| 1 | /* |
| 2 | Copyright (c) 2004, 2010, Oracle and/or its affiliates. |
| 3 | |
| 4 | This program is free software; you can redistribute it and/or modify |
| 5 | it under the terms of the GNU General Public License as published by |
| 6 | the Free Software Foundation; version 2 of the License. |
| 7 | |
| 8 | This program is distributed in the hope that it will be useful, |
| 9 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 10 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 11 | GNU General Public License for more details. |
| 12 | |
| 13 | You should have received a copy of the GNU General Public License |
| 14 | along with this program; if not, write to the Free Software |
| 15 | Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ |
| 16 | |
| 17 | /* |
| 18 | Most of the following code and structures were derived from |
| 19 | public domain code from ftp://elsie.nci.nih.gov/pub |
| 20 | (We will refer to this code as to elsie-code further.) |
| 21 | */ |
| 22 | |
| 23 | /* |
| 24 | We should not include sql_priv.h in mysql_tzinfo_to_sql utility since |
| 25 | it creates unsolved link dependencies on some platforms. |
| 26 | */ |
| 27 | |
| 28 | #ifdef USE_PRAGMA_IMPLEMENTATION |
| 29 | #pragma implementation // gcc: Class implementation |
| 30 | #endif |
| 31 | |
| 32 | #include "mariadb.h" |
| 33 | #if !defined(TZINFO2SQL) && !defined(TESTTIME) |
| 34 | #include "sql_priv.h" |
| 35 | #include "unireg.h" |
| 36 | #include "sql_time.h" // localtime_to_TIME |
| 37 | #include "sql_base.h" // open_system_tables_for_read, |
| 38 | // close_system_tables |
| 39 | #else |
| 40 | #include <my_time.h> |
| 41 | #include <my_sys.h> |
| 42 | #include <mysql_version.h> |
| 43 | #include <my_getopt.h> |
| 44 | #endif |
| 45 | |
| 46 | #include "tztime.h" |
| 47 | #include "tzfile.h" |
| 48 | #include <m_string.h> |
| 49 | #include <my_dir.h> |
| 50 | #include <mysql/psi/mysql_file.h> |
| 51 | #include "lock.h" // MYSQL_LOCK_IGNORE_FLUSH, |
| 52 | // MYSQL_LOCK_IGNORE_TIMEOUT |
| 53 | |
| 54 | /* |
| 55 | Now we don't use abbreviations in server but we will do this in future. |
| 56 | */ |
| 57 | #if defined(TZINFO2SQL) || defined(TESTTIME) |
| 58 | #define ABBR_ARE_USED |
| 59 | #else |
| 60 | #if !defined(DBUG_OFF) |
| 61 | /* Let use abbreviations for debug purposes */ |
| 62 | #undef ABBR_ARE_USED |
| 63 | #define ABBR_ARE_USED |
| 64 | #endif /* !defined(DBUG_OFF) */ |
| 65 | #endif /* defined(TZINFO2SQL) || defined(TESTTIME) */ |
| 66 | |
| 67 | #define PROGRAM_VERSION "1.1" |
| 68 | |
| 69 | /* Structure describing local time type (e.g. Moscow summer time (MSD)) */ |
| 70 | typedef struct ttinfo |
| 71 | { |
| 72 | long tt_gmtoff; // Offset from UTC in seconds |
| 73 | uint tt_isdst; // Is daylight saving time or not. Used to set tm_isdst |
| 74 | #ifdef ABBR_ARE_USED |
| 75 | uint tt_abbrind; // Index of start of abbreviation for this time type. |
| 76 | #endif |
| 77 | /* |
| 78 | We don't use tt_ttisstd and tt_ttisgmt members of original elsie-code |
| 79 | struct since we don't support POSIX-style TZ descriptions in variables. |
| 80 | */ |
| 81 | } TRAN_TYPE_INFO; |
| 82 | |
| 83 | /* Structure describing leap-second corrections. */ |
| 84 | typedef struct lsinfo |
| 85 | { |
| 86 | my_time_t ls_trans; // Transition time |
| 87 | long ls_corr; // Correction to apply |
| 88 | } LS_INFO; |
| 89 | |
| 90 | /* |
| 91 | Structure with information describing ranges of my_time_t shifted to local |
| 92 | time (my_time_t + offset). Used for local MYSQL_TIME -> my_time_t conversion. |
| 93 | See comments for TIME_to_gmt_sec() for more info. |
| 94 | */ |
| 95 | typedef struct revtinfo |
| 96 | { |
| 97 | long rt_offset; // Offset of local time from UTC in seconds |
| 98 | uint rt_type; // Type of period 0 - Normal period. 1 - Spring time-gap |
| 99 | } REVT_INFO; |
| 100 | |
| 101 | #ifdef TZNAME_MAX |
| 102 | #define MY_TZNAME_MAX TZNAME_MAX |
| 103 | #endif |
| 104 | #ifndef TZNAME_MAX |
| 105 | #define MY_TZNAME_MAX 255 |
| 106 | #endif |
| 107 | |
| 108 | /* |
| 109 | Structure which fully describes time zone which is |
| 110 | described in our db or in zoneinfo files. |
| 111 | */ |
| 112 | typedef struct st_time_zone_info |
| 113 | { |
| 114 | uint leapcnt; // Number of leap-second corrections |
| 115 | uint timecnt; // Number of transitions between time types |
| 116 | uint typecnt; // Number of local time types |
| 117 | uint charcnt; // Number of characters used for abbreviations |
| 118 | uint revcnt; // Number of transition descr. for TIME->my_time_t conversion |
| 119 | /* The following are dynamical arrays are allocated in MEM_ROOT */ |
| 120 | my_time_t *ats; // Times of transitions between time types |
| 121 | uchar *types; // Local time types for transitions |
| 122 | TRAN_TYPE_INFO *ttis; // Local time types descriptions |
| 123 | #ifdef ABBR_ARE_USED |
| 124 | /* Storage for local time types abbreviations. They are stored as ASCIIZ */ |
| 125 | char *chars; |
| 126 | #endif |
| 127 | /* |
| 128 | Leap seconds corrections descriptions, this array is shared by |
| 129 | all time zones who use leap seconds. |
| 130 | */ |
| 131 | LS_INFO *lsis; |
| 132 | /* |
| 133 | Starting points and descriptions of shifted my_time_t (my_time_t + offset) |
| 134 | ranges on which shifted my_time_t -> my_time_t mapping is linear or undefined. |
| 135 | Used for tm -> my_time_t conversion. |
| 136 | */ |
| 137 | my_time_t *revts; |
| 138 | REVT_INFO *revtis; |
| 139 | /* |
| 140 | Time type which is used for times smaller than first transition or if |
| 141 | there are no transitions at all. |
| 142 | */ |
| 143 | TRAN_TYPE_INFO *fallback_tti; |
| 144 | |
| 145 | } TIME_ZONE_INFO; |
| 146 | |
| 147 | |
| 148 | static my_bool prepare_tz_info(TIME_ZONE_INFO *sp, MEM_ROOT *storage); |
| 149 | |
| 150 | |
| 151 | #if defined(TZINFO2SQL) || defined(TESTTIME) |
| 152 | |
| 153 | /* |
| 154 | Load time zone description from zoneinfo (TZinfo) file. |
| 155 | |
| 156 | SYNOPSIS |
| 157 | tz_load() |
| 158 | name - path to zoneinfo file |
| 159 | sp - TIME_ZONE_INFO structure to fill |
| 160 | |
| 161 | RETURN VALUES |
| 162 | 0 - Ok |
| 163 | 1 - Error |
| 164 | */ |
| 165 | static my_bool |
| 166 | tz_load(const char *name, TIME_ZONE_INFO *sp, MEM_ROOT *storage) |
| 167 | { |
| 168 | uchar *p; |
| 169 | ssize_t read_from_file; |
| 170 | uint i; |
| 171 | MYSQL_FILE *file; |
| 172 | |
| 173 | if (!(file= mysql_file_fopen(0, name, O_RDONLY|O_BINARY, MYF(MY_WME)))) |
| 174 | return 1; |
| 175 | { |
| 176 | union |
| 177 | { |
| 178 | struct tzhead tzhead; |
| 179 | uchar buf[sizeof(struct tzhead) + sizeof(my_time_t) * TZ_MAX_TIMES + |
| 180 | TZ_MAX_TIMES + sizeof(TRAN_TYPE_INFO) * TZ_MAX_TYPES + |
| 181 | #ifdef ABBR_ARE_USED |
| 182 | MY_MAX(TZ_MAX_CHARS + 1, (2 * (MY_TZNAME_MAX + 1))) + |
| 183 | #endif |
| 184 | sizeof(LS_INFO) * TZ_MAX_LEAPS]; |
| 185 | } u; |
| 186 | uint ttisstdcnt; |
| 187 | uint ttisgmtcnt; |
| 188 | char *tzinfo_buf; |
| 189 | |
| 190 | read_from_file= (ssize_t)mysql_file_fread(file, u.buf, sizeof(u.buf), MYF(MY_WME)); |
| 191 | |
| 192 | if (mysql_file_fclose(file, MYF(MY_WME)) != 0) |
| 193 | return 1; |
| 194 | |
| 195 | if (read_from_file < (int)sizeof(struct tzhead)) |
| 196 | return 1; |
| 197 | |
| 198 | ttisstdcnt= int4net(u.tzhead.tzh_ttisgmtcnt); |
| 199 | ttisgmtcnt= int4net(u.tzhead.tzh_ttisstdcnt); |
| 200 | sp->leapcnt= int4net(u.tzhead.tzh_leapcnt); |
| 201 | sp->timecnt= int4net(u.tzhead.tzh_timecnt); |
| 202 | sp->typecnt= int4net(u.tzhead.tzh_typecnt); |
| 203 | sp->charcnt= int4net(u.tzhead.tzh_charcnt); |
| 204 | p= u.tzhead.tzh_charcnt + sizeof(u.tzhead.tzh_charcnt); |
| 205 | if (sp->leapcnt > TZ_MAX_LEAPS || |
| 206 | sp->typecnt == 0 || sp->typecnt > TZ_MAX_TYPES || |
| 207 | sp->timecnt > TZ_MAX_TIMES || |
| 208 | sp->charcnt > TZ_MAX_CHARS || |
| 209 | (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) || |
| 210 | (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0)) |
| 211 | return 1; |
| 212 | if ((uint)(read_from_file - (p - u.buf)) < |
| 213 | sp->timecnt * 4 + /* ats */ |
| 214 | sp->timecnt + /* types */ |
| 215 | sp->typecnt * (4 + 2) + /* ttinfos */ |
| 216 | sp->charcnt + /* chars */ |
| 217 | sp->leapcnt * (4 + 4) + /* lsinfos */ |
| 218 | ttisstdcnt + /* ttisstds */ |
| 219 | ttisgmtcnt) /* ttisgmts */ |
| 220 | return 1; |
| 221 | |
| 222 | if (!(tzinfo_buf= (char *)alloc_root(storage, |
| 223 | ALIGN_SIZE(sp->timecnt * |
| 224 | sizeof(my_time_t)) + |
| 225 | ALIGN_SIZE(sp->timecnt) + |
| 226 | ALIGN_SIZE(sp->typecnt * |
| 227 | sizeof(TRAN_TYPE_INFO)) + |
| 228 | #ifdef ABBR_ARE_USED |
| 229 | ALIGN_SIZE(sp->charcnt+1) + |
| 230 | #endif |
| 231 | sp->leapcnt * sizeof(LS_INFO)))) |
| 232 | return 1; |
| 233 | |
| 234 | sp->ats= (my_time_t *)tzinfo_buf; |
| 235 | tzinfo_buf+= ALIGN_SIZE(sp->timecnt * sizeof(my_time_t)); |
| 236 | sp->types= (uchar *)tzinfo_buf; |
| 237 | tzinfo_buf+= ALIGN_SIZE(sp->timecnt); |
| 238 | sp->ttis= (TRAN_TYPE_INFO *)tzinfo_buf; |
| 239 | tzinfo_buf+= ALIGN_SIZE(sp->typecnt * sizeof(TRAN_TYPE_INFO)); |
| 240 | #ifdef ABBR_ARE_USED |
| 241 | sp->chars= tzinfo_buf; |
| 242 | tzinfo_buf+= ALIGN_SIZE(sp->charcnt+1); |
| 243 | #endif |
| 244 | sp->lsis= (LS_INFO *)tzinfo_buf; |
| 245 | |
| 246 | for (i= 0; i < sp->timecnt; i++, p+= 4) |
| 247 | sp->ats[i]= int4net(p); |
| 248 | |
| 249 | for (i= 0; i < sp->timecnt; i++) |
| 250 | { |
| 251 | sp->types[i]= (uchar) *p++; |
| 252 | if (sp->types[i] >= sp->typecnt) |
| 253 | return 1; |
| 254 | } |
| 255 | for (i= 0; i < sp->typecnt; i++) |
| 256 | { |
| 257 | TRAN_TYPE_INFO * ttisp; |
| 258 | |
| 259 | ttisp= &sp->ttis[i]; |
| 260 | ttisp->tt_gmtoff= int4net(p); |
| 261 | p+= 4; |
| 262 | ttisp->tt_isdst= (uchar) *p++; |
| 263 | if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1) |
| 264 | return 1; |
| 265 | ttisp->tt_abbrind= (uchar) *p++; |
| 266 | if (ttisp->tt_abbrind > sp->charcnt) |
| 267 | return 1; |
| 268 | } |
| 269 | for (i= 0; i < sp->charcnt; i++) |
| 270 | sp->chars[i]= *p++; |
| 271 | sp->chars[i]= '\0'; /* ensure '\0' at end */ |
| 272 | for (i= 0; i < sp->leapcnt; i++) |
| 273 | { |
| 274 | LS_INFO *lsisp; |
| 275 | |
| 276 | lsisp= &sp->lsis[i]; |
| 277 | lsisp->ls_trans= int4net(p); |
| 278 | p+= 4; |
| 279 | lsisp->ls_corr= int4net(p); |
| 280 | p+= 4; |
| 281 | } |
| 282 | /* |
| 283 | Since we don't support POSIX style TZ definitions in variables we |
| 284 | don't read further like glibc or elsie code. |
| 285 | */ |
| 286 | } |
| 287 | |
| 288 | return prepare_tz_info(sp, storage); |
| 289 | } |
| 290 | #endif /* defined(TZINFO2SQL) || defined(TESTTIME) */ |
| 291 | |
| 292 | |
| 293 | /* |
| 294 | Finish preparation of time zone description for use in TIME_to_gmt_sec() |
| 295 | and gmt_sec_to_TIME() functions. |
| 296 | |
| 297 | SYNOPSIS |
| 298 | prepare_tz_info() |
| 299 | sp - pointer to time zone description |
| 300 | storage - pointer to MEM_ROOT where arrays for map allocated |
| 301 | |
| 302 | DESCRIPTION |
| 303 | First task of this function is to find fallback time type which will |
| 304 | be used if there are no transitions or we have moment in time before |
| 305 | any transitions. |
| 306 | Second task is to build "shifted my_time_t" -> my_time_t map used in |
| 307 | MYSQL_TIME -> my_time_t conversion. |
| 308 | Note: See description of TIME_to_gmt_sec() function first. |
| 309 | In order to perform MYSQL_TIME -> my_time_t conversion we need to build table |
| 310 | which defines "shifted by tz offset and leap seconds my_time_t" -> |
| 311 | my_time_t function which is almost the same (except ranges of ambiguity) |
| 312 | as reverse function to piecewise linear function used for my_time_t -> |
| 313 | "shifted my_time_t" conversion and which is also specified as table in |
| 314 | zoneinfo file or in our db (It is specified as start of time type ranges |
| 315 | and time type offsets). So basic idea is very simple - let us iterate |
| 316 | through my_time_t space from one point of discontinuity of my_time_t -> |
| 317 | "shifted my_time_t" function to another and build our approximation of |
| 318 | reverse function. (Actually we iterate through ranges on which |
| 319 | my_time_t -> "shifted my_time_t" is linear function). |
| 320 | |
| 321 | RETURN VALUES |
| 322 | 0 Ok |
| 323 | 1 Error |
| 324 | */ |
| 325 | static my_bool |
| 326 | prepare_tz_info(TIME_ZONE_INFO *sp, MEM_ROOT *storage) |
| 327 | { |
| 328 | my_time_t cur_t= MY_TIME_T_MIN; |
| 329 | my_time_t cur_l, end_t, UNINIT_VAR(end_l); |
| 330 | my_time_t cur_max_seen_l= MY_TIME_T_MIN; |
| 331 | long cur_offset, cur_corr, cur_off_and_corr; |
| 332 | uint next_trans_idx, next_leap_idx; |
| 333 | uint i; |
| 334 | /* |
| 335 | Temporary arrays where we will store tables. Needed because |
| 336 | we don't know table sizes ahead. (Well we can estimate their |
| 337 | upper bound but this will take extra space.) |
| 338 | */ |
| 339 | my_time_t revts[TZ_MAX_REV_RANGES]; |
| 340 | REVT_INFO revtis[TZ_MAX_REV_RANGES]; |
| 341 | |
| 342 | /* |
| 343 | Let us setup fallback time type which will be used if we have not any |
| 344 | transitions or if we have moment of time before first transition. |
| 345 | We will find first non-DST local time type and use it (or use first |
| 346 | local time type if all of them are DST types). |
| 347 | */ |
| 348 | for (i= 0; i < sp->typecnt && sp->ttis[i].tt_isdst; i++) |
| 349 | /* no-op */ ; |
| 350 | if (i == sp->typecnt) |
| 351 | i= 0; |
| 352 | sp->fallback_tti= &(sp->ttis[i]); |
| 353 | |
| 354 | |
| 355 | /* |
| 356 | Let us build shifted my_time_t -> my_time_t map. |
| 357 | */ |
| 358 | sp->revcnt= 0; |
| 359 | |
| 360 | /* Let us find initial offset */ |
| 361 | if (sp->timecnt == 0 || cur_t < sp->ats[0]) |
| 362 | { |
| 363 | /* |
| 364 | If we have not any transitions or t is before first transition we are using |
| 365 | already found fallback time type which index is already in i. |
| 366 | */ |
| 367 | next_trans_idx= 0; |
| 368 | } |
| 369 | else |
| 370 | { |
| 371 | /* cur_t == sp->ats[0] so we found transition */ |
| 372 | i= sp->types[0]; |
| 373 | next_trans_idx= 1; |
| 374 | } |
| 375 | |
| 376 | cur_offset= sp->ttis[i].tt_gmtoff; |
| 377 | |
| 378 | |
| 379 | /* let us find leap correction... unprobable, but... */ |
| 380 | for (next_leap_idx= 0; next_leap_idx < sp->leapcnt && |
| 381 | cur_t >= sp->lsis[next_leap_idx].ls_trans; |
| 382 | ++next_leap_idx) |
| 383 | continue; |
| 384 | |
| 385 | if (next_leap_idx > 0) |
| 386 | cur_corr= sp->lsis[next_leap_idx - 1].ls_corr; |
| 387 | else |
| 388 | cur_corr= 0; |
| 389 | |
| 390 | /* Iterate trough t space */ |
| 391 | while (sp->revcnt < TZ_MAX_REV_RANGES - 1) |
| 392 | { |
| 393 | cur_off_and_corr= cur_offset - cur_corr; |
| 394 | |
| 395 | /* |
| 396 | We assuming that cur_t could be only overflowed downwards, |
| 397 | we also assume that end_t won't be overflowed in this case. |
| 398 | */ |
| 399 | if (cur_off_and_corr < 0 && |
| 400 | cur_t < MY_TIME_T_MIN - cur_off_and_corr) |
| 401 | cur_t= MY_TIME_T_MIN - cur_off_and_corr; |
| 402 | |
| 403 | cur_l= cur_t + cur_off_and_corr; |
| 404 | |
| 405 | /* |
| 406 | Let us choose end_t as point before next time type change or leap |
| 407 | second correction. |
| 408 | */ |
| 409 | end_t= MY_MIN((next_trans_idx < sp->timecnt) ? sp->ats[next_trans_idx] - 1: |
| 410 | MY_TIME_T_MAX, |
| 411 | (next_leap_idx < sp->leapcnt) ? |
| 412 | sp->lsis[next_leap_idx].ls_trans - 1: MY_TIME_T_MAX); |
| 413 | /* |
| 414 | again assuming that end_t can be overlowed only in positive side |
| 415 | we also assume that end_t won't be overflowed in this case. |
| 416 | */ |
| 417 | if (cur_off_and_corr > 0 && |
| 418 | end_t > MY_TIME_T_MAX - cur_off_and_corr) |
| 419 | end_t= MY_TIME_T_MAX - cur_off_and_corr; |
| 420 | |
| 421 | end_l= end_t + cur_off_and_corr; |
| 422 | |
| 423 | |
| 424 | if (end_l > cur_max_seen_l) |
| 425 | { |
| 426 | /* We want special handling in the case of first range */ |
| 427 | if (cur_max_seen_l == MY_TIME_T_MIN) |
| 428 | { |
| 429 | revts[sp->revcnt]= cur_l; |
| 430 | revtis[sp->revcnt].rt_offset= cur_off_and_corr; |
| 431 | revtis[sp->revcnt].rt_type= 0; |
| 432 | sp->revcnt++; |
| 433 | cur_max_seen_l= end_l; |
| 434 | } |
| 435 | else |
| 436 | { |
| 437 | if (cur_l > cur_max_seen_l + 1) |
| 438 | { |
| 439 | /* We have a spring time-gap and we are not at the first range */ |
| 440 | revts[sp->revcnt]= cur_max_seen_l + 1; |
| 441 | revtis[sp->revcnt].rt_offset= revtis[sp->revcnt-1].rt_offset; |
| 442 | revtis[sp->revcnt].rt_type= 1; |
| 443 | sp->revcnt++; |
| 444 | if (sp->revcnt == TZ_MAX_TIMES + TZ_MAX_LEAPS + 1) |
| 445 | break; /* That was too much */ |
| 446 | cur_max_seen_l= cur_l - 1; |
| 447 | } |
| 448 | |
| 449 | /* Assume here end_l > cur_max_seen_l (because end_l>=cur_l) */ |
| 450 | |
| 451 | revts[sp->revcnt]= cur_max_seen_l + 1; |
| 452 | revtis[sp->revcnt].rt_offset= cur_off_and_corr; |
| 453 | revtis[sp->revcnt].rt_type= 0; |
| 454 | sp->revcnt++; |
| 455 | cur_max_seen_l= end_l; |
| 456 | } |
| 457 | } |
| 458 | |
| 459 | if (end_t == MY_TIME_T_MAX || |
| 460 | ((cur_off_and_corr > 0) && |
| 461 | (end_t >= MY_TIME_T_MAX - cur_off_and_corr))) |
| 462 | /* end of t space */ |
| 463 | break; |
| 464 | |
| 465 | cur_t= end_t + 1; |
| 466 | |
| 467 | /* |
| 468 | Let us find new offset and correction. Because of our choice of end_t |
| 469 | cur_t can only be point where new time type starts or/and leap |
| 470 | correction is performed. |
| 471 | */ |
| 472 | if (sp->timecnt != 0 && cur_t >= sp->ats[0]) /* else reuse old offset */ |
| 473 | if (next_trans_idx < sp->timecnt && |
| 474 | cur_t == sp->ats[next_trans_idx]) |
| 475 | { |
| 476 | /* We are at offset point */ |
| 477 | cur_offset= sp->ttis[sp->types[next_trans_idx]].tt_gmtoff; |
| 478 | ++next_trans_idx; |
| 479 | } |
| 480 | |
| 481 | if (next_leap_idx < sp->leapcnt && |
| 482 | cur_t == sp->lsis[next_leap_idx].ls_trans) |
| 483 | { |
| 484 | /* we are at leap point */ |
| 485 | cur_corr= sp->lsis[next_leap_idx].ls_corr; |
| 486 | ++next_leap_idx; |
| 487 | } |
| 488 | } |
| 489 | |
| 490 | /* check if we have had enough space */ |
| 491 | if (sp->revcnt == TZ_MAX_REV_RANGES - 1) |
| 492 | return 1; |
| 493 | |
| 494 | /* set maximum end_l as finisher */ |
| 495 | revts[sp->revcnt]= end_l; |
| 496 | |
| 497 | /* Allocate arrays of proper size in sp and copy result there */ |
| 498 | if (!(sp->revts= (my_time_t *)alloc_root(storage, |
| 499 | sizeof(my_time_t) * (sp->revcnt + 1))) || |
| 500 | !(sp->revtis= (REVT_INFO *)alloc_root(storage, |
| 501 | sizeof(REVT_INFO) * sp->revcnt))) |
| 502 | return 1; |
| 503 | |
| 504 | memcpy(sp->revts, revts, sizeof(my_time_t) * (sp->revcnt + 1)); |
| 505 | memcpy(sp->revtis, revtis, sizeof(REVT_INFO) * sp->revcnt); |
| 506 | |
| 507 | return 0; |
| 508 | } |
| 509 | |
| 510 | |
| 511 | #if !defined(TZINFO2SQL) |
| 512 | |
| 513 | static const uint mon_lengths[2][MONS_PER_YEAR]= |
| 514 | { |
| 515 | { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }, |
| 516 | { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 } |
| 517 | }; |
| 518 | |
| 519 | static const uint mon_starts[2][MONS_PER_YEAR]= |
| 520 | { |
| 521 | { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 }, |
| 522 | { 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335 } |
| 523 | }; |
| 524 | |
| 525 | static const uint year_lengths[2]= |
| 526 | { |
| 527 | DAYS_PER_NYEAR, DAYS_PER_LYEAR |
| 528 | }; |
| 529 | |
| 530 | #define LEAPS_THRU_END_OF(y) ((y) / 4 - (y) / 100 + (y) / 400) |
| 531 | |
| 532 | |
| 533 | /* |
| 534 | Converts time from my_time_t representation (seconds in UTC since Epoch) |
| 535 | to broken down representation using given local time zone offset. |
| 536 | |
| 537 | SYNOPSIS |
| 538 | sec_to_TIME() |
| 539 | tmp - pointer to structure for broken down representation |
| 540 | t - my_time_t value to be converted |
| 541 | offset - local time zone offset |
| 542 | |
| 543 | DESCRIPTION |
| 544 | Convert my_time_t with offset to MYSQL_TIME struct. Differs from timesub |
| 545 | (from elsie code) because doesn't contain any leap correction and |
| 546 | TM_GMTOFF and is_dst setting and contains some MySQL specific |
| 547 | initialization. Funny but with removing of these we almost have |
| 548 | glibc's offtime function. |
| 549 | */ |
| 550 | static void |
| 551 | sec_to_TIME(MYSQL_TIME * tmp, my_time_t t, long offset) |
| 552 | { |
| 553 | long days; |
| 554 | long rem; |
| 555 | int y; |
| 556 | int yleap; |
| 557 | const uint *ip; |
| 558 | |
| 559 | days= (long) (t / SECS_PER_DAY); |
| 560 | rem= (long) (t % SECS_PER_DAY); |
| 561 | |
| 562 | /* |
| 563 | We do this as separate step after dividing t, because this |
| 564 | allows us handle times near my_time_t bounds without overflows. |
| 565 | */ |
| 566 | rem+= offset; |
| 567 | while (rem < 0) |
| 568 | { |
| 569 | rem+= SECS_PER_DAY; |
| 570 | days--; |
| 571 | } |
| 572 | while (rem >= SECS_PER_DAY) |
| 573 | { |
| 574 | rem -= SECS_PER_DAY; |
| 575 | days++; |
| 576 | } |
| 577 | tmp->hour= (uint)(rem / SECS_PER_HOUR); |
| 578 | rem= rem % SECS_PER_HOUR; |
| 579 | tmp->minute= (uint)(rem / SECS_PER_MIN); |
| 580 | /* |
| 581 | A positive leap second requires a special |
| 582 | representation. This uses "... ??:59:60" et seq. |
| 583 | */ |
| 584 | tmp->second= (uint)(rem % SECS_PER_MIN); |
| 585 | |
| 586 | y= EPOCH_YEAR; |
| 587 | while (days < 0 || days >= (long)year_lengths[yleap= isleap(y)]) |
| 588 | { |
| 589 | int newy; |
| 590 | |
| 591 | newy= y + days / DAYS_PER_NYEAR; |
| 592 | if (days < 0) |
| 593 | newy--; |
| 594 | days-= (newy - y) * DAYS_PER_NYEAR + |
| 595 | LEAPS_THRU_END_OF(newy - 1) - |
| 596 | LEAPS_THRU_END_OF(y - 1); |
| 597 | y= newy; |
| 598 | } |
| 599 | tmp->year= y; |
| 600 | |
| 601 | ip= mon_lengths[yleap]; |
| 602 | for (tmp->month= 0; days >= (long) ip[tmp->month]; tmp->month++) |
| 603 | days= days - (long) ip[tmp->month]; |
| 604 | tmp->month++; |
| 605 | tmp->day= (uint)(days + 1); |
| 606 | |
| 607 | /* filling MySQL specific MYSQL_TIME members */ |
| 608 | tmp->neg= 0; tmp->second_part= 0; |
| 609 | tmp->time_type= MYSQL_TIMESTAMP_DATETIME; |
| 610 | } |
| 611 | |
| 612 | |
| 613 | /* |
| 614 | Find time range which contains given my_time_t value |
| 615 | |
| 616 | SYNOPSIS |
| 617 | find_time_range() |
| 618 | t - my_time_t value for which we looking for range |
| 619 | range_boundaries - sorted array of range starts. |
| 620 | higher_bound - number of ranges |
| 621 | |
| 622 | DESCRIPTION |
| 623 | Performs binary search for range which contains given my_time_t value. |
| 624 | It has sense if number of ranges is greater than zero and my_time_t value |
| 625 | is greater or equal than beginning of first range. It also assumes that |
| 626 | t belongs to some range specified or end of last is MY_TIME_T_MAX. |
| 627 | |
| 628 | With this localtime_r on real data may takes less time than with linear |
| 629 | search (I've seen 30% speed up). |
| 630 | |
| 631 | RETURN VALUE |
| 632 | Index of range to which t belongs |
| 633 | */ |
| 634 | static uint |
| 635 | find_time_range(my_time_t t, const my_time_t *range_boundaries, |
| 636 | uint higher_bound) |
| 637 | { |
| 638 | uint i, lower_bound= 0; |
| 639 | |
| 640 | /* |
| 641 | Function will work without this assertion but result would be meaningless. |
| 642 | */ |
| 643 | DBUG_ASSERT(higher_bound > 0 && t >= range_boundaries[0]); |
| 644 | |
| 645 | /* |
| 646 | Do binary search for minimal interval which contain t. We preserve: |
| 647 | range_boundaries[lower_bound] <= t < range_boundaries[higher_bound] |
| 648 | invariant and decrease this higher_bound - lower_bound gap twice |
| 649 | times on each step. |
| 650 | */ |
| 651 | |
| 652 | while (higher_bound - lower_bound > 1) |
| 653 | { |
| 654 | i= (lower_bound + higher_bound) >> 1; |
| 655 | if (range_boundaries[i] <= t) |
| 656 | lower_bound= i; |
| 657 | else |
| 658 | higher_bound= i; |
| 659 | } |
| 660 | return lower_bound; |
| 661 | } |
| 662 | |
| 663 | /* |
| 664 | Find local time transition for given my_time_t. |
| 665 | |
| 666 | SYNOPSIS |
| 667 | find_transition_type() |
| 668 | t - my_time_t value to be converted |
| 669 | sp - pointer to struct with time zone description |
| 670 | |
| 671 | RETURN VALUE |
| 672 | Pointer to structure in time zone description describing |
| 673 | local time type for given my_time_t. |
| 674 | */ |
| 675 | static |
| 676 | const TRAN_TYPE_INFO * |
| 677 | find_transition_type(my_time_t t, const TIME_ZONE_INFO *sp) |
| 678 | { |
| 679 | if (unlikely(sp->timecnt == 0 || t < sp->ats[0])) |
| 680 | { |
| 681 | /* |
| 682 | If we have not any transitions or t is before first transition let |
| 683 | us use fallback time type. |
| 684 | */ |
| 685 | return sp->fallback_tti; |
| 686 | } |
| 687 | |
| 688 | /* |
| 689 | Do binary search for minimal interval between transitions which |
| 690 | contain t. With this localtime_r on real data may takes less |
| 691 | time than with linear search (I've seen 30% speed up). |
| 692 | */ |
| 693 | return &(sp->ttis[sp->types[find_time_range(t, sp->ats, sp->timecnt)]]); |
| 694 | } |
| 695 | |
| 696 | |
| 697 | /* |
| 698 | Converts time in my_time_t representation (seconds in UTC since Epoch) to |
| 699 | broken down MYSQL_TIME representation in local time zone. |
| 700 | |
| 701 | SYNOPSIS |
| 702 | gmt_sec_to_TIME() |
| 703 | tmp - pointer to structure for broken down represenatation |
| 704 | sec_in_utc - my_time_t value to be converted |
| 705 | sp - pointer to struct with time zone description |
| 706 | |
| 707 | TODO |
| 708 | We can improve this function by creating joined array of transitions and |
| 709 | leap corrections. This will require adding extra field to TRAN_TYPE_INFO |
| 710 | for storing number of "extra" seconds to minute occurred due to correction |
| 711 | (60th and 61st second, look how we calculate them as "hit" in this |
| 712 | function). |
| 713 | Under realistic assumptions about frequency of transitions the same array |
| 714 | can be used fot MYSQL_TIME -> my_time_t conversion. For this we need to |
| 715 | implement tweaked binary search which will take into account that some |
| 716 | MYSQL_TIME has two matching my_time_t ranges and some of them have none. |
| 717 | */ |
| 718 | static void |
| 719 | gmt_sec_to_TIME(MYSQL_TIME *tmp, my_time_t sec_in_utc, const TIME_ZONE_INFO *sp) |
| 720 | { |
| 721 | const TRAN_TYPE_INFO *ttisp; |
| 722 | const LS_INFO *lp; |
| 723 | long corr= 0; |
| 724 | int hit= 0; |
| 725 | int i; |
| 726 | |
| 727 | /* |
| 728 | Find proper transition (and its local time type) for our sec_in_utc value. |
| 729 | Funny but again by separating this step in function we receive code |
| 730 | which very close to glibc's code. No wonder since they obviously use |
| 731 | the same base and all steps are sensible. |
| 732 | */ |
| 733 | ttisp= find_transition_type(sec_in_utc, sp); |
| 734 | |
| 735 | /* |
| 736 | Let us find leap correction for our sec_in_utc value and number of extra |
| 737 | secs to add to this minute. |
| 738 | This loop is rarely used because most users will use time zones without |
| 739 | leap seconds, and even in case when we have such time zone there won't |
| 740 | be many iterations (we have about 22 corrections at this moment (2004)). |
| 741 | */ |
| 742 | for ( i= sp->leapcnt; i-- > 0; ) |
| 743 | { |
| 744 | lp= &sp->lsis[i]; |
| 745 | if (sec_in_utc >= lp->ls_trans) |
| 746 | { |
| 747 | if (sec_in_utc == lp->ls_trans) |
| 748 | { |
| 749 | hit= ((i == 0 && lp->ls_corr > 0) || |
| 750 | lp->ls_corr > sp->lsis[i - 1].ls_corr); |
| 751 | if (hit) |
| 752 | { |
| 753 | while (i > 0 && |
| 754 | sp->lsis[i].ls_trans == sp->lsis[i - 1].ls_trans + 1 && |
| 755 | sp->lsis[i].ls_corr == sp->lsis[i - 1].ls_corr + 1) |
| 756 | { |
| 757 | hit++; |
| 758 | i--; |
| 759 | } |
| 760 | } |
| 761 | } |
| 762 | corr= lp->ls_corr; |
| 763 | break; |
| 764 | } |
| 765 | } |
| 766 | |
| 767 | sec_to_TIME(tmp, sec_in_utc, ttisp->tt_gmtoff - corr); |
| 768 | |
| 769 | tmp->second+= hit; |
| 770 | } |
| 771 | |
| 772 | |
| 773 | /* |
| 774 | Converts local time in broken down representation to local |
| 775 | time zone analog of my_time_t represenation. |
| 776 | |
| 777 | SYNOPSIS |
| 778 | sec_since_epoch() |
| 779 | year, mon, mday, hour, min, sec - broken down representation. |
| 780 | |
| 781 | DESCRIPTION |
| 782 | Converts time in broken down representation to my_time_t representation |
| 783 | ignoring time zone. Note that we cannot convert back some valid _local_ |
| 784 | times near ends of my_time_t range because of my_time_t overflow. But we |
| 785 | ignore this fact now since MySQL will never pass such argument. |
| 786 | |
| 787 | RETURN VALUE |
| 788 | Seconds since epoch time representation. |
| 789 | */ |
| 790 | static my_time_t |
| 791 | sec_since_epoch(int year, int mon, int mday, int hour, int min ,int sec) |
| 792 | { |
| 793 | /* Guard against my_time_t overflow(on system with 32 bit my_time_t) */ |
| 794 | DBUG_ASSERT(!(year == TIMESTAMP_MAX_YEAR && mon == 1 && mday > 17)); |
| 795 | #ifndef WE_WANT_TO_HANDLE_UNORMALIZED_DATES |
| 796 | /* |
| 797 | It turns out that only whenever month is normalized or unnormalized |
| 798 | plays role. |
| 799 | */ |
| 800 | DBUG_ASSERT(mon > 0 && mon < 13); |
| 801 | long days= year * DAYS_PER_NYEAR - EPOCH_YEAR * DAYS_PER_NYEAR + |
| 802 | LEAPS_THRU_END_OF(year - 1) - |
| 803 | LEAPS_THRU_END_OF(EPOCH_YEAR - 1); |
| 804 | days+= mon_starts[isleap(year)][mon - 1]; |
| 805 | #else |
| 806 | long norm_month= (mon - 1) % MONS_PER_YEAR; |
| 807 | long a_year= year + (mon - 1)/MONS_PER_YEAR - (int)(norm_month < 0); |
| 808 | long days= a_year * DAYS_PER_NYEAR - EPOCH_YEAR * DAYS_PER_NYEAR + |
| 809 | LEAPS_THRU_END_OF(a_year - 1) - |
| 810 | LEAPS_THRU_END_OF(EPOCH_YEAR - 1); |
| 811 | days+= mon_starts[isleap(a_year)] |
| 812 | [norm_month + (norm_month < 0 ? MONS_PER_YEAR : 0)]; |
| 813 | #endif |
| 814 | days+= mday - 1; |
| 815 | |
| 816 | return ((days * HOURS_PER_DAY + hour) * MINS_PER_HOUR + min) * |
| 817 | SECS_PER_MIN + sec; |
| 818 | } |
| 819 | |
| 820 | /* |
| 821 | Converts local time in broken down MYSQL_TIME representation to my_time_t |
| 822 | representation. |
| 823 | |
| 824 | SYNOPSIS |
| 825 | TIME_to_gmt_sec() |
| 826 | t - pointer to structure for broken down represenatation |
| 827 | sp - pointer to struct with time zone description |
| 828 | error_code - 0, if the conversion was successful; |
| 829 | ER_WARN_DATA_OUT_OF_RANGE, if t contains datetime value |
| 830 | which is out of TIMESTAMP range; |
| 831 | ER_WARN_INVALID_TIMESTAMP, if t represents value which |
| 832 | doesn't exists (falls into the spring time-gap). |
| 833 | |
| 834 | DESCRIPTION |
| 835 | This is mktime analog for MySQL. It is essentially different |
| 836 | from mktime (or hypotetical my_mktime) because: |
| 837 | - It has no idea about tm_isdst member so if it |
| 838 | has two answers it will give the smaller one |
| 839 | - If we are in spring time gap then it will return |
| 840 | beginning of the gap |
| 841 | - It can give wrong results near the ends of my_time_t due to |
| 842 | overflows, but we are safe since in MySQL we will never |
| 843 | call this function for such dates (its restriction for year |
| 844 | between 1970 and 2038 gives us several days of reserve). |
| 845 | - By default it doesn't support un-normalized input. But if |
| 846 | sec_since_epoch() function supports un-normalized dates |
| 847 | then this function should handle un-normalized input right, |
| 848 | altough it won't normalize structure TIME. |
| 849 | |
| 850 | Traditional approach to problem of conversion from broken down |
| 851 | representation to time_t is iterative. Both elsie's and glibc |
| 852 | implementation try to guess what time_t value should correspond to |
| 853 | this broken-down value. They perform localtime_r function on their |
| 854 | guessed value and then calculate the difference and try to improve |
| 855 | their guess. Elsie's code guesses time_t value in bit by bit manner, |
| 856 | Glibc's code tries to add difference between broken-down value |
| 857 | corresponding to guess and target broken-down value to current guess. |
| 858 | It also uses caching of last found correction... So Glibc's approach |
| 859 | is essentially faster but introduces some undetermenism (in case if |
| 860 | is_dst member of broken-down representation (tm struct) is not known |
| 861 | and we have two possible answers). |
| 862 | |
| 863 | We use completely different approach. It is better since it is both |
| 864 | faster than iterative implementations and fully determenistic. If you |
| 865 | look at my_time_t to MYSQL_TIME conversion then you'll find that it consist |
| 866 | of two steps: |
| 867 | The first is calculating shifted my_time_t value and the second - TIME |
| 868 | calculation from shifted my_time_t value (well it is a bit simplified |
| 869 | picture). The part in which we are interested in is my_time_t -> shifted |
| 870 | my_time_t conversion. It is piecewise linear function which is defined |
| 871 | by combination of transition times as break points and times offset |
| 872 | as changing function parameter. The possible inverse function for this |
| 873 | converison would be ambiguos but with MySQL's restrictions we can use |
| 874 | some function which is the same as inverse function on unambigiuos |
| 875 | ranges and coincides with one of branches of inverse function in |
| 876 | other ranges. Thus we just need to build table which will determine |
| 877 | this shifted my_time_t -> my_time_t conversion similar to existing |
| 878 | (my_time_t -> shifted my_time_t table). We do this in |
| 879 | prepare_tz_info function. |
| 880 | |
| 881 | TODO |
| 882 | If we can even more improve this function. For doing this we will need to |
| 883 | build joined map of transitions and leap corrections for gmt_sec_to_TIME() |
| 884 | function (similar to revts/revtis). Under realistic assumptions about |
| 885 | frequency of transitions we can use the same array for TIME_to_gmt_sec(). |
| 886 | We need to implement special version of binary search for this. Such step |
| 887 | will be beneficial to CPU cache since we will decrease data-set used for |
| 888 | conversion twice. |
| 889 | |
| 890 | RETURN VALUE |
| 891 | Seconds in UTC since Epoch. |
| 892 | 0 in case of error. |
| 893 | */ |
| 894 | |
| 895 | static my_time_t |
| 896 | TIME_to_gmt_sec(const MYSQL_TIME *t, const TIME_ZONE_INFO *sp, uint *error_code) |
| 897 | { |
| 898 | my_time_t local_t; |
| 899 | uint saved_seconds; |
| 900 | uint i; |
| 901 | int shift= 0; |
| 902 | DBUG_ENTER("TIME_to_gmt_sec" ); |
| 903 | |
| 904 | if (!validate_timestamp_range(t)) |
| 905 | { |
| 906 | *error_code= ER_WARN_DATA_OUT_OF_RANGE; |
| 907 | DBUG_RETURN(0); |
| 908 | } |
| 909 | |
| 910 | *error_code= 0; |
| 911 | |
| 912 | /* We need this for correct leap seconds handling */ |
| 913 | if (t->second < SECS_PER_MIN) |
| 914 | saved_seconds= 0; |
| 915 | else |
| 916 | saved_seconds= t->second; |
| 917 | |
| 918 | /* |
| 919 | NOTE: to convert full my_time_t range we do a shift of the |
| 920 | boundary dates here to avoid overflow of my_time_t. |
| 921 | We use alike approach in my_system_gmt_sec(). |
| 922 | |
| 923 | However in that function we also have to take into account |
| 924 | overflow near 0 on some platforms. That's because my_system_gmt_sec |
| 925 | uses localtime_r(), which doesn't work with negative values correctly |
| 926 | on platforms with unsigned time_t (QNX). Here we don't use localtime() |
| 927 | => we negative values of local_t are ok. |
| 928 | */ |
| 929 | |
| 930 | if ((t->year == TIMESTAMP_MAX_YEAR) && (t->month == 1) && t->day > 4) |
| 931 | { |
| 932 | /* |
| 933 | We will pass (t->day - shift) to sec_since_epoch(), and |
| 934 | want this value to be a positive number, so we shift |
| 935 | only dates > 4.01.2038 (to avoid owerflow). |
| 936 | */ |
| 937 | shift= 2; |
| 938 | } |
| 939 | |
| 940 | |
| 941 | local_t= sec_since_epoch(t->year, t->month, (t->day - shift), |
| 942 | t->hour, t->minute, |
| 943 | saved_seconds ? 0 : t->second); |
| 944 | |
| 945 | /* We have at least one range */ |
| 946 | DBUG_ASSERT(sp->revcnt >= 1); |
| 947 | |
| 948 | if (local_t < sp->revts[0] || local_t > sp->revts[sp->revcnt]) |
| 949 | { |
| 950 | /* |
| 951 | This means that source time can't be represented as my_time_t due to |
| 952 | limited my_time_t range. |
| 953 | */ |
| 954 | *error_code= ER_WARN_DATA_OUT_OF_RANGE; |
| 955 | DBUG_RETURN(0); |
| 956 | } |
| 957 | |
| 958 | /* binary search for our range */ |
| 959 | i= find_time_range(local_t, sp->revts, sp->revcnt); |
| 960 | |
| 961 | /* |
| 962 | As there are no offset switches at the end of TIMESTAMP range, |
| 963 | we could simply check for overflow here (and don't need to bother |
| 964 | about DST gaps etc) |
| 965 | */ |
| 966 | if (shift) |
| 967 | { |
| 968 | if (local_t > (my_time_t) (TIMESTAMP_MAX_VALUE - shift * SECS_PER_DAY + |
| 969 | sp->revtis[i].rt_offset - saved_seconds)) |
| 970 | { |
| 971 | *error_code= ER_WARN_DATA_OUT_OF_RANGE; |
| 972 | DBUG_RETURN(0); /* my_time_t overflow */ |
| 973 | } |
| 974 | local_t+= shift * SECS_PER_DAY; |
| 975 | } |
| 976 | |
| 977 | if (sp->revtis[i].rt_type) |
| 978 | { |
| 979 | /* |
| 980 | Oops! We are in spring time gap. |
| 981 | May be we should return error here? |
| 982 | Now we are returning my_time_t value corresponding to the |
| 983 | beginning of the gap. |
| 984 | */ |
| 985 | *error_code= ER_WARN_INVALID_TIMESTAMP; |
| 986 | local_t= sp->revts[i] - sp->revtis[i].rt_offset + saved_seconds; |
| 987 | } |
| 988 | else |
| 989 | local_t= local_t - sp->revtis[i].rt_offset + saved_seconds; |
| 990 | |
| 991 | /* check for TIMESTAMP_MAX_VALUE was already done above */ |
| 992 | if (local_t < TIMESTAMP_MIN_VALUE) |
| 993 | { |
| 994 | local_t= 0; |
| 995 | *error_code= ER_WARN_DATA_OUT_OF_RANGE; |
| 996 | } |
| 997 | |
| 998 | DBUG_RETURN(local_t); |
| 999 | } |
| 1000 | |
| 1001 | |
| 1002 | /* |
| 1003 | End of elsie derived code. |
| 1004 | */ |
| 1005 | #endif /* !defined(TZINFO2SQL) */ |
| 1006 | |
| 1007 | |
| 1008 | #if !defined(TESTTIME) && !defined(TZINFO2SQL) |
| 1009 | |
| 1010 | /* |
| 1011 | String with names of SYSTEM time zone. |
| 1012 | */ |
| 1013 | static const String tz_SYSTEM_name("SYSTEM" , 6, &my_charset_latin1); |
| 1014 | |
| 1015 | |
| 1016 | /* |
| 1017 | Instance of this class represents local time zone used on this system |
| 1018 | (specified by TZ environment variable or via any other system mechanism). |
| 1019 | It uses system functions (localtime_r, my_system_gmt_sec) for conversion |
| 1020 | and is always available. Because of this it is used by default - if there |
| 1021 | were no explicit time zone specified. On the other hand because of this |
| 1022 | conversion methods provided by this class is significantly slower and |
| 1023 | possibly less multi-threaded-friendly than corresponding Time_zone_db |
| 1024 | methods so the latter should be preffered there it is possible. |
| 1025 | */ |
| 1026 | class Time_zone_system : public Time_zone |
| 1027 | { |
| 1028 | public: |
| 1029 | Time_zone_system() {} /* Remove gcc warning */ |
| 1030 | virtual my_time_t TIME_to_gmt_sec(const MYSQL_TIME *t, uint *error_code) const; |
| 1031 | virtual void gmt_sec_to_TIME(MYSQL_TIME *tmp, my_time_t t) const; |
| 1032 | virtual const String * get_name() const; |
| 1033 | }; |
| 1034 | |
| 1035 | |
| 1036 | /* |
| 1037 | Converts local time in system time zone in MYSQL_TIME representation |
| 1038 | to its my_time_t representation. |
| 1039 | |
| 1040 | SYNOPSIS |
| 1041 | TIME_to_gmt_sec() |
| 1042 | t - pointer to MYSQL_TIME structure with local time in |
| 1043 | broken-down representation. |
| 1044 | error_code - 0, if the conversion was successful; |
| 1045 | ER_WARN_DATA_OUT_OF_RANGE, if t contains datetime value |
| 1046 | which is out of TIMESTAMP range; |
| 1047 | ER_WARN_INVALID_TIMESTAMP, if t represents value which |
| 1048 | doesn't exists (falls into the spring time-gap). |
| 1049 | |
| 1050 | DESCRIPTION |
| 1051 | This method uses system function (localtime_r()) for conversion |
| 1052 | local time in system time zone in MYSQL_TIME structure to its my_time_t |
| 1053 | representation. Unlike the same function for Time_zone_db class |
| 1054 | it it won't handle unnormalized input properly. Still it will |
| 1055 | return lowest possible my_time_t in case of ambiguity or if we |
| 1056 | provide time corresponding to the time-gap. |
| 1057 | |
| 1058 | You should call my_init_time() function before using this function. |
| 1059 | |
| 1060 | RETURN VALUE |
| 1061 | Corresponding my_time_t value or 0 in case of error |
| 1062 | */ |
| 1063 | my_time_t |
| 1064 | Time_zone_system::TIME_to_gmt_sec(const MYSQL_TIME *t, uint *error_code) const |
| 1065 | { |
| 1066 | long not_used; |
| 1067 | return my_system_gmt_sec(t, ¬_used, error_code); |
| 1068 | } |
| 1069 | |
| 1070 | |
| 1071 | /* |
| 1072 | Converts time from UTC seconds since Epoch (my_time_t) representation |
| 1073 | to system local time zone broken-down representation. |
| 1074 | |
| 1075 | SYNOPSIS |
| 1076 | gmt_sec_to_TIME() |
| 1077 | tmp - pointer to MYSQL_TIME structure to fill-in |
| 1078 | t - my_time_t value to be converted |
| 1079 | |
| 1080 | NOTE |
| 1081 | We assume that value passed to this function will fit into time_t range |
| 1082 | supported by localtime_r. This conversion is putting restriction on |
| 1083 | TIMESTAMP range in MySQL. If we can get rid of SYSTEM time zone at least |
| 1084 | for interaction with client then we can extend TIMESTAMP range down to |
| 1085 | the 1902 easily. |
| 1086 | */ |
| 1087 | void |
| 1088 | Time_zone_system::gmt_sec_to_TIME(MYSQL_TIME *tmp, my_time_t t) const |
| 1089 | { |
| 1090 | struct tm tmp_tm; |
| 1091 | time_t tmp_t= (time_t)t; |
| 1092 | |
| 1093 | localtime_r(&tmp_t, &tmp_tm); |
| 1094 | localtime_to_TIME(tmp, &tmp_tm); |
| 1095 | tmp->time_type= MYSQL_TIMESTAMP_DATETIME; |
| 1096 | adjust_leap_second(tmp); |
| 1097 | } |
| 1098 | |
| 1099 | |
| 1100 | /* |
| 1101 | Get name of time zone |
| 1102 | |
| 1103 | SYNOPSIS |
| 1104 | get_name() |
| 1105 | |
| 1106 | RETURN VALUE |
| 1107 | Name of time zone as String |
| 1108 | */ |
| 1109 | const String * |
| 1110 | Time_zone_system::get_name() const |
| 1111 | { |
| 1112 | return &tz_SYSTEM_name; |
| 1113 | } |
| 1114 | |
| 1115 | |
| 1116 | /* |
| 1117 | Instance of this class represents UTC time zone. It uses system gmtime_r |
| 1118 | function for conversions and is always available. It is used only for |
| 1119 | my_time_t -> MYSQL_TIME conversions in various UTC_... functions, it is not |
| 1120 | intended for MYSQL_TIME -> my_time_t conversions and shouldn't be exposed to user. |
| 1121 | */ |
| 1122 | class Time_zone_utc : public Time_zone |
| 1123 | { |
| 1124 | public: |
| 1125 | Time_zone_utc() {} /* Remove gcc warning */ |
| 1126 | virtual my_time_t TIME_to_gmt_sec(const MYSQL_TIME *t, |
| 1127 | uint *error_code) const; |
| 1128 | virtual void gmt_sec_to_TIME(MYSQL_TIME *tmp, my_time_t t) const; |
| 1129 | virtual const String * get_name() const; |
| 1130 | }; |
| 1131 | |
| 1132 | |
| 1133 | /* |
| 1134 | Convert UTC time from MYSQL_TIME representation to its my_time_t representation. |
| 1135 | |
| 1136 | DESCRIPTION |
| 1137 | Since Time_zone_utc is used only internally for my_time_t -> TIME |
| 1138 | conversions, this function of Time_zone interface is not implemented for |
| 1139 | this class and should not be called. |
| 1140 | |
| 1141 | RETURN VALUE |
| 1142 | 0 |
| 1143 | */ |
| 1144 | my_time_t |
| 1145 | Time_zone_utc::TIME_to_gmt_sec(const MYSQL_TIME *t, uint *error_code) const |
| 1146 | { |
| 1147 | /* Should be never called */ |
| 1148 | DBUG_ASSERT(0); |
| 1149 | *error_code= ER_WARN_DATA_OUT_OF_RANGE; |
| 1150 | return 0; |
| 1151 | } |
| 1152 | |
| 1153 | |
| 1154 | /* |
| 1155 | Converts time from UTC seconds since Epoch (my_time_t) representation |
| 1156 | to broken-down representation (also in UTC). |
| 1157 | |
| 1158 | SYNOPSIS |
| 1159 | gmt_sec_to_TIME() |
| 1160 | tmp - pointer to MYSQL_TIME structure to fill-in |
| 1161 | t - my_time_t value to be converted |
| 1162 | |
| 1163 | NOTE |
| 1164 | See note for apropriate Time_zone_system method. |
| 1165 | */ |
| 1166 | void |
| 1167 | Time_zone_utc::gmt_sec_to_TIME(MYSQL_TIME *tmp, my_time_t t) const |
| 1168 | { |
| 1169 | struct tm tmp_tm; |
| 1170 | time_t tmp_t= (time_t)t; |
| 1171 | gmtime_r(&tmp_t, &tmp_tm); |
| 1172 | localtime_to_TIME(tmp, &tmp_tm); |
| 1173 | tmp->time_type= MYSQL_TIMESTAMP_DATETIME; |
| 1174 | adjust_leap_second(tmp); |
| 1175 | } |
| 1176 | |
| 1177 | |
| 1178 | /* |
| 1179 | Get name of time zone |
| 1180 | |
| 1181 | SYNOPSIS |
| 1182 | get_name() |
| 1183 | |
| 1184 | DESCRIPTION |
| 1185 | Since Time_zone_utc is used only internally by SQL's UTC_* functions it |
| 1186 | is not accessible directly, and hence this function of Time_zone |
| 1187 | interface is not implemented for this class and should not be called. |
| 1188 | |
| 1189 | RETURN VALUE |
| 1190 | 0 |
| 1191 | */ |
| 1192 | const String * |
| 1193 | Time_zone_utc::get_name() const |
| 1194 | { |
| 1195 | /* Should be never called */ |
| 1196 | DBUG_ASSERT(0); |
| 1197 | return 0; |
| 1198 | } |
| 1199 | |
| 1200 | |
| 1201 | /* |
| 1202 | Instance of this class represents some time zone which is |
| 1203 | described in mysql.time_zone family of tables. |
| 1204 | */ |
| 1205 | class Time_zone_db : public Time_zone |
| 1206 | { |
| 1207 | public: |
| 1208 | Time_zone_db(TIME_ZONE_INFO *tz_info_arg, const String * tz_name_arg); |
| 1209 | virtual my_time_t TIME_to_gmt_sec(const MYSQL_TIME *t, uint *error_code) const; |
| 1210 | virtual void gmt_sec_to_TIME(MYSQL_TIME *tmp, my_time_t t) const; |
| 1211 | virtual const String * get_name() const; |
| 1212 | private: |
| 1213 | TIME_ZONE_INFO *tz_info; |
| 1214 | const String *tz_name; |
| 1215 | }; |
| 1216 | |
| 1217 | |
| 1218 | /* |
| 1219 | Initializes object representing time zone described by mysql.time_zone |
| 1220 | tables. |
| 1221 | |
| 1222 | SYNOPSIS |
| 1223 | Time_zone_db() |
| 1224 | tz_info_arg - pointer to TIME_ZONE_INFO structure which is filled |
| 1225 | according to db or other time zone description |
| 1226 | (for example by my_tz_init()). |
| 1227 | Several Time_zone_db instances can share one |
| 1228 | TIME_ZONE_INFO structure. |
| 1229 | tz_name_arg - name of time zone. |
| 1230 | */ |
| 1231 | Time_zone_db::Time_zone_db(TIME_ZONE_INFO *tz_info_arg, |
| 1232 | const String *tz_name_arg): |
| 1233 | tz_info(tz_info_arg), tz_name(tz_name_arg) |
| 1234 | { |
| 1235 | } |
| 1236 | |
| 1237 | |
| 1238 | /* |
| 1239 | Converts local time in time zone described from TIME |
| 1240 | representation to its my_time_t representation. |
| 1241 | |
| 1242 | SYNOPSIS |
| 1243 | TIME_to_gmt_sec() |
| 1244 | t - pointer to MYSQL_TIME structure with local time |
| 1245 | in broken-down representation. |
| 1246 | error_code - 0, if the conversion was successful; |
| 1247 | ER_WARN_DATA_OUT_OF_RANGE, if t contains datetime value |
| 1248 | which is out of TIMESTAMP range; |
| 1249 | ER_WARN_INVALID_TIMESTAMP, if t represents value which |
| 1250 | doesn't exists (falls into the spring time-gap). |
| 1251 | |
| 1252 | DESCRIPTION |
| 1253 | Please see ::TIME_to_gmt_sec for function description and |
| 1254 | parameter restrictions. |
| 1255 | |
| 1256 | RETURN VALUE |
| 1257 | Corresponding my_time_t value or 0 in case of error |
| 1258 | */ |
| 1259 | my_time_t |
| 1260 | Time_zone_db::TIME_to_gmt_sec(const MYSQL_TIME *t, uint *error_code) const |
| 1261 | { |
| 1262 | return ::TIME_to_gmt_sec(t, tz_info, error_code); |
| 1263 | } |
| 1264 | |
| 1265 | |
| 1266 | /* |
| 1267 | Converts time from UTC seconds since Epoch (my_time_t) representation |
| 1268 | to local time zone described in broken-down representation. |
| 1269 | |
| 1270 | SYNOPSIS |
| 1271 | gmt_sec_to_TIME() |
| 1272 | tmp - pointer to MYSQL_TIME structure to fill-in |
| 1273 | t - my_time_t value to be converted |
| 1274 | */ |
| 1275 | void |
| 1276 | Time_zone_db::gmt_sec_to_TIME(MYSQL_TIME *tmp, my_time_t t) const |
| 1277 | { |
| 1278 | ::gmt_sec_to_TIME(tmp, t, tz_info); |
| 1279 | adjust_leap_second(tmp); |
| 1280 | } |
| 1281 | |
| 1282 | |
| 1283 | /* |
| 1284 | Get name of time zone |
| 1285 | |
| 1286 | SYNOPSIS |
| 1287 | get_name() |
| 1288 | |
| 1289 | RETURN VALUE |
| 1290 | Name of time zone as ASCIIZ-string |
| 1291 | */ |
| 1292 | const String * |
| 1293 | Time_zone_db::get_name() const |
| 1294 | { |
| 1295 | return tz_name; |
| 1296 | } |
| 1297 | |
| 1298 | |
| 1299 | /* |
| 1300 | Instance of this class represents time zone which |
| 1301 | was specified as offset from UTC. |
| 1302 | */ |
| 1303 | class Time_zone_offset : public Time_zone |
| 1304 | { |
| 1305 | public: |
| 1306 | Time_zone_offset(long tz_offset_arg); |
| 1307 | virtual my_time_t TIME_to_gmt_sec(const MYSQL_TIME *t, |
| 1308 | uint *error_code) const; |
| 1309 | virtual void gmt_sec_to_TIME(MYSQL_TIME *tmp, my_time_t t) const; |
| 1310 | virtual const String * get_name() const; |
| 1311 | /* |
| 1312 | This have to be public because we want to be able to access it from |
| 1313 | my_offset_tzs_get_key() function |
| 1314 | */ |
| 1315 | long offset; |
| 1316 | private: |
| 1317 | /* Extra reserve because of snprintf */ |
| 1318 | char name_buff[7+16]; |
| 1319 | String name; |
| 1320 | }; |
| 1321 | |
| 1322 | |
| 1323 | /* |
| 1324 | Initializes object representing time zone described by its offset from UTC. |
| 1325 | |
| 1326 | SYNOPSIS |
| 1327 | Time_zone_offset() |
| 1328 | tz_offset_arg - offset from UTC in seconds. |
| 1329 | Positive for direction to east. |
| 1330 | */ |
| 1331 | Time_zone_offset::Time_zone_offset(long tz_offset_arg): |
| 1332 | offset(tz_offset_arg) |
| 1333 | { |
| 1334 | uint hours= abs((int)(offset / SECS_PER_HOUR)); |
| 1335 | uint minutes= abs((int)(offset % SECS_PER_HOUR / SECS_PER_MIN)); |
| 1336 | size_t length= my_snprintf(name_buff, sizeof(name_buff), "%s%02d:%02d" , |
| 1337 | (offset>=0) ? "+" : "-" , hours, minutes); |
| 1338 | name.set(name_buff, length, &my_charset_latin1); |
| 1339 | } |
| 1340 | |
| 1341 | |
| 1342 | /* |
| 1343 | Converts local time in time zone described as offset from UTC |
| 1344 | from MYSQL_TIME representation to its my_time_t representation. |
| 1345 | |
| 1346 | SYNOPSIS |
| 1347 | TIME_to_gmt_sec() |
| 1348 | t - pointer to MYSQL_TIME structure with local time |
| 1349 | in broken-down representation. |
| 1350 | error_code - 0, if the conversion was successful; |
| 1351 | ER_WARN_DATA_OUT_OF_RANGE, if t contains datetime value |
| 1352 | which is out of TIMESTAMP range; |
| 1353 | ER_WARN_INVALID_TIMESTAMP, if t represents value which |
| 1354 | doesn't exists (falls into the spring time-gap). |
| 1355 | |
| 1356 | RETURN VALUE |
| 1357 | Corresponding my_time_t value or 0 in case of error. |
| 1358 | */ |
| 1359 | |
| 1360 | my_time_t |
| 1361 | Time_zone_offset::TIME_to_gmt_sec(const MYSQL_TIME *t, uint *error_code) const |
| 1362 | { |
| 1363 | my_time_t local_t; |
| 1364 | int shift= 0; |
| 1365 | |
| 1366 | /* |
| 1367 | Check timestamp range.we have to do this as calling function relies on |
| 1368 | us to make all validation checks here. |
| 1369 | */ |
| 1370 | if (!validate_timestamp_range(t)) |
| 1371 | { |
| 1372 | *error_code= ER_WARN_DATA_OUT_OF_RANGE; |
| 1373 | return 0; |
| 1374 | } |
| 1375 | *error_code= 0; |
| 1376 | |
| 1377 | /* |
| 1378 | Do a temporary shift of the boundary dates to avoid |
| 1379 | overflow of my_time_t if the time value is near it's |
| 1380 | maximum range |
| 1381 | */ |
| 1382 | if ((t->year == TIMESTAMP_MAX_YEAR) && (t->month == 1) && t->day > 4) |
| 1383 | shift= 2; |
| 1384 | |
| 1385 | local_t= sec_since_epoch(t->year, t->month, (t->day - shift), |
| 1386 | t->hour, t->minute, t->second) - |
| 1387 | offset; |
| 1388 | |
| 1389 | if (shift) |
| 1390 | { |
| 1391 | /* Add back the shifted time */ |
| 1392 | local_t+= shift * SECS_PER_DAY; |
| 1393 | } |
| 1394 | |
| 1395 | if (local_t >= TIMESTAMP_MIN_VALUE && local_t <= TIMESTAMP_MAX_VALUE) |
| 1396 | return local_t; |
| 1397 | |
| 1398 | /* range error*/ |
| 1399 | *error_code= ER_WARN_DATA_OUT_OF_RANGE; |
| 1400 | return 0; |
| 1401 | } |
| 1402 | |
| 1403 | |
| 1404 | /* |
| 1405 | Converts time from UTC seconds since Epoch (my_time_t) representation |
| 1406 | to local time zone described as offset from UTC and in broken-down |
| 1407 | representation. |
| 1408 | |
| 1409 | SYNOPSIS |
| 1410 | gmt_sec_to_TIME() |
| 1411 | tmp - pointer to MYSQL_TIME structure to fill-in |
| 1412 | t - my_time_t value to be converted |
| 1413 | */ |
| 1414 | void |
| 1415 | Time_zone_offset::gmt_sec_to_TIME(MYSQL_TIME *tmp, my_time_t t) const |
| 1416 | { |
| 1417 | sec_to_TIME(tmp, t, offset); |
| 1418 | } |
| 1419 | |
| 1420 | |
| 1421 | /* |
| 1422 | Get name of time zone |
| 1423 | |
| 1424 | SYNOPSIS |
| 1425 | get_name() |
| 1426 | |
| 1427 | RETURN VALUE |
| 1428 | Name of time zone as pointer to String object |
| 1429 | */ |
| 1430 | const String * |
| 1431 | Time_zone_offset::get_name() const |
| 1432 | { |
| 1433 | return &name; |
| 1434 | } |
| 1435 | |
| 1436 | |
| 1437 | static Time_zone_utc tz_UTC; |
| 1438 | static Time_zone_system tz_SYSTEM; |
| 1439 | static Time_zone_offset tz_OFFSET0(0); |
| 1440 | |
| 1441 | Time_zone *my_tz_OFFSET0= &tz_OFFSET0; |
| 1442 | Time_zone *my_tz_UTC= &tz_UTC; |
| 1443 | Time_zone *my_tz_SYSTEM= &tz_SYSTEM; |
| 1444 | |
| 1445 | static HASH tz_names; |
| 1446 | static HASH offset_tzs; |
| 1447 | static MEM_ROOT tz_storage; |
| 1448 | |
| 1449 | /* |
| 1450 | These mutex protects offset_tzs and tz_storage. |
| 1451 | These protection needed only when we are trying to set |
| 1452 | time zone which is specified as offset, and searching for existing |
| 1453 | time zone in offset_tzs or creating if it didn't existed before in |
| 1454 | tz_storage. So contention is low. |
| 1455 | */ |
| 1456 | static mysql_mutex_t tz_LOCK; |
| 1457 | static bool tz_inited= 0; |
| 1458 | |
| 1459 | /* |
| 1460 | This two static variables are inteded for holding info about leap seconds |
| 1461 | shared by all time zones. |
| 1462 | */ |
| 1463 | static uint tz_leapcnt= 0; |
| 1464 | static LS_INFO *tz_lsis= 0; |
| 1465 | |
| 1466 | /* |
| 1467 | Shows whenever we have found time zone tables during start-up. |
| 1468 | Used for avoiding of putting those tables to global table list |
| 1469 | for queries that use time zone info. |
| 1470 | */ |
| 1471 | static bool time_zone_tables_exist= 1; |
| 1472 | |
| 1473 | |
| 1474 | /* |
| 1475 | Names of tables (with their lengths) that are needed |
| 1476 | for dynamical loading of time zone descriptions. |
| 1477 | */ |
| 1478 | |
| 1479 | static const LEX_CSTRING tz_tables_names[MY_TZ_TABLES_COUNT]= |
| 1480 | { |
| 1481 | { STRING_WITH_LEN("time_zone_name" )}, |
| 1482 | { STRING_WITH_LEN("time_zone" )}, |
| 1483 | { STRING_WITH_LEN("time_zone_transition_type" )}, |
| 1484 | { STRING_WITH_LEN("time_zone_transition" )} |
| 1485 | }; |
| 1486 | |
| 1487 | class Tz_names_entry: public Sql_alloc |
| 1488 | { |
| 1489 | public: |
| 1490 | String name; |
| 1491 | Time_zone *tz; |
| 1492 | }; |
| 1493 | |
| 1494 | |
| 1495 | /* |
| 1496 | We are going to call both of these functions from C code so |
| 1497 | they should obey C calling conventions. |
| 1498 | */ |
| 1499 | |
| 1500 | extern "C" uchar * |
| 1501 | my_tz_names_get_key(Tz_names_entry *entry, size_t *length, |
| 1502 | my_bool not_used __attribute__((unused))) |
| 1503 | { |
| 1504 | *length= entry->name.length(); |
| 1505 | return (uchar*) entry->name.ptr(); |
| 1506 | } |
| 1507 | |
| 1508 | extern "C" uchar * |
| 1509 | my_offset_tzs_get_key(Time_zone_offset *entry, |
| 1510 | size_t *length, |
| 1511 | my_bool not_used __attribute__((unused))) |
| 1512 | { |
| 1513 | *length= sizeof(long); |
| 1514 | return (uchar*) &entry->offset; |
| 1515 | } |
| 1516 | |
| 1517 | |
| 1518 | /* |
| 1519 | Prepare table list with time zone related tables from preallocated array. |
| 1520 | |
| 1521 | SYNOPSIS |
| 1522 | tz_init_table_list() |
| 1523 | tz_tabs - pointer to preallocated array of MY_TZ_TABLES_COUNT |
| 1524 | TABLE_LIST objects |
| 1525 | |
| 1526 | DESCRIPTION |
| 1527 | This function prepares list of TABLE_LIST objects which can be used |
| 1528 | for opening of time zone tables from preallocated array. |
| 1529 | */ |
| 1530 | |
| 1531 | static void |
| 1532 | tz_init_table_list(TABLE_LIST *tz_tabs) |
| 1533 | { |
| 1534 | bzero(tz_tabs, sizeof(TABLE_LIST) * MY_TZ_TABLES_COUNT); |
| 1535 | |
| 1536 | for (int i= 0; i < MY_TZ_TABLES_COUNT; i++) |
| 1537 | { |
| 1538 | tz_tabs[i].alias= tz_tabs[i].table_name= tz_tables_names[i]; |
| 1539 | tz_tabs[i].db= MYSQL_SCHEMA_NAME; |
| 1540 | tz_tabs[i].lock_type= TL_READ; |
| 1541 | |
| 1542 | if (i != MY_TZ_TABLES_COUNT - 1) |
| 1543 | tz_tabs[i].next_global= tz_tabs[i].next_local= &tz_tabs[i+1]; |
| 1544 | if (i != 0) |
| 1545 | tz_tabs[i].prev_global= &tz_tabs[i-1].next_global; |
| 1546 | } |
| 1547 | } |
| 1548 | |
| 1549 | #ifdef HAVE_PSI_INTERFACE |
| 1550 | static PSI_mutex_key key_tz_LOCK; |
| 1551 | |
| 1552 | static PSI_mutex_info all_tz_mutexes[]= |
| 1553 | { |
| 1554 | { & key_tz_LOCK, "tz_LOCK" , PSI_FLAG_GLOBAL} |
| 1555 | }; |
| 1556 | |
| 1557 | static void init_tz_psi_keys(void) |
| 1558 | { |
| 1559 | const char* category= "sql" ; |
| 1560 | int count; |
| 1561 | |
| 1562 | if (PSI_server == NULL) |
| 1563 | return; |
| 1564 | |
| 1565 | count= array_elements(all_tz_mutexes); |
| 1566 | PSI_server->register_mutex(category, all_tz_mutexes, count); |
| 1567 | } |
| 1568 | #endif /* HAVE_PSI_INTERFACE */ |
| 1569 | |
| 1570 | |
| 1571 | /* |
| 1572 | Initialize time zone support infrastructure. |
| 1573 | |
| 1574 | SYNOPSIS |
| 1575 | my_tz_init() |
| 1576 | thd - current thread object |
| 1577 | default_tzname - default time zone or 0 if none. |
| 1578 | bootstrap - indicates whenever we are in bootstrap mode |
| 1579 | |
| 1580 | DESCRIPTION |
| 1581 | This function will init memory structures needed for time zone support, |
| 1582 | it will register mandatory SYSTEM time zone in them. It will try to open |
| 1583 | mysql.time_zone* tables and load information about default time zone and |
| 1584 | information which further will be shared among all time zones loaded. |
| 1585 | If system tables with time zone descriptions don't exist it won't fail |
| 1586 | (unless default_tzname is time zone from tables). If bootstrap parameter |
| 1587 | is true then this routine assumes that we are in bootstrap mode and won't |
| 1588 | load time zone descriptions unless someone specifies default time zone |
| 1589 | which is supposedly stored in those tables. |
| 1590 | It'll also set default time zone if it is specified. |
| 1591 | |
| 1592 | RETURN VALUES |
| 1593 | 0 - ok |
| 1594 | 1 - Error |
| 1595 | */ |
| 1596 | my_bool |
| 1597 | my_tz_init(THD *org_thd, const char *default_tzname, my_bool bootstrap) |
| 1598 | { |
| 1599 | THD *thd; |
| 1600 | TABLE_LIST tz_tables[1+MY_TZ_TABLES_COUNT]; |
| 1601 | TABLE *table; |
| 1602 | const LEX_CSTRING tmp_table_name= { STRING_WITH_LEN("time_zone_leap_second" ) }; |
| 1603 | Tz_names_entry *tmp_tzname; |
| 1604 | my_bool return_val= 1; |
| 1605 | int res; |
| 1606 | DBUG_ENTER("my_tz_init" ); |
| 1607 | |
| 1608 | #ifdef HAVE_PSI_INTERFACE |
| 1609 | init_tz_psi_keys(); |
| 1610 | #endif |
| 1611 | |
| 1612 | /* |
| 1613 | To be able to run this from boot, we allocate a temporary THD |
| 1614 | */ |
| 1615 | if (!(thd= new THD(0))) |
| 1616 | DBUG_RETURN(1); |
| 1617 | thd->thread_stack= (char*) &thd; |
| 1618 | thd->store_globals(); |
| 1619 | |
| 1620 | /* Init all memory structures that require explicit destruction */ |
| 1621 | if (my_hash_init(&tz_names, &my_charset_latin1, 20, |
| 1622 | 0, 0, (my_hash_get_key) my_tz_names_get_key, 0, 0)) |
| 1623 | { |
| 1624 | sql_print_error("Fatal error: OOM while initializing time zones" ); |
| 1625 | goto end; |
| 1626 | } |
| 1627 | if (my_hash_init(&offset_tzs, &my_charset_latin1, 26, 0, 0, |
| 1628 | (my_hash_get_key)my_offset_tzs_get_key, 0, 0)) |
| 1629 | { |
| 1630 | sql_print_error("Fatal error: OOM while initializing time zones" ); |
| 1631 | my_hash_free(&tz_names); |
| 1632 | goto end; |
| 1633 | } |
| 1634 | init_sql_alloc(&tz_storage, "timezone_storage" , 32 * 1024, 0, MYF(0)); |
| 1635 | mysql_mutex_init(key_tz_LOCK, &tz_LOCK, MY_MUTEX_INIT_FAST); |
| 1636 | tz_inited= 1; |
| 1637 | |
| 1638 | /* Add 'SYSTEM' time zone to tz_names hash */ |
| 1639 | if (!(tmp_tzname= new (&tz_storage) Tz_names_entry())) |
| 1640 | { |
| 1641 | sql_print_error("Fatal error: OOM while initializing time zones" ); |
| 1642 | goto end_with_cleanup; |
| 1643 | } |
| 1644 | tmp_tzname->name.set(STRING_WITH_LEN("SYSTEM" ), &my_charset_latin1); |
| 1645 | tmp_tzname->tz= my_tz_SYSTEM; |
| 1646 | if (my_hash_insert(&tz_names, (const uchar *)tmp_tzname)) |
| 1647 | { |
| 1648 | sql_print_error("Fatal error: OOM while initializing time zones" ); |
| 1649 | goto end_with_cleanup; |
| 1650 | } |
| 1651 | |
| 1652 | if (bootstrap) |
| 1653 | { |
| 1654 | /* If we are in bootstrap mode we should not load time zone tables */ |
| 1655 | return_val= time_zone_tables_exist= 0; |
| 1656 | goto end_with_setting_default_tz; |
| 1657 | } |
| 1658 | |
| 1659 | /* |
| 1660 | After this point all memory structures are inited and we even can live |
| 1661 | without time zone description tables. Now try to load information about |
| 1662 | leap seconds shared by all time zones. |
| 1663 | */ |
| 1664 | |
| 1665 | thd->set_db(&MYSQL_SCHEMA_NAME); |
| 1666 | bzero((char*) &tz_tables[0], sizeof(TABLE_LIST)); |
| 1667 | tz_tables[0].alias= tz_tables[0].table_name= tmp_table_name; |
| 1668 | tz_tables[0].db= MYSQL_SCHEMA_NAME; |
| 1669 | tz_tables[0].lock_type= TL_READ; |
| 1670 | |
| 1671 | tz_init_table_list(tz_tables+1); |
| 1672 | tz_tables[0].next_global= tz_tables[0].next_local= &tz_tables[1]; |
| 1673 | tz_tables[1].prev_global= &tz_tables[0].next_global; |
| 1674 | init_mdl_requests(tz_tables); |
| 1675 | |
| 1676 | /* |
| 1677 | We need to open only mysql.time_zone_leap_second, but we try to |
| 1678 | open all time zone tables to see if they exist. |
| 1679 | */ |
| 1680 | if (open_and_lock_tables(thd, tz_tables, FALSE, |
| 1681 | MYSQL_OPEN_IGNORE_FLUSH | MYSQL_LOCK_IGNORE_TIMEOUT)) |
| 1682 | { |
| 1683 | sql_print_warning("Can't open and lock time zone table: %s " |
| 1684 | "trying to live without them" , |
| 1685 | thd->get_stmt_da()->message()); |
| 1686 | /* We will try emulate that everything is ok */ |
| 1687 | return_val= time_zone_tables_exist= 0; |
| 1688 | goto end_with_setting_default_tz; |
| 1689 | } |
| 1690 | |
| 1691 | for (TABLE_LIST *tl= tz_tables; tl; tl= tl->next_global) |
| 1692 | { |
| 1693 | tl->table->use_all_columns(); |
| 1694 | /* Force close at the end of the function to free memory. */ |
| 1695 | tl->table->m_needs_reopen= TRUE; |
| 1696 | } |
| 1697 | |
| 1698 | /* |
| 1699 | Now we are going to load leap seconds descriptions that are shared |
| 1700 | between all time zones that use them. We are using index for getting |
| 1701 | records in proper order. Since we share the same MEM_ROOT between |
| 1702 | all time zones we just allocate enough memory for it first. |
| 1703 | */ |
| 1704 | if (!(tz_lsis= (LS_INFO*) alloc_root(&tz_storage, |
| 1705 | sizeof(LS_INFO) * TZ_MAX_LEAPS))) |
| 1706 | { |
| 1707 | sql_print_error("Fatal error: Out of memory while loading " |
| 1708 | "mysql.time_zone_leap_second table" ); |
| 1709 | goto end_with_close; |
| 1710 | } |
| 1711 | |
| 1712 | table= tz_tables[0].table; |
| 1713 | |
| 1714 | if (table->file->ha_index_init(0, 1)) |
| 1715 | goto end_with_close; |
| 1716 | |
| 1717 | table->use_all_columns(); |
| 1718 | tz_leapcnt= 0; |
| 1719 | |
| 1720 | res= table->file->ha_index_first(table->record[0]); |
| 1721 | |
| 1722 | while (!res) |
| 1723 | { |
| 1724 | if (tz_leapcnt + 1 > TZ_MAX_LEAPS) |
| 1725 | { |
| 1726 | sql_print_error("Fatal error: While loading mysql.time_zone_leap_second" |
| 1727 | " table: too much leaps" ); |
| 1728 | table->file->ha_index_end(); |
| 1729 | goto end_with_close; |
| 1730 | } |
| 1731 | |
| 1732 | tz_lsis[tz_leapcnt].ls_trans= (my_time_t)table->field[0]->val_int(); |
| 1733 | tz_lsis[tz_leapcnt].ls_corr= (long)table->field[1]->val_int(); |
| 1734 | |
| 1735 | tz_leapcnt++; |
| 1736 | |
| 1737 | DBUG_PRINT("info" , |
| 1738 | ("time_zone_leap_second table: tz_leapcnt: %u tt_time: %lu offset: %ld" , |
| 1739 | tz_leapcnt, (ulong) tz_lsis[tz_leapcnt-1].ls_trans, |
| 1740 | tz_lsis[tz_leapcnt-1].ls_corr)); |
| 1741 | |
| 1742 | res= table->file->ha_index_next(table->record[0]); |
| 1743 | } |
| 1744 | |
| 1745 | (void)table->file->ha_index_end(); |
| 1746 | |
| 1747 | if (res != HA_ERR_END_OF_FILE) |
| 1748 | { |
| 1749 | sql_print_error("Fatal error: Error while loading " |
| 1750 | "mysql.time_zone_leap_second table" ); |
| 1751 | goto end_with_close; |
| 1752 | } |
| 1753 | |
| 1754 | /* |
| 1755 | Loading of info about leap seconds succeeded |
| 1756 | */ |
| 1757 | |
| 1758 | return_val= 0; |
| 1759 | |
| 1760 | |
| 1761 | end_with_setting_default_tz: |
| 1762 | /* If we have default time zone try to load it */ |
| 1763 | if (default_tzname) |
| 1764 | { |
| 1765 | String tmp_tzname2(default_tzname, &my_charset_latin1); |
| 1766 | /* |
| 1767 | Time zone tables may be open here, and my_tz_find() may open |
| 1768 | most of them once more, but this is OK for system tables open |
| 1769 | for READ. |
| 1770 | */ |
| 1771 | if (unlikely(!(global_system_variables.time_zone= |
| 1772 | my_tz_find(thd, &tmp_tzname2)))) |
| 1773 | { |
| 1774 | sql_print_error("Fatal error: Illegal or unknown default time zone '%s'" , |
| 1775 | default_tzname); |
| 1776 | return_val= 1; |
| 1777 | } |
| 1778 | } |
| 1779 | |
| 1780 | end_with_close: |
| 1781 | if (time_zone_tables_exist) |
| 1782 | close_mysql_tables(thd); |
| 1783 | |
| 1784 | end_with_cleanup: |
| 1785 | |
| 1786 | /* if there were error free time zone describing structs */ |
| 1787 | if (unlikely(return_val)) |
| 1788 | my_tz_free(); |
| 1789 | end: |
| 1790 | delete thd; |
| 1791 | if (org_thd) |
| 1792 | org_thd->store_globals(); /* purecov: inspected */ |
| 1793 | |
| 1794 | default_tz= default_tz_name ? global_system_variables.time_zone |
| 1795 | : my_tz_SYSTEM; |
| 1796 | |
| 1797 | DBUG_RETURN(return_val); |
| 1798 | } |
| 1799 | |
| 1800 | |
| 1801 | /* |
| 1802 | Free resources used by time zone support infrastructure. |
| 1803 | |
| 1804 | SYNOPSIS |
| 1805 | my_tz_free() |
| 1806 | */ |
| 1807 | |
| 1808 | void my_tz_free() |
| 1809 | { |
| 1810 | if (tz_inited) |
| 1811 | { |
| 1812 | tz_inited= 0; |
| 1813 | mysql_mutex_destroy(&tz_LOCK); |
| 1814 | my_hash_free(&offset_tzs); |
| 1815 | my_hash_free(&tz_names); |
| 1816 | free_root(&tz_storage, MYF(0)); |
| 1817 | } |
| 1818 | } |
| 1819 | |
| 1820 | |
| 1821 | /* |
| 1822 | Load time zone description from system tables. |
| 1823 | |
| 1824 | SYNOPSIS |
| 1825 | tz_load_from_open_tables() |
| 1826 | tz_name - name of time zone that should be loaded. |
| 1827 | tz_tables - list of tables from which time zone description |
| 1828 | should be loaded |
| 1829 | |
| 1830 | DESCRIPTION |
| 1831 | This function will try to load information about time zone specified |
| 1832 | from the list of the already opened and locked tables (first table in |
| 1833 | tz_tables should be time_zone_name, next time_zone, then |
| 1834 | time_zone_transition_type and time_zone_transition should be last). |
| 1835 | It will also update information in hash used for time zones lookup. |
| 1836 | |
| 1837 | RETURN VALUES |
| 1838 | Returns pointer to newly created Time_zone object or 0 in case of error. |
| 1839 | |
| 1840 | */ |
| 1841 | |
| 1842 | static Time_zone* |
| 1843 | tz_load_from_open_tables(const String *tz_name, TABLE_LIST *tz_tables) |
| 1844 | { |
| 1845 | TABLE *table= 0; |
| 1846 | TIME_ZONE_INFO *tz_info= NULL; |
| 1847 | Tz_names_entry *tmp_tzname; |
| 1848 | Time_zone *return_val= 0; |
| 1849 | int res; |
| 1850 | uint tzid, ttid; |
| 1851 | my_time_t ttime; |
| 1852 | char buff[MAX_FIELD_WIDTH]; |
| 1853 | uchar keybuff[32]; |
| 1854 | Field *field; |
| 1855 | String abbr(buff, sizeof(buff), &my_charset_latin1); |
| 1856 | char *alloc_buff= NULL; |
| 1857 | char *tz_name_buff= NULL; |
| 1858 | /* |
| 1859 | Temporary arrays that are used for loading of data for filling |
| 1860 | TIME_ZONE_INFO structure |
| 1861 | */ |
| 1862 | my_time_t ats[TZ_MAX_TIMES]; |
| 1863 | uchar types[TZ_MAX_TIMES]; |
| 1864 | TRAN_TYPE_INFO ttis[TZ_MAX_TYPES]; |
| 1865 | #ifdef ABBR_ARE_USED |
| 1866 | char chars[MY_MAX(TZ_MAX_CHARS + 1, (2 * (MY_TZNAME_MAX + 1)))]; |
| 1867 | #endif |
| 1868 | /* |
| 1869 | Used as a temporary tz_info until we decide that we actually want to |
| 1870 | allocate and keep the tz info and tz name in tz_storage. |
| 1871 | */ |
| 1872 | TIME_ZONE_INFO tmp_tz_info; |
| 1873 | memset(&tmp_tz_info, 0, sizeof(TIME_ZONE_INFO)); |
| 1874 | |
| 1875 | DBUG_ENTER("tz_load_from_open_tables" ); |
| 1876 | |
| 1877 | /* |
| 1878 | Let us find out time zone id by its name (there is only one index |
| 1879 | and it is specifically for this purpose). |
| 1880 | */ |
| 1881 | table= tz_tables->table; |
| 1882 | tz_tables= tz_tables->next_local; |
| 1883 | table->field[0]->store(tz_name->ptr(), tz_name->length(), |
| 1884 | &my_charset_latin1); |
| 1885 | if (table->file->ha_index_init(0, 1)) |
| 1886 | goto end; |
| 1887 | |
| 1888 | if (table->file->ha_index_read_map(table->record[0], table->field[0]->ptr, |
| 1889 | HA_WHOLE_KEY, HA_READ_KEY_EXACT)) |
| 1890 | { |
| 1891 | #ifdef EXTRA_DEBUG |
| 1892 | /* |
| 1893 | Most probably user has mistyped time zone name, so no need to bark here |
| 1894 | unless we need it for debugging. |
| 1895 | */ |
| 1896 | sql_print_error("Can't find description of time zone '%.*s'" , |
| 1897 | tz_name->length(), tz_name->ptr()); |
| 1898 | #endif |
| 1899 | goto end; |
| 1900 | } |
| 1901 | |
| 1902 | tzid= (uint)table->field[1]->val_int(); |
| 1903 | |
| 1904 | (void)table->file->ha_index_end(); |
| 1905 | |
| 1906 | /* |
| 1907 | Now we need to lookup record in mysql.time_zone table in order to |
| 1908 | understand whenever this timezone uses leap seconds (again we are |
| 1909 | using the only index in this table). |
| 1910 | */ |
| 1911 | table= tz_tables->table; |
| 1912 | tz_tables= tz_tables->next_local; |
| 1913 | field= table->field[0]; |
| 1914 | field->store((longlong) tzid, TRUE); |
| 1915 | DBUG_ASSERT(field->key_length() <= sizeof(keybuff)); |
| 1916 | field->get_key_image(keybuff, |
| 1917 | MY_MIN(field->key_length(), sizeof(keybuff)), |
| 1918 | Field::itRAW); |
| 1919 | if (table->file->ha_index_init(0, 1)) |
| 1920 | goto end; |
| 1921 | |
| 1922 | if (table->file->ha_index_read_map(table->record[0], keybuff, |
| 1923 | HA_WHOLE_KEY, HA_READ_KEY_EXACT)) |
| 1924 | { |
| 1925 | sql_print_error("Can't find description of time zone '%u'" , tzid); |
| 1926 | goto end; |
| 1927 | } |
| 1928 | |
| 1929 | /* If Uses_leap_seconds == 'Y' */ |
| 1930 | if (table->field[1]->val_int() == 1) |
| 1931 | { |
| 1932 | tmp_tz_info.leapcnt= tz_leapcnt; |
| 1933 | tmp_tz_info.lsis= tz_lsis; |
| 1934 | } |
| 1935 | |
| 1936 | (void)table->file->ha_index_end(); |
| 1937 | |
| 1938 | /* |
| 1939 | Now we will iterate through records for out time zone in |
| 1940 | mysql.time_zone_transition_type table. Because we want records |
| 1941 | only for our time zone guess what are we doing? |
| 1942 | Right - using special index. |
| 1943 | */ |
| 1944 | table= tz_tables->table; |
| 1945 | tz_tables= tz_tables->next_local; |
| 1946 | field= table->field[0]; |
| 1947 | field->store((longlong) tzid, TRUE); |
| 1948 | DBUG_ASSERT(field->key_length() <= sizeof(keybuff)); |
| 1949 | field->get_key_image(keybuff, |
| 1950 | MY_MIN(field->key_length(), sizeof(keybuff)), |
| 1951 | Field::itRAW); |
| 1952 | if (table->file->ha_index_init(0, 1)) |
| 1953 | goto end; |
| 1954 | |
| 1955 | res= table->file->ha_index_read_map(table->record[0], keybuff, |
| 1956 | (key_part_map)1, HA_READ_KEY_EXACT); |
| 1957 | while (!res) |
| 1958 | { |
| 1959 | ttid= (uint)table->field[1]->val_int(); |
| 1960 | |
| 1961 | if (ttid >= TZ_MAX_TYPES) |
| 1962 | { |
| 1963 | sql_print_error("Error while loading time zone description from " |
| 1964 | "mysql.time_zone_transition_type table: too big " |
| 1965 | "transition type id" ); |
| 1966 | goto end; |
| 1967 | } |
| 1968 | |
| 1969 | ttis[ttid].tt_gmtoff= (long)table->field[2]->val_int(); |
| 1970 | ttis[ttid].tt_isdst= (table->field[3]->val_int() > 0); |
| 1971 | |
| 1972 | #ifdef ABBR_ARE_USED |
| 1973 | // FIXME should we do something with duplicates here ? |
| 1974 | table->field[4]->val_str(&abbr, &abbr); |
| 1975 | if (tmp_tz_info.charcnt + abbr.length() + 1 > sizeof(chars)) |
| 1976 | { |
| 1977 | sql_print_error("Error while loading time zone description from " |
| 1978 | "mysql.time_zone_transition_type table: not enough " |
| 1979 | "room for abbreviations" ); |
| 1980 | goto end; |
| 1981 | } |
| 1982 | ttis[ttid].tt_abbrind= tmp_tz_info.charcnt; |
| 1983 | memcpy(chars + tmp_tz_info.charcnt, abbr.ptr(), abbr.length()); |
| 1984 | tmp_tz_info.charcnt+= abbr.length(); |
| 1985 | chars[tmp_tz_info.charcnt]= 0; |
| 1986 | tmp_tz_info.charcnt++; |
| 1987 | |
| 1988 | DBUG_PRINT("info" , |
| 1989 | ("time_zone_transition_type table: tz_id=%u tt_id=%u tt_gmtoff=%ld " |
| 1990 | "abbr='%s' tt_isdst=%u" , tzid, ttid, ttis[ttid].tt_gmtoff, |
| 1991 | chars + ttis[ttid].tt_abbrind, ttis[ttid].tt_isdst)); |
| 1992 | #else |
| 1993 | DBUG_PRINT("info" , |
| 1994 | ("time_zone_transition_type table: tz_id=%u tt_id=%u tt_gmtoff=%ld " |
| 1995 | "tt_isdst=%u" , tzid, ttid, ttis[ttid].tt_gmtoff, ttis[ttid].tt_isdst)); |
| 1996 | #endif |
| 1997 | |
| 1998 | /* ttid is increasing because we are reading using index */ |
| 1999 | DBUG_ASSERT(ttid >= tmp_tz_info.typecnt); |
| 2000 | |
| 2001 | tmp_tz_info.typecnt= ttid + 1; |
| 2002 | |
| 2003 | res= table->file->ha_index_next_same(table->record[0], keybuff, 4); |
| 2004 | } |
| 2005 | |
| 2006 | if (res != HA_ERR_END_OF_FILE) |
| 2007 | { |
| 2008 | sql_print_error("Error while loading time zone description from " |
| 2009 | "mysql.time_zone_transition_type table" ); |
| 2010 | goto end; |
| 2011 | } |
| 2012 | |
| 2013 | (void)table->file->ha_index_end(); |
| 2014 | |
| 2015 | |
| 2016 | /* |
| 2017 | At last we are doing the same thing for records in |
| 2018 | mysql.time_zone_transition table. Here we additionally need records |
| 2019 | in ascending order by index scan also satisfies us. |
| 2020 | */ |
| 2021 | table= tz_tables->table; |
| 2022 | table->field[0]->store((longlong) tzid, TRUE); |
| 2023 | if (table->file->ha_index_init(0, 1)) |
| 2024 | goto end; |
| 2025 | |
| 2026 | res= table->file->ha_index_read_map(table->record[0], keybuff, |
| 2027 | (key_part_map)1, HA_READ_KEY_EXACT); |
| 2028 | while (!res) |
| 2029 | { |
| 2030 | ttime= (my_time_t)table->field[1]->val_int(); |
| 2031 | ttid= (uint)table->field[2]->val_int(); |
| 2032 | |
| 2033 | if (tmp_tz_info.timecnt + 1 > TZ_MAX_TIMES) |
| 2034 | { |
| 2035 | sql_print_error("Error while loading time zone description from " |
| 2036 | "mysql.time_zone_transition table: " |
| 2037 | "too much transitions" ); |
| 2038 | goto end; |
| 2039 | } |
| 2040 | if (ttid + 1 > tmp_tz_info.typecnt) |
| 2041 | { |
| 2042 | sql_print_error("Error while loading time zone description from " |
| 2043 | "mysql.time_zone_transition table: " |
| 2044 | "bad transition type id" ); |
| 2045 | goto end; |
| 2046 | } |
| 2047 | |
| 2048 | ats[tmp_tz_info.timecnt]= ttime; |
| 2049 | types[tmp_tz_info.timecnt]= ttid; |
| 2050 | tmp_tz_info.timecnt++; |
| 2051 | |
| 2052 | DBUG_PRINT("info" , |
| 2053 | ("time_zone_transition table: tz_id: %u tt_time: %lu tt_id: %u" , |
| 2054 | tzid, (ulong) ttime, ttid)); |
| 2055 | |
| 2056 | res= table->file->ha_index_next_same(table->record[0], keybuff, 4); |
| 2057 | } |
| 2058 | |
| 2059 | /* |
| 2060 | We have to allow HA_ERR_KEY_NOT_FOUND because some time zones |
| 2061 | for example UTC have no transitons. |
| 2062 | */ |
| 2063 | if (res != HA_ERR_END_OF_FILE && res != HA_ERR_KEY_NOT_FOUND) |
| 2064 | { |
| 2065 | sql_print_error("Error while loading time zone description from " |
| 2066 | "mysql.time_zone_transition table" ); |
| 2067 | goto end; |
| 2068 | } |
| 2069 | |
| 2070 | (void)table->file->ha_index_end(); |
| 2071 | table= 0; |
| 2072 | |
| 2073 | /* |
| 2074 | Let us check how correct our time zone description is. We don't check for |
| 2075 | tz->timecnt < 1 since it is ok for GMT. |
| 2076 | */ |
| 2077 | if (tmp_tz_info.typecnt < 1) |
| 2078 | { |
| 2079 | sql_print_error("loading time zone without transition types" ); |
| 2080 | goto end; |
| 2081 | } |
| 2082 | |
| 2083 | /* Allocate memory for the timezone info and timezone name in tz_storage. */ |
| 2084 | if (!(alloc_buff= (char*) alloc_root(&tz_storage, sizeof(TIME_ZONE_INFO) + |
| 2085 | tz_name->length() + 1))) |
| 2086 | { |
| 2087 | sql_print_error("Out of memory while loading time zone description" ); |
| 2088 | return 0; |
| 2089 | } |
| 2090 | |
| 2091 | /* Move the temporary tz_info into the allocated area */ |
| 2092 | tz_info= (TIME_ZONE_INFO *)alloc_buff; |
| 2093 | memcpy(tz_info, &tmp_tz_info, sizeof(TIME_ZONE_INFO)); |
| 2094 | tz_name_buff= alloc_buff + sizeof(TIME_ZONE_INFO); |
| 2095 | /* |
| 2096 | By writing zero to the end we guarantee that we can call ptr() |
| 2097 | instead of c_ptr() for time zone name. |
| 2098 | */ |
| 2099 | strmake(tz_name_buff, tz_name->ptr(), tz_name->length()); |
| 2100 | |
| 2101 | /* |
| 2102 | Now we will allocate memory and init TIME_ZONE_INFO structure. |
| 2103 | */ |
| 2104 | if (!(alloc_buff= (char*) alloc_root(&tz_storage, |
| 2105 | ALIGN_SIZE(sizeof(my_time_t) * |
| 2106 | tz_info->timecnt) + |
| 2107 | ALIGN_SIZE(tz_info->timecnt) + |
| 2108 | #ifdef ABBR_ARE_USED |
| 2109 | ALIGN_SIZE(tz_info->charcnt) + |
| 2110 | #endif |
| 2111 | sizeof(TRAN_TYPE_INFO) * |
| 2112 | tz_info->typecnt))) |
| 2113 | { |
| 2114 | sql_print_error("Out of memory while loading time zone description" ); |
| 2115 | goto end; |
| 2116 | } |
| 2117 | |
| 2118 | tz_info->ats= (my_time_t *) alloc_buff; |
| 2119 | memcpy(tz_info->ats, ats, tz_info->timecnt * sizeof(my_time_t)); |
| 2120 | alloc_buff+= ALIGN_SIZE(sizeof(my_time_t) * tz_info->timecnt); |
| 2121 | tz_info->types= (uchar *)alloc_buff; |
| 2122 | memcpy(tz_info->types, types, tz_info->timecnt); |
| 2123 | alloc_buff+= ALIGN_SIZE(tz_info->timecnt); |
| 2124 | #ifdef ABBR_ARE_USED |
| 2125 | tz_info->chars= alloc_buff; |
| 2126 | memcpy(tz_info->chars, chars, tz_info->charcnt); |
| 2127 | alloc_buff+= ALIGN_SIZE(tz_info->charcnt); |
| 2128 | #endif |
| 2129 | tz_info->ttis= (TRAN_TYPE_INFO *)alloc_buff; |
| 2130 | memcpy(tz_info->ttis, ttis, tz_info->typecnt * sizeof(TRAN_TYPE_INFO)); |
| 2131 | |
| 2132 | /* Build reversed map. */ |
| 2133 | if (prepare_tz_info(tz_info, &tz_storage)) |
| 2134 | { |
| 2135 | sql_print_error("Unable to build mktime map for time zone" ); |
| 2136 | goto end; |
| 2137 | } |
| 2138 | |
| 2139 | |
| 2140 | if (!(tmp_tzname= new (&tz_storage) Tz_names_entry()) || |
| 2141 | !(tmp_tzname->tz= new (&tz_storage) Time_zone_db(tz_info, |
| 2142 | &(tmp_tzname->name))) || |
| 2143 | (tmp_tzname->name.set(tz_name_buff, tz_name->length(), |
| 2144 | &my_charset_latin1), |
| 2145 | my_hash_insert(&tz_names, (const uchar *)tmp_tzname))) |
| 2146 | { |
| 2147 | sql_print_error("Out of memory while loading time zone" ); |
| 2148 | goto end; |
| 2149 | } |
| 2150 | |
| 2151 | /* |
| 2152 | Loading of time zone succeeded |
| 2153 | */ |
| 2154 | return_val= tmp_tzname->tz; |
| 2155 | |
| 2156 | end: |
| 2157 | |
| 2158 | if (table && table->file->inited) |
| 2159 | (void) table->file->ha_index_end(); |
| 2160 | |
| 2161 | DBUG_RETURN(return_val); |
| 2162 | } |
| 2163 | |
| 2164 | |
| 2165 | /* |
| 2166 | Parse string that specifies time zone as offset from UTC. |
| 2167 | |
| 2168 | SYNOPSIS |
| 2169 | str_to_offset() |
| 2170 | str - pointer to string which contains offset |
| 2171 | length - length of string |
| 2172 | offset - out parameter for storing found offset in seconds. |
| 2173 | |
| 2174 | DESCRIPTION |
| 2175 | This function parses string which contains time zone offset |
| 2176 | in form similar to '+10:00' and converts found value to |
| 2177 | seconds from UTC form (east is positive). |
| 2178 | |
| 2179 | RETURN VALUE |
| 2180 | 0 - Ok |
| 2181 | 1 - String doesn't contain valid time zone offset |
| 2182 | */ |
| 2183 | my_bool |
| 2184 | str_to_offset(const char *str, uint length, long *offset) |
| 2185 | { |
| 2186 | const char *end= str + length; |
| 2187 | my_bool negative; |
| 2188 | ulong number_tmp; |
| 2189 | long offset_tmp; |
| 2190 | |
| 2191 | if (length < 4) |
| 2192 | return 1; |
| 2193 | |
| 2194 | if (*str == '+') |
| 2195 | negative= 0; |
| 2196 | else if (*str == '-') |
| 2197 | negative= 1; |
| 2198 | else |
| 2199 | return 1; |
| 2200 | str++; |
| 2201 | |
| 2202 | number_tmp= 0; |
| 2203 | |
| 2204 | while (str < end && my_isdigit(&my_charset_latin1, *str)) |
| 2205 | { |
| 2206 | number_tmp= number_tmp*10 + *str - '0'; |
| 2207 | str++; |
| 2208 | } |
| 2209 | |
| 2210 | if (str + 1 >= end || *str != ':') |
| 2211 | return 1; |
| 2212 | str++; |
| 2213 | |
| 2214 | offset_tmp = number_tmp * MINS_PER_HOUR; number_tmp= 0; |
| 2215 | |
| 2216 | while (str < end && my_isdigit(&my_charset_latin1, *str)) |
| 2217 | { |
| 2218 | number_tmp= number_tmp * 10 + *str - '0'; |
| 2219 | str++; |
| 2220 | } |
| 2221 | |
| 2222 | if (str != end) |
| 2223 | return 1; |
| 2224 | |
| 2225 | offset_tmp= (offset_tmp + number_tmp) * SECS_PER_MIN; |
| 2226 | |
| 2227 | if (negative) |
| 2228 | offset_tmp= -offset_tmp; |
| 2229 | |
| 2230 | /* |
| 2231 | Check if offset is in range prescribed by standard |
| 2232 | (from -12:59 to 13:00). |
| 2233 | */ |
| 2234 | |
| 2235 | if (number_tmp > 59 || offset_tmp < -13 * SECS_PER_HOUR + 1 || |
| 2236 | offset_tmp > 13 * SECS_PER_HOUR) |
| 2237 | return 1; |
| 2238 | |
| 2239 | *offset= offset_tmp; |
| 2240 | |
| 2241 | return 0; |
| 2242 | } |
| 2243 | |
| 2244 | |
| 2245 | /* |
| 2246 | Get Time_zone object for specified time zone. |
| 2247 | |
| 2248 | SYNOPSIS |
| 2249 | my_tz_find() |
| 2250 | thd - pointer to thread THD structure |
| 2251 | name - time zone specification |
| 2252 | |
| 2253 | DESCRIPTION |
| 2254 | This function checks if name is one of time zones described in db, |
| 2255 | predefined SYSTEM time zone or valid time zone specification as |
| 2256 | offset from UTC (In last case it will create proper Time_zone_offset |
| 2257 | object if there were not any.). If name is ok it returns corresponding |
| 2258 | Time_zone object. |
| 2259 | |
| 2260 | Clients of this function are not responsible for releasing resources |
| 2261 | occupied by returned Time_zone object so they can just forget pointers |
| 2262 | to Time_zone object if they are not needed longer. |
| 2263 | |
| 2264 | Other important property of this function: if some Time_zone found once |
| 2265 | it will be for sure found later, so this function can also be used for |
| 2266 | checking if proper Time_zone object exists (and if there will be error |
| 2267 | it will be reported during first call). |
| 2268 | |
| 2269 | If name pointer is 0 then this function returns 0 (this allows to pass 0 |
| 2270 | values as parameter without additional external check and this property |
| 2271 | is used by @@time_zone variable handling code). |
| 2272 | |
| 2273 | It will perform lookup in system tables (mysql.time_zone*), |
| 2274 | opening and locking them, and closing afterwards. It won't perform |
| 2275 | such lookup if no time zone describing tables were found during |
| 2276 | server start up. |
| 2277 | |
| 2278 | RETURN VALUE |
| 2279 | Pointer to corresponding Time_zone object. 0 - in case of bad time zone |
| 2280 | specification or other error. |
| 2281 | |
| 2282 | */ |
| 2283 | Time_zone * |
| 2284 | my_tz_find(THD *thd, const String *name) |
| 2285 | { |
| 2286 | Tz_names_entry *tmp_tzname; |
| 2287 | Time_zone *result_tz= 0; |
| 2288 | long offset; |
| 2289 | DBUG_ENTER("my_tz_find" ); |
| 2290 | DBUG_PRINT("enter" , ("time zone name='%s'" , |
| 2291 | name ? ((String *)name)->c_ptr_safe() : "NULL" )); |
| 2292 | |
| 2293 | if (!name || name->is_empty()) |
| 2294 | DBUG_RETURN(0); |
| 2295 | |
| 2296 | mysql_mutex_lock(&tz_LOCK); |
| 2297 | |
| 2298 | if (!str_to_offset(name->ptr(), name->length(), &offset)) |
| 2299 | { |
| 2300 | if (!(result_tz= (Time_zone_offset *)my_hash_search(&offset_tzs, |
| 2301 | (const uchar *)&offset, |
| 2302 | sizeof(long)))) |
| 2303 | { |
| 2304 | DBUG_PRINT("info" , ("Creating new Time_zone_offset object" )); |
| 2305 | |
| 2306 | if (!(result_tz= new (&tz_storage) Time_zone_offset(offset)) || |
| 2307 | my_hash_insert(&offset_tzs, (const uchar *) result_tz)) |
| 2308 | { |
| 2309 | result_tz= 0; |
| 2310 | sql_print_error("Fatal error: Out of memory " |
| 2311 | "while setting new time zone" ); |
| 2312 | } |
| 2313 | } |
| 2314 | } |
| 2315 | else |
| 2316 | { |
| 2317 | result_tz= 0; |
| 2318 | if ((tmp_tzname= (Tz_names_entry *)my_hash_search(&tz_names, |
| 2319 | (const uchar *) |
| 2320 | name->ptr(), |
| 2321 | name->length()))) |
| 2322 | result_tz= tmp_tzname->tz; |
| 2323 | else if (time_zone_tables_exist) |
| 2324 | { |
| 2325 | TABLE_LIST tz_tables[MY_TZ_TABLES_COUNT]; |
| 2326 | Open_tables_backup open_tables_state_backup; |
| 2327 | |
| 2328 | tz_init_table_list(tz_tables); |
| 2329 | init_mdl_requests(tz_tables); |
| 2330 | if (!open_system_tables_for_read(thd, tz_tables, |
| 2331 | &open_tables_state_backup)) |
| 2332 | { |
| 2333 | result_tz= tz_load_from_open_tables(name, tz_tables); |
| 2334 | close_system_tables(thd, &open_tables_state_backup); |
| 2335 | } |
| 2336 | } |
| 2337 | } |
| 2338 | |
| 2339 | mysql_mutex_unlock(&tz_LOCK); |
| 2340 | |
| 2341 | if (result_tz && result_tz != my_tz_SYSTEM && result_tz != my_tz_UTC) |
| 2342 | status_var_increment(thd->status_var.feature_timezone); |
| 2343 | |
| 2344 | DBUG_RETURN(result_tz); |
| 2345 | } |
| 2346 | |
| 2347 | |
| 2348 | /** |
| 2349 | Convert leap seconds into non-leap |
| 2350 | |
| 2351 | This function will convert the leap seconds added by the OS to |
| 2352 | non-leap seconds, e.g. 23:59:59, 23:59:60 -> 23:59:59, 00:00:01 ... |
| 2353 | This check is not checking for years on purpose : although it's not a |
| 2354 | complete check this way it doesn't require looking (and having installed) |
| 2355 | the leap seconds table. |
| 2356 | |
| 2357 | @param[in,out] broken down time structure as filled in by the OS |
| 2358 | */ |
| 2359 | |
| 2360 | void Time_zone::adjust_leap_second(MYSQL_TIME *t) |
| 2361 | { |
| 2362 | if (t->second == 60 || t->second == 61) |
| 2363 | t->second= 59; |
| 2364 | } |
| 2365 | |
| 2366 | #endif /* !defined(TESTTIME) && !defined(TZINFO2SQL) */ |
| 2367 | |
| 2368 | |
| 2369 | #ifdef TZINFO2SQL |
| 2370 | /* |
| 2371 | This code belongs to mysql_tzinfo_to_sql converter command line utility. |
| 2372 | This utility should be used by db admin for populating mysql.time_zone |
| 2373 | tables. |
| 2374 | */ |
| 2375 | |
| 2376 | /* |
| 2377 | Print info about time zone described by TIME_ZONE_INFO struct as |
| 2378 | SQL statements populating mysql.time_zone* tables. |
| 2379 | |
| 2380 | SYNOPSIS |
| 2381 | print_tz_as_sql() |
| 2382 | tz_name - name of time zone |
| 2383 | sp - structure describing time zone |
| 2384 | */ |
| 2385 | void |
| 2386 | print_tz_as_sql(const char* tz_name, const TIME_ZONE_INFO *sp) |
| 2387 | { |
| 2388 | uint i; |
| 2389 | |
| 2390 | /* Here we assume that all time zones have same leap correction tables */ |
| 2391 | printf("INSERT INTO time_zone (Use_leap_seconds) VALUES ('%s');\n" , |
| 2392 | sp->leapcnt ? "Y" : "N" ); |
| 2393 | printf("SET @time_zone_id= LAST_INSERT_ID();\n" ); |
| 2394 | printf("INSERT INTO time_zone_name (Name, Time_zone_id) VALUES \ |
| 2395 | ('%s', @time_zone_id);\n" , tz_name); |
| 2396 | |
| 2397 | if (sp->timecnt) |
| 2398 | { |
| 2399 | printf("INSERT INTO time_zone_transition \ |
| 2400 | (Time_zone_id, Transition_time, Transition_type_id) VALUES\n" ); |
| 2401 | for (i= 0; i < sp->timecnt; i++) |
| 2402 | printf("%s(@time_zone_id, %ld, %u)\n" , (i == 0 ? " " : "," ), sp->ats[i], |
| 2403 | (uint)sp->types[i]); |
| 2404 | printf(";\n" ); |
| 2405 | } |
| 2406 | |
| 2407 | printf("INSERT INTO time_zone_transition_type \ |
| 2408 | (Time_zone_id, Transition_type_id, Offset, Is_DST, Abbreviation) VALUES\n" ); |
| 2409 | |
| 2410 | for (i= 0; i < sp->typecnt; i++) |
| 2411 | printf("%s(@time_zone_id, %u, %ld, %d, '%s')\n" , (i == 0 ? " " : "," ), i, |
| 2412 | sp->ttis[i].tt_gmtoff, sp->ttis[i].tt_isdst, |
| 2413 | sp->chars + sp->ttis[i].tt_abbrind); |
| 2414 | printf(";\n" ); |
| 2415 | } |
| 2416 | |
| 2417 | |
| 2418 | /* |
| 2419 | Print info about leap seconds in time zone as SQL statements |
| 2420 | populating mysql.time_zone_leap_second table. |
| 2421 | |
| 2422 | SYNOPSIS |
| 2423 | print_tz_leaps_as_sql() |
| 2424 | sp - structure describing time zone |
| 2425 | */ |
| 2426 | void |
| 2427 | print_tz_leaps_as_sql(const TIME_ZONE_INFO *sp) |
| 2428 | { |
| 2429 | uint i; |
| 2430 | |
| 2431 | /* |
| 2432 | We are assuming that there are only one list of leap seconds |
| 2433 | For all timezones. |
| 2434 | */ |
| 2435 | printf("TRUNCATE TABLE time_zone_leap_second;\n" ); |
| 2436 | |
| 2437 | if (sp->leapcnt) |
| 2438 | { |
| 2439 | printf("INSERT INTO time_zone_leap_second \ |
| 2440 | (Transition_time, Correction) VALUES\n" ); |
| 2441 | for (i= 0; i < sp->leapcnt; i++) |
| 2442 | printf("%s(%ld, %ld)\n" , (i == 0 ? " " : "," ), |
| 2443 | sp->lsis[i].ls_trans, sp->lsis[i].ls_corr); |
| 2444 | printf(";\n" ); |
| 2445 | } |
| 2446 | |
| 2447 | printf("ALTER TABLE time_zone_leap_second ORDER BY Transition_time;\n" ); |
| 2448 | } |
| 2449 | |
| 2450 | |
| 2451 | /* |
| 2452 | Some variables used as temporary or as parameters |
| 2453 | in recursive scan_tz_dir() code. |
| 2454 | */ |
| 2455 | TIME_ZONE_INFO tz_info; |
| 2456 | MEM_ROOT tz_storage; |
| 2457 | char fullname[FN_REFLEN + 1]; |
| 2458 | char *root_name_end; |
| 2459 | |
| 2460 | /* |
| 2461 | known file types that exist in the zoneinfo directory that are safe to |
| 2462 | silently skip |
| 2463 | */ |
| 2464 | const char *known_extensions[]= { |
| 2465 | ".tab" , |
| 2466 | NullS |
| 2467 | }; |
| 2468 | |
| 2469 | |
| 2470 | /* |
| 2471 | Recursively scan zoneinfo directory and print all found time zone |
| 2472 | descriptions as SQL. |
| 2473 | |
| 2474 | SYNOPSIS |
| 2475 | scan_tz_dir() |
| 2476 | name_end - pointer to end of path to directory to be searched. |
| 2477 | symlink_recursion_level How many symlink directory levels are used |
| 2478 | verbose >0 if we should print warnings |
| 2479 | |
| 2480 | DESCRIPTION |
| 2481 | This auxiliary recursive function also uses several global |
| 2482 | variables as in parameters and for storing temporary values. |
| 2483 | |
| 2484 | fullname - path to directory that should be scanned. |
| 2485 | root_name_end - pointer to place in fullname where part with |
| 2486 | path to initial directory ends. |
| 2487 | current_tz_id - last used time zone id |
| 2488 | |
| 2489 | RETURN VALUE |
| 2490 | 0 - Ok, 1 - Fatal error |
| 2491 | |
| 2492 | */ |
| 2493 | my_bool |
| 2494 | scan_tz_dir(char * name_end, uint symlink_recursion_level, uint verbose) |
| 2495 | { |
| 2496 | MY_DIR *cur_dir; |
| 2497 | char *name_end_tmp; |
| 2498 | uint i; |
| 2499 | |
| 2500 | /* Sort directory data, to pass mtr tests on different platforms. */ |
| 2501 | if (!(cur_dir= my_dir(fullname, MYF(MY_WANT_STAT|MY_WANT_SORT)))) |
| 2502 | return 1; |
| 2503 | |
| 2504 | name_end= strmake(name_end, "/" , FN_REFLEN - (name_end - fullname)); |
| 2505 | |
| 2506 | for (i= 0; i < cur_dir->number_of_files; i++) |
| 2507 | { |
| 2508 | if (cur_dir->dir_entry[i].name[0] != '.' && |
| 2509 | strcmp(cur_dir->dir_entry[i].name, "Factory" )) |
| 2510 | { |
| 2511 | name_end_tmp= strmake(name_end, cur_dir->dir_entry[i].name, |
| 2512 | FN_REFLEN - (name_end - fullname)); |
| 2513 | |
| 2514 | if (MY_S_ISDIR(cur_dir->dir_entry[i].mystat->st_mode)) |
| 2515 | { |
| 2516 | my_bool is_symlink; |
| 2517 | if ((is_symlink= my_is_symlink(fullname)) && |
| 2518 | symlink_recursion_level > 0) |
| 2519 | { |
| 2520 | /* |
| 2521 | The timezone definition data in some Linux distributions |
| 2522 | (e.g. the "timezone-data-2013f" package in Gentoo) |
| 2523 | may have synlimks like: |
| 2524 | /usr/share/zoneinfo/posix/ -> /usr/share/zoneinfo/, |
| 2525 | so the same timezone files are available under two names |
| 2526 | (e.g. "CET" and "posix/CET"). |
| 2527 | |
| 2528 | We allow one level of symlink recursion for backward |
| 2529 | compatibility with earlier timezone data packages that have |
| 2530 | duplicate copies of the same timezone files inside the root |
| 2531 | directory and the "posix" subdirectory (instead of symlinking). |
| 2532 | This makes "posix/CET" still available, but helps to avoid |
| 2533 | following such symlinks infinitely: |
| 2534 | /usr/share/zoneinfo/posix/posix/posix/.../posix/ |
| 2535 | */ |
| 2536 | |
| 2537 | /* |
| 2538 | This is a normal case and not critical. only print warning if |
| 2539 | verbose mode is choosen. |
| 2540 | */ |
| 2541 | if (verbose > 0) |
| 2542 | { |
| 2543 | fflush(stdout); |
| 2544 | fprintf(stderr, "Warning: Skipping directory '%s': " |
| 2545 | "to avoid infinite symlink recursion.\n" , fullname); |
| 2546 | } |
| 2547 | continue; |
| 2548 | } |
| 2549 | if (scan_tz_dir(name_end_tmp, symlink_recursion_level + is_symlink, |
| 2550 | verbose)) |
| 2551 | { |
| 2552 | my_dirend(cur_dir); |
| 2553 | return 1; |
| 2554 | } |
| 2555 | } |
| 2556 | else if (MY_S_ISREG(cur_dir->dir_entry[i].mystat->st_mode)) |
| 2557 | { |
| 2558 | init_alloc_root(&tz_storage, "timezone_storage" , 32768, 0, |
| 2559 | MYF(MY_THREAD_SPECIFIC)); |
| 2560 | if (!tz_load(fullname, &tz_info, &tz_storage)) |
| 2561 | print_tz_as_sql(root_name_end + 1, &tz_info); |
| 2562 | else |
| 2563 | { |
| 2564 | /* |
| 2565 | Some systems (like debian, opensuse etc) have description |
| 2566 | files (.tab). We skip these silently if verbose is > 0 |
| 2567 | */ |
| 2568 | const char *current_ext= fn_ext(fullname); |
| 2569 | my_bool known_ext= 0; |
| 2570 | |
| 2571 | for (const char **ext= known_extensions ; *ext ; ext++) |
| 2572 | { |
| 2573 | if (!strcmp(*ext, current_ext)) |
| 2574 | { |
| 2575 | known_ext= 1; |
| 2576 | break; |
| 2577 | } |
| 2578 | } |
| 2579 | if (verbose > 0 || !known_ext) |
| 2580 | { |
| 2581 | fflush(stdout); |
| 2582 | fprintf(stderr, |
| 2583 | "Warning: Unable to load '%s' as time zone. Skipping it.\n" , |
| 2584 | fullname); |
| 2585 | } |
| 2586 | } |
| 2587 | free_root(&tz_storage, MYF(0)); |
| 2588 | } |
| 2589 | else |
| 2590 | { |
| 2591 | fflush(stdout); |
| 2592 | fprintf(stderr, "Warning: '%s' is not regular file or directory\n" , |
| 2593 | fullname); |
| 2594 | } |
| 2595 | } |
| 2596 | } |
| 2597 | |
| 2598 | my_dirend(cur_dir); |
| 2599 | |
| 2600 | return 0; |
| 2601 | } |
| 2602 | |
| 2603 | |
| 2604 | my_bool opt_leap, opt_verbose; |
| 2605 | |
| 2606 | static const char *load_default_groups[]= |
| 2607 | { "mysql_tzinfo_to_sql" , 0}; |
| 2608 | |
| 2609 | static struct my_option my_long_options[] = |
| 2610 | { |
| 2611 | {"help" , '?', "Display this help and exit." , 0, 0, 0, GET_NO_ARG, NO_ARG, |
| 2612 | 0, 0, 0, 0, 0, 0}, |
| 2613 | #ifdef DBUG_OFF |
| 2614 | {"debug" , '#', "This is a non-debug version. Catch this and exit" , |
| 2615 | 0,0, 0, GET_DISABLED, OPT_ARG, 0, 0, 0, 0, 0, 0}, |
| 2616 | #else |
| 2617 | {"debug" , '#', "Output debug log. Often this is 'd:t:o,filename'." , |
| 2618 | 0, 0, 0, GET_STR, OPT_ARG, 0, 0, 0, 0, 0, 0}, |
| 2619 | #endif |
| 2620 | {"leap" , 'l', "Print the leap second information from the given time zone file. By convention, when --leap is used the next argument is the timezonefile" , |
| 2621 | &opt_leap, &opt_leap, 0, GET_BOOL, NO_ARG, 0, 0, 0, 0, 0, 0}, |
| 2622 | {"verbose" , 'v', "Write non critical warnings" , |
| 2623 | &opt_verbose, &opt_verbose, 0, GET_BOOL, NO_ARG, 0, 0, 0, 0, 0, 0}, |
| 2624 | {"version" , 'V', "Output version information and exit." , |
| 2625 | 0, 0, 0, GET_NO_ARG, NO_ARG, 0, 0, 0, 0, 0, 0}, |
| 2626 | { 0, 0, 0, 0, 0, 0, GET_NO_ARG, NO_ARG, 0, 0, 0, 0, 0, 0} |
| 2627 | }; |
| 2628 | |
| 2629 | |
| 2630 | C_MODE_START |
| 2631 | static my_bool get_one_option(int optid, const struct my_option *, |
| 2632 | char *argument); |
| 2633 | C_MODE_END |
| 2634 | |
| 2635 | static void print_version(void) |
| 2636 | { |
| 2637 | printf("%s Ver %s Distrib %s, for %s (%s)\n" ,my_progname, PROGRAM_VERSION, |
| 2638 | MYSQL_SERVER_VERSION,SYSTEM_TYPE,MACHINE_TYPE); |
| 2639 | } |
| 2640 | |
| 2641 | static void print_usage(void) |
| 2642 | { |
| 2643 | fprintf(stderr, "Usage:\n" ); |
| 2644 | fprintf(stderr, " %s [options] timezonedir\n" , my_progname); |
| 2645 | fprintf(stderr, " %s [options] timezonefile timezonename\n" , my_progname); |
| 2646 | print_defaults("my" ,load_default_groups); |
| 2647 | puts("" ); |
| 2648 | my_print_help(my_long_options); |
| 2649 | my_print_variables(my_long_options); |
| 2650 | } |
| 2651 | |
| 2652 | |
| 2653 | static my_bool |
| 2654 | get_one_option(int optid, const struct my_option *opt, char *argument) |
| 2655 | { |
| 2656 | switch(optid) { |
| 2657 | case '#': |
| 2658 | #ifndef DBUG_OFF |
| 2659 | DBUG_PUSH(argument ? argument : "d:t:S:i:O,/tmp/mysq_tzinfo_to_sql.trace" ); |
| 2660 | #endif |
| 2661 | break; |
| 2662 | case '?': |
| 2663 | print_version(); |
| 2664 | puts("" ); |
| 2665 | print_usage(); |
| 2666 | exit(0); |
| 2667 | case 'V': |
| 2668 | print_version(); |
| 2669 | exit(0); |
| 2670 | } |
| 2671 | return 0; |
| 2672 | } |
| 2673 | |
| 2674 | |
| 2675 | int |
| 2676 | main(int argc, char **argv) |
| 2677 | { |
| 2678 | char **default_argv; |
| 2679 | MY_INIT(argv[0]); |
| 2680 | |
| 2681 | load_defaults_or_exit("my" , load_default_groups, &argc, &argv); |
| 2682 | default_argv= argv; |
| 2683 | |
| 2684 | if ((handle_options(&argc, &argv, my_long_options, get_one_option))) |
| 2685 | exit(1); |
| 2686 | |
| 2687 | if ((argc != 1 && argc != 2) || (opt_leap && argc != 1)) |
| 2688 | { |
| 2689 | print_usage(); |
| 2690 | free_defaults(default_argv); |
| 2691 | return 1; |
| 2692 | } |
| 2693 | |
| 2694 | // Replicate MyISAM DDL for this session, cf. lp:1161432 |
| 2695 | // timezone info unfixable in XtraDB Cluster |
| 2696 | printf("set @prep=if((select count(*) from information_schema.global_variables where variable_name='wsrep_on'), 'SET GLOBAL wsrep_replicate_myisam=?', 'do ?');\n" |
| 2697 | "prepare set_wsrep_myisam from @prep;\n" |
| 2698 | "set @toggle=1; execute set_wsrep_myisam using @toggle;\n" ); |
| 2699 | |
| 2700 | if (argc == 1 && !opt_leap) |
| 2701 | { |
| 2702 | /* Argument is timezonedir */ |
| 2703 | |
| 2704 | root_name_end= strmake_buf(fullname, argv[0]); |
| 2705 | |
| 2706 | printf("TRUNCATE TABLE time_zone;\n" ); |
| 2707 | printf("TRUNCATE TABLE time_zone_name;\n" ); |
| 2708 | printf("TRUNCATE TABLE time_zone_transition;\n" ); |
| 2709 | printf("TRUNCATE TABLE time_zone_transition_type;\n" ); |
| 2710 | |
| 2711 | if (scan_tz_dir(root_name_end, 0, opt_verbose)) |
| 2712 | { |
| 2713 | fflush(stdout); |
| 2714 | fprintf(stderr, |
| 2715 | "There were fatal errors during processing " |
| 2716 | "of zoneinfo directory '%s'\n" , fullname); |
| 2717 | return 1; |
| 2718 | } |
| 2719 | |
| 2720 | printf("ALTER TABLE time_zone_transition " |
| 2721 | "ORDER BY Time_zone_id, Transition_time;\n" ); |
| 2722 | printf("ALTER TABLE time_zone_transition_type " |
| 2723 | "ORDER BY Time_zone_id, Transition_type_id;\n" ); |
| 2724 | } |
| 2725 | else |
| 2726 | { |
| 2727 | /* |
| 2728 | First argument is timezonefile. |
| 2729 | The second is timezonename if opt_leap is not given |
| 2730 | */ |
| 2731 | init_alloc_root(&tz_storage, "timezone_storage" , 32768, 0, MYF(0)); |
| 2732 | |
| 2733 | if (tz_load(argv[0], &tz_info, &tz_storage)) |
| 2734 | { |
| 2735 | fflush(stdout); |
| 2736 | fprintf(stderr, "Problems with zoneinfo file '%s'\n" , argv[0]); |
| 2737 | return 1; |
| 2738 | } |
| 2739 | if (opt_leap) |
| 2740 | print_tz_leaps_as_sql(&tz_info); |
| 2741 | else |
| 2742 | print_tz_as_sql(argv[1], &tz_info); |
| 2743 | |
| 2744 | free_root(&tz_storage, MYF(0)); |
| 2745 | } |
| 2746 | |
| 2747 | // Reset wsrep_replicate_myisam. lp:1161432 |
| 2748 | printf("set @toggle=0; execute set_wsrep_myisam using @toggle;\n" ); |
| 2749 | |
| 2750 | free_defaults(default_argv); |
| 2751 | my_end(0); |
| 2752 | return 0; |
| 2753 | } |
| 2754 | |
| 2755 | #endif /* defined(TZINFO2SQL) */ |
| 2756 | |
| 2757 | |
| 2758 | #ifdef TESTTIME |
| 2759 | |
| 2760 | /* |
| 2761 | Some simple brute-force test which allowed to catch a pair of bugs. |
| 2762 | Also can provide interesting facts about system's time zone support |
| 2763 | implementation. |
| 2764 | */ |
| 2765 | |
| 2766 | #ifndef CHAR_BIT |
| 2767 | #define CHAR_BIT 8 |
| 2768 | #endif |
| 2769 | |
| 2770 | #ifndef TYPE_BIT |
| 2771 | #define TYPE_BIT(type) (sizeof (type) * CHAR_BIT) |
| 2772 | #endif |
| 2773 | |
| 2774 | #ifndef TYPE_SIGNED |
| 2775 | #define TYPE_SIGNED(type) (((type) -1) < 0) |
| 2776 | #endif |
| 2777 | |
| 2778 | my_bool |
| 2779 | is_equal_TIME_tm(const TIME* time_arg, const struct tm * tm_arg) |
| 2780 | { |
| 2781 | return (time_arg->year == (uint)tm_arg->tm_year+TM_YEAR_BASE) && |
| 2782 | (time_arg->month == (uint)tm_arg->tm_mon+1) && |
| 2783 | (time_arg->day == (uint)tm_arg->tm_mday) && |
| 2784 | (time_arg->hour == (uint)tm_arg->tm_hour) && |
| 2785 | (time_arg->minute == (uint)tm_arg->tm_min) && |
| 2786 | (time_arg->second == (uint)tm_arg->tm_sec) && |
| 2787 | time_arg->second_part == 0; |
| 2788 | } |
| 2789 | |
| 2790 | |
| 2791 | int |
| 2792 | main(int argc, char **argv) |
| 2793 | { |
| 2794 | my_bool localtime_negative; |
| 2795 | TIME_ZONE_INFO tz_info; |
| 2796 | struct tm tmp; |
| 2797 | MYSQL_TIME time_tmp; |
| 2798 | time_t t, t1, t2; |
| 2799 | char fullname[FN_REFLEN+1]; |
| 2800 | char *str_end; |
| 2801 | MEM_ROOT tz_storage; |
| 2802 | |
| 2803 | MY_INIT(argv[0]); |
| 2804 | |
| 2805 | init_alloc_root(&tz_storage, "timezone_storage" , 32768, MYF(0)); |
| 2806 | |
| 2807 | /* let us set some well known timezone */ |
| 2808 | setenv("TZ" , "MET" , 1); |
| 2809 | tzset(); |
| 2810 | |
| 2811 | /* Some initial time zone related system info */ |
| 2812 | printf("time_t: %s %u bit\n" , TYPE_SIGNED(time_t) ? "signed" : "unsigned" , |
| 2813 | (uint)TYPE_BIT(time_t)); |
| 2814 | if (TYPE_SIGNED(time_t)) |
| 2815 | { |
| 2816 | t= -100; |
| 2817 | localtime_negative= MY_TEST(localtime_r(&t, &tmp) != 0); |
| 2818 | printf("localtime_r %s negative params \ |
| 2819 | (time_t=%d is %d-%d-%d %d:%d:%d)\n" , |
| 2820 | (localtime_negative ? "supports" : "doesn't support" ), (int)t, |
| 2821 | TM_YEAR_BASE + tmp.tm_year, tmp.tm_mon + 1, tmp.tm_mday, |
| 2822 | tmp.tm_hour, tmp.tm_min, tmp.tm_sec); |
| 2823 | |
| 2824 | printf("mktime %s negative results (%d)\n" , |
| 2825 | (t == mktime(&tmp) ? "doesn't support" : "supports" ), |
| 2826 | (int)mktime(&tmp)); |
| 2827 | } |
| 2828 | |
| 2829 | tmp.tm_year= 103; tmp.tm_mon= 2; tmp.tm_mday= 30; |
| 2830 | tmp.tm_hour= 2; tmp.tm_min= 30; tmp.tm_sec= 0; tmp.tm_isdst= -1; |
| 2831 | t= mktime(&tmp); |
| 2832 | printf("mktime returns %s for spring time gap (%d)\n" , |
| 2833 | (t != (time_t)-1 ? "something" : "error" ), (int)t); |
| 2834 | |
| 2835 | tmp.tm_year= 103; tmp.tm_mon= 8; tmp.tm_mday= 1; |
| 2836 | tmp.tm_hour= 0; tmp.tm_min= 0; tmp.tm_sec= 0; tmp.tm_isdst= 0; |
| 2837 | t= mktime(&tmp); |
| 2838 | printf("mktime returns %s for non existing date (%d)\n" , |
| 2839 | (t != (time_t)-1 ? "something" : "error" ), (int)t); |
| 2840 | |
| 2841 | tmp.tm_year= 103; tmp.tm_mon= 8; tmp.tm_mday= 1; |
| 2842 | tmp.tm_hour= 25; tmp.tm_min=0; tmp.tm_sec=0; tmp.tm_isdst=1; |
| 2843 | t= mktime(&tmp); |
| 2844 | printf("mktime %s unnormalized input (%d)\n" , |
| 2845 | (t != (time_t)-1 ? "handles" : "doesn't handle" ), (int)t); |
| 2846 | |
| 2847 | tmp.tm_year= 103; tmp.tm_mon= 9; tmp.tm_mday= 26; |
| 2848 | tmp.tm_hour= 0; tmp.tm_min= 30; tmp.tm_sec= 0; tmp.tm_isdst= 1; |
| 2849 | mktime(&tmp); |
| 2850 | tmp.tm_hour= 2; tmp.tm_isdst= -1; |
| 2851 | t= mktime(&tmp); |
| 2852 | tmp.tm_hour= 4; tmp.tm_isdst= 0; |
| 2853 | mktime(&tmp); |
| 2854 | tmp.tm_hour= 2; tmp.tm_isdst= -1; |
| 2855 | t1= mktime(&tmp); |
| 2856 | printf("mktime is %s (%d %d)\n" , |
| 2857 | (t == t1 ? "determenistic" : "is non-determenistic" ), |
| 2858 | (int)t, (int)t1); |
| 2859 | |
| 2860 | /* Let us load time zone description */ |
| 2861 | str_end= strmake_buf(fullname, TZDIR); |
| 2862 | strmake(str_end, "/MET" , FN_REFLEN - (str_end - fullname)); |
| 2863 | |
| 2864 | if (tz_load(fullname, &tz_info, &tz_storage)) |
| 2865 | { |
| 2866 | printf("Unable to load time zone info from '%s'\n" , fullname); |
| 2867 | free_root(&tz_storage, MYF(0)); |
| 2868 | return 1; |
| 2869 | } |
| 2870 | |
| 2871 | printf("Testing our implementation\n" ); |
| 2872 | |
| 2873 | if (TYPE_SIGNED(time_t) && localtime_negative) |
| 2874 | { |
| 2875 | for (t= -40000; t < 20000; t++) |
| 2876 | { |
| 2877 | localtime_r(&t, &tmp); |
| 2878 | gmt_sec_to_TIME(&time_tmp, (my_time_t)t, &tz_info); |
| 2879 | if (!is_equal_TIME_tm(&time_tmp, &tmp)) |
| 2880 | { |
| 2881 | printf("Problem with negative time_t = %d\n" , (int)t); |
| 2882 | free_root(&tz_storage, MYF(0)); |
| 2883 | return 1; |
| 2884 | } |
| 2885 | } |
| 2886 | printf("gmt_sec_to_TIME = localtime for time_t in [-40000,20000) range\n" ); |
| 2887 | } |
| 2888 | |
| 2889 | for (t= 1000000000; t < 1100000000; t+= 13) |
| 2890 | { |
| 2891 | localtime_r(&t,&tmp); |
| 2892 | gmt_sec_to_TIME(&time_tmp, (my_time_t)t, &tz_info); |
| 2893 | |
| 2894 | if (!is_equal_TIME_tm(&time_tmp, &tmp)) |
| 2895 | { |
| 2896 | printf("Problem with time_t = %d\n" , (int)t); |
| 2897 | free_root(&tz_storage, MYF(0)); |
| 2898 | return 1; |
| 2899 | } |
| 2900 | } |
| 2901 | printf("gmt_sec_to_TIME = localtime for time_t in [1000000000,1100000000) range\n" ); |
| 2902 | |
| 2903 | my_init_time(); |
| 2904 | |
| 2905 | /* |
| 2906 | Be careful here! my_system_gmt_sec doesn't fully handle unnormalized |
| 2907 | dates. |
| 2908 | */ |
| 2909 | for (time_tmp.year= 1980; time_tmp.year < 2010; time_tmp.year++) |
| 2910 | { |
| 2911 | for (time_tmp.month= 1; time_tmp.month < 13; time_tmp.month++) |
| 2912 | { |
| 2913 | for (time_tmp.day= 1; |
| 2914 | time_tmp.day < mon_lengths[isleap(time_tmp.year)][time_tmp.month-1]; |
| 2915 | time_tmp.day++) |
| 2916 | { |
| 2917 | for (time_tmp.hour= 0; time_tmp.hour < 24; time_tmp.hour++) |
| 2918 | { |
| 2919 | for (time_tmp.minute= 0; time_tmp.minute < 60; time_tmp.minute+= 5) |
| 2920 | { |
| 2921 | for (time_tmp.second=0; time_tmp.second<60; time_tmp.second+=25) |
| 2922 | { |
| 2923 | long not_used; |
| 2924 | uint not_used_2; |
| 2925 | t= (time_t)my_system_gmt_sec(&time_tmp, ¬_used, ¬_used_2); |
| 2926 | t1= (time_t)TIME_to_gmt_sec(&time_tmp, &tz_info, ¬_used_2); |
| 2927 | if (t != t1) |
| 2928 | { |
| 2929 | /* |
| 2930 | We need special handling during autumn since my_system_gmt_sec |
| 2931 | prefers greater time_t values (in MET) for ambiguity. |
| 2932 | And BTW that is a bug which should be fixed !!! |
| 2933 | */ |
| 2934 | tmp.tm_year= time_tmp.year - TM_YEAR_BASE; |
| 2935 | tmp.tm_mon= time_tmp.month - 1; |
| 2936 | tmp.tm_mday= time_tmp.day; |
| 2937 | tmp.tm_hour= time_tmp.hour; |
| 2938 | tmp.tm_min= time_tmp.minute; |
| 2939 | tmp.tm_sec= time_tmp.second; |
| 2940 | tmp.tm_isdst= 1; |
| 2941 | |
| 2942 | t2= mktime(&tmp); |
| 2943 | |
| 2944 | if (t1 == t2) |
| 2945 | continue; |
| 2946 | |
| 2947 | printf("Problem: %u/%u/%u %u:%u:%u with times t=%d, t1=%d\n" , |
| 2948 | time_tmp.year, time_tmp.month, time_tmp.day, |
| 2949 | time_tmp.hour, time_tmp.minute, time_tmp.second, |
| 2950 | (int)t,(int)t1); |
| 2951 | |
| 2952 | free_root(&tz_storage, MYF(0)); |
| 2953 | return 1; |
| 2954 | } |
| 2955 | } |
| 2956 | } |
| 2957 | } |
| 2958 | } |
| 2959 | } |
| 2960 | } |
| 2961 | |
| 2962 | printf("TIME_to_gmt_sec = my_system_gmt_sec for test range\n" ); |
| 2963 | |
| 2964 | free_root(&tz_storage, MYF(0)); |
| 2965 | return 0; |
| 2966 | } |
| 2967 | |
| 2968 | #endif /* defined(TESTTIME) */ |
| 2969 | |