1 | /* |
2 | Copyright (c) 2000, 2010, Oracle and/or its affiliates. |
3 | |
4 | This program is free software; you can redistribute it and/or modify |
5 | it under the terms of the GNU General Public License as published by |
6 | the Free Software Foundation; version 2 of the License. |
7 | |
8 | This program is distributed in the hope that it will be useful, |
9 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
10 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
11 | GNU General Public License for more details. |
12 | |
13 | You should have received a copy of the GNU General Public License |
14 | along with this program; if not, write to the Free Software |
15 | Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ |
16 | |
17 | |
18 | /* classes to use when handling where clause */ |
19 | |
20 | #ifndef _opt_range_h |
21 | #define _opt_range_h |
22 | |
23 | #ifdef USE_PRAGMA_INTERFACE |
24 | #pragma interface /* gcc class implementation */ |
25 | #endif |
26 | |
27 | #include "records.h" /* READ_RECORD */ |
28 | #include "queues.h" /* QUEUE */ |
29 | #include "filesort.h" /* SORT_INFO */ |
30 | |
31 | /* |
32 | It is necessary to include set_var.h instead of item.h because there |
33 | are dependencies on include order for set_var.h and item.h. This |
34 | will be resolved later. |
35 | */ |
36 | #include "sql_class.h" // set_var.h: THD |
37 | #include "set_var.h" /* Item */ |
38 | |
39 | class JOIN; |
40 | class Item_sum; |
41 | |
42 | struct KEY_PART { |
43 | uint16 key,part; |
44 | /* See KEY_PART_INFO for meaning of the next two: */ |
45 | uint16 store_length, length; |
46 | uint8 null_bit; |
47 | /* |
48 | Keypart flags (0 when this structure is used by partition pruning code |
49 | for fake partitioning index description) |
50 | */ |
51 | uint8 flag; |
52 | Field *field; |
53 | Field::imagetype image_type; |
54 | }; |
55 | |
56 | |
57 | class RANGE_OPT_PARAM; |
58 | /* |
59 | A construction block of the SEL_ARG-graph. |
60 | |
61 | The following description only covers graphs of SEL_ARG objects with |
62 | sel_arg->type==KEY_RANGE: |
63 | |
64 | One SEL_ARG object represents an "elementary interval" in form |
65 | |
66 | min_value <=? table.keypartX <=? max_value |
67 | |
68 | The interval is a non-empty interval of any kind: with[out] minimum/maximum |
69 | bound, [half]open/closed, single-point interval, etc. |
70 | |
71 | 1. SEL_ARG GRAPH STRUCTURE |
72 | |
73 | SEL_ARG objects are linked together in a graph. The meaning of the graph |
74 | is better demostrated by an example: |
75 | |
76 | tree->keys[i] |
77 | | |
78 | | $ $ |
79 | | part=1 $ part=2 $ part=3 |
80 | | $ $ |
81 | | +-------+ $ +-------+ $ +--------+ |
82 | | | kp1<1 |--$-->| kp2=5 |--$-->| kp3=10 | |
83 | | +-------+ $ +-------+ $ +--------+ |
84 | | | $ $ | |
85 | | | $ $ +--------+ |
86 | | | $ $ | kp3=12 | |
87 | | | $ $ +--------+ |
88 | | +-------+ $ $ |
89 | \->| kp1=2 |--$--------------$-+ |
90 | +-------+ $ $ | +--------+ |
91 | | $ $ ==>| kp3=11 | |
92 | +-------+ $ $ | +--------+ |
93 | | kp1=3 |--$--------------$-+ | |
94 | +-------+ $ $ +--------+ |
95 | | $ $ | kp3=14 | |
96 | ... $ $ +--------+ |
97 | |
98 | The entire graph is partitioned into "interval lists". |
99 | |
100 | An interval list is a sequence of ordered disjoint intervals over the same |
101 | key part. SEL_ARG are linked via "next" and "prev" pointers. Additionally, |
102 | all intervals in the list form an RB-tree, linked via left/right/parent |
103 | pointers. The RB-tree root SEL_ARG object will be further called "root of the |
104 | interval list". |
105 | |
106 | In the example pic, there are 4 interval lists: |
107 | "kp<1 OR kp1=2 OR kp1=3", "kp2=5", "kp3=10 OR kp3=12", "kp3=11 OR kp3=13". |
108 | The vertical lines represent SEL_ARG::next/prev pointers. |
109 | |
110 | In an interval list, each member X may have SEL_ARG::next_key_part pointer |
111 | pointing to the root of another interval list Y. The pointed interval list |
112 | must cover a key part with greater number (i.e. Y->part > X->part). |
113 | |
114 | In the example pic, the next_key_part pointers are represented by |
115 | horisontal lines. |
116 | |
117 | 2. SEL_ARG GRAPH SEMANTICS |
118 | |
119 | It represents a condition in a special form (we don't have a name for it ATM) |
120 | The SEL_ARG::next/prev is "OR", and next_key_part is "AND". |
121 | |
122 | For example, the picture represents the condition in form: |
123 | (kp1 < 1 AND kp2=5 AND (kp3=10 OR kp3=12)) OR |
124 | (kp1=2 AND (kp3=11 OR kp3=14)) OR |
125 | (kp1=3 AND (kp3=11 OR kp3=14)) |
126 | |
127 | |
128 | 3. SEL_ARG GRAPH USE |
129 | |
130 | Use get_mm_tree() to construct SEL_ARG graph from WHERE condition. |
131 | Then walk the SEL_ARG graph and get a list of dijsoint ordered key |
132 | intervals (i.e. intervals in form |
133 | |
134 | (constA1, .., const1_K) < (keypart1,.., keypartK) < (constB1, .., constB_K) |
135 | |
136 | Those intervals can be used to access the index. The uses are in: |
137 | - check_quick_select() - Walk the SEL_ARG graph and find an estimate of |
138 | how many table records are contained within all |
139 | intervals. |
140 | - get_quick_select() - Walk the SEL_ARG, materialize the key intervals, |
141 | and create QUICK_RANGE_SELECT object that will |
142 | read records within these intervals. |
143 | |
144 | 4. SPACE COMPLEXITY NOTES |
145 | |
146 | SEL_ARG graph is a representation of an ordered disjoint sequence of |
147 | intervals over the ordered set of index tuple values. |
148 | |
149 | For multi-part keys, one can construct a WHERE expression such that its |
150 | list of intervals will be of combinatorial size. Here is an example: |
151 | |
152 | (keypart1 IN (1,2, ..., n1)) AND |
153 | (keypart2 IN (1,2, ..., n2)) AND |
154 | (keypart3 IN (1,2, ..., n3)) |
155 | |
156 | For this WHERE clause the list of intervals will have n1*n2*n3 intervals |
157 | of form |
158 | |
159 | (keypart1, keypart2, keypart3) = (k1, k2, k3), where 1 <= k{i} <= n{i} |
160 | |
161 | SEL_ARG graph structure aims to reduce the amount of required space by |
162 | "sharing" the elementary intervals when possible (the pic at the |
163 | beginning of this comment has examples of such sharing). The sharing may |
164 | prevent combinatorial blowup: |
165 | |
166 | There are WHERE clauses that have combinatorial-size interval lists but |
167 | will be represented by a compact SEL_ARG graph. |
168 | Example: |
169 | (keypartN IN (1,2, ..., n1)) AND |
170 | ... |
171 | (keypart2 IN (1,2, ..., n2)) AND |
172 | (keypart1 IN (1,2, ..., n3)) |
173 | |
174 | but not in all cases: |
175 | |
176 | - There are WHERE clauses that do have a compact SEL_ARG-graph |
177 | representation but get_mm_tree() and its callees will construct a |
178 | graph of combinatorial size. |
179 | Example: |
180 | (keypart1 IN (1,2, ..., n1)) AND |
181 | (keypart2 IN (1,2, ..., n2)) AND |
182 | ... |
183 | (keypartN IN (1,2, ..., n3)) |
184 | |
185 | - There are WHERE clauses for which the minimal possible SEL_ARG graph |
186 | representation will have combinatorial size. |
187 | Example: |
188 | By induction: Let's take any interval on some keypart in the middle: |
189 | |
190 | kp15=c0 |
191 | |
192 | Then let's AND it with this interval 'structure' from preceding and |
193 | following keyparts: |
194 | |
195 | (kp14=c1 AND kp16=c3) OR keypart14=c2) (*) |
196 | |
197 | We will obtain this SEL_ARG graph: |
198 | |
199 | kp14 $ kp15 $ kp16 |
200 | $ $ |
201 | +---------+ $ +---------+ $ +---------+ |
202 | | kp14=c1 |--$-->| kp15=c0 |--$-->| kp16=c3 | |
203 | +---------+ $ +---------+ $ +---------+ |
204 | | $ $ |
205 | +---------+ $ +---------+ $ |
206 | | kp14=c2 |--$-->| kp15=c0 | $ |
207 | +---------+ $ +---------+ $ |
208 | $ $ |
209 | |
210 | Note that we had to duplicate "kp15=c0" and there was no way to avoid |
211 | that. |
212 | The induction step: AND the obtained expression with another "wrapping" |
213 | expression like (*). |
214 | When the process ends because of the limit on max. number of keyparts |
215 | we'll have: |
216 | |
217 | WHERE clause length is O(3*#max_keyparts) |
218 | SEL_ARG graph size is O(2^(#max_keyparts/2)) |
219 | |
220 | (it is also possible to construct a case where instead of 2 in 2^n we |
221 | have a bigger constant, e.g. 4, and get a graph with 4^(31/2)= 2^31 |
222 | nodes) |
223 | |
224 | We avoid consuming too much memory by setting a limit on the number of |
225 | SEL_ARG object we can construct during one range analysis invocation. |
226 | */ |
227 | |
228 | class SEL_ARG :public Sql_alloc |
229 | { |
230 | static int sel_cmp(Field *field, uchar *a, uchar *b, uint8 a_flag, |
231 | uint8 b_flag); |
232 | public: |
233 | uint8 min_flag,max_flag,maybe_flag; |
234 | uint8 part; // Which key part |
235 | uint8 maybe_null; |
236 | /* |
237 | The ordinal number the least significant component encountered in |
238 | the ranges of the SEL_ARG tree (the first component has number 1) |
239 | */ |
240 | uint16 max_part_no; |
241 | /* |
242 | Number of children of this element in the RB-tree, plus 1 for this |
243 | element itself. |
244 | */ |
245 | uint16 elements; |
246 | /* |
247 | Valid only for elements which are RB-tree roots: Number of times this |
248 | RB-tree is referred to (it is referred by SEL_ARG::next_key_part or by |
249 | SEL_TREE::keys[i] or by a temporary SEL_ARG* variable) |
250 | */ |
251 | ulong use_count; |
252 | |
253 | Field *field; |
254 | uchar *min_value,*max_value; // Pointer to range |
255 | |
256 | /* |
257 | eq_tree() requires that left == right == 0 if the type is MAYBE_KEY. |
258 | */ |
259 | SEL_ARG *left,*right; /* R-B tree children */ |
260 | SEL_ARG *next,*prev; /* Links for bi-directional interval list */ |
261 | SEL_ARG *parent; /* R-B tree parent */ |
262 | SEL_ARG *next_key_part; |
263 | enum leaf_color { BLACK,RED } color; |
264 | enum Type { IMPOSSIBLE, MAYBE, MAYBE_KEY, KEY_RANGE } type; |
265 | |
266 | enum { MAX_SEL_ARGS = 16000 }; |
267 | |
268 | SEL_ARG() {} |
269 | SEL_ARG(SEL_ARG &); |
270 | SEL_ARG(Field *,const uchar *, const uchar *); |
271 | SEL_ARG(Field *field, uint8 part, uchar *min_value, uchar *max_value, |
272 | uint8 min_flag, uint8 max_flag, uint8 maybe_flag); |
273 | SEL_ARG(enum Type type_arg) |
274 | :min_flag(0), max_part_no(0) /* first key part means 1. 0 mean 'no parts'*/, |
275 | elements(1),use_count(1),left(0),right(0), |
276 | next_key_part(0), color(BLACK), type(type_arg) |
277 | {} |
278 | /** |
279 | returns true if a range predicate is equal. Use all_same() |
280 | to check for equality of all the predicates on this keypart. |
281 | */ |
282 | inline bool is_same(const SEL_ARG *arg) const |
283 | { |
284 | if (type != arg->type || part != arg->part) |
285 | return false; |
286 | if (type != KEY_RANGE) |
287 | return true; |
288 | return cmp_min_to_min(arg) == 0 && cmp_max_to_max(arg) == 0; |
289 | } |
290 | /** |
291 | returns true if all the predicates in the keypart tree are equal |
292 | */ |
293 | bool all_same(const SEL_ARG *arg) const |
294 | { |
295 | if (type != arg->type || part != arg->part) |
296 | return false; |
297 | if (type != KEY_RANGE) |
298 | return true; |
299 | if (arg == this) |
300 | return true; |
301 | const SEL_ARG *cmp_arg= arg->first(); |
302 | const SEL_ARG *cur_arg= first(); |
303 | for (; cur_arg && cmp_arg && cur_arg->is_same(cmp_arg); |
304 | cur_arg= cur_arg->next, cmp_arg= cmp_arg->next) ; |
305 | if (cur_arg || cmp_arg) |
306 | return false; |
307 | return true; |
308 | } |
309 | inline void merge_flags(SEL_ARG *arg) { maybe_flag|=arg->maybe_flag; } |
310 | inline void maybe_smaller() { maybe_flag=1; } |
311 | /* Return true iff it's a single-point null interval */ |
312 | inline bool is_null_interval() { return maybe_null && max_value[0] == 1; } |
313 | inline int cmp_min_to_min(const SEL_ARG* arg) const |
314 | { |
315 | return sel_cmp(field,min_value, arg->min_value, min_flag, arg->min_flag); |
316 | } |
317 | inline int cmp_min_to_max(const SEL_ARG* arg) const |
318 | { |
319 | return sel_cmp(field,min_value, arg->max_value, min_flag, arg->max_flag); |
320 | } |
321 | inline int cmp_max_to_max(const SEL_ARG* arg) const |
322 | { |
323 | return sel_cmp(field,max_value, arg->max_value, max_flag, arg->max_flag); |
324 | } |
325 | inline int cmp_max_to_min(const SEL_ARG* arg) const |
326 | { |
327 | return sel_cmp(field,max_value, arg->min_value, max_flag, arg->min_flag); |
328 | } |
329 | SEL_ARG *clone_and(THD *thd, SEL_ARG* arg) |
330 | { // Get overlapping range |
331 | uchar *new_min,*new_max; |
332 | uint8 flag_min,flag_max; |
333 | if (cmp_min_to_min(arg) >= 0) |
334 | { |
335 | new_min=min_value; flag_min=min_flag; |
336 | } |
337 | else |
338 | { |
339 | new_min=arg->min_value; flag_min=arg->min_flag; /* purecov: deadcode */ |
340 | } |
341 | if (cmp_max_to_max(arg) <= 0) |
342 | { |
343 | new_max=max_value; flag_max=max_flag; |
344 | } |
345 | else |
346 | { |
347 | new_max=arg->max_value; flag_max=arg->max_flag; |
348 | } |
349 | return new (thd->mem_root) SEL_ARG(field, part, new_min, new_max, flag_min, |
350 | flag_max, |
351 | MY_TEST(maybe_flag && arg->maybe_flag)); |
352 | } |
353 | SEL_ARG *clone_first(SEL_ARG *arg) |
354 | { // min <= X < arg->min |
355 | return new SEL_ARG(field,part, min_value, arg->min_value, |
356 | min_flag, arg->min_flag & NEAR_MIN ? 0 : NEAR_MAX, |
357 | maybe_flag | arg->maybe_flag); |
358 | } |
359 | SEL_ARG *clone_last(SEL_ARG *arg) |
360 | { // min <= X <= key_max |
361 | return new SEL_ARG(field, part, min_value, arg->max_value, |
362 | min_flag, arg->max_flag, maybe_flag | arg->maybe_flag); |
363 | } |
364 | SEL_ARG *clone(RANGE_OPT_PARAM *param, SEL_ARG *new_parent, SEL_ARG **next); |
365 | |
366 | bool copy_min(SEL_ARG* arg) |
367 | { // Get overlapping range |
368 | if (cmp_min_to_min(arg) > 0) |
369 | { |
370 | min_value=arg->min_value; min_flag=arg->min_flag; |
371 | if ((max_flag & (NO_MAX_RANGE | NO_MIN_RANGE)) == |
372 | (NO_MAX_RANGE | NO_MIN_RANGE)) |
373 | return 1; // Full range |
374 | } |
375 | maybe_flag|=arg->maybe_flag; |
376 | return 0; |
377 | } |
378 | bool copy_max(SEL_ARG* arg) |
379 | { // Get overlapping range |
380 | if (cmp_max_to_max(arg) <= 0) |
381 | { |
382 | max_value=arg->max_value; max_flag=arg->max_flag; |
383 | if ((max_flag & (NO_MAX_RANGE | NO_MIN_RANGE)) == |
384 | (NO_MAX_RANGE | NO_MIN_RANGE)) |
385 | return 1; // Full range |
386 | } |
387 | maybe_flag|=arg->maybe_flag; |
388 | return 0; |
389 | } |
390 | |
391 | void copy_min_to_min(SEL_ARG *arg) |
392 | { |
393 | min_value=arg->min_value; min_flag=arg->min_flag; |
394 | } |
395 | void copy_min_to_max(SEL_ARG *arg) |
396 | { |
397 | max_value=arg->min_value; |
398 | max_flag=arg->min_flag & NEAR_MIN ? 0 : NEAR_MAX; |
399 | } |
400 | void copy_max_to_min(SEL_ARG *arg) |
401 | { |
402 | min_value=arg->max_value; |
403 | min_flag=arg->max_flag & NEAR_MAX ? 0 : NEAR_MIN; |
404 | } |
405 | /* returns a number of keypart values (0 or 1) appended to the key buffer */ |
406 | int store_min(uint length, uchar **min_key,uint min_key_flag) |
407 | { |
408 | /* "(kp1 > c1) AND (kp2 OP c2) AND ..." -> (kp1 > c1) */ |
409 | if ((min_flag & GEOM_FLAG) || |
410 | (!(min_flag & NO_MIN_RANGE) && |
411 | !(min_key_flag & (NO_MIN_RANGE | NEAR_MIN)))) |
412 | { |
413 | if (maybe_null && *min_value) |
414 | { |
415 | **min_key=1; |
416 | bzero(*min_key+1,length-1); |
417 | } |
418 | else |
419 | memcpy(*min_key,min_value,length); |
420 | (*min_key)+= length; |
421 | return 1; |
422 | } |
423 | return 0; |
424 | } |
425 | /* returns a number of keypart values (0 or 1) appended to the key buffer */ |
426 | int store_max(uint length, uchar **max_key, uint max_key_flag) |
427 | { |
428 | if (!(max_flag & NO_MAX_RANGE) && |
429 | !(max_key_flag & (NO_MAX_RANGE | NEAR_MAX))) |
430 | { |
431 | if (maybe_null && *max_value) |
432 | { |
433 | **max_key=1; |
434 | bzero(*max_key+1,length-1); |
435 | } |
436 | else |
437 | memcpy(*max_key,max_value,length); |
438 | (*max_key)+= length; |
439 | return 1; |
440 | } |
441 | return 0; |
442 | } |
443 | |
444 | /* |
445 | Returns a number of keypart values appended to the key buffer |
446 | for min key and max key. This function is used by both Range |
447 | Analysis and Partition pruning. For partition pruning we have |
448 | to ensure that we don't store also subpartition fields. Thus |
449 | we have to stop at the last partition part and not step into |
450 | the subpartition fields. For Range Analysis we set last_part |
451 | to MAX_KEY which we should never reach. |
452 | */ |
453 | int store_min_key(KEY_PART *key, |
454 | uchar **range_key, |
455 | uint *range_key_flag, |
456 | uint last_part) |
457 | { |
458 | SEL_ARG *key_tree= first(); |
459 | uint res= key_tree->store_min(key[key_tree->part].store_length, |
460 | range_key, *range_key_flag); |
461 | *range_key_flag|= key_tree->min_flag; |
462 | if (key_tree->next_key_part && |
463 | key_tree->next_key_part->type == SEL_ARG::KEY_RANGE && |
464 | key_tree->part != last_part && |
465 | key_tree->next_key_part->part == key_tree->part+1 && |
466 | !(*range_key_flag & (NO_MIN_RANGE | NEAR_MIN))) |
467 | res+= key_tree->next_key_part->store_min_key(key, |
468 | range_key, |
469 | range_key_flag, |
470 | last_part); |
471 | return res; |
472 | } |
473 | |
474 | /* returns a number of keypart values appended to the key buffer */ |
475 | int store_max_key(KEY_PART *key, |
476 | uchar **range_key, |
477 | uint *range_key_flag, |
478 | uint last_part) |
479 | { |
480 | SEL_ARG *key_tree= last(); |
481 | uint res=key_tree->store_max(key[key_tree->part].store_length, |
482 | range_key, *range_key_flag); |
483 | (*range_key_flag)|= key_tree->max_flag; |
484 | if (key_tree->next_key_part && |
485 | key_tree->next_key_part->type == SEL_ARG::KEY_RANGE && |
486 | key_tree->part != last_part && |
487 | key_tree->next_key_part->part == key_tree->part+1 && |
488 | !(*range_key_flag & (NO_MAX_RANGE | NEAR_MAX))) |
489 | res+= key_tree->next_key_part->store_max_key(key, |
490 | range_key, |
491 | range_key_flag, |
492 | last_part); |
493 | return res; |
494 | } |
495 | |
496 | SEL_ARG *insert(SEL_ARG *key); |
497 | SEL_ARG *tree_delete(SEL_ARG *key); |
498 | SEL_ARG *find_range(SEL_ARG *key); |
499 | SEL_ARG *rb_insert(SEL_ARG *leaf); |
500 | friend SEL_ARG *rb_delete_fixup(SEL_ARG *root,SEL_ARG *key, SEL_ARG *par); |
501 | #ifdef EXTRA_DEBUG |
502 | friend int test_rb_tree(SEL_ARG *element,SEL_ARG *parent); |
503 | void test_use_count(SEL_ARG *root); |
504 | #endif |
505 | SEL_ARG *first(); |
506 | const SEL_ARG *first() const; |
507 | SEL_ARG *last(); |
508 | void make_root(); |
509 | inline bool simple_key() |
510 | { |
511 | return !next_key_part && elements == 1; |
512 | } |
513 | void increment_use_count(long count) |
514 | { |
515 | if (next_key_part) |
516 | { |
517 | next_key_part->use_count+=count; |
518 | count*= (next_key_part->use_count-count); |
519 | for (SEL_ARG *pos=next_key_part->first(); pos ; pos=pos->next) |
520 | if (pos->next_key_part) |
521 | pos->increment_use_count(count); |
522 | } |
523 | } |
524 | void incr_refs() |
525 | { |
526 | increment_use_count(1); |
527 | use_count++; |
528 | } |
529 | void incr_refs_all() |
530 | { |
531 | for (SEL_ARG *pos=first(); pos ; pos=pos->next) |
532 | { |
533 | pos->increment_use_count(1); |
534 | } |
535 | use_count++; |
536 | } |
537 | void free_tree() |
538 | { |
539 | for (SEL_ARG *pos=first(); pos ; pos=pos->next) |
540 | if (pos->next_key_part) |
541 | { |
542 | pos->next_key_part->use_count--; |
543 | pos->next_key_part->free_tree(); |
544 | } |
545 | } |
546 | |
547 | inline SEL_ARG **parent_ptr() |
548 | { |
549 | return parent->left == this ? &parent->left : &parent->right; |
550 | } |
551 | |
552 | |
553 | /* |
554 | Check if this SEL_ARG object represents a single-point interval |
555 | |
556 | SYNOPSIS |
557 | is_singlepoint() |
558 | |
559 | DESCRIPTION |
560 | Check if this SEL_ARG object (not tree) represents a single-point |
561 | interval, i.e. if it represents a "keypart = const" or |
562 | "keypart IS NULL". |
563 | |
564 | RETURN |
565 | TRUE This SEL_ARG object represents a singlepoint interval |
566 | FALSE Otherwise |
567 | */ |
568 | |
569 | bool is_singlepoint() |
570 | { |
571 | /* |
572 | Check for NEAR_MIN ("strictly less") and NO_MIN_RANGE (-inf < field) |
573 | flags, and the same for right edge. |
574 | */ |
575 | if (min_flag || max_flag) |
576 | return FALSE; |
577 | uchar *min_val= min_value; |
578 | uchar *max_val= max_value; |
579 | |
580 | if (maybe_null) |
581 | { |
582 | /* First byte is a NULL value indicator */ |
583 | if (*min_val != *max_val) |
584 | return FALSE; |
585 | |
586 | if (*min_val) |
587 | return TRUE; /* This "x IS NULL" */ |
588 | min_val++; |
589 | max_val++; |
590 | } |
591 | return !field->key_cmp(min_val, max_val); |
592 | } |
593 | SEL_ARG *clone_tree(RANGE_OPT_PARAM *param); |
594 | }; |
595 | |
596 | |
597 | class SEL_ARG_IMPOSSIBLE: public SEL_ARG |
598 | { |
599 | public: |
600 | SEL_ARG_IMPOSSIBLE(Field *field) |
601 | :SEL_ARG(field, 0, 0) |
602 | { |
603 | type= SEL_ARG::IMPOSSIBLE; |
604 | } |
605 | }; |
606 | |
607 | |
608 | class RANGE_OPT_PARAM |
609 | { |
610 | public: |
611 | THD *thd; /* Current thread handle */ |
612 | TABLE *table; /* Table being analyzed */ |
613 | table_map prev_tables; |
614 | table_map read_tables; |
615 | table_map current_table; /* Bit of the table being analyzed */ |
616 | |
617 | /* Array of parts of all keys for which range analysis is performed */ |
618 | KEY_PART *key_parts; |
619 | KEY_PART *key_parts_end; |
620 | MEM_ROOT *mem_root; /* Memory that will be freed when range analysis completes */ |
621 | MEM_ROOT *old_root; /* Memory that will last until the query end */ |
622 | /* |
623 | Number of indexes used in range analysis (In SEL_TREE::keys only first |
624 | #keys elements are not empty) |
625 | */ |
626 | uint keys; |
627 | |
628 | /* |
629 | If true, the index descriptions describe real indexes (and it is ok to |
630 | call field->optimize_range(real_keynr[...], ...). |
631 | Otherwise index description describes fake indexes. |
632 | */ |
633 | bool using_real_indexes; |
634 | |
635 | /* |
636 | Aggressively remove "scans" that do not have conditions on first |
637 | keyparts. Such scans are usable when doing partition pruning but not |
638 | regular range optimization. |
639 | */ |
640 | bool remove_jump_scans; |
641 | |
642 | /* |
643 | TRUE <=> Range analyzer should remove parts of condition that are found |
644 | to be always FALSE. |
645 | */ |
646 | bool remove_false_where_parts; |
647 | |
648 | /* |
649 | used_key_no -> table_key_no translation table. Only makes sense if |
650 | using_real_indexes==TRUE |
651 | */ |
652 | uint real_keynr[MAX_KEY]; |
653 | |
654 | /* |
655 | Used to store 'current key tuples', in both range analysis and |
656 | partitioning (list) analysis |
657 | */ |
658 | uchar *min_key; |
659 | uchar *max_key; |
660 | |
661 | /* Number of SEL_ARG objects allocated by SEL_ARG::clone_tree operations */ |
662 | uint alloced_sel_args; |
663 | |
664 | bool force_default_mrr; |
665 | KEY_PART *key[MAX_KEY]; /* First key parts of keys used in the query */ |
666 | |
667 | bool statement_should_be_aborted() const |
668 | { |
669 | return |
670 | thd->is_fatal_error || |
671 | thd->is_error() || |
672 | alloced_sel_args > SEL_ARG::MAX_SEL_ARGS; |
673 | } |
674 | }; |
675 | |
676 | |
677 | class Explain_quick_select; |
678 | /* |
679 | A "MIN_TUPLE < tbl.key_tuple < MAX_TUPLE" interval. |
680 | |
681 | One of endpoints may be absent. 'flags' member has flags which tell whether |
682 | the endpoints are '<' or '<='. |
683 | */ |
684 | class QUICK_RANGE :public Sql_alloc { |
685 | public: |
686 | uchar *min_key,*max_key; |
687 | uint16 min_length,max_length,flag; |
688 | key_part_map min_keypart_map, // bitmap of used keyparts in min_key |
689 | max_keypart_map; // bitmap of used keyparts in max_key |
690 | #ifdef HAVE_valgrind |
691 | uint16 dummy; /* Avoid warnings on 'flag' */ |
692 | #endif |
693 | QUICK_RANGE(); /* Full range */ |
694 | QUICK_RANGE(THD *thd, const uchar *min_key_arg, uint min_length_arg, |
695 | key_part_map min_keypart_map_arg, |
696 | const uchar *max_key_arg, uint max_length_arg, |
697 | key_part_map max_keypart_map_arg, |
698 | uint flag_arg) |
699 | : min_key((uchar*) thd->memdup(min_key_arg, min_length_arg + 1)), |
700 | max_key((uchar*) thd->memdup(max_key_arg, max_length_arg + 1)), |
701 | min_length((uint16) min_length_arg), |
702 | max_length((uint16) max_length_arg), |
703 | flag((uint16) flag_arg), |
704 | min_keypart_map(min_keypart_map_arg), |
705 | max_keypart_map(max_keypart_map_arg) |
706 | { |
707 | #ifdef HAVE_valgrind |
708 | dummy=0; |
709 | #endif |
710 | } |
711 | |
712 | /** |
713 | Initalizes a key_range object for communication with storage engine. |
714 | |
715 | This function facilitates communication with the Storage Engine API by |
716 | translating the minimum endpoint of the interval represented by this |
717 | QUICK_RANGE into an index range endpoint specifier for the engine. |
718 | |
719 | @param Pointer to an uninitialized key_range C struct. |
720 | |
721 | @param prefix_length The length of the search key prefix to be used for |
722 | lookup. |
723 | |
724 | @param keypart_map A set (bitmap) of keyparts to be used. |
725 | */ |
726 | void make_min_endpoint(key_range *kr, uint prefix_length, |
727 | key_part_map keypart_map) { |
728 | make_min_endpoint(kr); |
729 | kr->length= MY_MIN(kr->length, prefix_length); |
730 | kr->keypart_map&= keypart_map; |
731 | } |
732 | |
733 | /** |
734 | Initalizes a key_range object for communication with storage engine. |
735 | |
736 | This function facilitates communication with the Storage Engine API by |
737 | translating the minimum endpoint of the interval represented by this |
738 | QUICK_RANGE into an index range endpoint specifier for the engine. |
739 | |
740 | @param Pointer to an uninitialized key_range C struct. |
741 | */ |
742 | void make_min_endpoint(key_range *kr) { |
743 | kr->key= (const uchar*)min_key; |
744 | kr->length= min_length; |
745 | kr->keypart_map= min_keypart_map; |
746 | kr->flag= ((flag & NEAR_MIN) ? HA_READ_AFTER_KEY : |
747 | (flag & EQ_RANGE) ? HA_READ_KEY_EXACT : HA_READ_KEY_OR_NEXT); |
748 | } |
749 | |
750 | /** |
751 | Initalizes a key_range object for communication with storage engine. |
752 | |
753 | This function facilitates communication with the Storage Engine API by |
754 | translating the maximum endpoint of the interval represented by this |
755 | QUICK_RANGE into an index range endpoint specifier for the engine. |
756 | |
757 | @param Pointer to an uninitialized key_range C struct. |
758 | |
759 | @param prefix_length The length of the search key prefix to be used for |
760 | lookup. |
761 | |
762 | @param keypart_map A set (bitmap) of keyparts to be used. |
763 | */ |
764 | void make_max_endpoint(key_range *kr, uint prefix_length, |
765 | key_part_map keypart_map) { |
766 | make_max_endpoint(kr); |
767 | kr->length= MY_MIN(kr->length, prefix_length); |
768 | kr->keypart_map&= keypart_map; |
769 | } |
770 | |
771 | /** |
772 | Initalizes a key_range object for communication with storage engine. |
773 | |
774 | This function facilitates communication with the Storage Engine API by |
775 | translating the maximum endpoint of the interval represented by this |
776 | QUICK_RANGE into an index range endpoint specifier for the engine. |
777 | |
778 | @param Pointer to an uninitialized key_range C struct. |
779 | */ |
780 | void make_max_endpoint(key_range *kr) { |
781 | kr->key= (const uchar*)max_key; |
782 | kr->length= max_length; |
783 | kr->keypart_map= max_keypart_map; |
784 | /* |
785 | We use READ_AFTER_KEY here because if we are reading on a key |
786 | prefix we want to find all keys with this prefix |
787 | */ |
788 | kr->flag= (flag & NEAR_MAX ? HA_READ_BEFORE_KEY : HA_READ_AFTER_KEY); |
789 | } |
790 | }; |
791 | |
792 | |
793 | /* |
794 | Quick select interface. |
795 | This class is a parent for all QUICK_*_SELECT and FT_SELECT classes. |
796 | |
797 | The usage scenario is as follows: |
798 | 1. Create quick select |
799 | quick= new QUICK_XXX_SELECT(...); |
800 | |
801 | 2. Perform lightweight initialization. This can be done in 2 ways: |
802 | 2.a: Regular initialization |
803 | if (quick->init()) |
804 | { |
805 | //the only valid action after failed init() call is delete |
806 | delete quick; |
807 | } |
808 | 2.b: Special initialization for quick selects merged by QUICK_ROR_*_SELECT |
809 | if (quick->init_ror_merged_scan()) |
810 | delete quick; |
811 | |
812 | 3. Perform zero, one, or more scans. |
813 | while (...) |
814 | { |
815 | // initialize quick select for scan. This may allocate |
816 | // buffers and/or prefetch rows. |
817 | if (quick->reset()) |
818 | { |
819 | //the only valid action after failed reset() call is delete |
820 | delete quick; |
821 | //abort query |
822 | } |
823 | |
824 | // perform the scan |
825 | do |
826 | { |
827 | res= quick->get_next(); |
828 | } while (res && ...) |
829 | } |
830 | |
831 | 4. Delete the select: |
832 | delete quick; |
833 | |
834 | NOTE |
835 | quick select doesn't use Sql_alloc/MEM_ROOT allocation because "range |
836 | checked for each record" functionality may create/destroy |
837 | O(#records_in_some_table) quick selects during query execution. |
838 | */ |
839 | |
840 | class QUICK_SELECT_I |
841 | { |
842 | public: |
843 | ha_rows records; /* estimate of # of records to be retrieved */ |
844 | double read_time; /* time to perform this retrieval */ |
845 | TABLE *head; |
846 | /* |
847 | Index this quick select uses, or MAX_KEY for quick selects |
848 | that use several indexes |
849 | */ |
850 | uint index; |
851 | |
852 | /* |
853 | Total length of first used_key_parts parts of the key. |
854 | Applicable if index!= MAX_KEY. |
855 | */ |
856 | uint max_used_key_length; |
857 | |
858 | /* |
859 | Max. number of (first) key parts this quick select uses for retrieval. |
860 | eg. for "(key1p1=c1 AND key1p2=c2) OR key1p1=c2" used_key_parts == 2. |
861 | Applicable if index!= MAX_KEY. |
862 | |
863 | For QUICK_GROUP_MIN_MAX_SELECT it includes MIN/MAX argument keyparts. |
864 | */ |
865 | uint used_key_parts; |
866 | |
867 | QUICK_SELECT_I(); |
868 | virtual ~QUICK_SELECT_I(){}; |
869 | |
870 | /* |
871 | Do post-constructor initialization. |
872 | SYNOPSIS |
873 | init() |
874 | |
875 | init() performs initializations that should have been in constructor if |
876 | it was possible to return errors from constructors. The join optimizer may |
877 | create and then delete quick selects without retrieving any rows so init() |
878 | must not contain any IO or CPU intensive code. |
879 | |
880 | If init() call fails the only valid action is to delete this quick select, |
881 | reset() and get_next() must not be called. |
882 | |
883 | RETURN |
884 | 0 OK |
885 | other Error code |
886 | */ |
887 | virtual int init() = 0; |
888 | |
889 | /* |
890 | Initialize quick select for row retrieval. |
891 | SYNOPSIS |
892 | reset() |
893 | |
894 | reset() should be called when it is certain that row retrieval will be |
895 | necessary. This call may do heavyweight initialization like buffering first |
896 | N records etc. If reset() call fails get_next() must not be called. |
897 | Note that reset() may be called several times if |
898 | * the quick select is executed in a subselect |
899 | * a JOIN buffer is used |
900 | |
901 | RETURN |
902 | 0 OK |
903 | other Error code |
904 | */ |
905 | virtual int reset(void) = 0; |
906 | |
907 | virtual int get_next() = 0; /* get next record to retrieve */ |
908 | |
909 | /* Range end should be called when we have looped over the whole index */ |
910 | virtual void range_end() {} |
911 | |
912 | virtual bool reverse_sorted() = 0; |
913 | virtual bool unique_key_range() { return false; } |
914 | |
915 | /* |
916 | Request that this quick select produces sorted output. Not all quick |
917 | selects can do it, the caller is responsible for calling this function |
918 | only for those quick selects that can. |
919 | */ |
920 | virtual void need_sorted_output() = 0; |
921 | enum { |
922 | QS_TYPE_RANGE = 0, |
923 | QS_TYPE_INDEX_INTERSECT = 1, |
924 | QS_TYPE_INDEX_MERGE = 2, |
925 | QS_TYPE_RANGE_DESC = 3, |
926 | QS_TYPE_FULLTEXT = 4, |
927 | QS_TYPE_ROR_INTERSECT = 5, |
928 | QS_TYPE_ROR_UNION = 6, |
929 | QS_TYPE_GROUP_MIN_MAX = 7 |
930 | }; |
931 | |
932 | /* Get type of this quick select - one of the QS_TYPE_* values */ |
933 | virtual int get_type() = 0; |
934 | |
935 | /* |
936 | Initialize this quick select as a merged scan inside a ROR-union or a ROR- |
937 | intersection scan. The caller must not additionally call init() if this |
938 | function is called. |
939 | SYNOPSIS |
940 | init_ror_merged_scan() |
941 | reuse_handler If true, the quick select may use table->handler, |
942 | otherwise it must create and use a separate handler |
943 | object. |
944 | RETURN |
945 | 0 Ok |
946 | other Error |
947 | */ |
948 | virtual int init_ror_merged_scan(bool reuse_handler, MEM_ROOT *alloc) |
949 | { DBUG_ASSERT(0); return 1; } |
950 | |
951 | /* |
952 | Save ROWID of last retrieved row in file->ref. This used in ROR-merging. |
953 | */ |
954 | virtual void save_last_pos(){}; |
955 | |
956 | void add_key_and_length(String *key_names, |
957 | String *used_lengths, |
958 | bool *first); |
959 | |
960 | /* |
961 | Append comma-separated list of keys this quick select uses to key_names; |
962 | append comma-separated list of corresponding used lengths to used_lengths. |
963 | This is used by select_describe. |
964 | */ |
965 | virtual void add_keys_and_lengths(String *key_names, |
966 | String *used_lengths)=0; |
967 | |
968 | void add_key_name(String *str, bool *first); |
969 | |
970 | /* Save information about quick select's query plan */ |
971 | virtual Explain_quick_select* get_explain(MEM_ROOT *alloc)= 0; |
972 | |
973 | /* |
974 | Return 1 if any index used by this quick select |
975 | uses field which is marked in passed bitmap. |
976 | */ |
977 | virtual bool is_keys_used(const MY_BITMAP *fields); |
978 | |
979 | /** |
980 | Simple sanity check that the quick select has been set up |
981 | correctly. Function is overridden by quick selects that merge |
982 | indices. |
983 | */ |
984 | virtual bool is_valid() { return index != MAX_KEY; }; |
985 | |
986 | /* |
987 | rowid of last row retrieved by this quick select. This is used only when |
988 | doing ROR-index_merge selects |
989 | */ |
990 | uchar *last_rowid; |
991 | |
992 | /* |
993 | Table record buffer used by this quick select. |
994 | */ |
995 | uchar *record; |
996 | |
997 | virtual void replace_handler(handler *new_file) |
998 | { |
999 | DBUG_ASSERT(0); /* Only supported in QUICK_RANGE_SELECT */ |
1000 | } |
1001 | |
1002 | #ifndef DBUG_OFF |
1003 | /* |
1004 | Print quick select information to DBUG_FILE. Caller is responsible |
1005 | for locking DBUG_FILE before this call and unlocking it afterwards. |
1006 | */ |
1007 | virtual void dbug_dump(int indent, bool verbose)= 0; |
1008 | #endif |
1009 | |
1010 | /* |
1011 | Returns a QUICK_SELECT with reverse order of to the index. |
1012 | */ |
1013 | virtual QUICK_SELECT_I *make_reverse(uint used_key_parts_arg) { return NULL; } |
1014 | |
1015 | /* |
1016 | Add the key columns used by the quick select into table's read set. |
1017 | |
1018 | This is used by an optimization in filesort. |
1019 | */ |
1020 | virtual void add_used_key_part_to_set()=0; |
1021 | }; |
1022 | |
1023 | |
1024 | struct st_qsel_param; |
1025 | class PARAM; |
1026 | |
1027 | |
1028 | /* |
1029 | MRR range sequence, array<QUICK_RANGE> implementation: sequence traversal |
1030 | context. |
1031 | */ |
1032 | typedef struct st_quick_range_seq_ctx |
1033 | { |
1034 | QUICK_RANGE **first; |
1035 | QUICK_RANGE **cur; |
1036 | QUICK_RANGE **last; |
1037 | } QUICK_RANGE_SEQ_CTX; |
1038 | |
1039 | range_seq_t quick_range_seq_init(void *init_param, uint n_ranges, uint flags); |
1040 | bool quick_range_seq_next(range_seq_t rseq, KEY_MULTI_RANGE *range); |
1041 | |
1042 | |
1043 | /* |
1044 | Quick select that does a range scan on a single key. The records are |
1045 | returned in key order. |
1046 | */ |
1047 | class QUICK_RANGE_SELECT : public QUICK_SELECT_I |
1048 | { |
1049 | protected: |
1050 | THD *thd; |
1051 | bool no_alloc; |
1052 | MEM_ROOT *parent_alloc; |
1053 | |
1054 | /* true if we enabled key only reads */ |
1055 | handler *file; |
1056 | |
1057 | /* Members to deal with case when this quick select is a ROR-merged scan */ |
1058 | bool in_ror_merged_scan; |
1059 | MY_BITMAP column_bitmap; |
1060 | bool free_file; /* TRUE <=> this->file is "owned" by this quick select */ |
1061 | |
1062 | /* Range pointers to be used when not using MRR interface */ |
1063 | /* Members needed to use the MRR interface */ |
1064 | QUICK_RANGE_SEQ_CTX qr_traversal_ctx; |
1065 | public: |
1066 | uint mrr_flags; /* Flags to be used with MRR interface */ |
1067 | protected: |
1068 | uint mrr_buf_size; /* copy from thd->variables.mrr_buff_size */ |
1069 | HANDLER_BUFFER *mrr_buf_desc; /* the handler buffer */ |
1070 | |
1071 | /* Info about index we're scanning */ |
1072 | |
1073 | DYNAMIC_ARRAY ranges; /* ordered array of range ptrs */ |
1074 | QUICK_RANGE **cur_range; /* current element in ranges */ |
1075 | |
1076 | QUICK_RANGE *last_range; |
1077 | |
1078 | KEY_PART *key_parts; |
1079 | KEY_PART_INFO *key_part_info; |
1080 | |
1081 | bool dont_free; /* Used by QUICK_SELECT_DESC */ |
1082 | |
1083 | int cmp_next(QUICK_RANGE *range); |
1084 | int cmp_prev(QUICK_RANGE *range); |
1085 | bool row_in_ranges(); |
1086 | public: |
1087 | MEM_ROOT alloc; |
1088 | |
1089 | QUICK_RANGE_SELECT(THD *thd, TABLE *table,uint index_arg,bool no_alloc, |
1090 | MEM_ROOT *parent_alloc, bool *create_err); |
1091 | ~QUICK_RANGE_SELECT(); |
1092 | virtual QUICK_RANGE_SELECT *clone(bool *create_error) |
1093 | { return new QUICK_RANGE_SELECT(thd, head, index, no_alloc, parent_alloc, |
1094 | create_error); } |
1095 | |
1096 | void need_sorted_output(); |
1097 | int init(); |
1098 | int reset(void); |
1099 | int get_next(); |
1100 | void range_end(); |
1101 | int get_next_prefix(uint prefix_length, uint group_key_parts, |
1102 | uchar *cur_prefix); |
1103 | bool reverse_sorted() { return 0; } |
1104 | bool unique_key_range(); |
1105 | int init_ror_merged_scan(bool reuse_handler, MEM_ROOT *alloc); |
1106 | void save_last_pos() |
1107 | { file->position(record); } |
1108 | int get_type() { return QS_TYPE_RANGE; } |
1109 | void add_keys_and_lengths(String *key_names, String *used_lengths); |
1110 | Explain_quick_select *get_explain(MEM_ROOT *alloc); |
1111 | #ifndef DBUG_OFF |
1112 | void dbug_dump(int indent, bool verbose); |
1113 | #endif |
1114 | virtual void replace_handler(handler *new_file) { file= new_file; } |
1115 | QUICK_SELECT_I *make_reverse(uint used_key_parts_arg); |
1116 | |
1117 | virtual void add_used_key_part_to_set(); |
1118 | |
1119 | private: |
1120 | /* Default copy ctor used by QUICK_SELECT_DESC */ |
1121 | friend class TRP_ROR_INTERSECT; |
1122 | friend |
1123 | QUICK_RANGE_SELECT *get_quick_select_for_ref(THD *thd, TABLE *table, |
1124 | struct st_table_ref *ref, |
1125 | ha_rows records); |
1126 | friend bool get_quick_keys(PARAM *param, QUICK_RANGE_SELECT *quick, |
1127 | KEY_PART *key, SEL_ARG *key_tree, |
1128 | uchar *min_key, uint min_key_flag, |
1129 | uchar *max_key, uint max_key_flag); |
1130 | friend QUICK_RANGE_SELECT *get_quick_select(PARAM*,uint idx, |
1131 | SEL_ARG *key_tree, |
1132 | uint mrr_flags, |
1133 | uint mrr_buf_size, |
1134 | MEM_ROOT *alloc); |
1135 | friend class QUICK_SELECT_DESC; |
1136 | friend class QUICK_INDEX_SORT_SELECT; |
1137 | friend class QUICK_INDEX_MERGE_SELECT; |
1138 | friend class QUICK_ROR_INTERSECT_SELECT; |
1139 | friend class QUICK_INDEX_INTERSECT_SELECT; |
1140 | friend class QUICK_GROUP_MIN_MAX_SELECT; |
1141 | friend bool quick_range_seq_next(range_seq_t rseq, KEY_MULTI_RANGE *range); |
1142 | friend range_seq_t quick_range_seq_init(void *init_param, |
1143 | uint n_ranges, uint flags); |
1144 | friend |
1145 | int read_keys_and_merge_scans(THD *thd, TABLE *head, |
1146 | List<QUICK_RANGE_SELECT> quick_selects, |
1147 | QUICK_RANGE_SELECT *pk_quick_select, |
1148 | READ_RECORD *read_record, |
1149 | bool intersection, |
1150 | key_map *filtered_scans, |
1151 | Unique **unique_ptr); |
1152 | |
1153 | }; |
1154 | |
1155 | |
1156 | class QUICK_RANGE_SELECT_GEOM: public QUICK_RANGE_SELECT |
1157 | { |
1158 | public: |
1159 | QUICK_RANGE_SELECT_GEOM(THD *thd, TABLE *table, uint index_arg, |
1160 | bool no_alloc, MEM_ROOT *parent_alloc, |
1161 | bool *create_err) |
1162 | :QUICK_RANGE_SELECT(thd, table, index_arg, no_alloc, parent_alloc, |
1163 | create_err) |
1164 | {}; |
1165 | virtual QUICK_RANGE_SELECT *clone(bool *create_error) |
1166 | { |
1167 | DBUG_ASSERT(0); |
1168 | return new QUICK_RANGE_SELECT_GEOM(thd, head, index, no_alloc, |
1169 | parent_alloc, create_error); |
1170 | } |
1171 | virtual int get_next(); |
1172 | }; |
1173 | |
1174 | |
1175 | /* |
1176 | QUICK_INDEX_SORT_SELECT is the base class for the common functionality of: |
1177 | - QUICK_INDEX_MERGE_SELECT, access based on multi-index merge/union |
1178 | - QUICK_INDEX_INTERSECT_SELECT, access based on multi-index intersection |
1179 | |
1180 | |
1181 | QUICK_INDEX_SORT_SELECT uses |
1182 | * QUICK_RANGE_SELECTs to get rows |
1183 | * Unique class |
1184 | - to remove duplicate rows for QUICK_INDEX_MERGE_SELECT |
1185 | - to intersect rows for QUICK_INDEX_INTERSECT_SELECT |
1186 | |
1187 | INDEX MERGE OPTIMIZER |
1188 | Current implementation doesn't detect all cases where index merge could |
1189 | be used, in particular: |
1190 | |
1191 | * index_merge+'using index' is not supported |
1192 | |
1193 | * If WHERE part contains complex nested AND and OR conditions, some ways |
1194 | to retrieve rows using index merge will not be considered. The choice |
1195 | of read plan may depend on the order of conjuncts/disjuncts in WHERE |
1196 | part of the query, see comments near imerge_list_or_list and |
1197 | SEL_IMERGE::or_sel_tree_with_checks functions for details. |
1198 | |
1199 | * There is no "index_merge_ref" method (but index merge on non-first |
1200 | table in join is possible with 'range checked for each record'). |
1201 | |
1202 | |
1203 | ROW RETRIEVAL ALGORITHM |
1204 | |
1205 | index merge/intersection uses Unique class for duplicates removal. |
1206 | index merge/intersection takes advantage of Clustered Primary Key (CPK) |
1207 | if the table has one. |
1208 | The index merge/intersection algorithm consists of two phases: |
1209 | |
1210 | Phase 1 |
1211 | (implemented by a QUICK_INDEX_MERGE_SELECT::read_keys_and_merge call): |
1212 | |
1213 | prepare() |
1214 | { |
1215 | activate 'index only'; |
1216 | while(retrieve next row for non-CPK scan) |
1217 | { |
1218 | if (there is a CPK scan and row will be retrieved by it) |
1219 | skip this row; |
1220 | else |
1221 | put its rowid into Unique; |
1222 | } |
1223 | deactivate 'index only'; |
1224 | } |
1225 | |
1226 | Phase 2 |
1227 | (implemented as sequence of QUICK_INDEX_MERGE_SELECT::get_next calls): |
1228 | |
1229 | fetch() |
1230 | { |
1231 | retrieve all rows from row pointers stored in Unique |
1232 | (merging/intersecting them); |
1233 | free Unique; |
1234 | if (! intersection) |
1235 | retrieve all rows for CPK scan; |
1236 | } |
1237 | */ |
1238 | |
1239 | class QUICK_INDEX_SORT_SELECT : public QUICK_SELECT_I |
1240 | { |
1241 | protected: |
1242 | Unique *unique; |
1243 | public: |
1244 | QUICK_INDEX_SORT_SELECT(THD *thd, TABLE *table); |
1245 | ~QUICK_INDEX_SORT_SELECT(); |
1246 | |
1247 | int init(); |
1248 | void need_sorted_output() { DBUG_ASSERT(0); /* Can't do it */ } |
1249 | int reset(void); |
1250 | bool reverse_sorted() { return false; } |
1251 | bool unique_key_range() { return false; } |
1252 | bool is_keys_used(const MY_BITMAP *fields); |
1253 | #ifndef DBUG_OFF |
1254 | void dbug_dump(int indent, bool verbose); |
1255 | #endif |
1256 | Explain_quick_select *get_explain(MEM_ROOT *alloc); |
1257 | |
1258 | bool push_quick_back(QUICK_RANGE_SELECT *quick_sel_range); |
1259 | |
1260 | /* range quick selects this index merge/intersect consists of */ |
1261 | List<QUICK_RANGE_SELECT> quick_selects; |
1262 | |
1263 | /* quick select that uses clustered primary key (NULL if none) */ |
1264 | QUICK_RANGE_SELECT* pk_quick_select; |
1265 | |
1266 | MEM_ROOT alloc; |
1267 | THD *thd; |
1268 | virtual bool is_valid() |
1269 | { |
1270 | List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects); |
1271 | QUICK_RANGE_SELECT *quick; |
1272 | bool valid= true; |
1273 | while ((quick= it++)) |
1274 | { |
1275 | if (!quick->is_valid()) |
1276 | { |
1277 | valid= false; |
1278 | break; |
1279 | } |
1280 | } |
1281 | return valid; |
1282 | } |
1283 | virtual int read_keys_and_merge()= 0; |
1284 | /* used to get rows collected in Unique */ |
1285 | READ_RECORD read_record; |
1286 | |
1287 | virtual void add_used_key_part_to_set(); |
1288 | }; |
1289 | |
1290 | |
1291 | |
1292 | class QUICK_INDEX_MERGE_SELECT : public QUICK_INDEX_SORT_SELECT |
1293 | { |
1294 | private: |
1295 | /* true if this select is currently doing a clustered PK scan */ |
1296 | bool doing_pk_scan; |
1297 | protected: |
1298 | int read_keys_and_merge(); |
1299 | |
1300 | public: |
1301 | QUICK_INDEX_MERGE_SELECT(THD *thd_arg, TABLE *table) |
1302 | :QUICK_INDEX_SORT_SELECT(thd_arg, table) {} |
1303 | |
1304 | int get_next(); |
1305 | int get_type() { return QS_TYPE_INDEX_MERGE; } |
1306 | void add_keys_and_lengths(String *key_names, String *used_lengths); |
1307 | }; |
1308 | |
1309 | class QUICK_INDEX_INTERSECT_SELECT : public QUICK_INDEX_SORT_SELECT |
1310 | { |
1311 | protected: |
1312 | int read_keys_and_merge(); |
1313 | |
1314 | public: |
1315 | QUICK_INDEX_INTERSECT_SELECT(THD *thd_arg, TABLE *table) |
1316 | :QUICK_INDEX_SORT_SELECT(thd_arg, table) {} |
1317 | |
1318 | key_map filtered_scans; |
1319 | int get_next(); |
1320 | int get_type() { return QS_TYPE_INDEX_INTERSECT; } |
1321 | void add_keys_and_lengths(String *key_names, String *used_lengths); |
1322 | Explain_quick_select *get_explain(MEM_ROOT *alloc); |
1323 | }; |
1324 | |
1325 | |
1326 | /* |
1327 | Rowid-Ordered Retrieval (ROR) index intersection quick select. |
1328 | This quick select produces intersection of row sequences returned |
1329 | by several QUICK_RANGE_SELECTs it "merges". |
1330 | |
1331 | All merged QUICK_RANGE_SELECTs must return rowids in rowid order. |
1332 | QUICK_ROR_INTERSECT_SELECT will return rows in rowid order, too. |
1333 | |
1334 | All merged quick selects retrieve {rowid, covered_fields} tuples (not full |
1335 | table records). |
1336 | QUICK_ROR_INTERSECT_SELECT retrieves full records if it is not being used |
1337 | by QUICK_ROR_INTERSECT_SELECT and all merged quick selects together don't |
1338 | cover needed all fields. |
1339 | |
1340 | If one of the merged quick selects is a Clustered PK range scan, it is |
1341 | used only to filter rowid sequence produced by other merged quick selects. |
1342 | */ |
1343 | |
1344 | class QUICK_ROR_INTERSECT_SELECT : public QUICK_SELECT_I |
1345 | { |
1346 | public: |
1347 | QUICK_ROR_INTERSECT_SELECT(THD *thd, TABLE *table, |
1348 | bool retrieve_full_rows, |
1349 | MEM_ROOT *parent_alloc); |
1350 | ~QUICK_ROR_INTERSECT_SELECT(); |
1351 | |
1352 | int init(); |
1353 | void need_sorted_output() { DBUG_ASSERT(0); /* Can't do it */ } |
1354 | int reset(void); |
1355 | int get_next(); |
1356 | bool reverse_sorted() { return false; } |
1357 | bool unique_key_range() { return false; } |
1358 | int get_type() { return QS_TYPE_ROR_INTERSECT; } |
1359 | void add_keys_and_lengths(String *key_names, String *used_lengths); |
1360 | Explain_quick_select *get_explain(MEM_ROOT *alloc); |
1361 | bool is_keys_used(const MY_BITMAP *fields); |
1362 | void add_used_key_part_to_set(); |
1363 | #ifndef DBUG_OFF |
1364 | void dbug_dump(int indent, bool verbose); |
1365 | #endif |
1366 | int init_ror_merged_scan(bool reuse_handler, MEM_ROOT *alloc); |
1367 | bool push_quick_back(MEM_ROOT *alloc, QUICK_RANGE_SELECT *quick_sel_range); |
1368 | |
1369 | class QUICK_SELECT_WITH_RECORD : public Sql_alloc |
1370 | { |
1371 | public: |
1372 | QUICK_RANGE_SELECT *quick; |
1373 | uchar *key_tuple; |
1374 | ~QUICK_SELECT_WITH_RECORD() { delete quick; } |
1375 | }; |
1376 | |
1377 | /* |
1378 | Range quick selects this intersection consists of, not including |
1379 | cpk_quick. |
1380 | */ |
1381 | List<QUICK_SELECT_WITH_RECORD> quick_selects; |
1382 | |
1383 | virtual bool is_valid() |
1384 | { |
1385 | List_iterator_fast<QUICK_SELECT_WITH_RECORD> it(quick_selects); |
1386 | QUICK_SELECT_WITH_RECORD *quick; |
1387 | bool valid= true; |
1388 | while ((quick= it++)) |
1389 | { |
1390 | if (!quick->quick->is_valid()) |
1391 | { |
1392 | valid= false; |
1393 | break; |
1394 | } |
1395 | } |
1396 | return valid; |
1397 | } |
1398 | |
1399 | /* |
1400 | Merged quick select that uses Clustered PK, if there is one. This quick |
1401 | select is not used for row retrieval, it is used for row retrieval. |
1402 | */ |
1403 | QUICK_RANGE_SELECT *cpk_quick; |
1404 | |
1405 | MEM_ROOT alloc; /* Memory pool for this and merged quick selects data. */ |
1406 | THD *thd; /* current thread */ |
1407 | bool need_to_fetch_row; /* if true, do retrieve full table records. */ |
1408 | /* in top-level quick select, true if merged scans where initialized */ |
1409 | bool scans_inited; |
1410 | }; |
1411 | |
1412 | |
1413 | /* |
1414 | Rowid-Ordered Retrieval index union select. |
1415 | This quick select produces union of row sequences returned by several |
1416 | quick select it "merges". |
1417 | |
1418 | All merged quick selects must return rowids in rowid order. |
1419 | QUICK_ROR_UNION_SELECT will return rows in rowid order, too. |
1420 | |
1421 | All merged quick selects are set not to retrieve full table records. |
1422 | ROR-union quick select always retrieves full records. |
1423 | |
1424 | */ |
1425 | |
1426 | class QUICK_ROR_UNION_SELECT : public QUICK_SELECT_I |
1427 | { |
1428 | public: |
1429 | QUICK_ROR_UNION_SELECT(THD *thd, TABLE *table); |
1430 | ~QUICK_ROR_UNION_SELECT(); |
1431 | |
1432 | int init(); |
1433 | void need_sorted_output() { DBUG_ASSERT(0); /* Can't do it */ } |
1434 | int reset(void); |
1435 | int get_next(); |
1436 | bool reverse_sorted() { return false; } |
1437 | bool unique_key_range() { return false; } |
1438 | int get_type() { return QS_TYPE_ROR_UNION; } |
1439 | void add_keys_and_lengths(String *key_names, String *used_lengths); |
1440 | Explain_quick_select *get_explain(MEM_ROOT *alloc); |
1441 | bool is_keys_used(const MY_BITMAP *fields); |
1442 | void add_used_key_part_to_set(); |
1443 | #ifndef DBUG_OFF |
1444 | void dbug_dump(int indent, bool verbose); |
1445 | #endif |
1446 | |
1447 | bool push_quick_back(QUICK_SELECT_I *quick_sel_range); |
1448 | |
1449 | List<QUICK_SELECT_I> quick_selects; /* Merged quick selects */ |
1450 | |
1451 | virtual bool is_valid() |
1452 | { |
1453 | List_iterator_fast<QUICK_SELECT_I> it(quick_selects); |
1454 | QUICK_SELECT_I *quick; |
1455 | bool valid= true; |
1456 | while ((quick= it++)) |
1457 | { |
1458 | if (!quick->is_valid()) |
1459 | { |
1460 | valid= false; |
1461 | break; |
1462 | } |
1463 | } |
1464 | return valid; |
1465 | } |
1466 | |
1467 | QUEUE queue; /* Priority queue for merge operation */ |
1468 | MEM_ROOT alloc; /* Memory pool for this and merged quick selects data. */ |
1469 | |
1470 | THD *thd; /* current thread */ |
1471 | uchar *cur_rowid; /* buffer used in get_next() */ |
1472 | uchar *prev_rowid; /* rowid of last row returned by get_next() */ |
1473 | bool have_prev_rowid; /* true if prev_rowid has valid data */ |
1474 | uint rowid_length; /* table rowid length */ |
1475 | private: |
1476 | bool scans_inited; |
1477 | }; |
1478 | |
1479 | |
1480 | /* |
1481 | Index scan for GROUP-BY queries with MIN/MAX aggregate functions. |
1482 | |
1483 | This class provides a specialized index access method for GROUP-BY queries |
1484 | of the forms: |
1485 | |
1486 | SELECT A_1,...,A_k, [B_1,...,B_m], [MIN(C)], [MAX(C)] |
1487 | FROM T |
1488 | WHERE [RNG(A_1,...,A_p ; where p <= k)] |
1489 | [AND EQ(B_1,...,B_m)] |
1490 | [AND PC(C)] |
1491 | [AND PA(A_i1,...,A_iq)] |
1492 | GROUP BY A_1,...,A_k; |
1493 | |
1494 | or |
1495 | |
1496 | SELECT DISTINCT A_i1,...,A_ik |
1497 | FROM T |
1498 | WHERE [RNG(A_1,...,A_p ; where p <= k)] |
1499 | [AND PA(A_i1,...,A_iq)]; |
1500 | |
1501 | where all selected fields are parts of the same index. |
1502 | The class of queries that can be processed by this quick select is fully |
1503 | specified in the description of get_best_trp_group_min_max() in opt_range.cc. |
1504 | |
1505 | The get_next() method directly produces result tuples, thus obviating the |
1506 | need to call end_send_group() because all grouping is already done inside |
1507 | get_next(). |
1508 | |
1509 | Since one of the requirements is that all select fields are part of the same |
1510 | index, this class produces only index keys, and not complete records. |
1511 | */ |
1512 | |
1513 | class QUICK_GROUP_MIN_MAX_SELECT : public QUICK_SELECT_I |
1514 | { |
1515 | private: |
1516 | handler * const file; /* The handler used to get data. */ |
1517 | JOIN *join; /* Descriptor of the current query */ |
1518 | KEY *index_info; /* The index chosen for data access */ |
1519 | uchar *record; /* Buffer where the next record is returned. */ |
1520 | uchar *tmp_record; /* Temporary storage for next_min(), next_max(). */ |
1521 | uchar *group_prefix; /* Key prefix consisting of the GROUP fields. */ |
1522 | const uint group_prefix_len; /* Length of the group prefix. */ |
1523 | uint group_key_parts; /* A number of keyparts in the group prefix */ |
1524 | uchar *last_prefix; /* Prefix of the last group for detecting EOF. */ |
1525 | bool have_min; /* Specify whether we are computing */ |
1526 | bool have_max; /* a MIN, a MAX, or both. */ |
1527 | bool have_agg_distinct;/* aggregate_function(DISTINCT ...). */ |
1528 | bool seen_first_key; /* Denotes whether the first key was retrieved.*/ |
1529 | bool doing_key_read; /* true if we enabled key only reads */ |
1530 | |
1531 | KEY_PART_INFO *min_max_arg_part; /* The keypart of the only argument field */ |
1532 | /* of all MIN/MAX functions. */ |
1533 | uint min_max_arg_len; /* The length of the MIN/MAX argument field */ |
1534 | uchar *key_infix; /* Infix of constants from equality predicates. */ |
1535 | uint key_infix_len; |
1536 | DYNAMIC_ARRAY min_max_ranges; /* Array of range ptrs for the MIN/MAX field. */ |
1537 | uint real_prefix_len; /* Length of key prefix extended with key_infix. */ |
1538 | uint real_key_parts; /* A number of keyparts in the above value. */ |
1539 | List<Item_sum> *min_functions; |
1540 | List<Item_sum> *max_functions; |
1541 | List_iterator<Item_sum> *min_functions_it; |
1542 | List_iterator<Item_sum> *max_functions_it; |
1543 | /* |
1544 | Use index scan to get the next different key instead of jumping into it |
1545 | through index read |
1546 | */ |
1547 | bool is_index_scan; |
1548 | public: |
1549 | /* |
1550 | The following two members are public to allow easy access from |
1551 | TRP_GROUP_MIN_MAX::make_quick() |
1552 | */ |
1553 | MEM_ROOT alloc; /* Memory pool for this and quick_prefix_select data. */ |
1554 | QUICK_RANGE_SELECT *quick_prefix_select;/* For retrieval of group prefixes. */ |
1555 | private: |
1556 | int next_prefix(); |
1557 | int next_min_in_range(); |
1558 | int next_max_in_range(); |
1559 | int next_min(); |
1560 | int next_max(); |
1561 | void update_min_result(); |
1562 | void update_max_result(); |
1563 | int cmp_min_max_key(const uchar *key, uint16 length); |
1564 | public: |
1565 | QUICK_GROUP_MIN_MAX_SELECT(TABLE *table, JOIN *join, bool have_min, |
1566 | bool have_max, bool have_agg_distinct, |
1567 | KEY_PART_INFO *min_max_arg_part, |
1568 | uint group_prefix_len, uint group_key_parts, |
1569 | uint used_key_parts, KEY *index_info, uint |
1570 | use_index, double read_cost, ha_rows records, uint |
1571 | key_infix_len, uchar *key_infix, MEM_ROOT |
1572 | *parent_alloc, bool is_index_scan); |
1573 | ~QUICK_GROUP_MIN_MAX_SELECT(); |
1574 | bool add_range(SEL_ARG *sel_range); |
1575 | void update_key_stat(); |
1576 | void adjust_prefix_ranges(); |
1577 | bool alloc_buffers(); |
1578 | int init(); |
1579 | void need_sorted_output() { /* always do it */ } |
1580 | int reset(); |
1581 | int get_next(); |
1582 | bool reverse_sorted() { return false; } |
1583 | bool unique_key_range() { return false; } |
1584 | int get_type() { return QS_TYPE_GROUP_MIN_MAX; } |
1585 | void add_keys_and_lengths(String *key_names, String *used_lengths); |
1586 | void add_used_key_part_to_set(); |
1587 | #ifndef DBUG_OFF |
1588 | void dbug_dump(int indent, bool verbose); |
1589 | #endif |
1590 | bool is_agg_distinct() { return have_agg_distinct; } |
1591 | bool loose_scan_is_scanning() { return is_index_scan; } |
1592 | Explain_quick_select *get_explain(MEM_ROOT *alloc); |
1593 | }; |
1594 | |
1595 | |
1596 | class QUICK_SELECT_DESC: public QUICK_RANGE_SELECT |
1597 | { |
1598 | public: |
1599 | QUICK_SELECT_DESC(QUICK_RANGE_SELECT *q, uint used_key_parts); |
1600 | virtual QUICK_RANGE_SELECT *clone(bool *create_error) |
1601 | { DBUG_ASSERT(0); return new QUICK_SELECT_DESC(this, used_key_parts); } |
1602 | int get_next(); |
1603 | bool reverse_sorted() { return 1; } |
1604 | int get_type() { return QS_TYPE_RANGE_DESC; } |
1605 | QUICK_SELECT_I *make_reverse(uint used_key_parts_arg) |
1606 | { |
1607 | return this; // is already reverse sorted |
1608 | } |
1609 | private: |
1610 | bool range_reads_after_key(QUICK_RANGE *range); |
1611 | int reset(void) { rev_it.rewind(); return QUICK_RANGE_SELECT::reset(); } |
1612 | List<QUICK_RANGE> rev_ranges; |
1613 | List_iterator<QUICK_RANGE> rev_it; |
1614 | uint used_key_parts; |
1615 | }; |
1616 | |
1617 | |
1618 | class SQL_SELECT :public Sql_alloc { |
1619 | public: |
1620 | QUICK_SELECT_I *quick; // If quick-select used |
1621 | COND *cond; // where condition |
1622 | |
1623 | /* |
1624 | When using Index Condition Pushdown: condition that we've had before |
1625 | extracting and pushing index condition. |
1626 | In other cases, NULL. |
1627 | */ |
1628 | Item *pre_idx_push_select_cond; |
1629 | TABLE *head; |
1630 | IO_CACHE file; // Positions to used records |
1631 | ha_rows records; // Records in use if read from file |
1632 | double read_time; // Time to read rows |
1633 | key_map quick_keys; // Possible quick keys |
1634 | key_map needed_reg; // Possible quick keys after prev tables. |
1635 | table_map const_tables,read_tables; |
1636 | /* See PARAM::possible_keys */ |
1637 | key_map possible_keys; |
1638 | bool free_cond; /* Currently not used and always FALSE */ |
1639 | |
1640 | SQL_SELECT(); |
1641 | ~SQL_SELECT(); |
1642 | void cleanup(); |
1643 | void set_quick(QUICK_SELECT_I *new_quick) { delete quick; quick= new_quick; } |
1644 | bool check_quick(THD *thd, bool force_quick_range, ha_rows limit) |
1645 | { |
1646 | key_map tmp; |
1647 | tmp.set_all(); |
1648 | return test_quick_select(thd, tmp, 0, limit, force_quick_range, FALSE, FALSE) < 0; |
1649 | } |
1650 | /* |
1651 | RETURN |
1652 | 0 if record must be skipped <-> (cond && cond->val_int() == 0) |
1653 | -1 if error |
1654 | 1 otherwise |
1655 | */ |
1656 | inline int skip_record(THD *thd) |
1657 | { |
1658 | int rc= MY_TEST(!cond || cond->val_int()); |
1659 | if (thd->is_error()) |
1660 | rc= -1; |
1661 | return rc; |
1662 | } |
1663 | int test_quick_select(THD *thd, key_map keys, table_map prev_tables, |
1664 | ha_rows limit, bool force_quick_range, |
1665 | bool ordered_output, bool remove_false_parts_of_where); |
1666 | }; |
1667 | |
1668 | |
1669 | class SQL_SELECT_auto |
1670 | { |
1671 | SQL_SELECT *select; |
1672 | public: |
1673 | SQL_SELECT_auto(): select(NULL) |
1674 | {} |
1675 | ~SQL_SELECT_auto() |
1676 | { |
1677 | delete select; |
1678 | } |
1679 | SQL_SELECT_auto& |
1680 | operator= (SQL_SELECT *_select) |
1681 | { |
1682 | select= _select; |
1683 | return *this; |
1684 | } |
1685 | operator SQL_SELECT * () const |
1686 | { |
1687 | return select; |
1688 | } |
1689 | SQL_SELECT * |
1690 | operator-> () const |
1691 | { |
1692 | return select; |
1693 | } |
1694 | operator bool () const |
1695 | { |
1696 | return select; |
1697 | } |
1698 | }; |
1699 | |
1700 | |
1701 | class FT_SELECT: public QUICK_RANGE_SELECT |
1702 | { |
1703 | public: |
1704 | FT_SELECT(THD *thd, TABLE *table, uint key, bool *create_err) : |
1705 | QUICK_RANGE_SELECT (thd, table, key, 1, NULL, create_err) |
1706 | { (void) init(); } |
1707 | ~FT_SELECT() { file->ft_end(); } |
1708 | virtual QUICK_RANGE_SELECT *clone(bool *create_error) |
1709 | { DBUG_ASSERT(0); return new FT_SELECT(thd, head, index, create_error); } |
1710 | int init() { return file->ft_init(); } |
1711 | int reset() { return 0; } |
1712 | int get_next() { return file->ha_ft_read(record); } |
1713 | int get_type() { return QS_TYPE_FULLTEXT; } |
1714 | }; |
1715 | |
1716 | FT_SELECT *get_ft_select(THD *thd, TABLE *table, uint key); |
1717 | QUICK_RANGE_SELECT *get_quick_select_for_ref(THD *thd, TABLE *table, |
1718 | struct st_table_ref *ref, |
1719 | ha_rows records); |
1720 | SQL_SELECT *make_select(TABLE *head, table_map const_tables, |
1721 | table_map read_tables, COND *conds, |
1722 | SORT_INFO* filesort, |
1723 | bool allow_null_cond, int *error); |
1724 | |
1725 | bool calculate_cond_selectivity_for_table(THD *thd, TABLE *table, Item **cond); |
1726 | |
1727 | #ifdef WITH_PARTITION_STORAGE_ENGINE |
1728 | bool prune_partitions(THD *thd, TABLE *table, Item *pprune_cond); |
1729 | #endif |
1730 | void store_key_image_to_rec(Field *field, uchar *ptr, uint len); |
1731 | |
1732 | extern String null_string; |
1733 | |
1734 | /* check this number of rows (default value) */ |
1735 | #define SELECTIVITY_SAMPLING_LIMIT 100 |
1736 | /* but no more then this part of table (10%) */ |
1737 | #define SELECTIVITY_SAMPLING_SHARE 0.10 |
1738 | /* do not check if we are going check less then this number of records */ |
1739 | #define SELECTIVITY_SAMPLING_THRESHOLD 10 |
1740 | |
1741 | #endif |
1742 | |