| 1 | /* Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved. |
| 2 | Copyright (c) 2018, MariaDB |
| 3 | |
| 4 | This program is free software; you can redistribute it and/or modify |
| 5 | it under the terms of the GNU General Public License as published by |
| 6 | the Free Software Foundation; version 2 of the License. |
| 7 | |
| 8 | This program is distributed in the hope that it will be useful, |
| 9 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 10 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 11 | GNU General Public License for more details. |
| 12 | |
| 13 | You should have received a copy of the GNU General Public License |
| 14 | along with this program; if not, write to the Free Software |
| 15 | Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ |
| 16 | |
| 17 | |
| 18 | /* Functions to handle keys and fields in forms */ |
| 19 | |
| 20 | #include "mariadb.h" |
| 21 | #include "sql_priv.h" |
| 22 | #include "key.h" // key_rec_cmp |
| 23 | #include "field.h" // Field |
| 24 | |
| 25 | /* |
| 26 | Search after a key that starts with 'field' |
| 27 | |
| 28 | SYNOPSIS |
| 29 | find_ref_key() |
| 30 | key First key to check |
| 31 | key_count How many keys to check |
| 32 | record Start of record |
| 33 | field Field to search after |
| 34 | key_length On partial match, contains length of fields before |
| 35 | field |
| 36 | keypart key part # of a field |
| 37 | |
| 38 | NOTES |
| 39 | Used when calculating key for NEXT_NUMBER |
| 40 | |
| 41 | IMPLEMENTATION |
| 42 | If no key starts with field test if field is part of some key. If we find |
| 43 | one, then return first key and set key_length to the number of bytes |
| 44 | preceding 'field'. |
| 45 | |
| 46 | RETURN |
| 47 | -1 field is not part of the key |
| 48 | # Key part for key matching key. |
| 49 | key_length is set to length of key before (not including) field |
| 50 | */ |
| 51 | |
| 52 | int find_ref_key(KEY *key, uint key_count, uchar *record, Field *field, |
| 53 | uint *key_length, uint *keypart) |
| 54 | { |
| 55 | int i; |
| 56 | KEY *key_info; |
| 57 | uint fieldpos; |
| 58 | |
| 59 | fieldpos= field->offset(record); |
| 60 | |
| 61 | /* Test if some key starts as fieldpos */ |
| 62 | for (i= 0, key_info= key ; |
| 63 | i < (int) key_count ; |
| 64 | i++, key_info++) |
| 65 | { |
| 66 | if (key_info->key_part[0].offset == fieldpos && |
| 67 | key_info->key_part[0].field->type() != MYSQL_TYPE_BIT) |
| 68 | { /* Found key. Calc keylength */ |
| 69 | *key_length= *keypart= 0; |
| 70 | return i; /* Use this key */ |
| 71 | } |
| 72 | } |
| 73 | |
| 74 | /* Test if some key contains fieldpos */ |
| 75 | for (i= 0, key_info= key; |
| 76 | i < (int) key_count ; |
| 77 | i++, key_info++) |
| 78 | { |
| 79 | uint j; |
| 80 | KEY_PART_INFO *key_part; |
| 81 | *key_length=0; |
| 82 | for (j=0, key_part=key_info->key_part ; |
| 83 | j < key_info->user_defined_key_parts ; |
| 84 | j++, key_part++) |
| 85 | { |
| 86 | if (key_part->offset == fieldpos && |
| 87 | key_part->field->type() != MYSQL_TYPE_BIT) |
| 88 | { |
| 89 | *keypart= j; |
| 90 | return i; /* Use this key */ |
| 91 | } |
| 92 | *key_length+= key_part->store_length; |
| 93 | } |
| 94 | } |
| 95 | return(-1); /* No key is ok */ |
| 96 | } |
| 97 | |
| 98 | |
| 99 | /** |
| 100 | Copy part of a record that forms a key or key prefix to a buffer. |
| 101 | |
| 102 | The function takes a complete table record (as e.g. retrieved by |
| 103 | handler::index_read()), and a description of an index on the same table, |
| 104 | and extracts the first key_length bytes of the record which are part of a |
| 105 | key into to_key. If length == 0 then copy all bytes from the record that |
| 106 | form a key. |
| 107 | |
| 108 | @param to_key buffer that will be used as a key |
| 109 | @param from_record full record to be copied from |
| 110 | @param key_info descriptor of the index |
| 111 | @param key_length specifies length of all keyparts that will be copied |
| 112 | @param with_zerofill skipped bytes in the key buffer to be filled with 0 |
| 113 | */ |
| 114 | |
| 115 | void key_copy(uchar *to_key, const uchar *from_record, KEY *key_info, |
| 116 | uint key_length, bool with_zerofill) |
| 117 | { |
| 118 | uint length; |
| 119 | KEY_PART_INFO *key_part; |
| 120 | |
| 121 | if (key_length == 0) |
| 122 | key_length= key_info->key_length; |
| 123 | for (key_part= key_info->key_part; |
| 124 | (int) key_length > 0; |
| 125 | key_part++, to_key+= length, key_length-= length) |
| 126 | { |
| 127 | if (key_part->null_bit) |
| 128 | { |
| 129 | *to_key++= MY_TEST(from_record[key_part->null_offset] & |
| 130 | key_part->null_bit); |
| 131 | key_length--; |
| 132 | if (to_key[-1]) |
| 133 | { |
| 134 | /* |
| 135 | Don't copy data for null values |
| 136 | The -1 below is to subtract the null byte which is already handled |
| 137 | */ |
| 138 | length= MY_MIN(key_length, uint(key_part->store_length)-1); |
| 139 | if (with_zerofill) |
| 140 | bzero((char*) to_key, length); |
| 141 | continue; |
| 142 | } |
| 143 | } |
| 144 | if (key_part->key_part_flag & HA_BLOB_PART || |
| 145 | key_part->key_part_flag & HA_VAR_LENGTH_PART) |
| 146 | { |
| 147 | key_length-= HA_KEY_BLOB_LENGTH; |
| 148 | length= MY_MIN(key_length, key_part->length); |
| 149 | uint bytes= key_part->field->get_key_image(to_key, length, Field::itRAW); |
| 150 | if (with_zerofill && bytes < length) |
| 151 | bzero((char*) to_key + bytes, length - bytes); |
| 152 | to_key+= HA_KEY_BLOB_LENGTH; |
| 153 | } |
| 154 | else |
| 155 | { |
| 156 | length= MY_MIN(key_length, key_part->length); |
| 157 | Field *field= key_part->field; |
| 158 | CHARSET_INFO *cs= field->charset(); |
| 159 | uint bytes= field->get_key_image(to_key, length, Field::itRAW); |
| 160 | if (bytes < length) |
| 161 | cs->cset->fill(cs, (char*) to_key + bytes, length - bytes, ' '); |
| 162 | } |
| 163 | } |
| 164 | } |
| 165 | |
| 166 | |
| 167 | /** |
| 168 | Restore a key from some buffer to record. |
| 169 | |
| 170 | This function converts a key into record format. It can be used in cases |
| 171 | when we want to return a key as a result row. |
| 172 | |
| 173 | @param to_record record buffer where the key will be restored to |
| 174 | @param from_key buffer that contains a key |
| 175 | @param key_info descriptor of the index |
| 176 | @param key_length specifies length of all keyparts that will be restored |
| 177 | */ |
| 178 | |
| 179 | void key_restore(uchar *to_record, const uchar *from_key, KEY *key_info, |
| 180 | uint key_length) |
| 181 | { |
| 182 | uint length; |
| 183 | KEY_PART_INFO *key_part; |
| 184 | |
| 185 | if (key_length == 0) |
| 186 | { |
| 187 | key_length= key_info->key_length; |
| 188 | } |
| 189 | for (key_part= key_info->key_part ; |
| 190 | (int) key_length > 0 ; |
| 191 | key_part++, from_key+= length, key_length-= length) |
| 192 | { |
| 193 | uchar used_uneven_bits= 0; |
| 194 | if (key_part->null_bit) |
| 195 | { |
| 196 | bool null_value; |
| 197 | if ((null_value= *from_key++)) |
| 198 | to_record[key_part->null_offset]|= key_part->null_bit; |
| 199 | else |
| 200 | to_record[key_part->null_offset]&= ~key_part->null_bit; |
| 201 | key_length--; |
| 202 | if (null_value) |
| 203 | { |
| 204 | /* |
| 205 | Don't copy data for null bytes |
| 206 | The -1 below is to subtract the null byte which is already handled |
| 207 | */ |
| 208 | length= MY_MIN(key_length, uint(key_part->store_length)-1); |
| 209 | continue; |
| 210 | } |
| 211 | } |
| 212 | if (key_part->type == HA_KEYTYPE_BIT) |
| 213 | { |
| 214 | Field_bit *field= (Field_bit *) (key_part->field); |
| 215 | if (field->bit_len) |
| 216 | { |
| 217 | uchar bits= *(from_key + key_part->length - |
| 218 | field->pack_length_in_rec() - 1); |
| 219 | set_rec_bits(bits, to_record + key_part->null_offset + |
| 220 | (key_part->null_bit == 128), |
| 221 | field->bit_ofs, field->bit_len); |
| 222 | /* we have now used the byte with 'uneven' bits */ |
| 223 | used_uneven_bits= 1; |
| 224 | } |
| 225 | } |
| 226 | if (key_part->key_part_flag & HA_BLOB_PART) |
| 227 | { |
| 228 | /* |
| 229 | This in fact never happens, as we have only partial BLOB |
| 230 | keys yet anyway, so it's difficult to find any sence to |
| 231 | restore the part of a record. |
| 232 | Maybe this branch is to be removed, but now we |
| 233 | have to ignore GCov compaining. |
| 234 | */ |
| 235 | uint blob_length= uint2korr(from_key); |
| 236 | Field_blob *field= (Field_blob*) key_part->field; |
| 237 | from_key+= HA_KEY_BLOB_LENGTH; |
| 238 | key_length-= HA_KEY_BLOB_LENGTH; |
| 239 | field->set_ptr_offset(to_record - field->table->record[0], |
| 240 | (ulong) blob_length, from_key); |
| 241 | length= key_part->length; |
| 242 | } |
| 243 | else if (key_part->key_part_flag & HA_VAR_LENGTH_PART) |
| 244 | { |
| 245 | Field *field= key_part->field; |
| 246 | my_bitmap_map *old_map; |
| 247 | my_ptrdiff_t ptrdiff= to_record - field->table->record[0]; |
| 248 | field->move_field_offset(ptrdiff); |
| 249 | key_length-= HA_KEY_BLOB_LENGTH; |
| 250 | length= MY_MIN(key_length, key_part->length); |
| 251 | old_map= dbug_tmp_use_all_columns(field->table, field->table->write_set); |
| 252 | field->set_key_image(from_key, length); |
| 253 | dbug_tmp_restore_column_map(field->table->write_set, old_map); |
| 254 | from_key+= HA_KEY_BLOB_LENGTH; |
| 255 | field->move_field_offset(-ptrdiff); |
| 256 | } |
| 257 | else |
| 258 | { |
| 259 | length= MY_MIN(key_length, key_part->length); |
| 260 | /* skip the byte with 'uneven' bits, if used */ |
| 261 | memcpy(to_record + key_part->offset, from_key + used_uneven_bits |
| 262 | , (size_t) length - used_uneven_bits); |
| 263 | } |
| 264 | } |
| 265 | } |
| 266 | |
| 267 | |
| 268 | /** |
| 269 | Compare if a key has changed. |
| 270 | |
| 271 | @param table TABLE |
| 272 | @param key key to compare to row |
| 273 | @param idx Index used |
| 274 | @param key_length Length of key |
| 275 | |
| 276 | @note |
| 277 | In theory we could just call field->cmp() for all field types, |
| 278 | but as we are only interested if a key has changed (not if the key is |
| 279 | larger or smaller than the previous value) we can do things a bit |
| 280 | faster by using memcmp() instead. |
| 281 | |
| 282 | @retval |
| 283 | 0 If key is equal |
| 284 | @retval |
| 285 | 1 Key has changed |
| 286 | */ |
| 287 | |
| 288 | bool key_cmp_if_same(TABLE *table,const uchar *key,uint idx,uint key_length) |
| 289 | { |
| 290 | uint store_length; |
| 291 | KEY_PART_INFO *key_part; |
| 292 | const uchar *key_end= key + key_length;; |
| 293 | |
| 294 | for (key_part=table->key_info[idx].key_part; |
| 295 | key < key_end ; |
| 296 | key_part++, key+= store_length) |
| 297 | { |
| 298 | uint length; |
| 299 | store_length= key_part->store_length; |
| 300 | |
| 301 | if (key_part->null_bit) |
| 302 | { |
| 303 | if (*key != MY_TEST(table->record[0][key_part->null_offset] & |
| 304 | key_part->null_bit)) |
| 305 | return 1; |
| 306 | if (*key) |
| 307 | continue; |
| 308 | key++; |
| 309 | store_length--; |
| 310 | } |
| 311 | if (!(key_part->key_part_flag & HA_CAN_MEMCMP)) |
| 312 | { |
| 313 | if (key_part->field->key_cmp(key, key_part->length)) |
| 314 | return 1; |
| 315 | continue; |
| 316 | } |
| 317 | length= MY_MIN((uint) (key_end-key), store_length); |
| 318 | if (!(key_part->key_type & (FIELDFLAG_NUMBER+FIELDFLAG_BINARY+ |
| 319 | FIELDFLAG_PACK))) |
| 320 | { |
| 321 | CHARSET_INFO *cs= key_part->field->charset(); |
| 322 | size_t char_length= key_part->length / cs->mbmaxlen; |
| 323 | const uchar *pos= table->record[0] + key_part->offset; |
| 324 | if (length > char_length) |
| 325 | { |
| 326 | char_length= my_charpos(cs, pos, pos + length, char_length); |
| 327 | set_if_smaller(char_length, length); |
| 328 | } |
| 329 | if (cs->coll->strnncollsp(cs, |
| 330 | (const uchar*) key, length, |
| 331 | (const uchar*) pos, char_length)) |
| 332 | return 1; |
| 333 | continue; |
| 334 | } |
| 335 | if (memcmp(key,table->record[0]+key_part->offset,length)) |
| 336 | return 1; |
| 337 | } |
| 338 | return 0; |
| 339 | } |
| 340 | |
| 341 | |
| 342 | /** |
| 343 | Unpack a field and append it. |
| 344 | |
| 345 | @param[inout] to String to append the field contents to. |
| 346 | @param field Field to unpack. |
| 347 | @param rec Record which contains the field data. |
| 348 | @param max_length Maximum length of field to unpack |
| 349 | or 0 for unlimited. |
| 350 | @param prefix_key The field is used as a prefix key. |
| 351 | */ |
| 352 | |
| 353 | void field_unpack(String *to, Field *field, const uchar *rec, uint max_length, |
| 354 | bool prefix_key) |
| 355 | { |
| 356 | String tmp; |
| 357 | DBUG_ENTER("field_unpack" ); |
| 358 | if (!max_length) |
| 359 | max_length= field->pack_length(); |
| 360 | if (field) |
| 361 | { |
| 362 | if (field->is_null()) |
| 363 | { |
| 364 | to->append(STRING_WITH_LEN("NULL" )); |
| 365 | DBUG_VOID_RETURN; |
| 366 | } |
| 367 | CHARSET_INFO *cs= field->charset(); |
| 368 | field->val_str(&tmp); |
| 369 | /* |
| 370 | For BINARY(N) strip trailing zeroes to make |
| 371 | the error message nice-looking |
| 372 | */ |
| 373 | if (field->binary() && field->type() == MYSQL_TYPE_STRING && tmp.length()) |
| 374 | { |
| 375 | const char *tmp_end= tmp.ptr() + tmp.length(); |
| 376 | while (tmp_end > tmp.ptr() && !*--tmp_end) ; |
| 377 | tmp.length((uint32)(tmp_end - tmp.ptr() + 1)); |
| 378 | } |
| 379 | if (cs->mbmaxlen > 1 && prefix_key) |
| 380 | { |
| 381 | /* |
| 382 | Prefix key, multi-byte charset. |
| 383 | For the columns of type CHAR(N), the above val_str() |
| 384 | call will return exactly "key_part->length" bytes, |
| 385 | which can break a multi-byte characters in the middle. |
| 386 | Align, returning not more than "char_length" characters. |
| 387 | */ |
| 388 | size_t charpos, char_length= max_length / cs->mbmaxlen; |
| 389 | if ((charpos= my_charpos(cs, tmp.ptr(), |
| 390 | tmp.ptr() + tmp.length(), |
| 391 | char_length)) < tmp.length()) |
| 392 | tmp.length(charpos); |
| 393 | } |
| 394 | if (max_length < field->pack_length()) |
| 395 | tmp.length(MY_MIN(tmp.length(),max_length)); |
| 396 | ErrConvString err(&tmp); |
| 397 | to->append(err.ptr()); |
| 398 | } |
| 399 | else |
| 400 | to->append(STRING_WITH_LEN("???" )); |
| 401 | DBUG_VOID_RETURN; |
| 402 | } |
| 403 | |
| 404 | |
| 405 | /* |
| 406 | unpack key-fields from record to some buffer. |
| 407 | |
| 408 | This is used mainly to get a good error message. We temporary |
| 409 | change the column bitmap so that all columns are readable. |
| 410 | |
| 411 | @param |
| 412 | to Store value here in an easy to read form |
| 413 | @param |
| 414 | table Table to use |
| 415 | @param |
| 416 | key Key |
| 417 | */ |
| 418 | |
| 419 | void key_unpack(String *to, TABLE *table, KEY *key) |
| 420 | { |
| 421 | my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); |
| 422 | DBUG_ENTER("key_unpack" ); |
| 423 | |
| 424 | to->length(0); |
| 425 | KEY_PART_INFO *key_part_end= key->key_part + key->user_defined_key_parts; |
| 426 | for (KEY_PART_INFO *key_part= key->key_part; |
| 427 | key_part < key_part_end; |
| 428 | key_part++) |
| 429 | { |
| 430 | if (key_part->field->invisible > INVISIBLE_USER) |
| 431 | continue; |
| 432 | if (to->length()) |
| 433 | to->append('-'); |
| 434 | if (key_part->null_bit) |
| 435 | { |
| 436 | if (table->record[0][key_part->null_offset] & key_part->null_bit) |
| 437 | { |
| 438 | to->append(STRING_WITH_LEN("NULL" )); |
| 439 | continue; |
| 440 | } |
| 441 | } |
| 442 | field_unpack(to, key_part->field, table->record[0], key_part->length, |
| 443 | MY_TEST(key_part->key_part_flag & HA_PART_KEY_SEG)); |
| 444 | } |
| 445 | dbug_tmp_restore_column_map(table->read_set, old_map); |
| 446 | DBUG_VOID_RETURN; |
| 447 | } |
| 448 | |
| 449 | |
| 450 | /* |
| 451 | Check if key uses field that is marked in passed field bitmap. |
| 452 | |
| 453 | SYNOPSIS |
| 454 | is_key_used() |
| 455 | table TABLE object with which keys and fields are associated. |
| 456 | idx Key to be checked. |
| 457 | fields Bitmap of fields to be checked. |
| 458 | |
| 459 | NOTE |
| 460 | This function uses TABLE::tmp_set bitmap so the caller should care |
| 461 | about saving/restoring its state if it also uses this bitmap. |
| 462 | |
| 463 | RETURN VALUE |
| 464 | TRUE Key uses field from bitmap |
| 465 | FALSE Otherwise |
| 466 | */ |
| 467 | |
| 468 | bool is_key_used(TABLE *table, uint idx, const MY_BITMAP *fields) |
| 469 | { |
| 470 | table->mark_columns_used_by_index(idx, &table->tmp_set); |
| 471 | return bitmap_is_overlapping(&table->tmp_set, fields); |
| 472 | } |
| 473 | |
| 474 | |
| 475 | /** |
| 476 | Compare key in row to a given key. |
| 477 | |
| 478 | @param key_part Key part handler |
| 479 | @param key Key to compare to value in table->record[0] |
| 480 | @param key_length length of 'key' |
| 481 | |
| 482 | @return |
| 483 | The return value is SIGN(key_in_row - range_key): |
| 484 | - 0 Key is equal to range or 'range' == 0 (no range) |
| 485 | - -1 Key is less than range |
| 486 | - 1 Key is larger than range |
| 487 | */ |
| 488 | |
| 489 | int key_cmp(KEY_PART_INFO *key_part, const uchar *key, uint key_length) |
| 490 | { |
| 491 | uint store_length; |
| 492 | |
| 493 | for (const uchar *end=key + key_length; |
| 494 | key < end; |
| 495 | key+= store_length, key_part++) |
| 496 | { |
| 497 | int cmp; |
| 498 | store_length= key_part->store_length; |
| 499 | if (key_part->null_bit) |
| 500 | { |
| 501 | /* This key part allows null values; NULL is lower than everything */ |
| 502 | bool field_is_null= key_part->field->is_null(); |
| 503 | if (*key) // If range key is null |
| 504 | { |
| 505 | /* the range is expecting a null value */ |
| 506 | if (!field_is_null) |
| 507 | return 1; // Found key is > range |
| 508 | /* null -- exact match, go to next key part */ |
| 509 | continue; |
| 510 | } |
| 511 | else if (field_is_null) |
| 512 | return -1; // NULL is less than any value |
| 513 | key++; // Skip null byte |
| 514 | store_length--; |
| 515 | } |
| 516 | if ((cmp=key_part->field->key_cmp(key, key_part->length)) < 0) |
| 517 | return -1; |
| 518 | if (cmp > 0) |
| 519 | return 1; |
| 520 | } |
| 521 | return 0; // Keys are equal |
| 522 | } |
| 523 | |
| 524 | |
| 525 | /** |
| 526 | Compare two records in index order. |
| 527 | |
| 528 | This method is set-up such that it can be called directly from the |
| 529 | priority queue and it is attempted to be optimised as much as possible |
| 530 | since this will be called O(N * log N) times while performing a merge |
| 531 | sort in various places in the code. |
| 532 | |
| 533 | We retrieve the pointer to table->record[0] using the fact that key_parts |
| 534 | have an offset making it possible to calculate the start of the record. |
| 535 | We need to get the diff to the compared record since none of the records |
| 536 | being compared are stored in table->record[0]. |
| 537 | |
| 538 | We first check for NULL values, if there are no NULL values we use |
| 539 | a compare method that gets two field pointers and a max length |
| 540 | and return the result of the comparison. |
| 541 | |
| 542 | key is a null terminated array, since in some cases (clustered |
| 543 | primary key) it must compare more than one index. |
| 544 | |
| 545 | @param key Null terminated array of index information |
| 546 | @param first_rec Pointer to record compare with |
| 547 | @param second_rec Pointer to record compare against first_rec |
| 548 | |
| 549 | @return Return value is SIGN(first_rec - second_rec) |
| 550 | @retval 0 Keys are equal |
| 551 | @retval -1 second_rec is greater than first_rec |
| 552 | @retval +1 first_rec is greater than second_rec |
| 553 | */ |
| 554 | |
| 555 | int key_rec_cmp(void *key_p, uchar *first_rec, uchar *second_rec) |
| 556 | { |
| 557 | KEY **key= (KEY**) key_p; |
| 558 | KEY *key_info= *(key++); // Start with first key |
| 559 | uint key_parts, key_part_num; |
| 560 | KEY_PART_INFO *key_part= key_info->key_part; |
| 561 | uchar *rec0= key_part->field->ptr - key_part->offset; |
| 562 | my_ptrdiff_t first_diff= first_rec - rec0, sec_diff= second_rec - rec0; |
| 563 | int result= 0; |
| 564 | Field *field; |
| 565 | DBUG_ENTER("key_rec_cmp" ); |
| 566 | |
| 567 | /* loop over all given keys */ |
| 568 | do |
| 569 | { |
| 570 | key_parts= key_info->user_defined_key_parts; |
| 571 | key_part= key_info->key_part; |
| 572 | key_part_num= 0; |
| 573 | |
| 574 | /* loop over every key part */ |
| 575 | do |
| 576 | { |
| 577 | field= key_part->field; |
| 578 | |
| 579 | if (key_part->null_bit) |
| 580 | { |
| 581 | /* The key_part can contain NULL values */ |
| 582 | bool first_is_null= field->is_real_null(first_diff); |
| 583 | bool sec_is_null= field->is_real_null(sec_diff); |
| 584 | /* |
| 585 | NULL is smaller then everything so if first is NULL and the other |
| 586 | not then we know that we should return -1 and for the opposite |
| 587 | we should return +1. If both are NULL then we call it equality |
| 588 | although it is a strange form of equality, we have equally little |
| 589 | information of the real value. |
| 590 | */ |
| 591 | if (!first_is_null) |
| 592 | { |
| 593 | if (!sec_is_null) |
| 594 | ; /* Fall through, no NULL fields */ |
| 595 | else |
| 596 | { |
| 597 | DBUG_RETURN(+1); |
| 598 | } |
| 599 | } |
| 600 | else if (!sec_is_null) |
| 601 | { |
| 602 | DBUG_RETURN(-1); |
| 603 | } |
| 604 | else |
| 605 | goto next_loop; /* Both were NULL */ |
| 606 | } |
| 607 | /* |
| 608 | No null values in the fields |
| 609 | We use the virtual method cmp_max with a max length parameter. |
| 610 | For most field types this translates into a cmp without |
| 611 | max length. The exceptions are the BLOB and VARCHAR field types |
| 612 | that take the max length into account. |
| 613 | */ |
| 614 | if ((result= field->cmp_max(field->ptr+first_diff, field->ptr+sec_diff, |
| 615 | key_part->length))) |
| 616 | DBUG_RETURN(result); |
| 617 | next_loop: |
| 618 | key_part++; |
| 619 | key_part_num++; |
| 620 | } while (key_part_num < key_parts); /* this key is done */ |
| 621 | |
| 622 | key_info= *(key++); |
| 623 | } while (key_info); /* no more keys to test */ |
| 624 | DBUG_RETURN(0); |
| 625 | } |
| 626 | |
| 627 | |
| 628 | /* |
| 629 | Compare two key tuples. |
| 630 | |
| 631 | @brief |
| 632 | Compare two key tuples, i.e. two key values in KeyTupleFormat. |
| 633 | |
| 634 | @param part KEY_PART_INFO with key description |
| 635 | @param key1 First key to compare |
| 636 | @param key2 Second key to compare |
| 637 | @param tuple_length Length of key1 (and key2, they are the same) in bytes. |
| 638 | |
| 639 | @return |
| 640 | @retval 0 key1 == key2 |
| 641 | @retval -1 key1 < key2 |
| 642 | @retval +1 key1 > key2 |
| 643 | */ |
| 644 | |
| 645 | int key_tuple_cmp(KEY_PART_INFO *part, uchar *key1, uchar *key2, |
| 646 | uint tuple_length) |
| 647 | { |
| 648 | uchar *key1_end= key1 + tuple_length; |
| 649 | int UNINIT_VAR(len); |
| 650 | int res; |
| 651 | for (;key1 < key1_end; key1 += len, key2 += len, part++) |
| 652 | { |
| 653 | len= part->store_length; |
| 654 | if (part->null_bit) |
| 655 | { |
| 656 | if (*key1) // key1 == NULL |
| 657 | { |
| 658 | if (!*key2) // key1(NULL) < key2(notNULL) |
| 659 | return -1; |
| 660 | continue; |
| 661 | } |
| 662 | else if (*key2) // key1(notNULL) > key2 (NULL) |
| 663 | return 1; |
| 664 | /* Step over the NULL bytes for key_cmp() call */ |
| 665 | key1++; |
| 666 | key2++; |
| 667 | len--; |
| 668 | } |
| 669 | if ((res= part->field->key_cmp(key1, key2))) |
| 670 | return res; |
| 671 | } |
| 672 | return 0; |
| 673 | } |
| 674 | |
| 675 | |
| 676 | /** |
| 677 | Get hash value for the key from a key buffer |
| 678 | |
| 679 | @param key_info the key descriptor |
| 680 | @param used_key_part number of key parts used for the key |
| 681 | @param key pointer to the buffer with the key value |
| 682 | |
| 683 | @datails |
| 684 | When hashing we should take special care only of: |
| 685 | 1. NULLs (and keyparts which can be null so one byte reserved for it); |
| 686 | 2. Strings for which we have to take into account their collations |
| 687 | and the values of their lengths in the prefixes. |
| 688 | |
| 689 | @return hash value calculated for the key |
| 690 | */ |
| 691 | |
| 692 | ulong key_hashnr(KEY *key_info, uint used_key_parts, const uchar *key) |
| 693 | { |
| 694 | ulong nr=1, nr2=4; |
| 695 | KEY_PART_INFO *key_part= key_info->key_part; |
| 696 | KEY_PART_INFO *end_key_part= key_part + used_key_parts; |
| 697 | |
| 698 | for (; key_part < end_key_part; key_part++) |
| 699 | { |
| 700 | uchar *pos= (uchar*)key; |
| 701 | CHARSET_INFO *UNINIT_VAR(cs); |
| 702 | size_t UNINIT_VAR(length), UNINIT_VAR(pack_length); |
| 703 | bool is_string= TRUE; |
| 704 | |
| 705 | key+= key_part->length; |
| 706 | if (key_part->null_bit) |
| 707 | { |
| 708 | key++; /* Skip null byte */ |
| 709 | if (*pos) /* Found null */ |
| 710 | { |
| 711 | nr^= (nr << 1) | 1; |
| 712 | /* Add key pack length to key for VARCHAR segments */ |
| 713 | switch (key_part->type) { |
| 714 | case HA_KEYTYPE_VARTEXT1: |
| 715 | case HA_KEYTYPE_VARBINARY1: |
| 716 | case HA_KEYTYPE_VARTEXT2: |
| 717 | case HA_KEYTYPE_VARBINARY2: |
| 718 | key+= 2; |
| 719 | break; |
| 720 | default: |
| 721 | ; |
| 722 | } |
| 723 | continue; |
| 724 | } |
| 725 | pos++; /* Skip null byte */ |
| 726 | } |
| 727 | /* If it is string set parameters of the string */ |
| 728 | switch (key_part->type) { |
| 729 | case HA_KEYTYPE_TEXT: |
| 730 | cs= key_part->field->charset(); |
| 731 | length= key_part->length; |
| 732 | pack_length= 0; |
| 733 | break; |
| 734 | case HA_KEYTYPE_BINARY : |
| 735 | cs= &my_charset_bin; |
| 736 | length= key_part->length; |
| 737 | pack_length= 0; |
| 738 | break; |
| 739 | case HA_KEYTYPE_VARTEXT1: |
| 740 | case HA_KEYTYPE_VARTEXT2: |
| 741 | cs= key_part->field->charset(); |
| 742 | length= uint2korr(pos); |
| 743 | pack_length= 2; |
| 744 | break; |
| 745 | case HA_KEYTYPE_VARBINARY1: |
| 746 | case HA_KEYTYPE_VARBINARY2: |
| 747 | cs= &my_charset_bin; |
| 748 | length= uint2korr(pos); |
| 749 | pack_length= 2; |
| 750 | break; |
| 751 | default: |
| 752 | is_string= FALSE; |
| 753 | } |
| 754 | |
| 755 | if (is_string) |
| 756 | { |
| 757 | if (cs->mbmaxlen > 1) |
| 758 | { |
| 759 | size_t char_length= my_charpos(cs, pos + pack_length, |
| 760 | pos + pack_length + length, |
| 761 | length / cs->mbmaxlen); |
| 762 | set_if_smaller(length, char_length); |
| 763 | } |
| 764 | cs->coll->hash_sort(cs, pos+pack_length, length, &nr, &nr2); |
| 765 | key+= pack_length; |
| 766 | } |
| 767 | else |
| 768 | { |
| 769 | for (; pos < (uchar*)key ; pos++) |
| 770 | { |
| 771 | nr^=(ulong) ((((uint) nr & 63)+nr2)*((uint) *pos)) + (nr << 8); |
| 772 | nr2+=3; |
| 773 | } |
| 774 | } |
| 775 | } |
| 776 | DBUG_PRINT("exit" , ("hash: %lx" , nr)); |
| 777 | return(nr); |
| 778 | } |
| 779 | |
| 780 | |
| 781 | /** |
| 782 | Check whether two keys in the key buffers are equal |
| 783 | |
| 784 | @param key_info the key descriptor |
| 785 | @param used_key_part number of key parts used for the keys |
| 786 | @param key1 pointer to the buffer with the first key |
| 787 | @param key2 pointer to the buffer with the second key |
| 788 | |
| 789 | @detail See details of key_hashnr(). |
| 790 | |
| 791 | @retval TRUE keys in the buffers are NOT equal |
| 792 | @retval FALSE keys in the buffers are equal |
| 793 | */ |
| 794 | |
| 795 | bool key_buf_cmp(KEY *key_info, uint used_key_parts, |
| 796 | const uchar *key1, const uchar *key2) |
| 797 | { |
| 798 | KEY_PART_INFO *key_part= key_info->key_part; |
| 799 | KEY_PART_INFO *end_key_part= key_part + used_key_parts; |
| 800 | |
| 801 | for (; key_part < end_key_part; key_part++) |
| 802 | { |
| 803 | uchar *pos1= (uchar*)key1; |
| 804 | uchar *pos2= (uchar*)key2; |
| 805 | CHARSET_INFO *UNINIT_VAR(cs); |
| 806 | size_t UNINIT_VAR(length1), UNINIT_VAR(length2), UNINIT_VAR(pack_length); |
| 807 | bool is_string= TRUE; |
| 808 | |
| 809 | key1+= key_part->length; |
| 810 | key2+= key_part->length; |
| 811 | if (key_part->null_bit) |
| 812 | { |
| 813 | key1++; key2++; /* Skip null byte */ |
| 814 | if (*pos1 && *pos2) /* Both are null */ |
| 815 | { |
| 816 | /* Add key pack length to key for VARCHAR segments */ |
| 817 | switch (key_part->type) { |
| 818 | case HA_KEYTYPE_VARTEXT1: |
| 819 | case HA_KEYTYPE_VARBINARY1: |
| 820 | case HA_KEYTYPE_VARTEXT2: |
| 821 | case HA_KEYTYPE_VARBINARY2: |
| 822 | key1+= 2; key2+= 2; |
| 823 | break; |
| 824 | default: |
| 825 | ; |
| 826 | } |
| 827 | continue; |
| 828 | } |
| 829 | if (*pos1 != *pos2) |
| 830 | return TRUE; |
| 831 | pos1++; pos2++; |
| 832 | } |
| 833 | |
| 834 | /* If it is string set parameters of the string */ |
| 835 | switch (key_part->type) { |
| 836 | case HA_KEYTYPE_TEXT: |
| 837 | cs= key_part->field->charset(); |
| 838 | length1= length2= key_part->length; |
| 839 | pack_length= 0; |
| 840 | break; |
| 841 | case HA_KEYTYPE_BINARY : |
| 842 | cs= &my_charset_bin; |
| 843 | length1= length2= key_part->length; |
| 844 | pack_length= 0; |
| 845 | break; |
| 846 | case HA_KEYTYPE_VARTEXT1: |
| 847 | case HA_KEYTYPE_VARTEXT2: |
| 848 | cs= key_part->field->charset(); |
| 849 | length1= uint2korr(pos1); |
| 850 | length2= uint2korr(pos2); |
| 851 | pack_length= 2; |
| 852 | break; |
| 853 | case HA_KEYTYPE_VARBINARY1: |
| 854 | case HA_KEYTYPE_VARBINARY2: |
| 855 | cs= &my_charset_bin; |
| 856 | length1= uint2korr(pos1); |
| 857 | length2= uint2korr(pos2); |
| 858 | pack_length= 2; |
| 859 | break; |
| 860 | default: |
| 861 | is_string= FALSE; |
| 862 | } |
| 863 | |
| 864 | if (is_string) |
| 865 | { |
| 866 | /* |
| 867 | Compare the strings taking into account length in characters |
| 868 | and collation |
| 869 | */ |
| 870 | size_t byte_len1= length1, byte_len2= length2; |
| 871 | if (cs->mbmaxlen > 1) |
| 872 | { |
| 873 | size_t char_length1= my_charpos(cs, pos1 + pack_length, |
| 874 | pos1 + pack_length + length1, |
| 875 | length1 / cs->mbmaxlen); |
| 876 | size_t char_length2= my_charpos(cs, pos2 + pack_length, |
| 877 | pos2 + pack_length + length2, |
| 878 | length2 / cs->mbmaxlen); |
| 879 | set_if_smaller(length1, char_length1); |
| 880 | set_if_smaller(length2, char_length2); |
| 881 | } |
| 882 | if (length1 != length2 || |
| 883 | cs->coll->strnncollsp(cs, |
| 884 | pos1 + pack_length, byte_len1, |
| 885 | pos2 + pack_length, byte_len2)) |
| 886 | return TRUE; |
| 887 | key1+= pack_length; key2+= pack_length; |
| 888 | } |
| 889 | else |
| 890 | { |
| 891 | /* it is OK to compare non-string byte per byte */ |
| 892 | for (; pos1 < (uchar*)key1 ; pos1++, pos2++) |
| 893 | { |
| 894 | if (pos1[0] != pos2[0]) |
| 895 | return TRUE; |
| 896 | } |
| 897 | } |
| 898 | } |
| 899 | return FALSE; |
| 900 | } |
| 901 | |