1 | #include "mariadb.h" |
2 | #include "rpl_parallel.h" |
3 | #include "slave.h" |
4 | #include "rpl_mi.h" |
5 | #include "sql_parse.h" |
6 | #include "debug_sync.h" |
7 | |
8 | /* |
9 | Code for optional parallel execution of replicated events on the slave. |
10 | */ |
11 | |
12 | |
13 | /* |
14 | Maximum number of queued events to accumulate in a local free list, before |
15 | moving them to the global free list. There is additional a limit of how much |
16 | to accumulate based on opt_slave_parallel_max_queued. |
17 | */ |
18 | #define QEV_BATCH_FREE 200 |
19 | |
20 | |
21 | struct rpl_parallel_thread_pool global_rpl_thread_pool; |
22 | |
23 | static void signal_error_to_sql_driver_thread(THD *thd, rpl_group_info *rgi, |
24 | int err); |
25 | |
26 | static int |
27 | rpt_handle_event(rpl_parallel_thread::queued_event *qev, |
28 | struct rpl_parallel_thread *rpt) |
29 | { |
30 | int err; |
31 | rpl_group_info *rgi= qev->rgi; |
32 | Relay_log_info *rli= rgi->rli; |
33 | THD *thd= rgi->thd; |
34 | Log_event *ev; |
35 | |
36 | DBUG_ASSERT(qev->typ == rpl_parallel_thread::queued_event::QUEUED_EVENT); |
37 | ev= qev->ev; |
38 | |
39 | thd->system_thread_info.rpl_sql_info->rpl_filter = rli->mi->rpl_filter; |
40 | ev->thd= thd; |
41 | |
42 | strcpy(rgi->event_relay_log_name_buf, qev->event_relay_log_name); |
43 | rgi->event_relay_log_name= rgi->event_relay_log_name_buf; |
44 | rgi->event_relay_log_pos= qev->event_relay_log_pos; |
45 | rgi->future_event_relay_log_pos= qev->future_event_relay_log_pos; |
46 | strcpy(rgi->future_event_master_log_name, qev->future_event_master_log_name); |
47 | if (!(ev->is_artificial_event() || ev->is_relay_log_event() || |
48 | (ev->when == 0))) |
49 | rgi->last_master_timestamp= ev->when + (time_t)ev->exec_time; |
50 | err= apply_event_and_update_pos_for_parallel(ev, thd, rgi); |
51 | |
52 | thread_safe_increment64(&rli->executed_entries); |
53 | /* ToDo: error handling. */ |
54 | return err; |
55 | } |
56 | |
57 | |
58 | static void |
59 | handle_queued_pos_update(THD *thd, rpl_parallel_thread::queued_event *qev) |
60 | { |
61 | int cmp; |
62 | Relay_log_info *rli; |
63 | rpl_parallel_entry *e; |
64 | |
65 | /* |
66 | Events that are not part of an event group, such as Format Description, |
67 | Stop, GTID List and such, are executed directly in the driver SQL thread, |
68 | to keep the relay log state up-to-date. But the associated position update |
69 | is done here, in sync with other normal events as they are queued to |
70 | worker threads. |
71 | */ |
72 | if ((thd->variables.option_bits & OPTION_BEGIN) && |
73 | opt_using_transactions) |
74 | return; |
75 | |
76 | /* Do not update position if an earlier event group caused an error abort. */ |
77 | DBUG_ASSERT(qev->typ == rpl_parallel_thread::queued_event::QUEUED_POS_UPDATE); |
78 | e= qev->entry_for_queued; |
79 | if (e->stop_on_error_sub_id < (uint64)ULONGLONG_MAX || e->force_abort) |
80 | return; |
81 | |
82 | rli= qev->rgi->rli; |
83 | mysql_mutex_lock(&rli->data_lock); |
84 | cmp= strcmp(rli->group_relay_log_name, qev->event_relay_log_name); |
85 | if (cmp < 0) |
86 | { |
87 | rli->group_relay_log_pos= qev->future_event_relay_log_pos; |
88 | strmake_buf(rli->group_relay_log_name, qev->event_relay_log_name); |
89 | rli->notify_group_relay_log_name_update(); |
90 | } else if (cmp == 0 && |
91 | rli->group_relay_log_pos < qev->future_event_relay_log_pos) |
92 | rli->group_relay_log_pos= qev->future_event_relay_log_pos; |
93 | |
94 | cmp= strcmp(rli->group_master_log_name, qev->future_event_master_log_name); |
95 | if (cmp < 0) |
96 | { |
97 | strcpy(rli->group_master_log_name, qev->future_event_master_log_name); |
98 | rli->group_master_log_pos= qev->future_event_master_log_pos; |
99 | } |
100 | else if (cmp == 0 |
101 | && rli->group_master_log_pos < qev->future_event_master_log_pos) |
102 | rli->group_master_log_pos= qev->future_event_master_log_pos; |
103 | mysql_mutex_unlock(&rli->data_lock); |
104 | mysql_cond_broadcast(&rli->data_cond); |
105 | } |
106 | |
107 | |
108 | /* |
109 | Wait for any pending deadlock kills. Since deadlock kills happen |
110 | asynchronously, we need to be sure they will be completed before starting a |
111 | new transaction. Otherwise the new transaction might suffer a spurious kill. |
112 | */ |
113 | static void |
114 | wait_for_pending_deadlock_kill(THD *thd, rpl_group_info *rgi) |
115 | { |
116 | PSI_stage_info old_stage; |
117 | |
118 | mysql_mutex_lock(&thd->LOCK_wakeup_ready); |
119 | thd->ENTER_COND(&thd->COND_wakeup_ready, &thd->LOCK_wakeup_ready, |
120 | &stage_waiting_for_deadlock_kill, &old_stage); |
121 | while (rgi->killed_for_retry == rpl_group_info::RETRY_KILL_PENDING) |
122 | mysql_cond_wait(&thd->COND_wakeup_ready, &thd->LOCK_wakeup_ready); |
123 | thd->EXIT_COND(&old_stage); |
124 | } |
125 | |
126 | |
127 | static void |
128 | finish_event_group(rpl_parallel_thread *rpt, uint64 sub_id, |
129 | rpl_parallel_entry *entry, rpl_group_info *rgi) |
130 | { |
131 | THD *thd= rpt->thd; |
132 | wait_for_commit *wfc= &rgi->commit_orderer; |
133 | int err; |
134 | |
135 | thd->get_stmt_da()->set_overwrite_status(true); |
136 | /* |
137 | Remove any left-over registration to wait for a prior commit to |
138 | complete. Normally, such wait would already have been removed at |
139 | this point by wait_for_prior_commit() called from within COMMIT |
140 | processing. However, in case of MyISAM and no binlog, we might not |
141 | have any commit processing, and so we need to do the wait here, |
142 | before waking up any subsequent commits, to preserve correct |
143 | order of event execution. Also, in the error case we might have |
144 | skipped waiting and thus need to remove it explicitly. |
145 | |
146 | It is important in the non-error case to do a wait, not just an |
147 | unregister. Because we might be last in a group-commit that is |
148 | replicated in parallel, and the following event will then wait |
149 | for us to complete and rely on this also ensuring that any other |
150 | event in the group has completed. |
151 | |
152 | And in the error case, correct GCO lifetime relies on the fact that once |
153 | the last event group in the GCO has executed wait_for_prior_commit(), |
154 | all earlier event groups have also committed; this way no more |
155 | mark_start_commit() calls can be made and it is safe to de-allocate |
156 | the GCO. |
157 | */ |
158 | err= wfc->wait_for_prior_commit(thd); |
159 | if (unlikely(err) && !rgi->worker_error) |
160 | signal_error_to_sql_driver_thread(thd, rgi, err); |
161 | thd->wait_for_commit_ptr= NULL; |
162 | |
163 | mysql_mutex_lock(&entry->LOCK_parallel_entry); |
164 | /* |
165 | We need to mark that this event group started its commit phase, in case we |
166 | missed it before (otherwise we would deadlock the next event group that is |
167 | waiting for this). In most cases (normal DML), it will be a no-op. |
168 | */ |
169 | rgi->mark_start_commit_no_lock(); |
170 | |
171 | if (entry->last_committed_sub_id < sub_id) |
172 | { |
173 | /* |
174 | Record that this event group has finished (eg. transaction is |
175 | committed, if transactional), so other event groups will no longer |
176 | attempt to wait for us to commit. Once we have increased |
177 | entry->last_committed_sub_id, no other threads will execute |
178 | register_wait_for_prior_commit() against us. Thus, by doing one |
179 | extra (usually redundant) wakeup_subsequent_commits() we can ensure |
180 | that no register_wait_for_prior_commit() can ever happen without a |
181 | subsequent wakeup_subsequent_commits() to wake it up. |
182 | |
183 | We can race here with the next transactions, but that is fine, as |
184 | long as we check that we do not decrease last_committed_sub_id. If |
185 | this commit is done, then any prior commits will also have been |
186 | done and also no longer need waiting for. |
187 | */ |
188 | entry->last_committed_sub_id= sub_id; |
189 | if (entry->need_sub_id_signal) |
190 | mysql_cond_broadcast(&entry->COND_parallel_entry); |
191 | |
192 | /* Now free any GCOs in which all transactions have committed. */ |
193 | group_commit_orderer *tmp_gco= rgi->gco; |
194 | while (tmp_gco && |
195 | (!tmp_gco->next_gco || tmp_gco->last_sub_id > sub_id || |
196 | tmp_gco->next_gco->wait_count > entry->count_committing_event_groups)) |
197 | { |
198 | /* |
199 | We must not free a GCO before the wait_count of the following GCO has |
200 | been reached and wakeup has been sent. Otherwise we will lose the |
201 | wakeup and hang (there were several such bugs in the past). |
202 | |
203 | The intention is that this is ensured already since we only free when |
204 | the last event group in the GCO has committed |
205 | (tmp_gco->last_sub_id <= sub_id). However, if we have a bug, we have |
206 | extra check on next_gco->wait_count to hopefully avoid hanging; we |
207 | have here an assertion in debug builds that this check does not in |
208 | fact trigger. |
209 | */ |
210 | DBUG_ASSERT(!tmp_gco->next_gco || tmp_gco->last_sub_id > sub_id); |
211 | tmp_gco= tmp_gco->prev_gco; |
212 | } |
213 | while (tmp_gco) |
214 | { |
215 | group_commit_orderer *prev_gco= tmp_gco->prev_gco; |
216 | tmp_gco->next_gco->prev_gco= NULL; |
217 | rpt->loc_free_gco(tmp_gco); |
218 | tmp_gco= prev_gco; |
219 | } |
220 | } |
221 | |
222 | /* |
223 | If this event group got error, then any following event groups that have |
224 | not yet started should just skip their group, preparing for stop of the |
225 | SQL driver thread. |
226 | */ |
227 | if (unlikely(rgi->worker_error) && |
228 | entry->stop_on_error_sub_id == (uint64)ULONGLONG_MAX) |
229 | entry->stop_on_error_sub_id= sub_id; |
230 | mysql_mutex_unlock(&entry->LOCK_parallel_entry); |
231 | |
232 | DBUG_EXECUTE_IF("rpl_parallel_simulate_wait_at_retry" , { |
233 | if (rgi->current_gtid.seq_no == 1000) { |
234 | DBUG_ASSERT(entry->stop_on_error_sub_id == sub_id); |
235 | debug_sync_set_action(thd, |
236 | STRING_WITH_LEN("now WAIT_FOR proceed_by_1000" )); |
237 | } |
238 | }); |
239 | |
240 | if (rgi->killed_for_retry == rpl_group_info::RETRY_KILL_PENDING) |
241 | wait_for_pending_deadlock_kill(thd, rgi); |
242 | thd->clear_error(); |
243 | thd->reset_killed(); |
244 | /* |
245 | Would do thd->get_stmt_da()->set_overwrite_status(false) here, but |
246 | reset_diagnostics_area() already does that. |
247 | */ |
248 | thd->get_stmt_da()->reset_diagnostics_area(); |
249 | wfc->wakeup_subsequent_commits(rgi->worker_error); |
250 | } |
251 | |
252 | |
253 | static void |
254 | signal_error_to_sql_driver_thread(THD *thd, rpl_group_info *rgi, int err) |
255 | { |
256 | rgi->worker_error= err; |
257 | /* |
258 | In case we get an error during commit, inform following transactions that |
259 | we aborted our commit. |
260 | */ |
261 | rgi->unmark_start_commit(); |
262 | rgi->cleanup_context(thd, true); |
263 | rgi->rli->abort_slave= true; |
264 | rgi->rli->stop_for_until= false; |
265 | mysql_mutex_lock(rgi->rli->relay_log.get_log_lock()); |
266 | rgi->rli->relay_log.signal_relay_log_update(); |
267 | mysql_mutex_unlock(rgi->rli->relay_log.get_log_lock()); |
268 | } |
269 | |
270 | |
271 | static void |
272 | unlock_or_exit_cond(THD *thd, mysql_mutex_t *lock, bool *did_enter_cond, |
273 | PSI_stage_info *old_stage) |
274 | { |
275 | if (*did_enter_cond) |
276 | { |
277 | thd->EXIT_COND(old_stage); |
278 | *did_enter_cond= false; |
279 | } |
280 | else |
281 | mysql_mutex_unlock(lock); |
282 | } |
283 | |
284 | |
285 | static void |
286 | register_wait_for_prior_event_group_commit(rpl_group_info *rgi, |
287 | rpl_parallel_entry *entry) |
288 | { |
289 | mysql_mutex_assert_owner(&entry->LOCK_parallel_entry); |
290 | if (rgi->wait_commit_sub_id > entry->last_committed_sub_id) |
291 | { |
292 | /* |
293 | Register that the commit of this event group must wait for the |
294 | commit of the previous event group to complete before it may |
295 | complete itself, so that we preserve commit order. |
296 | */ |
297 | wait_for_commit *waitee= |
298 | &rgi->wait_commit_group_info->commit_orderer; |
299 | rgi->commit_orderer.register_wait_for_prior_commit(waitee); |
300 | } |
301 | } |
302 | |
303 | |
304 | /* |
305 | Do not start parallel execution of this event group until all prior groups |
306 | have reached the commit phase that are not safe to run in parallel with. |
307 | */ |
308 | static bool |
309 | do_gco_wait(rpl_group_info *rgi, group_commit_orderer *gco, |
310 | bool *did_enter_cond, PSI_stage_info *old_stage) |
311 | { |
312 | THD *thd= rgi->thd; |
313 | rpl_parallel_entry *entry= rgi->parallel_entry; |
314 | uint64 wait_count; |
315 | |
316 | mysql_mutex_assert_owner(&entry->LOCK_parallel_entry); |
317 | |
318 | if (!gco->installed) |
319 | { |
320 | group_commit_orderer *prev_gco= gco->prev_gco; |
321 | if (prev_gco) |
322 | { |
323 | prev_gco->last_sub_id= gco->prior_sub_id; |
324 | prev_gco->next_gco= gco; |
325 | } |
326 | gco->installed= true; |
327 | } |
328 | wait_count= gco->wait_count; |
329 | if (wait_count > entry->count_committing_event_groups) |
330 | { |
331 | DEBUG_SYNC(thd, "rpl_parallel_start_waiting_for_prior" ); |
332 | thd->ENTER_COND(&gco->COND_group_commit_orderer, |
333 | &entry->LOCK_parallel_entry, |
334 | &stage_waiting_for_prior_transaction_to_start_commit, |
335 | old_stage); |
336 | *did_enter_cond= true; |
337 | thd->set_time_for_next_stage(); |
338 | do |
339 | { |
340 | if (unlikely(thd->check_killed()) && !rgi->worker_error) |
341 | { |
342 | DEBUG_SYNC(thd, "rpl_parallel_start_waiting_for_prior_killed" ); |
343 | thd->clear_error(); |
344 | thd->get_stmt_da()->reset_diagnostics_area(); |
345 | thd->send_kill_message(); |
346 | slave_output_error_info(rgi, thd); |
347 | signal_error_to_sql_driver_thread(thd, rgi, 1); |
348 | /* |
349 | Even though we were killed, we need to continue waiting for the |
350 | prior event groups to signal that we can continue. Otherwise we |
351 | mess up the accounting for ordering. However, now that we have |
352 | marked the error, events will just be skipped rather than |
353 | executed, and things will progress quickly towards stop. |
354 | */ |
355 | } |
356 | mysql_cond_wait(&gco->COND_group_commit_orderer, |
357 | &entry->LOCK_parallel_entry); |
358 | } while (wait_count > entry->count_committing_event_groups); |
359 | } |
360 | |
361 | if (entry->force_abort && wait_count > entry->stop_count) |
362 | { |
363 | /* |
364 | We are stopping (STOP SLAVE), and this event group is beyond the point |
365 | where we can safely stop. So return a flag that will cause us to skip, |
366 | rather than execute, the following events. |
367 | */ |
368 | return true; |
369 | } |
370 | else |
371 | return false; |
372 | } |
373 | |
374 | |
375 | static void |
376 | do_ftwrl_wait(rpl_group_info *rgi, |
377 | bool *did_enter_cond, PSI_stage_info *old_stage) |
378 | { |
379 | THD *thd= rgi->thd; |
380 | rpl_parallel_entry *entry= rgi->parallel_entry; |
381 | uint64 sub_id= rgi->gtid_sub_id; |
382 | DBUG_ENTER("do_ftwrl_wait" ); |
383 | |
384 | mysql_mutex_assert_owner(&entry->LOCK_parallel_entry); |
385 | |
386 | /* |
387 | If a FLUSH TABLES WITH READ LOCK (FTWRL) is pending, check if this |
388 | transaction is later than transactions that have priority to complete |
389 | before FTWRL. If so, wait here so that FTWRL can proceed and complete |
390 | first. |
391 | |
392 | (entry->pause_sub_id is ULONGLONG_MAX if no FTWRL is pending, which makes |
393 | this test false as required). |
394 | */ |
395 | if (unlikely(sub_id > entry->pause_sub_id)) |
396 | { |
397 | thd->ENTER_COND(&entry->COND_parallel_entry, &entry->LOCK_parallel_entry, |
398 | &stage_waiting_for_ftwrl, old_stage); |
399 | *did_enter_cond= true; |
400 | thd->set_time_for_next_stage(); |
401 | do |
402 | { |
403 | if (entry->force_abort || rgi->worker_error) |
404 | break; |
405 | if (unlikely(thd->check_killed())) |
406 | { |
407 | thd->send_kill_message(); |
408 | slave_output_error_info(rgi, thd); |
409 | signal_error_to_sql_driver_thread(thd, rgi, 1); |
410 | break; |
411 | } |
412 | mysql_cond_wait(&entry->COND_parallel_entry, &entry->LOCK_parallel_entry); |
413 | } while (sub_id > entry->pause_sub_id); |
414 | |
415 | /* |
416 | We do not call EXIT_COND() here, as this will be done later by our |
417 | caller (since we set *did_enter_cond to true). |
418 | */ |
419 | } |
420 | |
421 | if (sub_id > entry->largest_started_sub_id) |
422 | entry->largest_started_sub_id= sub_id; |
423 | |
424 | DBUG_VOID_RETURN; |
425 | } |
426 | |
427 | |
428 | static int |
429 | pool_mark_busy(rpl_parallel_thread_pool *pool, THD *thd) |
430 | { |
431 | PSI_stage_info old_stage; |
432 | int res= 0; |
433 | |
434 | /* |
435 | Wait here while the queue is busy. This is done to make FLUSH TABLES WITH |
436 | READ LOCK work correctly, without incuring extra locking penalties in |
437 | normal operation. FLUSH TABLES WITH READ LOCK needs to lock threads in the |
438 | thread pool, and for this we need to make sure the pool will not go away |
439 | during the operation. The LOCK_rpl_thread_pool is not suitable for |
440 | this. It is taken by release_thread() while holding LOCK_rpl_thread; so it |
441 | must be released before locking any LOCK_rpl_thread lock, or a deadlock |
442 | can occur. |
443 | |
444 | So we protect the infrequent operations of FLUSH TABLES WITH READ LOCK and |
445 | pool size changes with this condition wait. |
446 | */ |
447 | mysql_mutex_lock(&pool->LOCK_rpl_thread_pool); |
448 | if (thd) |
449 | { |
450 | thd->ENTER_COND(&pool->COND_rpl_thread_pool, &pool->LOCK_rpl_thread_pool, |
451 | &stage_waiting_for_rpl_thread_pool, &old_stage); |
452 | thd->set_time_for_next_stage(); |
453 | } |
454 | while (pool->busy) |
455 | { |
456 | if (thd && unlikely(thd->check_killed())) |
457 | { |
458 | thd->send_kill_message(); |
459 | res= 1; |
460 | break; |
461 | } |
462 | mysql_cond_wait(&pool->COND_rpl_thread_pool, &pool->LOCK_rpl_thread_pool); |
463 | } |
464 | if (!res) |
465 | pool->busy= true; |
466 | if (thd) |
467 | thd->EXIT_COND(&old_stage); |
468 | else |
469 | mysql_mutex_unlock(&pool->LOCK_rpl_thread_pool); |
470 | |
471 | return res; |
472 | } |
473 | |
474 | |
475 | static void |
476 | pool_mark_not_busy(rpl_parallel_thread_pool *pool) |
477 | { |
478 | mysql_mutex_lock(&pool->LOCK_rpl_thread_pool); |
479 | DBUG_ASSERT(pool->busy); |
480 | pool->busy= false; |
481 | mysql_cond_broadcast(&pool->COND_rpl_thread_pool); |
482 | mysql_mutex_unlock(&pool->LOCK_rpl_thread_pool); |
483 | } |
484 | |
485 | |
486 | void |
487 | rpl_unpause_after_ftwrl(THD *thd) |
488 | { |
489 | uint32 i; |
490 | rpl_parallel_thread_pool *pool= &global_rpl_thread_pool; |
491 | DBUG_ENTER("rpl_unpause_after_ftwrl" ); |
492 | |
493 | DBUG_ASSERT(pool->busy); |
494 | |
495 | for (i= 0; i < pool->count; ++i) |
496 | { |
497 | rpl_parallel_entry *e; |
498 | rpl_parallel_thread *rpt= pool->threads[i]; |
499 | |
500 | mysql_mutex_lock(&rpt->LOCK_rpl_thread); |
501 | if (!rpt->current_owner) |
502 | { |
503 | mysql_mutex_unlock(&rpt->LOCK_rpl_thread); |
504 | continue; |
505 | } |
506 | e= rpt->current_entry; |
507 | mysql_mutex_lock(&e->LOCK_parallel_entry); |
508 | rpt->pause_for_ftwrl = false; |
509 | mysql_mutex_unlock(&rpt->LOCK_rpl_thread); |
510 | e->pause_sub_id= (uint64)ULONGLONG_MAX; |
511 | mysql_cond_broadcast(&e->COND_parallel_entry); |
512 | mysql_mutex_unlock(&e->LOCK_parallel_entry); |
513 | } |
514 | |
515 | pool_mark_not_busy(pool); |
516 | DBUG_VOID_RETURN; |
517 | } |
518 | |
519 | |
520 | /* |
521 | . |
522 | |
523 | Note: in case of error return, rpl_unpause_after_ftwrl() must _not_ be called. |
524 | */ |
525 | int |
526 | rpl_pause_for_ftwrl(THD *thd) |
527 | { |
528 | uint32 i; |
529 | rpl_parallel_thread_pool *pool= &global_rpl_thread_pool; |
530 | int err; |
531 | DBUG_ENTER("rpl_pause_for_ftwrl" ); |
532 | |
533 | /* |
534 | While the count_pending_pause_for_ftwrl counter is non-zero, the pool |
535 | cannot be shutdown/resized, so threads are guaranteed to not disappear. |
536 | |
537 | This is required to safely be able to access the individual threads below. |
538 | (We cannot lock an individual thread while holding LOCK_rpl_thread_pool, |
539 | as this can deadlock against release_thread()). |
540 | */ |
541 | if ((err= pool_mark_busy(pool, thd))) |
542 | DBUG_RETURN(err); |
543 | |
544 | for (i= 0; i < pool->count; ++i) |
545 | { |
546 | PSI_stage_info old_stage; |
547 | rpl_parallel_entry *e; |
548 | rpl_parallel_thread *rpt= pool->threads[i]; |
549 | |
550 | mysql_mutex_lock(&rpt->LOCK_rpl_thread); |
551 | if (!rpt->current_owner) |
552 | { |
553 | mysql_mutex_unlock(&rpt->LOCK_rpl_thread); |
554 | continue; |
555 | } |
556 | e= rpt->current_entry; |
557 | mysql_mutex_lock(&e->LOCK_parallel_entry); |
558 | /* |
559 | Setting the rpt->pause_for_ftwrl flag makes sure that the thread will not |
560 | de-allocate itself until signalled to do so by rpl_unpause_after_ftwrl(). |
561 | */ |
562 | rpt->pause_for_ftwrl = true; |
563 | mysql_mutex_unlock(&rpt->LOCK_rpl_thread); |
564 | ++e->need_sub_id_signal; |
565 | if (e->pause_sub_id == (uint64)ULONGLONG_MAX) |
566 | e->pause_sub_id= e->largest_started_sub_id; |
567 | thd->ENTER_COND(&e->COND_parallel_entry, &e->LOCK_parallel_entry, |
568 | &stage_waiting_for_ftwrl_threads_to_pause, &old_stage); |
569 | thd->set_time_for_next_stage(); |
570 | while (e->pause_sub_id < (uint64)ULONGLONG_MAX && |
571 | e->last_committed_sub_id < e->pause_sub_id && |
572 | !err) |
573 | { |
574 | if (unlikely(thd->check_killed())) |
575 | { |
576 | thd->send_kill_message(); |
577 | err= 1; |
578 | break; |
579 | } |
580 | mysql_cond_wait(&e->COND_parallel_entry, &e->LOCK_parallel_entry); |
581 | }; |
582 | --e->need_sub_id_signal; |
583 | thd->EXIT_COND(&old_stage); |
584 | if (err) |
585 | break; |
586 | } |
587 | |
588 | if (err) |
589 | rpl_unpause_after_ftwrl(thd); |
590 | DBUG_RETURN(err); |
591 | } |
592 | |
593 | |
594 | #ifndef DBUG_OFF |
595 | static int |
596 | dbug_simulate_tmp_error(rpl_group_info *rgi, THD *thd) |
597 | { |
598 | if (rgi->current_gtid.domain_id == 0 && rgi->current_gtid.seq_no == 100 && |
599 | rgi->retry_event_count == 4) |
600 | { |
601 | thd->clear_error(); |
602 | thd->get_stmt_da()->reset_diagnostics_area(); |
603 | my_error(ER_LOCK_DEADLOCK, MYF(0)); |
604 | return 1; |
605 | } |
606 | return 0; |
607 | } |
608 | #endif |
609 | |
610 | |
611 | /* |
612 | If we detect a deadlock due to eg. storage engine locks that conflict with |
613 | the fixed commit order, then the later transaction will be killed |
614 | asynchroneously to allow the former to complete its commit. |
615 | |
616 | In this case, we convert the 'killed' error into a deadlock error, and retry |
617 | the later transaction. |
618 | |
619 | If we are doing optimistic parallel apply of transactions not known to be |
620 | safe, we convert any error to a deadlock error, but then at retry we will |
621 | wait for prior transactions to commit first, so that the retries can be |
622 | done non-speculative. |
623 | */ |
624 | static void |
625 | convert_kill_to_deadlock_error(rpl_group_info *rgi) |
626 | { |
627 | THD *thd= rgi->thd; |
628 | int err_code; |
629 | |
630 | if (!thd->get_stmt_da()->is_error()) |
631 | return; |
632 | err_code= thd->get_stmt_da()->sql_errno(); |
633 | if ((rgi->speculation == rpl_group_info::SPECULATE_OPTIMISTIC && |
634 | err_code != ER_PRIOR_COMMIT_FAILED) || |
635 | ((err_code == ER_QUERY_INTERRUPTED || err_code == ER_CONNECTION_KILLED) && |
636 | rgi->killed_for_retry)) |
637 | { |
638 | thd->clear_error(); |
639 | my_error(ER_LOCK_DEADLOCK, MYF(0)); |
640 | thd->reset_killed(); |
641 | } |
642 | } |
643 | |
644 | |
645 | /* |
646 | Check if an event marks the end of an event group. Returns non-zero if so, |
647 | zero otherwise. |
648 | |
649 | In addition, returns 1 if the group is committing, 2 if it is rolling back. |
650 | */ |
651 | static int |
652 | is_group_ending(Log_event *ev, Log_event_type event_type) |
653 | { |
654 | if (event_type == XID_EVENT) |
655 | return 1; |
656 | if (event_type == QUERY_EVENT) // COMMIT/ROLLBACK are never compressed |
657 | { |
658 | Query_log_event *qev = (Query_log_event *)ev; |
659 | if (qev->is_commit()) |
660 | return 1; |
661 | if (qev->is_rollback()) |
662 | return 2; |
663 | } |
664 | return 0; |
665 | } |
666 | |
667 | |
668 | static int |
669 | retry_event_group(rpl_group_info *rgi, rpl_parallel_thread *rpt, |
670 | rpl_parallel_thread::queued_event *orig_qev) |
671 | { |
672 | IO_CACHE rlog; |
673 | LOG_INFO linfo; |
674 | File fd= (File)-1; |
675 | const char *errmsg; |
676 | inuse_relaylog *ir= rgi->relay_log; |
677 | uint64 event_count; |
678 | uint64 events_to_execute= rgi->retry_event_count; |
679 | Relay_log_info *rli= rgi->rli; |
680 | int err; |
681 | ulonglong cur_offset, old_offset; |
682 | char log_name[FN_REFLEN]; |
683 | THD *thd= rgi->thd; |
684 | rpl_parallel_entry *entry= rgi->parallel_entry; |
685 | ulong retries= 0; |
686 | Format_description_log_event *description_event= NULL; |
687 | |
688 | do_retry: |
689 | event_count= 0; |
690 | err= 0; |
691 | errmsg= NULL; |
692 | |
693 | /* |
694 | If we already started committing before getting the deadlock (or other |
695 | error) that caused us to need to retry, we have already signalled |
696 | subsequent transactions that we have started committing. This is |
697 | potentially a problem, as now we will rollback, and if subsequent |
698 | transactions would start to execute now, they could see an unexpected |
699 | state of the database and get eg. key not found or duplicate key error. |
700 | |
701 | However, to get a deadlock in the first place, there must have been |
702 | another earlier transaction that is waiting for us. Thus that other |
703 | transaction has _not_ yet started to commit, and any subsequent |
704 | transactions will still be waiting at this point. |
705 | |
706 | So here, we decrement back the count of transactions that started |
707 | committing (if we already incremented it), undoing the effect of an |
708 | earlier mark_start_commit(). Then later, when the retry succeeds and we |
709 | commit again, we can do a new mark_start_commit() and eventually wake up |
710 | subsequent transactions at the proper time. |
711 | |
712 | We need to do the unmark before the rollback, to be sure that the |
713 | transaction we deadlocked with will not signal that it started to commit |
714 | until after the unmark. |
715 | */ |
716 | DBUG_EXECUTE_IF("inject_mdev8302" , { my_sleep(20000);}); |
717 | rgi->unmark_start_commit(); |
718 | DEBUG_SYNC(thd, "rpl_parallel_retry_after_unmark" ); |
719 | |
720 | /* |
721 | We might get the deadlock error that causes the retry during commit, while |
722 | sitting in wait_for_prior_commit(). If this happens, we will have a |
723 | pending error in the wait_for_commit object. So clear this by |
724 | unregistering (and later re-registering) the wait. |
725 | */ |
726 | if(thd->wait_for_commit_ptr) |
727 | thd->wait_for_commit_ptr->unregister_wait_for_prior_commit(); |
728 | DBUG_EXECUTE_IF("inject_mdev8031" , { |
729 | /* Simulate that we get deadlock killed at this exact point. */ |
730 | rgi->killed_for_retry= rpl_group_info::RETRY_KILL_KILLED; |
731 | thd->set_killed(KILL_CONNECTION); |
732 | }); |
733 | DBUG_EXECUTE_IF("rpl_parallel_simulate_wait_at_retry" , { |
734 | if (rgi->current_gtid.seq_no == 1001) { |
735 | debug_sync_set_action(thd, |
736 | STRING_WITH_LEN("rpl_parallel_simulate_wait_at_retry WAIT_FOR proceed_by_1001" )); |
737 | } |
738 | DEBUG_SYNC(thd, "rpl_parallel_simulate_wait_at_retry" ); |
739 | }); |
740 | |
741 | rgi->cleanup_context(thd, 1); |
742 | wait_for_pending_deadlock_kill(thd, rgi); |
743 | thd->reset_killed(); |
744 | thd->clear_error(); |
745 | rgi->killed_for_retry = rpl_group_info::RETRY_KILL_NONE; |
746 | |
747 | /* |
748 | If we retry due to a deadlock kill that occurred during the commit step, we |
749 | might have already updated (but not committed) an update of table |
750 | mysql.gtid_slave_pos, and cleared the gtid_pending flag. Now we have |
751 | rolled back any such update, so we must set the gtid_pending flag back to |
752 | true so that we will do a new update when/if we succeed with the retry. |
753 | */ |
754 | rgi->gtid_pending= true; |
755 | |
756 | mysql_mutex_lock(&rli->data_lock); |
757 | ++rli->retried_trans; |
758 | statistic_increment(slave_retried_transactions, LOCK_status); |
759 | mysql_mutex_unlock(&rli->data_lock); |
760 | |
761 | for (;;) |
762 | { |
763 | mysql_mutex_lock(&entry->LOCK_parallel_entry); |
764 | if (entry->stop_on_error_sub_id == (uint64) ULONGLONG_MAX || |
765 | #ifndef DBUG_OFF |
766 | (DBUG_EVALUATE_IF("simulate_mdev_12746" , 1, 0)) || |
767 | #endif |
768 | rgi->gtid_sub_id < entry->stop_on_error_sub_id) |
769 | { |
770 | register_wait_for_prior_event_group_commit(rgi, entry); |
771 | } |
772 | else |
773 | { |
774 | /* |
775 | A failure of a preceeding "parent" transaction may not be |
776 | seen by the current one through its own worker_error. |
777 | Such induced error gets set by ourselves now. |
778 | */ |
779 | err= rgi->worker_error= 1; |
780 | my_error(ER_PRIOR_COMMIT_FAILED, MYF(0)); |
781 | mysql_mutex_unlock(&entry->LOCK_parallel_entry); |
782 | goto err; |
783 | } |
784 | mysql_mutex_unlock(&entry->LOCK_parallel_entry); |
785 | |
786 | /* |
787 | Let us wait for all prior transactions to complete before trying again. |
788 | This way, we avoid repeatedly conflicting with and getting deadlock |
789 | killed by the same earlier transaction. |
790 | */ |
791 | if (!(err= thd->wait_for_prior_commit())) |
792 | { |
793 | rgi->speculation = rpl_group_info::SPECULATE_WAIT; |
794 | break; |
795 | } |
796 | |
797 | convert_kill_to_deadlock_error(rgi); |
798 | if (!has_temporary_error(thd)) |
799 | goto err; |
800 | /* |
801 | If we get a temporary error such as a deadlock kill, we can safely |
802 | ignore it, as we already rolled back. |
803 | |
804 | But we still want to retry the wait for the prior transaction to |
805 | complete its commit. |
806 | */ |
807 | thd->clear_error(); |
808 | thd->reset_killed(); |
809 | if(thd->wait_for_commit_ptr) |
810 | thd->wait_for_commit_ptr->unregister_wait_for_prior_commit(); |
811 | DBUG_EXECUTE_IF("inject_mdev8031" , { |
812 | /* Inject a small sleep to give prior transaction a chance to commit. */ |
813 | my_sleep(100000); |
814 | }); |
815 | } |
816 | |
817 | /* |
818 | Let us clear any lingering deadlock kill one more time, here after |
819 | wait_for_prior_commit() has completed. This should rule out any |
820 | possibility of an old deadlock kill lingering on beyond this point. |
821 | */ |
822 | thd->reset_killed(); |
823 | |
824 | strmake_buf(log_name, ir->name); |
825 | if ((fd= open_binlog(&rlog, log_name, &errmsg)) <0) |
826 | { |
827 | err= 1; |
828 | goto err; |
829 | } |
830 | cur_offset= rgi->retry_start_offset; |
831 | delete description_event; |
832 | description_event= |
833 | read_relay_log_description_event(&rlog, cur_offset, &errmsg); |
834 | if (!description_event) |
835 | { |
836 | err= 1; |
837 | goto err; |
838 | } |
839 | DBUG_EXECUTE_IF("inject_mdev8031" , { |
840 | /* Simulate pending KILL caught in read_relay_log_description_event(). */ |
841 | if (unlikely(thd->check_killed())) { |
842 | thd->send_kill_message(); |
843 | err= 1; |
844 | goto err; |
845 | } |
846 | }); |
847 | my_b_seek(&rlog, cur_offset); |
848 | |
849 | do |
850 | { |
851 | Log_event_type event_type; |
852 | Log_event *ev; |
853 | rpl_parallel_thread::queued_event *qev; |
854 | |
855 | /* The loop is here so we can try again the next relay log file on EOF. */ |
856 | for (;;) |
857 | { |
858 | old_offset= cur_offset; |
859 | ev= Log_event::read_log_event(&rlog, description_event, |
860 | opt_slave_sql_verify_checksum); |
861 | cur_offset= my_b_tell(&rlog); |
862 | |
863 | if (ev) |
864 | break; |
865 | if (unlikely(rlog.error < 0)) |
866 | { |
867 | errmsg= "slave SQL thread aborted because of I/O error" ; |
868 | err= 1; |
869 | goto check_retry; |
870 | } |
871 | if (unlikely(rlog.error > 0)) |
872 | { |
873 | sql_print_error("Slave SQL thread: I/O error reading " |
874 | "event(errno: %d cur_log->error: %d)" , |
875 | my_errno, rlog.error); |
876 | errmsg= "Aborting slave SQL thread because of partial event read" ; |
877 | err= 1; |
878 | goto err; |
879 | } |
880 | /* EOF. Move to the next relay log. */ |
881 | end_io_cache(&rlog); |
882 | mysql_file_close(fd, MYF(MY_WME)); |
883 | fd= (File)-1; |
884 | |
885 | /* Find the next relay log file. */ |
886 | if((err= rli->relay_log.find_log_pos(&linfo, log_name, 1)) || |
887 | (err= rli->relay_log.find_next_log(&linfo, 1))) |
888 | { |
889 | char buff[22]; |
890 | sql_print_error("next log error: %d offset: %s log: %s" , |
891 | err, |
892 | llstr(linfo.index_file_offset, buff), |
893 | log_name); |
894 | goto err; |
895 | } |
896 | strmake_buf(log_name ,linfo.log_file_name); |
897 | |
898 | DBUG_EXECUTE_IF("inject_retry_event_group_open_binlog_kill" , { |
899 | if (retries < 2) |
900 | { |
901 | /* Simulate that we get deadlock killed during open_binlog(). */ |
902 | thd->reset_for_next_command(); |
903 | rgi->killed_for_retry= rpl_group_info::RETRY_KILL_KILLED; |
904 | thd->set_killed(KILL_CONNECTION); |
905 | thd->send_kill_message(); |
906 | fd= (File)-1; |
907 | err= 1; |
908 | goto check_retry; |
909 | } |
910 | }); |
911 | if ((fd= open_binlog(&rlog, log_name, &errmsg)) <0) |
912 | { |
913 | err= 1; |
914 | goto check_retry; |
915 | } |
916 | description_event->reset_crypto(); |
917 | /* Loop to try again on the new log file. */ |
918 | } |
919 | |
920 | event_type= ev->get_type_code(); |
921 | if (event_type == FORMAT_DESCRIPTION_EVENT) |
922 | { |
923 | Format_description_log_event *newde= (Format_description_log_event*)ev; |
924 | newde->copy_crypto_data(description_event); |
925 | delete description_event; |
926 | description_event= newde; |
927 | continue; |
928 | } |
929 | else if (event_type == START_ENCRYPTION_EVENT) |
930 | { |
931 | description_event->start_decryption((Start_encryption_log_event*)ev); |
932 | delete ev; |
933 | continue; |
934 | } |
935 | else if (!Log_event::is_group_event(event_type)) |
936 | { |
937 | delete ev; |
938 | continue; |
939 | } |
940 | ev->thd= thd; |
941 | |
942 | mysql_mutex_lock(&rpt->LOCK_rpl_thread); |
943 | qev= rpt->retry_get_qev(ev, orig_qev, log_name, old_offset, |
944 | cur_offset - old_offset); |
945 | mysql_mutex_unlock(&rpt->LOCK_rpl_thread); |
946 | if (!qev) |
947 | { |
948 | delete ev; |
949 | my_error(ER_OUT_OF_RESOURCES, MYF(0)); |
950 | err= 1; |
951 | goto err; |
952 | } |
953 | if (is_group_ending(ev, event_type) == 1) |
954 | rgi->mark_start_commit(); |
955 | |
956 | err= rpt_handle_event(qev, rpt); |
957 | ++event_count; |
958 | mysql_mutex_lock(&rpt->LOCK_rpl_thread); |
959 | rpt->free_qev(qev); |
960 | mysql_mutex_unlock(&rpt->LOCK_rpl_thread); |
961 | |
962 | delete_or_keep_event_post_apply(rgi, event_type, ev); |
963 | DBUG_EXECUTE_IF("rpl_parallel_simulate_double_temp_err_gtid_0_x_100" , |
964 | if (retries == 0) err= dbug_simulate_tmp_error(rgi, thd);); |
965 | DBUG_EXECUTE_IF("rpl_parallel_simulate_infinite_temp_err_gtid_0_x_100" , |
966 | err= dbug_simulate_tmp_error(rgi, thd);); |
967 | if (!err) |
968 | continue; |
969 | |
970 | check_retry: |
971 | convert_kill_to_deadlock_error(rgi); |
972 | if (has_temporary_error(thd)) |
973 | { |
974 | ++retries; |
975 | if (retries < slave_trans_retries) |
976 | { |
977 | if (fd >= 0) |
978 | { |
979 | end_io_cache(&rlog); |
980 | mysql_file_close(fd, MYF(MY_WME)); |
981 | fd= (File)-1; |
982 | } |
983 | goto do_retry; |
984 | } |
985 | sql_print_error("Slave worker thread retried transaction %lu time(s) " |
986 | "in vain, giving up. Consider raising the value of " |
987 | "the slave_transaction_retries variable." , |
988 | slave_trans_retries); |
989 | } |
990 | goto err; |
991 | |
992 | } while (event_count < events_to_execute); |
993 | |
994 | err: |
995 | |
996 | if (description_event) |
997 | delete description_event; |
998 | if (fd >= 0) |
999 | { |
1000 | end_io_cache(&rlog); |
1001 | mysql_file_close(fd, MYF(MY_WME)); |
1002 | } |
1003 | if (errmsg) |
1004 | sql_print_error("Error reading relay log event: %s" , errmsg); |
1005 | return err; |
1006 | } |
1007 | |
1008 | |
1009 | pthread_handler_t |
1010 | handle_rpl_parallel_thread(void *arg) |
1011 | { |
1012 | THD *thd; |
1013 | PSI_stage_info old_stage; |
1014 | struct rpl_parallel_thread::queued_event *events; |
1015 | bool group_standalone= true; |
1016 | bool in_event_group= false; |
1017 | bool skip_event_group= false; |
1018 | rpl_group_info *group_rgi= NULL; |
1019 | group_commit_orderer *gco; |
1020 | uint64 event_gtid_sub_id= 0; |
1021 | rpl_sql_thread_info sql_info(NULL); |
1022 | int err; |
1023 | |
1024 | struct rpl_parallel_thread *rpt= (struct rpl_parallel_thread *)arg; |
1025 | |
1026 | my_thread_init(); |
1027 | thd = new THD(next_thread_id()); |
1028 | thd->thread_stack = (char*)&thd; |
1029 | add_to_active_threads(thd); |
1030 | set_current_thd(thd); |
1031 | pthread_detach_this_thread(); |
1032 | thd->init_for_queries(); |
1033 | thd->variables.binlog_annotate_row_events= 0; |
1034 | init_thr_lock(); |
1035 | thd->store_globals(); |
1036 | thd->system_thread= SYSTEM_THREAD_SLAVE_SQL; |
1037 | thd->security_ctx->skip_grants(); |
1038 | thd->variables.max_allowed_packet= slave_max_allowed_packet; |
1039 | /* Ensure that slave can exeute any alter table it gets from master */ |
1040 | thd->variables.alter_algorithm= (ulong) Alter_info::ALTER_TABLE_ALGORITHM_DEFAULT; |
1041 | thd->slave_thread= 1; |
1042 | |
1043 | set_slave_thread_options(thd); |
1044 | thd->client_capabilities = CLIENT_LOCAL_FILES; |
1045 | thd->net.reading_or_writing= 0; |
1046 | thd_proc_info(thd, "Waiting for work from main SQL threads" ); |
1047 | thd->variables.lock_wait_timeout= LONG_TIMEOUT; |
1048 | thd->system_thread_info.rpl_sql_info= &sql_info; |
1049 | /* |
1050 | We need to use (at least) REPEATABLE READ isolation level. Otherwise |
1051 | speculative parallel apply can run out-of-order and give wrong results |
1052 | for statement-based replication. |
1053 | */ |
1054 | thd->variables.tx_isolation= ISO_REPEATABLE_READ; |
1055 | |
1056 | mysql_mutex_lock(&rpt->LOCK_rpl_thread); |
1057 | rpt->thd= thd; |
1058 | |
1059 | while (rpt->delay_start) |
1060 | mysql_cond_wait(&rpt->COND_rpl_thread, &rpt->LOCK_rpl_thread); |
1061 | |
1062 | rpt->running= true; |
1063 | mysql_cond_signal(&rpt->COND_rpl_thread); |
1064 | |
1065 | thd->set_command(COM_SLAVE_WORKER); |
1066 | while (!rpt->stop) |
1067 | { |
1068 | uint wait_count= 0; |
1069 | rpl_parallel_thread::queued_event *qev, *next_qev; |
1070 | |
1071 | thd->ENTER_COND(&rpt->COND_rpl_thread, &rpt->LOCK_rpl_thread, |
1072 | &stage_waiting_for_work_from_sql_thread, &old_stage); |
1073 | /* |
1074 | There are 4 cases that should cause us to wake up: |
1075 | - Events have been queued for us to handle. |
1076 | - We have an owner, but no events and not inside event group -> we need |
1077 | to release ourself to the thread pool |
1078 | - SQL thread is stopping, and we have an owner but no events, and we are |
1079 | inside an event group; no more events will be queued to us, so we need |
1080 | to abort the group (force_abort==1). |
1081 | - Thread pool shutdown (rpt->stop==1). |
1082 | */ |
1083 | while (!( (events= rpt->event_queue) || |
1084 | (rpt->current_owner && !in_event_group) || |
1085 | (rpt->current_owner && group_rgi->parallel_entry->force_abort) || |
1086 | rpt->stop)) |
1087 | { |
1088 | if (!wait_count++) |
1089 | thd->set_time_for_next_stage(); |
1090 | mysql_cond_wait(&rpt->COND_rpl_thread, &rpt->LOCK_rpl_thread); |
1091 | } |
1092 | rpt->dequeue1(events); |
1093 | thd->EXIT_COND(&old_stage); |
1094 | |
1095 | more_events: |
1096 | for (qev= events; qev; qev= next_qev) |
1097 | { |
1098 | Log_event_type event_type; |
1099 | rpl_group_info *rgi= qev->rgi; |
1100 | rpl_parallel_entry *entry= rgi->parallel_entry; |
1101 | bool end_of_group; |
1102 | int group_ending; |
1103 | |
1104 | next_qev= qev->next; |
1105 | if (qev->typ == rpl_parallel_thread::queued_event::QUEUED_POS_UPDATE) |
1106 | { |
1107 | handle_queued_pos_update(thd, qev); |
1108 | rpt->loc_free_qev(qev); |
1109 | continue; |
1110 | } |
1111 | else if (qev->typ == |
1112 | rpl_parallel_thread::queued_event::QUEUED_MASTER_RESTART) |
1113 | { |
1114 | if (in_event_group) |
1115 | { |
1116 | /* |
1117 | Master restarted (crashed) in the middle of an event group. |
1118 | So we need to roll back and discard that event group. |
1119 | */ |
1120 | group_rgi->cleanup_context(thd, 1); |
1121 | in_event_group= false; |
1122 | finish_event_group(rpt, group_rgi->gtid_sub_id, |
1123 | qev->entry_for_queued, group_rgi); |
1124 | |
1125 | rpt->loc_free_rgi(group_rgi); |
1126 | thd->rgi_slave= group_rgi= NULL; |
1127 | } |
1128 | |
1129 | rpt->loc_free_qev(qev); |
1130 | continue; |
1131 | } |
1132 | DBUG_ASSERT(qev->typ==rpl_parallel_thread::queued_event::QUEUED_EVENT); |
1133 | |
1134 | thd->rgi_slave= rgi; |
1135 | gco= rgi->gco; |
1136 | /* Handle a new event group, which will be initiated by a GTID event. */ |
1137 | if ((event_type= qev->ev->get_type_code()) == GTID_EVENT) |
1138 | { |
1139 | bool did_enter_cond= false; |
1140 | PSI_stage_info old_stage; |
1141 | |
1142 | DBUG_EXECUTE_IF("rpl_parallel_scheduled_gtid_0_x_100" , { |
1143 | if (rgi->current_gtid.domain_id == 0 && |
1144 | rgi->current_gtid.seq_no == 100) { |
1145 | debug_sync_set_action(thd, |
1146 | STRING_WITH_LEN("now SIGNAL scheduled_gtid_0_x_100" )); |
1147 | } |
1148 | }); |
1149 | |
1150 | if(unlikely(thd->wait_for_commit_ptr) && group_rgi != NULL) |
1151 | { |
1152 | /* |
1153 | This indicates that we get a new GTID event in the middle of |
1154 | a not completed event group. This is corrupt binlog (the master |
1155 | will never write such binlog), so it does not happen unless |
1156 | someone tries to inject wrong crafted binlog, but let us still |
1157 | try to handle it somewhat nicely. |
1158 | */ |
1159 | group_rgi->cleanup_context(thd, true); |
1160 | finish_event_group(rpt, group_rgi->gtid_sub_id, |
1161 | group_rgi->parallel_entry, group_rgi); |
1162 | rpt->loc_free_rgi(group_rgi); |
1163 | } |
1164 | |
1165 | thd->tx_isolation= (enum_tx_isolation)thd->variables.tx_isolation; |
1166 | in_event_group= true; |
1167 | /* |
1168 | If the standalone flag is set, then this event group consists of a |
1169 | single statement (possibly preceeded by some Intvar_log_event and |
1170 | similar), without any terminating COMMIT/ROLLBACK/XID. |
1171 | */ |
1172 | group_standalone= |
1173 | (0 != (static_cast<Gtid_log_event *>(qev->ev)->flags2 & |
1174 | Gtid_log_event::FL_STANDALONE)); |
1175 | |
1176 | event_gtid_sub_id= rgi->gtid_sub_id; |
1177 | rgi->thd= thd; |
1178 | |
1179 | mysql_mutex_lock(&entry->LOCK_parallel_entry); |
1180 | skip_event_group= do_gco_wait(rgi, gco, &did_enter_cond, &old_stage); |
1181 | |
1182 | if (unlikely(entry->stop_on_error_sub_id <= rgi->wait_commit_sub_id)) |
1183 | skip_event_group= true; |
1184 | if (likely(!skip_event_group)) |
1185 | do_ftwrl_wait(rgi, &did_enter_cond, &old_stage); |
1186 | |
1187 | /* |
1188 | Register ourself to wait for the previous commit, if we need to do |
1189 | such registration _and_ that previous commit has not already |
1190 | occurred. |
1191 | */ |
1192 | register_wait_for_prior_event_group_commit(rgi, entry); |
1193 | |
1194 | unlock_or_exit_cond(thd, &entry->LOCK_parallel_entry, |
1195 | &did_enter_cond, &old_stage); |
1196 | |
1197 | thd->wait_for_commit_ptr= &rgi->commit_orderer; |
1198 | |
1199 | if (opt_gtid_ignore_duplicates && |
1200 | rgi->rli->mi->using_gtid != Master_info::USE_GTID_NO) |
1201 | { |
1202 | int res= |
1203 | rpl_global_gtid_slave_state->check_duplicate_gtid(&rgi->current_gtid, |
1204 | rgi); |
1205 | if (res < 0) |
1206 | { |
1207 | /* Error. */ |
1208 | slave_output_error_info(rgi, thd); |
1209 | signal_error_to_sql_driver_thread(thd, rgi, 1); |
1210 | } |
1211 | else if (!res) |
1212 | { |
1213 | /* GTID already applied by another master connection, skip. */ |
1214 | skip_event_group= true; |
1215 | } |
1216 | else |
1217 | { |
1218 | /* We have to apply the event. */ |
1219 | } |
1220 | } |
1221 | /* |
1222 | If we are optimistically running transactions in parallel, but this |
1223 | particular event group should not run in parallel with what came |
1224 | before, then wait now for the prior transaction to complete its |
1225 | commit. |
1226 | */ |
1227 | if (rgi->speculation == rpl_group_info::SPECULATE_WAIT && |
1228 | (err= thd->wait_for_prior_commit())) |
1229 | { |
1230 | slave_output_error_info(rgi, thd); |
1231 | signal_error_to_sql_driver_thread(thd, rgi, 1); |
1232 | } |
1233 | } |
1234 | |
1235 | group_rgi= rgi; |
1236 | group_ending= is_group_ending(qev->ev, event_type); |
1237 | /* |
1238 | We do not unmark_start_commit() here in case of an explicit ROLLBACK |
1239 | statement. Such events should be very rare, there is no real reason |
1240 | to try to group commit them - on the contrary, it seems best to avoid |
1241 | running them in parallel with following group commits, as with |
1242 | ROLLBACK events we are already deep in dangerous corner cases with |
1243 | mix of transactional and non-transactional tables or the like. And |
1244 | avoiding the mark_start_commit() here allows us to keep an assertion |
1245 | in ha_rollback_trans() that we do not rollback after doing |
1246 | mark_start_commit(). |
1247 | */ |
1248 | if (group_ending == 1 && likely(!rgi->worker_error)) |
1249 | { |
1250 | /* |
1251 | Do an extra check for (deadlock) kill here. This helps prevent a |
1252 | lingering deadlock kill that occurred during normal DML processing to |
1253 | propagate past the mark_start_commit(). If we detect a deadlock only |
1254 | after mark_start_commit(), we have to unmark, which has at least a |
1255 | theoretical possibility of leaving a window where it looks like all |
1256 | transactions in a GCO have started committing, while in fact one |
1257 | will need to rollback and retry. This is not supposed to be possible |
1258 | (since there is a deadlock, at least one transaction should be |
1259 | blocked from reaching commit), but this seems a fragile ensurance, |
1260 | and there were historically a number of subtle bugs in this area. |
1261 | */ |
1262 | if (!thd->killed) |
1263 | { |
1264 | DEBUG_SYNC(thd, "rpl_parallel_before_mark_start_commit" ); |
1265 | rgi->mark_start_commit(); |
1266 | DEBUG_SYNC(thd, "rpl_parallel_after_mark_start_commit" ); |
1267 | } |
1268 | } |
1269 | |
1270 | /* |
1271 | If the SQL thread is stopping, we just skip execution of all the |
1272 | following event groups. We still do all the normal waiting and wakeup |
1273 | processing between the event groups as a simple way to ensure that |
1274 | everything is stopped and cleaned up correctly. |
1275 | */ |
1276 | if (likely(!rgi->worker_error) && !skip_event_group) |
1277 | { |
1278 | ++rgi->retry_event_count; |
1279 | #ifndef DBUG_OFF |
1280 | err= 0; |
1281 | DBUG_EXECUTE_IF("rpl_parallel_simulate_temp_err_xid" , |
1282 | if (event_type == XID_EVENT) |
1283 | { |
1284 | thd->clear_error(); |
1285 | thd->get_stmt_da()->reset_diagnostics_area(); |
1286 | my_error(ER_LOCK_DEADLOCK, MYF(0)); |
1287 | err= 1; |
1288 | DEBUG_SYNC(thd, "rpl_parallel_simulate_temp_err_xid" ); |
1289 | }); |
1290 | if (!err) |
1291 | #endif |
1292 | { |
1293 | if (unlikely(thd->check_killed())) |
1294 | { |
1295 | thd->clear_error(); |
1296 | thd->get_stmt_da()->reset_diagnostics_area(); |
1297 | thd->send_kill_message(); |
1298 | err= 1; |
1299 | } |
1300 | else |
1301 | err= rpt_handle_event(qev, rpt); |
1302 | } |
1303 | delete_or_keep_event_post_apply(rgi, event_type, qev->ev); |
1304 | DBUG_EXECUTE_IF("rpl_parallel_simulate_temp_err_gtid_0_x_100" , |
1305 | err= dbug_simulate_tmp_error(rgi, thd);); |
1306 | if (unlikely(err)) |
1307 | { |
1308 | convert_kill_to_deadlock_error(rgi); |
1309 | if (has_temporary_error(thd) && slave_trans_retries > 0) |
1310 | err= retry_event_group(rgi, rpt, qev); |
1311 | } |
1312 | } |
1313 | else |
1314 | { |
1315 | delete qev->ev; |
1316 | thd->get_stmt_da()->set_overwrite_status(true); |
1317 | err= thd->wait_for_prior_commit(); |
1318 | thd->get_stmt_da()->set_overwrite_status(false); |
1319 | } |
1320 | |
1321 | end_of_group= |
1322 | in_event_group && |
1323 | ((group_standalone && !Log_event::is_part_of_group(event_type)) || |
1324 | group_ending); |
1325 | |
1326 | rpt->loc_free_qev(qev); |
1327 | |
1328 | if (unlikely(err)) |
1329 | { |
1330 | if (!rgi->worker_error) |
1331 | { |
1332 | slave_output_error_info(rgi, thd); |
1333 | signal_error_to_sql_driver_thread(thd, rgi, err); |
1334 | } |
1335 | thd->reset_killed(); |
1336 | } |
1337 | if (end_of_group) |
1338 | { |
1339 | in_event_group= false; |
1340 | finish_event_group(rpt, event_gtid_sub_id, entry, rgi); |
1341 | rpt->loc_free_rgi(rgi); |
1342 | thd->rgi_slave= group_rgi= rgi= NULL; |
1343 | skip_event_group= false; |
1344 | DEBUG_SYNC(thd, "rpl_parallel_end_of_group" ); |
1345 | } |
1346 | } |
1347 | |
1348 | mysql_mutex_lock(&rpt->LOCK_rpl_thread); |
1349 | /* |
1350 | Now that we have the lock, we can move everything from our local free |
1351 | lists to the real free lists that are also accessible from the SQL |
1352 | driver thread. |
1353 | */ |
1354 | rpt->batch_free(); |
1355 | |
1356 | if ((events= rpt->event_queue) != NULL) |
1357 | { |
1358 | /* |
1359 | Take next group of events from the replication pool. |
1360 | This is faster than having to wakeup the pool manager thread to give |
1361 | us a new event. |
1362 | */ |
1363 | rpt->dequeue1(events); |
1364 | mysql_mutex_unlock(&rpt->LOCK_rpl_thread); |
1365 | goto more_events; |
1366 | } |
1367 | |
1368 | rpt->inuse_relaylog_refcount_update(); |
1369 | |
1370 | if (in_event_group && group_rgi->parallel_entry->force_abort) |
1371 | { |
1372 | /* |
1373 | We are asked to abort, without getting the remaining events in the |
1374 | current event group. |
1375 | |
1376 | We have to rollback the current transaction and update the last |
1377 | sub_id value so that SQL thread will know we are done with the |
1378 | half-processed event group. |
1379 | */ |
1380 | mysql_mutex_unlock(&rpt->LOCK_rpl_thread); |
1381 | signal_error_to_sql_driver_thread(thd, group_rgi, 1); |
1382 | finish_event_group(rpt, group_rgi->gtid_sub_id, |
1383 | group_rgi->parallel_entry, group_rgi); |
1384 | in_event_group= false; |
1385 | mysql_mutex_lock(&rpt->LOCK_rpl_thread); |
1386 | rpt->free_rgi(group_rgi); |
1387 | thd->rgi_slave= group_rgi= NULL; |
1388 | skip_event_group= false; |
1389 | } |
1390 | if (!in_event_group) |
1391 | { |
1392 | /* If we are in a FLUSH TABLES FOR READ LOCK, wait for it */ |
1393 | while (rpt->current_entry && rpt->pause_for_ftwrl) |
1394 | { |
1395 | /* |
1396 | We are currently in the delicate process of pausing parallel |
1397 | replication while FLUSH TABLES WITH READ LOCK is starting. We must |
1398 | not de-allocate the thread (setting rpt->current_owner= NULL) until |
1399 | rpl_unpause_after_ftwrl() has woken us up. |
1400 | */ |
1401 | rpl_parallel_entry *e= rpt->current_entry; |
1402 | /* |
1403 | Wait for rpl_unpause_after_ftwrl() to wake us up. |
1404 | Note that rpl_pause_for_ftwrl() may wait for 'e->pause_sub_id' |
1405 | to change. This should happen eventually in finish_event_group() |
1406 | */ |
1407 | mysql_mutex_lock(&e->LOCK_parallel_entry); |
1408 | mysql_mutex_unlock(&rpt->LOCK_rpl_thread); |
1409 | if (rpt->pause_for_ftwrl) |
1410 | mysql_cond_wait(&e->COND_parallel_entry, &e->LOCK_parallel_entry); |
1411 | mysql_mutex_unlock(&e->LOCK_parallel_entry); |
1412 | mysql_mutex_lock(&rpt->LOCK_rpl_thread); |
1413 | } |
1414 | |
1415 | rpt->current_owner= NULL; |
1416 | /* Tell wait_for_done() that we are done, if it is waiting. */ |
1417 | if (likely(rpt->current_entry) && |
1418 | unlikely(rpt->current_entry->force_abort)) |
1419 | mysql_cond_broadcast(&rpt->COND_rpl_thread_stop); |
1420 | |
1421 | rpt->current_entry= NULL; |
1422 | if (!rpt->stop) |
1423 | rpt->pool->release_thread(rpt); |
1424 | } |
1425 | } |
1426 | |
1427 | rpt->thd= NULL; |
1428 | mysql_mutex_unlock(&rpt->LOCK_rpl_thread); |
1429 | |
1430 | thd->clear_error(); |
1431 | thd->catalog= 0; |
1432 | thd->reset_query(); |
1433 | thd->reset_db(&null_clex_str); |
1434 | thd_proc_info(thd, "Slave worker thread exiting" ); |
1435 | thd->temporary_tables= 0; |
1436 | |
1437 | THD_CHECK_SENTRY(thd); |
1438 | unlink_not_visible_thd(thd); |
1439 | delete thd; |
1440 | |
1441 | mysql_mutex_lock(&rpt->LOCK_rpl_thread); |
1442 | rpt->running= false; |
1443 | mysql_cond_signal(&rpt->COND_rpl_thread); |
1444 | mysql_mutex_unlock(&rpt->LOCK_rpl_thread); |
1445 | |
1446 | my_thread_end(); |
1447 | |
1448 | return NULL; |
1449 | } |
1450 | |
1451 | |
1452 | static void |
1453 | dealloc_gco(group_commit_orderer *gco) |
1454 | { |
1455 | mysql_cond_destroy(&gco->COND_group_commit_orderer); |
1456 | my_free(gco); |
1457 | } |
1458 | |
1459 | /** |
1460 | Change thread count for global parallel worker threads |
1461 | |
1462 | @param pool parallel thread pool |
1463 | @param new_count Number of threads to be in pool. 0 in shutdown |
1464 | @param force Force thread count to new_count even if slave |
1465 | threads are running |
1466 | |
1467 | By default we don't resize pool of there are running threads. |
1468 | However during shutdown we will always do it. |
1469 | This is needed as any_slave_sql_running() returns 1 during shutdown |
1470 | as we don't want to access master_info while |
1471 | Master_info_index::free_connections are running. |
1472 | */ |
1473 | |
1474 | static int |
1475 | rpl_parallel_change_thread_count(rpl_parallel_thread_pool *pool, |
1476 | uint32 new_count, bool force) |
1477 | { |
1478 | uint32 i; |
1479 | rpl_parallel_thread **old_list= NULL; |
1480 | rpl_parallel_thread **new_list= NULL; |
1481 | rpl_parallel_thread *new_free_list= NULL; |
1482 | rpl_parallel_thread *rpt_array= NULL; |
1483 | int res; |
1484 | |
1485 | if ((res= pool_mark_busy(pool, current_thd))) |
1486 | return res; |
1487 | |
1488 | /* Protect against parallel pool resizes */ |
1489 | if (pool->count == new_count) |
1490 | { |
1491 | pool_mark_not_busy(pool); |
1492 | return 0; |
1493 | } |
1494 | |
1495 | /* |
1496 | If we are about to delete pool, do an extra check that there are no new |
1497 | slave threads running since we marked pool busy |
1498 | */ |
1499 | if (!new_count && !force) |
1500 | { |
1501 | if (any_slave_sql_running(false)) |
1502 | { |
1503 | DBUG_PRINT("warning" , |
1504 | ("SQL threads running while trying to reset parallel pool" )); |
1505 | pool_mark_not_busy(pool); |
1506 | return 0; // Ok to not resize pool |
1507 | } |
1508 | } |
1509 | |
1510 | /* |
1511 | Allocate the new list of threads up-front. |
1512 | That way, if we fail half-way, we only need to free whatever we managed |
1513 | to allocate, and will not be left with a half-functional thread pool. |
1514 | */ |
1515 | if (new_count && |
1516 | !my_multi_malloc(MYF(MY_WME|MY_ZEROFILL), |
1517 | &new_list, new_count*sizeof(*new_list), |
1518 | &rpt_array, new_count*sizeof(*rpt_array), |
1519 | NULL)) |
1520 | { |
1521 | my_error(ER_OUTOFMEMORY, MYF(0), (int(new_count*sizeof(*new_list) + |
1522 | new_count*sizeof(*rpt_array)))); |
1523 | goto err; |
1524 | } |
1525 | |
1526 | for (i= 0; i < new_count; ++i) |
1527 | { |
1528 | pthread_t th; |
1529 | |
1530 | new_list[i]= &rpt_array[i]; |
1531 | new_list[i]->delay_start= true; |
1532 | mysql_mutex_init(key_LOCK_rpl_thread, &new_list[i]->LOCK_rpl_thread, |
1533 | MY_MUTEX_INIT_SLOW); |
1534 | mysql_cond_init(key_COND_rpl_thread, &new_list[i]->COND_rpl_thread, NULL); |
1535 | mysql_cond_init(key_COND_rpl_thread_queue, |
1536 | &new_list[i]->COND_rpl_thread_queue, NULL); |
1537 | mysql_cond_init(key_COND_rpl_thread_stop, |
1538 | &new_list[i]->COND_rpl_thread_stop, NULL); |
1539 | new_list[i]->pool= pool; |
1540 | if (mysql_thread_create(key_rpl_parallel_thread, &th, &connection_attrib, |
1541 | handle_rpl_parallel_thread, new_list[i])) |
1542 | { |
1543 | my_error(ER_OUT_OF_RESOURCES, MYF(0)); |
1544 | goto err; |
1545 | } |
1546 | new_list[i]->next= new_free_list; |
1547 | new_free_list= new_list[i]; |
1548 | } |
1549 | |
1550 | /* |
1551 | Grab each old thread in turn, and signal it to stop. |
1552 | |
1553 | Note that since we require all replication threads to be stopped before |
1554 | changing the parallel replication worker thread pool, all the threads will |
1555 | be already idle and will terminate immediately. |
1556 | */ |
1557 | for (i= 0; i < pool->count; ++i) |
1558 | { |
1559 | rpl_parallel_thread *rpt; |
1560 | |
1561 | mysql_mutex_lock(&pool->LOCK_rpl_thread_pool); |
1562 | while ((rpt= pool->free_list) == NULL) |
1563 | mysql_cond_wait(&pool->COND_rpl_thread_pool, &pool->LOCK_rpl_thread_pool); |
1564 | pool->free_list= rpt->next; |
1565 | mysql_mutex_unlock(&pool->LOCK_rpl_thread_pool); |
1566 | mysql_mutex_lock(&rpt->LOCK_rpl_thread); |
1567 | rpt->stop= true; |
1568 | mysql_cond_signal(&rpt->COND_rpl_thread); |
1569 | mysql_mutex_unlock(&rpt->LOCK_rpl_thread); |
1570 | } |
1571 | |
1572 | for (i= 0; i < pool->count; ++i) |
1573 | { |
1574 | rpl_parallel_thread *rpt= pool->threads[i]; |
1575 | mysql_mutex_lock(&rpt->LOCK_rpl_thread); |
1576 | while (rpt->running) |
1577 | mysql_cond_wait(&rpt->COND_rpl_thread, &rpt->LOCK_rpl_thread); |
1578 | mysql_mutex_unlock(&rpt->LOCK_rpl_thread); |
1579 | mysql_mutex_destroy(&rpt->LOCK_rpl_thread); |
1580 | mysql_cond_destroy(&rpt->COND_rpl_thread); |
1581 | while (rpt->qev_free_list) |
1582 | { |
1583 | rpl_parallel_thread::queued_event *next= rpt->qev_free_list->next; |
1584 | my_free(rpt->qev_free_list); |
1585 | rpt->qev_free_list= next; |
1586 | } |
1587 | while (rpt->rgi_free_list) |
1588 | { |
1589 | rpl_group_info *next= rpt->rgi_free_list->next; |
1590 | delete rpt->rgi_free_list; |
1591 | rpt->rgi_free_list= next; |
1592 | } |
1593 | while (rpt->gco_free_list) |
1594 | { |
1595 | group_commit_orderer *next= rpt->gco_free_list->next_gco; |
1596 | dealloc_gco(rpt->gco_free_list); |
1597 | rpt->gco_free_list= next; |
1598 | } |
1599 | } |
1600 | |
1601 | old_list= pool->threads; |
1602 | if (new_count < pool->count) |
1603 | pool->count= new_count; |
1604 | pool->threads= new_list; |
1605 | if (new_count > pool->count) |
1606 | pool->count= new_count; |
1607 | my_free(old_list); |
1608 | pool->free_list= new_free_list; |
1609 | for (i= 0; i < pool->count; ++i) |
1610 | { |
1611 | mysql_mutex_lock(&pool->threads[i]->LOCK_rpl_thread); |
1612 | pool->threads[i]->delay_start= false; |
1613 | mysql_cond_signal(&pool->threads[i]->COND_rpl_thread); |
1614 | while (!pool->threads[i]->running) |
1615 | mysql_cond_wait(&pool->threads[i]->COND_rpl_thread, |
1616 | &pool->threads[i]->LOCK_rpl_thread); |
1617 | mysql_mutex_unlock(&pool->threads[i]->LOCK_rpl_thread); |
1618 | } |
1619 | |
1620 | pool_mark_not_busy(pool); |
1621 | |
1622 | return 0; |
1623 | |
1624 | err: |
1625 | if (new_list) |
1626 | { |
1627 | while (new_free_list) |
1628 | { |
1629 | mysql_mutex_lock(&new_free_list->LOCK_rpl_thread); |
1630 | new_free_list->delay_start= false; |
1631 | new_free_list->stop= true; |
1632 | mysql_cond_signal(&new_free_list->COND_rpl_thread); |
1633 | while (!new_free_list->running) |
1634 | mysql_cond_wait(&new_free_list->COND_rpl_thread, |
1635 | &new_free_list->LOCK_rpl_thread); |
1636 | while (new_free_list->running) |
1637 | mysql_cond_wait(&new_free_list->COND_rpl_thread, |
1638 | &new_free_list->LOCK_rpl_thread); |
1639 | mysql_mutex_unlock(&new_free_list->LOCK_rpl_thread); |
1640 | new_free_list= new_free_list->next; |
1641 | } |
1642 | my_free(new_list); |
1643 | } |
1644 | pool_mark_not_busy(pool); |
1645 | return 1; |
1646 | } |
1647 | |
1648 | /* |
1649 | Deactivate the parallel replication thread pool, if there are now no more |
1650 | SQL threads running. |
1651 | */ |
1652 | |
1653 | int rpl_parallel_resize_pool_if_no_slaves(void) |
1654 | { |
1655 | /* master_info_index is set to NULL on shutdown */ |
1656 | if (opt_slave_parallel_threads > 0 && !any_slave_sql_running(false)) |
1657 | return rpl_parallel_inactivate_pool(&global_rpl_thread_pool); |
1658 | return 0; |
1659 | } |
1660 | |
1661 | |
1662 | /** |
1663 | Resize pool if not active or busy (in which case we may be in |
1664 | resize to 0 |
1665 | */ |
1666 | |
1667 | int |
1668 | rpl_parallel_activate_pool(rpl_parallel_thread_pool *pool) |
1669 | { |
1670 | bool resize; |
1671 | mysql_mutex_lock(&pool->LOCK_rpl_thread_pool); |
1672 | resize= !pool->count || pool->busy; |
1673 | mysql_mutex_unlock(&pool->LOCK_rpl_thread_pool); |
1674 | if (resize) |
1675 | return rpl_parallel_change_thread_count(pool, opt_slave_parallel_threads, |
1676 | 0); |
1677 | return 0; |
1678 | } |
1679 | |
1680 | |
1681 | int |
1682 | rpl_parallel_inactivate_pool(rpl_parallel_thread_pool *pool) |
1683 | { |
1684 | return rpl_parallel_change_thread_count(pool, 0, 0); |
1685 | } |
1686 | |
1687 | |
1688 | void |
1689 | rpl_parallel_thread::batch_free() |
1690 | { |
1691 | mysql_mutex_assert_owner(&LOCK_rpl_thread); |
1692 | if (loc_qev_list) |
1693 | { |
1694 | *loc_qev_last_ptr_ptr= qev_free_list; |
1695 | qev_free_list= loc_qev_list; |
1696 | loc_qev_list= NULL; |
1697 | dequeue2(loc_qev_size); |
1698 | /* Signal that our queue can now accept more events. */ |
1699 | mysql_cond_signal(&COND_rpl_thread_queue); |
1700 | loc_qev_size= 0; |
1701 | qev_free_pending= 0; |
1702 | } |
1703 | if (loc_rgi_list) |
1704 | { |
1705 | *loc_rgi_last_ptr_ptr= rgi_free_list; |
1706 | rgi_free_list= loc_rgi_list; |
1707 | loc_rgi_list= NULL; |
1708 | } |
1709 | if (loc_gco_list) |
1710 | { |
1711 | *loc_gco_last_ptr_ptr= gco_free_list; |
1712 | gco_free_list= loc_gco_list; |
1713 | loc_gco_list= NULL; |
1714 | } |
1715 | } |
1716 | |
1717 | |
1718 | void |
1719 | rpl_parallel_thread::inuse_relaylog_refcount_update() |
1720 | { |
1721 | inuse_relaylog *ir= accumulated_ir_last; |
1722 | if (ir) |
1723 | { |
1724 | my_atomic_add64(&ir->dequeued_count, accumulated_ir_count); |
1725 | accumulated_ir_count= 0; |
1726 | accumulated_ir_last= NULL; |
1727 | } |
1728 | } |
1729 | |
1730 | |
1731 | rpl_parallel_thread::queued_event * |
1732 | rpl_parallel_thread::get_qev_common(Log_event *ev, ulonglong event_size) |
1733 | { |
1734 | queued_event *qev; |
1735 | mysql_mutex_assert_owner(&LOCK_rpl_thread); |
1736 | if ((qev= qev_free_list)) |
1737 | qev_free_list= qev->next; |
1738 | else if(!(qev= (queued_event *)my_malloc(sizeof(*qev), MYF(0)))) |
1739 | { |
1740 | my_error(ER_OUTOFMEMORY, MYF(0), (int)sizeof(*qev)); |
1741 | return NULL; |
1742 | } |
1743 | qev->typ= rpl_parallel_thread::queued_event::QUEUED_EVENT; |
1744 | qev->ev= ev; |
1745 | qev->event_size= (size_t)event_size; |
1746 | qev->next= NULL; |
1747 | return qev; |
1748 | } |
1749 | |
1750 | |
1751 | rpl_parallel_thread::queued_event * |
1752 | rpl_parallel_thread::get_qev(Log_event *ev, ulonglong event_size, |
1753 | Relay_log_info *rli) |
1754 | { |
1755 | queued_event *qev= get_qev_common(ev, event_size); |
1756 | if (!qev) |
1757 | return NULL; |
1758 | strcpy(qev->event_relay_log_name, rli->event_relay_log_name); |
1759 | qev->event_relay_log_pos= rli->event_relay_log_pos; |
1760 | qev->future_event_relay_log_pos= rli->future_event_relay_log_pos; |
1761 | strcpy(qev->future_event_master_log_name, rli->future_event_master_log_name); |
1762 | return qev; |
1763 | } |
1764 | |
1765 | |
1766 | rpl_parallel_thread::queued_event * |
1767 | rpl_parallel_thread::retry_get_qev(Log_event *ev, queued_event *orig_qev, |
1768 | const char *relay_log_name, |
1769 | ulonglong event_pos, ulonglong event_size) |
1770 | { |
1771 | queued_event *qev= get_qev_common(ev, event_size); |
1772 | if (!qev) |
1773 | return NULL; |
1774 | qev->rgi= orig_qev->rgi; |
1775 | strcpy(qev->event_relay_log_name, relay_log_name); |
1776 | qev->event_relay_log_pos= event_pos; |
1777 | qev->future_event_relay_log_pos= event_pos+event_size; |
1778 | strcpy(qev->future_event_master_log_name, |
1779 | orig_qev->future_event_master_log_name); |
1780 | return qev; |
1781 | } |
1782 | |
1783 | |
1784 | void |
1785 | rpl_parallel_thread::loc_free_qev(rpl_parallel_thread::queued_event *qev) |
1786 | { |
1787 | inuse_relaylog *ir= qev->ir; |
1788 | inuse_relaylog *last_ir= accumulated_ir_last; |
1789 | if (ir != last_ir) |
1790 | { |
1791 | if (last_ir) |
1792 | inuse_relaylog_refcount_update(); |
1793 | accumulated_ir_last= ir; |
1794 | } |
1795 | ++accumulated_ir_count; |
1796 | if (!loc_qev_list) |
1797 | loc_qev_last_ptr_ptr= &qev->next; |
1798 | else |
1799 | qev->next= loc_qev_list; |
1800 | loc_qev_list= qev; |
1801 | loc_qev_size+= qev->event_size; |
1802 | /* |
1803 | We want to release to the global free list only occasionally, to avoid |
1804 | having to take the LOCK_rpl_thread muted too many times. |
1805 | |
1806 | However, we do need to release regularly. If we let the unreleased part |
1807 | grow too large, then the SQL driver thread may go to sleep waiting for |
1808 | the queue to drop below opt_slave_parallel_max_queued, and this in turn |
1809 | can stall all other worker threads for more stuff to do. |
1810 | */ |
1811 | if (++qev_free_pending >= QEV_BATCH_FREE || |
1812 | loc_qev_size >= opt_slave_parallel_max_queued/3) |
1813 | { |
1814 | mysql_mutex_lock(&LOCK_rpl_thread); |
1815 | batch_free(); |
1816 | mysql_mutex_unlock(&LOCK_rpl_thread); |
1817 | } |
1818 | } |
1819 | |
1820 | |
1821 | void |
1822 | rpl_parallel_thread::free_qev(rpl_parallel_thread::queued_event *qev) |
1823 | { |
1824 | mysql_mutex_assert_owner(&LOCK_rpl_thread); |
1825 | qev->next= qev_free_list; |
1826 | qev_free_list= qev; |
1827 | } |
1828 | |
1829 | |
1830 | rpl_group_info* |
1831 | rpl_parallel_thread::get_rgi(Relay_log_info *rli, Gtid_log_event *gtid_ev, |
1832 | rpl_parallel_entry *e, ulonglong event_size) |
1833 | { |
1834 | rpl_group_info *rgi; |
1835 | mysql_mutex_assert_owner(&LOCK_rpl_thread); |
1836 | if ((rgi= rgi_free_list)) |
1837 | { |
1838 | rgi_free_list= rgi->next; |
1839 | rgi->reinit(rli); |
1840 | } |
1841 | else |
1842 | { |
1843 | if(!(rgi= new rpl_group_info(rli))) |
1844 | { |
1845 | my_error(ER_OUTOFMEMORY, MYF(0), (int)sizeof(*rgi)); |
1846 | return NULL; |
1847 | } |
1848 | rgi->is_parallel_exec = true; |
1849 | } |
1850 | if ((rgi->deferred_events_collecting= rli->mi->rpl_filter->is_on()) && |
1851 | !rgi->deferred_events) |
1852 | rgi->deferred_events= new Deferred_log_events(rli); |
1853 | if (event_group_new_gtid(rgi, gtid_ev)) |
1854 | { |
1855 | free_rgi(rgi); |
1856 | my_error(ER_OUT_OF_RESOURCES, MYF(MY_WME)); |
1857 | return NULL; |
1858 | } |
1859 | rgi->parallel_entry= e; |
1860 | rgi->relay_log= rli->last_inuse_relaylog; |
1861 | rgi->retry_start_offset= rli->future_event_relay_log_pos-event_size; |
1862 | rgi->retry_event_count= 0; |
1863 | rgi->killed_for_retry= rpl_group_info::RETRY_KILL_NONE; |
1864 | |
1865 | return rgi; |
1866 | } |
1867 | |
1868 | |
1869 | void |
1870 | rpl_parallel_thread::loc_free_rgi(rpl_group_info *rgi) |
1871 | { |
1872 | DBUG_ASSERT(rgi->commit_orderer.waitee == NULL); |
1873 | rgi->free_annotate_event(); |
1874 | if (!loc_rgi_list) |
1875 | loc_rgi_last_ptr_ptr= &rgi->next; |
1876 | else |
1877 | rgi->next= loc_rgi_list; |
1878 | loc_rgi_list= rgi; |
1879 | } |
1880 | |
1881 | |
1882 | void |
1883 | rpl_parallel_thread::free_rgi(rpl_group_info *rgi) |
1884 | { |
1885 | mysql_mutex_assert_owner(&LOCK_rpl_thread); |
1886 | DBUG_ASSERT(rgi->commit_orderer.waitee == NULL); |
1887 | rgi->free_annotate_event(); |
1888 | rgi->next= rgi_free_list; |
1889 | rgi_free_list= rgi; |
1890 | } |
1891 | |
1892 | |
1893 | group_commit_orderer * |
1894 | rpl_parallel_thread::get_gco(uint64 wait_count, group_commit_orderer *prev, |
1895 | uint64 prior_sub_id) |
1896 | { |
1897 | group_commit_orderer *gco; |
1898 | mysql_mutex_assert_owner(&LOCK_rpl_thread); |
1899 | if ((gco= gco_free_list)) |
1900 | gco_free_list= gco->next_gco; |
1901 | else if(!(gco= (group_commit_orderer *)my_malloc(sizeof(*gco), MYF(0)))) |
1902 | { |
1903 | my_error(ER_OUTOFMEMORY, MYF(0), (int)sizeof(*gco)); |
1904 | return NULL; |
1905 | } |
1906 | mysql_cond_init(key_COND_group_commit_orderer, |
1907 | &gco->COND_group_commit_orderer, NULL); |
1908 | gco->wait_count= wait_count; |
1909 | gco->prev_gco= prev; |
1910 | gco->next_gco= NULL; |
1911 | gco->prior_sub_id= prior_sub_id; |
1912 | gco->installed= false; |
1913 | gco->flags= 0; |
1914 | return gco; |
1915 | } |
1916 | |
1917 | |
1918 | void |
1919 | rpl_parallel_thread::loc_free_gco(group_commit_orderer *gco) |
1920 | { |
1921 | if (!loc_gco_list) |
1922 | loc_gco_last_ptr_ptr= &gco->next_gco; |
1923 | else |
1924 | gco->next_gco= loc_gco_list; |
1925 | loc_gco_list= gco; |
1926 | } |
1927 | |
1928 | |
1929 | rpl_parallel_thread_pool::rpl_parallel_thread_pool() |
1930 | : threads(0), free_list(0), count(0), inited(false), busy(false) |
1931 | { |
1932 | } |
1933 | |
1934 | |
1935 | int |
1936 | rpl_parallel_thread_pool::init(uint32 size) |
1937 | { |
1938 | threads= NULL; |
1939 | free_list= NULL; |
1940 | count= 0; |
1941 | busy= false; |
1942 | |
1943 | mysql_mutex_init(key_LOCK_rpl_thread_pool, &LOCK_rpl_thread_pool, |
1944 | MY_MUTEX_INIT_SLOW); |
1945 | mysql_cond_init(key_COND_rpl_thread_pool, &COND_rpl_thread_pool, NULL); |
1946 | inited= true; |
1947 | |
1948 | /* |
1949 | The pool is initially empty. Threads will be spawned when a slave SQL |
1950 | thread is started. |
1951 | */ |
1952 | |
1953 | return 0; |
1954 | } |
1955 | |
1956 | |
1957 | void |
1958 | rpl_parallel_thread_pool::destroy() |
1959 | { |
1960 | if (!inited) |
1961 | return; |
1962 | rpl_parallel_change_thread_count(this, 0, 1); |
1963 | mysql_mutex_destroy(&LOCK_rpl_thread_pool); |
1964 | mysql_cond_destroy(&COND_rpl_thread_pool); |
1965 | inited= false; |
1966 | } |
1967 | |
1968 | |
1969 | /* |
1970 | Wait for a worker thread to become idle. When one does, grab the thread for |
1971 | our use and return it. |
1972 | |
1973 | Note that we return with the worker threads's LOCK_rpl_thread mutex locked. |
1974 | */ |
1975 | struct rpl_parallel_thread * |
1976 | rpl_parallel_thread_pool::get_thread(rpl_parallel_thread **owner, |
1977 | rpl_parallel_entry *entry) |
1978 | { |
1979 | rpl_parallel_thread *rpt; |
1980 | |
1981 | DBUG_ASSERT(count > 0); |
1982 | mysql_mutex_lock(&LOCK_rpl_thread_pool); |
1983 | while (unlikely(busy) || !(rpt= free_list)) |
1984 | mysql_cond_wait(&COND_rpl_thread_pool, &LOCK_rpl_thread_pool); |
1985 | free_list= rpt->next; |
1986 | mysql_mutex_unlock(&LOCK_rpl_thread_pool); |
1987 | mysql_mutex_lock(&rpt->LOCK_rpl_thread); |
1988 | rpt->current_owner= owner; |
1989 | rpt->current_entry= entry; |
1990 | |
1991 | return rpt; |
1992 | } |
1993 | |
1994 | |
1995 | /* |
1996 | Release a thread to the thread pool. |
1997 | The thread should be locked, and should not have any work queued for it. |
1998 | */ |
1999 | void |
2000 | rpl_parallel_thread_pool::release_thread(rpl_parallel_thread *rpt) |
2001 | { |
2002 | rpl_parallel_thread *list; |
2003 | |
2004 | mysql_mutex_assert_owner(&rpt->LOCK_rpl_thread); |
2005 | DBUG_ASSERT(rpt->current_owner == NULL); |
2006 | mysql_mutex_lock(&LOCK_rpl_thread_pool); |
2007 | list= free_list; |
2008 | rpt->next= list; |
2009 | free_list= rpt; |
2010 | if (!list) |
2011 | mysql_cond_broadcast(&COND_rpl_thread_pool); |
2012 | mysql_mutex_unlock(&LOCK_rpl_thread_pool); |
2013 | } |
2014 | |
2015 | |
2016 | /* |
2017 | Obtain a worker thread that we can queue an event to. |
2018 | |
2019 | Each invocation allocates a new worker thread, to maximise |
2020 | parallelism. However, only up to a maximum of |
2021 | --slave-domain-parallel-threads workers can be occupied by a single |
2022 | replication domain; after that point, we start re-using worker threads that |
2023 | are still executing events that were queued earlier for this thread. |
2024 | |
2025 | We never queue more than --rpl-parallel-wait-queue_max amount of events |
2026 | for one worker, to avoid the SQL driver thread using up all memory with |
2027 | queued events while worker threads are stalling. |
2028 | |
2029 | Note that this function returns with rpl_parallel_thread::LOCK_rpl_thread |
2030 | locked. Exception is if we were killed, in which case NULL is returned. |
2031 | |
2032 | The *did_enter_cond flag is set true if we had to wait for a worker thread |
2033 | to become free (with mysql_cond_wait()). If so, old_stage will also be set, |
2034 | and the LOCK_rpl_thread must be released with THD::EXIT_COND() instead |
2035 | of mysql_mutex_unlock. |
2036 | |
2037 | If the flag `reuse' is set, the last worker thread will be returned again, |
2038 | if it is still available. Otherwise a new worker thread is allocated. |
2039 | */ |
2040 | rpl_parallel_thread * |
2041 | rpl_parallel_entry::choose_thread(rpl_group_info *rgi, bool *did_enter_cond, |
2042 | PSI_stage_info *old_stage, bool reuse) |
2043 | { |
2044 | uint32 idx; |
2045 | Relay_log_info *rli= rgi->rli; |
2046 | rpl_parallel_thread *thr; |
2047 | |
2048 | idx= rpl_thread_idx; |
2049 | if (!reuse) |
2050 | { |
2051 | ++idx; |
2052 | if (idx >= rpl_thread_max) |
2053 | idx= 0; |
2054 | rpl_thread_idx= idx; |
2055 | } |
2056 | thr= rpl_threads[idx]; |
2057 | if (thr) |
2058 | { |
2059 | *did_enter_cond= false; |
2060 | mysql_mutex_lock(&thr->LOCK_rpl_thread); |
2061 | for (;;) |
2062 | { |
2063 | if (thr->current_owner != &rpl_threads[idx]) |
2064 | { |
2065 | /* |
2066 | The worker thread became idle, and returned to the free list and |
2067 | possibly was allocated to a different request. So we should allocate |
2068 | a new worker thread. |
2069 | */ |
2070 | unlock_or_exit_cond(rli->sql_driver_thd, &thr->LOCK_rpl_thread, |
2071 | did_enter_cond, old_stage); |
2072 | thr= NULL; |
2073 | break; |
2074 | } |
2075 | else if (thr->queued_size <= opt_slave_parallel_max_queued) |
2076 | { |
2077 | /* The thread is ready to queue into. */ |
2078 | break; |
2079 | } |
2080 | else if (unlikely(rli->sql_driver_thd->check_killed())) |
2081 | { |
2082 | unlock_or_exit_cond(rli->sql_driver_thd, &thr->LOCK_rpl_thread, |
2083 | did_enter_cond, old_stage); |
2084 | my_error(ER_CONNECTION_KILLED, MYF(0)); |
2085 | DBUG_EXECUTE_IF("rpl_parallel_wait_queue_max" , |
2086 | { |
2087 | debug_sync_set_action(rli->sql_driver_thd, |
2088 | STRING_WITH_LEN("now SIGNAL wait_queue_killed" )); |
2089 | };); |
2090 | slave_output_error_info(rgi, rli->sql_driver_thd); |
2091 | return NULL; |
2092 | } |
2093 | else |
2094 | { |
2095 | /* |
2096 | We have reached the limit of how much memory we are allowed to use |
2097 | for queuing events, so wait for the thread to consume some of its |
2098 | queue. |
2099 | */ |
2100 | if (!*did_enter_cond) |
2101 | { |
2102 | /* |
2103 | We need to do the debug_sync before ENTER_COND(). |
2104 | Because debug_sync changes the thd->mysys_var->current_mutex, |
2105 | and this can cause THD::awake to use the wrong mutex. |
2106 | */ |
2107 | DBUG_EXECUTE_IF("rpl_parallel_wait_queue_max" , |
2108 | { |
2109 | debug_sync_set_action(rli->sql_driver_thd, |
2110 | STRING_WITH_LEN("now SIGNAL wait_queue_ready" )); |
2111 | };); |
2112 | rli->sql_driver_thd->ENTER_COND(&thr->COND_rpl_thread_queue, |
2113 | &thr->LOCK_rpl_thread, |
2114 | &stage_waiting_for_room_in_worker_thread, |
2115 | old_stage); |
2116 | *did_enter_cond= true; |
2117 | } |
2118 | mysql_cond_wait(&thr->COND_rpl_thread_queue, &thr->LOCK_rpl_thread); |
2119 | } |
2120 | } |
2121 | } |
2122 | if (!thr) |
2123 | rpl_threads[idx]= thr= global_rpl_thread_pool.get_thread(&rpl_threads[idx], |
2124 | this); |
2125 | |
2126 | return thr; |
2127 | } |
2128 | |
2129 | static void |
2130 | free_rpl_parallel_entry(void *element) |
2131 | { |
2132 | rpl_parallel_entry *e= (rpl_parallel_entry *)element; |
2133 | while (e->current_gco) |
2134 | { |
2135 | group_commit_orderer *prev_gco= e->current_gco->prev_gco; |
2136 | dealloc_gco(e->current_gco); |
2137 | e->current_gco= prev_gco; |
2138 | } |
2139 | mysql_cond_destroy(&e->COND_parallel_entry); |
2140 | mysql_mutex_destroy(&e->LOCK_parallel_entry); |
2141 | my_free(e); |
2142 | } |
2143 | |
2144 | |
2145 | rpl_parallel::rpl_parallel() : |
2146 | current(NULL), sql_thread_stopping(false) |
2147 | { |
2148 | my_hash_init(&domain_hash, &my_charset_bin, 32, |
2149 | offsetof(rpl_parallel_entry, domain_id), sizeof(uint32), |
2150 | NULL, free_rpl_parallel_entry, HASH_UNIQUE); |
2151 | } |
2152 | |
2153 | |
2154 | void |
2155 | rpl_parallel::reset() |
2156 | { |
2157 | my_hash_reset(&domain_hash); |
2158 | current= NULL; |
2159 | sql_thread_stopping= false; |
2160 | } |
2161 | |
2162 | |
2163 | rpl_parallel::~rpl_parallel() |
2164 | { |
2165 | my_hash_free(&domain_hash); |
2166 | } |
2167 | |
2168 | |
2169 | rpl_parallel_entry * |
2170 | rpl_parallel::find(uint32 domain_id) |
2171 | { |
2172 | struct rpl_parallel_entry *e; |
2173 | |
2174 | if (!(e= (rpl_parallel_entry *)my_hash_search(&domain_hash, |
2175 | (const uchar *)&domain_id, 0))) |
2176 | { |
2177 | /* Allocate a new, empty one. */ |
2178 | ulong count= opt_slave_domain_parallel_threads; |
2179 | if (count == 0 || count > opt_slave_parallel_threads) |
2180 | count= opt_slave_parallel_threads; |
2181 | rpl_parallel_thread **p; |
2182 | if (!my_multi_malloc(MYF(MY_WME|MY_ZEROFILL), |
2183 | &e, sizeof(*e), |
2184 | &p, count*sizeof(*p), |
2185 | NULL)) |
2186 | { |
2187 | my_error(ER_OUTOFMEMORY, MYF(0), (int)(sizeof(*e)+count*sizeof(*p))); |
2188 | return NULL; |
2189 | } |
2190 | e->rpl_threads= p; |
2191 | e->rpl_thread_max= count; |
2192 | e->domain_id= domain_id; |
2193 | e->stop_on_error_sub_id= (uint64)ULONGLONG_MAX; |
2194 | e->pause_sub_id= (uint64)ULONGLONG_MAX; |
2195 | if (my_hash_insert(&domain_hash, (uchar *)e)) |
2196 | { |
2197 | my_free(e); |
2198 | return NULL; |
2199 | } |
2200 | mysql_mutex_init(key_LOCK_parallel_entry, &e->LOCK_parallel_entry, |
2201 | MY_MUTEX_INIT_FAST); |
2202 | mysql_cond_init(key_COND_parallel_entry, &e->COND_parallel_entry, NULL); |
2203 | } |
2204 | else |
2205 | e->force_abort= false; |
2206 | |
2207 | return e; |
2208 | } |
2209 | |
2210 | /** |
2211 | Wait until all sql worker threads has stopped processing |
2212 | |
2213 | This is called when sql thread has been killed/stopped |
2214 | */ |
2215 | |
2216 | void |
2217 | rpl_parallel::wait_for_done(THD *thd, Relay_log_info *rli) |
2218 | { |
2219 | struct rpl_parallel_entry *e; |
2220 | rpl_parallel_thread *rpt; |
2221 | uint32 i, j; |
2222 | |
2223 | /* |
2224 | First signal all workers that they must force quit; no more events will |
2225 | be queued to complete any partial event groups executed. |
2226 | */ |
2227 | for (i= 0; i < domain_hash.records; ++i) |
2228 | { |
2229 | e= (struct rpl_parallel_entry *)my_hash_element(&domain_hash, i); |
2230 | mysql_mutex_lock(&e->LOCK_parallel_entry); |
2231 | /* |
2232 | We want the worker threads to stop as quickly as is safe. If the slave |
2233 | SQL threads are behind, we could have significant amount of events |
2234 | queued for the workers, and we want to stop without waiting for them |
2235 | all to be applied first. But if any event group has already started |
2236 | executing in a worker, we want to be sure that all prior event groups |
2237 | are also executed, so that we stop at a consistent point in the binlog |
2238 | stream (per replication domain). |
2239 | |
2240 | All event groups wait for e->count_committing_event_groups to reach |
2241 | the value of group_commit_orderer::wait_count before starting to |
2242 | execute. Thus, at this point we know that any event group with a |
2243 | strictly larger wait_count are safe to skip, none of them can have |
2244 | started executing yet. So we set e->stop_count here and use it to |
2245 | decide in the worker threads whether to continue executing an event |
2246 | group or whether to skip it, when force_abort is set. |
2247 | |
2248 | If we stop due to reaching the START SLAVE UNTIL condition, then we |
2249 | need to continue executing any queued events up to that point. |
2250 | */ |
2251 | e->force_abort= true; |
2252 | e->stop_count= rli->stop_for_until ? |
2253 | e->count_queued_event_groups : e->count_committing_event_groups; |
2254 | mysql_mutex_unlock(&e->LOCK_parallel_entry); |
2255 | for (j= 0; j < e->rpl_thread_max; ++j) |
2256 | { |
2257 | if ((rpt= e->rpl_threads[j])) |
2258 | { |
2259 | mysql_mutex_lock(&rpt->LOCK_rpl_thread); |
2260 | if (rpt->current_owner == &e->rpl_threads[j]) |
2261 | mysql_cond_signal(&rpt->COND_rpl_thread); |
2262 | mysql_mutex_unlock(&rpt->LOCK_rpl_thread); |
2263 | } |
2264 | } |
2265 | } |
2266 | DBUG_EXECUTE_IF("rpl_parallel_wait_for_done_trigger" , |
2267 | { |
2268 | debug_sync_set_action(thd, |
2269 | STRING_WITH_LEN("now SIGNAL wait_for_done_waiting" )); |
2270 | };); |
2271 | |
2272 | for (i= 0; i < domain_hash.records; ++i) |
2273 | { |
2274 | e= (struct rpl_parallel_entry *)my_hash_element(&domain_hash, i); |
2275 | for (j= 0; j < e->rpl_thread_max; ++j) |
2276 | { |
2277 | if ((rpt= e->rpl_threads[j])) |
2278 | { |
2279 | mysql_mutex_lock(&rpt->LOCK_rpl_thread); |
2280 | while (rpt->current_owner == &e->rpl_threads[j]) |
2281 | mysql_cond_wait(&rpt->COND_rpl_thread_stop, &rpt->LOCK_rpl_thread); |
2282 | mysql_mutex_unlock(&rpt->LOCK_rpl_thread); |
2283 | } |
2284 | } |
2285 | } |
2286 | } |
2287 | |
2288 | |
2289 | /* |
2290 | This function handles the case where the SQL driver thread reached the |
2291 | START SLAVE UNTIL position; we stop queueing more events but continue |
2292 | processing remaining, already queued events; then use executes manual |
2293 | STOP SLAVE; then this function signals to worker threads that they |
2294 | should stop the processing of any remaining queued events. |
2295 | */ |
2296 | void |
2297 | rpl_parallel::stop_during_until() |
2298 | { |
2299 | struct rpl_parallel_entry *e; |
2300 | uint32 i; |
2301 | |
2302 | for (i= 0; i < domain_hash.records; ++i) |
2303 | { |
2304 | e= (struct rpl_parallel_entry *)my_hash_element(&domain_hash, i); |
2305 | mysql_mutex_lock(&e->LOCK_parallel_entry); |
2306 | if (e->force_abort) |
2307 | e->stop_count= e->count_committing_event_groups; |
2308 | mysql_mutex_unlock(&e->LOCK_parallel_entry); |
2309 | } |
2310 | } |
2311 | |
2312 | |
2313 | bool |
2314 | rpl_parallel::workers_idle() |
2315 | { |
2316 | struct rpl_parallel_entry *e; |
2317 | uint32 i, max_i; |
2318 | |
2319 | max_i= domain_hash.records; |
2320 | for (i= 0; i < max_i; ++i) |
2321 | { |
2322 | bool active; |
2323 | e= (struct rpl_parallel_entry *)my_hash_element(&domain_hash, i); |
2324 | mysql_mutex_lock(&e->LOCK_parallel_entry); |
2325 | active= e->current_sub_id > e->last_committed_sub_id; |
2326 | mysql_mutex_unlock(&e->LOCK_parallel_entry); |
2327 | if (active) |
2328 | break; |
2329 | } |
2330 | return (i == max_i); |
2331 | } |
2332 | |
2333 | |
2334 | int |
2335 | rpl_parallel_entry::queue_master_restart(rpl_group_info *rgi, |
2336 | Format_description_log_event *fdev) |
2337 | { |
2338 | uint32 idx; |
2339 | rpl_parallel_thread *thr; |
2340 | rpl_parallel_thread::queued_event *qev; |
2341 | Relay_log_info *rli= rgi->rli; |
2342 | |
2343 | /* |
2344 | We only need to queue the server restart if we still have a thread working |
2345 | on a (potentially partial) event group. |
2346 | |
2347 | If the last thread we queued for has finished, then it cannot have any |
2348 | partial event group that needs aborting. |
2349 | |
2350 | Thus there is no need for the full complexity of choose_thread(). We only |
2351 | need to check if we have a current worker thread, and queue for it if so. |
2352 | */ |
2353 | idx= rpl_thread_idx; |
2354 | thr= rpl_threads[idx]; |
2355 | if (!thr) |
2356 | return 0; |
2357 | mysql_mutex_lock(&thr->LOCK_rpl_thread); |
2358 | if (thr->current_owner != &rpl_threads[idx]) |
2359 | { |
2360 | /* No active worker thread, so no need to queue the master restart. */ |
2361 | mysql_mutex_unlock(&thr->LOCK_rpl_thread); |
2362 | return 0; |
2363 | } |
2364 | |
2365 | if (!(qev= thr->get_qev(fdev, 0, rli))) |
2366 | { |
2367 | mysql_mutex_unlock(&thr->LOCK_rpl_thread); |
2368 | return 1; |
2369 | } |
2370 | |
2371 | qev->rgi= rgi; |
2372 | qev->typ= rpl_parallel_thread::queued_event::QUEUED_MASTER_RESTART; |
2373 | qev->entry_for_queued= this; |
2374 | qev->ir= rli->last_inuse_relaylog; |
2375 | ++qev->ir->queued_count; |
2376 | thr->enqueue(qev); |
2377 | mysql_cond_signal(&thr->COND_rpl_thread); |
2378 | mysql_mutex_unlock(&thr->LOCK_rpl_thread); |
2379 | return 0; |
2380 | } |
2381 | |
2382 | |
2383 | int |
2384 | rpl_parallel::wait_for_workers_idle(THD *thd) |
2385 | { |
2386 | uint32 i, max_i; |
2387 | |
2388 | /* |
2389 | The domain_hash is only accessed by the SQL driver thread, so it is safe |
2390 | to iterate over without a lock. |
2391 | */ |
2392 | max_i= domain_hash.records; |
2393 | for (i= 0; i < max_i; ++i) |
2394 | { |
2395 | PSI_stage_info old_stage; |
2396 | struct rpl_parallel_entry *e; |
2397 | int err= 0; |
2398 | |
2399 | e= (struct rpl_parallel_entry *)my_hash_element(&domain_hash, i); |
2400 | mysql_mutex_lock(&e->LOCK_parallel_entry); |
2401 | ++e->need_sub_id_signal; |
2402 | thd->ENTER_COND(&e->COND_parallel_entry, &e->LOCK_parallel_entry, |
2403 | &stage_waiting_for_workers_idle, &old_stage); |
2404 | while (e->current_sub_id > e->last_committed_sub_id) |
2405 | { |
2406 | if (unlikely(thd->check_killed())) |
2407 | { |
2408 | thd->send_kill_message(); |
2409 | err= 1; |
2410 | break; |
2411 | } |
2412 | mysql_cond_wait(&e->COND_parallel_entry, &e->LOCK_parallel_entry); |
2413 | } |
2414 | --e->need_sub_id_signal; |
2415 | thd->EXIT_COND(&old_stage); |
2416 | if (err) |
2417 | return err; |
2418 | } |
2419 | return 0; |
2420 | } |
2421 | |
2422 | |
2423 | /* |
2424 | Handle seeing a GTID during slave restart in GTID mode. If we stopped with |
2425 | different replication domains having reached different positions in the relay |
2426 | log, we need to skip event groups in domains that are further progressed. |
2427 | |
2428 | Updates the state with the seen GTID, and returns true if this GTID should |
2429 | be skipped, false otherwise. |
2430 | */ |
2431 | bool |
2432 | process_gtid_for_restart_pos(Relay_log_info *rli, rpl_gtid *gtid) |
2433 | { |
2434 | slave_connection_state::entry *gtid_entry; |
2435 | slave_connection_state *state= &rli->restart_gtid_pos; |
2436 | |
2437 | if (likely(state->count() == 0) || |
2438 | !(gtid_entry= state->find_entry(gtid->domain_id))) |
2439 | return false; |
2440 | if (gtid->server_id == gtid_entry->gtid.server_id) |
2441 | { |
2442 | uint64 seq_no= gtid_entry->gtid.seq_no; |
2443 | if (gtid->seq_no >= seq_no) |
2444 | { |
2445 | /* |
2446 | This domain has reached its start position. So remove it, so that |
2447 | further events will be processed normally. |
2448 | */ |
2449 | state->remove(>id_entry->gtid); |
2450 | } |
2451 | return gtid->seq_no <= seq_no; |
2452 | } |
2453 | else |
2454 | return true; |
2455 | } |
2456 | |
2457 | |
2458 | /* |
2459 | This is used when we get an error during processing in do_event(); |
2460 | We will not queue any event to the thread, but we still need to wake it up |
2461 | to be sure that it will be returned to the pool. |
2462 | */ |
2463 | static void |
2464 | abandon_worker_thread(THD *thd, rpl_parallel_thread *cur_thread, |
2465 | bool *did_enter_cond, PSI_stage_info *old_stage) |
2466 | { |
2467 | unlock_or_exit_cond(thd, &cur_thread->LOCK_rpl_thread, |
2468 | did_enter_cond, old_stage); |
2469 | mysql_cond_signal(&cur_thread->COND_rpl_thread); |
2470 | } |
2471 | |
2472 | |
2473 | /* |
2474 | do_event() is executed by the sql_driver_thd thread. |
2475 | It's main purpose is to find a thread that can execute the query. |
2476 | |
2477 | @retval 0 ok, event was accepted |
2478 | @retval 1 error |
2479 | @retval -1 event should be executed serially, in the sql driver thread |
2480 | */ |
2481 | |
2482 | int |
2483 | rpl_parallel::do_event(rpl_group_info *serial_rgi, Log_event *ev, |
2484 | ulonglong event_size) |
2485 | { |
2486 | rpl_parallel_entry *e; |
2487 | rpl_parallel_thread *cur_thread; |
2488 | rpl_parallel_thread::queued_event *qev; |
2489 | rpl_group_info *rgi= NULL; |
2490 | Relay_log_info *rli= serial_rgi->rli; |
2491 | enum Log_event_type typ; |
2492 | bool is_group_event; |
2493 | bool did_enter_cond= false; |
2494 | PSI_stage_info old_stage; |
2495 | |
2496 | DBUG_EXECUTE_IF("slave_crash_if_parallel_apply" , DBUG_SUICIDE();); |
2497 | /* Handle master log name change, seen in Rotate_log_event. */ |
2498 | typ= ev->get_type_code(); |
2499 | if (unlikely(typ == ROTATE_EVENT)) |
2500 | { |
2501 | Rotate_log_event *rev= static_cast<Rotate_log_event *>(ev); |
2502 | if ((rev->server_id != global_system_variables.server_id || |
2503 | rli->replicate_same_server_id) && |
2504 | !rev->is_relay_log_event() && |
2505 | !rli->is_in_group()) |
2506 | { |
2507 | memcpy(rli->future_event_master_log_name, |
2508 | rev->new_log_ident, rev->ident_len+1); |
2509 | rli->notify_group_master_log_name_update(); |
2510 | } |
2511 | } |
2512 | |
2513 | /* |
2514 | Execute queries non-parallel if slave_skip_counter is set, as it's is |
2515 | easier to skip queries in single threaded mode. |
2516 | */ |
2517 | if (rli->slave_skip_counter) |
2518 | return -1; |
2519 | |
2520 | /* Execute pre-10.0 event, which have no GTID, in single-threaded mode. */ |
2521 | is_group_event= Log_event::is_group_event(typ); |
2522 | if (unlikely(!current) && typ != GTID_EVENT && |
2523 | !(unlikely(rli->gtid_skip_flag != GTID_SKIP_NOT) && is_group_event)) |
2524 | return -1; |
2525 | |
2526 | /* Note: rli->data_lock is released by sql_delay_event(). */ |
2527 | if (sql_delay_event(ev, rli->sql_driver_thd, serial_rgi)) |
2528 | { |
2529 | /* |
2530 | If sql_delay_event() returns non-zero, it means that the wait timed out |
2531 | due to slave stop. We should not queue the event in this case, it must |
2532 | not be applied yet. |
2533 | */ |
2534 | delete ev; |
2535 | return 1; |
2536 | } |
2537 | |
2538 | if (unlikely(typ == FORMAT_DESCRIPTION_EVENT)) |
2539 | { |
2540 | Format_description_log_event *fdev= |
2541 | static_cast<Format_description_log_event *>(ev); |
2542 | if (fdev->created) |
2543 | { |
2544 | /* |
2545 | This format description event marks a new binlog after a master server |
2546 | restart. We are going to close all temporary tables to clean up any |
2547 | possible left-overs after a prior master crash. |
2548 | |
2549 | Thus we need to wait for all prior events to execute to completion, |
2550 | in case they need access to any of the temporary tables. |
2551 | |
2552 | We also need to notify the worker thread running the prior incomplete |
2553 | event group (if any), as such event group signifies an incompletely |
2554 | written group cut short by a master crash, and must be rolled back. |
2555 | */ |
2556 | if (current->queue_master_restart(serial_rgi, fdev) || |
2557 | wait_for_workers_idle(rli->sql_driver_thd)) |
2558 | { |
2559 | delete ev; |
2560 | return 1; |
2561 | } |
2562 | } |
2563 | } |
2564 | else if (unlikely(typ == GTID_LIST_EVENT)) |
2565 | { |
2566 | Gtid_list_log_event *glev= static_cast<Gtid_list_log_event *>(ev); |
2567 | rpl_gtid *list= glev->list; |
2568 | uint32 count= glev->count; |
2569 | rli->update_relay_log_state(list, count); |
2570 | while (count) |
2571 | { |
2572 | process_gtid_for_restart_pos(rli, list); |
2573 | ++list; |
2574 | --count; |
2575 | } |
2576 | } |
2577 | |
2578 | /* |
2579 | Stop queueing additional event groups once the SQL thread is requested to |
2580 | stop. |
2581 | |
2582 | We have to queue any remaining events of any event group that has already |
2583 | been partially queued, but after that we will just ignore any further |
2584 | events the SQL driver thread may try to queue, and eventually it will stop. |
2585 | */ |
2586 | if ((typ == GTID_EVENT || !is_group_event) && rli->abort_slave) |
2587 | sql_thread_stopping= true; |
2588 | if (sql_thread_stopping) |
2589 | { |
2590 | delete ev; |
2591 | /* |
2592 | Return "no error"; normal stop is not an error, and otherwise the error |
2593 | has already been recorded. |
2594 | */ |
2595 | return 0; |
2596 | } |
2597 | |
2598 | if (unlikely(rli->gtid_skip_flag != GTID_SKIP_NOT) && is_group_event) |
2599 | { |
2600 | if (typ == GTID_EVENT) |
2601 | rli->gtid_skip_flag= GTID_SKIP_NOT; |
2602 | else |
2603 | { |
2604 | if (rli->gtid_skip_flag == GTID_SKIP_STANDALONE) |
2605 | { |
2606 | if (!Log_event::is_part_of_group(typ)) |
2607 | rli->gtid_skip_flag= GTID_SKIP_NOT; |
2608 | } |
2609 | else |
2610 | { |
2611 | DBUG_ASSERT(rli->gtid_skip_flag == GTID_SKIP_TRANSACTION); |
2612 | if (typ == XID_EVENT || |
2613 | (typ == QUERY_EVENT && // COMMIT/ROLLBACK are never compressed |
2614 | (((Query_log_event *)ev)->is_commit() || |
2615 | ((Query_log_event *)ev)->is_rollback()))) |
2616 | rli->gtid_skip_flag= GTID_SKIP_NOT; |
2617 | } |
2618 | delete_or_keep_event_post_apply(serial_rgi, typ, ev); |
2619 | return 0; |
2620 | } |
2621 | } |
2622 | |
2623 | if (typ == GTID_EVENT) |
2624 | { |
2625 | rpl_gtid gtid; |
2626 | Gtid_log_event *gtid_ev= static_cast<Gtid_log_event *>(ev); |
2627 | uint32 domain_id= (rli->mi->using_gtid == Master_info::USE_GTID_NO || |
2628 | rli->mi->parallel_mode <= SLAVE_PARALLEL_MINIMAL ? |
2629 | 0 : gtid_ev->domain_id); |
2630 | if (!(e= find(domain_id))) |
2631 | { |
2632 | my_error(ER_OUT_OF_RESOURCES, MYF(MY_WME)); |
2633 | delete ev; |
2634 | return 1; |
2635 | } |
2636 | current= e; |
2637 | |
2638 | gtid.domain_id= gtid_ev->domain_id; |
2639 | gtid.server_id= gtid_ev->server_id; |
2640 | gtid.seq_no= gtid_ev->seq_no; |
2641 | rli->update_relay_log_state(>id, 1); |
2642 | if (process_gtid_for_restart_pos(rli, >id)) |
2643 | { |
2644 | /* |
2645 | This domain has progressed further into the relay log before the last |
2646 | SQL thread restart. So we need to skip this event group to not doubly |
2647 | apply it. |
2648 | */ |
2649 | rli->gtid_skip_flag= ((gtid_ev->flags2 & Gtid_log_event::FL_STANDALONE) ? |
2650 | GTID_SKIP_STANDALONE : GTID_SKIP_TRANSACTION); |
2651 | delete_or_keep_event_post_apply(serial_rgi, typ, ev); |
2652 | return 0; |
2653 | } |
2654 | } |
2655 | else |
2656 | e= current; |
2657 | |
2658 | /* |
2659 | Find a worker thread to queue the event for. |
2660 | Prefer a new thread, so we maximise parallelism (at least for the group |
2661 | commit). But do not exceed a limit of --slave-domain-parallel-threads; |
2662 | instead re-use a thread that we queued for previously. |
2663 | */ |
2664 | cur_thread= |
2665 | e->choose_thread(serial_rgi, &did_enter_cond, &old_stage, |
2666 | typ != GTID_EVENT); |
2667 | if (!cur_thread) |
2668 | { |
2669 | /* This means we were killed. The error is already signalled. */ |
2670 | delete ev; |
2671 | return 1; |
2672 | } |
2673 | |
2674 | if (!(qev= cur_thread->get_qev(ev, event_size, rli))) |
2675 | { |
2676 | abandon_worker_thread(rli->sql_driver_thd, cur_thread, |
2677 | &did_enter_cond, &old_stage); |
2678 | delete ev; |
2679 | return 1; |
2680 | } |
2681 | |
2682 | if (typ == GTID_EVENT) |
2683 | { |
2684 | Gtid_log_event *gtid_ev= static_cast<Gtid_log_event *>(ev); |
2685 | bool new_gco; |
2686 | enum_slave_parallel_mode mode= rli->mi->parallel_mode; |
2687 | uchar gtid_flags= gtid_ev->flags2; |
2688 | group_commit_orderer *gco; |
2689 | uint8 force_switch_flag; |
2690 | enum rpl_group_info::enum_speculation speculation; |
2691 | |
2692 | if (!(rgi= cur_thread->get_rgi(rli, gtid_ev, e, event_size))) |
2693 | { |
2694 | cur_thread->free_qev(qev); |
2695 | abandon_worker_thread(rli->sql_driver_thd, cur_thread, |
2696 | &did_enter_cond, &old_stage); |
2697 | delete ev; |
2698 | return 1; |
2699 | } |
2700 | |
2701 | /* |
2702 | We queue the event group in a new worker thread, to run in parallel |
2703 | with previous groups. |
2704 | |
2705 | To preserve commit order within the replication domain, we set up |
2706 | rgi->wait_commit_sub_id to make the new group commit only after the |
2707 | previous group has committed. |
2708 | |
2709 | Event groups that group-committed together on the master can be run |
2710 | in parallel with each other without restrictions. But one batch of |
2711 | group-commits may not start before all groups in the previous batch |
2712 | have initiated their commit phase; we set up rgi->gco to ensure that. |
2713 | */ |
2714 | rgi->wait_commit_sub_id= e->current_sub_id; |
2715 | rgi->wait_commit_group_info= e->current_group_info; |
2716 | |
2717 | speculation= rpl_group_info::SPECULATE_NO; |
2718 | new_gco= true; |
2719 | force_switch_flag= 0; |
2720 | gco= e->current_gco; |
2721 | if (likely(gco)) |
2722 | { |
2723 | uint8 flags= gco->flags; |
2724 | |
2725 | if (mode <= SLAVE_PARALLEL_MINIMAL || |
2726 | !(gtid_flags & Gtid_log_event::FL_GROUP_COMMIT_ID) || |
2727 | e->last_commit_id != gtid_ev->commit_id) |
2728 | flags|= group_commit_orderer::MULTI_BATCH; |
2729 | /* Make sure we do not attempt to run DDL in parallel speculatively. */ |
2730 | if (gtid_flags & Gtid_log_event::FL_DDL) |
2731 | flags|= (force_switch_flag= group_commit_orderer::FORCE_SWITCH); |
2732 | |
2733 | if (!(flags & group_commit_orderer::MULTI_BATCH)) |
2734 | { |
2735 | /* |
2736 | Still the same batch of event groups that group-committed together |
2737 | on the master, so we can run in parallel. |
2738 | */ |
2739 | new_gco= false; |
2740 | } |
2741 | else if ((mode >= SLAVE_PARALLEL_OPTIMISTIC) && |
2742 | !(flags & group_commit_orderer::FORCE_SWITCH)) |
2743 | { |
2744 | /* |
2745 | In transactional parallel mode, we optimistically attempt to run |
2746 | non-DDL in parallel. In case of conflicts, we catch the conflict as |
2747 | a deadlock or other error, roll back and retry serially. |
2748 | |
2749 | The assumption is that only a few event groups will be |
2750 | non-transactional or otherwise unsuitable for parallel apply. Those |
2751 | transactions are still scheduled in parallel, but we set a flag that |
2752 | will make the worker thread wait for everything before to complete |
2753 | before starting. |
2754 | */ |
2755 | new_gco= false; |
2756 | if (!(gtid_flags & Gtid_log_event::FL_TRANSACTIONAL) || |
2757 | ( (!(gtid_flags & Gtid_log_event::FL_ALLOW_PARALLEL) || |
2758 | (gtid_flags & Gtid_log_event::FL_WAITED)) && |
2759 | (mode < SLAVE_PARALLEL_AGGRESSIVE))) |
2760 | { |
2761 | /* |
2762 | This transaction should not be speculatively run in parallel with |
2763 | what came before, either because it cannot safely be rolled back in |
2764 | case of a conflict, or because it was marked as likely to conflict |
2765 | and require expensive rollback and retry. |
2766 | |
2767 | Here we mark it as such, and then the worker thread will do a |
2768 | wait_for_prior_commit() before starting it. We do not introduce a |
2769 | new group_commit_orderer, since we still want following transactions |
2770 | to run in parallel with transactions prior to this one. |
2771 | */ |
2772 | speculation= rpl_group_info::SPECULATE_WAIT; |
2773 | } |
2774 | else |
2775 | speculation= rpl_group_info::SPECULATE_OPTIMISTIC; |
2776 | } |
2777 | gco->flags= flags; |
2778 | } |
2779 | else |
2780 | { |
2781 | if (gtid_flags & Gtid_log_event::FL_DDL) |
2782 | force_switch_flag= group_commit_orderer::FORCE_SWITCH; |
2783 | } |
2784 | rgi->speculation= speculation; |
2785 | |
2786 | if (gtid_flags & Gtid_log_event::FL_GROUP_COMMIT_ID) |
2787 | e->last_commit_id= gtid_ev->commit_id; |
2788 | else |
2789 | e->last_commit_id= 0; |
2790 | |
2791 | if (new_gco) |
2792 | { |
2793 | /* |
2794 | Do not run this event group in parallel with what came before; instead |
2795 | wait for everything prior to at least have started its commit phase, to |
2796 | avoid any risk of performing any conflicting action too early. |
2797 | |
2798 | Remember the count that marks the end of the previous batch of event |
2799 | groups that run in parallel, and allocate a new gco. |
2800 | */ |
2801 | uint64 count= e->count_queued_event_groups; |
2802 | |
2803 | if (!(gco= cur_thread->get_gco(count, gco, e->current_sub_id))) |
2804 | { |
2805 | cur_thread->free_rgi(rgi); |
2806 | cur_thread->free_qev(qev); |
2807 | abandon_worker_thread(rli->sql_driver_thd, cur_thread, |
2808 | &did_enter_cond, &old_stage); |
2809 | delete ev; |
2810 | return 1; |
2811 | } |
2812 | gco->flags|= force_switch_flag; |
2813 | e->current_gco= gco; |
2814 | } |
2815 | rgi->gco= gco; |
2816 | |
2817 | qev->rgi= e->current_group_info= rgi; |
2818 | e->current_sub_id= rgi->gtid_sub_id; |
2819 | ++e->count_queued_event_groups; |
2820 | } |
2821 | else if (!is_group_event) |
2822 | { |
2823 | int err; |
2824 | bool tmp; |
2825 | /* |
2826 | Events like ROTATE and FORMAT_DESCRIPTION. Do not run in worker thread. |
2827 | Same for events not preceeded by GTID (we should not see those normally, |
2828 | but they might be from an old master). |
2829 | */ |
2830 | qev->rgi= serial_rgi; |
2831 | |
2832 | tmp= serial_rgi->is_parallel_exec; |
2833 | serial_rgi->is_parallel_exec= true; |
2834 | err= rpt_handle_event(qev, NULL); |
2835 | serial_rgi->is_parallel_exec= tmp; |
2836 | if (ev->is_relay_log_event()) |
2837 | qev->future_event_master_log_pos= 0; |
2838 | else if (typ == ROTATE_EVENT) |
2839 | qev->future_event_master_log_pos= |
2840 | (static_cast<Rotate_log_event *>(ev))->pos; |
2841 | else |
2842 | qev->future_event_master_log_pos= ev->log_pos; |
2843 | delete_or_keep_event_post_apply(serial_rgi, typ, ev); |
2844 | |
2845 | if (err) |
2846 | { |
2847 | cur_thread->free_qev(qev); |
2848 | abandon_worker_thread(rli->sql_driver_thd, cur_thread, |
2849 | &did_enter_cond, &old_stage); |
2850 | return 1; |
2851 | } |
2852 | /* |
2853 | Queue a position update, so that the position will be updated in a |
2854 | reasonable way relative to other events: |
2855 | |
2856 | - If the currently executing events are queued serially for a single |
2857 | thread, the position will only be updated when everything before has |
2858 | completed. |
2859 | |
2860 | - If we are executing multiple independent events in parallel, then at |
2861 | least the position will not be updated until one of them has reached |
2862 | the current point. |
2863 | */ |
2864 | qev->typ= rpl_parallel_thread::queued_event::QUEUED_POS_UPDATE; |
2865 | qev->entry_for_queued= e; |
2866 | } |
2867 | else |
2868 | { |
2869 | qev->rgi= e->current_group_info; |
2870 | } |
2871 | |
2872 | /* |
2873 | Queue the event for processing. |
2874 | */ |
2875 | qev->ir= rli->last_inuse_relaylog; |
2876 | ++qev->ir->queued_count; |
2877 | cur_thread->enqueue(qev); |
2878 | unlock_or_exit_cond(rli->sql_driver_thd, &cur_thread->LOCK_rpl_thread, |
2879 | &did_enter_cond, &old_stage); |
2880 | mysql_cond_signal(&cur_thread->COND_rpl_thread); |
2881 | |
2882 | return 0; |
2883 | } |
2884 | |