1 | /* Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved. |
2 | Copyright (c) 2018, MariaDB |
3 | |
4 | This program is free software; you can redistribute it and/or modify |
5 | it under the terms of the GNU General Public License as published by |
6 | the Free Software Foundation; version 2 of the License. |
7 | |
8 | This program is distributed in the hope that it will be useful, |
9 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
10 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
11 | GNU General Public License for more details. |
12 | |
13 | You should have received a copy of the GNU General Public License |
14 | along with this program; if not, write to the Free Software |
15 | Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ |
16 | |
17 | |
18 | /* Functions to handle keys and fields in forms */ |
19 | |
20 | #include "mariadb.h" |
21 | #include "sql_priv.h" |
22 | #include "key.h" // key_rec_cmp |
23 | #include "field.h" // Field |
24 | |
25 | /* |
26 | Search after a key that starts with 'field' |
27 | |
28 | SYNOPSIS |
29 | find_ref_key() |
30 | key First key to check |
31 | key_count How many keys to check |
32 | record Start of record |
33 | field Field to search after |
34 | key_length On partial match, contains length of fields before |
35 | field |
36 | keypart key part # of a field |
37 | |
38 | NOTES |
39 | Used when calculating key for NEXT_NUMBER |
40 | |
41 | IMPLEMENTATION |
42 | If no key starts with field test if field is part of some key. If we find |
43 | one, then return first key and set key_length to the number of bytes |
44 | preceding 'field'. |
45 | |
46 | RETURN |
47 | -1 field is not part of the key |
48 | # Key part for key matching key. |
49 | key_length is set to length of key before (not including) field |
50 | */ |
51 | |
52 | int find_ref_key(KEY *key, uint key_count, uchar *record, Field *field, |
53 | uint *key_length, uint *keypart) |
54 | { |
55 | int i; |
56 | KEY *key_info; |
57 | uint fieldpos; |
58 | |
59 | fieldpos= field->offset(record); |
60 | |
61 | /* Test if some key starts as fieldpos */ |
62 | for (i= 0, key_info= key ; |
63 | i < (int) key_count ; |
64 | i++, key_info++) |
65 | { |
66 | if (key_info->key_part[0].offset == fieldpos && |
67 | key_info->key_part[0].field->type() != MYSQL_TYPE_BIT) |
68 | { /* Found key. Calc keylength */ |
69 | *key_length= *keypart= 0; |
70 | return i; /* Use this key */ |
71 | } |
72 | } |
73 | |
74 | /* Test if some key contains fieldpos */ |
75 | for (i= 0, key_info= key; |
76 | i < (int) key_count ; |
77 | i++, key_info++) |
78 | { |
79 | uint j; |
80 | KEY_PART_INFO *key_part; |
81 | *key_length=0; |
82 | for (j=0, key_part=key_info->key_part ; |
83 | j < key_info->user_defined_key_parts ; |
84 | j++, key_part++) |
85 | { |
86 | if (key_part->offset == fieldpos && |
87 | key_part->field->type() != MYSQL_TYPE_BIT) |
88 | { |
89 | *keypart= j; |
90 | return i; /* Use this key */ |
91 | } |
92 | *key_length+= key_part->store_length; |
93 | } |
94 | } |
95 | return(-1); /* No key is ok */ |
96 | } |
97 | |
98 | |
99 | /** |
100 | Copy part of a record that forms a key or key prefix to a buffer. |
101 | |
102 | The function takes a complete table record (as e.g. retrieved by |
103 | handler::index_read()), and a description of an index on the same table, |
104 | and extracts the first key_length bytes of the record which are part of a |
105 | key into to_key. If length == 0 then copy all bytes from the record that |
106 | form a key. |
107 | |
108 | @param to_key buffer that will be used as a key |
109 | @param from_record full record to be copied from |
110 | @param key_info descriptor of the index |
111 | @param key_length specifies length of all keyparts that will be copied |
112 | @param with_zerofill skipped bytes in the key buffer to be filled with 0 |
113 | */ |
114 | |
115 | void key_copy(uchar *to_key, const uchar *from_record, KEY *key_info, |
116 | uint key_length, bool with_zerofill) |
117 | { |
118 | uint length; |
119 | KEY_PART_INFO *key_part; |
120 | |
121 | if (key_length == 0) |
122 | key_length= key_info->key_length; |
123 | for (key_part= key_info->key_part; |
124 | (int) key_length > 0; |
125 | key_part++, to_key+= length, key_length-= length) |
126 | { |
127 | if (key_part->null_bit) |
128 | { |
129 | *to_key++= MY_TEST(from_record[key_part->null_offset] & |
130 | key_part->null_bit); |
131 | key_length--; |
132 | if (to_key[-1]) |
133 | { |
134 | /* |
135 | Don't copy data for null values |
136 | The -1 below is to subtract the null byte which is already handled |
137 | */ |
138 | length= MY_MIN(key_length, uint(key_part->store_length)-1); |
139 | if (with_zerofill) |
140 | bzero((char*) to_key, length); |
141 | continue; |
142 | } |
143 | } |
144 | if (key_part->key_part_flag & HA_BLOB_PART || |
145 | key_part->key_part_flag & HA_VAR_LENGTH_PART) |
146 | { |
147 | key_length-= HA_KEY_BLOB_LENGTH; |
148 | length= MY_MIN(key_length, key_part->length); |
149 | uint bytes= key_part->field->get_key_image(to_key, length, Field::itRAW); |
150 | if (with_zerofill && bytes < length) |
151 | bzero((char*) to_key + bytes, length - bytes); |
152 | to_key+= HA_KEY_BLOB_LENGTH; |
153 | } |
154 | else |
155 | { |
156 | length= MY_MIN(key_length, key_part->length); |
157 | Field *field= key_part->field; |
158 | CHARSET_INFO *cs= field->charset(); |
159 | uint bytes= field->get_key_image(to_key, length, Field::itRAW); |
160 | if (bytes < length) |
161 | cs->cset->fill(cs, (char*) to_key + bytes, length - bytes, ' '); |
162 | } |
163 | } |
164 | } |
165 | |
166 | |
167 | /** |
168 | Restore a key from some buffer to record. |
169 | |
170 | This function converts a key into record format. It can be used in cases |
171 | when we want to return a key as a result row. |
172 | |
173 | @param to_record record buffer where the key will be restored to |
174 | @param from_key buffer that contains a key |
175 | @param key_info descriptor of the index |
176 | @param key_length specifies length of all keyparts that will be restored |
177 | */ |
178 | |
179 | void key_restore(uchar *to_record, const uchar *from_key, KEY *key_info, |
180 | uint key_length) |
181 | { |
182 | uint length; |
183 | KEY_PART_INFO *key_part; |
184 | |
185 | if (key_length == 0) |
186 | { |
187 | key_length= key_info->key_length; |
188 | } |
189 | for (key_part= key_info->key_part ; |
190 | (int) key_length > 0 ; |
191 | key_part++, from_key+= length, key_length-= length) |
192 | { |
193 | uchar used_uneven_bits= 0; |
194 | if (key_part->null_bit) |
195 | { |
196 | bool null_value; |
197 | if ((null_value= *from_key++)) |
198 | to_record[key_part->null_offset]|= key_part->null_bit; |
199 | else |
200 | to_record[key_part->null_offset]&= ~key_part->null_bit; |
201 | key_length--; |
202 | if (null_value) |
203 | { |
204 | /* |
205 | Don't copy data for null bytes |
206 | The -1 below is to subtract the null byte which is already handled |
207 | */ |
208 | length= MY_MIN(key_length, uint(key_part->store_length)-1); |
209 | continue; |
210 | } |
211 | } |
212 | if (key_part->type == HA_KEYTYPE_BIT) |
213 | { |
214 | Field_bit *field= (Field_bit *) (key_part->field); |
215 | if (field->bit_len) |
216 | { |
217 | uchar bits= *(from_key + key_part->length - |
218 | field->pack_length_in_rec() - 1); |
219 | set_rec_bits(bits, to_record + key_part->null_offset + |
220 | (key_part->null_bit == 128), |
221 | field->bit_ofs, field->bit_len); |
222 | /* we have now used the byte with 'uneven' bits */ |
223 | used_uneven_bits= 1; |
224 | } |
225 | } |
226 | if (key_part->key_part_flag & HA_BLOB_PART) |
227 | { |
228 | /* |
229 | This in fact never happens, as we have only partial BLOB |
230 | keys yet anyway, so it's difficult to find any sence to |
231 | restore the part of a record. |
232 | Maybe this branch is to be removed, but now we |
233 | have to ignore GCov compaining. |
234 | */ |
235 | uint blob_length= uint2korr(from_key); |
236 | Field_blob *field= (Field_blob*) key_part->field; |
237 | from_key+= HA_KEY_BLOB_LENGTH; |
238 | key_length-= HA_KEY_BLOB_LENGTH; |
239 | field->set_ptr_offset(to_record - field->table->record[0], |
240 | (ulong) blob_length, from_key); |
241 | length= key_part->length; |
242 | } |
243 | else if (key_part->key_part_flag & HA_VAR_LENGTH_PART) |
244 | { |
245 | Field *field= key_part->field; |
246 | my_bitmap_map *old_map; |
247 | my_ptrdiff_t ptrdiff= to_record - field->table->record[0]; |
248 | field->move_field_offset(ptrdiff); |
249 | key_length-= HA_KEY_BLOB_LENGTH; |
250 | length= MY_MIN(key_length, key_part->length); |
251 | old_map= dbug_tmp_use_all_columns(field->table, field->table->write_set); |
252 | field->set_key_image(from_key, length); |
253 | dbug_tmp_restore_column_map(field->table->write_set, old_map); |
254 | from_key+= HA_KEY_BLOB_LENGTH; |
255 | field->move_field_offset(-ptrdiff); |
256 | } |
257 | else |
258 | { |
259 | length= MY_MIN(key_length, key_part->length); |
260 | /* skip the byte with 'uneven' bits, if used */ |
261 | memcpy(to_record + key_part->offset, from_key + used_uneven_bits |
262 | , (size_t) length - used_uneven_bits); |
263 | } |
264 | } |
265 | } |
266 | |
267 | |
268 | /** |
269 | Compare if a key has changed. |
270 | |
271 | @param table TABLE |
272 | @param key key to compare to row |
273 | @param idx Index used |
274 | @param key_length Length of key |
275 | |
276 | @note |
277 | In theory we could just call field->cmp() for all field types, |
278 | but as we are only interested if a key has changed (not if the key is |
279 | larger or smaller than the previous value) we can do things a bit |
280 | faster by using memcmp() instead. |
281 | |
282 | @retval |
283 | 0 If key is equal |
284 | @retval |
285 | 1 Key has changed |
286 | */ |
287 | |
288 | bool key_cmp_if_same(TABLE *table,const uchar *key,uint idx,uint key_length) |
289 | { |
290 | uint store_length; |
291 | KEY_PART_INFO *key_part; |
292 | const uchar *key_end= key + key_length;; |
293 | |
294 | for (key_part=table->key_info[idx].key_part; |
295 | key < key_end ; |
296 | key_part++, key+= store_length) |
297 | { |
298 | uint length; |
299 | store_length= key_part->store_length; |
300 | |
301 | if (key_part->null_bit) |
302 | { |
303 | if (*key != MY_TEST(table->record[0][key_part->null_offset] & |
304 | key_part->null_bit)) |
305 | return 1; |
306 | if (*key) |
307 | continue; |
308 | key++; |
309 | store_length--; |
310 | } |
311 | if (!(key_part->key_part_flag & HA_CAN_MEMCMP)) |
312 | { |
313 | if (key_part->field->key_cmp(key, key_part->length)) |
314 | return 1; |
315 | continue; |
316 | } |
317 | length= MY_MIN((uint) (key_end-key), store_length); |
318 | if (!(key_part->key_type & (FIELDFLAG_NUMBER+FIELDFLAG_BINARY+ |
319 | FIELDFLAG_PACK))) |
320 | { |
321 | CHARSET_INFO *cs= key_part->field->charset(); |
322 | size_t char_length= key_part->length / cs->mbmaxlen; |
323 | const uchar *pos= table->record[0] + key_part->offset; |
324 | if (length > char_length) |
325 | { |
326 | char_length= my_charpos(cs, pos, pos + length, char_length); |
327 | set_if_smaller(char_length, length); |
328 | } |
329 | if (cs->coll->strnncollsp(cs, |
330 | (const uchar*) key, length, |
331 | (const uchar*) pos, char_length)) |
332 | return 1; |
333 | continue; |
334 | } |
335 | if (memcmp(key,table->record[0]+key_part->offset,length)) |
336 | return 1; |
337 | } |
338 | return 0; |
339 | } |
340 | |
341 | |
342 | /** |
343 | Unpack a field and append it. |
344 | |
345 | @param[inout] to String to append the field contents to. |
346 | @param field Field to unpack. |
347 | @param rec Record which contains the field data. |
348 | @param max_length Maximum length of field to unpack |
349 | or 0 for unlimited. |
350 | @param prefix_key The field is used as a prefix key. |
351 | */ |
352 | |
353 | void field_unpack(String *to, Field *field, const uchar *rec, uint max_length, |
354 | bool prefix_key) |
355 | { |
356 | String tmp; |
357 | DBUG_ENTER("field_unpack" ); |
358 | if (!max_length) |
359 | max_length= field->pack_length(); |
360 | if (field) |
361 | { |
362 | if (field->is_null()) |
363 | { |
364 | to->append(STRING_WITH_LEN("NULL" )); |
365 | DBUG_VOID_RETURN; |
366 | } |
367 | CHARSET_INFO *cs= field->charset(); |
368 | field->val_str(&tmp); |
369 | /* |
370 | For BINARY(N) strip trailing zeroes to make |
371 | the error message nice-looking |
372 | */ |
373 | if (field->binary() && field->type() == MYSQL_TYPE_STRING && tmp.length()) |
374 | { |
375 | const char *tmp_end= tmp.ptr() + tmp.length(); |
376 | while (tmp_end > tmp.ptr() && !*--tmp_end) ; |
377 | tmp.length((uint32)(tmp_end - tmp.ptr() + 1)); |
378 | } |
379 | if (cs->mbmaxlen > 1 && prefix_key) |
380 | { |
381 | /* |
382 | Prefix key, multi-byte charset. |
383 | For the columns of type CHAR(N), the above val_str() |
384 | call will return exactly "key_part->length" bytes, |
385 | which can break a multi-byte characters in the middle. |
386 | Align, returning not more than "char_length" characters. |
387 | */ |
388 | size_t charpos, char_length= max_length / cs->mbmaxlen; |
389 | if ((charpos= my_charpos(cs, tmp.ptr(), |
390 | tmp.ptr() + tmp.length(), |
391 | char_length)) < tmp.length()) |
392 | tmp.length(charpos); |
393 | } |
394 | if (max_length < field->pack_length()) |
395 | tmp.length(MY_MIN(tmp.length(),max_length)); |
396 | ErrConvString err(&tmp); |
397 | to->append(err.ptr()); |
398 | } |
399 | else |
400 | to->append(STRING_WITH_LEN("???" )); |
401 | DBUG_VOID_RETURN; |
402 | } |
403 | |
404 | |
405 | /* |
406 | unpack key-fields from record to some buffer. |
407 | |
408 | This is used mainly to get a good error message. We temporary |
409 | change the column bitmap so that all columns are readable. |
410 | |
411 | @param |
412 | to Store value here in an easy to read form |
413 | @param |
414 | table Table to use |
415 | @param |
416 | key Key |
417 | */ |
418 | |
419 | void key_unpack(String *to, TABLE *table, KEY *key) |
420 | { |
421 | my_bitmap_map *old_map= dbug_tmp_use_all_columns(table, table->read_set); |
422 | DBUG_ENTER("key_unpack" ); |
423 | |
424 | to->length(0); |
425 | KEY_PART_INFO *key_part_end= key->key_part + key->user_defined_key_parts; |
426 | for (KEY_PART_INFO *key_part= key->key_part; |
427 | key_part < key_part_end; |
428 | key_part++) |
429 | { |
430 | if (key_part->field->invisible > INVISIBLE_USER) |
431 | continue; |
432 | if (to->length()) |
433 | to->append('-'); |
434 | if (key_part->null_bit) |
435 | { |
436 | if (table->record[0][key_part->null_offset] & key_part->null_bit) |
437 | { |
438 | to->append(STRING_WITH_LEN("NULL" )); |
439 | continue; |
440 | } |
441 | } |
442 | field_unpack(to, key_part->field, table->record[0], key_part->length, |
443 | MY_TEST(key_part->key_part_flag & HA_PART_KEY_SEG)); |
444 | } |
445 | dbug_tmp_restore_column_map(table->read_set, old_map); |
446 | DBUG_VOID_RETURN; |
447 | } |
448 | |
449 | |
450 | /* |
451 | Check if key uses field that is marked in passed field bitmap. |
452 | |
453 | SYNOPSIS |
454 | is_key_used() |
455 | table TABLE object with which keys and fields are associated. |
456 | idx Key to be checked. |
457 | fields Bitmap of fields to be checked. |
458 | |
459 | NOTE |
460 | This function uses TABLE::tmp_set bitmap so the caller should care |
461 | about saving/restoring its state if it also uses this bitmap. |
462 | |
463 | RETURN VALUE |
464 | TRUE Key uses field from bitmap |
465 | FALSE Otherwise |
466 | */ |
467 | |
468 | bool is_key_used(TABLE *table, uint idx, const MY_BITMAP *fields) |
469 | { |
470 | table->mark_columns_used_by_index(idx, &table->tmp_set); |
471 | return bitmap_is_overlapping(&table->tmp_set, fields); |
472 | } |
473 | |
474 | |
475 | /** |
476 | Compare key in row to a given key. |
477 | |
478 | @param key_part Key part handler |
479 | @param key Key to compare to value in table->record[0] |
480 | @param key_length length of 'key' |
481 | |
482 | @return |
483 | The return value is SIGN(key_in_row - range_key): |
484 | - 0 Key is equal to range or 'range' == 0 (no range) |
485 | - -1 Key is less than range |
486 | - 1 Key is larger than range |
487 | */ |
488 | |
489 | int key_cmp(KEY_PART_INFO *key_part, const uchar *key, uint key_length) |
490 | { |
491 | uint store_length; |
492 | |
493 | for (const uchar *end=key + key_length; |
494 | key < end; |
495 | key+= store_length, key_part++) |
496 | { |
497 | int cmp; |
498 | store_length= key_part->store_length; |
499 | if (key_part->null_bit) |
500 | { |
501 | /* This key part allows null values; NULL is lower than everything */ |
502 | bool field_is_null= key_part->field->is_null(); |
503 | if (*key) // If range key is null |
504 | { |
505 | /* the range is expecting a null value */ |
506 | if (!field_is_null) |
507 | return 1; // Found key is > range |
508 | /* null -- exact match, go to next key part */ |
509 | continue; |
510 | } |
511 | else if (field_is_null) |
512 | return -1; // NULL is less than any value |
513 | key++; // Skip null byte |
514 | store_length--; |
515 | } |
516 | if ((cmp=key_part->field->key_cmp(key, key_part->length)) < 0) |
517 | return -1; |
518 | if (cmp > 0) |
519 | return 1; |
520 | } |
521 | return 0; // Keys are equal |
522 | } |
523 | |
524 | |
525 | /** |
526 | Compare two records in index order. |
527 | |
528 | This method is set-up such that it can be called directly from the |
529 | priority queue and it is attempted to be optimised as much as possible |
530 | since this will be called O(N * log N) times while performing a merge |
531 | sort in various places in the code. |
532 | |
533 | We retrieve the pointer to table->record[0] using the fact that key_parts |
534 | have an offset making it possible to calculate the start of the record. |
535 | We need to get the diff to the compared record since none of the records |
536 | being compared are stored in table->record[0]. |
537 | |
538 | We first check for NULL values, if there are no NULL values we use |
539 | a compare method that gets two field pointers and a max length |
540 | and return the result of the comparison. |
541 | |
542 | key is a null terminated array, since in some cases (clustered |
543 | primary key) it must compare more than one index. |
544 | |
545 | @param key Null terminated array of index information |
546 | @param first_rec Pointer to record compare with |
547 | @param second_rec Pointer to record compare against first_rec |
548 | |
549 | @return Return value is SIGN(first_rec - second_rec) |
550 | @retval 0 Keys are equal |
551 | @retval -1 second_rec is greater than first_rec |
552 | @retval +1 first_rec is greater than second_rec |
553 | */ |
554 | |
555 | int key_rec_cmp(void *key_p, uchar *first_rec, uchar *second_rec) |
556 | { |
557 | KEY **key= (KEY**) key_p; |
558 | KEY *key_info= *(key++); // Start with first key |
559 | uint key_parts, key_part_num; |
560 | KEY_PART_INFO *key_part= key_info->key_part; |
561 | uchar *rec0= key_part->field->ptr - key_part->offset; |
562 | my_ptrdiff_t first_diff= first_rec - rec0, sec_diff= second_rec - rec0; |
563 | int result= 0; |
564 | Field *field; |
565 | DBUG_ENTER("key_rec_cmp" ); |
566 | |
567 | /* loop over all given keys */ |
568 | do |
569 | { |
570 | key_parts= key_info->user_defined_key_parts; |
571 | key_part= key_info->key_part; |
572 | key_part_num= 0; |
573 | |
574 | /* loop over every key part */ |
575 | do |
576 | { |
577 | field= key_part->field; |
578 | |
579 | if (key_part->null_bit) |
580 | { |
581 | /* The key_part can contain NULL values */ |
582 | bool first_is_null= field->is_real_null(first_diff); |
583 | bool sec_is_null= field->is_real_null(sec_diff); |
584 | /* |
585 | NULL is smaller then everything so if first is NULL and the other |
586 | not then we know that we should return -1 and for the opposite |
587 | we should return +1. If both are NULL then we call it equality |
588 | although it is a strange form of equality, we have equally little |
589 | information of the real value. |
590 | */ |
591 | if (!first_is_null) |
592 | { |
593 | if (!sec_is_null) |
594 | ; /* Fall through, no NULL fields */ |
595 | else |
596 | { |
597 | DBUG_RETURN(+1); |
598 | } |
599 | } |
600 | else if (!sec_is_null) |
601 | { |
602 | DBUG_RETURN(-1); |
603 | } |
604 | else |
605 | goto next_loop; /* Both were NULL */ |
606 | } |
607 | /* |
608 | No null values in the fields |
609 | We use the virtual method cmp_max with a max length parameter. |
610 | For most field types this translates into a cmp without |
611 | max length. The exceptions are the BLOB and VARCHAR field types |
612 | that take the max length into account. |
613 | */ |
614 | if ((result= field->cmp_max(field->ptr+first_diff, field->ptr+sec_diff, |
615 | key_part->length))) |
616 | DBUG_RETURN(result); |
617 | next_loop: |
618 | key_part++; |
619 | key_part_num++; |
620 | } while (key_part_num < key_parts); /* this key is done */ |
621 | |
622 | key_info= *(key++); |
623 | } while (key_info); /* no more keys to test */ |
624 | DBUG_RETURN(0); |
625 | } |
626 | |
627 | |
628 | /* |
629 | Compare two key tuples. |
630 | |
631 | @brief |
632 | Compare two key tuples, i.e. two key values in KeyTupleFormat. |
633 | |
634 | @param part KEY_PART_INFO with key description |
635 | @param key1 First key to compare |
636 | @param key2 Second key to compare |
637 | @param tuple_length Length of key1 (and key2, they are the same) in bytes. |
638 | |
639 | @return |
640 | @retval 0 key1 == key2 |
641 | @retval -1 key1 < key2 |
642 | @retval +1 key1 > key2 |
643 | */ |
644 | |
645 | int key_tuple_cmp(KEY_PART_INFO *part, uchar *key1, uchar *key2, |
646 | uint tuple_length) |
647 | { |
648 | uchar *key1_end= key1 + tuple_length; |
649 | int UNINIT_VAR(len); |
650 | int res; |
651 | for (;key1 < key1_end; key1 += len, key2 += len, part++) |
652 | { |
653 | len= part->store_length; |
654 | if (part->null_bit) |
655 | { |
656 | if (*key1) // key1 == NULL |
657 | { |
658 | if (!*key2) // key1(NULL) < key2(notNULL) |
659 | return -1; |
660 | continue; |
661 | } |
662 | else if (*key2) // key1(notNULL) > key2 (NULL) |
663 | return 1; |
664 | /* Step over the NULL bytes for key_cmp() call */ |
665 | key1++; |
666 | key2++; |
667 | len--; |
668 | } |
669 | if ((res= part->field->key_cmp(key1, key2))) |
670 | return res; |
671 | } |
672 | return 0; |
673 | } |
674 | |
675 | |
676 | /** |
677 | Get hash value for the key from a key buffer |
678 | |
679 | @param key_info the key descriptor |
680 | @param used_key_part number of key parts used for the key |
681 | @param key pointer to the buffer with the key value |
682 | |
683 | @datails |
684 | When hashing we should take special care only of: |
685 | 1. NULLs (and keyparts which can be null so one byte reserved for it); |
686 | 2. Strings for which we have to take into account their collations |
687 | and the values of their lengths in the prefixes. |
688 | |
689 | @return hash value calculated for the key |
690 | */ |
691 | |
692 | ulong key_hashnr(KEY *key_info, uint used_key_parts, const uchar *key) |
693 | { |
694 | ulong nr=1, nr2=4; |
695 | KEY_PART_INFO *key_part= key_info->key_part; |
696 | KEY_PART_INFO *end_key_part= key_part + used_key_parts; |
697 | |
698 | for (; key_part < end_key_part; key_part++) |
699 | { |
700 | uchar *pos= (uchar*)key; |
701 | CHARSET_INFO *UNINIT_VAR(cs); |
702 | size_t UNINIT_VAR(length), UNINIT_VAR(pack_length); |
703 | bool is_string= TRUE; |
704 | |
705 | key+= key_part->length; |
706 | if (key_part->null_bit) |
707 | { |
708 | key++; /* Skip null byte */ |
709 | if (*pos) /* Found null */ |
710 | { |
711 | nr^= (nr << 1) | 1; |
712 | /* Add key pack length to key for VARCHAR segments */ |
713 | switch (key_part->type) { |
714 | case HA_KEYTYPE_VARTEXT1: |
715 | case HA_KEYTYPE_VARBINARY1: |
716 | case HA_KEYTYPE_VARTEXT2: |
717 | case HA_KEYTYPE_VARBINARY2: |
718 | key+= 2; |
719 | break; |
720 | default: |
721 | ; |
722 | } |
723 | continue; |
724 | } |
725 | pos++; /* Skip null byte */ |
726 | } |
727 | /* If it is string set parameters of the string */ |
728 | switch (key_part->type) { |
729 | case HA_KEYTYPE_TEXT: |
730 | cs= key_part->field->charset(); |
731 | length= key_part->length; |
732 | pack_length= 0; |
733 | break; |
734 | case HA_KEYTYPE_BINARY : |
735 | cs= &my_charset_bin; |
736 | length= key_part->length; |
737 | pack_length= 0; |
738 | break; |
739 | case HA_KEYTYPE_VARTEXT1: |
740 | case HA_KEYTYPE_VARTEXT2: |
741 | cs= key_part->field->charset(); |
742 | length= uint2korr(pos); |
743 | pack_length= 2; |
744 | break; |
745 | case HA_KEYTYPE_VARBINARY1: |
746 | case HA_KEYTYPE_VARBINARY2: |
747 | cs= &my_charset_bin; |
748 | length= uint2korr(pos); |
749 | pack_length= 2; |
750 | break; |
751 | default: |
752 | is_string= FALSE; |
753 | } |
754 | |
755 | if (is_string) |
756 | { |
757 | if (cs->mbmaxlen > 1) |
758 | { |
759 | size_t char_length= my_charpos(cs, pos + pack_length, |
760 | pos + pack_length + length, |
761 | length / cs->mbmaxlen); |
762 | set_if_smaller(length, char_length); |
763 | } |
764 | cs->coll->hash_sort(cs, pos+pack_length, length, &nr, &nr2); |
765 | key+= pack_length; |
766 | } |
767 | else |
768 | { |
769 | for (; pos < (uchar*)key ; pos++) |
770 | { |
771 | nr^=(ulong) ((((uint) nr & 63)+nr2)*((uint) *pos)) + (nr << 8); |
772 | nr2+=3; |
773 | } |
774 | } |
775 | } |
776 | DBUG_PRINT("exit" , ("hash: %lx" , nr)); |
777 | return(nr); |
778 | } |
779 | |
780 | |
781 | /** |
782 | Check whether two keys in the key buffers are equal |
783 | |
784 | @param key_info the key descriptor |
785 | @param used_key_part number of key parts used for the keys |
786 | @param key1 pointer to the buffer with the first key |
787 | @param key2 pointer to the buffer with the second key |
788 | |
789 | @detail See details of key_hashnr(). |
790 | |
791 | @retval TRUE keys in the buffers are NOT equal |
792 | @retval FALSE keys in the buffers are equal |
793 | */ |
794 | |
795 | bool key_buf_cmp(KEY *key_info, uint used_key_parts, |
796 | const uchar *key1, const uchar *key2) |
797 | { |
798 | KEY_PART_INFO *key_part= key_info->key_part; |
799 | KEY_PART_INFO *end_key_part= key_part + used_key_parts; |
800 | |
801 | for (; key_part < end_key_part; key_part++) |
802 | { |
803 | uchar *pos1= (uchar*)key1; |
804 | uchar *pos2= (uchar*)key2; |
805 | CHARSET_INFO *UNINIT_VAR(cs); |
806 | size_t UNINIT_VAR(length1), UNINIT_VAR(length2), UNINIT_VAR(pack_length); |
807 | bool is_string= TRUE; |
808 | |
809 | key1+= key_part->length; |
810 | key2+= key_part->length; |
811 | if (key_part->null_bit) |
812 | { |
813 | key1++; key2++; /* Skip null byte */ |
814 | if (*pos1 && *pos2) /* Both are null */ |
815 | { |
816 | /* Add key pack length to key for VARCHAR segments */ |
817 | switch (key_part->type) { |
818 | case HA_KEYTYPE_VARTEXT1: |
819 | case HA_KEYTYPE_VARBINARY1: |
820 | case HA_KEYTYPE_VARTEXT2: |
821 | case HA_KEYTYPE_VARBINARY2: |
822 | key1+= 2; key2+= 2; |
823 | break; |
824 | default: |
825 | ; |
826 | } |
827 | continue; |
828 | } |
829 | if (*pos1 != *pos2) |
830 | return TRUE; |
831 | pos1++; pos2++; |
832 | } |
833 | |
834 | /* If it is string set parameters of the string */ |
835 | switch (key_part->type) { |
836 | case HA_KEYTYPE_TEXT: |
837 | cs= key_part->field->charset(); |
838 | length1= length2= key_part->length; |
839 | pack_length= 0; |
840 | break; |
841 | case HA_KEYTYPE_BINARY : |
842 | cs= &my_charset_bin; |
843 | length1= length2= key_part->length; |
844 | pack_length= 0; |
845 | break; |
846 | case HA_KEYTYPE_VARTEXT1: |
847 | case HA_KEYTYPE_VARTEXT2: |
848 | cs= key_part->field->charset(); |
849 | length1= uint2korr(pos1); |
850 | length2= uint2korr(pos2); |
851 | pack_length= 2; |
852 | break; |
853 | case HA_KEYTYPE_VARBINARY1: |
854 | case HA_KEYTYPE_VARBINARY2: |
855 | cs= &my_charset_bin; |
856 | length1= uint2korr(pos1); |
857 | length2= uint2korr(pos2); |
858 | pack_length= 2; |
859 | break; |
860 | default: |
861 | is_string= FALSE; |
862 | } |
863 | |
864 | if (is_string) |
865 | { |
866 | /* |
867 | Compare the strings taking into account length in characters |
868 | and collation |
869 | */ |
870 | size_t byte_len1= length1, byte_len2= length2; |
871 | if (cs->mbmaxlen > 1) |
872 | { |
873 | size_t char_length1= my_charpos(cs, pos1 + pack_length, |
874 | pos1 + pack_length + length1, |
875 | length1 / cs->mbmaxlen); |
876 | size_t char_length2= my_charpos(cs, pos2 + pack_length, |
877 | pos2 + pack_length + length2, |
878 | length2 / cs->mbmaxlen); |
879 | set_if_smaller(length1, char_length1); |
880 | set_if_smaller(length2, char_length2); |
881 | } |
882 | if (length1 != length2 || |
883 | cs->coll->strnncollsp(cs, |
884 | pos1 + pack_length, byte_len1, |
885 | pos2 + pack_length, byte_len2)) |
886 | return TRUE; |
887 | key1+= pack_length; key2+= pack_length; |
888 | } |
889 | else |
890 | { |
891 | /* it is OK to compare non-string byte per byte */ |
892 | for (; pos1 < (uchar*)key1 ; pos1++, pos2++) |
893 | { |
894 | if (pos1[0] != pos2[0]) |
895 | return TRUE; |
896 | } |
897 | } |
898 | } |
899 | return FALSE; |
900 | } |
901 | |