3631 | KEYCACHE_DBUG_PRINT("free_block" , |
3632 | ("block %u to be freed, hash_link %p status: %u" , |
3633 | BLOCK_NUMBER(block), block->hash_link, |
3634 | block->status)); |
3635 | /* |
3636 | Assert that the block is not free already. And that it is in a clean |
3637 | state. Note that the block might just be assigned to a hash_link and |
3638 | not yet read (BLOCK_READ may not be set here). In this case a reader |
3639 | is registered in the hash_link and free_block() will wait for it |
3640 | below. |
3641 | */ |
3642 | DBUG_ASSERT((block->status & BLOCK_IN_USE) && |
3643 | !(block->status & (BLOCK_IN_EVICTION | BLOCK_IN_SWITCH | |
3644 | BLOCK_REASSIGNED | BLOCK_IN_FLUSH | |
3645 | BLOCK_CHANGED | BLOCK_FOR_UPDATE))); |
3646 | /* Assert that the block is in a file_blocks chain. */ |
3647 | DBUG_ASSERT(block->prev_changed && *block->prev_changed == block); |
3648 | /* Assert that the block is not in the LRU ring. */ |
3649 | DBUG_ASSERT(!block->next_used && !block->prev_used); |
3650 | /* |
3651 | IMHO the below condition (if()) makes no sense. I can't see how it |
3652 | could be possible that free_block() is entered with a NULL hash_link |
3653 | pointer. The only place where it can become NULL is in free_block() |
3654 | (or before its first use ever, but for those blocks free_block() is |
3655 | not called). I don't remove the conditional as it cannot harm, but |
3656 | place an DBUG_ASSERT to confirm my hypothesis. Eventually the |
3657 | condition (if()) can be removed. |
3658 | */ |
3659 | DBUG_ASSERT(block->hash_link && block->hash_link->block == block); |
3660 | if (block->hash_link) |
3661 | { |
3662 | /* |
3663 | While waiting for readers to finish, new readers might request the |
3664 | block. But since we set block->status|= BLOCK_REASSIGNED, they |
3665 | will wait on block->wqueue[COND_FOR_SAVED]. They must be signalled |
3666 | later. |
3667 | */ |
3668 | block->status|= BLOCK_REASSIGNED; |
3669 | wait_for_readers(keycache, block); |
3670 | /* |
3671 | The block must not have been freed by another thread. Repeat some |
3672 | checks. An additional requirement is that it must be read now |
3673 | (BLOCK_READ). |
3674 | */ |
3675 | DBUG_ASSERT(block->hash_link && block->hash_link->block == block); |
3676 | DBUG_ASSERT((block->status & (BLOCK_READ | BLOCK_IN_USE | |
3677 | BLOCK_REASSIGNED)) && |
3678 | !(block->status & (BLOCK_IN_EVICTION | BLOCK_IN_SWITCH | |
3679 | BLOCK_IN_FLUSH | BLOCK_CHANGED | |
3680 | BLOCK_FOR_UPDATE))); |
3681 | DBUG_ASSERT(block->prev_changed && *block->prev_changed == block); |
3682 | DBUG_ASSERT(!block->prev_used); |
3683 | /* |
3684 | Unset BLOCK_REASSIGNED again. If we hand the block to an evicting |
3685 | thread (through unreg_request() below), other threads must not see |
3686 | this flag. They could become confused. |
3687 | */ |
3688 | block->status&= ~BLOCK_REASSIGNED; |
3689 | /* |
3690 | Do not release the hash_link until the block is off all lists. |
3691 | At least not if we hand it over for eviction in unreg_request(). |
3692 | */ |
3693 | } |
3694 | |
3695 | /* |
3696 | Unregister the block request and link the block into the LRU ring. |
3697 | This enables eviction for the block. If the LRU ring was empty and |
3698 | threads are waiting for a block, then the block wil be handed over |
3699 | for eviction immediately. Otherwise we will unlink it from the LRU |
3700 | ring again, without releasing the lock in between. So decrementing |
3701 | the request counter and updating statistics are the only relevant |
3702 | operation in this case. Assert that there are no other requests |
3703 | registered. |
3704 | */ |
3705 | DBUG_ASSERT(block->requests == 1); |
3706 | unreg_request(keycache, block, 0); |
3707 | /* |
3708 | Note that even without releasing the cache lock it is possible that |
3709 | the block is immediately selected for eviction by link_block() and |
3710 | thus not added to the LRU ring. In this case we must not touch the |
3711 | block any more. |
3712 | */ |
3713 | if (block->status & BLOCK_IN_EVICTION) |
3714 | return; |
3715 | |
3716 | /* Error blocks are not put into the LRU ring. */ |
3717 | if (!(block->status & BLOCK_ERROR)) |
3718 | { |
3719 | /* Here the block must be in the LRU ring. Unlink it again. */ |
3720 | DBUG_ASSERT(block->next_used && block->prev_used && |
3721 | *block->prev_used == block); |
3722 | unlink_block(keycache, block); |
3723 | } |
3724 | if (block->temperature == BLOCK_WARM) |
3725 | keycache->warm_blocks--; |
3726 | block->temperature= BLOCK_COLD; |
3727 | |
3728 | /* Remove from file_blocks hash. */ |
3729 | unlink_changed(block); |
3730 | |
3731 | /* Remove reference to block from hash table. */ |
3732 | unlink_hash(keycache, block->hash_link); |
3733 | block->hash_link= NULL; |
3734 | |
3735 | block->status= 0; |
3736 | block->length= 0; |
3737 | block->offset= keycache->key_cache_block_size; |
3738 | KEYCACHE_THREAD_TRACE("free block" ); |
3739 | KEYCACHE_DBUG_PRINT("free_block" , ("block is freed" )); |
3740 | |
3741 | /* Enforced by unlink_changed(), but just to be sure. */ |
3742 | DBUG_ASSERT(!block->next_changed && !block->prev_changed); |
3743 | /* Enforced by unlink_block(): not in LRU ring nor in free_block_list. */ |
3744 | DBUG_ASSERT(!block->next_used && !block->prev_used); |
3745 | /* Insert the free block in the free list. */ |
3746 | block->next_used= keycache->free_block_list; |
3747 | keycache->free_block_list= block; |
3748 | /* Keep track of the number of currently unused blocks. */ |
3749 | keycache->blocks_unused++; |
3750 | |
3751 | /* All pending requests for this page must be resubmitted. */ |
3752 | release_whole_queue(&block->wqueue[COND_FOR_SAVED]); |
3753 | } |
3754 | |
3755 | |
3756 | static int cmp_sec_link(BLOCK_LINK **a, BLOCK_LINK **b) |
3757 | { |
3758 | return (((*a)->hash_link->diskpos < (*b)->hash_link->diskpos) ? -1 : |
3759 | ((*a)->hash_link->diskpos > (*b)->hash_link->diskpos) ? 1 : 0); |
3760 | } |
3761 | |
3762 | |
3763 | /* |
3764 | Flush a portion of changed blocks to disk, |
3765 | free used blocks if requested |
3766 | */ |
3767 | |
3768 | static int flush_cached_blocks(SIMPLE_KEY_CACHE_CB *keycache, |
3769 | File file, BLOCK_LINK **cache, |
3770 | BLOCK_LINK **end, |
3771 | enum flush_type type) |
3772 | { |
3773 | int error; |
3774 | int last_errno= 0; |
3775 | uint count= (uint) (end-cache); |
3776 | |
3777 | /* Don't lock the cache during the flush */ |
3778 | keycache_pthread_mutex_unlock(&keycache->cache_lock); |
3779 | /* |
3780 | As all blocks referred in 'cache' are marked by BLOCK_IN_FLUSH |
3781 | we are guarunteed no thread will change them |
3782 | */ |
3783 | my_qsort((uchar*) cache, count, sizeof(*cache), (qsort_cmp) cmp_sec_link); |
3784 | |
3785 | keycache_pthread_mutex_lock(&keycache->cache_lock); |
3786 | /* |
3787 | Note: Do not break the loop. We have registered a request on every |
3788 | block in 'cache'. These must be unregistered by free_block() or |
3789 | unreg_request(). |
3790 | */ |
3791 | for ( ; cache != end ; cache++) |
3792 | { |
3793 | BLOCK_LINK *block= *cache; |
3794 | |
3795 | KEYCACHE_DBUG_PRINT("flush_cached_blocks" , |
3796 | ("block %u to be flushed" , BLOCK_NUMBER(block))); |
3797 | /* |
3798 | If the block contents is going to be changed, we abandon the flush |
3799 | for this block. flush_key_blocks_int() will restart its search and |
3800 | handle the block properly. |
3801 | */ |
3802 | if (!(block->status & BLOCK_FOR_UPDATE)) |
3803 | { |
3804 | /* Blocks coming here must have a certain status. */ |
3805 | DBUG_ASSERT(block->hash_link); |
3806 | DBUG_ASSERT(block->hash_link->block == block); |
3807 | DBUG_ASSERT(block->hash_link->file == file); |
3808 | DBUG_ASSERT((block->status & ~BLOCK_IN_EVICTION) == |
3809 | (BLOCK_READ | BLOCK_IN_FLUSH | BLOCK_CHANGED | BLOCK_IN_USE)); |
3810 | block->status|= BLOCK_IN_FLUSHWRITE; |
3811 | keycache_pthread_mutex_unlock(&keycache->cache_lock); |
3812 | error= (int)my_pwrite(file, block->buffer + block->offset, |
3813 | block->length - block->offset, |
3814 | block->hash_link->diskpos + block->offset, |
3815 | MYF(MY_NABP | MY_WAIT_IF_FULL)); |
3816 | keycache_pthread_mutex_lock(&keycache->cache_lock); |
3817 | keycache->global_cache_write++; |
3818 | if (error) |
3819 | { |
3820 | block->status|= BLOCK_ERROR; |
3821 | if (!last_errno) |
3822 | last_errno= errno ? errno : -1; |
3823 | } |
3824 | block->status&= ~BLOCK_IN_FLUSHWRITE; |
3825 | /* Block must not have changed status except BLOCK_FOR_UPDATE. */ |
3826 | DBUG_ASSERT(block->hash_link); |
3827 | DBUG_ASSERT(block->hash_link->block == block); |
3828 | DBUG_ASSERT(block->hash_link->file == file); |
3829 | DBUG_ASSERT((block->status & ~(BLOCK_FOR_UPDATE | BLOCK_IN_EVICTION)) == |
3830 | (BLOCK_READ | BLOCK_IN_FLUSH | BLOCK_CHANGED | BLOCK_IN_USE)); |
3831 | /* |
3832 | Set correct status and link in right queue for free or later use. |
3833 | free_block() must not see BLOCK_CHANGED and it may need to wait |
3834 | for readers of the block. These should not see the block in the |
3835 | wrong hash. If not freeing the block, we need to have it in the |
3836 | right queue anyway. |
3837 | */ |
3838 | link_to_file_list(keycache, block, file, 1); |
3839 | } |
3840 | block->status&= ~BLOCK_IN_FLUSH; |
3841 | /* |
3842 | Let to proceed for possible waiting requests to write to the block page. |
3843 | It might happen only during an operation to resize the key cache. |
3844 | */ |
3845 | release_whole_queue(&block->wqueue[COND_FOR_SAVED]); |
3846 | /* type will never be FLUSH_IGNORE_CHANGED here */ |
3847 | if (!(type == FLUSH_KEEP || type == FLUSH_FORCE_WRITE) && |
3848 | !(block->status & (BLOCK_IN_EVICTION | BLOCK_IN_SWITCH | |
3849 | BLOCK_FOR_UPDATE))) |
3850 | { |
3851 | /* |
3852 | Note that a request has been registered against the block in |
3853 | flush_key_blocks_int(). |
3854 | */ |
3855 | free_block(keycache, block); |
3856 | } |
3857 | else |
3858 | { |
3859 | /* |
3860 | Link the block into the LRU ring if it's the last submitted |
3861 | request for the block. This enables eviction for the block. |
3862 | Note that a request has been registered against the block in |
3863 | flush_key_blocks_int(). |
3864 | */ |
3865 | unreg_request(keycache, block, 1); |
3866 | } |
3867 | |
3868 | } /* end of for ( ; cache != end ; cache++) */ |
3869 | return last_errno; |
3870 | } |
3871 | |
3872 | |
3873 | /* |
3874 | Flush all key blocks for a file to disk, but don't do any mutex locks |
3875 | |
3876 | SYNOPSIS |
3877 | flush_key_blocks_int() |
3878 | keycache pointer to a key cache data structure |
3879 | file handler for the file to flush to |
3880 | flush_type type of the flush |
3881 | |
3882 | NOTES |
3883 | This function doesn't do any mutex locks because it needs to be called both |
3884 | from flush_key_blocks and flush_all_key_blocks (the later one does the |
3885 | mutex lock in the resize_key_cache() function). |
3886 | |
3887 | We do only care about changed blocks that exist when the function is |
3888 | entered. We do not guarantee that all changed blocks of the file are |
3889 | flushed if more blocks change while this function is running. |
3890 | |
3891 | RETURN |
3892 | 0 ok |
3893 | 1 error |
3894 | */ |
3895 | |
3896 | static int flush_key_blocks_int(SIMPLE_KEY_CACHE_CB *keycache, |
3897 | File file, enum flush_type type) |
3898 | { |
3899 | BLOCK_LINK *cache_buff[FLUSH_CACHE],**cache; |
3900 | int last_errno= 0; |
3901 | int last_errcnt= 0; |
3902 | DBUG_ENTER("flush_key_blocks_int" ); |
3903 | DBUG_PRINT("enter" ,("file: %d blocks_used: %lu blocks_changed: %lu" , |
3904 | file, keycache->blocks_used, keycache->blocks_changed)); |
3905 | |
3906 | #if !defined(DBUG_OFF) && defined(EXTRA_DEBUG) |
3907 | DBUG_EXECUTE("check_keycache" , |
3908 | test_key_cache(keycache, "start of flush_key_blocks" , 0);); |
3909 | #endif |
3910 | |
3911 | DBUG_ASSERT(type != FLUSH_KEEP_LAZY); |
3912 | cache= cache_buff; |
3913 | if (keycache->disk_blocks > 0 && |
3914 | (!my_disable_flush_key_blocks || type != FLUSH_KEEP)) |
3915 | { |
3916 | /* Key cache exists and flush is not disabled */ |
3917 | int error= 0; |
3918 | uint count= FLUSH_CACHE; |
3919 | BLOCK_LINK **pos,**end; |
3920 | BLOCK_LINK *first_in_switch= NULL; |
3921 | BLOCK_LINK *last_in_flush; |
3922 | BLOCK_LINK *last_for_update; |
3923 | BLOCK_LINK *block, *next; |
3924 | #if defined(KEYCACHE_DEBUG) |
3925 | uint cnt=0; |
3926 | #endif |
3927 | |
3928 | if (type != FLUSH_IGNORE_CHANGED) |
3929 | { |
3930 | /* |
3931 | Count how many key blocks we have to cache to be able |
3932 | to flush all dirty pages with minimum seek moves |
3933 | */ |
3934 | count= 0; |
3935 | for (block= keycache->changed_blocks[FILE_HASH(file, keycache)] ; |
3936 | block ; |
3937 | block= block->next_changed) |
3938 | { |
3939 | if ((block->hash_link->file == file) && |
3940 | !(block->status & BLOCK_IN_FLUSH)) |
3941 | { |
3942 | count++; |
3943 | KEYCACHE_DBUG_ASSERT(count<= keycache->blocks_used); |
3944 | } |
3945 | } |
3946 | /* |
3947 | Allocate a new buffer only if its bigger than the one we have. |
3948 | Assure that we always have some entries for the case that new |
3949 | changed blocks appear while we need to wait for something. |
3950 | */ |
3951 | if ((count > FLUSH_CACHE) && |
3952 | !(cache= (BLOCK_LINK**) my_malloc(sizeof(BLOCK_LINK*)*count, |
3953 | MYF(0)))) |
3954 | cache= cache_buff; |
3955 | /* |
3956 | After a restart there could be more changed blocks than now. |
3957 | So we should not let count become smaller than the fixed buffer. |
3958 | */ |
3959 | if (cache == cache_buff) |
3960 | count= FLUSH_CACHE; |
3961 | } |
3962 | |
3963 | /* Retrieve the blocks and write them to a buffer to be flushed */ |
3964 | restart: |
3965 | last_in_flush= NULL; |
3966 | last_for_update= NULL; |
3967 | end= (pos= cache)+count; |
3968 | for (block= keycache->changed_blocks[FILE_HASH(file, keycache)] ; |
3969 | block ; |
3970 | block= next) |
3971 | { |
3972 | #if defined(KEYCACHE_DEBUG) |
3973 | cnt++; |
3974 | KEYCACHE_DBUG_ASSERT(cnt <= keycache->blocks_used); |
3975 | #endif |
3976 | next= block->next_changed; |
3977 | if (block->hash_link->file == file) |
3978 | { |
3979 | if (!(block->status & (BLOCK_IN_FLUSH | BLOCK_FOR_UPDATE))) |
3980 | { |
3981 | /* |
3982 | Note: The special handling of BLOCK_IN_SWITCH is obsolete |
3983 | since we set BLOCK_IN_FLUSH if the eviction includes a |
3984 | flush. It can be removed in a later version. |
3985 | */ |
3986 | if (!(block->status & BLOCK_IN_SWITCH)) |
3987 | { |
3988 | /* |
3989 | We care only for the blocks for which flushing was not |
3990 | initiated by another thread and which are not in eviction. |
3991 | Registering a request on the block unlinks it from the LRU |
3992 | ring and protects against eviction. |
3993 | */ |
3994 | reg_requests(keycache, block, 1); |
3995 | if (type != FLUSH_IGNORE_CHANGED) |
3996 | { |
3997 | /* It's not a temporary file */ |
3998 | if (pos == end) |
3999 | { |
4000 | /* |
4001 | This should happen relatively seldom. Remove the |
4002 | request because we won't do anything with the block |
4003 | but restart and pick it again in the next iteration. |
4004 | */ |
4005 | unreg_request(keycache, block, 0); |
4006 | /* |
4007 | This happens only if there is not enough |
4008 | memory for the big block |
4009 | */ |
4010 | if ((error= flush_cached_blocks(keycache, file, cache, |
4011 | end,type))) |
4012 | { |
4013 | /* Do not loop infinitely trying to flush in vain. */ |
4014 | if ((last_errno == error) && (++last_errcnt > 5)) |
4015 | goto err; |
4016 | last_errno= error; |
4017 | } |
4018 | /* |
4019 | Restart the scan as some other thread might have changed |
4020 | the changed blocks chain: the blocks that were in switch |
4021 | state before the flush started have to be excluded |
4022 | */ |
4023 | goto restart; |
4024 | } |
4025 | /* |
4026 | Mark the block with BLOCK_IN_FLUSH in order not to let |
4027 | other threads to use it for new pages and interfere with |
4028 | our sequence of flushing dirty file pages. We must not |
4029 | set this flag before actually putting the block on the |
4030 | write burst array called 'cache'. |
4031 | */ |
4032 | block->status|= BLOCK_IN_FLUSH; |
4033 | /* Add block to the array for a write burst. */ |
4034 | *pos++= block; |
4035 | } |
4036 | else |
4037 | { |
4038 | /* It's a temporary file */ |
4039 | DBUG_ASSERT(!(block->status & BLOCK_REASSIGNED)); |
4040 | /* |
4041 | free_block() must not be called with BLOCK_CHANGED. Note |
4042 | that we must not change the BLOCK_CHANGED flag outside of |
4043 | link_to_file_list() so that it is always in the correct |
4044 | queue and the *blocks_changed counters are correct. |
4045 | */ |
4046 | link_to_file_list(keycache, block, file, 1); |
4047 | if (!(block->status & (BLOCK_IN_EVICTION | BLOCK_IN_SWITCH))) |
4048 | { |
4049 | /* A request has been registered against the block above. */ |
4050 | free_block(keycache, block); |
4051 | } |
4052 | else |
4053 | { |
4054 | /* |
4055 | Link the block into the LRU ring if it's the last |
4056 | submitted request for the block. This enables eviction |
4057 | for the block. A request has been registered against |
4058 | the block above. |
4059 | */ |
4060 | unreg_request(keycache, block, 1); |
4061 | } |
4062 | } |
4063 | } |
4064 | else |
4065 | { |
4066 | /* |
4067 | Link the block into a list of blocks 'in switch'. |
4068 | |
4069 | WARNING: Here we introduce a place where a changed block |
4070 | is not in the changed_blocks hash! This is acceptable for |
4071 | a BLOCK_IN_SWITCH. Never try this for another situation. |
4072 | Other parts of the key cache code rely on changed blocks |
4073 | being in the changed_blocks hash. |
4074 | */ |
4075 | unlink_changed(block); |
4076 | link_changed(block, &first_in_switch); |
4077 | } |
4078 | } |
4079 | else if (type != FLUSH_KEEP) |
4080 | { |
4081 | /* |
4082 | During the normal flush at end of statement (FLUSH_KEEP) we |
4083 | do not need to ensure that blocks in flush or update by |
4084 | other threads are flushed. They will be flushed by them |
4085 | later. In all other cases we must assure that we do not have |
4086 | any changed block of this file in the cache when this |
4087 | function returns. |
4088 | */ |
4089 | if (block->status & BLOCK_IN_FLUSH) |
4090 | { |
4091 | /* Remember the last block found to be in flush. */ |
4092 | last_in_flush= block; |
4093 | } |
4094 | else |
4095 | { |
4096 | /* Remember the last block found to be selected for update. */ |
4097 | last_for_update= block; |
4098 | } |
4099 | } |
4100 | } |
4101 | } |
4102 | if (pos != cache) |
4103 | { |
4104 | if ((error= flush_cached_blocks(keycache, file, cache, pos, type))) |
4105 | { |
4106 | /* Do not loop inifnitely trying to flush in vain. */ |
4107 | if ((last_errno == error) && (++last_errcnt > 5)) |
4108 | goto err; |
4109 | last_errno= error; |
4110 | } |
4111 | /* |
4112 | Do not restart here during the normal flush at end of statement |
4113 | (FLUSH_KEEP). We have now flushed at least all blocks that were |
4114 | changed when entering this function. In all other cases we must |
4115 | assure that we do not have any changed block of this file in the |
4116 | cache when this function returns. |
4117 | */ |
4118 | if (type != FLUSH_KEEP) |
4119 | goto restart; |
4120 | } |
4121 | if (last_in_flush) |
4122 | { |
4123 | /* |
4124 | There are no blocks to be flushed by this thread, but blocks in |
4125 | flush by other threads. Wait until one of the blocks is flushed. |
4126 | Re-check the condition for last_in_flush. We may have unlocked |
4127 | the cache_lock in flush_cached_blocks(). The state of the block |
4128 | could have changed. |
4129 | */ |
4130 | if (last_in_flush->status & BLOCK_IN_FLUSH) |
4131 | wait_on_queue(&last_in_flush->wqueue[COND_FOR_SAVED], |
4132 | &keycache->cache_lock); |
4133 | /* Be sure not to lose a block. They may be flushed in random order. */ |
4134 | goto restart; |
4135 | } |
4136 | if (last_for_update) |
4137 | { |
4138 | /* |
4139 | There are no blocks to be flushed by this thread, but blocks for |
4140 | update by other threads. Wait until one of the blocks is updated. |
4141 | Re-check the condition for last_for_update. We may have unlocked |
4142 | the cache_lock in flush_cached_blocks(). The state of the block |
4143 | could have changed. |
4144 | */ |
4145 | if (last_for_update->status & BLOCK_FOR_UPDATE) |
4146 | wait_on_queue(&last_for_update->wqueue[COND_FOR_REQUESTED], |
4147 | &keycache->cache_lock); |
4148 | /* The block is now changed. Flush it. */ |
4149 | goto restart; |
4150 | } |
4151 | |
4152 | /* |
4153 | Wait until the list of blocks in switch is empty. The threads that |
4154 | are switching these blocks will relink them to clean file chains |
4155 | while we wait and thus empty the 'first_in_switch' chain. |
4156 | */ |
4157 | while (first_in_switch) |
4158 | { |
4159 | #if defined(KEYCACHE_DEBUG) |
4160 | cnt= 0; |
4161 | #endif |
4162 | wait_on_queue(&first_in_switch->wqueue[COND_FOR_SAVED], |
4163 | &keycache->cache_lock); |
4164 | #if defined(KEYCACHE_DEBUG) |
4165 | cnt++; |
4166 | KEYCACHE_DBUG_ASSERT(cnt <= keycache->blocks_used); |
4167 | #endif |
4168 | /* |
4169 | Do not restart here. We have flushed all blocks that were |
4170 | changed when entering this function and were not marked for |
4171 | eviction. Other threads have now flushed all remaining blocks in |
4172 | the course of their eviction. |
4173 | */ |
4174 | } |
4175 | |
4176 | if (! (type == FLUSH_KEEP || type == FLUSH_FORCE_WRITE)) |
4177 | { |
4178 | BLOCK_LINK *last_in_switch= NULL; |
4179 | uint total_found= 0; |
4180 | uint found; |
4181 | last_for_update= NULL; |
4182 | |
4183 | /* |
4184 | Finally free all clean blocks for this file. |
4185 | During resize this may be run by two threads in parallel. |
4186 | */ |
4187 | do |
4188 | { |
4189 | found= 0; |
4190 | for (block= keycache->file_blocks[FILE_HASH(file, keycache)] ; |
4191 | block ; |
4192 | block= next) |
4193 | { |
4194 | /* Remember the next block. After freeing we cannot get at it. */ |
4195 | next= block->next_changed; |
4196 | |
4197 | /* Changed blocks cannot appear in the file_blocks hash. */ |
4198 | DBUG_ASSERT(!(block->status & BLOCK_CHANGED)); |
4199 | if (block->hash_link->file == file) |
4200 | { |
4201 | /* We must skip blocks that will be changed. */ |
4202 | if (block->status & BLOCK_FOR_UPDATE) |
4203 | { |
4204 | last_for_update= block; |
4205 | continue; |
4206 | } |
4207 | |
4208 | /* |
4209 | We must not free blocks in eviction (BLOCK_IN_EVICTION | |
4210 | BLOCK_IN_SWITCH) or blocks intended to be freed |
4211 | (BLOCK_REASSIGNED). |
4212 | */ |
4213 | if (!(block->status & (BLOCK_IN_EVICTION | BLOCK_IN_SWITCH | |
4214 | BLOCK_REASSIGNED))) |
4215 | { |
4216 | struct st_hash_link *UNINIT_VAR(next_hash_link); |
4217 | my_off_t UNINIT_VAR(next_diskpos); |
4218 | File UNINIT_VAR(next_file); |
4219 | uint UNINIT_VAR(next_status); |
4220 | uint UNINIT_VAR(hash_requests); |
4221 | |
4222 | total_found++; |
4223 | found++; |
4224 | KEYCACHE_DBUG_ASSERT(found <= keycache->blocks_used); |
4225 | |
4226 | /* |
4227 | Register a request. This unlinks the block from the LRU |
4228 | ring and protects it against eviction. This is required |
4229 | by free_block(). |
4230 | */ |
4231 | reg_requests(keycache, block, 1); |
4232 | |
4233 | /* |
4234 | free_block() may need to wait for readers of the block. |
4235 | This is the moment where the other thread can move the |
4236 | 'next' block from the chain. free_block() needs to wait |
4237 | if there are requests for the block pending. |
4238 | */ |
4239 | if (next && (hash_requests= block->hash_link->requests)) |
4240 | { |
4241 | /* Copy values from the 'next' block and its hash_link. */ |
4242 | next_status= next->status; |
4243 | next_hash_link= next->hash_link; |
4244 | next_diskpos= next_hash_link->diskpos; |
4245 | next_file= next_hash_link->file; |
4246 | DBUG_ASSERT(next == next_hash_link->block); |
4247 | } |
4248 | |
4249 | free_block(keycache, block); |
4250 | /* |
4251 | If we had to wait and the state of the 'next' block |
4252 | changed, break the inner loop. 'next' may no longer be |
4253 | part of the current chain. |
4254 | |
4255 | We do not want to break the loop after every free_block(), |
4256 | not even only after waits. The chain might be quite long |
4257 | and contain blocks for many files. Traversing it again and |
4258 | again to find more blocks for this file could become quite |
4259 | inefficient. |
4260 | */ |
4261 | if (next && hash_requests && |
4262 | ((next_status != next->status) || |
4263 | (next_hash_link != next->hash_link) || |
4264 | (next_file != next_hash_link->file) || |
4265 | (next_diskpos != next_hash_link->diskpos) || |
4266 | (next != next_hash_link->block))) |
4267 | break; |
4268 | } |
4269 | else |
4270 | { |
4271 | last_in_switch= block; |
4272 | } |
4273 | } |
4274 | } /* end for block in file_blocks */ |
4275 | } while (found); |
4276 | |
4277 | /* |
4278 | If any clean block has been found, we may have waited for it to |
4279 | become free. In this case it could be possible that another clean |
4280 | block became dirty. This is possible if the write request existed |
4281 | before the flush started (BLOCK_FOR_UPDATE). Re-check the hashes. |
4282 | */ |
4283 | if (total_found) |
4284 | goto restart; |
4285 | |
4286 | /* |
4287 | To avoid an infinite loop, wait until one of the blocks marked |
4288 | for update is updated. |
4289 | */ |
4290 | if (last_for_update) |
4291 | { |
4292 | /* We did not wait. Block must not have changed status. */ |
4293 | DBUG_ASSERT(last_for_update->status & BLOCK_FOR_UPDATE); |
4294 | wait_on_queue(&last_for_update->wqueue[COND_FOR_REQUESTED], |
4295 | &keycache->cache_lock); |
4296 | goto restart; |
4297 | } |
4298 | |
4299 | /* |
4300 | To avoid an infinite loop wait until one of the blocks marked |
4301 | for eviction is switched. |
4302 | */ |
4303 | if (last_in_switch) |
4304 | { |
4305 | /* We did not wait. Block must not have changed status. */ |
4306 | DBUG_ASSERT(last_in_switch->status & (BLOCK_IN_EVICTION | |
4307 | BLOCK_IN_SWITCH | |
4308 | BLOCK_REASSIGNED)); |
4309 | wait_on_queue(&last_in_switch->wqueue[COND_FOR_SAVED], |
4310 | &keycache->cache_lock); |
4311 | goto restart; |
4312 | } |
4313 | |
4314 | } /* if (! (type == FLUSH_KEEP || type == FLUSH_FORCE_WRITE)) */ |
4315 | |
4316 | } /* if (keycache->disk_blocks > 0 */ |
4317 | |
4318 | DBUG_EXECUTE("check_keycache" , |
4319 | test_key_cache(keycache, "end of flush_key_blocks" , 0);); |
4320 | err: |
4321 | if (cache != cache_buff) |
4322 | my_free(cache); |
4323 | if (last_errno) |
4324 | errno=last_errno; /* Return first error */ |
4325 | DBUG_RETURN(last_errno != 0); |
4326 | } |
4327 | |
4328 | |
4329 | /* |
4330 | Flush all blocks for a file from key buffers of a simple key cache |
4331 | |
4332 | SYNOPSIS |
4333 | |
4334 | flush_simple_key_blocks() |
4335 | keycache pointer to the control block of a simple key cache |
4336 | file handler for the file to flush to |
4337 | file_extra maps of key cache partitions containing |
4338 | dirty pages from file (not used) |
4339 | flush_type type of the flush operation |
4340 | |
4341 | DESCRIPTION |
4342 | This function is the implementation of the flush_key_blocks interface |
4343 | function that is employed by simple (non-partitioned) key caches. |
4344 | The function takes the parameter keycache as a pointer to the |
4345 | control block structure of the type S_KEY_CACHE_CB for a simple key |
4346 | cache. |
4347 | In a general case the function flushes the data from all dirty key |
4348 | buffers related to the file 'file' into this file. The function does |
4349 | exactly this if the value of the parameter type is FLUSH_KEEP. If the |
4350 | value of this parameter is FLUSH_RELEASE, the function additionally |
4351 | releases the key buffers containing data from 'file' for new usage. |
4352 | If the value of the parameter type is FLUSH_IGNORE_CHANGED the function |
4353 | just releases the key buffers containing data from 'file'. |
4354 | The parameter file_extra currently is not used by this function. |
4355 | |
4356 | RETURN |
4357 | 0 ok |
4358 | 1 error |
4359 | |
4360 | NOTES |
4361 | This implementation exploits the fact that the function is called only |
4362 | when a thread has got an exclusive lock for the key file. |
4363 | */ |
4364 | |
4365 | static |
4366 | int flush_simple_key_cache_blocks(SIMPLE_KEY_CACHE_CB *keycache, |
4367 | File file, |
4368 | void * __attribute__((unused)), |
4369 | enum flush_type type) |
4370 | { |
4371 | int res= 0; |
4372 | DBUG_ENTER("flush_key_blocks" ); |
4373 | DBUG_PRINT("enter" , ("keycache: %p" , keycache)); |
4374 | |
4375 | if (!keycache->key_cache_inited) |
4376 | DBUG_RETURN(0); |
4377 | |
4378 | keycache_pthread_mutex_lock(&keycache->cache_lock); |
4379 | /* While waiting for lock, keycache could have been ended. */ |
4380 | if (keycache->disk_blocks > 0) |
4381 | { |
4382 | inc_counter_for_resize_op(keycache); |
4383 | res= flush_key_blocks_int(keycache, file, type); |
4384 | dec_counter_for_resize_op(keycache); |
4385 | } |
4386 | keycache_pthread_mutex_unlock(&keycache->cache_lock); |
4387 | DBUG_RETURN(res); |
4388 | } |
4389 | |
4390 | |
4391 | /* |
4392 | Flush all blocks in the key cache to disk. |
4393 | |
4394 | SYNOPSIS |
4395 | flush_all_key_blocks() |
4396 | keycache pointer to key cache root structure |
4397 | |
4398 | DESCRIPTION |
4399 | |
4400 | Flushing of the whole key cache is done in two phases. |
4401 | |
4402 | 1. Flush all changed blocks, waiting for them if necessary. Loop |
4403 | until there is no changed block left in the cache. |
4404 | |
4405 | 2. Free all clean blocks. Normally this means free all blocks. The |
4406 | changed blocks were flushed in phase 1 and became clean. However we |
4407 | may need to wait for blocks that are read by other threads. While we |
4408 | wait, a clean block could become changed if that operation started |
4409 | before the resize operation started. To be safe we must restart at |
4410 | phase 1. |
4411 | |
4412 | When we can run through the changed_blocks and file_blocks hashes |
4413 | without finding a block any more, then we are done. |
4414 | |
4415 | Note that we hold keycache->cache_lock all the time unless we need |
4416 | to wait for something. |
4417 | |
4418 | RETURN |
4419 | 0 OK |
4420 | != 0 Error |
4421 | */ |
4422 | |
4423 | static int flush_all_key_blocks(SIMPLE_KEY_CACHE_CB *keycache) |
4424 | { |
4425 | BLOCK_LINK *block; |
4426 | uint total_found; |
4427 | uint found; |
4428 | uint idx; |
4429 | uint changed_blocks_hash_size= keycache->changed_blocks_hash_size; |
4430 | DBUG_ENTER("flush_all_key_blocks" ); |
4431 | |
4432 | do |
4433 | { |
4434 | mysql_mutex_assert_owner(&keycache->cache_lock); |
4435 | total_found= 0; |
4436 | |
4437 | /* |
4438 | Phase1: Flush all changed blocks, waiting for them if necessary. |
4439 | Loop until there is no changed block left in the cache. |
4440 | */ |
4441 | do |
4442 | { |
4443 | found= 0; |
4444 | /* Step over the whole changed_blocks hash array. */ |
4445 | for (idx= 0; idx < changed_blocks_hash_size; idx++) |
4446 | { |
4447 | /* |
4448 | If an array element is non-empty, use the first block from its |
4449 | chain to find a file for flush. All changed blocks for this |
4450 | file are flushed. So the same block will not appear at this |
4451 | place again with the next iteration. New writes for blocks are |
4452 | not accepted during the flush. If multiple files share the |
4453 | same hash bucket, one of them will be flushed per iteration |
4454 | of the outer loop of phase 1. |
4455 | */ |
4456 | while ((block= keycache->changed_blocks[idx])) |
4457 | { |
4458 | found++; |
4459 | /* |
4460 | Flush dirty blocks but do not free them yet. They can be used |
4461 | for reading until all other blocks are flushed too. |
4462 | */ |
4463 | if (flush_key_blocks_int(keycache, block->hash_link->file, |
4464 | FLUSH_FORCE_WRITE)) |
4465 | DBUG_RETURN(1); |
4466 | } |
4467 | } |
4468 | } while (found); |
4469 | |
4470 | /* |
4471 | Phase 2: Free all clean blocks. Normally this means free all |
4472 | blocks. The changed blocks were flushed in phase 1 and became |
4473 | clean. However we may need to wait for blocks that are read by |
4474 | other threads. While we wait, a clean block could become changed |
4475 | if that operation started before the resize operation started. To |
4476 | be safe we must restart at phase 1. |
4477 | */ |
4478 | do |
4479 | { |
4480 | found= 0; |
4481 | /* Step over the whole file_blocks hash array. */ |
4482 | for (idx= 0; idx < changed_blocks_hash_size; idx++) |
4483 | { |
4484 | /* |
4485 | If an array element is non-empty, use the first block from its |
4486 | chain to find a file for flush. All blocks for this file are |
4487 | freed. So the same block will not appear at this place again |
4488 | with the next iteration. If multiple files share the |
4489 | same hash bucket, one of them will be flushed per iteration |
4490 | of the outer loop of phase 2. |
4491 | */ |
4492 | while ((block= keycache->file_blocks[idx])) |
4493 | { |
4494 | total_found++; |
4495 | found++; |
4496 | if (flush_key_blocks_int(keycache, block->hash_link->file, |
4497 | FLUSH_RELEASE)) |
4498 | DBUG_RETURN(1); |
4499 | } |
4500 | } |
4501 | } while (found); |
4502 | |
4503 | /* |
4504 | If any clean block has been found, we may have waited for it to |
4505 | become free. In this case it could be possible that another clean |
4506 | block became dirty. This is possible if the write request existed |
4507 | before the resize started (BLOCK_FOR_UPDATE). Re-check the hashes. |
4508 | */ |
4509 | } while (total_found); |
4510 | |
4511 | #ifndef DBUG_OFF |
4512 | /* Now there should not exist any block any more. */ |
4513 | for (idx= 0; idx < changed_blocks_hash_size; idx++) |
4514 | { |
4515 | DBUG_ASSERT(!keycache->changed_blocks[idx]); |
4516 | DBUG_ASSERT(!keycache->file_blocks[idx]); |
4517 | } |
4518 | #endif |
4519 | |
4520 | DBUG_RETURN(0); |
4521 | } |
4522 | |
4523 | |
4524 | /* |
4525 | Reset the counters of a simple key cache |
4526 | |
4527 | SYNOPSIS |
4528 | reset_simple_key_cache_counters() |
4529 | name the name of a key cache |
4530 | keycache pointer to the control block of a simple key cache |
4531 | |
4532 | DESCRIPTION |
4533 | This function is the implementation of the reset_key_cache_counters |
4534 | interface function that is employed by simple (non-partitioned) key caches. |
4535 | The function takes the parameter keycache as a pointer to the |
4536 | control block structure of the type S_KEY_CACHE_CB for a simple key cache. |
4537 | This function resets the values of all statistical counters for the key |
4538 | cache to 0. |
4539 | The parameter name is currently not used. |
4540 | |
4541 | RETURN |
4542 | 0 on success (always because it can't fail) |
4543 | */ |
4544 | |
4545 | static |
4546 | int reset_simple_key_cache_counters(const char *name __attribute__((unused)), |
4547 | SIMPLE_KEY_CACHE_CB *keycache) |
4548 | { |
4549 | DBUG_ENTER("reset_simple_key_cache_counters" ); |
4550 | if (!keycache->key_cache_inited) |
4551 | { |
4552 | DBUG_PRINT("info" , ("Key cache %s not initialized." , name)); |
4553 | DBUG_RETURN(0); |
4554 | } |
4555 | DBUG_PRINT("info" , ("Resetting counters for key cache %s." , name)); |
4556 | |
4557 | keycache->global_blocks_changed= 0; /* Key_blocks_not_flushed */ |
4558 | keycache->global_cache_r_requests= 0; /* Key_read_requests */ |
4559 | keycache->global_cache_read= 0; /* Key_reads */ |
4560 | keycache->global_cache_w_requests= 0; /* Key_write_requests */ |
4561 | keycache->global_cache_write= 0; /* Key_writes */ |
4562 | DBUG_RETURN(0); |
4563 | } |
4564 | |
4565 | |
4566 | #ifndef DBUG_OFF |
4567 | /* |
4568 | Test if disk-cache is ok |
4569 | */ |
4570 | static |
4571 | void test_key_cache(SIMPLE_KEY_CACHE_CB *keycache __attribute__((unused)), |
4572 | const char *where __attribute__((unused)), |
4573 | my_bool lock __attribute__((unused))) |
4574 | { |
4575 | /* TODO */ |
4576 | } |
4577 | #endif |
4578 | |
4579 | #if defined(KEYCACHE_TIMEOUT) |
4580 | |
4581 | #define KEYCACHE_DUMP_FILE "keycache_dump.txt" |
4582 | #define MAX_QUEUE_LEN 100 |
4583 | |
4584 | |
4585 | static void keycache_dump(SIMPLE_KEY_CACHE_CB *keycache) |
4586 | { |
4587 | FILE *keycache_dump_file=fopen(KEYCACHE_DUMP_FILE, "w" ); |
4588 | struct st_my_thread_var *last; |
4589 | struct st_my_thread_var *thread; |
4590 | BLOCK_LINK *block; |
4591 | HASH_LINK *hash_link; |
4592 | KEYCACHE_PAGE *page; |
4593 | uint i; |
4594 | |
4595 | fprintf(keycache_dump_file, "thread:%lu\n" , (ulong) thread->id); |
4596 | |
4597 | i=0; |
4598 | thread=last=waiting_for_hash_link.last_thread; |
4599 | fprintf(keycache_dump_file, "queue of threads waiting for hash link\n" ); |
4600 | if (thread) |
4601 | do |
4602 | { |
4603 | thread=thread->next; |
4604 | page= (KEYCACHE_PAGE *) thread->keycache_link; |
4605 | fprintf(keycache_dump_file, |
4606 | "thread:%lu, (file,filepos)=(%u,%lu)\n" , |
4607 | (ulong) thread->id,(uint) page->file,(ulong) page->filepos); |
4608 | if (++i == MAX_QUEUE_LEN) |
4609 | break; |
4610 | } |
4611 | while (thread != last); |
4612 | |
4613 | i=0; |
4614 | thread=last=waiting_for_block.last_thread; |
4615 | fprintf(keycache_dump_file, "queue of threads waiting for block\n" ); |
4616 | if (thread) |
4617 | do |
4618 | { |
4619 | thread=thread->next; |
4620 | hash_link= (HASH_LINK *) thread->keycache_link; |
4621 | fprintf(keycache_dump_file, |
4622 | "thread:%lu hash_link:%u (file,filepos)=(%u,%lu)\n" , |
4623 | (ulong) thread->id, (uint) HASH_LINK_NUMBER(hash_link), |
4624 | (uint) hash_link->file,(ulong) hash_link->diskpos); |
4625 | if (++i == MAX_QUEUE_LEN) |
4626 | break; |
4627 | } |
4628 | while (thread != last); |
4629 | |
4630 | for (i=0 ; i< keycache->blocks_used ; i++) |
4631 | { |
4632 | int j; |
4633 | block= &keycache->block_root[i]; |
4634 | hash_link= block->hash_link; |
4635 | fprintf(keycache_dump_file, |
4636 | "block:%u hash_link:%d status:%x #requests=%u waiting_for_readers:%d\n" , |
4637 | i, (int) (hash_link ? HASH_LINK_NUMBER(hash_link) : -1), |
4638 | block->status, block->requests, block->condvar ? 1 : 0); |
4639 | for (j=0 ; j < 2; j++) |
4640 | { |
4641 | KEYCACHE_WQUEUE *wqueue=&block->wqueue[j]; |
4642 | thread= last= wqueue->last_thread; |
4643 | fprintf(keycache_dump_file, "queue #%d\n" , j); |
4644 | if (thread) |
4645 | { |
4646 | do |
4647 | { |
4648 | thread=thread->next; |
4649 | fprintf(keycache_dump_file, |
4650 | "thread:%lu\n" , (ulong) thread->id); |
4651 | if (++i == MAX_QUEUE_LEN) |
4652 | break; |
4653 | } |
4654 | while (thread != last); |
4655 | } |
4656 | } |
4657 | } |
4658 | fprintf(keycache_dump_file, "LRU chain:" ); |
4659 | block= keycache= used_last; |
4660 | if (block) |
4661 | { |
4662 | do |
4663 | { |
4664 | block= block->next_used; |
4665 | fprintf(keycache_dump_file, |
4666 | "block:%u, " , BLOCK_NUMBER(block)); |
4667 | } |
4668 | while (block != keycache->used_last); |
4669 | } |
4670 | fprintf(keycache_dump_file, "\n" ); |
4671 | |
4672 | fclose(keycache_dump_file); |
4673 | } |
4674 | |
4675 | #endif /* defined(KEYCACHE_TIMEOUT) */ |
4676 | |
4677 | #if defined(KEYCACHE_TIMEOUT) && !defined(__WIN__) |
4678 | |
4679 | |
4680 | static int keycache_pthread_cond_wait(mysql_cond_t *cond, |
4681 | mysql_mutex_t *mutex) |
4682 | { |
4683 | int rc; |
4684 | struct timeval now; /* time when we started waiting */ |
4685 | struct timespec timeout; /* timeout value for the wait function */ |
4686 | struct timezone tz; |
4687 | #if defined(KEYCACHE_DEBUG) |
4688 | int cnt=0; |
4689 | #endif |
4690 | |
4691 | /* Get current time */ |
4692 | gettimeofday(&now, &tz); |
4693 | /* Prepare timeout value */ |
4694 | timeout.tv_sec= now.tv_sec + KEYCACHE_TIMEOUT; |
4695 | /* |
4696 | timeval uses microseconds. |
4697 | timespec uses nanoseconds. |
4698 | 1 nanosecond = 1000 micro seconds |
4699 | */ |
4700 | timeout.tv_nsec= now.tv_usec * 1000; |
4701 | KEYCACHE_THREAD_TRACE_END("started waiting" ); |
4702 | #if defined(KEYCACHE_DEBUG) |
4703 | cnt++; |
4704 | if (cnt % 100 == 0) |
4705 | fprintf(keycache_debug_log, "waiting...\n" ); |
4706 | fflush(keycache_debug_log); |
4707 | #endif |
4708 | rc= mysql_cond_timedwait(cond, mutex, &timeout); |
4709 | KEYCACHE_THREAD_TRACE_BEGIN("finished waiting" ); |
4710 | if (rc == ETIMEDOUT || rc == ETIME) |
4711 | { |
4712 | #if defined(KEYCACHE_DEBUG) |
4713 | fprintf(keycache_debug_log,"aborted by keycache timeout\n" ); |
4714 | fclose(keycache_debug_log); |
4715 | abort(); |
4716 | #endif |
4717 | keycache_dump(); |
4718 | } |
4719 | |
4720 | #if defined(KEYCACHE_DEBUG) |
4721 | KEYCACHE_DBUG_ASSERT(rc != ETIMEDOUT); |
4722 | #else |
4723 | assert(rc != ETIMEDOUT); |
4724 | #endif |
4725 | return rc; |
4726 | } |
4727 | #else |
4728 | #if defined(KEYCACHE_DEBUG) |
4729 | static int keycache_pthread_cond_wait(mysql_cond_t *cond, |
4730 | mysql_mutex_t *mutex) |
4731 | { |
4732 | int rc; |
4733 | KEYCACHE_THREAD_TRACE_END("started waiting" ); |
4734 | rc= mysql_cond_wait(cond, mutex); |
4735 | KEYCACHE_THREAD_TRACE_BEGIN("finished waiting" ); |
4736 | return rc; |
4737 | } |
4738 | #endif |
4739 | #endif /* defined(KEYCACHE_TIMEOUT) && !defined(__WIN__) */ |
4740 | |
4741 | #if defined(KEYCACHE_DEBUG) |
4742 | |
4743 | |
4744 | static int keycache_pthread_mutex_lock(mysql_mutex_t *mutex) |
4745 | { |
4746 | int rc; |
4747 | rc= mysql_mutex_lock(mutex); |
4748 | KEYCACHE_THREAD_TRACE_BEGIN("" ); |
4749 | return rc; |
4750 | } |
4751 | |
4752 | |
4753 | static void keycache_pthread_mutex_unlock(mysql_mutex_t *mutex) |
4754 | { |
4755 | KEYCACHE_THREAD_TRACE_END("" ); |
4756 | mysql_mutex_unlock(mutex); |
4757 | } |
4758 | |
4759 | |
4760 | static int keycache_pthread_cond_signal(mysql_cond_t *cond) |
4761 | { |
4762 | int rc; |
4763 | KEYCACHE_THREAD_TRACE("signal" ); |
4764 | rc= mysql_cond_signal(cond); |
4765 | return rc; |
4766 | } |
4767 | |
4768 | |
4769 | #if defined(KEYCACHE_DEBUG_LOG) |
4770 | |
4771 | |
4772 | static void keycache_debug_print(const char * fmt,...) |
4773 | { |
4774 | va_list args; |
4775 | va_start(args,fmt); |
4776 | if (keycache_debug_log) |
4777 | { |
4778 | (void) vfprintf(keycache_debug_log, fmt, args); |
4779 | (void) fputc('\n',keycache_debug_log); |
4780 | } |
4781 | va_end(args); |
4782 | } |
4783 | #endif /* defined(KEYCACHE_DEBUG_LOG) */ |
4784 | |
4785 | #if defined(KEYCACHE_DEBUG_LOG) |
4786 | |
4787 | |
4788 | void keycache_debug_log_close(void) |
4789 | { |
4790 | if (keycache_debug_log) |
4791 | fclose(keycache_debug_log); |
4792 | } |
4793 | #endif /* defined(KEYCACHE_DEBUG_LOG) */ |
4794 | |
4795 | #endif /* defined(KEYCACHE_DEBUG) */ |
4796 | |
4797 | #ifdef DBUG_ASSERT_EXISTS |
4798 | #define F_B_PRT(_f_, _v_) DBUG_PRINT("assert_fail", (_f_, _v_)) |
4799 | |
4800 | static int fail_block(BLOCK_LINK *block __attribute__((unused))) |
4801 | { |
4802 | #ifndef DBUG_OFF |
4803 | F_B_PRT("block->next_used: %p\n" , block->next_used); |
4804 | F_B_PRT("block->prev_used: %p\n" , block->prev_used); |
4805 | F_B_PRT("block->next_changed: %p\n" , block->next_changed); |
4806 | F_B_PRT("block->prev_changed: %p\n" , block->prev_changed); |
4807 | F_B_PRT("block->hash_link: %p\n" , block->hash_link); |
4808 | F_B_PRT("block->status: %u\n" , block->status); |
4809 | F_B_PRT("block->length: %u\n" , block->length); |
4810 | F_B_PRT("block->offset: %u\n" , block->offset); |
4811 | F_B_PRT("block->requests: %u\n" , block->requests); |
4812 | F_B_PRT("block->temperature: %u\n" , block->temperature); |
4813 | #endif |
4814 | return 0; /* Let the assert fail. */ |
4815 | } |
4816 | #endif |
4817 | |
4818 | #ifndef DBUG_OFF |
4819 | static int fail_hlink(HASH_LINK *hlink __attribute__((unused))) |
4820 | { |
4821 | F_B_PRT("hlink->next: %p\n" , hlink->next); |
4822 | F_B_PRT("hlink->prev: %p\n" , hlink->prev); |
4823 | F_B_PRT("hlink->block: %p\n" , hlink->block); |
4824 | F_B_PRT("hlink->diskpos: %lu\n" , (ulong) hlink->diskpos); |
4825 | F_B_PRT("hlink->file: %d\n" , hlink->file); |
4826 | return 0; /* Let the assert fail. */ |
4827 | } |
4828 | |
4829 | static int cache_empty(SIMPLE_KEY_CACHE_CB *keycache) |
4830 | { |
4831 | int errcnt= 0; |
4832 | int idx; |
4833 | if (keycache->disk_blocks <= 0) |
4834 | return 1; |
4835 | for (idx= 0; idx < keycache->disk_blocks; idx++) |
4836 | { |
4837 | BLOCK_LINK *block= keycache->block_root + idx; |
4838 | if (block->status || block->requests || block->hash_link) |
4839 | { |
4840 | fprintf(stderr, "block index: %u\n" , idx); |
4841 | fail_block(block); |
4842 | errcnt++; |
4843 | } |
4844 | } |
4845 | for (idx= 0; idx < keycache->hash_links; idx++) |
4846 | { |
4847 | HASH_LINK *hash_link= keycache->hash_link_root + idx; |
4848 | if (hash_link->requests || hash_link->block) |
4849 | { |
4850 | fprintf(stderr, "hash_link index: %u\n" , idx); |
4851 | fail_hlink(hash_link); |
4852 | errcnt++; |
4853 | } |
4854 | } |
4855 | if (errcnt) |
4856 | { |
4857 | fprintf(stderr, "blocks: %d used: %lu\n" , |
4858 | keycache->disk_blocks, keycache->blocks_used); |
4859 | fprintf(stderr, "hash_links: %d used: %d\n" , |
4860 | keycache->hash_links, keycache->hash_links_used); |
4861 | fprintf(stderr, "\n" ); |
4862 | } |
4863 | return !errcnt; |
4864 | } |
4865 | #endif |
4866 | |
4867 | |
4868 | /* |
4869 | Get statistics for a simple key cache |
4870 | |
4871 | SYNOPSIS |
4872 | get_simple_key_cache_statistics() |
4873 | keycache pointer to the control block of a simple key cache |
4874 | partition_no partition number (not used) |
4875 | key_cache_stats OUT pointer to the structure for the returned statistics |
4876 | |
4877 | DESCRIPTION |
4878 | This function is the implementation of the get_key_cache_statistics |
4879 | interface function that is employed by simple (non-partitioned) key caches. |
4880 | The function takes the parameter keycache as a pointer to the |
4881 | control block structure of the type SIMPLE_KEY_CACHE_CB for a simple key |
4882 | cache. This function returns the statistical data for the key cache. |
4883 | The parameter partition_no is not used by this function. |
4884 | |
4885 | RETURN |
4886 | none |
4887 | */ |
4888 | |
4889 | static |
4890 | void get_simple_key_cache_statistics(SIMPLE_KEY_CACHE_CB *keycache, |
4891 | uint partition_no __attribute__((unused)), |
4892 | KEY_CACHE_STATISTICS *keycache_stats) |
4893 | { |
4894 | DBUG_ENTER("simple_get_key_cache_statistics" ); |
4895 | |
4896 | keycache_stats->mem_size= (longlong) keycache->key_cache_mem_size; |
4897 | keycache_stats->block_size= (longlong) keycache->key_cache_block_size; |
4898 | keycache_stats->blocks_used= keycache->blocks_used; |
4899 | keycache_stats->blocks_unused= keycache->blocks_unused; |
4900 | keycache_stats->blocks_changed= keycache->global_blocks_changed; |
4901 | keycache_stats->blocks_warm= keycache->warm_blocks; |
4902 | keycache_stats->read_requests= keycache->global_cache_r_requests; |
4903 | keycache_stats->reads= keycache->global_cache_read; |
4904 | keycache_stats->write_requests= keycache->global_cache_w_requests; |
4905 | keycache_stats->writes= keycache->global_cache_write; |
4906 | DBUG_VOID_RETURN; |
4907 | } |
4908 | |
4909 | |
4910 | /* |
4911 | The array of pointer to the key cache interface functions used for simple |
4912 | key caches. Any simple key cache objects including those incorporated into |
4913 | partitioned keys caches exploit this array. |
4914 | |
4915 | The current implementation of these functions allows to call them from |
4916 | the MySQL server code directly. We don't do it though. |
4917 | */ |
4918 | |
4919 | static KEY_CACHE_FUNCS simple_key_cache_funcs = |
4920 | { |
4921 | (INIT_KEY_CACHE) init_simple_key_cache, |
4922 | (RESIZE_KEY_CACHE) resize_simple_key_cache, |
4923 | (CHANGE_KEY_CACHE_PARAM) change_simple_key_cache_param, |
4924 | (KEY_CACHE_READ) simple_key_cache_read, |
4925 | (KEY_CACHE_INSERT) simple_key_cache_insert, |
4926 | (KEY_CACHE_WRITE) simple_key_cache_write, |
4927 | (FLUSH_KEY_BLOCKS) flush_simple_key_cache_blocks, |
4928 | (RESET_KEY_CACHE_COUNTERS) reset_simple_key_cache_counters, |
4929 | (END_KEY_CACHE) end_simple_key_cache, |
4930 | (GET_KEY_CACHE_STATISTICS) get_simple_key_cache_statistics, |
4931 | }; |
4932 | |
4933 | |
4934 | /****************************************************************************** |
4935 | Partitioned Key Cache Module |
4936 | |
4937 | The module contains implementations of all key cache interface functions |
4938 | employed by partitioned key caches. |
4939 | |
4940 | A partitioned key cache is a collection of structures for simple key caches |
4941 | called key cache partitions. Any page from a file can be placed into a buffer |
4942 | of only one partition. The number of the partition is calculated from |
4943 | the file number and the position of the page in the file, and it's always the |
4944 | same for the page. The function that maps pages into partitions takes care |
4945 | of even distribution of pages among partitions. |
4946 | |
4947 | Partition key cache mitigate one of the major problem of simple key cache: |
4948 | thread contention for key cache lock (mutex). Every call of a key cache |
4949 | interface function must acquire this lock. So threads compete for this lock |
4950 | even in the case when they have acquired shared locks for the file and |
4951 | pages they want read from are in the key cache buffers. |
4952 | When working with a partitioned key cache any key cache interface function |
4953 | that needs only one page has to acquire the key cache lock only for the |
4954 | partition the page is ascribed to. This makes the chances for threads not |
4955 | compete for the same key cache lock better. Unfortunately if we use a |
4956 | partitioned key cache with N partitions for B-tree indexes we can't say |
4957 | that the chances becomes N times less. The fact is that any index lookup |
4958 | operation requires reading from the root page that, for any index, is always |
4959 | ascribed to the same partition. To resolve this problem we should have |
4960 | employed more sophisticated mechanisms of working with root pages. |
4961 | |
4962 | Currently the number of partitions in a partitioned key cache is limited |
4963 | by 64. We could increase this limit. Simultaneously we would have to increase |
4964 | accordingly the size of the bitmap dirty_part_map from the MYISAM_SHARE |
4965 | structure. |
4966 | |
4967 | ******************************************************************************/ |
4968 | |
4969 | /* Control block for a partitioned key cache */ |
4970 | |
4971 | typedef struct st_partitioned_key_cache_cb |
4972 | { |
4973 | my_bool key_cache_inited; /*<=> control block is allocated */ |
4974 | SIMPLE_KEY_CACHE_CB **partition_array; /* the key cache partitions */ |
4975 | size_t key_cache_mem_size; /* specified size of the cache memory */ |
4976 | uint key_cache_block_size; /* size of the page buffer of a cache block */ |
4977 | uint partitions; /* number of partitions in the key cache */ |
4978 | } PARTITIONED_KEY_CACHE_CB; |
4979 | |
4980 | static |
4981 | void end_partitioned_key_cache(PARTITIONED_KEY_CACHE_CB *keycache, |
4982 | my_bool cleanup); |
4983 | |
4984 | static int |
4985 | reset_partitioned_key_cache_counters(const char *name, |
4986 | PARTITIONED_KEY_CACHE_CB *keycache); |
4987 | |
4988 | /* |
4989 | Determine the partition to which the index block to read is ascribed |
4990 | |
4991 | SYNOPSIS |
4992 | get_key_cache_partition() |
4993 | keycache pointer to the control block of a partitioned key cache |
4994 | file handler for the file for the block of data to be read |
4995 | filepos position of the block of data in the file |
4996 | |
4997 | DESCRIPTION |
4998 | The function determines the number of the partition in whose buffer the |
4999 | block from 'file' at the position filepos has to be placed for reading. |
5000 | The function returns the control block of the simple key cache for this |
5001 | partition to the caller. |
5002 | |
5003 | RETURN VALUE |
5004 | The pointer to the control block of the partition to which the specified |
5005 | file block is ascribed. |
5006 | */ |
5007 | |
5008 | static |
5009 | SIMPLE_KEY_CACHE_CB * |
5010 | get_key_cache_partition(PARTITIONED_KEY_CACHE_CB *keycache, |
5011 | File file, my_off_t filepos) |
5012 | { |
5013 | uint i= KEYCACHE_BASE_EXPR(file, filepos) % keycache->partitions; |
5014 | return keycache->partition_array[i]; |
5015 | } |
5016 | |
5017 | |
5018 | /* |
5019 | Determine the partition to which the index block to write is ascribed |
5020 | |
5021 | SYNOPSIS |
5022 | get_key_cache_partition() |
5023 | keycache pointer to the control block of a partitioned key cache |
5024 | file handler for the file for the block of data to be read |
5025 | filepos position of the block of data in the file |
5026 | dirty_part_map pointer to the bitmap of dirty partitions for the file |
5027 | |
5028 | DESCRIPTION |
5029 | The function determines the number of the partition in whose buffer the |
5030 | block from 'file' at the position filepos has to be placed for writing and |
5031 | marks the partition as dirty in the dirty_part_map bitmap. |
5032 | The function returns the control block of the simple key cache for this |
5033 | partition to the caller. |
5034 | |
5035 | RETURN VALUE |
5036 | The pointer to the control block of the partition to which the specified |
5037 | file block is ascribed. |
5038 | */ |
5039 | |
5040 | static SIMPLE_KEY_CACHE_CB |
5041 | *get_key_cache_partition_for_write(PARTITIONED_KEY_CACHE_CB *keycache, |
5042 | File file, my_off_t filepos, |
5043 | ulonglong* dirty_part_map) |
5044 | { |
5045 | uint i= KEYCACHE_BASE_EXPR( file, filepos) % keycache->partitions; |
5046 | *dirty_part_map|= 1ULL << i; |
5047 | return keycache->partition_array[i]; |
5048 | } |
5049 | |
5050 | |
5051 | /* |
5052 | Initialize a partitioned key cache |
5053 | |
5054 | SYNOPSIS |
5055 | init_partitioned_key_cache() |
5056 | keycache pointer to the control block of a partitioned key cache |
5057 | key_cache_block_size size of blocks to keep cached data |
5058 | use_mem total memory to use for all key cache partitions |
5059 | division_limit division limit (may be zero) |
5060 | age_threshold age threshold (may be zero) |
5061 | |
5062 | DESCRIPTION |
5063 | This function is the implementation of the init_key_cache |
5064 | interface function that is employed by partitioned key caches. |
5065 | |
5066 | The function builds and initializes an array of simple key caches, |
5067 | and then initializes the control block structure of the type |
5068 | PARTITIONED_KEY_CACHE_CB that is used for a partitioned key |
5069 | cache. The parameter keycache is supposed to point to this |
5070 | structure. The number of partitions in the partitioned key cache |
5071 | to be built must be passed through the field 'partitions' of this |
5072 | structure. |
5073 | The parameter key_cache_block_size specifies the size of the |
5074 | blocks in the the simple key caches to be built. |
5075 | The parameters division_limit and age_threshold determine the initial |
5076 | values of those characteristics of the simple key caches that are used for |
5077 | midpoint insertion strategy. The parameter use_mem specifies the total |
5078 | amount of memory to be allocated for the key cache blocks in all simple key |
5079 | caches and for all auxiliary structures. |
5080 | |
5081 | RETURN VALUE |
5082 | total number of blocks in key cache partitions, if successful, |
5083 | <= 0 - otherwise. |
5084 | |
5085 | NOTES |
5086 | If keycache->key_cache_inited != 0 then we assume that the memory for |
5087 | the array of partitions has been already allocated. |
5088 | |
5089 | It's assumed that no two threads call this function simultaneously |
5090 | referring to the same key cache handle. |
5091 | */ |
5092 | |
5093 | static |
5094 | int init_partitioned_key_cache(PARTITIONED_KEY_CACHE_CB *keycache, |
5095 | uint key_cache_block_size, |
5096 | size_t use_mem, uint division_limit, |
5097 | uint age_threshold, uint changed_blocks_hash_size) |
5098 | { |
5099 | int i; |
5100 | size_t mem_per_cache; |
5101 | size_t mem_decr; |
5102 | int cnt; |
5103 | SIMPLE_KEY_CACHE_CB *partition; |
5104 | SIMPLE_KEY_CACHE_CB **partition_ptr; |
5105 | uint partitions= keycache->partitions; |
5106 | int blocks= 0; |
5107 | DBUG_ENTER("partitioned_init_key_cache" ); |
5108 | |
5109 | keycache->key_cache_block_size = key_cache_block_size; |
5110 | |
5111 | if (keycache->key_cache_inited) |
5112 | partition_ptr= keycache->partition_array; |
5113 | else |
5114 | { |
5115 | if(!(partition_ptr= |
5116 | (SIMPLE_KEY_CACHE_CB **) my_malloc(sizeof(SIMPLE_KEY_CACHE_CB *) * |
5117 | partitions, MYF(MY_WME)))) |
5118 | DBUG_RETURN(-1); |
5119 | bzero(partition_ptr, sizeof(SIMPLE_KEY_CACHE_CB *) * partitions); |
5120 | keycache->partition_array= partition_ptr; |
5121 | } |
5122 | |
5123 | mem_per_cache = use_mem / partitions; |
5124 | mem_decr= mem_per_cache / 5; |
5125 | |
5126 | for (i= 0; i < (int) partitions; i++) |
5127 | { |
5128 | my_bool key_cache_inited= keycache->key_cache_inited; |
5129 | if (key_cache_inited) |
5130 | partition= *partition_ptr; |
5131 | else |
5132 | { |
5133 | if (!(partition= |
5134 | (SIMPLE_KEY_CACHE_CB *) my_malloc(sizeof(SIMPLE_KEY_CACHE_CB), |
5135 | MYF(MY_WME)))) |
5136 | continue; |
5137 | partition->key_cache_inited= 0; |
5138 | } |
5139 | |
5140 | cnt= init_simple_key_cache(partition, key_cache_block_size, mem_per_cache, |
5141 | division_limit, age_threshold, |
5142 | changed_blocks_hash_size); |
5143 | if (cnt <= 0) |
5144 | { |
5145 | end_simple_key_cache(partition, 1); |
5146 | if (!key_cache_inited) |
5147 | { |
5148 | my_free(partition); |
5149 | partition= 0; |
5150 | } |
5151 | if ((i == 0 && cnt < 0) || i > 0) |
5152 | { |
5153 | /* |
5154 | Here we have two cases: |
5155 | 1. i == 0 and cnt < 0 |
5156 | cnt < 0 => mem_per_cache is not big enough to allocate minimal |
5157 | number of key blocks in the key cache of the partition. |
5158 | Decrease the the number of the partitions by 1 and start again. |
5159 | 2. i > 0 |
5160 | There is not enough memory for one of the succeeding partitions. |
5161 | Just skip this partition decreasing the number of partitions in |
5162 | the key cache by one. |
5163 | Do not change the value of mem_per_cache in both cases. |
5164 | */ |
5165 | if (key_cache_inited) |
5166 | { |
5167 | my_free(partition); |
5168 | partition= 0; |
5169 | if(key_cache_inited) |
5170 | memmove(partition_ptr, partition_ptr+1, |
5171 | sizeof(partition_ptr)*(partitions-i-1)); |
5172 | } |
5173 | if (!--partitions) |
5174 | break; |
5175 | } |
5176 | else |
5177 | { |
5178 | /* |
5179 | We come here when i == 0 && cnt == 0. |
5180 | cnt == 0 => the memory allocator fails to allocate a block of |
5181 | memory of the size mem_per_cache. Decrease the value of |
5182 | mem_per_cache without changing the current number of partitions |
5183 | and start again. Make sure that such a decrease may happen not |
5184 | more than 5 times in total. |
5185 | */ |
5186 | if (use_mem <= mem_decr) |
5187 | break; |
5188 | use_mem-= mem_decr; |
5189 | } |
5190 | i--; |
5191 | mem_per_cache= use_mem/partitions; |
5192 | continue; |
5193 | } |
5194 | else |
5195 | { |
5196 | blocks+= cnt; |
5197 | *partition_ptr++= partition; |
5198 | } |
5199 | } |
5200 | |
5201 | keycache->partitions= partitions= (uint) (partition_ptr-keycache->partition_array); |
5202 | keycache->key_cache_mem_size= mem_per_cache * partitions; |
5203 | for (i= 0; i < (int) partitions; i++) |
5204 | keycache->partition_array[i]->hash_factor= partitions; |
5205 | |
5206 | keycache->key_cache_inited= 1; |
5207 | |
5208 | if (!partitions) |
5209 | blocks= -1; |
5210 | |
5211 | DBUG_RETURN(blocks); |
5212 | } |
5213 | |
5214 | |
5215 | /* |
5216 | Resize a partitioned key cache |
5217 | |
5218 | SYNOPSIS |
5219 | resize_partitioned_key_cache() |
5220 | keycache pointer to the control block of a partitioned key cache |
5221 | key_cache_block_size size of blocks to keep cached data |
5222 | use_mem total memory to use for the new key cache |
5223 | division_limit new division limit (if not zero) |
5224 | age_threshold new age threshold (if not zero) |
5225 | |
5226 | DESCRIPTION |
5227 | This function is the implementation of the resize_key_cache interface |
5228 | function that is employed by partitioned key caches. |
5229 | The function takes the parameter keycache as a pointer to the |
5230 | control block structure of the type PARTITIONED_KEY_CACHE_CB for the |
5231 | partitioned key cache to be resized. |
5232 | The parameter key_cache_block_size specifies the new size of the blocks in |
5233 | the simple key caches that comprise the partitioned key cache. |
5234 | The parameters division_limit and age_threshold determine the new initial |
5235 | values of those characteristics of the simple key cache that are used for |
5236 | midpoint insertion strategy. The parameter use-mem specifies the total |
5237 | amount of memory to be allocated for the key cache blocks in all new |
5238 | simple key caches and for all auxiliary structures. |
5239 | |
5240 | RETURN VALUE |
5241 | number of blocks in the key cache, if successful, |
5242 | 0 - otherwise. |
5243 | |
5244 | NOTES. |
5245 | The function first calls prepare_resize_simple_key_cache for each simple |
5246 | key cache effectively flushing all dirty pages from it and destroying |
5247 | the key cache. Then init_partitioned_key_cache is called. This call builds |
5248 | a new array of simple key caches containing the same number of elements |
5249 | as the old one. After this the function calls the function |
5250 | finish_resize_simple_key_cache for each simple key cache from this array. |
5251 | |
5252 | This implementation doesn't block the calls and executions of other |
5253 | functions from the key cache interface. However it assumes that the |
5254 | calls of resize_partitioned_key_cache itself are serialized. |
5255 | */ |
5256 | |
5257 | static |
5258 | int resize_partitioned_key_cache(PARTITIONED_KEY_CACHE_CB *keycache, |
5259 | uint key_cache_block_size, |
5260 | size_t use_mem, uint division_limit, |
5261 | uint age_threshold, |
5262 | uint changed_blocks_hash_size) |
5263 | { |
5264 | uint i; |
5265 | uint partitions= keycache->partitions; |
5266 | my_bool cleanup= use_mem == 0; |
5267 | int blocks= -1; |
5268 | int err= 0; |
5269 | DBUG_ENTER("partitioned_resize_key_cache" ); |
5270 | if (cleanup) |
5271 | { |
5272 | end_partitioned_key_cache(keycache, 0); |
5273 | DBUG_RETURN(-1); |
5274 | } |
5275 | for (i= 0; i < partitions; i++) |
5276 | { |
5277 | err|= prepare_resize_simple_key_cache(keycache->partition_array[i], 1); |
5278 | } |
5279 | if (!err) |
5280 | blocks= init_partitioned_key_cache(keycache, key_cache_block_size, |
5281 | use_mem, division_limit, age_threshold, |
5282 | changed_blocks_hash_size); |
5283 | if (blocks > 0) |
5284 | { |
5285 | for (i= 0; i < partitions; i++) |
5286 | { |
5287 | keycache_pthread_mutex_lock(&keycache->partition_array[i]->cache_lock); |
5288 | finish_resize_simple_key_cache(keycache->partition_array[i]); |
5289 | } |
5290 | } |
5291 | DBUG_RETURN(blocks); |
5292 | } |
5293 | |
5294 | |
5295 | /* |
5296 | Change key cache parameters of a partitioned key cache |
5297 | |
5298 | SYNOPSIS |
5299 | partitioned_change_key_cache_param() |
5300 | keycache pointer to the control block of a partitioned key cache |
5301 | division_limit new division limit (if not zero) |
5302 | age_threshold new age threshold (if not zero) |
5303 | |
5304 | DESCRIPTION |
5305 | This function is the implementation of the change_key_cache_param interface |
5306 | function that is employed by partitioned key caches. |
5307 | The function takes the parameter keycache as a pointer to the |
5308 | control block structure of the type PARTITIONED_KEY_CACHE_CB for the simple |
5309 | key cache where new values of the division limit and the age threshold used |
5310 | for midpoint insertion strategy are to be set. The parameters |
5311 | division_limit and age_threshold provide these new values. |
5312 | |
5313 | RETURN VALUE |
5314 | none |
5315 | |
5316 | NOTES |
5317 | The function just calls change_simple_key_cache_param for each element from |
5318 | the array of simple caches that comprise the partitioned key cache. |
5319 | */ |
5320 | |
5321 | static |
5322 | void change_partitioned_key_cache_param(PARTITIONED_KEY_CACHE_CB *keycache, |
5323 | uint division_limit, |
5324 | uint age_threshold) |
5325 | { |
5326 | uint i; |
5327 | uint partitions= keycache->partitions; |
5328 | DBUG_ENTER("partitioned_change_key_cache_param" ); |
5329 | for (i= 0; i < partitions; i++) |
5330 | { |
5331 | change_simple_key_cache_param(keycache->partition_array[i], division_limit, |
5332 | age_threshold); |
5333 | } |
5334 | DBUG_VOID_RETURN; |
5335 | } |
5336 | |
5337 | |
5338 | /* |
5339 | Destroy a partitioned key cache |
5340 | |
5341 | SYNOPSIS |
5342 | end_partitioned_key_cache() |
5343 | keycache pointer to the control block of a partitioned key cache |
5344 | cleanup <=> complete free (free also control block structures |
5345 | for all simple key caches) |
5346 | |
5347 | DESCRIPTION |
5348 | This function is the implementation of the end_key_cache interface |
5349 | function that is employed by partitioned key caches. |
5350 | The function takes the parameter keycache as a pointer to the |
5351 | control block structure of the type PARTITIONED_KEY_CACHE_CB for the |
5352 | partitioned key cache to be destroyed. |
5353 | The function frees the memory allocated for the cache blocks and |
5354 | auxiliary structures used by simple key caches that comprise the |
5355 | partitioned key cache. If the value of the parameter cleanup is TRUE |
5356 | then even the memory used for control blocks of the simple key caches |
5357 | and the array of pointers to them are freed. |
5358 | |
5359 | RETURN VALUE |
5360 | none |
5361 | */ |
5362 | |
5363 | static |
5364 | void end_partitioned_key_cache(PARTITIONED_KEY_CACHE_CB *keycache, |
5365 | my_bool cleanup) |
5366 | { |
5367 | uint i; |
5368 | uint partitions= keycache->partitions; |
5369 | DBUG_ENTER("partitioned_end_key_cache" ); |
5370 | DBUG_PRINT("enter" , ("key_cache: %p" , keycache)); |
5371 | |
5372 | for (i= 0; i < partitions; i++) |
5373 | { |
5374 | end_simple_key_cache(keycache->partition_array[i], cleanup); |
5375 | } |
5376 | if (cleanup) |
5377 | { |
5378 | for (i= 0; i < partitions; i++) |
5379 | my_free(keycache->partition_array[i]); |
5380 | my_free(keycache->partition_array); |
5381 | keycache->key_cache_inited= 0; |
5382 | } |
5383 | DBUG_VOID_RETURN; |
5384 | } |
5385 | |
5386 | |
5387 | /* |
5388 | Read a block of data from a partitioned key cache into a buffer |
5389 | |
5390 | SYNOPSIS |
5391 | |
5392 | partitioned_key_cache_read() |
5393 | keycache pointer to the control block of a partitioned key cache |
5394 | file handler for the file for the block of data to be read |
5395 | filepos position of the block of data in the file |
5396 | level determines the weight of the data |
5397 | buff buffer to where the data must be placed |
5398 | length length of the buffer |
5399 | block_length length of the read data from a key cache block |
5400 | return_buffer return pointer to the key cache buffer with the data |
5401 | |
5402 | DESCRIPTION |
5403 | This function is the implementation of the key_cache_read interface |
5404 | function that is employed by partitioned key caches. |
5405 | The function takes the parameter keycache as a pointer to the |
5406 | control block structure of the type PARTITIONED_KEY_CACHE_CB for a |
5407 | partitioned key cache. |
5408 | In a general case the function reads a block of data from the key cache |
5409 | into the buffer buff of the size specified by the parameter length. The |
5410 | beginning of the block of data to be read is specified by the parameters |
5411 | file and filepos. The length of the read data is the same as the length |
5412 | of the buffer. The data is read into the buffer in key_cache_block_size |
5413 | increments. To read each portion the function first finds out in what |
5414 | partition of the key cache this portion(page) is to be saved, and calls |
5415 | simple_key_cache_read with the pointer to the corresponding simple key as |
5416 | its first parameter. |
5417 | If the parameter return_buffer is not ignored and its value is TRUE, and |
5418 | the data to be read of the specified size block_length can be read from one |
5419 | key cache buffer, then the function returns a pointer to the data in the |
5420 | key cache buffer. |
5421 | The function takes into account parameters block_length and return buffer |
5422 | only in a single-threaded environment. |
5423 | The parameter 'level' is used only by the midpoint insertion strategy |
5424 | when the data or its portion cannot be found in the key cache. |
5425 | |
5426 | RETURN VALUE |
5427 | Returns address from where the data is placed if successful, 0 - otherwise. |
5428 | */ |
5429 | |
5430 | static |
5431 | uchar *partitioned_key_cache_read(PARTITIONED_KEY_CACHE_CB *keycache, |
5432 | File file, my_off_t filepos, int level, |
5433 | uchar *buff, uint length, |
5434 | uint block_length __attribute__((unused)), |
5435 | int return_buffer __attribute__((unused))) |
5436 | { |
5437 | uint r_length; |
5438 | uint offset= (uint) (filepos % keycache->key_cache_block_size); |
5439 | uchar *start= buff; |
5440 | DBUG_ENTER("partitioned_key_cache_read" ); |
5441 | DBUG_PRINT("enter" , ("fd: %u pos: %lu length: %u" , |
5442 | (uint) file, (ulong) filepos, length)); |
5443 | |
5444 | |
5445 | /* Read data in key_cache_block_size increments */ |
5446 | do |
5447 | { |
5448 | SIMPLE_KEY_CACHE_CB *partition= get_key_cache_partition(keycache, |
5449 | file, filepos); |
5450 | uchar *ret_buff= 0; |
5451 | r_length= length; |
5452 | set_if_smaller(r_length, keycache->key_cache_block_size - offset); |
5453 | ret_buff= simple_key_cache_read((void *) partition, |
5454 | file, filepos, level, |
5455 | buff, r_length, |
5456 | block_length, return_buffer); |
5457 | if (ret_buff == 0) |
5458 | DBUG_RETURN(0); |
5459 | filepos+= r_length; |
5460 | buff+= r_length; |
5461 | offset= 0; |
5462 | } while ((length-= r_length)); |
5463 | |
5464 | DBUG_RETURN(start); |
5465 | } |
5466 | |
5467 | |
5468 | /* |
5469 | Insert a block of file data from a buffer into a partitioned key cache |
5470 | |
5471 | SYNOPSIS |
5472 | partitioned_key_cache_insert() |
5473 | keycache pointer to the control block of a partitioned key cache |
5474 | file handler for the file to insert data from |
5475 | filepos position of the block of data in the file to insert |
5476 | level determines the weight of the data |
5477 | buff buffer to read data from |
5478 | length length of the data in the buffer |
5479 | |
5480 | DESCRIPTION |
5481 | This function is the implementation of the key_cache_insert interface |
5482 | function that is employed by partitioned key caches. |
5483 | The function takes the parameter keycache as a pointer to the |
5484 | control block structure of the type PARTITIONED_KEY_CACHE_CB for a |
5485 | partitioned key cache. |
5486 | The function writes a block of file data from a buffer into the key cache. |
5487 | The buffer is specified with the parameters buff and length - the pointer |
5488 | to the beginning of the buffer and its size respectively. It's assumed |
5489 | that the buffer contains the data from 'file' allocated from the position |
5490 | filepos. The data is copied from the buffer in key_cache_block_size |
5491 | increments. For every portion of data the function finds out in what simple |
5492 | key cache from the array of partitions the data must be stored, and after |
5493 | this calls simple_key_cache_insert to copy the data into a key buffer of |
5494 | this simple key cache. |
5495 | The parameter level is used to set one characteristic for the key buffers |
5496 | loaded with the data from buff. The characteristic is used only by the |
5497 | midpoint insertion strategy. |
5498 | |
5499 | RETURN VALUE |
5500 | 0 if a success, 1 - otherwise. |
5501 | |
5502 | NOTES |
5503 | The function is used by MyISAM to move all blocks from a index file to |
5504 | the key cache. It can be performed in parallel with reading the file data |
5505 | from the key buffers by other threads. |
5506 | */ |
5507 | |
5508 | static |
5509 | int partitioned_key_cache_insert(PARTITIONED_KEY_CACHE_CB *keycache, |
5510 | File file, my_off_t filepos, int level, |
5511 | uchar *buff, uint length) |
5512 | { |
5513 | uint w_length; |
5514 | uint offset= (uint) (filepos % keycache->key_cache_block_size); |
5515 | DBUG_ENTER("partitioned_key_cache_insert" ); |
5516 | DBUG_PRINT("enter" , ("fd: %u pos: %lu length: %u" , |
5517 | (uint) file,(ulong) filepos, length)); |
5518 | |
5519 | |
5520 | /* Write data in key_cache_block_size increments */ |
5521 | do |
5522 | { |
5523 | SIMPLE_KEY_CACHE_CB *partition= get_key_cache_partition(keycache, |
5524 | file, filepos); |
5525 | w_length= length; |
5526 | set_if_smaller(w_length, keycache->key_cache_block_size - offset); |
5527 | if (simple_key_cache_insert((void *) partition, |
5528 | file, filepos, level, |
5529 | buff, w_length)) |
5530 | DBUG_RETURN(1); |
5531 | |
5532 | filepos+= w_length; |
5533 | buff+= w_length; |
5534 | offset = 0; |
5535 | } while ((length-= w_length)); |
5536 | |
5537 | DBUG_RETURN(0); |
5538 | } |
5539 | |
5540 | |
5541 | /* |
5542 | Write data from a buffer into a partitioned key cache |
5543 | |
5544 | SYNOPSIS |
5545 | |
5546 | partitioned_key_cache_write() |
5547 | keycache pointer to the control block of a partitioned key cache |
5548 | file handler for the file to write data to |
5549 | filepos position in the file to write data to |
5550 | level determines the weight of the data |
5551 | buff buffer with the data |
5552 | length length of the buffer |
5553 | dont_write if is 0 then all dirty pages involved in writing |
5554 | should have been flushed from key cache |
5555 | file_extra maps of key cache partitions containing |
5556 | dirty pages from file |
5557 | |
5558 | DESCRIPTION |
5559 | This function is the implementation of the key_cache_write interface |
5560 | function that is employed by partitioned key caches. |
5561 | The function takes the parameter keycache as a pointer to the |
5562 | control block structure of the type PARTITIONED_KEY_CACHE_CB for a |
5563 | partitioned key cache. |
5564 | In a general case the function copies data from a buffer into the key |
5565 | cache. The buffer is specified with the parameters buff and length - |
5566 | the pointer to the beginning of the buffer and its size respectively. |
5567 | It's assumed the buffer contains the data to be written into 'file' |
5568 | starting from the position filepos. The data is copied from the buffer |
5569 | in key_cache_block_size increments. For every portion of data the |
5570 | function finds out in what simple key cache from the array of partitions |
5571 | the data must be stored, and after this calls simple_key_cache_write to |
5572 | copy the data into a key buffer of this simple key cache. |
5573 | If the value of the parameter dont_write is FALSE then the function |
5574 | also writes the data into file. |
5575 | The parameter level is used to set one characteristic for the key buffers |
5576 | filled with the data from buff. The characteristic is employed only by |
5577 | the midpoint insertion strategy. |
5578 | The parameter file_expra provides a pointer to the shared bitmap of |
5579 | the partitions that may contains dirty pages for the file. This bitmap |
5580 | is used to optimize the function flush_partitioned_key_cache_blocks. |
5581 | |
5582 | RETURN VALUE |
5583 | 0 if a success, 1 - otherwise. |
5584 | |
5585 | NOTES |
5586 | This implementation exploits the fact that the function is called only |
5587 | when a thread has got an exclusive lock for the key file. |
5588 | */ |
5589 | |
5590 | static |
5591 | int partitioned_key_cache_write(PARTITIONED_KEY_CACHE_CB *keycache, |
5592 | File file, void *, |
5593 | my_off_t filepos, int level, |
5594 | uchar *buff, uint length, |
5595 | uint block_length __attribute__((unused)), |
5596 | int dont_write) |
5597 | { |
5598 | uint w_length; |
5599 | ulonglong *part_map= (ulonglong *) file_extra; |
5600 | uint offset= (uint) (filepos % keycache->key_cache_block_size); |
5601 | DBUG_ENTER("partitioned_key_cache_write" ); |
5602 | DBUG_PRINT("enter" , |
5603 | ("fd: %u pos: %lu length: %u block_length: %u" |
5604 | " key_block_length: %u" , |
5605 | (uint) file, (ulong) filepos, length, block_length, |
5606 | keycache ? keycache->key_cache_block_size : 0)); |
5607 | |
5608 | |
5609 | /* Write data in key_cache_block_size increments */ |
5610 | do |
5611 | { |
5612 | SIMPLE_KEY_CACHE_CB *partition= get_key_cache_partition_for_write(keycache, |
5613 | file, |
5614 | filepos, |
5615 | part_map); |
5616 | w_length = length; |
5617 | set_if_smaller(w_length, keycache->key_cache_block_size - offset ); |
5618 | if (simple_key_cache_write(partition, |
5619 | file, 0, filepos, level, |
5620 | buff, w_length, block_length, |
5621 | dont_write)) |
5622 | DBUG_RETURN(1); |
5623 | |
5624 | filepos+= w_length; |
5625 | buff+= w_length; |
5626 | offset= 0; |
5627 | } while ((length-= w_length)); |
5628 | |
5629 | DBUG_RETURN(0); |
5630 | } |
5631 | |
5632 | |
5633 | /* |
5634 | Flush all blocks for a file from key buffers of a partitioned key cache |
5635 | |
5636 | SYNOPSIS |
5637 | |
5638 | flush_partitioned_key_cache_blocks() |
5639 | keycache pointer to the control block of a partitioned key cache |
5640 | file handler for the file to flush to |
5641 | file_extra maps of key cache partitions containing |
5642 | dirty pages from file (not used) |
5643 | flush_type type of the flush operation |
5644 | |
5645 | DESCRIPTION |
5646 | This function is the implementation of the flush_key_blocks interface |
5647 | function that is employed by partitioned key caches. |
5648 | The function takes the parameter keycache as a pointer to the |
5649 | control block structure of the type PARTITIONED_KEY_CACHE_CB for a |
5650 | partitioned key cache. |
5651 | In a general case the function flushes the data from all dirty key |
5652 | buffers related to the file 'file' into this file. The function does |
5653 | exactly this if the value of the parameter type is FLUSH_KEEP. If the |
5654 | value of this parameter is FLUSH_RELEASE, the function additionally |
5655 | releases the key buffers containing data from 'file' for new usage. |
5656 | If the value of the parameter type is FLUSH_IGNORE_CHANGED the function |
5657 | just releases the key buffers containing data from 'file'. |
5658 | The function performs the operation by calling the function |
5659 | flush_simple_key_cache_blocks for the elements of the array of the |
5660 | simple key caches that comprise the partitioned key_cache. If the value |
5661 | of the parameter type is FLUSH_KEEP s_flush_key_blocks is called only |
5662 | for the partitions with possibly dirty pages marked in the bitmap |
5663 | pointed to by the parameter file_extra. |
5664 | |
5665 | RETURN |
5666 | 0 ok |
5667 | 1 error |
5668 | |
5669 | NOTES |
5670 | This implementation exploits the fact that the function is called only |
5671 | when a thread has got an exclusive lock for the key file. |
5672 | */ |
5673 | |
5674 | static |
5675 | int flush_partitioned_key_cache_blocks(PARTITIONED_KEY_CACHE_CB *keycache, |
5676 | File file, void *, |
5677 | enum flush_type type) |
5678 | { |
5679 | uint i; |
5680 | uint partitions= keycache->partitions; |
5681 | int err= 0; |
5682 | ulonglong *dirty_part_map= (ulonglong *) file_extra; |
5683 | DBUG_ENTER("partitioned_flush_key_blocks" ); |
5684 | DBUG_PRINT("enter" , ("keycache: %p" , keycache)); |
5685 | |
5686 | for (i= 0; i < partitions; i++) |
5687 | { |
5688 | SIMPLE_KEY_CACHE_CB *partition= keycache->partition_array[i]; |
5689 | if ((type == FLUSH_KEEP || type == FLUSH_FORCE_WRITE) && |
5690 | !((*dirty_part_map) & ((ulonglong) 1 << i))) |
5691 | continue; |
5692 | err|= MY_TEST(flush_simple_key_cache_blocks(partition, file, 0, type)); |
5693 | } |
5694 | *dirty_part_map= 0; |
5695 | |
5696 | DBUG_RETURN(err); |
5697 | } |
5698 | |
5699 | |
5700 | /* |
5701 | Reset the counters of a partitioned key cache |
5702 | |
5703 | SYNOPSIS |
5704 | reset_partitioned_key_cache_counters() |
5705 | name the name of a key cache |
5706 | keycache pointer to the control block of a partitioned key cache |
5707 | |
5708 | DESCRIPTION |
5709 | This function is the implementation of the reset_key_cache_counters |
5710 | interface function that is employed by partitioned key caches. |
5711 | The function takes the parameter keycache as a pointer to the |
5712 | control block structure of the type PARTITIONED_KEY_CACHE_CB for a partitioned |
5713 | key cache. |
5714 | This function resets the values of the statistical counters of the simple |
5715 | key caches comprising partitioned key cache to 0. It does it by calling |
5716 | reset_simple_key_cache_counters for each key cache partition. |
5717 | The parameter name is currently not used. |
5718 | |
5719 | RETURN |
5720 | 0 on success (always because it can't fail) |
5721 | */ |
5722 | |
5723 | static int |
5724 | reset_partitioned_key_cache_counters(const char *name __attribute__((unused)), |
5725 | PARTITIONED_KEY_CACHE_CB *keycache) |
5726 | { |
5727 | uint i; |
5728 | uint partitions= keycache->partitions; |
5729 | DBUG_ENTER("partitioned_reset_key_cache_counters" ); |
5730 | |
5731 | for (i = 0; i < partitions; i++) |
5732 | { |
5733 | reset_simple_key_cache_counters(name, keycache->partition_array[i]); |
5734 | } |
5735 | DBUG_RETURN(0); |
5736 | } |
5737 | |
5738 | |
5739 | /* |
5740 | Get statistics for a partition key cache |
5741 | |
5742 | SYNOPSIS |
5743 | get_partitioned_key_cache_statistics() |
5744 | keycache pointer to the control block of a partitioned key cache |
5745 | partition_no partition number to get statistics for |
5746 | key_cache_stats OUT pointer to the structure for the returned statistics |
5747 | |
5748 | DESCRIPTION |
5749 | This function is the implementation of the get_key_cache_statistics |
5750 | interface function that is employed by partitioned key caches. |
5751 | The function takes the parameter keycache as a pointer to the |
5752 | control block structure of the type PARTITIONED_KEY_CACHE_CB for |
5753 | a partitioned key cache. |
5754 | If the value of the parameter partition_no is equal to 0 then aggregated |
5755 | statistics for all partitions is returned in the fields of the |
5756 | structure key_cache_stat of the type KEY_CACHE_STATISTICS . Otherwise |
5757 | the function returns data for the partition number partition_no of the |
5758 | key cache in the structure key_cache_stat. (Here partitions are numbered |
5759 | starting from 1.) |
5760 | |
5761 | RETURN |
5762 | none |
5763 | */ |
5764 | |
5765 | static |
5766 | void |
5767 | get_partitioned_key_cache_statistics(PARTITIONED_KEY_CACHE_CB *keycache, |
5768 | uint partition_no, |
5769 | KEY_CACHE_STATISTICS *keycache_stats) |
5770 | { |
5771 | uint i; |
5772 | SIMPLE_KEY_CACHE_CB *partition; |
5773 | uint partitions= keycache->partitions; |
5774 | DBUG_ENTER("get_partitioned_key_cache_statistics" ); |
5775 | |
5776 | if (partition_no != 0) |
5777 | { |
5778 | partition= keycache->partition_array[partition_no-1]; |
5779 | get_simple_key_cache_statistics((void *) partition, 0, keycache_stats); |
5780 | DBUG_VOID_RETURN; |
5781 | } |
5782 | bzero(keycache_stats, sizeof(KEY_CACHE_STATISTICS)); |
5783 | keycache_stats->mem_size= (longlong) keycache->key_cache_mem_size; |
5784 | keycache_stats->block_size= (longlong) keycache->key_cache_block_size; |
5785 | for (i = 0; i < partitions; i++) |
5786 | { |
5787 | partition= keycache->partition_array[i]; |
5788 | keycache_stats->blocks_used+= partition->blocks_used; |
5789 | keycache_stats->blocks_unused+= partition->blocks_unused; |
5790 | keycache_stats->blocks_changed+= partition->global_blocks_changed; |
5791 | keycache_stats->blocks_warm+= partition->warm_blocks; |
5792 | keycache_stats->read_requests+= partition->global_cache_r_requests; |
5793 | keycache_stats->reads+= partition->global_cache_read; |
5794 | keycache_stats->write_requests+= partition->global_cache_w_requests; |
5795 | keycache_stats->writes+= partition->global_cache_write; |
5796 | } |
5797 | DBUG_VOID_RETURN; |
5798 | } |
5799 | |
5800 | /* |
5801 | The array of pointers to the key cache interface functions used by |
5802 | partitioned key caches. Any partitioned key cache object caches exploits |
5803 | this array. |
5804 | |
5805 | The current implementation of these functions does not allow to call |
5806 | them from the MySQL server code directly. The key cache interface |
5807 | wrappers must be used for this purpose. |
5808 | */ |
5809 | |
5810 | static KEY_CACHE_FUNCS partitioned_key_cache_funcs = |
5811 | { |
5812 | (INIT_KEY_CACHE) init_partitioned_key_cache, |
5813 | (RESIZE_KEY_CACHE) resize_partitioned_key_cache, |
5814 | (CHANGE_KEY_CACHE_PARAM) change_partitioned_key_cache_param, |
5815 | (KEY_CACHE_READ) partitioned_key_cache_read, |
5816 | (KEY_CACHE_INSERT) partitioned_key_cache_insert, |
5817 | (KEY_CACHE_WRITE) partitioned_key_cache_write, |
5818 | (FLUSH_KEY_BLOCKS) flush_partitioned_key_cache_blocks, |
5819 | (RESET_KEY_CACHE_COUNTERS) reset_partitioned_key_cache_counters, |
5820 | (END_KEY_CACHE) end_partitioned_key_cache, |
5821 | (GET_KEY_CACHE_STATISTICS) get_partitioned_key_cache_statistics, |
5822 | }; |
5823 | |
5824 | |
5825 | /****************************************************************************** |
5826 | Key Cache Interface Module |
5827 | |
5828 | The module contains wrappers for all key cache interface functions. |
5829 | |
5830 | Currently there are key caches of two types: simple key caches and |
5831 | partitioned key caches. Each type (class) has its own implementation of the |
5832 | basic key cache operations used the MyISAM storage engine. The pointers |
5833 | to the implementation functions are stored in two static structures of the |
5834 | type KEY_CACHE_FUNC: simple_key_cache_funcs - for simple key caches, and |
5835 | partitioned_key_cache_funcs - for partitioned key caches. When a key cache |
5836 | object is created the constructor procedure init_key_cache places a pointer |
5837 | to the corresponding table into one of its fields. The procedure also |
5838 | initializes a control block for the key cache oject and saves the pointer |
5839 | to this block in another field of the key cache object. |
5840 | When a key cache wrapper function is invoked for a key cache object to |
5841 | perform a basic key cache operation it looks into the interface table |
5842 | associated with the key cache oject and calls the corresponding |
5843 | implementation of the operation. It passes the saved key cache control |
5844 | block to this implementation. If, for some reasons, the control block |
5845 | has not been fully initialized yet, the wrapper function either does not |
5846 | do anything or, in the case when it perform a read/write operation, the |
5847 | function do it directly through the system i/o functions. |
5848 | |
5849 | As we can see the model with which the key cache interface is supported |
5850 | as quite conventional for interfaces in general. |
5851 | |
5852 | ******************************************************************************/ |
5853 | |
5854 | static |
5855 | int repartition_key_cache_internal(KEY_CACHE *keycache, |
5856 | uint key_cache_block_size, size_t use_mem, |
5857 | uint division_limit, uint age_threshold, |
5858 | uint changed_blocks_hash_size, |
5859 | uint partitions, my_bool use_op_lock); |
5860 | |
5861 | /* |
5862 | Initialize a key cache : internal |
5863 | |
5864 | SYNOPSIS |
5865 | init_key_cache_internal() |
5866 | keycache pointer to the key cache to be initialized |
5867 | key_cache_block_size size of blocks to keep cached data |
5868 | use_mem total memory to use for cache buffers/structures |
5869 | division_limit division limit (may be zero) |
5870 | age_threshold age threshold (may be zero) |
5871 | changed_blocks_hash_size Number of hash buckets to hold a link of different |
5872 | files. Should be proportional to number of different |
5873 | files sused. |
5874 | partitions Number of partitions in the key cache |
5875 | use_op_lock if TRUE use keycache->op_lock, otherwise - ignore it |
5876 | |
5877 | DESCRIPTION |
5878 | The function performs the actions required from init_key_cache(). |
5879 | It has an additional parameter: use_op_lock. When the parameter |
5880 | is TRUE than the function initializes keycache->op_lock if needed, |
5881 | then locks it, and unlocks it before the return. Otherwise the actions |
5882 | with the lock are omitted. |
5883 | |
5884 | RETURN VALUE |
5885 | total number of blocks in key cache partitions, if successful, |
5886 | <= 0 - otherwise. |
5887 | |
5888 | NOTES |
5889 | if keycache->key_cache_inited != 0 we assume that the memory |
5890 | for the control block of the key cache has been already allocated. |
5891 | */ |
5892 | |
5893 | static |
5894 | int init_key_cache_internal(KEY_CACHE *keycache, uint key_cache_block_size, |
5895 | size_t use_mem, uint division_limit, |
5896 | uint age_threshold, uint changed_blocks_hash_size, |
5897 | uint partitions, |
5898 | my_bool use_op_lock) |
5899 | { |
5900 | void *keycache_cb; |
5901 | int blocks; |
5902 | if (keycache->key_cache_inited) |
5903 | { |
5904 | if (use_op_lock) |
5905 | pthread_mutex_lock(&keycache->op_lock); |
5906 | keycache_cb= keycache->keycache_cb; |
5907 | } |
5908 | else |
5909 | { |
5910 | if (partitions == 0) |
5911 | { |
5912 | if (!(keycache_cb= (void *) my_malloc(sizeof(SIMPLE_KEY_CACHE_CB), |
5913 | MYF(0)))) |
5914 | return 0; |
5915 | ((SIMPLE_KEY_CACHE_CB *) keycache_cb)->key_cache_inited= 0; |
5916 | keycache->key_cache_type= SIMPLE_KEY_CACHE; |
5917 | keycache->interface_funcs= &simple_key_cache_funcs; |
5918 | } |
5919 | else |
5920 | { |
5921 | if (!(keycache_cb= (void *) my_malloc(sizeof(PARTITIONED_KEY_CACHE_CB), |
5922 | MYF(0)))) |
5923 | return 0; |
5924 | ((PARTITIONED_KEY_CACHE_CB *) keycache_cb)->key_cache_inited= 0; |
5925 | keycache->key_cache_type= PARTITIONED_KEY_CACHE; |
5926 | keycache->interface_funcs= &partitioned_key_cache_funcs; |
5927 | } |
5928 | /* |
5929 | Initialize op_lock if it's not initialized before. |
5930 | The mutex may have been initialized before if we are being called |
5931 | from repartition_key_cache_internal(). |
5932 | */ |
5933 | if (use_op_lock) |
5934 | pthread_mutex_init(&keycache->op_lock, MY_MUTEX_INIT_FAST); |
5935 | keycache->keycache_cb= keycache_cb; |
5936 | keycache->key_cache_inited= 1; |
5937 | if (use_op_lock) |
5938 | pthread_mutex_lock(&keycache->op_lock); |
5939 | } |
5940 | |
5941 | if (partitions != 0) |
5942 | { |
5943 | ((PARTITIONED_KEY_CACHE_CB *) keycache_cb)->partitions= partitions; |
5944 | } |
5945 | keycache->can_be_used= 0; |
5946 | blocks= keycache->interface_funcs->init(keycache_cb, key_cache_block_size, |
5947 | use_mem, division_limit, |
5948 | age_threshold, changed_blocks_hash_size); |
5949 | keycache->partitions= partitions ? |
5950 | ((PARTITIONED_KEY_CACHE_CB *) keycache_cb)->partitions : |
5951 | 0; |
5952 | DBUG_ASSERT(partitions <= MAX_KEY_CACHE_PARTITIONS); |
5953 | keycache->key_cache_mem_size= |
5954 | keycache->partitions ? |
5955 | ((PARTITIONED_KEY_CACHE_CB *) keycache_cb)->key_cache_mem_size : |
5956 | ((SIMPLE_KEY_CACHE_CB *) keycache_cb)->key_cache_mem_size; |
5957 | if (blocks > 0) |
5958 | keycache->can_be_used= 1; |
5959 | if (use_op_lock) |
5960 | pthread_mutex_unlock(&keycache->op_lock); |
5961 | return blocks; |
5962 | } |
5963 | |
5964 | |
5965 | /* |
5966 | Initialize a key cache |
5967 | |
5968 | SYNOPSIS |
5969 | init_key_cache() |
5970 | keycache pointer to the key cache to be initialized |
5971 | key_cache_block_size size of blocks to keep cached data |
5972 | use_mem total memory to use for cache buffers/structures |
5973 | division_limit division limit (may be zero) |
5974 | age_threshold age threshold (may be zero) |
5975 | partitions number of partitions in the key cache |
5976 | |
5977 | DESCRIPTION |
5978 | The function creates a control block structure for a key cache and |
5979 | places the pointer to this block in the structure keycache. |
5980 | If the value of the parameter 'partitions' is 0 then a simple key cache |
5981 | is created. Otherwise a partitioned key cache with the specified number |
5982 | of partitions is created. |
5983 | The parameter key_cache_block_size specifies the size of the blocks in |
5984 | the key cache to be created. The parameters division_limit and |
5985 | age_threshold determine the initial values of those characteristics of |
5986 | the key cache that are used for midpoint insertion strategy. The parameter |
5987 | use_mem specifies the total amount of memory to be allocated for the |
5988 | key cache buffers and for all auxiliary structures. |
5989 | The function calls init_key_cache_internal() to perform all these actions |
5990 | with the last parameter set to TRUE. |
5991 | |
5992 | RETURN VALUE |
5993 | total number of blocks in key cache partitions, if successful, |
5994 | <= 0 - otherwise. |
5995 | |
5996 | NOTES |
5997 | It's assumed that no two threads call this function simultaneously |
5998 | referring to the same key cache handle. |
5999 | */ |
6000 | |
6001 | int init_key_cache(KEY_CACHE *keycache, uint key_cache_block_size, |
6002 | size_t use_mem, uint division_limit, |
6003 | uint age_threshold, uint changed_blocks_hash_size, |
6004 | uint partitions) |
6005 | { |
6006 | return init_key_cache_internal(keycache, key_cache_block_size, use_mem, |
6007 | division_limit, age_threshold, |
6008 | changed_blocks_hash_size, partitions, 1); |
6009 | } |
6010 | |
6011 | |
6012 | /* |
6013 | Resize a key cache |
6014 | |
6015 | SYNOPSIS |
6016 | resize_key_cache() |
6017 | keycache pointer to the key cache to be resized |
6018 | key_cache_block_size size of blocks to keep cached data |
6019 | use_mem total memory to use for the new key cache |
6020 | division_limit new division limit (if not zero) |
6021 | age_threshold new age threshold (if not zero) |
6022 | |
6023 | DESCRIPTION |
6024 | The function operates over the key cache key cache. |
6025 | The parameter key_cache_block_size specifies the new size of the block |
6026 | buffers in the key cache. The parameters division_limit and age_threshold |
6027 | determine the new initial values of those characteristics of the key cache |
6028 | that are used for midpoint insertion strategy. The parameter use_mem |
6029 | specifies the total amount of memory to be allocated for the key cache |
6030 | buffers and for all auxiliary structures. |
6031 | |
6032 | RETURN VALUE |
6033 | number of blocks in the key cache, if successful, |
6034 | 0 - otherwise. |
6035 | |
6036 | NOTES |
6037 | The function does not block the calls and executions of other functions |
6038 | from the key cache interface. However it assumes that the calls of |
6039 | resize_key_cache itself are serialized. |
6040 | |
6041 | Currently the function is called when the values of the variables |
6042 | key_buffer_size and/or key_cache_block_size are being reset for |
6043 | the key cache keycache. |
6044 | */ |
6045 | |
6046 | int resize_key_cache(KEY_CACHE *keycache, uint key_cache_block_size, |
6047 | size_t use_mem, uint division_limit, uint age_threshold, |
6048 | uint changed_blocks_hash_size) |
6049 | { |
6050 | int blocks= -1; |
6051 | if (keycache->key_cache_inited) |
6052 | { |
6053 | pthread_mutex_lock(&keycache->op_lock); |
6054 | if ((uint) keycache->param_partitions != keycache->partitions && use_mem) |
6055 | blocks= repartition_key_cache_internal(keycache, |
6056 | key_cache_block_size, use_mem, |
6057 | division_limit, age_threshold, |
6058 | changed_blocks_hash_size, |
6059 | (uint) keycache->param_partitions, |
6060 | 0); |
6061 | else |
6062 | { |
6063 | blocks= keycache->interface_funcs->resize(keycache->keycache_cb, |
6064 | key_cache_block_size, |
6065 | use_mem, division_limit, |
6066 | age_threshold, |
6067 | changed_blocks_hash_size); |
6068 | |
6069 | if (keycache->partitions) |
6070 | keycache->partitions= |
6071 | ((PARTITIONED_KEY_CACHE_CB *)(keycache->keycache_cb))->partitions; |
6072 | } |
6073 | |
6074 | keycache->key_cache_mem_size= |
6075 | keycache->partitions ? |
6076 | ((PARTITIONED_KEY_CACHE_CB *)(keycache->keycache_cb))->key_cache_mem_size : |
6077 | ((SIMPLE_KEY_CACHE_CB *)(keycache->keycache_cb))->key_cache_mem_size; |
6078 | |
6079 | keycache->can_be_used= (blocks >= 0); |
6080 | pthread_mutex_unlock(&keycache->op_lock); |
6081 | } |
6082 | return blocks; |
6083 | } |
6084 | |
6085 | |
6086 | /* |
6087 | Change key cache parameters of a key cache |
6088 | |
6089 | SYNOPSIS |
6090 | change_key_cache_param() |
6091 | keycache pointer to the key cache to change parameters for |
6092 | division_limit new division limit (if not zero) |
6093 | age_threshold new age threshold (if not zero) |
6094 | |
6095 | DESCRIPTION |
6096 | The function sets new values of the division limit and the age threshold |
6097 | used when the key cache keycach employs midpoint insertion strategy. |
6098 | The parameters division_limit and age_threshold provide these new values. |
6099 | |
6100 | RETURN VALUE |
6101 | none |
6102 | |
6103 | NOTES |
6104 | Currently the function is called when the values of the variables |
6105 | key_cache_division_limit and/or key_cache_age_threshold are being reset |
6106 | for the key cache keycache. |
6107 | */ |
6108 | |
6109 | void change_key_cache_param(KEY_CACHE *keycache, uint division_limit, |
6110 | uint age_threshold) |
6111 | { |
6112 | if (keycache->key_cache_inited) |
6113 | { |
6114 | pthread_mutex_lock(&keycache->op_lock); |
6115 | keycache->interface_funcs->change_param(keycache->keycache_cb, |
6116 | division_limit, |
6117 | age_threshold); |
6118 | pthread_mutex_unlock(&keycache->op_lock); |
6119 | } |
6120 | } |
6121 | |
6122 | |
6123 | /* |
6124 | Destroy a key cache : internal |
6125 | |
6126 | SYNOPSIS |
6127 | end_key_cache_internal() |
6128 | keycache pointer to the key cache to be destroyed |
6129 | cleanup <=> complete free |
6130 | use_op_lock if TRUE use keycache->op_lock, otherwise - ignore it |
6131 | |
6132 | DESCRIPTION |
6133 | The function performs the actions required from end_key_cache(). |
6134 | It has an additional parameter: use_op_lock. When the parameter |
6135 | is TRUE than the function destroys keycache->op_lock if cleanup is true. |
6136 | Otherwise the action with the lock is omitted. |
6137 | |
6138 | RETURN VALUE |
6139 | none |
6140 | */ |
6141 | |
6142 | static |
6143 | void end_key_cache_internal(KEY_CACHE *keycache, my_bool cleanup, |
6144 | my_bool use_op_lock) |
6145 | { |
6146 | if (keycache->key_cache_inited) |
6147 | { |
6148 | keycache->interface_funcs->end(keycache->keycache_cb, cleanup); |
6149 | if (cleanup) |
6150 | { |
6151 | if (keycache->keycache_cb) |
6152 | { |
6153 | my_free(keycache->keycache_cb); |
6154 | keycache->keycache_cb= 0; |
6155 | } |
6156 | /* |
6157 | We do not destroy op_lock if we are going to reuse the same key cache. |
6158 | This happens if we are called from repartition_key_cache_internal(). |
6159 | */ |
6160 | if (use_op_lock) |
6161 | pthread_mutex_destroy(&keycache->op_lock); |
6162 | keycache->key_cache_inited= 0; |
6163 | } |
6164 | keycache->can_be_used= 0; |
6165 | } |
6166 | } |
6167 | |
6168 | |
6169 | /* |
6170 | Destroy a key cache |
6171 | |
6172 | SYNOPSIS |
6173 | end_key_cache() |
6174 | keycache pointer to the key cache to be destroyed |
6175 | cleanup <=> complete free |
6176 | |
6177 | DESCRIPTION |
6178 | The function frees the memory allocated for the cache blocks and |
6179 | auxiliary structures used by the key cache keycache. If the value |
6180 | of the parameter cleanup is TRUE then all resources used by the key |
6181 | cache are to be freed. |
6182 | The function calls end_key_cache_internal() to perform all these actions |
6183 | with the last parameter set to TRUE. |
6184 | |
6185 | RETURN VALUE |
6186 | none |
6187 | */ |
6188 | |
6189 | void end_key_cache(KEY_CACHE *keycache, my_bool cleanup) |
6190 | { |
6191 | end_key_cache_internal(keycache, cleanup, 1); |
6192 | } |
6193 | |
6194 | |
6195 | /* |
6196 | Read a block of data from a key cache into a buffer |
6197 | |
6198 | SYNOPSIS |
6199 | |
6200 | key_cache_read() |
6201 | keycache pointer to the key cache to read data from |
6202 | file handler for the file for the block of data to be read |
6203 | filepos position of the block of data in the file |
6204 | level determines the weight of the data |
6205 | buff buffer to where the data must be placed |
6206 | length length of the buffer |
6207 | block_length length of the data read from a key cache block |
6208 | return_buffer return pointer to the key cache buffer with the data |
6209 | |
6210 | DESCRIPTION |
6211 | The function operates over buffers of the key cache keycache. |
6212 | In a general case the function reads a block of data from the key cache |
6213 | into the buffer buff of the size specified by the parameter length. The |
6214 | beginning of the block of data to be read is specified by the parameters |
6215 | file and filepos. The length of the read data is the same as the length |
6216 | of the buffer. |
6217 | If the parameter return_buffer is not ignored and its value is TRUE, and |
6218 | the data to be read of the specified size block_length can be read from one |
6219 | key cache buffer, then the function returns a pointer to the data in the |
6220 | key cache buffer. |
6221 | The parameter 'level' is used only by the midpoint insertion strategy |
6222 | when the data or its portion cannot be found in the key cache. |
6223 | The function reads data into the buffer directly from file if the control |
6224 | block of the key cache has not been initialized yet. |
6225 | |
6226 | RETURN VALUE |
6227 | Returns address from where the data is placed if successful, 0 - otherwise. |
6228 | |
6229 | NOTES. |
6230 | Filepos must be a multiple of 'block_length', but it doesn't |
6231 | have to be a multiple of key_cache_block_size; |
6232 | */ |
6233 | |
6234 | uchar *key_cache_read(KEY_CACHE *keycache, |
6235 | File file, my_off_t filepos, int level, |
6236 | uchar *buff, uint length, |
6237 | uint block_length, int return_buffer) |
6238 | { |
6239 | if (keycache->can_be_used) |
6240 | return keycache->interface_funcs->read(keycache->keycache_cb, |
6241 | file, filepos, level, |
6242 | buff, length, |
6243 | block_length, return_buffer); |
6244 | |
6245 | /* We can't use mutex here as the key cache may not be initialized */ |
6246 | |
6247 | if (my_pread(file, (uchar*) buff, length, filepos, MYF(MY_NABP))) |
6248 | return (uchar *) 0; |
6249 | |
6250 | return buff; |
6251 | } |
6252 | |
6253 | |
6254 | /* |
6255 | Insert a block of file data from a buffer into a key cache |
6256 | |
6257 | SYNOPSIS |
6258 | key_cache_insert() |
6259 | keycache pointer to the key cache to insert data into |
6260 | file handler for the file to insert data from |
6261 | filepos position of the block of data in the file to insert |
6262 | level determines the weight of the data |
6263 | buff buffer to read data from |
6264 | length length of the data in the buffer |
6265 | |
6266 | DESCRIPTION |
6267 | The function operates over buffers of the key cache keycache. |
6268 | The function writes a block of file data from a buffer into the key cache. |
6269 | The buffer is specified with the parameters buff and length - the pointer |
6270 | to the beginning of the buffer and its size respectively. It's assumed |
6271 | that the buffer contains the data from 'file' allocated from the position |
6272 | filepos. |
6273 | The parameter level is used to set one characteristic for the key buffers |
6274 | loaded with the data from buff. The characteristic is used only by the |
6275 | midpoint insertion strategy. |
6276 | |
6277 | RETURN VALUE |
6278 | 0 if a success, 1 - otherwise. |
6279 | |
6280 | NOTES |
6281 | The function is used by MyISAM to move all blocks from a index file to |
6282 | the key cache. |
6283 | It is assumed that it may be performed in parallel with reading the file |
6284 | data from the key buffers by other threads. |
6285 | */ |
6286 | |
6287 | int key_cache_insert(KEY_CACHE *keycache, |
6288 | File file, my_off_t filepos, int level, |
6289 | uchar *buff, uint length) |
6290 | { |
6291 | if (keycache->can_be_used) |
6292 | return keycache->interface_funcs->insert(keycache->keycache_cb, |
6293 | file, filepos, level, |
6294 | buff, length); |
6295 | return 0; |
6296 | } |
6297 | |
6298 | |
6299 | /* |
6300 | Write data from a buffer into a key cache |
6301 | |
6302 | SYNOPSIS |
6303 | |
6304 | key_cache_write() |
6305 | keycache pointer to the key cache to write data to |
6306 | file handler for the file to write data to |
6307 | filepos position in the file to write data to |
6308 | level determines the weight of the data |
6309 | buff buffer with the data |
6310 | length length of the buffer |
6311 | dont_write if is 0 then all dirty pages involved in writing |
6312 | should have been flushed from key cache |
6313 | file_extra pointer to optional file attributes |
6314 | |
6315 | DESCRIPTION |
6316 | The function operates over buffers of the key cache keycache. |
6317 | In a general case the function writes data from a buffer into the key |
6318 | cache. The buffer is specified with the parameters buff and length - |
6319 | the pointer to the beginning of the buffer and its size respectively. |
6320 | It's assumed the buffer contains the data to be written into 'file' |
6321 | starting from the position filepos. |
6322 | If the value of the parameter dont_write is FALSE then the function |
6323 | also writes the data into file. |
6324 | The parameter level is used to set one characteristic for the key buffers |
6325 | filled with the data from buff. The characteristic is employed only by |
6326 | the midpoint insertion strategy. |
6327 | The parameter file_expra may point to additional file attributes used |
6328 | for optimization or other purposes. |
6329 | The function writes data from the buffer directly into file if the control |
6330 | block of the key cache has not been initialized yet. |
6331 | |
6332 | RETURN VALUE |
6333 | 0 if a success, 1 - otherwise. |
6334 | |
6335 | NOTES |
6336 | This implementation may exploit the fact that the function is called only |
6337 | when a thread has got an exclusive lock for the key file. |
6338 | */ |
6339 | |
6340 | int key_cache_write(KEY_CACHE *keycache, |
6341 | File file, void *, |
6342 | my_off_t filepos, int level, |
6343 | uchar *buff, uint length, |
6344 | uint block_length, int force_write) |
6345 | { |
6346 | if (keycache->can_be_used) |
6347 | return keycache->interface_funcs->write(keycache->keycache_cb, |
6348 | file, file_extra, |
6349 | filepos, level, |
6350 | buff, length, |
6351 | block_length, force_write); |
6352 | |
6353 | /* We can't use mutex here as the key cache may not be initialized */ |
6354 | if (my_pwrite(file, buff, length, filepos, MYF(MY_NABP | MY_WAIT_IF_FULL))) |
6355 | return 1; |
6356 | |
6357 | return 0; |
6358 | } |
6359 | |
6360 | |
6361 | /* |
6362 | Flush all blocks for a file from key buffers of a key cache |
6363 | |
6364 | SYNOPSIS |
6365 | |
6366 | flush_key_blocks() |
6367 | keycache pointer to the key cache whose blocks are to be flushed |
6368 | file handler for the file to flush to |
6369 | file_extra maps of key cache (used for partitioned key caches) |
6370 | flush_type type of the flush operation |
6371 | |
6372 | DESCRIPTION |
6373 | The function operates over buffers of the key cache keycache. |
6374 | In a general case the function flushes the data from all dirty key |
6375 | buffers related to the file 'file' into this file. The function does |
6376 | exactly this if the value of the parameter type is FLUSH_KEEP. If the |
6377 | value of this parameter is FLUSH_RELEASE, the function additionally |
6378 | releases the key buffers containing data from 'file' for new usage. |
6379 | If the value of the parameter type is FLUSH_IGNORE_CHANGED the function |
6380 | just releases the key buffers containing data from 'file'. |
6381 | If the value of the parameter type is FLUSH_KEEP the function may use |
6382 | the value of the parameter file_extra pointing to possibly dirty |
6383 | partitions to optimize the operation for partitioned key caches. |
6384 | |
6385 | RETURN |
6386 | 0 ok |
6387 | 1 error |
6388 | |
6389 | NOTES |
6390 | Any implementation of the function may exploit the fact that the function |
6391 | is called only when a thread has got an exclusive lock for the key file. |
6392 | */ |
6393 | |
6394 | int flush_key_blocks(KEY_CACHE *keycache, |
6395 | int file, void *, |
6396 | enum flush_type type) |
6397 | { |
6398 | if (keycache->can_be_used) |
6399 | return keycache->interface_funcs->flush(keycache->keycache_cb, |
6400 | file, file_extra, type); |
6401 | return 0; |
6402 | } |
6403 | |
6404 | |
6405 | /* |
6406 | Reset the counters of a key cache |
6407 | |
6408 | SYNOPSIS |
6409 | reset_key_cache_counters() |
6410 | name the name of a key cache (unused) |
6411 | keycache pointer to the key cache for which to reset counters |
6412 | |
6413 | DESCRIPTION |
6414 | This function resets the values of the statistical counters for the key |
6415 | cache keycache. |
6416 | The parameter name is currently not used. |
6417 | |
6418 | RETURN |
6419 | 0 on success (always because it can't fail) |
6420 | |
6421 | NOTES |
6422 | This procedure is used by process_key_caches() to reset the counters of all |
6423 | currently used key caches, both the default one and the named ones. |
6424 | */ |
6425 | |
6426 | int reset_key_cache_counters(const char *name __attribute__((unused)), |
6427 | KEY_CACHE *keycache, |
6428 | void *unused __attribute__((unused))) |
6429 | { |
6430 | int rc= 0; |
6431 | if (keycache->key_cache_inited) |
6432 | { |
6433 | pthread_mutex_lock(&keycache->op_lock); |
6434 | rc= keycache->interface_funcs->reset_counters(name, |
6435 | keycache->keycache_cb); |
6436 | pthread_mutex_unlock(&keycache->op_lock); |
6437 | } |
6438 | return rc; |
6439 | } |
6440 | |
6441 | |
6442 | /* |
6443 | Get statistics for a key cache |
6444 | |
6445 | SYNOPSIS |
6446 | get_key_cache_statistics() |
6447 | keycache pointer to the key cache to get statistics for |
6448 | partition_no partition number to get statistics for |
6449 | key_cache_stats OUT pointer to the structure for the returned statistics |
6450 | |
6451 | DESCRIPTION |
6452 | If the value of the parameter partition_no is equal to 0 then statistics |
6453 | for the whole key cache keycache (aggregated statistics) is returned in the |
6454 | fields of the structure key_cache_stat of the type KEY_CACHE_STATISTICS. |
6455 | Otherwise the value of the parameter partition_no makes sense only for |
6456 | a partitioned key cache. In this case the function returns statistics |
6457 | for the partition with the specified number partition_no. |
6458 | |
6459 | RETURN |
6460 | none |
6461 | */ |
6462 | |
6463 | void get_key_cache_statistics(KEY_CACHE *keycache, uint partition_no, |
6464 | KEY_CACHE_STATISTICS *key_cache_stats) |
6465 | { |
6466 | if (keycache->key_cache_inited) |
6467 | { |
6468 | pthread_mutex_lock(&keycache->op_lock); |
6469 | keycache->interface_funcs->get_stats(keycache->keycache_cb, |
6470 | partition_no, key_cache_stats); |
6471 | pthread_mutex_unlock(&keycache->op_lock); |
6472 | } |
6473 | } |
6474 | |
6475 | |
6476 | /* |
6477 | Repartition a key cache : internal |
6478 | |
6479 | SYNOPSIS |
6480 | repartition_key_cache_internal() |
6481 | keycache pointer to the key cache to be repartitioned |
6482 | key_cache_block_size size of blocks to keep cached data |
6483 | use_mem total memory to use for the new key cache |
6484 | division_limit new division limit (if not zero) |
6485 | age_threshold new age threshold (if not zero) |
6486 | partitions new number of partitions in the key cache |
6487 | use_op_lock if TRUE use keycache->op_lock, otherwise - ignore it |
6488 | |
6489 | DESCRIPTION |
6490 | The function performs the actions required from repartition_key_cache(). |
6491 | It has an additional parameter: use_op_lock. When the parameter |
6492 | is TRUE then the function locks keycache->op_lock at start and |
6493 | unlocks it before the return. Otherwise the actions with the lock |
6494 | are omitted. |
6495 | |
6496 | RETURN VALUE |
6497 | number of blocks in the key cache, if successful, |
6498 | 0 - otherwise. |
6499 | */ |
6500 | |
6501 | static |
6502 | int repartition_key_cache_internal(KEY_CACHE *keycache, |
6503 | uint key_cache_block_size, size_t use_mem, |
6504 | uint division_limit, uint age_threshold, |
6505 | uint changed_blocks_hash_size, |
6506 | uint partitions, my_bool use_op_lock) |
6507 | { |
6508 | uint blocks= -1; |
6509 | if (keycache->key_cache_inited) |
6510 | { |
6511 | if (use_op_lock) |
6512 | pthread_mutex_lock(&keycache->op_lock); |
6513 | keycache->interface_funcs->resize(keycache->keycache_cb, |
6514 | key_cache_block_size, 0, |
6515 | division_limit, age_threshold, |
6516 | changed_blocks_hash_size); |
6517 | end_key_cache_internal(keycache, 1, 0); |
6518 | blocks= init_key_cache_internal(keycache, key_cache_block_size, use_mem, |
6519 | division_limit, age_threshold, |
6520 | changed_blocks_hash_size, partitions, |
6521 | 0); |
6522 | if (use_op_lock) |
6523 | pthread_mutex_unlock(&keycache->op_lock); |
6524 | } |
6525 | return blocks; |
6526 | } |
6527 | |
6528 | /* |
6529 | Repartition a key cache |
6530 | |
6531 | SYNOPSIS |
6532 | repartition_key_cache() |
6533 | keycache pointer to the key cache to be repartitioned |
6534 | key_cache_block_size size of blocks to keep cached data |
6535 | use_mem total memory to use for the new key cache |
6536 | division_limit new division limit (if not zero) |
6537 | age_threshold new age threshold (if not zero) |
6538 | partitions new number of partitions in the key cache |
6539 | |
6540 | DESCRIPTION |
6541 | The function operates over the key cache keycache. |
6542 | The parameter partitions specifies the number of partitions in the key |
6543 | cache after repartitioning. If the value of this parameter is 0 then |
6544 | a simple key cache must be created instead of the old one. |
6545 | The parameter key_cache_block_size specifies the new size of the block |
6546 | buffers in the key cache. The parameters division_limit and age_threshold |
6547 | determine the new initial values of those characteristics of the key cache |
6548 | that are used for midpoint insertion strategy. The parameter use_mem |
6549 | specifies the total amount of memory to be allocated for the new key |
6550 | cache buffers and for all auxiliary structures. |
6551 | The function calls repartition_key_cache_internal() to perform all these |
6552 | actions with the last parameter set to TRUE. |
6553 | |
6554 | RETURN VALUE |
6555 | number of blocks in the key cache, if successful, |
6556 | 0 - otherwise. |
6557 | |
6558 | NOTES |
6559 | Currently the function is called when the value of the variable |
6560 | key_cache_partitions is being reset for the key cache keycache. |
6561 | */ |
6562 | |
6563 | int repartition_key_cache(KEY_CACHE *keycache, uint key_cache_block_size, |
6564 | size_t use_mem, uint division_limit, |
6565 | uint age_threshold, uint changed_blocks_hash_size, |
6566 | uint partitions) |
6567 | { |
6568 | return repartition_key_cache_internal(keycache, key_cache_block_size, use_mem, |
6569 | division_limit, age_threshold, |
6570 | changed_blocks_hash_size, |
6571 | partitions, 1); |
6572 | } |
6573 | |
6574 | |