| 1 | /* Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. |
| 2 | |
| 3 | This program is free software; you can redistribute it and/or modify |
| 4 | it under the terms of the GNU General Public License as published by |
| 5 | the Free Software Foundation; version 2 of the License. |
| 6 | |
| 7 | This program is distributed in the hope that it will be useful, |
| 8 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 9 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 10 | GNU General Public License for more details. |
| 11 | |
| 12 | You should have received a copy of the GNU General Public License |
| 13 | along with this program; if not, write to the Free Software |
| 14 | Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ |
| 15 | |
| 16 | /* |
| 17 | rdtsc3 -- multi-platform timer code |
| 18 | pgulutzan@mysql.com, 2005-08-29 |
| 19 | modified 2008-11-02 |
| 20 | |
| 21 | Functions: |
| 22 | |
| 23 | my_timer_cycles ulonglong cycles |
| 24 | my_timer_nanoseconds ulonglong nanoseconds |
| 25 | my_timer_microseconds ulonglong "microseconds" |
| 26 | my_timer_milliseconds ulonglong milliseconds |
| 27 | my_timer_ticks ulonglong ticks |
| 28 | my_timer_init initialization / test |
| 29 | |
| 30 | We'll call the first 5 functions (the ones that return |
| 31 | a ulonglong) "my_timer_xxx" functions. |
| 32 | Each my_timer_xxx function returns a 64-bit timing value |
| 33 | since an arbitrary 'epoch' start. Since the only purpose |
| 34 | is to determine elapsed times, wall-clock time-of-day |
| 35 | is not known and not relevant. |
| 36 | |
| 37 | The my_timer_init function is necessary for initializing. |
| 38 | It returns information (underlying routine name, |
| 39 | frequency, resolution, overhead) about all my_timer_xxx |
| 40 | functions. A program should call my_timer_init once, |
| 41 | use the information to decide what my_timer_xxx function |
| 42 | to use, and subsequently call that function by function |
| 43 | pointer. |
| 44 | |
| 45 | A typical use would be: |
| 46 | my_timer_init() ... once, at program start |
| 47 | ... |
| 48 | time1= my_timer_xxx() ... time before start |
| 49 | [code that's timed] |
| 50 | time2= my_timer_xxx() ... time after end |
| 51 | elapsed_time= (time2 - time1) - overhead |
| 52 | */ |
| 53 | |
| 54 | #include "my_global.h" |
| 55 | #include "my_rdtsc.h" |
| 56 | |
| 57 | #if defined(_WIN32) |
| 58 | #include <stdio.h> |
| 59 | #include "windows.h" |
| 60 | #else |
| 61 | #include <stdio.h> |
| 62 | #endif |
| 63 | |
| 64 | #if !defined(_WIN32) |
| 65 | #if TIME_WITH_SYS_TIME |
| 66 | #include <sys/time.h> |
| 67 | #include <time.h> /* for clock_gettime */ |
| 68 | #else |
| 69 | #if HAVE_SYS_TIME_H |
| 70 | #include <sys/time.h> |
| 71 | #elif defined(HAVE_TIME_H) |
| 72 | #include <time.h> |
| 73 | #endif |
| 74 | #endif |
| 75 | #endif |
| 76 | |
| 77 | #if defined(HAVE_ASM_MSR_H) && defined(HAVE_RDTSCLL) |
| 78 | #include <asm/msr.h> /* for rdtscll */ |
| 79 | #endif |
| 80 | |
| 81 | #if defined(HAVE_SYS_TIMEB_H) && defined(HAVE_FTIME) |
| 82 | #include <sys/timeb.h> /* for ftime */ |
| 83 | #endif |
| 84 | |
| 85 | #if defined(HAVE_SYS_TIMES_H) && defined(HAVE_TIMES) |
| 86 | #include <sys/times.h> /* for times */ |
| 87 | #endif |
| 88 | |
| 89 | #if defined(__INTEL_COMPILER) && defined(__ia64__) && defined(HAVE_IA64INTRIN_H) |
| 90 | #include <ia64intrin.h> /* for __GetReg */ |
| 91 | #endif |
| 92 | |
| 93 | #if defined(__APPLE__) && defined(__MACH__) |
| 94 | #include <mach/mach_time.h> |
| 95 | #endif |
| 96 | |
| 97 | #if defined(__SUNPRO_CC) && defined(__sparcv9) && defined(_LP64) && !defined(__SunOS_5_7) |
| 98 | extern "C" ulonglong my_timer_cycles_il_sparc64(); |
| 99 | #elif defined(__SUNPRO_CC) && defined(_ILP32) && !defined(__SunOS_5_7) |
| 100 | extern "C" ulonglong my_timer_cycles_il_sparc32(); |
| 101 | #elif defined(__SUNPRO_CC) && defined(__i386) && defined(_ILP32) |
| 102 | extern "C" ulonglong my_timer_cycles_il_i386(); |
| 103 | #elif defined(__SUNPRO_CC) && defined(__x86_64) && defined(_LP64) |
| 104 | extern "C" ulonglong my_timer_cycles_il_x86_64(); |
| 105 | #elif defined(__SUNPRO_C) && defined(__sparcv9) && defined(_LP64) && !defined(__SunOS_5_7) |
| 106 | ulonglong my_timer_cycles_il_sparc64(); |
| 107 | #elif defined(__SUNPRO_C) && defined(_ILP32) && !defined(__SunOS_5_7) |
| 108 | ulonglong my_timer_cycles_il_sparc32(); |
| 109 | #elif defined(__SUNPRO_C) && defined(__i386) && defined(_ILP32) |
| 110 | ulonglong my_timer_cycles_il_i386(); |
| 111 | #elif defined(__SUNPRO_C) && defined(__x86_64) && defined(_LP64) |
| 112 | ulonglong my_timer_cycles_il_x86_64(); |
| 113 | #endif |
| 114 | |
| 115 | #if defined(__INTEL_COMPILER) |
| 116 | /* |
| 117 | icc warning #1011 is: |
| 118 | missing return statement at end of non-void function |
| 119 | */ |
| 120 | #pragma warning (disable:1011) |
| 121 | #endif |
| 122 | |
| 123 | /* |
| 124 | For cycles, we depend on RDTSC for x86 platforms, |
| 125 | or on time buffer (which is not really a cycle count |
| 126 | but a separate counter with less than nanosecond |
| 127 | resolution) for most PowerPC platforms, or on |
| 128 | gethrtime which is okay for hpux and solaris, or on |
| 129 | clock_gettime(CLOCK_SGI_CYCLE) for Irix platforms, |
| 130 | or on read_real_time for aix platforms. There is |
| 131 | nothing for Alpha platforms, they would be tricky. |
| 132 | |
| 133 | On the platforms that do not have a CYCLE timer, |
| 134 | "wait" events are initialized to use NANOSECOND instead of CYCLE |
| 135 | during performance_schema initialization (at the server startup). |
| 136 | |
| 137 | Linux performance monitor (see "man perf_event_open") can |
| 138 | provide cycle counter on the platforms that do not have |
| 139 | other kinds of cycle counters. But we don't use it so far. |
| 140 | |
| 141 | ARM notes |
| 142 | --------- |
| 143 | During tests on ARMv7 Debian, perf_even_open() based cycle counter provided |
| 144 | too low frequency with too high overhead: |
| 145 | MariaDB [performance_schema]> SELECT * FROM performance_timers; |
| 146 | +-------------+-----------------+------------------+----------------+ |
| 147 | | TIMER_NAME | TIMER_FREQUENCY | TIMER_RESOLUTION | TIMER_OVERHEAD | |
| 148 | +-------------+-----------------+------------------+----------------+ |
| 149 | | CYCLE | 689368159 | 1 | 970 | |
| 150 | | NANOSECOND | 1000000000 | 1 | 308 | |
| 151 | | MICROSECOND | 1000000 | 1 | 417 | |
| 152 | | MILLISECOND | 1000 | 1000 | 407 | |
| 153 | | TICK | 127 | 1 | 612 | |
| 154 | +-------------+-----------------+------------------+----------------+ |
| 155 | Therefore, it was decided not to use perf_even_open() on ARM |
| 156 | (i.e. go without CYCLE and have "wait" events use NANOSECOND by default). |
| 157 | */ |
| 158 | |
| 159 | ulonglong my_timer_cycles(void) |
| 160 | { |
| 161 | #if defined(__GNUC__) && defined(__i386__) |
| 162 | /* This works much better if compiled with "gcc -O3". */ |
| 163 | ulonglong result; |
| 164 | __asm__ __volatile__ ("rdtsc" : "=A" (result)); |
| 165 | return result; |
| 166 | #elif defined(__SUNPRO_C) && defined(__i386) |
| 167 | __asm("rdtsc" ); |
| 168 | #elif defined(__GNUC__) && defined(__x86_64__) |
| 169 | ulonglong result; |
| 170 | __asm__ __volatile__ ("rdtsc\n\t" \ |
| 171 | "shlq $32,%%rdx\n\t" \ |
| 172 | "orq %%rdx,%%rax" |
| 173 | : "=a" (result) :: "%edx" ); |
| 174 | return result; |
| 175 | #elif defined(HAVE_ASM_MSR_H) && defined(HAVE_RDTSCLL) |
| 176 | { |
| 177 | ulonglong result; |
| 178 | rdtscll(result); |
| 179 | return result; |
| 180 | } |
| 181 | #elif defined(_WIN32) && defined(_M_IX86) |
| 182 | __asm {rdtsc}; |
| 183 | #elif defined(_WIN64) && defined(_M_X64) |
| 184 | /* For 64-bit Windows: unsigned __int64 __rdtsc(); */ |
| 185 | return __rdtsc(); |
| 186 | #elif defined(__INTEL_COMPILER) && defined(__ia64__) && defined(HAVE_IA64INTRIN_H) |
| 187 | return (ulonglong) __getReg(_IA64_REG_AR_ITC); /* (3116) */ |
| 188 | #elif defined(__GNUC__) && defined(__ia64__) |
| 189 | { |
| 190 | ulonglong result; |
| 191 | __asm __volatile__ ("mov %0=ar.itc" : "=r" (result)); |
| 192 | return result; |
| 193 | } |
| 194 | #elif defined(__GNUC__) && (defined(__powerpc__) || defined(__POWERPC__) || (defined(_POWER) && defined(_AIX52))) && (defined(__64BIT__) || defined(_ARCH_PPC64)) |
| 195 | { |
| 196 | ulonglong result; |
| 197 | __asm __volatile__ ("mftb %0" : "=r" (result)); |
| 198 | return result; |
| 199 | } |
| 200 | #elif defined(__GNUC__) && (defined(__powerpc__) || defined(__POWERPC__) || (defined(_POWER) && defined(_AIX52))) && (!defined(__64BIT__) && !defined(_ARCH_PPC64)) |
| 201 | { |
| 202 | /* |
| 203 | mftbu means "move from time-buffer-upper to result". |
| 204 | The loop is saying: x1=upper, x2=lower, x3=upper, |
| 205 | if x1!=x3 there was an overflow so repeat. |
| 206 | */ |
| 207 | unsigned int x1, x2, x3; |
| 208 | ulonglong result; |
| 209 | for (;;) |
| 210 | { |
| 211 | __asm __volatile__ ( "mftbu %0" : "=r" (x1) ); |
| 212 | __asm __volatile__ ( "mftb %0" : "=r" (x2) ); |
| 213 | __asm __volatile__ ( "mftbu %0" : "=r" (x3) ); |
| 214 | if (x1 == x3) break; |
| 215 | } |
| 216 | result = x1; |
| 217 | return ( result << 32 ) | x2; |
| 218 | } |
| 219 | #elif (defined(__SUNPRO_CC) || defined(__SUNPRO_C)) && defined(__sparcv9) && defined(_LP64) && !defined(__SunOS_5_7) |
| 220 | return (my_timer_cycles_il_sparc64()); |
| 221 | #elif (defined(__SUNPRO_CC) || defined(__SUNPRO_C)) && defined(_ILP32) && !defined(__SunOS_5_7) |
| 222 | return (my_timer_cycles_il_sparc32()); |
| 223 | #elif (defined(__SUNPRO_CC) || defined(__SUNPRO_C)) && defined(__i386) && defined(_ILP32) |
| 224 | /* This is probably redundant for __SUNPRO_C. */ |
| 225 | return (my_timer_cycles_il_i386()); |
| 226 | #elif (defined(__SUNPRO_CC) || defined(__SUNPRO_C)) && defined(__x86_64) && defined(_LP64) |
| 227 | return (my_timer_cycles_il_x86_64()); |
| 228 | #elif defined(__GNUC__) && defined(__sparcv9) && defined(_LP64) && (__GNUC__>2) |
| 229 | { |
| 230 | ulonglong result; |
| 231 | __asm __volatile__ ("rd %%tick,%0" : "=r" (result)); |
| 232 | return result; |
| 233 | } |
| 234 | #elif defined(__GNUC__) && defined(__sparc__) && !defined(_LP64) && (__GNUC__>2) |
| 235 | { |
| 236 | union { |
| 237 | ulonglong wholeresult; |
| 238 | struct { |
| 239 | ulong high; |
| 240 | ulong low; |
| 241 | } splitresult; |
| 242 | } result; |
| 243 | __asm __volatile__ ("rd %%tick,%1; srlx %1,32,%0" : "=r" (result.splitresult.high), "=r" (result.splitresult.low)); |
| 244 | return result.wholeresult; |
| 245 | } |
| 246 | #elif defined(__sgi) && defined(HAVE_CLOCK_GETTIME) && defined(CLOCK_SGI_CYCLE) |
| 247 | { |
| 248 | struct timespec tp; |
| 249 | clock_gettime(CLOCK_SGI_CYCLE, &tp); |
| 250 | return (ulonglong) tp.tv_sec * 1000000000 + (ulonglong) tp.tv_nsec; |
| 251 | } |
| 252 | #elif defined(__GNUC__) && defined(__s390__) |
| 253 | /* covers both s390 and s390x */ |
| 254 | { |
| 255 | ulonglong result; |
| 256 | __asm__ __volatile__ ("stck %0" : "=Q" (result) : : "cc" ); |
| 257 | return result; |
| 258 | } |
| 259 | #elif defined(HAVE_SYS_TIMES_H) && defined(HAVE_GETHRTIME) |
| 260 | /* gethrtime may appear as either cycle or nanosecond counter */ |
| 261 | return (ulonglong) gethrtime(); |
| 262 | #else |
| 263 | return 0; |
| 264 | #endif |
| 265 | } |
| 266 | |
| 267 | #if defined(__INTEL_COMPILER) |
| 268 | /* re-enable warning#1011 which was only for my_timer_cycles() */ |
| 269 | /* There may be an icc bug which means we must leave disabled. */ |
| 270 | #pragma warning (default:1011) |
| 271 | #endif |
| 272 | |
| 273 | /* |
| 274 | For nanoseconds, most platforms have nothing available that |
| 275 | (a) doesn't require bringing in a 40-kb librt.so library |
| 276 | (b) really has nanosecond resolution. |
| 277 | */ |
| 278 | |
| 279 | ulonglong my_timer_nanoseconds(void) |
| 280 | { |
| 281 | #if defined(HAVE_READ_REAL_TIME) |
| 282 | { |
| 283 | timebasestruct_t tr; |
| 284 | read_real_time(&tr, TIMEBASE_SZ); |
| 285 | return (ulonglong) tr.tb_high * 1000000000 + (ulonglong) tr.tb_low; |
| 286 | } |
| 287 | #elif defined(HAVE_SYS_TIMES_H) && defined(HAVE_GETHRTIME) |
| 288 | /* SunOS 5.10+, Solaris, HP-UX: hrtime_t gethrtime(void) */ |
| 289 | return (ulonglong) gethrtime(); |
| 290 | #elif defined(HAVE_CLOCK_GETTIME) && defined(CLOCK_REALTIME) |
| 291 | { |
| 292 | struct timespec tp; |
| 293 | clock_gettime(CLOCK_REALTIME, &tp); |
| 294 | return (ulonglong) tp.tv_sec * 1000000000 + (ulonglong) tp.tv_nsec; |
| 295 | } |
| 296 | #elif defined(__APPLE__) && defined(__MACH__) |
| 297 | { |
| 298 | ulonglong tm; |
| 299 | static mach_timebase_info_data_t timebase_info= {0,0}; |
| 300 | if (timebase_info.denom == 0) |
| 301 | (void) mach_timebase_info(&timebase_info); |
| 302 | tm= mach_absolute_time(); |
| 303 | return (tm * timebase_info.numer) / timebase_info.denom; |
| 304 | } |
| 305 | #else |
| 306 | return 0; |
| 307 | #endif |
| 308 | } |
| 309 | |
| 310 | /* |
| 311 | For microseconds, gettimeofday() is available on |
| 312 | almost all platforms. On Windows we use |
| 313 | QueryPerformanceCounter which will usually tick over |
| 314 | 3.5 million times per second, and we don't throw |
| 315 | away the extra precision. (On Windows Server 2003 |
| 316 | the frequency is same as the cycle frequency.) |
| 317 | */ |
| 318 | |
| 319 | ulonglong my_timer_microseconds(void) |
| 320 | { |
| 321 | #if defined(HAVE_GETTIMEOFDAY) |
| 322 | { |
| 323 | static ulonglong last_value= 0; |
| 324 | struct timeval tv; |
| 325 | if (gettimeofday(&tv, NULL) == 0) |
| 326 | last_value= (ulonglong) tv.tv_sec * 1000000 + (ulonglong) tv.tv_usec; |
| 327 | else |
| 328 | { |
| 329 | /* |
| 330 | There are reports that gettimeofday(2) can have intermittent failures |
| 331 | on some platform, see for example Bug#36819. |
| 332 | We are not trying again or looping, just returning the best value possible |
| 333 | under the circumstances ... |
| 334 | */ |
| 335 | last_value++; |
| 336 | } |
| 337 | return last_value; |
| 338 | } |
| 339 | #elif defined(_WIN32) |
| 340 | { |
| 341 | /* QueryPerformanceCounter usually works with about 1/3 microsecond. */ |
| 342 | LARGE_INTEGER t_cnt; |
| 343 | |
| 344 | QueryPerformanceCounter(&t_cnt); |
| 345 | return (ulonglong) t_cnt.QuadPart; |
| 346 | } |
| 347 | #else |
| 348 | return 0; |
| 349 | #endif |
| 350 | } |
| 351 | |
| 352 | /* |
| 353 | For milliseconds, we use ftime() if it's supported |
| 354 | or time()*1000 if it's not. With modern versions of |
| 355 | Windows and with HP Itanium, resolution is 10-15 |
| 356 | milliseconds. |
| 357 | */ |
| 358 | |
| 359 | ulonglong my_timer_milliseconds(void) |
| 360 | { |
| 361 | #if defined(HAVE_SYS_TIMEB_H) && defined(HAVE_FTIME) |
| 362 | /* ftime() is obsolete but maybe the platform is old */ |
| 363 | struct timeb ft; |
| 364 | ftime(&ft); |
| 365 | return (ulonglong)ft.time * 1000 + (ulonglong)ft.millitm; |
| 366 | #elif defined(HAVE_TIME) |
| 367 | return (ulonglong) time(NULL) * 1000; |
| 368 | #elif defined(_WIN32) |
| 369 | FILETIME ft; |
| 370 | GetSystemTimeAsFileTime( &ft ); |
| 371 | return ((ulonglong)ft.dwLowDateTime + |
| 372 | (((ulonglong)ft.dwHighDateTime) << 32))/10000; |
| 373 | #else |
| 374 | return 0; |
| 375 | #endif |
| 376 | } |
| 377 | |
| 378 | /* |
| 379 | For ticks, which we handle with times(), the frequency |
| 380 | is usually 100/second and the overhead is surprisingly |
| 381 | bad, sometimes even worse than gettimeofday's overhead. |
| 382 | */ |
| 383 | |
| 384 | ulonglong my_timer_ticks(void) |
| 385 | { |
| 386 | #if defined(HAVE_SYS_TIMES_H) && defined(HAVE_TIMES) |
| 387 | { |
| 388 | struct tms times_buf; |
| 389 | return (ulonglong) times(×_buf); |
| 390 | } |
| 391 | #elif defined(_WIN32) |
| 392 | return (ulonglong) GetTickCount(); |
| 393 | #else |
| 394 | return 0; |
| 395 | #endif |
| 396 | } |
| 397 | |
| 398 | /* |
| 399 | The my_timer_init() function and its sub-functions |
| 400 | have several loops which call timers. If there's |
| 401 | something wrong with a timer -- which has never |
| 402 | happened in tests -- we want the loop to end after |
| 403 | an arbitrary number of iterations, and my_timer_info |
| 404 | will show a discouraging result. The arbitrary |
| 405 | number is 1,000,000. |
| 406 | */ |
| 407 | #define MY_TIMER_ITERATIONS 1000000 |
| 408 | |
| 409 | /* |
| 410 | Calculate overhead. Called from my_timer_init(). |
| 411 | Usually best_timer_overhead = cycles.overhead or |
| 412 | nanoseconds.overhead, so returned amount is in |
| 413 | cycles or nanoseconds. We repeat the calculation |
| 414 | ten times, so that we can disregard effects of |
| 415 | caching or interrupts. Result is quite consistent |
| 416 | for cycles, at least. But remember it's a minimum. |
| 417 | */ |
| 418 | |
| 419 | static void my_timer_init_overhead(ulonglong *overhead, |
| 420 | ulonglong (*cycle_timer)(void), |
| 421 | ulonglong (*this_timer)(void), |
| 422 | ulonglong best_timer_overhead) |
| 423 | { |
| 424 | ulonglong time1, time2; |
| 425 | int i; |
| 426 | |
| 427 | /* *overhead, least of 20 calculations - cycles.overhead */ |
| 428 | for (i= 0, *overhead= 1000000000; i < 20; ++i) |
| 429 | { |
| 430 | time1= cycle_timer(); |
| 431 | this_timer(); /* rather than 'time_tmp= timer();' */ |
| 432 | time2= cycle_timer() - time1; |
| 433 | if (*overhead > time2) |
| 434 | *overhead= time2; |
| 435 | } |
| 436 | *overhead-= best_timer_overhead; |
| 437 | } |
| 438 | |
| 439 | /* |
| 440 | Calculate Resolution. Called from my_timer_init(). |
| 441 | If a timer goes up by jumps, e.g. 1050, 1075, 1100, ... |
| 442 | then the best resolution is the minimum jump, e.g. 25. |
| 443 | If it's always divisible by 1000 then it's just a |
| 444 | result of multiplication of a lower-precision timer |
| 445 | result, e.g. nanoseconds are often microseconds * 1000. |
| 446 | If the minimum jump is less than an arbitrary passed |
| 447 | figure (a guess based on maximum overhead * 2), ignore. |
| 448 | Usually we end up with nanoseconds = 1 because it's too |
| 449 | hard to detect anything <= 100 nanoseconds. |
| 450 | Often GetTickCount() has resolution = 15. |
| 451 | We don't check with ticks because they take too long. |
| 452 | */ |
| 453 | static ulonglong my_timer_init_resolution(ulonglong (*this_timer)(void), |
| 454 | ulonglong overhead_times_2) |
| 455 | { |
| 456 | ulonglong time1, time2; |
| 457 | ulonglong best_jump; |
| 458 | int i, jumps, divisible_by_1000, divisible_by_1000000; |
| 459 | |
| 460 | divisible_by_1000= divisible_by_1000000= 0; |
| 461 | best_jump= 1000000; |
| 462 | for (i= jumps= 0; jumps < 3 && i < MY_TIMER_ITERATIONS * 10; ++i) |
| 463 | { |
| 464 | time1= this_timer(); |
| 465 | time2= this_timer(); |
| 466 | time2-= time1; |
| 467 | if (time2) |
| 468 | { |
| 469 | ++jumps; |
| 470 | if (!(time2 % 1000)) |
| 471 | { |
| 472 | ++divisible_by_1000; |
| 473 | if (!(time2 % 1000000)) |
| 474 | ++divisible_by_1000000; |
| 475 | } |
| 476 | if (best_jump > time2) |
| 477 | best_jump= time2; |
| 478 | /* For milliseconds, one jump is enough. */ |
| 479 | if (overhead_times_2 == 0) |
| 480 | break; |
| 481 | } |
| 482 | } |
| 483 | if (jumps == 3) |
| 484 | { |
| 485 | if (jumps == divisible_by_1000000) |
| 486 | return 1000000; |
| 487 | if (jumps == divisible_by_1000) |
| 488 | return 1000; |
| 489 | } |
| 490 | if (best_jump > overhead_times_2) |
| 491 | return best_jump; |
| 492 | return 1; |
| 493 | } |
| 494 | |
| 495 | /* |
| 496 | Calculate cycle frequency by seeing how many cycles pass |
| 497 | in a 200-microsecond period. I tried with 10-microsecond |
| 498 | periods originally, and the result was often very wrong. |
| 499 | */ |
| 500 | |
| 501 | static ulonglong my_timer_init_frequency(MY_TIMER_INFO *mti) |
| 502 | { |
| 503 | int i; |
| 504 | ulonglong time1, time2, time3, time4; |
| 505 | time1= my_timer_cycles(); |
| 506 | time2= my_timer_microseconds(); |
| 507 | time3= time2; /* Avoids a Microsoft/IBM compiler warning */ |
| 508 | for (i= 0; i < MY_TIMER_ITERATIONS; ++i) |
| 509 | { |
| 510 | time3= my_timer_microseconds(); |
| 511 | if (time3 - time2 > 200) break; |
| 512 | } |
| 513 | time4= my_timer_cycles() - mti->cycles.overhead; |
| 514 | time4-= mti->microseconds.overhead; |
| 515 | return (mti->microseconds.frequency * (time4 - time1)) / (time3 - time2); |
| 516 | } |
| 517 | |
| 518 | /* |
| 519 | Call my_timer_init before the first call to my_timer_xxx(). |
| 520 | If something must be initialized, it happens here. |
| 521 | Set: what routine is being used e.g. "asm_x86" |
| 522 | Set: function, overhead, actual frequency, resolution. |
| 523 | */ |
| 524 | |
| 525 | void my_timer_init(MY_TIMER_INFO *mti) |
| 526 | { |
| 527 | ulonglong (*best_timer)(void); |
| 528 | ulonglong best_timer_overhead; |
| 529 | ulonglong time1, time2; |
| 530 | int i; |
| 531 | |
| 532 | /* cycles */ |
| 533 | mti->cycles.frequency= 1000000000; |
| 534 | #if defined(__GNUC__) && defined(__i386__) |
| 535 | mti->cycles.routine= MY_TIMER_ROUTINE_ASM_X86; |
| 536 | #elif defined(__SUNPRO_C) && defined(__i386) |
| 537 | mti->cycles.routine= MY_TIMER_ROUTINE_ASM_X86; |
| 538 | #elif defined(__GNUC__) && defined(__x86_64__) |
| 539 | mti->cycles.routine= MY_TIMER_ROUTINE_ASM_X86_64; |
| 540 | #elif defined(HAVE_ASM_MSR_H) && defined(HAVE_RDTSCLL) |
| 541 | mti->cycles.routine= MY_TIMER_ROUTINE_RDTSCLL; |
| 542 | #elif defined(_WIN32) && defined(_M_IX86) |
| 543 | mti->cycles.routine= MY_TIMER_ROUTINE_ASM_X86_WIN; |
| 544 | #elif defined(_WIN64) && defined(_M_X64) |
| 545 | mti->cycles.routine= MY_TIMER_ROUTINE_RDTSC; |
| 546 | #elif defined(__INTEL_COMPILER) && defined(__ia64__) && defined(HAVE_IA64INTRIN_H) |
| 547 | mti->cycles.routine= MY_TIMER_ROUTINE_ASM_IA64; |
| 548 | #elif defined(__GNUC__) && defined(__ia64__) |
| 549 | mti->cycles.routine= MY_TIMER_ROUTINE_ASM_IA64; |
| 550 | #elif defined(__GNUC__) && (defined(__powerpc__) || defined(__POWERPC__) || (defined(_POWER) && defined(_AIX52))) && (defined(__64BIT__) || defined(_ARCH_PPC64)) |
| 551 | mti->cycles.routine= MY_TIMER_ROUTINE_ASM_PPC64; |
| 552 | #elif defined(__GNUC__) && (defined(__powerpc__) || defined(__POWERPC__) || (defined(_POWER) && defined(_AIX52))) && (!defined(__64BIT__) && !defined(_ARCH_PPC64)) |
| 553 | mti->cycles.routine= MY_TIMER_ROUTINE_ASM_PPC; |
| 554 | #elif (defined(__SUNPRO_CC) || defined(__SUNPRO_C)) && defined(__sparcv9) && defined(_LP64) && !defined(__SunOS_5_7) |
| 555 | mti->cycles.routine= MY_TIMER_ROUTINE_ASM_SUNPRO_SPARC64; |
| 556 | #elif (defined(__SUNPRO_CC) || defined(__SUNPRO_C)) && defined(_ILP32) && !defined(__SunOS_5_7) |
| 557 | mti->cycles.routine= MY_TIMER_ROUTINE_ASM_SUNPRO_SPARC32; |
| 558 | #elif (defined(__SUNPRO_CC) || defined(__SUNPRO_C)) && defined(__i386) && defined(_ILP32) |
| 559 | mti->cycles.routine= MY_TIMER_ROUTINE_ASM_SUNPRO_I386; |
| 560 | #elif (defined(__SUNPRO_CC) || defined(__SUNPRO_C)) && defined(__x86_64) && defined(_LP64) |
| 561 | mti->cycles.routine= MY_TIMER_ROUTINE_ASM_SUNPRO_X86_64; |
| 562 | #elif defined(__GNUC__) && defined(__sparcv9) && defined(_LP64) && (__GNUC__>2) |
| 563 | mti->cycles.routine= MY_TIMER_ROUTINE_ASM_GCC_SPARC64; |
| 564 | #elif defined(__GNUC__) && defined(__sparc__) && !defined(_LP64) && (__GNUC__>2) |
| 565 | mti->cycles.routine= MY_TIMER_ROUTINE_ASM_GCC_SPARC32; |
| 566 | #elif defined(__sgi) && defined(HAVE_CLOCK_GETTIME) && defined(CLOCK_SGI_CYCLE) |
| 567 | mti->cycles.routine= MY_TIMER_ROUTINE_SGI_CYCLE; |
| 568 | #elif defined(__GNUC__) && defined(__s390__) |
| 569 | mti->cycles.routine= MY_TIMER_ROUTINE_ASM_S390; |
| 570 | #elif defined(HAVE_SYS_TIMES_H) && defined(HAVE_GETHRTIME) |
| 571 | mti->cycles.routine= MY_TIMER_ROUTINE_GETHRTIME; |
| 572 | #else |
| 573 | mti->cycles.routine= 0; |
| 574 | #endif |
| 575 | |
| 576 | if (!mti->cycles.routine || !my_timer_cycles()) |
| 577 | { |
| 578 | mti->cycles.routine= 0; |
| 579 | mti->cycles.resolution= 0; |
| 580 | mti->cycles.frequency= 0; |
| 581 | mti->cycles.overhead= 0; |
| 582 | } |
| 583 | |
| 584 | /* nanoseconds */ |
| 585 | mti->nanoseconds.frequency= 1000000000; /* initial assumption */ |
| 586 | #if defined(HAVE_READ_REAL_TIME) |
| 587 | mti->nanoseconds.routine= MY_TIMER_ROUTINE_READ_REAL_TIME; |
| 588 | #elif defined(HAVE_SYS_TIMES_H) && defined(HAVE_GETHRTIME) |
| 589 | mti->nanoseconds.routine= MY_TIMER_ROUTINE_GETHRTIME; |
| 590 | #elif defined(HAVE_CLOCK_GETTIME) |
| 591 | mti->nanoseconds.routine= MY_TIMER_ROUTINE_CLOCK_GETTIME; |
| 592 | #elif defined(__APPLE__) && defined(__MACH__) |
| 593 | mti->nanoseconds.routine= MY_TIMER_ROUTINE_MACH_ABSOLUTE_TIME; |
| 594 | #else |
| 595 | mti->nanoseconds.routine= 0; |
| 596 | #endif |
| 597 | if (!mti->nanoseconds.routine || !my_timer_nanoseconds()) |
| 598 | { |
| 599 | mti->nanoseconds.routine= 0; |
| 600 | mti->nanoseconds.resolution= 0; |
| 601 | mti->nanoseconds.frequency= 0; |
| 602 | mti->nanoseconds.overhead= 0; |
| 603 | } |
| 604 | |
| 605 | /* microseconds */ |
| 606 | mti->microseconds.frequency= 1000000; /* initial assumption */ |
| 607 | #if defined(HAVE_GETTIMEOFDAY) |
| 608 | mti->microseconds.routine= MY_TIMER_ROUTINE_GETTIMEOFDAY; |
| 609 | #elif defined(_WIN32) |
| 610 | { |
| 611 | LARGE_INTEGER li; |
| 612 | /* Windows: typical frequency = 3579545, actually 1/3 microsecond. */ |
| 613 | if (!QueryPerformanceFrequency(&li)) |
| 614 | mti->microseconds.routine= 0; |
| 615 | else |
| 616 | { |
| 617 | mti->microseconds.frequency= li.QuadPart; |
| 618 | mti->microseconds.routine= MY_TIMER_ROUTINE_QUERYPERFORMANCECOUNTER; |
| 619 | } |
| 620 | } |
| 621 | #else |
| 622 | mti->microseconds.routine= 0; |
| 623 | #endif |
| 624 | if (!mti->microseconds.routine || !my_timer_microseconds()) |
| 625 | { |
| 626 | mti->microseconds.routine= 0; |
| 627 | mti->microseconds.resolution= 0; |
| 628 | mti->microseconds.frequency= 0; |
| 629 | mti->microseconds.overhead= 0; |
| 630 | } |
| 631 | |
| 632 | /* milliseconds */ |
| 633 | mti->milliseconds.frequency= 1000; /* initial assumption */ |
| 634 | #if defined(HAVE_SYS_TIMEB_H) && defined(HAVE_FTIME) |
| 635 | mti->milliseconds.routine= MY_TIMER_ROUTINE_FTIME; |
| 636 | #elif defined(_WIN32) |
| 637 | mti->milliseconds.routine= MY_TIMER_ROUTINE_GETSYSTEMTIMEASFILETIME; |
| 638 | #elif defined(HAVE_TIME) |
| 639 | mti->milliseconds.routine= MY_TIMER_ROUTINE_TIME; |
| 640 | #else |
| 641 | mti->milliseconds.routine= 0; |
| 642 | #endif |
| 643 | if (!mti->milliseconds.routine || !my_timer_milliseconds()) |
| 644 | { |
| 645 | mti->milliseconds.routine= 0; |
| 646 | mti->milliseconds.resolution= 0; |
| 647 | mti->milliseconds.frequency= 0; |
| 648 | mti->milliseconds.overhead= 0; |
| 649 | } |
| 650 | |
| 651 | /* ticks */ |
| 652 | mti->ticks.frequency= 100; /* permanent assumption */ |
| 653 | #if defined(HAVE_SYS_TIMES_H) && defined(HAVE_TIMES) |
| 654 | mti->ticks.routine= MY_TIMER_ROUTINE_TIMES; |
| 655 | #elif defined(_WIN32) |
| 656 | mti->ticks.routine= MY_TIMER_ROUTINE_GETTICKCOUNT; |
| 657 | #else |
| 658 | mti->ticks.routine= 0; |
| 659 | #endif |
| 660 | if (!mti->ticks.routine || !my_timer_ticks()) |
| 661 | { |
| 662 | mti->ticks.routine= 0; |
| 663 | mti->ticks.resolution= 0; |
| 664 | mti->ticks.frequency= 0; |
| 665 | mti->ticks.overhead= 0; |
| 666 | } |
| 667 | |
| 668 | /* |
| 669 | Calculate overhead in terms of the timer that |
| 670 | gives the best resolution: cycles or nanoseconds. |
| 671 | I doubt it ever will be as bad as microseconds. |
| 672 | */ |
| 673 | if (mti->cycles.routine) |
| 674 | best_timer= &my_timer_cycles; |
| 675 | else |
| 676 | { |
| 677 | if (mti->nanoseconds.routine) |
| 678 | { |
| 679 | best_timer= &my_timer_nanoseconds; |
| 680 | } |
| 681 | else |
| 682 | best_timer= &my_timer_microseconds; |
| 683 | } |
| 684 | |
| 685 | /* best_timer_overhead = least of 20 calculations */ |
| 686 | for (i= 0, best_timer_overhead= 1000000000; i < 20; ++i) |
| 687 | { |
| 688 | time1= best_timer(); |
| 689 | time2= best_timer() - time1; |
| 690 | if (best_timer_overhead > time2) |
| 691 | best_timer_overhead= time2; |
| 692 | } |
| 693 | if (mti->cycles.routine) |
| 694 | my_timer_init_overhead(&mti->cycles.overhead, |
| 695 | best_timer, |
| 696 | &my_timer_cycles, |
| 697 | best_timer_overhead); |
| 698 | if (mti->nanoseconds.routine) |
| 699 | my_timer_init_overhead(&mti->nanoseconds.overhead, |
| 700 | best_timer, |
| 701 | &my_timer_nanoseconds, |
| 702 | best_timer_overhead); |
| 703 | if (mti->microseconds.routine) |
| 704 | my_timer_init_overhead(&mti->microseconds.overhead, |
| 705 | best_timer, |
| 706 | &my_timer_microseconds, |
| 707 | best_timer_overhead); |
| 708 | if (mti->milliseconds.routine) |
| 709 | my_timer_init_overhead(&mti->milliseconds.overhead, |
| 710 | best_timer, |
| 711 | &my_timer_milliseconds, |
| 712 | best_timer_overhead); |
| 713 | if (mti->ticks.routine) |
| 714 | my_timer_init_overhead(&mti->ticks.overhead, |
| 715 | best_timer, |
| 716 | &my_timer_ticks, |
| 717 | best_timer_overhead); |
| 718 | |
| 719 | /* |
| 720 | Calculate resolution for nanoseconds or microseconds |
| 721 | or milliseconds, by seeing if it's always divisible |
| 722 | by 1000, and by noticing how much jumping occurs. |
| 723 | For ticks, just assume the resolution is 1. |
| 724 | */ |
| 725 | if (mti->cycles.routine) |
| 726 | mti->cycles.resolution= 1; |
| 727 | if (mti->nanoseconds.routine) |
| 728 | mti->nanoseconds.resolution= |
| 729 | my_timer_init_resolution(&my_timer_nanoseconds, 20000); |
| 730 | if (mti->microseconds.routine) |
| 731 | mti->microseconds.resolution= |
| 732 | my_timer_init_resolution(&my_timer_microseconds, 20); |
| 733 | if (mti->milliseconds.routine) |
| 734 | { |
| 735 | if (mti->milliseconds.routine == MY_TIMER_ROUTINE_TIME) |
| 736 | mti->milliseconds.resolution= 1000; |
| 737 | else |
| 738 | mti->milliseconds.resolution= |
| 739 | my_timer_init_resolution(&my_timer_milliseconds, 0); |
| 740 | } |
| 741 | if (mti->ticks.routine) |
| 742 | mti->ticks.resolution= 1; |
| 743 | |
| 744 | /* |
| 745 | Calculate cycles frequency, |
| 746 | if we have both a cycles routine and a microseconds routine. |
| 747 | In tests, this usually results in a figure within 2% of |
| 748 | what "cat /proc/cpuinfo" says. |
| 749 | If the microseconds routine is QueryPerformanceCounter |
| 750 | (i.e. it's Windows), and the microseconds frequency is > |
| 751 | 500,000,000 (i.e. it's Windows Server so it uses RDTSC) |
| 752 | and the microseconds resolution is > 100 (i.e. dreadful), |
| 753 | then calculate cycles frequency = microseconds frequency. |
| 754 | */ |
| 755 | if (mti->cycles.routine |
| 756 | && mti->microseconds.routine) |
| 757 | { |
| 758 | if (mti->microseconds.routine == |
| 759 | MY_TIMER_ROUTINE_QUERYPERFORMANCECOUNTER |
| 760 | && mti->microseconds.frequency > 500000000 |
| 761 | && mti->microseconds.resolution > 100) |
| 762 | mti->cycles.frequency= mti->microseconds.frequency; |
| 763 | else |
| 764 | { |
| 765 | time1= my_timer_init_frequency(mti); |
| 766 | /* Repeat once in case there was an interruption. */ |
| 767 | time2= my_timer_init_frequency(mti); |
| 768 | if (time1 < time2) mti->cycles.frequency= time1; |
| 769 | else mti->cycles.frequency= time2; |
| 770 | } |
| 771 | } |
| 772 | |
| 773 | /* |
| 774 | Calculate milliseconds frequency = |
| 775 | (cycles-frequency/#-of-cycles) * #-of-milliseconds, |
| 776 | if we have both a milliseconds routine and a cycles |
| 777 | routine. |
| 778 | This will be inaccurate if milliseconds resolution > 1. |
| 779 | This is probably only useful when testing new platforms. |
| 780 | */ |
| 781 | if (mti->milliseconds.routine |
| 782 | && mti->milliseconds.resolution < 1000 |
| 783 | && mti->microseconds.routine |
| 784 | && mti->cycles.routine) |
| 785 | { |
| 786 | ulonglong time3, time4; |
| 787 | time1= my_timer_cycles(); |
| 788 | time2= my_timer_milliseconds(); |
| 789 | time3= time2; /* Avoids a Microsoft/IBM compiler warning */ |
| 790 | for (i= 0; i < MY_TIMER_ITERATIONS * 1000; ++i) |
| 791 | { |
| 792 | time3= my_timer_milliseconds(); |
| 793 | if (time3 - time2 > 10) break; |
| 794 | } |
| 795 | time4= my_timer_cycles(); |
| 796 | mti->milliseconds.frequency= |
| 797 | (mti->cycles.frequency * (time3 - time2)) / (time4 - time1); |
| 798 | } |
| 799 | |
| 800 | /* |
| 801 | Calculate ticks.frequency = |
| 802 | (cycles-frequency/#-of-cycles * #-of-ticks, |
| 803 | if we have both a ticks routine and a cycles |
| 804 | routine, |
| 805 | This is probably only useful when testing new platforms. |
| 806 | */ |
| 807 | if (mti->ticks.routine |
| 808 | && mti->microseconds.routine |
| 809 | && mti->cycles.routine) |
| 810 | { |
| 811 | ulonglong time3, time4; |
| 812 | time1= my_timer_cycles(); |
| 813 | time2= my_timer_ticks(); |
| 814 | time3= time2; /* Avoids a Microsoft/IBM compiler warning */ |
| 815 | for (i= 0; i < MY_TIMER_ITERATIONS * 1000; ++i) |
| 816 | { |
| 817 | time3= my_timer_ticks(); |
| 818 | if (time3 - time2 > 10) break; |
| 819 | } |
| 820 | time4= my_timer_cycles(); |
| 821 | mti->ticks.frequency= |
| 822 | (mti->cycles.frequency * (time3 - time2)) / (time4 - time1); |
| 823 | } |
| 824 | } |
| 825 | |
| 826 | /* |
| 827 | Additional Comments |
| 828 | ------------------- |
| 829 | |
| 830 | This is for timing, i.e. finding out how long a piece of code |
| 831 | takes. If you want time of day matching a wall clock, the |
| 832 | my_timer_xxx functions won't help you. |
| 833 | |
| 834 | The best timer is the one with highest frequency, lowest |
| 835 | overhead, and resolution=1. The my_timer_info() routine will tell |
| 836 | you at runtime which timer that is. Usually it will be |
| 837 | my_timer_cycles() but be aware that, although it's best, |
| 838 | it has possible flaws and dangers. Depending on platform: |
| 839 | - The frequency might change. We don't test for this. It |
| 840 | happens on laptops for power saving, and on blade servers |
| 841 | for avoiding overheating. |
| 842 | - The overhead that my_timer_init() returns is the minimum. |
| 843 | In fact it could be slightly greater because of caching or |
| 844 | because you call the routine by address, as recommended. |
| 845 | It could be hugely greater if there's an interrupt. |
| 846 | - The x86 cycle counter, RDTSC doesn't "serialize". That is, |
| 847 | if there is out-of-order execution, rdtsc might be processed |
| 848 | after an instruction that logically follows it. |
| 849 | (We could force serialization, but that would be slower.) |
| 850 | - It is possible to set a flag which renders RDTSC |
| 851 | inoperative. Somebody responsible for the kernel |
| 852 | of the operating system would have to make this |
| 853 | decision. For the platforms we've tested with, there's |
| 854 | no such problem. |
| 855 | - With a multi-processor arrangement, it's possible |
| 856 | to get the cycle count from one processor in |
| 857 | thread X, and the cycle count from another processor |
| 858 | in thread Y. They may not always be in synch. |
| 859 | - You can't depend on a cycle counter being available for |
| 860 | all platforms. On Alphas, the |
| 861 | cycle counter is only 32-bit, so it would overflow quickly, |
| 862 | so we don't bother with it. On platforms that we haven't |
| 863 | tested, there might be some if/endif combination that we |
| 864 | didn't expect, or some assembler routine that we didn't |
| 865 | supply. |
| 866 | |
| 867 | The recommended way to use the timer routines is: |
| 868 | 1. Somewhere near the beginning of the program, call |
| 869 | my_timer_init(). This should only be necessary once, |
| 870 | although you can call it again if you think that the |
| 871 | frequency has changed. |
| 872 | 2. Determine the best timer based on frequency, resolution, |
| 873 | overhead -- all things that my_timer_init() returns. |
| 874 | Preserve the address of the timer and the my_timer_into |
| 875 | results in an easily-accessible place. |
| 876 | 3. Instrument the code section that you're monitoring, thus: |
| 877 | time1= my_timer_xxx(); |
| 878 | Instrumented code; |
| 879 | time2= my_timer_xxx(); |
| 880 | elapsed_time= (time2 - time1) - overhead; |
| 881 | If the timer is always on, then overhead is always there, |
| 882 | so don't subtract it. |
| 883 | 4. Save the elapsed time, or add it to a totaller. |
| 884 | 5. When all timing processes are complete, transfer the |
| 885 | saved / totalled elapsed time to permanent storage. |
| 886 | Optionally you can convert cycles to microseconds at |
| 887 | this point. (Don't do so every time you calculate |
| 888 | elapsed_time! That would waste time and lose precision!) |
| 889 | For converting cycles to microseconds, use the frequency |
| 890 | that my_timer_init() returns. You'll also need to convert |
| 891 | if the my_timer_microseconds() function is the Windows |
| 892 | function QueryPerformanceCounter(), since that's sometimes |
| 893 | a counter with precision slightly better than microseconds. |
| 894 | |
| 895 | Since we recommend calls by function pointer, we supply |
| 896 | no inline functions. |
| 897 | |
| 898 | Some comments on the many candidate routines for timing ... |
| 899 | |
| 900 | clock() -- We don't use because it would overflow frequently. |
| 901 | |
| 902 | clock_gettime() -- In tests, clock_gettime often had |
| 903 | resolution = 1000. |
| 904 | |
| 905 | ftime() -- A "man ftime" says: "This function is obsolete. |
| 906 | Don't use it." On every platform that we tested, if ftime() |
| 907 | was available, then so was gettimeofday(), and gettimeofday() |
| 908 | overhead was always at least as good as ftime() overhead. |
| 909 | |
| 910 | gettimeofday() -- available on most platforms, though not |
| 911 | on Windows. There is a hardware timer (sometimes a Programmable |
| 912 | Interrupt Timer or "PIT") (sometimes a "HPET") used for |
| 913 | interrupt generation. When it interrupts (a "tick" or "jiffy", |
| 914 | typically 1 centisecond) it sets xtime. For gettimeofday, a |
| 915 | Linux kernel routine usually gets xtime and then gets rdtsc |
| 916 | to get elapsed nanoseconds since the last tick. On Red Hat |
| 917 | Enterprise Linux 3, there was once a bug which caused the |
| 918 | resolution to be 1000, i.e. one centisecond. We never check |
| 919 | for time-zone change. |
| 920 | |
| 921 | getnstimeofday() -- something to watch for in future Linux |
| 922 | |
| 923 | do_gettimeofday() -- exists on Linux but not for "userland" |
| 924 | |
| 925 | get_cycles() -- a multi-platform function, worth watching |
| 926 | in future Linux versions. But we found platform-specific |
| 927 | functions which were better documented in operating-system |
| 928 | manuals. And get_cycles() can fail or return a useless |
| 929 | 32-bit number. It might be available on some platforms, |
| 930 | such as arm, which we didn't test. Using |
| 931 | "include <linux/timex.h>" or "include <asm/timex.h>" |
| 932 | can lead to autoconf or compile errors, depending on system. |
| 933 | |
| 934 | rdtsc, __rdtsc, rdtscll: available for x86 with Linux BSD, |
| 935 | Solaris, Windows. See "possible flaws and dangers" comments. |
| 936 | |
| 937 | times(): what we use for ticks. Should just read the last |
| 938 | (xtime) tick count, therefore should be fast, but usually |
| 939 | isn't. |
| 940 | |
| 941 | GetTickCount(): we use this for my_timer_ticks() on |
| 942 | Windows. Actually it really is a tick counter, so resolution |
| 943 | >= 10 milliseconds unless you have a very old Windows version. |
| 944 | With Windows 95 or 98 or ME, timeGetTime() has better resolution than |
| 945 | GetTickCount (1ms rather than 55ms). But with Windows NT or XP or 2000, |
| 946 | they're both getting from a variable in the Process Environment Block |
| 947 | (PEB), and the variable is set by the programmable interrupt timer, so |
| 948 | the resolution is the same (usually 10-15 milliseconds). Also timeGetTime |
| 949 | is slower on old machines: |
| 950 | http://www.doumo.jp/aon-java/jsp/postgretips/tips.jsp?tips=74. |
| 951 | Also timeGetTime requires linking winmm.lib, |
| 952 | Therefore we use GetTickCount. |
| 953 | It will overflow every 49 days because the return is 32-bit. |
| 954 | There is also a GetTickCount64 but it requires Vista or Windows Server 2008. |
| 955 | (As for GetSystemTimeAsFileTime, its precision is spurious, it |
| 956 | just reads the tick variable like the other functions do. |
| 957 | However, we don't expect it to overflow every 49 days, so we |
| 958 | will prefer it for my_timer_milliseconds().) |
| 959 | |
| 960 | QueryPerformanceCounter() we use this for my_timer_microseconds() |
| 961 | on Windows. 1-PIT-tick (often 1/3-microsecond). Usually reads |
| 962 | the PIT so it's slow. On some Windows variants, uses RDTSC. |
| 963 | |
| 964 | GetLocalTime() this is available on Windows but we don't use it. |
| 965 | |
| 966 | getclock(): documented for Alpha, but not found during tests. |
| 967 | |
| 968 | mach_absolute_time() and UpTime() are recommended for Apple. |
| 969 | Inititally they weren't tried, because asm_ppc seems to do the job. |
| 970 | But now we use mach_absolute_time for nanoseconds. |
| 971 | |
| 972 | Any clock-based timer can be affected by NPT (ntpd program), |
| 973 | which means: |
| 974 | - full-second correction can occur for leap second |
| 975 | - tiny corrections can occcur approimately every 11 minutes |
| 976 | (but I think they only affect the RTC which isn't the PIT). |
| 977 | |
| 978 | We define "precision" as "frequency" and "high precision" is |
| 979 | "frequency better than 1 microsecond". We define "resolution" |
| 980 | as a synonym for "granularity". We define "accuracy" as |
| 981 | "closeness to the truth" as established by some authoritative |
| 982 | clock, but we can't measure accuracy. |
| 983 | |
| 984 | Do not expect any of our timers to be monotonic; we |
| 985 | won't guarantee that they return constantly-increasing |
| 986 | unique numbers. |
| 987 | |
| 988 | We tested with AIX, Solaris (x86 + Sparc), Linux (x86 + |
| 989 | Itanium), Windows, 64-bit Windows, QNX, FreeBSD, HPUX, |
| 990 | Irix, Mac. We didn't test with SCO. |
| 991 | |
| 992 | */ |
| 993 | |
| 994 | |