1 | #include "fe.h" |
---|---|
2 | |
3 | /* |
4 | Preconditions: |
5 | |h| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc. |
6 | |
7 | Write p=2^255-19; q=floor(h/p). |
8 | Basic claim: q = floor(2^(-255)(h + 19 2^(-25)h9 + 2^(-1))). |
9 | |
10 | Proof: |
11 | Have |h|<=p so |q|<=1 so |19^2 2^(-255) q|<1/4. |
12 | Also have |h-2^230 h9|<2^231 so |19 2^(-255)(h-2^230 h9)|<1/4. |
13 | |
14 | Write y=2^(-1)-19^2 2^(-255)q-19 2^(-255)(h-2^230 h9). |
15 | Then 0<y<1. |
16 | |
17 | Write r=h-pq. |
18 | Have 0<=r<=p-1=2^255-20. |
19 | Thus 0<=r+19(2^-255)r<r+19(2^-255)2^255<=2^255-1. |
20 | |
21 | Write x=r+19(2^-255)r+y. |
22 | Then 0<x<2^255 so floor(2^(-255)x) = 0 so floor(q+2^(-255)x) = q. |
23 | |
24 | Have q+2^(-255)x = 2^(-255)(h + 19 2^(-25) h9 + 2^(-1)) |
25 | so floor(2^(-255)(h + 19 2^(-25) h9 + 2^(-1))) = q. |
26 | */ |
27 | |
28 | void fe_tobytes(unsigned char *s,const fe h) |
29 | { |
30 | crypto_int32 h0 = h[0]; |
31 | crypto_int32 h1 = h[1]; |
32 | crypto_int32 h2 = h[2]; |
33 | crypto_int32 h3 = h[3]; |
34 | crypto_int32 h4 = h[4]; |
35 | crypto_int32 h5 = h[5]; |
36 | crypto_int32 h6 = h[6]; |
37 | crypto_int32 h7 = h[7]; |
38 | crypto_int32 h8 = h[8]; |
39 | crypto_int32 h9 = h[9]; |
40 | crypto_int32 q; |
41 | crypto_int32 carry0; |
42 | crypto_int32 carry1; |
43 | crypto_int32 carry2; |
44 | crypto_int32 carry3; |
45 | crypto_int32 carry4; |
46 | crypto_int32 carry5; |
47 | crypto_int32 carry6; |
48 | crypto_int32 carry7; |
49 | crypto_int32 carry8; |
50 | crypto_int32 carry9; |
51 | |
52 | q = (19 * h9 + (((crypto_int32) 1) << 24)) >> 25; |
53 | q = (h0 + q) >> 26; |
54 | q = (h1 + q) >> 25; |
55 | q = (h2 + q) >> 26; |
56 | q = (h3 + q) >> 25; |
57 | q = (h4 + q) >> 26; |
58 | q = (h5 + q) >> 25; |
59 | q = (h6 + q) >> 26; |
60 | q = (h7 + q) >> 25; |
61 | q = (h8 + q) >> 26; |
62 | q = (h9 + q) >> 25; |
63 | |
64 | /* Goal: Output h-(2^255-19)q, which is between 0 and 2^255-20. */ |
65 | h0 += 19 * q; |
66 | /* Goal: Output h-2^255 q, which is between 0 and 2^255-20. */ |
67 | |
68 | carry0 = h0 >> 26; h1 += carry0; h0 -= carry0 << 26; |
69 | carry1 = h1 >> 25; h2 += carry1; h1 -= carry1 << 25; |
70 | carry2 = h2 >> 26; h3 += carry2; h2 -= carry2 << 26; |
71 | carry3 = h3 >> 25; h4 += carry3; h3 -= carry3 << 25; |
72 | carry4 = h4 >> 26; h5 += carry4; h4 -= carry4 << 26; |
73 | carry5 = h5 >> 25; h6 += carry5; h5 -= carry5 << 25; |
74 | carry6 = h6 >> 26; h7 += carry6; h6 -= carry6 << 26; |
75 | carry7 = h7 >> 25; h8 += carry7; h7 -= carry7 << 25; |
76 | carry8 = h8 >> 26; h9 += carry8; h8 -= carry8 << 26; |
77 | carry9 = h9 >> 25; h9 -= carry9 << 25; |
78 | /* h10 = carry9 */ |
79 | |
80 | /* |
81 | Goal: Output h0+...+2^255 h10-2^255 q, which is between 0 and 2^255-20. |
82 | Have h0+...+2^230 h9 between 0 and 2^255-1; |
83 | evidently 2^255 h10-2^255 q = 0. |
84 | Goal: Output h0+...+2^230 h9. |
85 | */ |
86 | |
87 | s[0] = h0 >> 0; |
88 | s[1] = h0 >> 8; |
89 | s[2] = h0 >> 16; |
90 | s[3] = (h0 >> 24) | (h1 << 2); |
91 | s[4] = h1 >> 6; |
92 | s[5] = h1 >> 14; |
93 | s[6] = (h1 >> 22) | (h2 << 3); |
94 | s[7] = h2 >> 5; |
95 | s[8] = h2 >> 13; |
96 | s[9] = (h2 >> 21) | (h3 << 5); |
97 | s[10] = h3 >> 3; |
98 | s[11] = h3 >> 11; |
99 | s[12] = (h3 >> 19) | (h4 << 6); |
100 | s[13] = h4 >> 2; |
101 | s[14] = h4 >> 10; |
102 | s[15] = h4 >> 18; |
103 | s[16] = h5 >> 0; |
104 | s[17] = h5 >> 8; |
105 | s[18] = h5 >> 16; |
106 | s[19] = (h5 >> 24) | (h6 << 1); |
107 | s[20] = h6 >> 7; |
108 | s[21] = h6 >> 15; |
109 | s[22] = (h6 >> 23) | (h7 << 3); |
110 | s[23] = h7 >> 5; |
111 | s[24] = h7 >> 13; |
112 | s[25] = (h7 >> 21) | (h8 << 4); |
113 | s[26] = h8 >> 4; |
114 | s[27] = h8 >> 12; |
115 | s[28] = (h8 >> 20) | (h9 << 6); |
116 | s[29] = h9 >> 2; |
117 | s[30] = h9 >> 10; |
118 | s[31] = h9 >> 18; |
119 | } |
120 |