1 | /* |
2 | Copyright (c) 2004, 2010, Oracle and/or its affiliates. |
3 | |
4 | This program is free software; you can redistribute it and/or modify |
5 | it under the terms of the GNU General Public License as published by |
6 | the Free Software Foundation; version 2 of the License. |
7 | |
8 | This program is distributed in the hope that it will be useful, |
9 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
10 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
11 | GNU General Public License for more details. |
12 | |
13 | You should have received a copy of the GNU General Public License |
14 | along with this program; if not, write to the Free Software |
15 | Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ |
16 | |
17 | /* |
18 | Most of the following code and structures were derived from |
19 | public domain code from ftp://elsie.nci.nih.gov/pub |
20 | (We will refer to this code as to elsie-code further.) |
21 | */ |
22 | |
23 | /* |
24 | We should not include sql_priv.h in mysql_tzinfo_to_sql utility since |
25 | it creates unsolved link dependencies on some platforms. |
26 | */ |
27 | |
28 | #ifdef USE_PRAGMA_IMPLEMENTATION |
29 | #pragma implementation // gcc: Class implementation |
30 | #endif |
31 | |
32 | #include "mariadb.h" |
33 | #if !defined(TZINFO2SQL) && !defined(TESTTIME) |
34 | #include "sql_priv.h" |
35 | #include "unireg.h" |
36 | #include "sql_time.h" // localtime_to_TIME |
37 | #include "sql_base.h" // open_system_tables_for_read, |
38 | // close_system_tables |
39 | #else |
40 | #include <my_time.h> |
41 | #include <my_sys.h> |
42 | #include <mysql_version.h> |
43 | #include <my_getopt.h> |
44 | #endif |
45 | |
46 | #include "tztime.h" |
47 | #include "tzfile.h" |
48 | #include <m_string.h> |
49 | #include <my_dir.h> |
50 | #include <mysql/psi/mysql_file.h> |
51 | #include "lock.h" // MYSQL_LOCK_IGNORE_FLUSH, |
52 | // MYSQL_LOCK_IGNORE_TIMEOUT |
53 | |
54 | /* |
55 | Now we don't use abbreviations in server but we will do this in future. |
56 | */ |
57 | #if defined(TZINFO2SQL) || defined(TESTTIME) |
58 | #define ABBR_ARE_USED |
59 | #else |
60 | #if !defined(DBUG_OFF) |
61 | /* Let use abbreviations for debug purposes */ |
62 | #undef ABBR_ARE_USED |
63 | #define ABBR_ARE_USED |
64 | #endif /* !defined(DBUG_OFF) */ |
65 | #endif /* defined(TZINFO2SQL) || defined(TESTTIME) */ |
66 | |
67 | #define PROGRAM_VERSION "1.1" |
68 | |
69 | /* Structure describing local time type (e.g. Moscow summer time (MSD)) */ |
70 | typedef struct ttinfo |
71 | { |
72 | long tt_gmtoff; // Offset from UTC in seconds |
73 | uint tt_isdst; // Is daylight saving time or not. Used to set tm_isdst |
74 | #ifdef ABBR_ARE_USED |
75 | uint tt_abbrind; // Index of start of abbreviation for this time type. |
76 | #endif |
77 | /* |
78 | We don't use tt_ttisstd and tt_ttisgmt members of original elsie-code |
79 | struct since we don't support POSIX-style TZ descriptions in variables. |
80 | */ |
81 | } TRAN_TYPE_INFO; |
82 | |
83 | /* Structure describing leap-second corrections. */ |
84 | typedef struct lsinfo |
85 | { |
86 | my_time_t ls_trans; // Transition time |
87 | long ls_corr; // Correction to apply |
88 | } LS_INFO; |
89 | |
90 | /* |
91 | Structure with information describing ranges of my_time_t shifted to local |
92 | time (my_time_t + offset). Used for local MYSQL_TIME -> my_time_t conversion. |
93 | See comments for TIME_to_gmt_sec() for more info. |
94 | */ |
95 | typedef struct revtinfo |
96 | { |
97 | long rt_offset; // Offset of local time from UTC in seconds |
98 | uint rt_type; // Type of period 0 - Normal period. 1 - Spring time-gap |
99 | } REVT_INFO; |
100 | |
101 | #ifdef TZNAME_MAX |
102 | #define MY_TZNAME_MAX TZNAME_MAX |
103 | #endif |
104 | #ifndef TZNAME_MAX |
105 | #define MY_TZNAME_MAX 255 |
106 | #endif |
107 | |
108 | /* |
109 | Structure which fully describes time zone which is |
110 | described in our db or in zoneinfo files. |
111 | */ |
112 | typedef struct st_time_zone_info |
113 | { |
114 | uint leapcnt; // Number of leap-second corrections |
115 | uint timecnt; // Number of transitions between time types |
116 | uint typecnt; // Number of local time types |
117 | uint charcnt; // Number of characters used for abbreviations |
118 | uint revcnt; // Number of transition descr. for TIME->my_time_t conversion |
119 | /* The following are dynamical arrays are allocated in MEM_ROOT */ |
120 | my_time_t *ats; // Times of transitions between time types |
121 | uchar *types; // Local time types for transitions |
122 | TRAN_TYPE_INFO *ttis; // Local time types descriptions |
123 | #ifdef ABBR_ARE_USED |
124 | /* Storage for local time types abbreviations. They are stored as ASCIIZ */ |
125 | char *chars; |
126 | #endif |
127 | /* |
128 | Leap seconds corrections descriptions, this array is shared by |
129 | all time zones who use leap seconds. |
130 | */ |
131 | LS_INFO *lsis; |
132 | /* |
133 | Starting points and descriptions of shifted my_time_t (my_time_t + offset) |
134 | ranges on which shifted my_time_t -> my_time_t mapping is linear or undefined. |
135 | Used for tm -> my_time_t conversion. |
136 | */ |
137 | my_time_t *revts; |
138 | REVT_INFO *revtis; |
139 | /* |
140 | Time type which is used for times smaller than first transition or if |
141 | there are no transitions at all. |
142 | */ |
143 | TRAN_TYPE_INFO *fallback_tti; |
144 | |
145 | } TIME_ZONE_INFO; |
146 | |
147 | |
148 | static my_bool prepare_tz_info(TIME_ZONE_INFO *sp, MEM_ROOT *storage); |
149 | |
150 | |
151 | #if defined(TZINFO2SQL) || defined(TESTTIME) |
152 | |
153 | /* |
154 | Load time zone description from zoneinfo (TZinfo) file. |
155 | |
156 | SYNOPSIS |
157 | tz_load() |
158 | name - path to zoneinfo file |
159 | sp - TIME_ZONE_INFO structure to fill |
160 | |
161 | RETURN VALUES |
162 | 0 - Ok |
163 | 1 - Error |
164 | */ |
165 | static my_bool |
166 | tz_load(const char *name, TIME_ZONE_INFO *sp, MEM_ROOT *storage) |
167 | { |
168 | uchar *p; |
169 | ssize_t read_from_file; |
170 | uint i; |
171 | MYSQL_FILE *file; |
172 | |
173 | if (!(file= mysql_file_fopen(0, name, O_RDONLY|O_BINARY, MYF(MY_WME)))) |
174 | return 1; |
175 | { |
176 | union |
177 | { |
178 | struct tzhead tzhead; |
179 | uchar buf[sizeof(struct tzhead) + sizeof(my_time_t) * TZ_MAX_TIMES + |
180 | TZ_MAX_TIMES + sizeof(TRAN_TYPE_INFO) * TZ_MAX_TYPES + |
181 | #ifdef ABBR_ARE_USED |
182 | MY_MAX(TZ_MAX_CHARS + 1, (2 * (MY_TZNAME_MAX + 1))) + |
183 | #endif |
184 | sizeof(LS_INFO) * TZ_MAX_LEAPS]; |
185 | } u; |
186 | uint ttisstdcnt; |
187 | uint ttisgmtcnt; |
188 | char *tzinfo_buf; |
189 | |
190 | read_from_file= (ssize_t)mysql_file_fread(file, u.buf, sizeof(u.buf), MYF(MY_WME)); |
191 | |
192 | if (mysql_file_fclose(file, MYF(MY_WME)) != 0) |
193 | return 1; |
194 | |
195 | if (read_from_file < (int)sizeof(struct tzhead)) |
196 | return 1; |
197 | |
198 | ttisstdcnt= int4net(u.tzhead.tzh_ttisgmtcnt); |
199 | ttisgmtcnt= int4net(u.tzhead.tzh_ttisstdcnt); |
200 | sp->leapcnt= int4net(u.tzhead.tzh_leapcnt); |
201 | sp->timecnt= int4net(u.tzhead.tzh_timecnt); |
202 | sp->typecnt= int4net(u.tzhead.tzh_typecnt); |
203 | sp->charcnt= int4net(u.tzhead.tzh_charcnt); |
204 | p= u.tzhead.tzh_charcnt + sizeof(u.tzhead.tzh_charcnt); |
205 | if (sp->leapcnt > TZ_MAX_LEAPS || |
206 | sp->typecnt == 0 || sp->typecnt > TZ_MAX_TYPES || |
207 | sp->timecnt > TZ_MAX_TIMES || |
208 | sp->charcnt > TZ_MAX_CHARS || |
209 | (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) || |
210 | (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0)) |
211 | return 1; |
212 | if ((uint)(read_from_file - (p - u.buf)) < |
213 | sp->timecnt * 4 + /* ats */ |
214 | sp->timecnt + /* types */ |
215 | sp->typecnt * (4 + 2) + /* ttinfos */ |
216 | sp->charcnt + /* chars */ |
217 | sp->leapcnt * (4 + 4) + /* lsinfos */ |
218 | ttisstdcnt + /* ttisstds */ |
219 | ttisgmtcnt) /* ttisgmts */ |
220 | return 1; |
221 | |
222 | if (!(tzinfo_buf= (char *)alloc_root(storage, |
223 | ALIGN_SIZE(sp->timecnt * |
224 | sizeof(my_time_t)) + |
225 | ALIGN_SIZE(sp->timecnt) + |
226 | ALIGN_SIZE(sp->typecnt * |
227 | sizeof(TRAN_TYPE_INFO)) + |
228 | #ifdef ABBR_ARE_USED |
229 | ALIGN_SIZE(sp->charcnt+1) + |
230 | #endif |
231 | sp->leapcnt * sizeof(LS_INFO)))) |
232 | return 1; |
233 | |
234 | sp->ats= (my_time_t *)tzinfo_buf; |
235 | tzinfo_buf+= ALIGN_SIZE(sp->timecnt * sizeof(my_time_t)); |
236 | sp->types= (uchar *)tzinfo_buf; |
237 | tzinfo_buf+= ALIGN_SIZE(sp->timecnt); |
238 | sp->ttis= (TRAN_TYPE_INFO *)tzinfo_buf; |
239 | tzinfo_buf+= ALIGN_SIZE(sp->typecnt * sizeof(TRAN_TYPE_INFO)); |
240 | #ifdef ABBR_ARE_USED |
241 | sp->chars= tzinfo_buf; |
242 | tzinfo_buf+= ALIGN_SIZE(sp->charcnt+1); |
243 | #endif |
244 | sp->lsis= (LS_INFO *)tzinfo_buf; |
245 | |
246 | for (i= 0; i < sp->timecnt; i++, p+= 4) |
247 | sp->ats[i]= int4net(p); |
248 | |
249 | for (i= 0; i < sp->timecnt; i++) |
250 | { |
251 | sp->types[i]= (uchar) *p++; |
252 | if (sp->types[i] >= sp->typecnt) |
253 | return 1; |
254 | } |
255 | for (i= 0; i < sp->typecnt; i++) |
256 | { |
257 | TRAN_TYPE_INFO * ttisp; |
258 | |
259 | ttisp= &sp->ttis[i]; |
260 | ttisp->tt_gmtoff= int4net(p); |
261 | p+= 4; |
262 | ttisp->tt_isdst= (uchar) *p++; |
263 | if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1) |
264 | return 1; |
265 | ttisp->tt_abbrind= (uchar) *p++; |
266 | if (ttisp->tt_abbrind > sp->charcnt) |
267 | return 1; |
268 | } |
269 | for (i= 0; i < sp->charcnt; i++) |
270 | sp->chars[i]= *p++; |
271 | sp->chars[i]= '\0'; /* ensure '\0' at end */ |
272 | for (i= 0; i < sp->leapcnt; i++) |
273 | { |
274 | LS_INFO *lsisp; |
275 | |
276 | lsisp= &sp->lsis[i]; |
277 | lsisp->ls_trans= int4net(p); |
278 | p+= 4; |
279 | lsisp->ls_corr= int4net(p); |
280 | p+= 4; |
281 | } |
282 | /* |
283 | Since we don't support POSIX style TZ definitions in variables we |
284 | don't read further like glibc or elsie code. |
285 | */ |
286 | } |
287 | |
288 | return prepare_tz_info(sp, storage); |
289 | } |
290 | #endif /* defined(TZINFO2SQL) || defined(TESTTIME) */ |
291 | |
292 | |
293 | /* |
294 | Finish preparation of time zone description for use in TIME_to_gmt_sec() |
295 | and gmt_sec_to_TIME() functions. |
296 | |
297 | SYNOPSIS |
298 | prepare_tz_info() |
299 | sp - pointer to time zone description |
300 | storage - pointer to MEM_ROOT where arrays for map allocated |
301 | |
302 | DESCRIPTION |
303 | First task of this function is to find fallback time type which will |
304 | be used if there are no transitions or we have moment in time before |
305 | any transitions. |
306 | Second task is to build "shifted my_time_t" -> my_time_t map used in |
307 | MYSQL_TIME -> my_time_t conversion. |
308 | Note: See description of TIME_to_gmt_sec() function first. |
309 | In order to perform MYSQL_TIME -> my_time_t conversion we need to build table |
310 | which defines "shifted by tz offset and leap seconds my_time_t" -> |
311 | my_time_t function which is almost the same (except ranges of ambiguity) |
312 | as reverse function to piecewise linear function used for my_time_t -> |
313 | "shifted my_time_t" conversion and which is also specified as table in |
314 | zoneinfo file or in our db (It is specified as start of time type ranges |
315 | and time type offsets). So basic idea is very simple - let us iterate |
316 | through my_time_t space from one point of discontinuity of my_time_t -> |
317 | "shifted my_time_t" function to another and build our approximation of |
318 | reverse function. (Actually we iterate through ranges on which |
319 | my_time_t -> "shifted my_time_t" is linear function). |
320 | |
321 | RETURN VALUES |
322 | 0 Ok |
323 | 1 Error |
324 | */ |
325 | static my_bool |
326 | prepare_tz_info(TIME_ZONE_INFO *sp, MEM_ROOT *storage) |
327 | { |
328 | my_time_t cur_t= MY_TIME_T_MIN; |
329 | my_time_t cur_l, end_t, UNINIT_VAR(end_l); |
330 | my_time_t cur_max_seen_l= MY_TIME_T_MIN; |
331 | long cur_offset, cur_corr, cur_off_and_corr; |
332 | uint next_trans_idx, next_leap_idx; |
333 | uint i; |
334 | /* |
335 | Temporary arrays where we will store tables. Needed because |
336 | we don't know table sizes ahead. (Well we can estimate their |
337 | upper bound but this will take extra space.) |
338 | */ |
339 | my_time_t revts[TZ_MAX_REV_RANGES]; |
340 | REVT_INFO revtis[TZ_MAX_REV_RANGES]; |
341 | |
342 | /* |
343 | Let us setup fallback time type which will be used if we have not any |
344 | transitions or if we have moment of time before first transition. |
345 | We will find first non-DST local time type and use it (or use first |
346 | local time type if all of them are DST types). |
347 | */ |
348 | for (i= 0; i < sp->typecnt && sp->ttis[i].tt_isdst; i++) |
349 | /* no-op */ ; |
350 | if (i == sp->typecnt) |
351 | i= 0; |
352 | sp->fallback_tti= &(sp->ttis[i]); |
353 | |
354 | |
355 | /* |
356 | Let us build shifted my_time_t -> my_time_t map. |
357 | */ |
358 | sp->revcnt= 0; |
359 | |
360 | /* Let us find initial offset */ |
361 | if (sp->timecnt == 0 || cur_t < sp->ats[0]) |
362 | { |
363 | /* |
364 | If we have not any transitions or t is before first transition we are using |
365 | already found fallback time type which index is already in i. |
366 | */ |
367 | next_trans_idx= 0; |
368 | } |
369 | else |
370 | { |
371 | /* cur_t == sp->ats[0] so we found transition */ |
372 | i= sp->types[0]; |
373 | next_trans_idx= 1; |
374 | } |
375 | |
376 | cur_offset= sp->ttis[i].tt_gmtoff; |
377 | |
378 | |
379 | /* let us find leap correction... unprobable, but... */ |
380 | for (next_leap_idx= 0; next_leap_idx < sp->leapcnt && |
381 | cur_t >= sp->lsis[next_leap_idx].ls_trans; |
382 | ++next_leap_idx) |
383 | continue; |
384 | |
385 | if (next_leap_idx > 0) |
386 | cur_corr= sp->lsis[next_leap_idx - 1].ls_corr; |
387 | else |
388 | cur_corr= 0; |
389 | |
390 | /* Iterate trough t space */ |
391 | while (sp->revcnt < TZ_MAX_REV_RANGES - 1) |
392 | { |
393 | cur_off_and_corr= cur_offset - cur_corr; |
394 | |
395 | /* |
396 | We assuming that cur_t could be only overflowed downwards, |
397 | we also assume that end_t won't be overflowed in this case. |
398 | */ |
399 | if (cur_off_and_corr < 0 && |
400 | cur_t < MY_TIME_T_MIN - cur_off_and_corr) |
401 | cur_t= MY_TIME_T_MIN - cur_off_and_corr; |
402 | |
403 | cur_l= cur_t + cur_off_and_corr; |
404 | |
405 | /* |
406 | Let us choose end_t as point before next time type change or leap |
407 | second correction. |
408 | */ |
409 | end_t= MY_MIN((next_trans_idx < sp->timecnt) ? sp->ats[next_trans_idx] - 1: |
410 | MY_TIME_T_MAX, |
411 | (next_leap_idx < sp->leapcnt) ? |
412 | sp->lsis[next_leap_idx].ls_trans - 1: MY_TIME_T_MAX); |
413 | /* |
414 | again assuming that end_t can be overlowed only in positive side |
415 | we also assume that end_t won't be overflowed in this case. |
416 | */ |
417 | if (cur_off_and_corr > 0 && |
418 | end_t > MY_TIME_T_MAX - cur_off_and_corr) |
419 | end_t= MY_TIME_T_MAX - cur_off_and_corr; |
420 | |
421 | end_l= end_t + cur_off_and_corr; |
422 | |
423 | |
424 | if (end_l > cur_max_seen_l) |
425 | { |
426 | /* We want special handling in the case of first range */ |
427 | if (cur_max_seen_l == MY_TIME_T_MIN) |
428 | { |
429 | revts[sp->revcnt]= cur_l; |
430 | revtis[sp->revcnt].rt_offset= cur_off_and_corr; |
431 | revtis[sp->revcnt].rt_type= 0; |
432 | sp->revcnt++; |
433 | cur_max_seen_l= end_l; |
434 | } |
435 | else |
436 | { |
437 | if (cur_l > cur_max_seen_l + 1) |
438 | { |
439 | /* We have a spring time-gap and we are not at the first range */ |
440 | revts[sp->revcnt]= cur_max_seen_l + 1; |
441 | revtis[sp->revcnt].rt_offset= revtis[sp->revcnt-1].rt_offset; |
442 | revtis[sp->revcnt].rt_type= 1; |
443 | sp->revcnt++; |
444 | if (sp->revcnt == TZ_MAX_TIMES + TZ_MAX_LEAPS + 1) |
445 | break; /* That was too much */ |
446 | cur_max_seen_l= cur_l - 1; |
447 | } |
448 | |
449 | /* Assume here end_l > cur_max_seen_l (because end_l>=cur_l) */ |
450 | |
451 | revts[sp->revcnt]= cur_max_seen_l + 1; |
452 | revtis[sp->revcnt].rt_offset= cur_off_and_corr; |
453 | revtis[sp->revcnt].rt_type= 0; |
454 | sp->revcnt++; |
455 | cur_max_seen_l= end_l; |
456 | } |
457 | } |
458 | |
459 | if (end_t == MY_TIME_T_MAX || |
460 | ((cur_off_and_corr > 0) && |
461 | (end_t >= MY_TIME_T_MAX - cur_off_and_corr))) |
462 | /* end of t space */ |
463 | break; |
464 | |
465 | cur_t= end_t + 1; |
466 | |
467 | /* |
468 | Let us find new offset and correction. Because of our choice of end_t |
469 | cur_t can only be point where new time type starts or/and leap |
470 | correction is performed. |
471 | */ |
472 | if (sp->timecnt != 0 && cur_t >= sp->ats[0]) /* else reuse old offset */ |
473 | if (next_trans_idx < sp->timecnt && |
474 | cur_t == sp->ats[next_trans_idx]) |
475 | { |
476 | /* We are at offset point */ |
477 | cur_offset= sp->ttis[sp->types[next_trans_idx]].tt_gmtoff; |
478 | ++next_trans_idx; |
479 | } |
480 | |
481 | if (next_leap_idx < sp->leapcnt && |
482 | cur_t == sp->lsis[next_leap_idx].ls_trans) |
483 | { |
484 | /* we are at leap point */ |
485 | cur_corr= sp->lsis[next_leap_idx].ls_corr; |
486 | ++next_leap_idx; |
487 | } |
488 | } |
489 | |
490 | /* check if we have had enough space */ |
491 | if (sp->revcnt == TZ_MAX_REV_RANGES - 1) |
492 | return 1; |
493 | |
494 | /* set maximum end_l as finisher */ |
495 | revts[sp->revcnt]= end_l; |
496 | |
497 | /* Allocate arrays of proper size in sp and copy result there */ |
498 | if (!(sp->revts= (my_time_t *)alloc_root(storage, |
499 | sizeof(my_time_t) * (sp->revcnt + 1))) || |
500 | !(sp->revtis= (REVT_INFO *)alloc_root(storage, |
501 | sizeof(REVT_INFO) * sp->revcnt))) |
502 | return 1; |
503 | |
504 | memcpy(sp->revts, revts, sizeof(my_time_t) * (sp->revcnt + 1)); |
505 | memcpy(sp->revtis, revtis, sizeof(REVT_INFO) * sp->revcnt); |
506 | |
507 | return 0; |
508 | } |
509 | |
510 | |
511 | #if !defined(TZINFO2SQL) |
512 | |
513 | static const uint mon_lengths[2][MONS_PER_YEAR]= |
514 | { |
515 | { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }, |
516 | { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 } |
517 | }; |
518 | |
519 | static const uint mon_starts[2][MONS_PER_YEAR]= |
520 | { |
521 | { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 }, |
522 | { 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335 } |
523 | }; |
524 | |
525 | static const uint year_lengths[2]= |
526 | { |
527 | DAYS_PER_NYEAR, DAYS_PER_LYEAR |
528 | }; |
529 | |
530 | #define LEAPS_THRU_END_OF(y) ((y) / 4 - (y) / 100 + (y) / 400) |
531 | |
532 | |
533 | /* |
534 | Converts time from my_time_t representation (seconds in UTC since Epoch) |
535 | to broken down representation using given local time zone offset. |
536 | |
537 | SYNOPSIS |
538 | sec_to_TIME() |
539 | tmp - pointer to structure for broken down representation |
540 | t - my_time_t value to be converted |
541 | offset - local time zone offset |
542 | |
543 | DESCRIPTION |
544 | Convert my_time_t with offset to MYSQL_TIME struct. Differs from timesub |
545 | (from elsie code) because doesn't contain any leap correction and |
546 | TM_GMTOFF and is_dst setting and contains some MySQL specific |
547 | initialization. Funny but with removing of these we almost have |
548 | glibc's offtime function. |
549 | */ |
550 | static void |
551 | sec_to_TIME(MYSQL_TIME * tmp, my_time_t t, long offset) |
552 | { |
553 | long days; |
554 | long rem; |
555 | int y; |
556 | int yleap; |
557 | const uint *ip; |
558 | |
559 | days= (long) (t / SECS_PER_DAY); |
560 | rem= (long) (t % SECS_PER_DAY); |
561 | |
562 | /* |
563 | We do this as separate step after dividing t, because this |
564 | allows us handle times near my_time_t bounds without overflows. |
565 | */ |
566 | rem+= offset; |
567 | while (rem < 0) |
568 | { |
569 | rem+= SECS_PER_DAY; |
570 | days--; |
571 | } |
572 | while (rem >= SECS_PER_DAY) |
573 | { |
574 | rem -= SECS_PER_DAY; |
575 | days++; |
576 | } |
577 | tmp->hour= (uint)(rem / SECS_PER_HOUR); |
578 | rem= rem % SECS_PER_HOUR; |
579 | tmp->minute= (uint)(rem / SECS_PER_MIN); |
580 | /* |
581 | A positive leap second requires a special |
582 | representation. This uses "... ??:59:60" et seq. |
583 | */ |
584 | tmp->second= (uint)(rem % SECS_PER_MIN); |
585 | |
586 | y= EPOCH_YEAR; |
587 | while (days < 0 || days >= (long)year_lengths[yleap= isleap(y)]) |
588 | { |
589 | int newy; |
590 | |
591 | newy= y + days / DAYS_PER_NYEAR; |
592 | if (days < 0) |
593 | newy--; |
594 | days-= (newy - y) * DAYS_PER_NYEAR + |
595 | LEAPS_THRU_END_OF(newy - 1) - |
596 | LEAPS_THRU_END_OF(y - 1); |
597 | y= newy; |
598 | } |
599 | tmp->year= y; |
600 | |
601 | ip= mon_lengths[yleap]; |
602 | for (tmp->month= 0; days >= (long) ip[tmp->month]; tmp->month++) |
603 | days= days - (long) ip[tmp->month]; |
604 | tmp->month++; |
605 | tmp->day= (uint)(days + 1); |
606 | |
607 | /* filling MySQL specific MYSQL_TIME members */ |
608 | tmp->neg= 0; tmp->second_part= 0; |
609 | tmp->time_type= MYSQL_TIMESTAMP_DATETIME; |
610 | } |
611 | |
612 | |
613 | /* |
614 | Find time range which contains given my_time_t value |
615 | |
616 | SYNOPSIS |
617 | find_time_range() |
618 | t - my_time_t value for which we looking for range |
619 | range_boundaries - sorted array of range starts. |
620 | higher_bound - number of ranges |
621 | |
622 | DESCRIPTION |
623 | Performs binary search for range which contains given my_time_t value. |
624 | It has sense if number of ranges is greater than zero and my_time_t value |
625 | is greater or equal than beginning of first range. It also assumes that |
626 | t belongs to some range specified or end of last is MY_TIME_T_MAX. |
627 | |
628 | With this localtime_r on real data may takes less time than with linear |
629 | search (I've seen 30% speed up). |
630 | |
631 | RETURN VALUE |
632 | Index of range to which t belongs |
633 | */ |
634 | static uint |
635 | find_time_range(my_time_t t, const my_time_t *range_boundaries, |
636 | uint higher_bound) |
637 | { |
638 | uint i, lower_bound= 0; |
639 | |
640 | /* |
641 | Function will work without this assertion but result would be meaningless. |
642 | */ |
643 | DBUG_ASSERT(higher_bound > 0 && t >= range_boundaries[0]); |
644 | |
645 | /* |
646 | Do binary search for minimal interval which contain t. We preserve: |
647 | range_boundaries[lower_bound] <= t < range_boundaries[higher_bound] |
648 | invariant and decrease this higher_bound - lower_bound gap twice |
649 | times on each step. |
650 | */ |
651 | |
652 | while (higher_bound - lower_bound > 1) |
653 | { |
654 | i= (lower_bound + higher_bound) >> 1; |
655 | if (range_boundaries[i] <= t) |
656 | lower_bound= i; |
657 | else |
658 | higher_bound= i; |
659 | } |
660 | return lower_bound; |
661 | } |
662 | |
663 | /* |
664 | Find local time transition for given my_time_t. |
665 | |
666 | SYNOPSIS |
667 | find_transition_type() |
668 | t - my_time_t value to be converted |
669 | sp - pointer to struct with time zone description |
670 | |
671 | RETURN VALUE |
672 | Pointer to structure in time zone description describing |
673 | local time type for given my_time_t. |
674 | */ |
675 | static |
676 | const TRAN_TYPE_INFO * |
677 | find_transition_type(my_time_t t, const TIME_ZONE_INFO *sp) |
678 | { |
679 | if (unlikely(sp->timecnt == 0 || t < sp->ats[0])) |
680 | { |
681 | /* |
682 | If we have not any transitions or t is before first transition let |
683 | us use fallback time type. |
684 | */ |
685 | return sp->fallback_tti; |
686 | } |
687 | |
688 | /* |
689 | Do binary search for minimal interval between transitions which |
690 | contain t. With this localtime_r on real data may takes less |
691 | time than with linear search (I've seen 30% speed up). |
692 | */ |
693 | return &(sp->ttis[sp->types[find_time_range(t, sp->ats, sp->timecnt)]]); |
694 | } |
695 | |
696 | |
697 | /* |
698 | Converts time in my_time_t representation (seconds in UTC since Epoch) to |
699 | broken down MYSQL_TIME representation in local time zone. |
700 | |
701 | SYNOPSIS |
702 | gmt_sec_to_TIME() |
703 | tmp - pointer to structure for broken down represenatation |
704 | sec_in_utc - my_time_t value to be converted |
705 | sp - pointer to struct with time zone description |
706 | |
707 | TODO |
708 | We can improve this function by creating joined array of transitions and |
709 | leap corrections. This will require adding extra field to TRAN_TYPE_INFO |
710 | for storing number of "extra" seconds to minute occurred due to correction |
711 | (60th and 61st second, look how we calculate them as "hit" in this |
712 | function). |
713 | Under realistic assumptions about frequency of transitions the same array |
714 | can be used fot MYSQL_TIME -> my_time_t conversion. For this we need to |
715 | implement tweaked binary search which will take into account that some |
716 | MYSQL_TIME has two matching my_time_t ranges and some of them have none. |
717 | */ |
718 | static void |
719 | gmt_sec_to_TIME(MYSQL_TIME *tmp, my_time_t sec_in_utc, const TIME_ZONE_INFO *sp) |
720 | { |
721 | const TRAN_TYPE_INFO *ttisp; |
722 | const LS_INFO *lp; |
723 | long corr= 0; |
724 | int hit= 0; |
725 | int i; |
726 | |
727 | /* |
728 | Find proper transition (and its local time type) for our sec_in_utc value. |
729 | Funny but again by separating this step in function we receive code |
730 | which very close to glibc's code. No wonder since they obviously use |
731 | the same base and all steps are sensible. |
732 | */ |
733 | ttisp= find_transition_type(sec_in_utc, sp); |
734 | |
735 | /* |
736 | Let us find leap correction for our sec_in_utc value and number of extra |
737 | secs to add to this minute. |
738 | This loop is rarely used because most users will use time zones without |
739 | leap seconds, and even in case when we have such time zone there won't |
740 | be many iterations (we have about 22 corrections at this moment (2004)). |
741 | */ |
742 | for ( i= sp->leapcnt; i-- > 0; ) |
743 | { |
744 | lp= &sp->lsis[i]; |
745 | if (sec_in_utc >= lp->ls_trans) |
746 | { |
747 | if (sec_in_utc == lp->ls_trans) |
748 | { |
749 | hit= ((i == 0 && lp->ls_corr > 0) || |
750 | lp->ls_corr > sp->lsis[i - 1].ls_corr); |
751 | if (hit) |
752 | { |
753 | while (i > 0 && |
754 | sp->lsis[i].ls_trans == sp->lsis[i - 1].ls_trans + 1 && |
755 | sp->lsis[i].ls_corr == sp->lsis[i - 1].ls_corr + 1) |
756 | { |
757 | hit++; |
758 | i--; |
759 | } |
760 | } |
761 | } |
762 | corr= lp->ls_corr; |
763 | break; |
764 | } |
765 | } |
766 | |
767 | sec_to_TIME(tmp, sec_in_utc, ttisp->tt_gmtoff - corr); |
768 | |
769 | tmp->second+= hit; |
770 | } |
771 | |
772 | |
773 | /* |
774 | Converts local time in broken down representation to local |
775 | time zone analog of my_time_t represenation. |
776 | |
777 | SYNOPSIS |
778 | sec_since_epoch() |
779 | year, mon, mday, hour, min, sec - broken down representation. |
780 | |
781 | DESCRIPTION |
782 | Converts time in broken down representation to my_time_t representation |
783 | ignoring time zone. Note that we cannot convert back some valid _local_ |
784 | times near ends of my_time_t range because of my_time_t overflow. But we |
785 | ignore this fact now since MySQL will never pass such argument. |
786 | |
787 | RETURN VALUE |
788 | Seconds since epoch time representation. |
789 | */ |
790 | static my_time_t |
791 | sec_since_epoch(int year, int mon, int mday, int hour, int min ,int sec) |
792 | { |
793 | /* Guard against my_time_t overflow(on system with 32 bit my_time_t) */ |
794 | DBUG_ASSERT(!(year == TIMESTAMP_MAX_YEAR && mon == 1 && mday > 17)); |
795 | #ifndef WE_WANT_TO_HANDLE_UNORMALIZED_DATES |
796 | /* |
797 | It turns out that only whenever month is normalized or unnormalized |
798 | plays role. |
799 | */ |
800 | DBUG_ASSERT(mon > 0 && mon < 13); |
801 | long days= year * DAYS_PER_NYEAR - EPOCH_YEAR * DAYS_PER_NYEAR + |
802 | LEAPS_THRU_END_OF(year - 1) - |
803 | LEAPS_THRU_END_OF(EPOCH_YEAR - 1); |
804 | days+= mon_starts[isleap(year)][mon - 1]; |
805 | #else |
806 | long norm_month= (mon - 1) % MONS_PER_YEAR; |
807 | long a_year= year + (mon - 1)/MONS_PER_YEAR - (int)(norm_month < 0); |
808 | long days= a_year * DAYS_PER_NYEAR - EPOCH_YEAR * DAYS_PER_NYEAR + |
809 | LEAPS_THRU_END_OF(a_year - 1) - |
810 | LEAPS_THRU_END_OF(EPOCH_YEAR - 1); |
811 | days+= mon_starts[isleap(a_year)] |
812 | [norm_month + (norm_month < 0 ? MONS_PER_YEAR : 0)]; |
813 | #endif |
814 | days+= mday - 1; |
815 | |
816 | return ((days * HOURS_PER_DAY + hour) * MINS_PER_HOUR + min) * |
817 | SECS_PER_MIN + sec; |
818 | } |
819 | |
820 | /* |
821 | Converts local time in broken down MYSQL_TIME representation to my_time_t |
822 | representation. |
823 | |
824 | SYNOPSIS |
825 | TIME_to_gmt_sec() |
826 | t - pointer to structure for broken down represenatation |
827 | sp - pointer to struct with time zone description |
828 | error_code - 0, if the conversion was successful; |
829 | ER_WARN_DATA_OUT_OF_RANGE, if t contains datetime value |
830 | which is out of TIMESTAMP range; |
831 | ER_WARN_INVALID_TIMESTAMP, if t represents value which |
832 | doesn't exists (falls into the spring time-gap). |
833 | |
834 | DESCRIPTION |
835 | This is mktime analog for MySQL. It is essentially different |
836 | from mktime (or hypotetical my_mktime) because: |
837 | - It has no idea about tm_isdst member so if it |
838 | has two answers it will give the smaller one |
839 | - If we are in spring time gap then it will return |
840 | beginning of the gap |
841 | - It can give wrong results near the ends of my_time_t due to |
842 | overflows, but we are safe since in MySQL we will never |
843 | call this function for such dates (its restriction for year |
844 | between 1970 and 2038 gives us several days of reserve). |
845 | - By default it doesn't support un-normalized input. But if |
846 | sec_since_epoch() function supports un-normalized dates |
847 | then this function should handle un-normalized input right, |
848 | altough it won't normalize structure TIME. |
849 | |
850 | Traditional approach to problem of conversion from broken down |
851 | representation to time_t is iterative. Both elsie's and glibc |
852 | implementation try to guess what time_t value should correspond to |
853 | this broken-down value. They perform localtime_r function on their |
854 | guessed value and then calculate the difference and try to improve |
855 | their guess. Elsie's code guesses time_t value in bit by bit manner, |
856 | Glibc's code tries to add difference between broken-down value |
857 | corresponding to guess and target broken-down value to current guess. |
858 | It also uses caching of last found correction... So Glibc's approach |
859 | is essentially faster but introduces some undetermenism (in case if |
860 | is_dst member of broken-down representation (tm struct) is not known |
861 | and we have two possible answers). |
862 | |
863 | We use completely different approach. It is better since it is both |
864 | faster than iterative implementations and fully determenistic. If you |
865 | look at my_time_t to MYSQL_TIME conversion then you'll find that it consist |
866 | of two steps: |
867 | The first is calculating shifted my_time_t value and the second - TIME |
868 | calculation from shifted my_time_t value (well it is a bit simplified |
869 | picture). The part in which we are interested in is my_time_t -> shifted |
870 | my_time_t conversion. It is piecewise linear function which is defined |
871 | by combination of transition times as break points and times offset |
872 | as changing function parameter. The possible inverse function for this |
873 | converison would be ambiguos but with MySQL's restrictions we can use |
874 | some function which is the same as inverse function on unambigiuos |
875 | ranges and coincides with one of branches of inverse function in |
876 | other ranges. Thus we just need to build table which will determine |
877 | this shifted my_time_t -> my_time_t conversion similar to existing |
878 | (my_time_t -> shifted my_time_t table). We do this in |
879 | prepare_tz_info function. |
880 | |
881 | TODO |
882 | If we can even more improve this function. For doing this we will need to |
883 | build joined map of transitions and leap corrections for gmt_sec_to_TIME() |
884 | function (similar to revts/revtis). Under realistic assumptions about |
885 | frequency of transitions we can use the same array for TIME_to_gmt_sec(). |
886 | We need to implement special version of binary search for this. Such step |
887 | will be beneficial to CPU cache since we will decrease data-set used for |
888 | conversion twice. |
889 | |
890 | RETURN VALUE |
891 | Seconds in UTC since Epoch. |
892 | 0 in case of error. |
893 | */ |
894 | |
895 | static my_time_t |
896 | TIME_to_gmt_sec(const MYSQL_TIME *t, const TIME_ZONE_INFO *sp, uint *error_code) |
897 | { |
898 | my_time_t local_t; |
899 | uint saved_seconds; |
900 | uint i; |
901 | int shift= 0; |
902 | DBUG_ENTER("TIME_to_gmt_sec" ); |
903 | |
904 | if (!validate_timestamp_range(t)) |
905 | { |
906 | *error_code= ER_WARN_DATA_OUT_OF_RANGE; |
907 | DBUG_RETURN(0); |
908 | } |
909 | |
910 | *error_code= 0; |
911 | |
912 | /* We need this for correct leap seconds handling */ |
913 | if (t->second < SECS_PER_MIN) |
914 | saved_seconds= 0; |
915 | else |
916 | saved_seconds= t->second; |
917 | |
918 | /* |
919 | NOTE: to convert full my_time_t range we do a shift of the |
920 | boundary dates here to avoid overflow of my_time_t. |
921 | We use alike approach in my_system_gmt_sec(). |
922 | |
923 | However in that function we also have to take into account |
924 | overflow near 0 on some platforms. That's because my_system_gmt_sec |
925 | uses localtime_r(), which doesn't work with negative values correctly |
926 | on platforms with unsigned time_t (QNX). Here we don't use localtime() |
927 | => we negative values of local_t are ok. |
928 | */ |
929 | |
930 | if ((t->year == TIMESTAMP_MAX_YEAR) && (t->month == 1) && t->day > 4) |
931 | { |
932 | /* |
933 | We will pass (t->day - shift) to sec_since_epoch(), and |
934 | want this value to be a positive number, so we shift |
935 | only dates > 4.01.2038 (to avoid owerflow). |
936 | */ |
937 | shift= 2; |
938 | } |
939 | |
940 | |
941 | local_t= sec_since_epoch(t->year, t->month, (t->day - shift), |
942 | t->hour, t->minute, |
943 | saved_seconds ? 0 : t->second); |
944 | |
945 | /* We have at least one range */ |
946 | DBUG_ASSERT(sp->revcnt >= 1); |
947 | |
948 | if (local_t < sp->revts[0] || local_t > sp->revts[sp->revcnt]) |
949 | { |
950 | /* |
951 | This means that source time can't be represented as my_time_t due to |
952 | limited my_time_t range. |
953 | */ |
954 | *error_code= ER_WARN_DATA_OUT_OF_RANGE; |
955 | DBUG_RETURN(0); |
956 | } |
957 | |
958 | /* binary search for our range */ |
959 | i= find_time_range(local_t, sp->revts, sp->revcnt); |
960 | |
961 | /* |
962 | As there are no offset switches at the end of TIMESTAMP range, |
963 | we could simply check for overflow here (and don't need to bother |
964 | about DST gaps etc) |
965 | */ |
966 | if (shift) |
967 | { |
968 | if (local_t > (my_time_t) (TIMESTAMP_MAX_VALUE - shift * SECS_PER_DAY + |
969 | sp->revtis[i].rt_offset - saved_seconds)) |
970 | { |
971 | *error_code= ER_WARN_DATA_OUT_OF_RANGE; |
972 | DBUG_RETURN(0); /* my_time_t overflow */ |
973 | } |
974 | local_t+= shift * SECS_PER_DAY; |
975 | } |
976 | |
977 | if (sp->revtis[i].rt_type) |
978 | { |
979 | /* |
980 | Oops! We are in spring time gap. |
981 | May be we should return error here? |
982 | Now we are returning my_time_t value corresponding to the |
983 | beginning of the gap. |
984 | */ |
985 | *error_code= ER_WARN_INVALID_TIMESTAMP; |
986 | local_t= sp->revts[i] - sp->revtis[i].rt_offset + saved_seconds; |
987 | } |
988 | else |
989 | local_t= local_t - sp->revtis[i].rt_offset + saved_seconds; |
990 | |
991 | /* check for TIMESTAMP_MAX_VALUE was already done above */ |
992 | if (local_t < TIMESTAMP_MIN_VALUE) |
993 | { |
994 | local_t= 0; |
995 | *error_code= ER_WARN_DATA_OUT_OF_RANGE; |
996 | } |
997 | |
998 | DBUG_RETURN(local_t); |
999 | } |
1000 | |
1001 | |
1002 | /* |
1003 | End of elsie derived code. |
1004 | */ |
1005 | #endif /* !defined(TZINFO2SQL) */ |
1006 | |
1007 | |
1008 | #if !defined(TESTTIME) && !defined(TZINFO2SQL) |
1009 | |
1010 | /* |
1011 | String with names of SYSTEM time zone. |
1012 | */ |
1013 | static const String tz_SYSTEM_name("SYSTEM" , 6, &my_charset_latin1); |
1014 | |
1015 | |
1016 | /* |
1017 | Instance of this class represents local time zone used on this system |
1018 | (specified by TZ environment variable or via any other system mechanism). |
1019 | It uses system functions (localtime_r, my_system_gmt_sec) for conversion |
1020 | and is always available. Because of this it is used by default - if there |
1021 | were no explicit time zone specified. On the other hand because of this |
1022 | conversion methods provided by this class is significantly slower and |
1023 | possibly less multi-threaded-friendly than corresponding Time_zone_db |
1024 | methods so the latter should be preffered there it is possible. |
1025 | */ |
1026 | class Time_zone_system : public Time_zone |
1027 | { |
1028 | public: |
1029 | Time_zone_system() {} /* Remove gcc warning */ |
1030 | virtual my_time_t TIME_to_gmt_sec(const MYSQL_TIME *t, uint *error_code) const; |
1031 | virtual void gmt_sec_to_TIME(MYSQL_TIME *tmp, my_time_t t) const; |
1032 | virtual const String * get_name() const; |
1033 | }; |
1034 | |
1035 | |
1036 | /* |
1037 | Converts local time in system time zone in MYSQL_TIME representation |
1038 | to its my_time_t representation. |
1039 | |
1040 | SYNOPSIS |
1041 | TIME_to_gmt_sec() |
1042 | t - pointer to MYSQL_TIME structure with local time in |
1043 | broken-down representation. |
1044 | error_code - 0, if the conversion was successful; |
1045 | ER_WARN_DATA_OUT_OF_RANGE, if t contains datetime value |
1046 | which is out of TIMESTAMP range; |
1047 | ER_WARN_INVALID_TIMESTAMP, if t represents value which |
1048 | doesn't exists (falls into the spring time-gap). |
1049 | |
1050 | DESCRIPTION |
1051 | This method uses system function (localtime_r()) for conversion |
1052 | local time in system time zone in MYSQL_TIME structure to its my_time_t |
1053 | representation. Unlike the same function for Time_zone_db class |
1054 | it it won't handle unnormalized input properly. Still it will |
1055 | return lowest possible my_time_t in case of ambiguity or if we |
1056 | provide time corresponding to the time-gap. |
1057 | |
1058 | You should call my_init_time() function before using this function. |
1059 | |
1060 | RETURN VALUE |
1061 | Corresponding my_time_t value or 0 in case of error |
1062 | */ |
1063 | my_time_t |
1064 | Time_zone_system::TIME_to_gmt_sec(const MYSQL_TIME *t, uint *error_code) const |
1065 | { |
1066 | long not_used; |
1067 | return my_system_gmt_sec(t, ¬_used, error_code); |
1068 | } |
1069 | |
1070 | |
1071 | /* |
1072 | Converts time from UTC seconds since Epoch (my_time_t) representation |
1073 | to system local time zone broken-down representation. |
1074 | |
1075 | SYNOPSIS |
1076 | gmt_sec_to_TIME() |
1077 | tmp - pointer to MYSQL_TIME structure to fill-in |
1078 | t - my_time_t value to be converted |
1079 | |
1080 | NOTE |
1081 | We assume that value passed to this function will fit into time_t range |
1082 | supported by localtime_r. This conversion is putting restriction on |
1083 | TIMESTAMP range in MySQL. If we can get rid of SYSTEM time zone at least |
1084 | for interaction with client then we can extend TIMESTAMP range down to |
1085 | the 1902 easily. |
1086 | */ |
1087 | void |
1088 | Time_zone_system::gmt_sec_to_TIME(MYSQL_TIME *tmp, my_time_t t) const |
1089 | { |
1090 | struct tm tmp_tm; |
1091 | time_t tmp_t= (time_t)t; |
1092 | |
1093 | localtime_r(&tmp_t, &tmp_tm); |
1094 | localtime_to_TIME(tmp, &tmp_tm); |
1095 | tmp->time_type= MYSQL_TIMESTAMP_DATETIME; |
1096 | adjust_leap_second(tmp); |
1097 | } |
1098 | |
1099 | |
1100 | /* |
1101 | Get name of time zone |
1102 | |
1103 | SYNOPSIS |
1104 | get_name() |
1105 | |
1106 | RETURN VALUE |
1107 | Name of time zone as String |
1108 | */ |
1109 | const String * |
1110 | Time_zone_system::get_name() const |
1111 | { |
1112 | return &tz_SYSTEM_name; |
1113 | } |
1114 | |
1115 | |
1116 | /* |
1117 | Instance of this class represents UTC time zone. It uses system gmtime_r |
1118 | function for conversions and is always available. It is used only for |
1119 | my_time_t -> MYSQL_TIME conversions in various UTC_... functions, it is not |
1120 | intended for MYSQL_TIME -> my_time_t conversions and shouldn't be exposed to user. |
1121 | */ |
1122 | class Time_zone_utc : public Time_zone |
1123 | { |
1124 | public: |
1125 | Time_zone_utc() {} /* Remove gcc warning */ |
1126 | virtual my_time_t TIME_to_gmt_sec(const MYSQL_TIME *t, |
1127 | uint *error_code) const; |
1128 | virtual void gmt_sec_to_TIME(MYSQL_TIME *tmp, my_time_t t) const; |
1129 | virtual const String * get_name() const; |
1130 | }; |
1131 | |
1132 | |
1133 | /* |
1134 | Convert UTC time from MYSQL_TIME representation to its my_time_t representation. |
1135 | |
1136 | DESCRIPTION |
1137 | Since Time_zone_utc is used only internally for my_time_t -> TIME |
1138 | conversions, this function of Time_zone interface is not implemented for |
1139 | this class and should not be called. |
1140 | |
1141 | RETURN VALUE |
1142 | 0 |
1143 | */ |
1144 | my_time_t |
1145 | Time_zone_utc::TIME_to_gmt_sec(const MYSQL_TIME *t, uint *error_code) const |
1146 | { |
1147 | /* Should be never called */ |
1148 | DBUG_ASSERT(0); |
1149 | *error_code= ER_WARN_DATA_OUT_OF_RANGE; |
1150 | return 0; |
1151 | } |
1152 | |
1153 | |
1154 | /* |
1155 | Converts time from UTC seconds since Epoch (my_time_t) representation |
1156 | to broken-down representation (also in UTC). |
1157 | |
1158 | SYNOPSIS |
1159 | gmt_sec_to_TIME() |
1160 | tmp - pointer to MYSQL_TIME structure to fill-in |
1161 | t - my_time_t value to be converted |
1162 | |
1163 | NOTE |
1164 | See note for apropriate Time_zone_system method. |
1165 | */ |
1166 | void |
1167 | Time_zone_utc::gmt_sec_to_TIME(MYSQL_TIME *tmp, my_time_t t) const |
1168 | { |
1169 | struct tm tmp_tm; |
1170 | time_t tmp_t= (time_t)t; |
1171 | gmtime_r(&tmp_t, &tmp_tm); |
1172 | localtime_to_TIME(tmp, &tmp_tm); |
1173 | tmp->time_type= MYSQL_TIMESTAMP_DATETIME; |
1174 | adjust_leap_second(tmp); |
1175 | } |
1176 | |
1177 | |
1178 | /* |
1179 | Get name of time zone |
1180 | |
1181 | SYNOPSIS |
1182 | get_name() |
1183 | |
1184 | DESCRIPTION |
1185 | Since Time_zone_utc is used only internally by SQL's UTC_* functions it |
1186 | is not accessible directly, and hence this function of Time_zone |
1187 | interface is not implemented for this class and should not be called. |
1188 | |
1189 | RETURN VALUE |
1190 | 0 |
1191 | */ |
1192 | const String * |
1193 | Time_zone_utc::get_name() const |
1194 | { |
1195 | /* Should be never called */ |
1196 | DBUG_ASSERT(0); |
1197 | return 0; |
1198 | } |
1199 | |
1200 | |
1201 | /* |
1202 | Instance of this class represents some time zone which is |
1203 | described in mysql.time_zone family of tables. |
1204 | */ |
1205 | class Time_zone_db : public Time_zone |
1206 | { |
1207 | public: |
1208 | Time_zone_db(TIME_ZONE_INFO *tz_info_arg, const String * tz_name_arg); |
1209 | virtual my_time_t TIME_to_gmt_sec(const MYSQL_TIME *t, uint *error_code) const; |
1210 | virtual void gmt_sec_to_TIME(MYSQL_TIME *tmp, my_time_t t) const; |
1211 | virtual const String * get_name() const; |
1212 | private: |
1213 | TIME_ZONE_INFO *tz_info; |
1214 | const String *tz_name; |
1215 | }; |
1216 | |
1217 | |
1218 | /* |
1219 | Initializes object representing time zone described by mysql.time_zone |
1220 | tables. |
1221 | |
1222 | SYNOPSIS |
1223 | Time_zone_db() |
1224 | tz_info_arg - pointer to TIME_ZONE_INFO structure which is filled |
1225 | according to db or other time zone description |
1226 | (for example by my_tz_init()). |
1227 | Several Time_zone_db instances can share one |
1228 | TIME_ZONE_INFO structure. |
1229 | tz_name_arg - name of time zone. |
1230 | */ |
1231 | Time_zone_db::Time_zone_db(TIME_ZONE_INFO *tz_info_arg, |
1232 | const String *tz_name_arg): |
1233 | tz_info(tz_info_arg), tz_name(tz_name_arg) |
1234 | { |
1235 | } |
1236 | |
1237 | |
1238 | /* |
1239 | Converts local time in time zone described from TIME |
1240 | representation to its my_time_t representation. |
1241 | |
1242 | SYNOPSIS |
1243 | TIME_to_gmt_sec() |
1244 | t - pointer to MYSQL_TIME structure with local time |
1245 | in broken-down representation. |
1246 | error_code - 0, if the conversion was successful; |
1247 | ER_WARN_DATA_OUT_OF_RANGE, if t contains datetime value |
1248 | which is out of TIMESTAMP range; |
1249 | ER_WARN_INVALID_TIMESTAMP, if t represents value which |
1250 | doesn't exists (falls into the spring time-gap). |
1251 | |
1252 | DESCRIPTION |
1253 | Please see ::TIME_to_gmt_sec for function description and |
1254 | parameter restrictions. |
1255 | |
1256 | RETURN VALUE |
1257 | Corresponding my_time_t value or 0 in case of error |
1258 | */ |
1259 | my_time_t |
1260 | Time_zone_db::TIME_to_gmt_sec(const MYSQL_TIME *t, uint *error_code) const |
1261 | { |
1262 | return ::TIME_to_gmt_sec(t, tz_info, error_code); |
1263 | } |
1264 | |
1265 | |
1266 | /* |
1267 | Converts time from UTC seconds since Epoch (my_time_t) representation |
1268 | to local time zone described in broken-down representation. |
1269 | |
1270 | SYNOPSIS |
1271 | gmt_sec_to_TIME() |
1272 | tmp - pointer to MYSQL_TIME structure to fill-in |
1273 | t - my_time_t value to be converted |
1274 | */ |
1275 | void |
1276 | Time_zone_db::gmt_sec_to_TIME(MYSQL_TIME *tmp, my_time_t t) const |
1277 | { |
1278 | ::gmt_sec_to_TIME(tmp, t, tz_info); |
1279 | adjust_leap_second(tmp); |
1280 | } |
1281 | |
1282 | |
1283 | /* |
1284 | Get name of time zone |
1285 | |
1286 | SYNOPSIS |
1287 | get_name() |
1288 | |
1289 | RETURN VALUE |
1290 | Name of time zone as ASCIIZ-string |
1291 | */ |
1292 | const String * |
1293 | Time_zone_db::get_name() const |
1294 | { |
1295 | return tz_name; |
1296 | } |
1297 | |
1298 | |
1299 | /* |
1300 | Instance of this class represents time zone which |
1301 | was specified as offset from UTC. |
1302 | */ |
1303 | class Time_zone_offset : public Time_zone |
1304 | { |
1305 | public: |
1306 | Time_zone_offset(long tz_offset_arg); |
1307 | virtual my_time_t TIME_to_gmt_sec(const MYSQL_TIME *t, |
1308 | uint *error_code) const; |
1309 | virtual void gmt_sec_to_TIME(MYSQL_TIME *tmp, my_time_t t) const; |
1310 | virtual const String * get_name() const; |
1311 | /* |
1312 | This have to be public because we want to be able to access it from |
1313 | my_offset_tzs_get_key() function |
1314 | */ |
1315 | long offset; |
1316 | private: |
1317 | /* Extra reserve because of snprintf */ |
1318 | char name_buff[7+16]; |
1319 | String name; |
1320 | }; |
1321 | |
1322 | |
1323 | /* |
1324 | Initializes object representing time zone described by its offset from UTC. |
1325 | |
1326 | SYNOPSIS |
1327 | Time_zone_offset() |
1328 | tz_offset_arg - offset from UTC in seconds. |
1329 | Positive for direction to east. |
1330 | */ |
1331 | Time_zone_offset::Time_zone_offset(long tz_offset_arg): |
1332 | offset(tz_offset_arg) |
1333 | { |
1334 | uint hours= abs((int)(offset / SECS_PER_HOUR)); |
1335 | uint minutes= abs((int)(offset % SECS_PER_HOUR / SECS_PER_MIN)); |
1336 | size_t length= my_snprintf(name_buff, sizeof(name_buff), "%s%02d:%02d" , |
1337 | (offset>=0) ? "+" : "-" , hours, minutes); |
1338 | name.set(name_buff, length, &my_charset_latin1); |
1339 | } |
1340 | |
1341 | |
1342 | /* |
1343 | Converts local time in time zone described as offset from UTC |
1344 | from MYSQL_TIME representation to its my_time_t representation. |
1345 | |
1346 | SYNOPSIS |
1347 | TIME_to_gmt_sec() |
1348 | t - pointer to MYSQL_TIME structure with local time |
1349 | in broken-down representation. |
1350 | error_code - 0, if the conversion was successful; |
1351 | ER_WARN_DATA_OUT_OF_RANGE, if t contains datetime value |
1352 | which is out of TIMESTAMP range; |
1353 | ER_WARN_INVALID_TIMESTAMP, if t represents value which |
1354 | doesn't exists (falls into the spring time-gap). |
1355 | |
1356 | RETURN VALUE |
1357 | Corresponding my_time_t value or 0 in case of error. |
1358 | */ |
1359 | |
1360 | my_time_t |
1361 | Time_zone_offset::TIME_to_gmt_sec(const MYSQL_TIME *t, uint *error_code) const |
1362 | { |
1363 | my_time_t local_t; |
1364 | int shift= 0; |
1365 | |
1366 | /* |
1367 | Check timestamp range.we have to do this as calling function relies on |
1368 | us to make all validation checks here. |
1369 | */ |
1370 | if (!validate_timestamp_range(t)) |
1371 | { |
1372 | *error_code= ER_WARN_DATA_OUT_OF_RANGE; |
1373 | return 0; |
1374 | } |
1375 | *error_code= 0; |
1376 | |
1377 | /* |
1378 | Do a temporary shift of the boundary dates to avoid |
1379 | overflow of my_time_t if the time value is near it's |
1380 | maximum range |
1381 | */ |
1382 | if ((t->year == TIMESTAMP_MAX_YEAR) && (t->month == 1) && t->day > 4) |
1383 | shift= 2; |
1384 | |
1385 | local_t= sec_since_epoch(t->year, t->month, (t->day - shift), |
1386 | t->hour, t->minute, t->second) - |
1387 | offset; |
1388 | |
1389 | if (shift) |
1390 | { |
1391 | /* Add back the shifted time */ |
1392 | local_t+= shift * SECS_PER_DAY; |
1393 | } |
1394 | |
1395 | if (local_t >= TIMESTAMP_MIN_VALUE && local_t <= TIMESTAMP_MAX_VALUE) |
1396 | return local_t; |
1397 | |
1398 | /* range error*/ |
1399 | *error_code= ER_WARN_DATA_OUT_OF_RANGE; |
1400 | return 0; |
1401 | } |
1402 | |
1403 | |
1404 | /* |
1405 | Converts time from UTC seconds since Epoch (my_time_t) representation |
1406 | to local time zone described as offset from UTC and in broken-down |
1407 | representation. |
1408 | |
1409 | SYNOPSIS |
1410 | gmt_sec_to_TIME() |
1411 | tmp - pointer to MYSQL_TIME structure to fill-in |
1412 | t - my_time_t value to be converted |
1413 | */ |
1414 | void |
1415 | Time_zone_offset::gmt_sec_to_TIME(MYSQL_TIME *tmp, my_time_t t) const |
1416 | { |
1417 | sec_to_TIME(tmp, t, offset); |
1418 | } |
1419 | |
1420 | |
1421 | /* |
1422 | Get name of time zone |
1423 | |
1424 | SYNOPSIS |
1425 | get_name() |
1426 | |
1427 | RETURN VALUE |
1428 | Name of time zone as pointer to String object |
1429 | */ |
1430 | const String * |
1431 | Time_zone_offset::get_name() const |
1432 | { |
1433 | return &name; |
1434 | } |
1435 | |
1436 | |
1437 | static Time_zone_utc tz_UTC; |
1438 | static Time_zone_system tz_SYSTEM; |
1439 | static Time_zone_offset tz_OFFSET0(0); |
1440 | |
1441 | Time_zone *my_tz_OFFSET0= &tz_OFFSET0; |
1442 | Time_zone *my_tz_UTC= &tz_UTC; |
1443 | Time_zone *my_tz_SYSTEM= &tz_SYSTEM; |
1444 | |
1445 | static HASH tz_names; |
1446 | static HASH offset_tzs; |
1447 | static MEM_ROOT tz_storage; |
1448 | |
1449 | /* |
1450 | These mutex protects offset_tzs and tz_storage. |
1451 | These protection needed only when we are trying to set |
1452 | time zone which is specified as offset, and searching for existing |
1453 | time zone in offset_tzs or creating if it didn't existed before in |
1454 | tz_storage. So contention is low. |
1455 | */ |
1456 | static mysql_mutex_t tz_LOCK; |
1457 | static bool tz_inited= 0; |
1458 | |
1459 | /* |
1460 | This two static variables are inteded for holding info about leap seconds |
1461 | shared by all time zones. |
1462 | */ |
1463 | static uint tz_leapcnt= 0; |
1464 | static LS_INFO *tz_lsis= 0; |
1465 | |
1466 | /* |
1467 | Shows whenever we have found time zone tables during start-up. |
1468 | Used for avoiding of putting those tables to global table list |
1469 | for queries that use time zone info. |
1470 | */ |
1471 | static bool time_zone_tables_exist= 1; |
1472 | |
1473 | |
1474 | /* |
1475 | Names of tables (with their lengths) that are needed |
1476 | for dynamical loading of time zone descriptions. |
1477 | */ |
1478 | |
1479 | static const LEX_CSTRING tz_tables_names[MY_TZ_TABLES_COUNT]= |
1480 | { |
1481 | { STRING_WITH_LEN("time_zone_name" )}, |
1482 | { STRING_WITH_LEN("time_zone" )}, |
1483 | { STRING_WITH_LEN("time_zone_transition_type" )}, |
1484 | { STRING_WITH_LEN("time_zone_transition" )} |
1485 | }; |
1486 | |
1487 | class Tz_names_entry: public Sql_alloc |
1488 | { |
1489 | public: |
1490 | String name; |
1491 | Time_zone *tz; |
1492 | }; |
1493 | |
1494 | |
1495 | /* |
1496 | We are going to call both of these functions from C code so |
1497 | they should obey C calling conventions. |
1498 | */ |
1499 | |
1500 | extern "C" uchar * |
1501 | my_tz_names_get_key(Tz_names_entry *entry, size_t *length, |
1502 | my_bool not_used __attribute__((unused))) |
1503 | { |
1504 | *length= entry->name.length(); |
1505 | return (uchar*) entry->name.ptr(); |
1506 | } |
1507 | |
1508 | extern "C" uchar * |
1509 | my_offset_tzs_get_key(Time_zone_offset *entry, |
1510 | size_t *length, |
1511 | my_bool not_used __attribute__((unused))) |
1512 | { |
1513 | *length= sizeof(long); |
1514 | return (uchar*) &entry->offset; |
1515 | } |
1516 | |
1517 | |
1518 | /* |
1519 | Prepare table list with time zone related tables from preallocated array. |
1520 | |
1521 | SYNOPSIS |
1522 | tz_init_table_list() |
1523 | tz_tabs - pointer to preallocated array of MY_TZ_TABLES_COUNT |
1524 | TABLE_LIST objects |
1525 | |
1526 | DESCRIPTION |
1527 | This function prepares list of TABLE_LIST objects which can be used |
1528 | for opening of time zone tables from preallocated array. |
1529 | */ |
1530 | |
1531 | static void |
1532 | tz_init_table_list(TABLE_LIST *tz_tabs) |
1533 | { |
1534 | bzero(tz_tabs, sizeof(TABLE_LIST) * MY_TZ_TABLES_COUNT); |
1535 | |
1536 | for (int i= 0; i < MY_TZ_TABLES_COUNT; i++) |
1537 | { |
1538 | tz_tabs[i].alias= tz_tabs[i].table_name= tz_tables_names[i]; |
1539 | tz_tabs[i].db= MYSQL_SCHEMA_NAME; |
1540 | tz_tabs[i].lock_type= TL_READ; |
1541 | |
1542 | if (i != MY_TZ_TABLES_COUNT - 1) |
1543 | tz_tabs[i].next_global= tz_tabs[i].next_local= &tz_tabs[i+1]; |
1544 | if (i != 0) |
1545 | tz_tabs[i].prev_global= &tz_tabs[i-1].next_global; |
1546 | } |
1547 | } |
1548 | |
1549 | #ifdef HAVE_PSI_INTERFACE |
1550 | static PSI_mutex_key key_tz_LOCK; |
1551 | |
1552 | static PSI_mutex_info all_tz_mutexes[]= |
1553 | { |
1554 | { & key_tz_LOCK, "tz_LOCK" , PSI_FLAG_GLOBAL} |
1555 | }; |
1556 | |
1557 | static void init_tz_psi_keys(void) |
1558 | { |
1559 | const char* category= "sql" ; |
1560 | int count; |
1561 | |
1562 | if (PSI_server == NULL) |
1563 | return; |
1564 | |
1565 | count= array_elements(all_tz_mutexes); |
1566 | PSI_server->register_mutex(category, all_tz_mutexes, count); |
1567 | } |
1568 | #endif /* HAVE_PSI_INTERFACE */ |
1569 | |
1570 | |
1571 | /* |
1572 | Initialize time zone support infrastructure. |
1573 | |
1574 | SYNOPSIS |
1575 | my_tz_init() |
1576 | thd - current thread object |
1577 | default_tzname - default time zone or 0 if none. |
1578 | bootstrap - indicates whenever we are in bootstrap mode |
1579 | |
1580 | DESCRIPTION |
1581 | This function will init memory structures needed for time zone support, |
1582 | it will register mandatory SYSTEM time zone in them. It will try to open |
1583 | mysql.time_zone* tables and load information about default time zone and |
1584 | information which further will be shared among all time zones loaded. |
1585 | If system tables with time zone descriptions don't exist it won't fail |
1586 | (unless default_tzname is time zone from tables). If bootstrap parameter |
1587 | is true then this routine assumes that we are in bootstrap mode and won't |
1588 | load time zone descriptions unless someone specifies default time zone |
1589 | which is supposedly stored in those tables. |
1590 | It'll also set default time zone if it is specified. |
1591 | |
1592 | RETURN VALUES |
1593 | 0 - ok |
1594 | 1 - Error |
1595 | */ |
1596 | my_bool |
1597 | my_tz_init(THD *org_thd, const char *default_tzname, my_bool bootstrap) |
1598 | { |
1599 | THD *thd; |
1600 | TABLE_LIST tz_tables[1+MY_TZ_TABLES_COUNT]; |
1601 | TABLE *table; |
1602 | const LEX_CSTRING tmp_table_name= { STRING_WITH_LEN("time_zone_leap_second" ) }; |
1603 | Tz_names_entry *tmp_tzname; |
1604 | my_bool return_val= 1; |
1605 | int res; |
1606 | DBUG_ENTER("my_tz_init" ); |
1607 | |
1608 | #ifdef HAVE_PSI_INTERFACE |
1609 | init_tz_psi_keys(); |
1610 | #endif |
1611 | |
1612 | /* |
1613 | To be able to run this from boot, we allocate a temporary THD |
1614 | */ |
1615 | if (!(thd= new THD(0))) |
1616 | DBUG_RETURN(1); |
1617 | thd->thread_stack= (char*) &thd; |
1618 | thd->store_globals(); |
1619 | |
1620 | /* Init all memory structures that require explicit destruction */ |
1621 | if (my_hash_init(&tz_names, &my_charset_latin1, 20, |
1622 | 0, 0, (my_hash_get_key) my_tz_names_get_key, 0, 0)) |
1623 | { |
1624 | sql_print_error("Fatal error: OOM while initializing time zones" ); |
1625 | goto end; |
1626 | } |
1627 | if (my_hash_init(&offset_tzs, &my_charset_latin1, 26, 0, 0, |
1628 | (my_hash_get_key)my_offset_tzs_get_key, 0, 0)) |
1629 | { |
1630 | sql_print_error("Fatal error: OOM while initializing time zones" ); |
1631 | my_hash_free(&tz_names); |
1632 | goto end; |
1633 | } |
1634 | init_sql_alloc(&tz_storage, "timezone_storage" , 32 * 1024, 0, MYF(0)); |
1635 | mysql_mutex_init(key_tz_LOCK, &tz_LOCK, MY_MUTEX_INIT_FAST); |
1636 | tz_inited= 1; |
1637 | |
1638 | /* Add 'SYSTEM' time zone to tz_names hash */ |
1639 | if (!(tmp_tzname= new (&tz_storage) Tz_names_entry())) |
1640 | { |
1641 | sql_print_error("Fatal error: OOM while initializing time zones" ); |
1642 | goto end_with_cleanup; |
1643 | } |
1644 | tmp_tzname->name.set(STRING_WITH_LEN("SYSTEM" ), &my_charset_latin1); |
1645 | tmp_tzname->tz= my_tz_SYSTEM; |
1646 | if (my_hash_insert(&tz_names, (const uchar *)tmp_tzname)) |
1647 | { |
1648 | sql_print_error("Fatal error: OOM while initializing time zones" ); |
1649 | goto end_with_cleanup; |
1650 | } |
1651 | |
1652 | if (bootstrap) |
1653 | { |
1654 | /* If we are in bootstrap mode we should not load time zone tables */ |
1655 | return_val= time_zone_tables_exist= 0; |
1656 | goto end_with_setting_default_tz; |
1657 | } |
1658 | |
1659 | /* |
1660 | After this point all memory structures are inited and we even can live |
1661 | without time zone description tables. Now try to load information about |
1662 | leap seconds shared by all time zones. |
1663 | */ |
1664 | |
1665 | thd->set_db(&MYSQL_SCHEMA_NAME); |
1666 | bzero((char*) &tz_tables[0], sizeof(TABLE_LIST)); |
1667 | tz_tables[0].alias= tz_tables[0].table_name= tmp_table_name; |
1668 | tz_tables[0].db= MYSQL_SCHEMA_NAME; |
1669 | tz_tables[0].lock_type= TL_READ; |
1670 | |
1671 | tz_init_table_list(tz_tables+1); |
1672 | tz_tables[0].next_global= tz_tables[0].next_local= &tz_tables[1]; |
1673 | tz_tables[1].prev_global= &tz_tables[0].next_global; |
1674 | init_mdl_requests(tz_tables); |
1675 | |
1676 | /* |
1677 | We need to open only mysql.time_zone_leap_second, but we try to |
1678 | open all time zone tables to see if they exist. |
1679 | */ |
1680 | if (open_and_lock_tables(thd, tz_tables, FALSE, |
1681 | MYSQL_OPEN_IGNORE_FLUSH | MYSQL_LOCK_IGNORE_TIMEOUT)) |
1682 | { |
1683 | sql_print_warning("Can't open and lock time zone table: %s " |
1684 | "trying to live without them" , |
1685 | thd->get_stmt_da()->message()); |
1686 | /* We will try emulate that everything is ok */ |
1687 | return_val= time_zone_tables_exist= 0; |
1688 | goto end_with_setting_default_tz; |
1689 | } |
1690 | |
1691 | for (TABLE_LIST *tl= tz_tables; tl; tl= tl->next_global) |
1692 | { |
1693 | tl->table->use_all_columns(); |
1694 | /* Force close at the end of the function to free memory. */ |
1695 | tl->table->m_needs_reopen= TRUE; |
1696 | } |
1697 | |
1698 | /* |
1699 | Now we are going to load leap seconds descriptions that are shared |
1700 | between all time zones that use them. We are using index for getting |
1701 | records in proper order. Since we share the same MEM_ROOT between |
1702 | all time zones we just allocate enough memory for it first. |
1703 | */ |
1704 | if (!(tz_lsis= (LS_INFO*) alloc_root(&tz_storage, |
1705 | sizeof(LS_INFO) * TZ_MAX_LEAPS))) |
1706 | { |
1707 | sql_print_error("Fatal error: Out of memory while loading " |
1708 | "mysql.time_zone_leap_second table" ); |
1709 | goto end_with_close; |
1710 | } |
1711 | |
1712 | table= tz_tables[0].table; |
1713 | |
1714 | if (table->file->ha_index_init(0, 1)) |
1715 | goto end_with_close; |
1716 | |
1717 | table->use_all_columns(); |
1718 | tz_leapcnt= 0; |
1719 | |
1720 | res= table->file->ha_index_first(table->record[0]); |
1721 | |
1722 | while (!res) |
1723 | { |
1724 | if (tz_leapcnt + 1 > TZ_MAX_LEAPS) |
1725 | { |
1726 | sql_print_error("Fatal error: While loading mysql.time_zone_leap_second" |
1727 | " table: too much leaps" ); |
1728 | table->file->ha_index_end(); |
1729 | goto end_with_close; |
1730 | } |
1731 | |
1732 | tz_lsis[tz_leapcnt].ls_trans= (my_time_t)table->field[0]->val_int(); |
1733 | tz_lsis[tz_leapcnt].ls_corr= (long)table->field[1]->val_int(); |
1734 | |
1735 | tz_leapcnt++; |
1736 | |
1737 | DBUG_PRINT("info" , |
1738 | ("time_zone_leap_second table: tz_leapcnt: %u tt_time: %lu offset: %ld" , |
1739 | tz_leapcnt, (ulong) tz_lsis[tz_leapcnt-1].ls_trans, |
1740 | tz_lsis[tz_leapcnt-1].ls_corr)); |
1741 | |
1742 | res= table->file->ha_index_next(table->record[0]); |
1743 | } |
1744 | |
1745 | (void)table->file->ha_index_end(); |
1746 | |
1747 | if (res != HA_ERR_END_OF_FILE) |
1748 | { |
1749 | sql_print_error("Fatal error: Error while loading " |
1750 | "mysql.time_zone_leap_second table" ); |
1751 | goto end_with_close; |
1752 | } |
1753 | |
1754 | /* |
1755 | Loading of info about leap seconds succeeded |
1756 | */ |
1757 | |
1758 | return_val= 0; |
1759 | |
1760 | |
1761 | end_with_setting_default_tz: |
1762 | /* If we have default time zone try to load it */ |
1763 | if (default_tzname) |
1764 | { |
1765 | String tmp_tzname2(default_tzname, &my_charset_latin1); |
1766 | /* |
1767 | Time zone tables may be open here, and my_tz_find() may open |
1768 | most of them once more, but this is OK for system tables open |
1769 | for READ. |
1770 | */ |
1771 | if (unlikely(!(global_system_variables.time_zone= |
1772 | my_tz_find(thd, &tmp_tzname2)))) |
1773 | { |
1774 | sql_print_error("Fatal error: Illegal or unknown default time zone '%s'" , |
1775 | default_tzname); |
1776 | return_val= 1; |
1777 | } |
1778 | } |
1779 | |
1780 | end_with_close: |
1781 | if (time_zone_tables_exist) |
1782 | close_mysql_tables(thd); |
1783 | |
1784 | end_with_cleanup: |
1785 | |
1786 | /* if there were error free time zone describing structs */ |
1787 | if (unlikely(return_val)) |
1788 | my_tz_free(); |
1789 | end: |
1790 | delete thd; |
1791 | if (org_thd) |
1792 | org_thd->store_globals(); /* purecov: inspected */ |
1793 | |
1794 | default_tz= default_tz_name ? global_system_variables.time_zone |
1795 | : my_tz_SYSTEM; |
1796 | |
1797 | DBUG_RETURN(return_val); |
1798 | } |
1799 | |
1800 | |
1801 | /* |
1802 | Free resources used by time zone support infrastructure. |
1803 | |
1804 | SYNOPSIS |
1805 | my_tz_free() |
1806 | */ |
1807 | |
1808 | void my_tz_free() |
1809 | { |
1810 | if (tz_inited) |
1811 | { |
1812 | tz_inited= 0; |
1813 | mysql_mutex_destroy(&tz_LOCK); |
1814 | my_hash_free(&offset_tzs); |
1815 | my_hash_free(&tz_names); |
1816 | free_root(&tz_storage, MYF(0)); |
1817 | } |
1818 | } |
1819 | |
1820 | |
1821 | /* |
1822 | Load time zone description from system tables. |
1823 | |
1824 | SYNOPSIS |
1825 | tz_load_from_open_tables() |
1826 | tz_name - name of time zone that should be loaded. |
1827 | tz_tables - list of tables from which time zone description |
1828 | should be loaded |
1829 | |
1830 | DESCRIPTION |
1831 | This function will try to load information about time zone specified |
1832 | from the list of the already opened and locked tables (first table in |
1833 | tz_tables should be time_zone_name, next time_zone, then |
1834 | time_zone_transition_type and time_zone_transition should be last). |
1835 | It will also update information in hash used for time zones lookup. |
1836 | |
1837 | RETURN VALUES |
1838 | Returns pointer to newly created Time_zone object or 0 in case of error. |
1839 | |
1840 | */ |
1841 | |
1842 | static Time_zone* |
1843 | tz_load_from_open_tables(const String *tz_name, TABLE_LIST *tz_tables) |
1844 | { |
1845 | TABLE *table= 0; |
1846 | TIME_ZONE_INFO *tz_info= NULL; |
1847 | Tz_names_entry *tmp_tzname; |
1848 | Time_zone *return_val= 0; |
1849 | int res; |
1850 | uint tzid, ttid; |
1851 | my_time_t ttime; |
1852 | char buff[MAX_FIELD_WIDTH]; |
1853 | uchar keybuff[32]; |
1854 | Field *field; |
1855 | String abbr(buff, sizeof(buff), &my_charset_latin1); |
1856 | char *alloc_buff= NULL; |
1857 | char *tz_name_buff= NULL; |
1858 | /* |
1859 | Temporary arrays that are used for loading of data for filling |
1860 | TIME_ZONE_INFO structure |
1861 | */ |
1862 | my_time_t ats[TZ_MAX_TIMES]; |
1863 | uchar types[TZ_MAX_TIMES]; |
1864 | TRAN_TYPE_INFO ttis[TZ_MAX_TYPES]; |
1865 | #ifdef ABBR_ARE_USED |
1866 | char chars[MY_MAX(TZ_MAX_CHARS + 1, (2 * (MY_TZNAME_MAX + 1)))]; |
1867 | #endif |
1868 | /* |
1869 | Used as a temporary tz_info until we decide that we actually want to |
1870 | allocate and keep the tz info and tz name in tz_storage. |
1871 | */ |
1872 | TIME_ZONE_INFO tmp_tz_info; |
1873 | memset(&tmp_tz_info, 0, sizeof(TIME_ZONE_INFO)); |
1874 | |
1875 | DBUG_ENTER("tz_load_from_open_tables" ); |
1876 | |
1877 | /* |
1878 | Let us find out time zone id by its name (there is only one index |
1879 | and it is specifically for this purpose). |
1880 | */ |
1881 | table= tz_tables->table; |
1882 | tz_tables= tz_tables->next_local; |
1883 | table->field[0]->store(tz_name->ptr(), tz_name->length(), |
1884 | &my_charset_latin1); |
1885 | if (table->file->ha_index_init(0, 1)) |
1886 | goto end; |
1887 | |
1888 | if (table->file->ha_index_read_map(table->record[0], table->field[0]->ptr, |
1889 | HA_WHOLE_KEY, HA_READ_KEY_EXACT)) |
1890 | { |
1891 | #ifdef EXTRA_DEBUG |
1892 | /* |
1893 | Most probably user has mistyped time zone name, so no need to bark here |
1894 | unless we need it for debugging. |
1895 | */ |
1896 | sql_print_error("Can't find description of time zone '%.*s'" , |
1897 | tz_name->length(), tz_name->ptr()); |
1898 | #endif |
1899 | goto end; |
1900 | } |
1901 | |
1902 | tzid= (uint)table->field[1]->val_int(); |
1903 | |
1904 | (void)table->file->ha_index_end(); |
1905 | |
1906 | /* |
1907 | Now we need to lookup record in mysql.time_zone table in order to |
1908 | understand whenever this timezone uses leap seconds (again we are |
1909 | using the only index in this table). |
1910 | */ |
1911 | table= tz_tables->table; |
1912 | tz_tables= tz_tables->next_local; |
1913 | field= table->field[0]; |
1914 | field->store((longlong) tzid, TRUE); |
1915 | DBUG_ASSERT(field->key_length() <= sizeof(keybuff)); |
1916 | field->get_key_image(keybuff, |
1917 | MY_MIN(field->key_length(), sizeof(keybuff)), |
1918 | Field::itRAW); |
1919 | if (table->file->ha_index_init(0, 1)) |
1920 | goto end; |
1921 | |
1922 | if (table->file->ha_index_read_map(table->record[0], keybuff, |
1923 | HA_WHOLE_KEY, HA_READ_KEY_EXACT)) |
1924 | { |
1925 | sql_print_error("Can't find description of time zone '%u'" , tzid); |
1926 | goto end; |
1927 | } |
1928 | |
1929 | /* If Uses_leap_seconds == 'Y' */ |
1930 | if (table->field[1]->val_int() == 1) |
1931 | { |
1932 | tmp_tz_info.leapcnt= tz_leapcnt; |
1933 | tmp_tz_info.lsis= tz_lsis; |
1934 | } |
1935 | |
1936 | (void)table->file->ha_index_end(); |
1937 | |
1938 | /* |
1939 | Now we will iterate through records for out time zone in |
1940 | mysql.time_zone_transition_type table. Because we want records |
1941 | only for our time zone guess what are we doing? |
1942 | Right - using special index. |
1943 | */ |
1944 | table= tz_tables->table; |
1945 | tz_tables= tz_tables->next_local; |
1946 | field= table->field[0]; |
1947 | field->store((longlong) tzid, TRUE); |
1948 | DBUG_ASSERT(field->key_length() <= sizeof(keybuff)); |
1949 | field->get_key_image(keybuff, |
1950 | MY_MIN(field->key_length(), sizeof(keybuff)), |
1951 | Field::itRAW); |
1952 | if (table->file->ha_index_init(0, 1)) |
1953 | goto end; |
1954 | |
1955 | res= table->file->ha_index_read_map(table->record[0], keybuff, |
1956 | (key_part_map)1, HA_READ_KEY_EXACT); |
1957 | while (!res) |
1958 | { |
1959 | ttid= (uint)table->field[1]->val_int(); |
1960 | |
1961 | if (ttid >= TZ_MAX_TYPES) |
1962 | { |
1963 | sql_print_error("Error while loading time zone description from " |
1964 | "mysql.time_zone_transition_type table: too big " |
1965 | "transition type id" ); |
1966 | goto end; |
1967 | } |
1968 | |
1969 | ttis[ttid].tt_gmtoff= (long)table->field[2]->val_int(); |
1970 | ttis[ttid].tt_isdst= (table->field[3]->val_int() > 0); |
1971 | |
1972 | #ifdef ABBR_ARE_USED |
1973 | // FIXME should we do something with duplicates here ? |
1974 | table->field[4]->val_str(&abbr, &abbr); |
1975 | if (tmp_tz_info.charcnt + abbr.length() + 1 > sizeof(chars)) |
1976 | { |
1977 | sql_print_error("Error while loading time zone description from " |
1978 | "mysql.time_zone_transition_type table: not enough " |
1979 | "room for abbreviations" ); |
1980 | goto end; |
1981 | } |
1982 | ttis[ttid].tt_abbrind= tmp_tz_info.charcnt; |
1983 | memcpy(chars + tmp_tz_info.charcnt, abbr.ptr(), abbr.length()); |
1984 | tmp_tz_info.charcnt+= abbr.length(); |
1985 | chars[tmp_tz_info.charcnt]= 0; |
1986 | tmp_tz_info.charcnt++; |
1987 | |
1988 | DBUG_PRINT("info" , |
1989 | ("time_zone_transition_type table: tz_id=%u tt_id=%u tt_gmtoff=%ld " |
1990 | "abbr='%s' tt_isdst=%u" , tzid, ttid, ttis[ttid].tt_gmtoff, |
1991 | chars + ttis[ttid].tt_abbrind, ttis[ttid].tt_isdst)); |
1992 | #else |
1993 | DBUG_PRINT("info" , |
1994 | ("time_zone_transition_type table: tz_id=%u tt_id=%u tt_gmtoff=%ld " |
1995 | "tt_isdst=%u" , tzid, ttid, ttis[ttid].tt_gmtoff, ttis[ttid].tt_isdst)); |
1996 | #endif |
1997 | |
1998 | /* ttid is increasing because we are reading using index */ |
1999 | DBUG_ASSERT(ttid >= tmp_tz_info.typecnt); |
2000 | |
2001 | tmp_tz_info.typecnt= ttid + 1; |
2002 | |
2003 | res= table->file->ha_index_next_same(table->record[0], keybuff, 4); |
2004 | } |
2005 | |
2006 | if (res != HA_ERR_END_OF_FILE) |
2007 | { |
2008 | sql_print_error("Error while loading time zone description from " |
2009 | "mysql.time_zone_transition_type table" ); |
2010 | goto end; |
2011 | } |
2012 | |
2013 | (void)table->file->ha_index_end(); |
2014 | |
2015 | |
2016 | /* |
2017 | At last we are doing the same thing for records in |
2018 | mysql.time_zone_transition table. Here we additionally need records |
2019 | in ascending order by index scan also satisfies us. |
2020 | */ |
2021 | table= tz_tables->table; |
2022 | table->field[0]->store((longlong) tzid, TRUE); |
2023 | if (table->file->ha_index_init(0, 1)) |
2024 | goto end; |
2025 | |
2026 | res= table->file->ha_index_read_map(table->record[0], keybuff, |
2027 | (key_part_map)1, HA_READ_KEY_EXACT); |
2028 | while (!res) |
2029 | { |
2030 | ttime= (my_time_t)table->field[1]->val_int(); |
2031 | ttid= (uint)table->field[2]->val_int(); |
2032 | |
2033 | if (tmp_tz_info.timecnt + 1 > TZ_MAX_TIMES) |
2034 | { |
2035 | sql_print_error("Error while loading time zone description from " |
2036 | "mysql.time_zone_transition table: " |
2037 | "too much transitions" ); |
2038 | goto end; |
2039 | } |
2040 | if (ttid + 1 > tmp_tz_info.typecnt) |
2041 | { |
2042 | sql_print_error("Error while loading time zone description from " |
2043 | "mysql.time_zone_transition table: " |
2044 | "bad transition type id" ); |
2045 | goto end; |
2046 | } |
2047 | |
2048 | ats[tmp_tz_info.timecnt]= ttime; |
2049 | types[tmp_tz_info.timecnt]= ttid; |
2050 | tmp_tz_info.timecnt++; |
2051 | |
2052 | DBUG_PRINT("info" , |
2053 | ("time_zone_transition table: tz_id: %u tt_time: %lu tt_id: %u" , |
2054 | tzid, (ulong) ttime, ttid)); |
2055 | |
2056 | res= table->file->ha_index_next_same(table->record[0], keybuff, 4); |
2057 | } |
2058 | |
2059 | /* |
2060 | We have to allow HA_ERR_KEY_NOT_FOUND because some time zones |
2061 | for example UTC have no transitons. |
2062 | */ |
2063 | if (res != HA_ERR_END_OF_FILE && res != HA_ERR_KEY_NOT_FOUND) |
2064 | { |
2065 | sql_print_error("Error while loading time zone description from " |
2066 | "mysql.time_zone_transition table" ); |
2067 | goto end; |
2068 | } |
2069 | |
2070 | (void)table->file->ha_index_end(); |
2071 | table= 0; |
2072 | |
2073 | /* |
2074 | Let us check how correct our time zone description is. We don't check for |
2075 | tz->timecnt < 1 since it is ok for GMT. |
2076 | */ |
2077 | if (tmp_tz_info.typecnt < 1) |
2078 | { |
2079 | sql_print_error("loading time zone without transition types" ); |
2080 | goto end; |
2081 | } |
2082 | |
2083 | /* Allocate memory for the timezone info and timezone name in tz_storage. */ |
2084 | if (!(alloc_buff= (char*) alloc_root(&tz_storage, sizeof(TIME_ZONE_INFO) + |
2085 | tz_name->length() + 1))) |
2086 | { |
2087 | sql_print_error("Out of memory while loading time zone description" ); |
2088 | return 0; |
2089 | } |
2090 | |
2091 | /* Move the temporary tz_info into the allocated area */ |
2092 | tz_info= (TIME_ZONE_INFO *)alloc_buff; |
2093 | memcpy(tz_info, &tmp_tz_info, sizeof(TIME_ZONE_INFO)); |
2094 | tz_name_buff= alloc_buff + sizeof(TIME_ZONE_INFO); |
2095 | /* |
2096 | By writing zero to the end we guarantee that we can call ptr() |
2097 | instead of c_ptr() for time zone name. |
2098 | */ |
2099 | strmake(tz_name_buff, tz_name->ptr(), tz_name->length()); |
2100 | |
2101 | /* |
2102 | Now we will allocate memory and init TIME_ZONE_INFO structure. |
2103 | */ |
2104 | if (!(alloc_buff= (char*) alloc_root(&tz_storage, |
2105 | ALIGN_SIZE(sizeof(my_time_t) * |
2106 | tz_info->timecnt) + |
2107 | ALIGN_SIZE(tz_info->timecnt) + |
2108 | #ifdef ABBR_ARE_USED |
2109 | ALIGN_SIZE(tz_info->charcnt) + |
2110 | #endif |
2111 | sizeof(TRAN_TYPE_INFO) * |
2112 | tz_info->typecnt))) |
2113 | { |
2114 | sql_print_error("Out of memory while loading time zone description" ); |
2115 | goto end; |
2116 | } |
2117 | |
2118 | tz_info->ats= (my_time_t *) alloc_buff; |
2119 | memcpy(tz_info->ats, ats, tz_info->timecnt * sizeof(my_time_t)); |
2120 | alloc_buff+= ALIGN_SIZE(sizeof(my_time_t) * tz_info->timecnt); |
2121 | tz_info->types= (uchar *)alloc_buff; |
2122 | memcpy(tz_info->types, types, tz_info->timecnt); |
2123 | alloc_buff+= ALIGN_SIZE(tz_info->timecnt); |
2124 | #ifdef ABBR_ARE_USED |
2125 | tz_info->chars= alloc_buff; |
2126 | memcpy(tz_info->chars, chars, tz_info->charcnt); |
2127 | alloc_buff+= ALIGN_SIZE(tz_info->charcnt); |
2128 | #endif |
2129 | tz_info->ttis= (TRAN_TYPE_INFO *)alloc_buff; |
2130 | memcpy(tz_info->ttis, ttis, tz_info->typecnt * sizeof(TRAN_TYPE_INFO)); |
2131 | |
2132 | /* Build reversed map. */ |
2133 | if (prepare_tz_info(tz_info, &tz_storage)) |
2134 | { |
2135 | sql_print_error("Unable to build mktime map for time zone" ); |
2136 | goto end; |
2137 | } |
2138 | |
2139 | |
2140 | if (!(tmp_tzname= new (&tz_storage) Tz_names_entry()) || |
2141 | !(tmp_tzname->tz= new (&tz_storage) Time_zone_db(tz_info, |
2142 | &(tmp_tzname->name))) || |
2143 | (tmp_tzname->name.set(tz_name_buff, tz_name->length(), |
2144 | &my_charset_latin1), |
2145 | my_hash_insert(&tz_names, (const uchar *)tmp_tzname))) |
2146 | { |
2147 | sql_print_error("Out of memory while loading time zone" ); |
2148 | goto end; |
2149 | } |
2150 | |
2151 | /* |
2152 | Loading of time zone succeeded |
2153 | */ |
2154 | return_val= tmp_tzname->tz; |
2155 | |
2156 | end: |
2157 | |
2158 | if (table && table->file->inited) |
2159 | (void) table->file->ha_index_end(); |
2160 | |
2161 | DBUG_RETURN(return_val); |
2162 | } |
2163 | |
2164 | |
2165 | /* |
2166 | Parse string that specifies time zone as offset from UTC. |
2167 | |
2168 | SYNOPSIS |
2169 | str_to_offset() |
2170 | str - pointer to string which contains offset |
2171 | length - length of string |
2172 | offset - out parameter for storing found offset in seconds. |
2173 | |
2174 | DESCRIPTION |
2175 | This function parses string which contains time zone offset |
2176 | in form similar to '+10:00' and converts found value to |
2177 | seconds from UTC form (east is positive). |
2178 | |
2179 | RETURN VALUE |
2180 | 0 - Ok |
2181 | 1 - String doesn't contain valid time zone offset |
2182 | */ |
2183 | my_bool |
2184 | str_to_offset(const char *str, uint length, long *offset) |
2185 | { |
2186 | const char *end= str + length; |
2187 | my_bool negative; |
2188 | ulong number_tmp; |
2189 | long offset_tmp; |
2190 | |
2191 | if (length < 4) |
2192 | return 1; |
2193 | |
2194 | if (*str == '+') |
2195 | negative= 0; |
2196 | else if (*str == '-') |
2197 | negative= 1; |
2198 | else |
2199 | return 1; |
2200 | str++; |
2201 | |
2202 | number_tmp= 0; |
2203 | |
2204 | while (str < end && my_isdigit(&my_charset_latin1, *str)) |
2205 | { |
2206 | number_tmp= number_tmp*10 + *str - '0'; |
2207 | str++; |
2208 | } |
2209 | |
2210 | if (str + 1 >= end || *str != ':') |
2211 | return 1; |
2212 | str++; |
2213 | |
2214 | offset_tmp = number_tmp * MINS_PER_HOUR; number_tmp= 0; |
2215 | |
2216 | while (str < end && my_isdigit(&my_charset_latin1, *str)) |
2217 | { |
2218 | number_tmp= number_tmp * 10 + *str - '0'; |
2219 | str++; |
2220 | } |
2221 | |
2222 | if (str != end) |
2223 | return 1; |
2224 | |
2225 | offset_tmp= (offset_tmp + number_tmp) * SECS_PER_MIN; |
2226 | |
2227 | if (negative) |
2228 | offset_tmp= -offset_tmp; |
2229 | |
2230 | /* |
2231 | Check if offset is in range prescribed by standard |
2232 | (from -12:59 to 13:00). |
2233 | */ |
2234 | |
2235 | if (number_tmp > 59 || offset_tmp < -13 * SECS_PER_HOUR + 1 || |
2236 | offset_tmp > 13 * SECS_PER_HOUR) |
2237 | return 1; |
2238 | |
2239 | *offset= offset_tmp; |
2240 | |
2241 | return 0; |
2242 | } |
2243 | |
2244 | |
2245 | /* |
2246 | Get Time_zone object for specified time zone. |
2247 | |
2248 | SYNOPSIS |
2249 | my_tz_find() |
2250 | thd - pointer to thread THD structure |
2251 | name - time zone specification |
2252 | |
2253 | DESCRIPTION |
2254 | This function checks if name is one of time zones described in db, |
2255 | predefined SYSTEM time zone or valid time zone specification as |
2256 | offset from UTC (In last case it will create proper Time_zone_offset |
2257 | object if there were not any.). If name is ok it returns corresponding |
2258 | Time_zone object. |
2259 | |
2260 | Clients of this function are not responsible for releasing resources |
2261 | occupied by returned Time_zone object so they can just forget pointers |
2262 | to Time_zone object if they are not needed longer. |
2263 | |
2264 | Other important property of this function: if some Time_zone found once |
2265 | it will be for sure found later, so this function can also be used for |
2266 | checking if proper Time_zone object exists (and if there will be error |
2267 | it will be reported during first call). |
2268 | |
2269 | If name pointer is 0 then this function returns 0 (this allows to pass 0 |
2270 | values as parameter without additional external check and this property |
2271 | is used by @@time_zone variable handling code). |
2272 | |
2273 | It will perform lookup in system tables (mysql.time_zone*), |
2274 | opening and locking them, and closing afterwards. It won't perform |
2275 | such lookup if no time zone describing tables were found during |
2276 | server start up. |
2277 | |
2278 | RETURN VALUE |
2279 | Pointer to corresponding Time_zone object. 0 - in case of bad time zone |
2280 | specification or other error. |
2281 | |
2282 | */ |
2283 | Time_zone * |
2284 | my_tz_find(THD *thd, const String *name) |
2285 | { |
2286 | Tz_names_entry *tmp_tzname; |
2287 | Time_zone *result_tz= 0; |
2288 | long offset; |
2289 | DBUG_ENTER("my_tz_find" ); |
2290 | DBUG_PRINT("enter" , ("time zone name='%s'" , |
2291 | name ? ((String *)name)->c_ptr_safe() : "NULL" )); |
2292 | |
2293 | if (!name || name->is_empty()) |
2294 | DBUG_RETURN(0); |
2295 | |
2296 | mysql_mutex_lock(&tz_LOCK); |
2297 | |
2298 | if (!str_to_offset(name->ptr(), name->length(), &offset)) |
2299 | { |
2300 | if (!(result_tz= (Time_zone_offset *)my_hash_search(&offset_tzs, |
2301 | (const uchar *)&offset, |
2302 | sizeof(long)))) |
2303 | { |
2304 | DBUG_PRINT("info" , ("Creating new Time_zone_offset object" )); |
2305 | |
2306 | if (!(result_tz= new (&tz_storage) Time_zone_offset(offset)) || |
2307 | my_hash_insert(&offset_tzs, (const uchar *) result_tz)) |
2308 | { |
2309 | result_tz= 0; |
2310 | sql_print_error("Fatal error: Out of memory " |
2311 | "while setting new time zone" ); |
2312 | } |
2313 | } |
2314 | } |
2315 | else |
2316 | { |
2317 | result_tz= 0; |
2318 | if ((tmp_tzname= (Tz_names_entry *)my_hash_search(&tz_names, |
2319 | (const uchar *) |
2320 | name->ptr(), |
2321 | name->length()))) |
2322 | result_tz= tmp_tzname->tz; |
2323 | else if (time_zone_tables_exist) |
2324 | { |
2325 | TABLE_LIST tz_tables[MY_TZ_TABLES_COUNT]; |
2326 | Open_tables_backup open_tables_state_backup; |
2327 | |
2328 | tz_init_table_list(tz_tables); |
2329 | init_mdl_requests(tz_tables); |
2330 | if (!open_system_tables_for_read(thd, tz_tables, |
2331 | &open_tables_state_backup)) |
2332 | { |
2333 | result_tz= tz_load_from_open_tables(name, tz_tables); |
2334 | close_system_tables(thd, &open_tables_state_backup); |
2335 | } |
2336 | } |
2337 | } |
2338 | |
2339 | mysql_mutex_unlock(&tz_LOCK); |
2340 | |
2341 | if (result_tz && result_tz != my_tz_SYSTEM && result_tz != my_tz_UTC) |
2342 | status_var_increment(thd->status_var.feature_timezone); |
2343 | |
2344 | DBUG_RETURN(result_tz); |
2345 | } |
2346 | |
2347 | |
2348 | /** |
2349 | Convert leap seconds into non-leap |
2350 | |
2351 | This function will convert the leap seconds added by the OS to |
2352 | non-leap seconds, e.g. 23:59:59, 23:59:60 -> 23:59:59, 00:00:01 ... |
2353 | This check is not checking for years on purpose : although it's not a |
2354 | complete check this way it doesn't require looking (and having installed) |
2355 | the leap seconds table. |
2356 | |
2357 | @param[in,out] broken down time structure as filled in by the OS |
2358 | */ |
2359 | |
2360 | void Time_zone::adjust_leap_second(MYSQL_TIME *t) |
2361 | { |
2362 | if (t->second == 60 || t->second == 61) |
2363 | t->second= 59; |
2364 | } |
2365 | |
2366 | #endif /* !defined(TESTTIME) && !defined(TZINFO2SQL) */ |
2367 | |
2368 | |
2369 | #ifdef TZINFO2SQL |
2370 | /* |
2371 | This code belongs to mysql_tzinfo_to_sql converter command line utility. |
2372 | This utility should be used by db admin for populating mysql.time_zone |
2373 | tables. |
2374 | */ |
2375 | |
2376 | /* |
2377 | Print info about time zone described by TIME_ZONE_INFO struct as |
2378 | SQL statements populating mysql.time_zone* tables. |
2379 | |
2380 | SYNOPSIS |
2381 | print_tz_as_sql() |
2382 | tz_name - name of time zone |
2383 | sp - structure describing time zone |
2384 | */ |
2385 | void |
2386 | print_tz_as_sql(const char* tz_name, const TIME_ZONE_INFO *sp) |
2387 | { |
2388 | uint i; |
2389 | |
2390 | /* Here we assume that all time zones have same leap correction tables */ |
2391 | printf("INSERT INTO time_zone (Use_leap_seconds) VALUES ('%s');\n" , |
2392 | sp->leapcnt ? "Y" : "N" ); |
2393 | printf("SET @time_zone_id= LAST_INSERT_ID();\n" ); |
2394 | printf("INSERT INTO time_zone_name (Name, Time_zone_id) VALUES \ |
2395 | ('%s', @time_zone_id);\n" , tz_name); |
2396 | |
2397 | if (sp->timecnt) |
2398 | { |
2399 | printf("INSERT INTO time_zone_transition \ |
2400 | (Time_zone_id, Transition_time, Transition_type_id) VALUES\n" ); |
2401 | for (i= 0; i < sp->timecnt; i++) |
2402 | printf("%s(@time_zone_id, %ld, %u)\n" , (i == 0 ? " " : "," ), sp->ats[i], |
2403 | (uint)sp->types[i]); |
2404 | printf(";\n" ); |
2405 | } |
2406 | |
2407 | printf("INSERT INTO time_zone_transition_type \ |
2408 | (Time_zone_id, Transition_type_id, Offset, Is_DST, Abbreviation) VALUES\n" ); |
2409 | |
2410 | for (i= 0; i < sp->typecnt; i++) |
2411 | printf("%s(@time_zone_id, %u, %ld, %d, '%s')\n" , (i == 0 ? " " : "," ), i, |
2412 | sp->ttis[i].tt_gmtoff, sp->ttis[i].tt_isdst, |
2413 | sp->chars + sp->ttis[i].tt_abbrind); |
2414 | printf(";\n" ); |
2415 | } |
2416 | |
2417 | |
2418 | /* |
2419 | Print info about leap seconds in time zone as SQL statements |
2420 | populating mysql.time_zone_leap_second table. |
2421 | |
2422 | SYNOPSIS |
2423 | print_tz_leaps_as_sql() |
2424 | sp - structure describing time zone |
2425 | */ |
2426 | void |
2427 | print_tz_leaps_as_sql(const TIME_ZONE_INFO *sp) |
2428 | { |
2429 | uint i; |
2430 | |
2431 | /* |
2432 | We are assuming that there are only one list of leap seconds |
2433 | For all timezones. |
2434 | */ |
2435 | printf("TRUNCATE TABLE time_zone_leap_second;\n" ); |
2436 | |
2437 | if (sp->leapcnt) |
2438 | { |
2439 | printf("INSERT INTO time_zone_leap_second \ |
2440 | (Transition_time, Correction) VALUES\n" ); |
2441 | for (i= 0; i < sp->leapcnt; i++) |
2442 | printf("%s(%ld, %ld)\n" , (i == 0 ? " " : "," ), |
2443 | sp->lsis[i].ls_trans, sp->lsis[i].ls_corr); |
2444 | printf(";\n" ); |
2445 | } |
2446 | |
2447 | printf("ALTER TABLE time_zone_leap_second ORDER BY Transition_time;\n" ); |
2448 | } |
2449 | |
2450 | |
2451 | /* |
2452 | Some variables used as temporary or as parameters |
2453 | in recursive scan_tz_dir() code. |
2454 | */ |
2455 | TIME_ZONE_INFO tz_info; |
2456 | MEM_ROOT tz_storage; |
2457 | char fullname[FN_REFLEN + 1]; |
2458 | char *root_name_end; |
2459 | |
2460 | /* |
2461 | known file types that exist in the zoneinfo directory that are safe to |
2462 | silently skip |
2463 | */ |
2464 | const char *known_extensions[]= { |
2465 | ".tab" , |
2466 | NullS |
2467 | }; |
2468 | |
2469 | |
2470 | /* |
2471 | Recursively scan zoneinfo directory and print all found time zone |
2472 | descriptions as SQL. |
2473 | |
2474 | SYNOPSIS |
2475 | scan_tz_dir() |
2476 | name_end - pointer to end of path to directory to be searched. |
2477 | symlink_recursion_level How many symlink directory levels are used |
2478 | verbose >0 if we should print warnings |
2479 | |
2480 | DESCRIPTION |
2481 | This auxiliary recursive function also uses several global |
2482 | variables as in parameters and for storing temporary values. |
2483 | |
2484 | fullname - path to directory that should be scanned. |
2485 | root_name_end - pointer to place in fullname where part with |
2486 | path to initial directory ends. |
2487 | current_tz_id - last used time zone id |
2488 | |
2489 | RETURN VALUE |
2490 | 0 - Ok, 1 - Fatal error |
2491 | |
2492 | */ |
2493 | my_bool |
2494 | scan_tz_dir(char * name_end, uint symlink_recursion_level, uint verbose) |
2495 | { |
2496 | MY_DIR *cur_dir; |
2497 | char *name_end_tmp; |
2498 | uint i; |
2499 | |
2500 | /* Sort directory data, to pass mtr tests on different platforms. */ |
2501 | if (!(cur_dir= my_dir(fullname, MYF(MY_WANT_STAT|MY_WANT_SORT)))) |
2502 | return 1; |
2503 | |
2504 | name_end= strmake(name_end, "/" , FN_REFLEN - (name_end - fullname)); |
2505 | |
2506 | for (i= 0; i < cur_dir->number_of_files; i++) |
2507 | { |
2508 | if (cur_dir->dir_entry[i].name[0] != '.' && |
2509 | strcmp(cur_dir->dir_entry[i].name, "Factory" )) |
2510 | { |
2511 | name_end_tmp= strmake(name_end, cur_dir->dir_entry[i].name, |
2512 | FN_REFLEN - (name_end - fullname)); |
2513 | |
2514 | if (MY_S_ISDIR(cur_dir->dir_entry[i].mystat->st_mode)) |
2515 | { |
2516 | my_bool is_symlink; |
2517 | if ((is_symlink= my_is_symlink(fullname)) && |
2518 | symlink_recursion_level > 0) |
2519 | { |
2520 | /* |
2521 | The timezone definition data in some Linux distributions |
2522 | (e.g. the "timezone-data-2013f" package in Gentoo) |
2523 | may have synlimks like: |
2524 | /usr/share/zoneinfo/posix/ -> /usr/share/zoneinfo/, |
2525 | so the same timezone files are available under two names |
2526 | (e.g. "CET" and "posix/CET"). |
2527 | |
2528 | We allow one level of symlink recursion for backward |
2529 | compatibility with earlier timezone data packages that have |
2530 | duplicate copies of the same timezone files inside the root |
2531 | directory and the "posix" subdirectory (instead of symlinking). |
2532 | This makes "posix/CET" still available, but helps to avoid |
2533 | following such symlinks infinitely: |
2534 | /usr/share/zoneinfo/posix/posix/posix/.../posix/ |
2535 | */ |
2536 | |
2537 | /* |
2538 | This is a normal case and not critical. only print warning if |
2539 | verbose mode is choosen. |
2540 | */ |
2541 | if (verbose > 0) |
2542 | { |
2543 | fflush(stdout); |
2544 | fprintf(stderr, "Warning: Skipping directory '%s': " |
2545 | "to avoid infinite symlink recursion.\n" , fullname); |
2546 | } |
2547 | continue; |
2548 | } |
2549 | if (scan_tz_dir(name_end_tmp, symlink_recursion_level + is_symlink, |
2550 | verbose)) |
2551 | { |
2552 | my_dirend(cur_dir); |
2553 | return 1; |
2554 | } |
2555 | } |
2556 | else if (MY_S_ISREG(cur_dir->dir_entry[i].mystat->st_mode)) |
2557 | { |
2558 | init_alloc_root(&tz_storage, "timezone_storage" , 32768, 0, |
2559 | MYF(MY_THREAD_SPECIFIC)); |
2560 | if (!tz_load(fullname, &tz_info, &tz_storage)) |
2561 | print_tz_as_sql(root_name_end + 1, &tz_info); |
2562 | else |
2563 | { |
2564 | /* |
2565 | Some systems (like debian, opensuse etc) have description |
2566 | files (.tab). We skip these silently if verbose is > 0 |
2567 | */ |
2568 | const char *current_ext= fn_ext(fullname); |
2569 | my_bool known_ext= 0; |
2570 | |
2571 | for (const char **ext= known_extensions ; *ext ; ext++) |
2572 | { |
2573 | if (!strcmp(*ext, current_ext)) |
2574 | { |
2575 | known_ext= 1; |
2576 | break; |
2577 | } |
2578 | } |
2579 | if (verbose > 0 || !known_ext) |
2580 | { |
2581 | fflush(stdout); |
2582 | fprintf(stderr, |
2583 | "Warning: Unable to load '%s' as time zone. Skipping it.\n" , |
2584 | fullname); |
2585 | } |
2586 | } |
2587 | free_root(&tz_storage, MYF(0)); |
2588 | } |
2589 | else |
2590 | { |
2591 | fflush(stdout); |
2592 | fprintf(stderr, "Warning: '%s' is not regular file or directory\n" , |
2593 | fullname); |
2594 | } |
2595 | } |
2596 | } |
2597 | |
2598 | my_dirend(cur_dir); |
2599 | |
2600 | return 0; |
2601 | } |
2602 | |
2603 | |
2604 | my_bool opt_leap, opt_verbose; |
2605 | |
2606 | static const char *load_default_groups[]= |
2607 | { "mysql_tzinfo_to_sql" , 0}; |
2608 | |
2609 | static struct my_option my_long_options[] = |
2610 | { |
2611 | {"help" , '?', "Display this help and exit." , 0, 0, 0, GET_NO_ARG, NO_ARG, |
2612 | 0, 0, 0, 0, 0, 0}, |
2613 | #ifdef DBUG_OFF |
2614 | {"debug" , '#', "This is a non-debug version. Catch this and exit" , |
2615 | 0,0, 0, GET_DISABLED, OPT_ARG, 0, 0, 0, 0, 0, 0}, |
2616 | #else |
2617 | {"debug" , '#', "Output debug log. Often this is 'd:t:o,filename'." , |
2618 | 0, 0, 0, GET_STR, OPT_ARG, 0, 0, 0, 0, 0, 0}, |
2619 | #endif |
2620 | {"leap" , 'l', "Print the leap second information from the given time zone file. By convention, when --leap is used the next argument is the timezonefile" , |
2621 | &opt_leap, &opt_leap, 0, GET_BOOL, NO_ARG, 0, 0, 0, 0, 0, 0}, |
2622 | {"verbose" , 'v', "Write non critical warnings" , |
2623 | &opt_verbose, &opt_verbose, 0, GET_BOOL, NO_ARG, 0, 0, 0, 0, 0, 0}, |
2624 | {"version" , 'V', "Output version information and exit." , |
2625 | 0, 0, 0, GET_NO_ARG, NO_ARG, 0, 0, 0, 0, 0, 0}, |
2626 | { 0, 0, 0, 0, 0, 0, GET_NO_ARG, NO_ARG, 0, 0, 0, 0, 0, 0} |
2627 | }; |
2628 | |
2629 | |
2630 | C_MODE_START |
2631 | static my_bool get_one_option(int optid, const struct my_option *, |
2632 | char *argument); |
2633 | C_MODE_END |
2634 | |
2635 | static void print_version(void) |
2636 | { |
2637 | printf("%s Ver %s Distrib %s, for %s (%s)\n" ,my_progname, PROGRAM_VERSION, |
2638 | MYSQL_SERVER_VERSION,SYSTEM_TYPE,MACHINE_TYPE); |
2639 | } |
2640 | |
2641 | static void print_usage(void) |
2642 | { |
2643 | fprintf(stderr, "Usage:\n" ); |
2644 | fprintf(stderr, " %s [options] timezonedir\n" , my_progname); |
2645 | fprintf(stderr, " %s [options] timezonefile timezonename\n" , my_progname); |
2646 | print_defaults("my" ,load_default_groups); |
2647 | puts("" ); |
2648 | my_print_help(my_long_options); |
2649 | my_print_variables(my_long_options); |
2650 | } |
2651 | |
2652 | |
2653 | static my_bool |
2654 | get_one_option(int optid, const struct my_option *opt, char *argument) |
2655 | { |
2656 | switch(optid) { |
2657 | case '#': |
2658 | #ifndef DBUG_OFF |
2659 | DBUG_PUSH(argument ? argument : "d:t:S:i:O,/tmp/mysq_tzinfo_to_sql.trace" ); |
2660 | #endif |
2661 | break; |
2662 | case '?': |
2663 | print_version(); |
2664 | puts("" ); |
2665 | print_usage(); |
2666 | exit(0); |
2667 | case 'V': |
2668 | print_version(); |
2669 | exit(0); |
2670 | } |
2671 | return 0; |
2672 | } |
2673 | |
2674 | |
2675 | int |
2676 | main(int argc, char **argv) |
2677 | { |
2678 | char **default_argv; |
2679 | MY_INIT(argv[0]); |
2680 | |
2681 | load_defaults_or_exit("my" , load_default_groups, &argc, &argv); |
2682 | default_argv= argv; |
2683 | |
2684 | if ((handle_options(&argc, &argv, my_long_options, get_one_option))) |
2685 | exit(1); |
2686 | |
2687 | if ((argc != 1 && argc != 2) || (opt_leap && argc != 1)) |
2688 | { |
2689 | print_usage(); |
2690 | free_defaults(default_argv); |
2691 | return 1; |
2692 | } |
2693 | |
2694 | // Replicate MyISAM DDL for this session, cf. lp:1161432 |
2695 | // timezone info unfixable in XtraDB Cluster |
2696 | printf("set @prep=if((select count(*) from information_schema.global_variables where variable_name='wsrep_on'), 'SET GLOBAL wsrep_replicate_myisam=?', 'do ?');\n" |
2697 | "prepare set_wsrep_myisam from @prep;\n" |
2698 | "set @toggle=1; execute set_wsrep_myisam using @toggle;\n" ); |
2699 | |
2700 | if (argc == 1 && !opt_leap) |
2701 | { |
2702 | /* Argument is timezonedir */ |
2703 | |
2704 | root_name_end= strmake_buf(fullname, argv[0]); |
2705 | |
2706 | printf("TRUNCATE TABLE time_zone;\n" ); |
2707 | printf("TRUNCATE TABLE time_zone_name;\n" ); |
2708 | printf("TRUNCATE TABLE time_zone_transition;\n" ); |
2709 | printf("TRUNCATE TABLE time_zone_transition_type;\n" ); |
2710 | |
2711 | if (scan_tz_dir(root_name_end, 0, opt_verbose)) |
2712 | { |
2713 | fflush(stdout); |
2714 | fprintf(stderr, |
2715 | "There were fatal errors during processing " |
2716 | "of zoneinfo directory '%s'\n" , fullname); |
2717 | return 1; |
2718 | } |
2719 | |
2720 | printf("ALTER TABLE time_zone_transition " |
2721 | "ORDER BY Time_zone_id, Transition_time;\n" ); |
2722 | printf("ALTER TABLE time_zone_transition_type " |
2723 | "ORDER BY Time_zone_id, Transition_type_id;\n" ); |
2724 | } |
2725 | else |
2726 | { |
2727 | /* |
2728 | First argument is timezonefile. |
2729 | The second is timezonename if opt_leap is not given |
2730 | */ |
2731 | init_alloc_root(&tz_storage, "timezone_storage" , 32768, 0, MYF(0)); |
2732 | |
2733 | if (tz_load(argv[0], &tz_info, &tz_storage)) |
2734 | { |
2735 | fflush(stdout); |
2736 | fprintf(stderr, "Problems with zoneinfo file '%s'\n" , argv[0]); |
2737 | return 1; |
2738 | } |
2739 | if (opt_leap) |
2740 | print_tz_leaps_as_sql(&tz_info); |
2741 | else |
2742 | print_tz_as_sql(argv[1], &tz_info); |
2743 | |
2744 | free_root(&tz_storage, MYF(0)); |
2745 | } |
2746 | |
2747 | // Reset wsrep_replicate_myisam. lp:1161432 |
2748 | printf("set @toggle=0; execute set_wsrep_myisam using @toggle;\n" ); |
2749 | |
2750 | free_defaults(default_argv); |
2751 | my_end(0); |
2752 | return 0; |
2753 | } |
2754 | |
2755 | #endif /* defined(TZINFO2SQL) */ |
2756 | |
2757 | |
2758 | #ifdef TESTTIME |
2759 | |
2760 | /* |
2761 | Some simple brute-force test which allowed to catch a pair of bugs. |
2762 | Also can provide interesting facts about system's time zone support |
2763 | implementation. |
2764 | */ |
2765 | |
2766 | #ifndef CHAR_BIT |
2767 | #define CHAR_BIT 8 |
2768 | #endif |
2769 | |
2770 | #ifndef TYPE_BIT |
2771 | #define TYPE_BIT(type) (sizeof (type) * CHAR_BIT) |
2772 | #endif |
2773 | |
2774 | #ifndef TYPE_SIGNED |
2775 | #define TYPE_SIGNED(type) (((type) -1) < 0) |
2776 | #endif |
2777 | |
2778 | my_bool |
2779 | is_equal_TIME_tm(const TIME* time_arg, const struct tm * tm_arg) |
2780 | { |
2781 | return (time_arg->year == (uint)tm_arg->tm_year+TM_YEAR_BASE) && |
2782 | (time_arg->month == (uint)tm_arg->tm_mon+1) && |
2783 | (time_arg->day == (uint)tm_arg->tm_mday) && |
2784 | (time_arg->hour == (uint)tm_arg->tm_hour) && |
2785 | (time_arg->minute == (uint)tm_arg->tm_min) && |
2786 | (time_arg->second == (uint)tm_arg->tm_sec) && |
2787 | time_arg->second_part == 0; |
2788 | } |
2789 | |
2790 | |
2791 | int |
2792 | main(int argc, char **argv) |
2793 | { |
2794 | my_bool localtime_negative; |
2795 | TIME_ZONE_INFO tz_info; |
2796 | struct tm tmp; |
2797 | MYSQL_TIME time_tmp; |
2798 | time_t t, t1, t2; |
2799 | char fullname[FN_REFLEN+1]; |
2800 | char *str_end; |
2801 | MEM_ROOT tz_storage; |
2802 | |
2803 | MY_INIT(argv[0]); |
2804 | |
2805 | init_alloc_root(&tz_storage, "timezone_storage" , 32768, MYF(0)); |
2806 | |
2807 | /* let us set some well known timezone */ |
2808 | setenv("TZ" , "MET" , 1); |
2809 | tzset(); |
2810 | |
2811 | /* Some initial time zone related system info */ |
2812 | printf("time_t: %s %u bit\n" , TYPE_SIGNED(time_t) ? "signed" : "unsigned" , |
2813 | (uint)TYPE_BIT(time_t)); |
2814 | if (TYPE_SIGNED(time_t)) |
2815 | { |
2816 | t= -100; |
2817 | localtime_negative= MY_TEST(localtime_r(&t, &tmp) != 0); |
2818 | printf("localtime_r %s negative params \ |
2819 | (time_t=%d is %d-%d-%d %d:%d:%d)\n" , |
2820 | (localtime_negative ? "supports" : "doesn't support" ), (int)t, |
2821 | TM_YEAR_BASE + tmp.tm_year, tmp.tm_mon + 1, tmp.tm_mday, |
2822 | tmp.tm_hour, tmp.tm_min, tmp.tm_sec); |
2823 | |
2824 | printf("mktime %s negative results (%d)\n" , |
2825 | (t == mktime(&tmp) ? "doesn't support" : "supports" ), |
2826 | (int)mktime(&tmp)); |
2827 | } |
2828 | |
2829 | tmp.tm_year= 103; tmp.tm_mon= 2; tmp.tm_mday= 30; |
2830 | tmp.tm_hour= 2; tmp.tm_min= 30; tmp.tm_sec= 0; tmp.tm_isdst= -1; |
2831 | t= mktime(&tmp); |
2832 | printf("mktime returns %s for spring time gap (%d)\n" , |
2833 | (t != (time_t)-1 ? "something" : "error" ), (int)t); |
2834 | |
2835 | tmp.tm_year= 103; tmp.tm_mon= 8; tmp.tm_mday= 1; |
2836 | tmp.tm_hour= 0; tmp.tm_min= 0; tmp.tm_sec= 0; tmp.tm_isdst= 0; |
2837 | t= mktime(&tmp); |
2838 | printf("mktime returns %s for non existing date (%d)\n" , |
2839 | (t != (time_t)-1 ? "something" : "error" ), (int)t); |
2840 | |
2841 | tmp.tm_year= 103; tmp.tm_mon= 8; tmp.tm_mday= 1; |
2842 | tmp.tm_hour= 25; tmp.tm_min=0; tmp.tm_sec=0; tmp.tm_isdst=1; |
2843 | t= mktime(&tmp); |
2844 | printf("mktime %s unnormalized input (%d)\n" , |
2845 | (t != (time_t)-1 ? "handles" : "doesn't handle" ), (int)t); |
2846 | |
2847 | tmp.tm_year= 103; tmp.tm_mon= 9; tmp.tm_mday= 26; |
2848 | tmp.tm_hour= 0; tmp.tm_min= 30; tmp.tm_sec= 0; tmp.tm_isdst= 1; |
2849 | mktime(&tmp); |
2850 | tmp.tm_hour= 2; tmp.tm_isdst= -1; |
2851 | t= mktime(&tmp); |
2852 | tmp.tm_hour= 4; tmp.tm_isdst= 0; |
2853 | mktime(&tmp); |
2854 | tmp.tm_hour= 2; tmp.tm_isdst= -1; |
2855 | t1= mktime(&tmp); |
2856 | printf("mktime is %s (%d %d)\n" , |
2857 | (t == t1 ? "determenistic" : "is non-determenistic" ), |
2858 | (int)t, (int)t1); |
2859 | |
2860 | /* Let us load time zone description */ |
2861 | str_end= strmake_buf(fullname, TZDIR); |
2862 | strmake(str_end, "/MET" , FN_REFLEN - (str_end - fullname)); |
2863 | |
2864 | if (tz_load(fullname, &tz_info, &tz_storage)) |
2865 | { |
2866 | printf("Unable to load time zone info from '%s'\n" , fullname); |
2867 | free_root(&tz_storage, MYF(0)); |
2868 | return 1; |
2869 | } |
2870 | |
2871 | printf("Testing our implementation\n" ); |
2872 | |
2873 | if (TYPE_SIGNED(time_t) && localtime_negative) |
2874 | { |
2875 | for (t= -40000; t < 20000; t++) |
2876 | { |
2877 | localtime_r(&t, &tmp); |
2878 | gmt_sec_to_TIME(&time_tmp, (my_time_t)t, &tz_info); |
2879 | if (!is_equal_TIME_tm(&time_tmp, &tmp)) |
2880 | { |
2881 | printf("Problem with negative time_t = %d\n" , (int)t); |
2882 | free_root(&tz_storage, MYF(0)); |
2883 | return 1; |
2884 | } |
2885 | } |
2886 | printf("gmt_sec_to_TIME = localtime for time_t in [-40000,20000) range\n" ); |
2887 | } |
2888 | |
2889 | for (t= 1000000000; t < 1100000000; t+= 13) |
2890 | { |
2891 | localtime_r(&t,&tmp); |
2892 | gmt_sec_to_TIME(&time_tmp, (my_time_t)t, &tz_info); |
2893 | |
2894 | if (!is_equal_TIME_tm(&time_tmp, &tmp)) |
2895 | { |
2896 | printf("Problem with time_t = %d\n" , (int)t); |
2897 | free_root(&tz_storage, MYF(0)); |
2898 | return 1; |
2899 | } |
2900 | } |
2901 | printf("gmt_sec_to_TIME = localtime for time_t in [1000000000,1100000000) range\n" ); |
2902 | |
2903 | my_init_time(); |
2904 | |
2905 | /* |
2906 | Be careful here! my_system_gmt_sec doesn't fully handle unnormalized |
2907 | dates. |
2908 | */ |
2909 | for (time_tmp.year= 1980; time_tmp.year < 2010; time_tmp.year++) |
2910 | { |
2911 | for (time_tmp.month= 1; time_tmp.month < 13; time_tmp.month++) |
2912 | { |
2913 | for (time_tmp.day= 1; |
2914 | time_tmp.day < mon_lengths[isleap(time_tmp.year)][time_tmp.month-1]; |
2915 | time_tmp.day++) |
2916 | { |
2917 | for (time_tmp.hour= 0; time_tmp.hour < 24; time_tmp.hour++) |
2918 | { |
2919 | for (time_tmp.minute= 0; time_tmp.minute < 60; time_tmp.minute+= 5) |
2920 | { |
2921 | for (time_tmp.second=0; time_tmp.second<60; time_tmp.second+=25) |
2922 | { |
2923 | long not_used; |
2924 | uint not_used_2; |
2925 | t= (time_t)my_system_gmt_sec(&time_tmp, ¬_used, ¬_used_2); |
2926 | t1= (time_t)TIME_to_gmt_sec(&time_tmp, &tz_info, ¬_used_2); |
2927 | if (t != t1) |
2928 | { |
2929 | /* |
2930 | We need special handling during autumn since my_system_gmt_sec |
2931 | prefers greater time_t values (in MET) for ambiguity. |
2932 | And BTW that is a bug which should be fixed !!! |
2933 | */ |
2934 | tmp.tm_year= time_tmp.year - TM_YEAR_BASE; |
2935 | tmp.tm_mon= time_tmp.month - 1; |
2936 | tmp.tm_mday= time_tmp.day; |
2937 | tmp.tm_hour= time_tmp.hour; |
2938 | tmp.tm_min= time_tmp.minute; |
2939 | tmp.tm_sec= time_tmp.second; |
2940 | tmp.tm_isdst= 1; |
2941 | |
2942 | t2= mktime(&tmp); |
2943 | |
2944 | if (t1 == t2) |
2945 | continue; |
2946 | |
2947 | printf("Problem: %u/%u/%u %u:%u:%u with times t=%d, t1=%d\n" , |
2948 | time_tmp.year, time_tmp.month, time_tmp.day, |
2949 | time_tmp.hour, time_tmp.minute, time_tmp.second, |
2950 | (int)t,(int)t1); |
2951 | |
2952 | free_root(&tz_storage, MYF(0)); |
2953 | return 1; |
2954 | } |
2955 | } |
2956 | } |
2957 | } |
2958 | } |
2959 | } |
2960 | } |
2961 | |
2962 | printf("TIME_to_gmt_sec = my_system_gmt_sec for test range\n" ); |
2963 | |
2964 | free_root(&tz_storage, MYF(0)); |
2965 | return 0; |
2966 | } |
2967 | |
2968 | #endif /* defined(TESTTIME) */ |
2969 | |