1 | /***************************************************************************** |
2 | |
3 | Copyright (c) 2009, 2017, Oracle and/or its affiliates. All Rights Reserved. |
4 | Copyright (c) 2015, 2018, MariaDB Corporation. |
5 | |
6 | This program is free software; you can redistribute it and/or modify it under |
7 | the terms of the GNU General Public License as published by the Free Software |
8 | Foundation; version 2 of the License. |
9 | |
10 | This program is distributed in the hope that it will be useful, but WITHOUT |
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
12 | FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
13 | |
14 | You should have received a copy of the GNU General Public License along with |
15 | this program; if not, write to the Free Software Foundation, Inc., |
16 | 51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA |
17 | |
18 | *****************************************************************************/ |
19 | |
20 | /**************************************************//** |
21 | @file dict/dict0stats.cc |
22 | Code used for calculating and manipulating table statistics. |
23 | |
24 | Created Jan 06, 2010 Vasil Dimov |
25 | *******************************************************/ |
26 | |
27 | #include "univ.i" |
28 | |
29 | #include "ut0ut.h" |
30 | #include "ut0rnd.h" |
31 | #include "dyn0buf.h" |
32 | #include "row0sel.h" |
33 | #include "trx0trx.h" |
34 | #include "pars0pars.h" |
35 | #include "dict0stats.h" |
36 | #include "ha_prototypes.h" |
37 | #include "ut0new.h" |
38 | #include <mysql_com.h> |
39 | #include "btr0btr.h" |
40 | |
41 | #include <algorithm> |
42 | #include <map> |
43 | #include <vector> |
44 | |
45 | /* Sampling algorithm description @{ |
46 | |
47 | The algorithm is controlled by one number - N_SAMPLE_PAGES(index), |
48 | let it be A, which is the number of leaf pages to analyze for a given index |
49 | for each n-prefix (if the index is on 3 columns, then 3*A leaf pages will be |
50 | analyzed). |
51 | |
52 | Let the total number of leaf pages in the table be T. |
53 | Level 0 - leaf pages, level H - root. |
54 | |
55 | Definition: N-prefix-boring record is a record on a non-leaf page that equals |
56 | the next (to the right, cross page boundaries, skipping the supremum and |
57 | infimum) record on the same level when looking at the fist n-prefix columns. |
58 | The last (user) record on a level is not boring (it does not match the |
59 | non-existent user record to the right). We call the records boring because all |
60 | the records on the page below a boring record are equal to that boring record. |
61 | |
62 | We avoid diving below boring records when searching for a leaf page to |
63 | estimate the number of distinct records because we know that such a leaf |
64 | page will have number of distinct records == 1. |
65 | |
66 | For each n-prefix: start from the root level and full scan subsequent lower |
67 | levels until a level that contains at least A*10 distinct records is found. |
68 | Lets call this level LA. |
69 | As an optimization the search is canceled if it has reached level 1 (never |
70 | descend to the level 0 (leaf)) and also if the next level to be scanned |
71 | would contain more than A pages. The latter is because the user has asked |
72 | to analyze A leaf pages and it does not make sense to scan much more than |
73 | A non-leaf pages with the sole purpose of finding a good sample of A leaf |
74 | pages. |
75 | |
76 | After finding the appropriate level LA with >A*10 distinct records (or less in |
77 | the exceptions described above), divide it into groups of equal records and |
78 | pick A such groups. Then pick the last record from each group. For example, |
79 | let the level be: |
80 | |
81 | index: 0,1,2,3,4,5,6,7,8,9,10 |
82 | record: 1,1,1,2,2,7,7,7,7,7,9 |
83 | |
84 | There are 4 groups of distinct records and if A=2 random ones are selected, |
85 | e.g. 1,1,1 and 7,7,7,7,7, then records with indexes 2 and 9 will be selected. |
86 | |
87 | After selecting A records as described above, dive below them to find A leaf |
88 | pages and analyze them, finding the total number of distinct records. The |
89 | dive to the leaf level is performed by selecting a non-boring record from |
90 | each page and diving below it. |
91 | |
92 | This way, a total of A leaf pages are analyzed for the given n-prefix. |
93 | |
94 | Let the number of different key values found in each leaf page i be Pi (i=1..A). |
95 | Let N_DIFF_AVG_LEAF be (P1 + P2 + ... + PA) / A. |
96 | Let the number of different key values on level LA be N_DIFF_LA. |
97 | Let the total number of records on level LA be TOTAL_LA. |
98 | Let R be N_DIFF_LA / TOTAL_LA, we assume this ratio is the same on the |
99 | leaf level. |
100 | Let the number of leaf pages be N. |
101 | Then the total number of different key values on the leaf level is: |
102 | N * R * N_DIFF_AVG_LEAF. |
103 | See REF01 for the implementation. |
104 | |
105 | The above describes how to calculate the cardinality of an index. |
106 | This algorithm is executed for each n-prefix of a multi-column index |
107 | where n=1..n_uniq. |
108 | @} */ |
109 | |
110 | /* names of the tables from the persistent statistics storage */ |
111 | #define TABLE_STATS_NAME "mysql/innodb_table_stats" |
112 | #define TABLE_STATS_NAME_PRINT "mysql.innodb_table_stats" |
113 | #define INDEX_STATS_NAME "mysql/innodb_index_stats" |
114 | #define INDEX_STATS_NAME_PRINT "mysql.innodb_index_stats" |
115 | |
116 | #ifdef UNIV_STATS_DEBUG |
117 | #define DEBUG_PRINTF(fmt, ...) printf(fmt, ## __VA_ARGS__) |
118 | #else /* UNIV_STATS_DEBUG */ |
119 | #define DEBUG_PRINTF(fmt, ...) /* noop */ |
120 | #endif /* UNIV_STATS_DEBUG */ |
121 | |
122 | /* Gets the number of leaf pages to sample in persistent stats estimation */ |
123 | #define N_SAMPLE_PAGES(index) \ |
124 | static_cast<ib_uint64_t>( \ |
125 | (index)->table->stats_sample_pages != 0 \ |
126 | ? (index)->table->stats_sample_pages \ |
127 | : srv_stats_persistent_sample_pages) |
128 | |
129 | /* number of distinct records on a given level that are required to stop |
130 | descending to lower levels and fetch N_SAMPLE_PAGES(index) records |
131 | from that level */ |
132 | #define N_DIFF_REQUIRED(index) (N_SAMPLE_PAGES(index) * 10) |
133 | |
134 | /* A dynamic array where we store the boundaries of each distinct group |
135 | of keys. For example if a btree level is: |
136 | index: 0,1,2,3,4,5,6,7,8,9,10,11,12 |
137 | data: b,b,b,b,b,b,g,g,j,j,j, x, y |
138 | then we would store 5,7,10,11,12 in the array. */ |
139 | typedef std::vector<ib_uint64_t, ut_allocator<ib_uint64_t> > boundaries_t; |
140 | |
141 | /** Allocator type used for index_map_t. */ |
142 | typedef ut_allocator<std::pair<const char* const, dict_index_t*> > |
143 | index_map_t_allocator; |
144 | |
145 | /** Auxiliary map used for sorting indexes by name in dict_stats_save(). */ |
146 | typedef std::map<const char*, dict_index_t*, ut_strcmp_functor, |
147 | index_map_t_allocator> index_map_t; |
148 | |
149 | /*********************************************************************//** |
150 | Checks whether an index should be ignored in stats manipulations: |
151 | * stats fetch |
152 | * stats recalc |
153 | * stats save |
154 | @return true if exists and all tables are ok */ |
155 | UNIV_INLINE |
156 | bool |
157 | dict_stats_should_ignore_index( |
158 | /*===========================*/ |
159 | const dict_index_t* index) /*!< in: index */ |
160 | { |
161 | return((index->type & (DICT_FTS | DICT_SPATIAL)) |
162 | || index->is_corrupted() |
163 | || index->to_be_dropped |
164 | || !index->is_committed()); |
165 | } |
166 | |
167 | /*********************************************************************//** |
168 | Checks whether the persistent statistics storage exists and that all |
169 | tables have the proper structure. |
170 | @return true if exists and all tables are ok */ |
171 | static |
172 | bool |
173 | dict_stats_persistent_storage_check( |
174 | /*================================*/ |
175 | bool caller_has_dict_sys_mutex) /*!< in: true if the caller |
176 | owns dict_sys->mutex */ |
177 | { |
178 | /* definition for the table TABLE_STATS_NAME */ |
179 | dict_col_meta_t table_stats_columns[] = { |
180 | {"database_name" , DATA_VARMYSQL, |
181 | DATA_NOT_NULL, 192}, |
182 | |
183 | {"table_name" , DATA_VARMYSQL, |
184 | DATA_NOT_NULL, 192}, |
185 | |
186 | {"last_update" , DATA_FIXBINARY, |
187 | DATA_NOT_NULL, 4}, |
188 | |
189 | {"n_rows" , DATA_INT, |
190 | DATA_NOT_NULL | DATA_UNSIGNED, 8}, |
191 | |
192 | {"clustered_index_size" , DATA_INT, |
193 | DATA_NOT_NULL | DATA_UNSIGNED, 8}, |
194 | |
195 | {"sum_of_other_index_sizes" , DATA_INT, |
196 | DATA_NOT_NULL | DATA_UNSIGNED, 8} |
197 | }; |
198 | dict_table_schema_t table_stats_schema = { |
199 | TABLE_STATS_NAME, |
200 | UT_ARR_SIZE(table_stats_columns), |
201 | table_stats_columns, |
202 | 0 /* n_foreign */, |
203 | 0 /* n_referenced */ |
204 | }; |
205 | |
206 | /* definition for the table INDEX_STATS_NAME */ |
207 | dict_col_meta_t index_stats_columns[] = { |
208 | {"database_name" , DATA_VARMYSQL, |
209 | DATA_NOT_NULL, 192}, |
210 | |
211 | {"table_name" , DATA_VARMYSQL, |
212 | DATA_NOT_NULL, 192}, |
213 | |
214 | {"index_name" , DATA_VARMYSQL, |
215 | DATA_NOT_NULL, 192}, |
216 | |
217 | {"last_update" , DATA_FIXBINARY, |
218 | DATA_NOT_NULL, 4}, |
219 | |
220 | {"stat_name" , DATA_VARMYSQL, |
221 | DATA_NOT_NULL, 64*3}, |
222 | |
223 | {"stat_value" , DATA_INT, |
224 | DATA_NOT_NULL | DATA_UNSIGNED, 8}, |
225 | |
226 | {"sample_size" , DATA_INT, |
227 | DATA_UNSIGNED, 8}, |
228 | |
229 | {"stat_description" , DATA_VARMYSQL, |
230 | DATA_NOT_NULL, 1024*3} |
231 | }; |
232 | dict_table_schema_t index_stats_schema = { |
233 | INDEX_STATS_NAME, |
234 | UT_ARR_SIZE(index_stats_columns), |
235 | index_stats_columns, |
236 | 0 /* n_foreign */, |
237 | 0 /* n_referenced */ |
238 | }; |
239 | |
240 | char errstr[512]; |
241 | dberr_t ret; |
242 | |
243 | if (!caller_has_dict_sys_mutex) { |
244 | mutex_enter(&dict_sys->mutex); |
245 | } |
246 | |
247 | ut_ad(mutex_own(&dict_sys->mutex)); |
248 | |
249 | /* first check table_stats */ |
250 | ret = dict_table_schema_check(&table_stats_schema, errstr, |
251 | sizeof(errstr)); |
252 | if (ret == DB_SUCCESS) { |
253 | /* if it is ok, then check index_stats */ |
254 | ret = dict_table_schema_check(&index_stats_schema, errstr, |
255 | sizeof(errstr)); |
256 | } |
257 | |
258 | if (!caller_has_dict_sys_mutex) { |
259 | mutex_exit(&dict_sys->mutex); |
260 | } |
261 | |
262 | if (ret != DB_SUCCESS && ret != DB_STATS_DO_NOT_EXIST) { |
263 | ib::error() << errstr; |
264 | return(false); |
265 | } else if (ret == DB_STATS_DO_NOT_EXIST) { |
266 | return false; |
267 | } |
268 | /* else */ |
269 | |
270 | return(true); |
271 | } |
272 | |
273 | /** Executes a given SQL statement using the InnoDB internal SQL parser. |
274 | This function will free the pinfo object. |
275 | @param[in,out] pinfo pinfo to pass to que_eval_sql() must already |
276 | have any literals bound to it |
277 | @param[in] sql SQL string to execute |
278 | @param[in,out] trx in case of NULL the function will allocate and |
279 | free the trx object. If it is not NULL then it will be rolled back |
280 | only in the case of error, but not freed. |
281 | @return DB_SUCCESS or error code */ |
282 | static |
283 | dberr_t |
284 | dict_stats_exec_sql( |
285 | pars_info_t* pinfo, |
286 | const char* sql, |
287 | trx_t* trx) |
288 | { |
289 | dberr_t err; |
290 | bool trx_started = false; |
291 | |
292 | ut_ad(rw_lock_own(dict_operation_lock, RW_LOCK_X)); |
293 | ut_ad(mutex_own(&dict_sys->mutex)); |
294 | |
295 | if (!dict_stats_persistent_storage_check(true)) { |
296 | pars_info_free(pinfo); |
297 | return(DB_STATS_DO_NOT_EXIST); |
298 | } |
299 | |
300 | if (trx == NULL) { |
301 | trx = trx_create(); |
302 | trx_started = true; |
303 | |
304 | if (srv_read_only_mode) { |
305 | trx_start_internal_read_only(trx); |
306 | } else { |
307 | trx_start_internal(trx); |
308 | } |
309 | } |
310 | |
311 | err = que_eval_sql(pinfo, sql, FALSE, trx); /* pinfo is freed here */ |
312 | |
313 | DBUG_EXECUTE_IF("stats_index_error" , |
314 | if (!trx_started) { |
315 | err = DB_STATS_DO_NOT_EXIST; |
316 | trx->error_state = DB_STATS_DO_NOT_EXIST; |
317 | }); |
318 | |
319 | if (!trx_started && err == DB_SUCCESS) { |
320 | return(DB_SUCCESS); |
321 | } |
322 | |
323 | if (err == DB_SUCCESS) { |
324 | trx_commit_for_mysql(trx); |
325 | } else { |
326 | trx->op_info = "rollback of internal trx on stats tables" ; |
327 | trx->dict_operation_lock_mode = RW_X_LATCH; |
328 | trx_rollback_to_savepoint(trx, NULL); |
329 | trx->dict_operation_lock_mode = 0; |
330 | trx->op_info = "" ; |
331 | ut_a(trx->error_state == DB_SUCCESS); |
332 | } |
333 | |
334 | if (trx_started) { |
335 | trx_free(trx); |
336 | } |
337 | |
338 | return(err); |
339 | } |
340 | |
341 | /*********************************************************************//** |
342 | Duplicate a table object and its indexes. |
343 | This function creates a dummy dict_table_t object and initializes the |
344 | following table and index members: |
345 | dict_table_t::id (copied) |
346 | dict_table_t::heap (newly created) |
347 | dict_table_t::name (copied) |
348 | dict_table_t::corrupted (copied) |
349 | dict_table_t::indexes<> (newly created) |
350 | dict_table_t::magic_n |
351 | for each entry in dict_table_t::indexes, the following are initialized: |
352 | (indexes that have DICT_FTS set in index->type are skipped) |
353 | dict_index_t::id (copied) |
354 | dict_index_t::name (copied) |
355 | dict_index_t::table_name (points to the copied table name) |
356 | dict_index_t::table (points to the above semi-initialized object) |
357 | dict_index_t::type (copied) |
358 | dict_index_t::to_be_dropped (copied) |
359 | dict_index_t::online_status (copied) |
360 | dict_index_t::n_uniq (copied) |
361 | dict_index_t::fields[] (newly created, only first n_uniq, only fields[i].name) |
362 | dict_index_t::indexes<> (newly created) |
363 | dict_index_t::stat_n_diff_key_vals[] (only allocated, left uninitialized) |
364 | dict_index_t::stat_n_sample_sizes[] (only allocated, left uninitialized) |
365 | dict_index_t::stat_n_non_null_key_vals[] (only allocated, left uninitialized) |
366 | dict_index_t::magic_n |
367 | The returned object should be freed with dict_stats_table_clone_free() |
368 | when no longer needed. |
369 | @return incomplete table object */ |
370 | static |
371 | dict_table_t* |
372 | dict_stats_table_clone_create( |
373 | /*==========================*/ |
374 | const dict_table_t* table) /*!< in: table whose stats to copy */ |
375 | { |
376 | size_t heap_size; |
377 | dict_index_t* index; |
378 | |
379 | /* Estimate the size needed for the table and all of its indexes */ |
380 | |
381 | heap_size = 0; |
382 | heap_size += sizeof(dict_table_t); |
383 | heap_size += strlen(table->name.m_name) + 1; |
384 | |
385 | for (index = dict_table_get_first_index(table); |
386 | index != NULL; |
387 | index = dict_table_get_next_index(index)) { |
388 | |
389 | if (dict_stats_should_ignore_index(index)) { |
390 | continue; |
391 | } |
392 | |
393 | ut_ad(!dict_index_is_ibuf(index)); |
394 | |
395 | ulint n_uniq = dict_index_get_n_unique(index); |
396 | |
397 | heap_size += sizeof(dict_index_t); |
398 | heap_size += strlen(index->name) + 1; |
399 | heap_size += n_uniq * sizeof(index->fields[0]); |
400 | for (ulint i = 0; i < n_uniq; i++) { |
401 | heap_size += strlen(index->fields[i].name) + 1; |
402 | } |
403 | heap_size += n_uniq * sizeof(index->stat_n_diff_key_vals[0]); |
404 | heap_size += n_uniq * sizeof(index->stat_n_sample_sizes[0]); |
405 | heap_size += n_uniq * sizeof(index->stat_n_non_null_key_vals[0]); |
406 | } |
407 | |
408 | /* Allocate the memory and copy the members */ |
409 | |
410 | mem_heap_t* heap; |
411 | |
412 | heap = mem_heap_create(heap_size); |
413 | |
414 | dict_table_t* t; |
415 | |
416 | t = (dict_table_t*) mem_heap_alloc(heap, sizeof(*t)); |
417 | |
418 | UNIV_MEM_ASSERT_RW_ABORT(&table->id, sizeof(table->id)); |
419 | t->id = table->id; |
420 | |
421 | t->heap = heap; |
422 | |
423 | t->name.m_name = mem_heap_strdup(heap, table->name.m_name); |
424 | |
425 | t->corrupted = table->corrupted; |
426 | |
427 | /* This private object "t" is not shared with other threads, so |
428 | we do not need the stats_latch (thus we pass false below). The |
429 | dict_table_stats_lock()/unlock() routines will do nothing. */ |
430 | dict_table_stats_latch_create(t, false); |
431 | |
432 | UT_LIST_INIT(t->indexes, &dict_index_t::indexes); |
433 | |
434 | for (index = dict_table_get_first_index(table); |
435 | index != NULL; |
436 | index = dict_table_get_next_index(index)) { |
437 | |
438 | if (dict_stats_should_ignore_index(index)) { |
439 | continue; |
440 | } |
441 | |
442 | ut_ad(!dict_index_is_ibuf(index)); |
443 | |
444 | dict_index_t* idx; |
445 | |
446 | idx = (dict_index_t*) mem_heap_alloc(heap, sizeof(*idx)); |
447 | |
448 | UNIV_MEM_ASSERT_RW_ABORT(&index->id, sizeof(index->id)); |
449 | idx->id = index->id; |
450 | |
451 | idx->name = mem_heap_strdup(heap, index->name); |
452 | |
453 | idx->table = t; |
454 | |
455 | idx->type = index->type; |
456 | |
457 | idx->to_be_dropped = 0; |
458 | |
459 | idx->online_status = ONLINE_INDEX_COMPLETE; |
460 | idx->set_committed(true); |
461 | |
462 | idx->n_uniq = index->n_uniq; |
463 | |
464 | idx->fields = (dict_field_t*) mem_heap_alloc( |
465 | heap, idx->n_uniq * sizeof(idx->fields[0])); |
466 | |
467 | for (ulint i = 0; i < idx->n_uniq; i++) { |
468 | idx->fields[i].name = mem_heap_strdup( |
469 | heap, index->fields[i].name); |
470 | } |
471 | |
472 | /* hook idx into t->indexes */ |
473 | UT_LIST_ADD_LAST(t->indexes, idx); |
474 | |
475 | idx->stat_n_diff_key_vals = (ib_uint64_t*) mem_heap_alloc( |
476 | heap, |
477 | idx->n_uniq * sizeof(idx->stat_n_diff_key_vals[0])); |
478 | |
479 | idx->stat_n_sample_sizes = (ib_uint64_t*) mem_heap_alloc( |
480 | heap, |
481 | idx->n_uniq * sizeof(idx->stat_n_sample_sizes[0])); |
482 | |
483 | idx->stat_n_non_null_key_vals = (ib_uint64_t*) mem_heap_alloc( |
484 | heap, |
485 | idx->n_uniq * sizeof(idx->stat_n_non_null_key_vals[0])); |
486 | ut_d(idx->magic_n = DICT_INDEX_MAGIC_N); |
487 | |
488 | idx->stat_defrag_n_page_split = 0; |
489 | idx->stat_defrag_n_pages_freed = 0; |
490 | } |
491 | |
492 | ut_d(t->magic_n = DICT_TABLE_MAGIC_N); |
493 | |
494 | return(t); |
495 | } |
496 | |
497 | /*********************************************************************//** |
498 | Free the resources occupied by an object returned by |
499 | dict_stats_table_clone_create(). */ |
500 | static |
501 | void |
502 | dict_stats_table_clone_free( |
503 | /*========================*/ |
504 | dict_table_t* t) /*!< in: dummy table object to free */ |
505 | { |
506 | dict_table_stats_latch_destroy(t); |
507 | mem_heap_free(t->heap); |
508 | } |
509 | |
510 | /*********************************************************************//** |
511 | Write all zeros (or 1 where it makes sense) into an index |
512 | statistics members. The resulting stats correspond to an empty index. |
513 | The caller must own index's table stats latch in X mode |
514 | (dict_table_stats_lock(table, RW_X_LATCH)) */ |
515 | static |
516 | void |
517 | dict_stats_empty_index( |
518 | /*===================*/ |
519 | dict_index_t* index, /*!< in/out: index */ |
520 | bool empty_defrag_stats) |
521 | /*!< in: whether to empty defrag stats */ |
522 | { |
523 | ut_ad(!(index->type & DICT_FTS)); |
524 | ut_ad(!dict_index_is_ibuf(index)); |
525 | |
526 | ulint n_uniq = index->n_uniq; |
527 | |
528 | for (ulint i = 0; i < n_uniq; i++) { |
529 | index->stat_n_diff_key_vals[i] = 0; |
530 | index->stat_n_sample_sizes[i] = 1; |
531 | index->stat_n_non_null_key_vals[i] = 0; |
532 | } |
533 | |
534 | index->stat_index_size = 1; |
535 | index->stat_n_leaf_pages = 1; |
536 | |
537 | if (empty_defrag_stats) { |
538 | dict_stats_empty_defrag_stats(index); |
539 | dict_stats_empty_defrag_summary(index); |
540 | } |
541 | } |
542 | |
543 | /*********************************************************************//** |
544 | Write all zeros (or 1 where it makes sense) into a table and its indexes' |
545 | statistics members. The resulting stats correspond to an empty table. */ |
546 | static |
547 | void |
548 | dict_stats_empty_table( |
549 | /*===================*/ |
550 | dict_table_t* table, /*!< in/out: table */ |
551 | bool empty_defrag_stats) |
552 | /*!< in: whether to empty defrag stats */ |
553 | { |
554 | /* Zero the stats members */ |
555 | |
556 | dict_table_stats_lock(table, RW_X_LATCH); |
557 | |
558 | table->stat_n_rows = 0; |
559 | table->stat_clustered_index_size = 1; |
560 | /* 1 page for each index, not counting the clustered */ |
561 | table->stat_sum_of_other_index_sizes |
562 | = UT_LIST_GET_LEN(table->indexes) - 1; |
563 | table->stat_modified_counter = 0; |
564 | |
565 | dict_index_t* index; |
566 | |
567 | for (index = dict_table_get_first_index(table); |
568 | index != NULL; |
569 | index = dict_table_get_next_index(index)) { |
570 | |
571 | if (index->type & DICT_FTS) { |
572 | continue; |
573 | } |
574 | |
575 | ut_ad(!dict_index_is_ibuf(index)); |
576 | |
577 | dict_stats_empty_index(index, empty_defrag_stats); |
578 | } |
579 | |
580 | table->stat_initialized = TRUE; |
581 | |
582 | dict_table_stats_unlock(table, RW_X_LATCH); |
583 | } |
584 | |
585 | /*********************************************************************//** |
586 | Check whether index's stats are initialized (assert if they are not). */ |
587 | static |
588 | void |
589 | dict_stats_assert_initialized_index( |
590 | /*================================*/ |
591 | const dict_index_t* index) /*!< in: index */ |
592 | { |
593 | UNIV_MEM_ASSERT_RW_ABORT( |
594 | index->stat_n_diff_key_vals, |
595 | index->n_uniq * sizeof(index->stat_n_diff_key_vals[0])); |
596 | |
597 | UNIV_MEM_ASSERT_RW_ABORT( |
598 | index->stat_n_sample_sizes, |
599 | index->n_uniq * sizeof(index->stat_n_sample_sizes[0])); |
600 | |
601 | UNIV_MEM_ASSERT_RW_ABORT( |
602 | index->stat_n_non_null_key_vals, |
603 | index->n_uniq * sizeof(index->stat_n_non_null_key_vals[0])); |
604 | |
605 | UNIV_MEM_ASSERT_RW_ABORT( |
606 | &index->stat_index_size, |
607 | sizeof(index->stat_index_size)); |
608 | |
609 | UNIV_MEM_ASSERT_RW_ABORT( |
610 | &index->stat_n_leaf_pages, |
611 | sizeof(index->stat_n_leaf_pages)); |
612 | } |
613 | |
614 | /*********************************************************************//** |
615 | Check whether table's stats are initialized (assert if they are not). */ |
616 | static |
617 | void |
618 | dict_stats_assert_initialized( |
619 | /*==========================*/ |
620 | const dict_table_t* table) /*!< in: table */ |
621 | { |
622 | ut_a(table->stat_initialized); |
623 | |
624 | UNIV_MEM_ASSERT_RW_ABORT(&table->stats_last_recalc, |
625 | sizeof(table->stats_last_recalc)); |
626 | |
627 | UNIV_MEM_ASSERT_RW_ABORT(&table->stat_persistent, |
628 | sizeof(table->stat_persistent)); |
629 | |
630 | UNIV_MEM_ASSERT_RW_ABORT(&table->stats_auto_recalc, |
631 | sizeof(table->stats_auto_recalc)); |
632 | |
633 | UNIV_MEM_ASSERT_RW_ABORT(&table->stats_sample_pages, |
634 | sizeof(table->stats_sample_pages)); |
635 | |
636 | UNIV_MEM_ASSERT_RW_ABORT(&table->stat_n_rows, |
637 | sizeof(table->stat_n_rows)); |
638 | |
639 | UNIV_MEM_ASSERT_RW_ABORT(&table->stat_clustered_index_size, |
640 | sizeof(table->stat_clustered_index_size)); |
641 | |
642 | UNIV_MEM_ASSERT_RW_ABORT(&table->stat_sum_of_other_index_sizes, |
643 | sizeof(table->stat_sum_of_other_index_sizes)); |
644 | |
645 | UNIV_MEM_ASSERT_RW_ABORT(&table->stat_modified_counter, |
646 | sizeof(table->stat_modified_counter)); |
647 | |
648 | UNIV_MEM_ASSERT_RW_ABORT(&table->stats_bg_flag, |
649 | sizeof(table->stats_bg_flag)); |
650 | |
651 | for (dict_index_t* index = dict_table_get_first_index(table); |
652 | index != NULL; |
653 | index = dict_table_get_next_index(index)) { |
654 | |
655 | if (!dict_stats_should_ignore_index(index)) { |
656 | dict_stats_assert_initialized_index(index); |
657 | } |
658 | } |
659 | } |
660 | |
661 | #define INDEX_EQ(i1, i2) \ |
662 | ((i1) != NULL \ |
663 | && (i2) != NULL \ |
664 | && (i1)->id == (i2)->id \ |
665 | && strcmp((i1)->name, (i2)->name) == 0) |
666 | |
667 | /*********************************************************************//** |
668 | Copy table and index statistics from one table to another, including index |
669 | stats. Extra indexes in src are ignored and extra indexes in dst are |
670 | initialized to correspond to an empty index. */ |
671 | static |
672 | void |
673 | dict_stats_copy( |
674 | /*============*/ |
675 | dict_table_t* dst, /*!< in/out: destination table */ |
676 | const dict_table_t* src, /*!< in: source table */ |
677 | bool reset_ignored_indexes) /*!< in: if true, set ignored indexes |
678 | to have the same statistics as if |
679 | the table was empty */ |
680 | { |
681 | dst->stats_last_recalc = src->stats_last_recalc; |
682 | dst->stat_n_rows = src->stat_n_rows; |
683 | dst->stat_clustered_index_size = src->stat_clustered_index_size; |
684 | dst->stat_sum_of_other_index_sizes = src->stat_sum_of_other_index_sizes; |
685 | dst->stat_modified_counter = src->stat_modified_counter; |
686 | |
687 | dict_index_t* dst_idx; |
688 | dict_index_t* src_idx; |
689 | |
690 | for (dst_idx = dict_table_get_first_index(dst), |
691 | src_idx = dict_table_get_first_index(src); |
692 | dst_idx != NULL; |
693 | dst_idx = dict_table_get_next_index(dst_idx), |
694 | (src_idx != NULL |
695 | && (src_idx = dict_table_get_next_index(src_idx)))) { |
696 | |
697 | if (dict_stats_should_ignore_index(dst_idx)) { |
698 | if (reset_ignored_indexes) { |
699 | /* Reset index statistics for all ignored indexes, |
700 | unless they are FT indexes (these have no statistics)*/ |
701 | if (dst_idx->type & DICT_FTS) { |
702 | continue; |
703 | } |
704 | dict_stats_empty_index(dst_idx, true); |
705 | } else { |
706 | continue; |
707 | } |
708 | } |
709 | |
710 | ut_ad(!dict_index_is_ibuf(dst_idx)); |
711 | |
712 | if (!INDEX_EQ(src_idx, dst_idx)) { |
713 | for (src_idx = dict_table_get_first_index(src); |
714 | src_idx != NULL; |
715 | src_idx = dict_table_get_next_index(src_idx)) { |
716 | |
717 | if (INDEX_EQ(src_idx, dst_idx)) { |
718 | break; |
719 | } |
720 | } |
721 | } |
722 | |
723 | if (!INDEX_EQ(src_idx, dst_idx)) { |
724 | dict_stats_empty_index(dst_idx, true); |
725 | continue; |
726 | } |
727 | |
728 | ulint n_copy_el; |
729 | |
730 | if (dst_idx->n_uniq > src_idx->n_uniq) { |
731 | n_copy_el = src_idx->n_uniq; |
732 | /* Since src is smaller some elements in dst |
733 | will remain untouched by the following memmove(), |
734 | thus we init all of them here. */ |
735 | dict_stats_empty_index(dst_idx, true); |
736 | } else { |
737 | n_copy_el = dst_idx->n_uniq; |
738 | } |
739 | |
740 | memmove(dst_idx->stat_n_diff_key_vals, |
741 | src_idx->stat_n_diff_key_vals, |
742 | n_copy_el * sizeof(dst_idx->stat_n_diff_key_vals[0])); |
743 | |
744 | memmove(dst_idx->stat_n_sample_sizes, |
745 | src_idx->stat_n_sample_sizes, |
746 | n_copy_el * sizeof(dst_idx->stat_n_sample_sizes[0])); |
747 | |
748 | memmove(dst_idx->stat_n_non_null_key_vals, |
749 | src_idx->stat_n_non_null_key_vals, |
750 | n_copy_el * sizeof(dst_idx->stat_n_non_null_key_vals[0])); |
751 | |
752 | dst_idx->stat_index_size = src_idx->stat_index_size; |
753 | |
754 | dst_idx->stat_n_leaf_pages = src_idx->stat_n_leaf_pages; |
755 | |
756 | dst_idx->stat_defrag_modified_counter = |
757 | src_idx->stat_defrag_modified_counter; |
758 | dst_idx->stat_defrag_n_pages_freed = |
759 | src_idx->stat_defrag_n_pages_freed; |
760 | dst_idx->stat_defrag_n_page_split = |
761 | src_idx->stat_defrag_n_page_split; |
762 | } |
763 | |
764 | dst->stat_initialized = TRUE; |
765 | } |
766 | |
767 | /** Duplicate the stats of a table and its indexes. |
768 | This function creates a dummy dict_table_t object and copies the input |
769 | table's stats into it. The returned table object is not in the dictionary |
770 | cache and cannot be accessed by any other threads. In addition to the |
771 | members copied in dict_stats_table_clone_create() this function initializes |
772 | the following: |
773 | dict_table_t::stat_initialized |
774 | dict_table_t::stat_persistent |
775 | dict_table_t::stat_n_rows |
776 | dict_table_t::stat_clustered_index_size |
777 | dict_table_t::stat_sum_of_other_index_sizes |
778 | dict_table_t::stat_modified_counter |
779 | dict_index_t::stat_n_diff_key_vals[] |
780 | dict_index_t::stat_n_sample_sizes[] |
781 | dict_index_t::stat_n_non_null_key_vals[] |
782 | dict_index_t::stat_index_size |
783 | dict_index_t::stat_n_leaf_pages |
784 | dict_index_t::stat_defrag_modified_counter |
785 | dict_index_t::stat_defrag_n_pages_freed |
786 | dict_index_t::stat_defrag_n_page_split |
787 | The returned object should be freed with dict_stats_snapshot_free() |
788 | when no longer needed. |
789 | @param[in] table table whose stats to copy |
790 | @return incomplete table object */ |
791 | static |
792 | dict_table_t* |
793 | dict_stats_snapshot_create( |
794 | dict_table_t* table) |
795 | { |
796 | mutex_enter(&dict_sys->mutex); |
797 | |
798 | dict_table_stats_lock(table, RW_S_LATCH); |
799 | |
800 | dict_stats_assert_initialized(table); |
801 | |
802 | dict_table_t* t; |
803 | |
804 | t = dict_stats_table_clone_create(table); |
805 | |
806 | dict_stats_copy(t, table, false); |
807 | |
808 | t->stat_persistent = table->stat_persistent; |
809 | t->stats_auto_recalc = table->stats_auto_recalc; |
810 | t->stats_sample_pages = table->stats_sample_pages; |
811 | t->stats_bg_flag = table->stats_bg_flag; |
812 | |
813 | dict_table_stats_unlock(table, RW_S_LATCH); |
814 | |
815 | mutex_exit(&dict_sys->mutex); |
816 | |
817 | return(t); |
818 | } |
819 | |
820 | /*********************************************************************//** |
821 | Free the resources occupied by an object returned by |
822 | dict_stats_snapshot_create(). */ |
823 | static |
824 | void |
825 | dict_stats_snapshot_free( |
826 | /*=====================*/ |
827 | dict_table_t* t) /*!< in: dummy table object to free */ |
828 | { |
829 | dict_stats_table_clone_free(t); |
830 | } |
831 | |
832 | /*********************************************************************//** |
833 | Calculates new estimates for index statistics. This function is |
834 | relatively quick and is used to calculate transient statistics that |
835 | are not saved on disk. This was the only way to calculate statistics |
836 | before the Persistent Statistics feature was introduced. |
837 | This function doesn't update the defragmentation related stats. |
838 | Only persistent statistics supports defragmentation stats. */ |
839 | static |
840 | void |
841 | dict_stats_update_transient_for_index( |
842 | /*==================================*/ |
843 | dict_index_t* index) /*!< in/out: index */ |
844 | { |
845 | if (srv_force_recovery >= SRV_FORCE_NO_TRX_UNDO |
846 | && (srv_force_recovery >= SRV_FORCE_NO_LOG_REDO |
847 | || !dict_index_is_clust(index))) { |
848 | /* If we have set a high innodb_force_recovery |
849 | level, do not calculate statistics, as a badly |
850 | corrupted index can cause a crash in it. |
851 | Initialize some bogus index cardinality |
852 | statistics, so that the data can be queried in |
853 | various means, also via secondary indexes. */ |
854 | dict_stats_empty_index(index, false); |
855 | #if defined UNIV_DEBUG || defined UNIV_IBUF_DEBUG |
856 | } else if (ibuf_debug && !dict_index_is_clust(index)) { |
857 | dict_stats_empty_index(index, false); |
858 | #endif /* UNIV_DEBUG || UNIV_IBUF_DEBUG */ |
859 | } else { |
860 | mtr_t mtr; |
861 | ulint size; |
862 | |
863 | mtr_start(&mtr); |
864 | |
865 | mtr_s_lock(dict_index_get_lock(index), &mtr); |
866 | |
867 | size = btr_get_size(index, BTR_TOTAL_SIZE, &mtr); |
868 | |
869 | if (size != ULINT_UNDEFINED) { |
870 | index->stat_index_size = size; |
871 | |
872 | size = btr_get_size( |
873 | index, BTR_N_LEAF_PAGES, &mtr); |
874 | } |
875 | |
876 | mtr_commit(&mtr); |
877 | |
878 | switch (size) { |
879 | case ULINT_UNDEFINED: |
880 | dict_stats_empty_index(index, false); |
881 | return; |
882 | case 0: |
883 | /* The root node of the tree is a leaf */ |
884 | size = 1; |
885 | } |
886 | |
887 | index->stat_n_leaf_pages = size; |
888 | |
889 | /* Do not continue if table decryption has failed or |
890 | table is already marked as corrupted. */ |
891 | if (index->is_readable()) { |
892 | /* We don't handle the return value since it |
893 | will be false only when some thread is |
894 | dropping the table and we don't have to empty |
895 | the statistics of the to be dropped index */ |
896 | btr_estimate_number_of_different_key_vals(index); |
897 | } |
898 | } |
899 | } |
900 | |
901 | /*********************************************************************//** |
902 | Calculates new estimates for table and index statistics. This function |
903 | is relatively quick and is used to calculate transient statistics that |
904 | are not saved on disk. |
905 | This was the only way to calculate statistics before the |
906 | Persistent Statistics feature was introduced. */ |
907 | static |
908 | void |
909 | dict_stats_update_transient( |
910 | /*========================*/ |
911 | dict_table_t* table) /*!< in/out: table */ |
912 | { |
913 | dict_index_t* index; |
914 | ulint sum_of_index_sizes = 0; |
915 | |
916 | /* Find out the sizes of the indexes and how many different values |
917 | for the key they approximately have */ |
918 | |
919 | index = dict_table_get_first_index(table); |
920 | |
921 | if (!table->space) { |
922 | /* Nothing to do. */ |
923 | dict_stats_empty_table(table, true); |
924 | return; |
925 | } else if (index == NULL) { |
926 | /* Table definition is corrupt */ |
927 | |
928 | ib::warn() << "Table " << table->name |
929 | << " has no indexes. Cannot calculate statistics." ; |
930 | dict_stats_empty_table(table, true); |
931 | return; |
932 | } |
933 | |
934 | for (; index != NULL; index = dict_table_get_next_index(index)) { |
935 | |
936 | ut_ad(!dict_index_is_ibuf(index)); |
937 | |
938 | if (index->type & DICT_FTS || dict_index_is_spatial(index)) { |
939 | continue; |
940 | } |
941 | |
942 | dict_stats_empty_index(index, false); |
943 | |
944 | if (dict_stats_should_ignore_index(index)) { |
945 | continue; |
946 | } |
947 | |
948 | /* Do not continue if table decryption has failed or |
949 | table is already marked as corrupted. */ |
950 | if (!index->is_readable()) { |
951 | break; |
952 | } |
953 | |
954 | dict_stats_update_transient_for_index(index); |
955 | |
956 | sum_of_index_sizes += index->stat_index_size; |
957 | } |
958 | |
959 | index = dict_table_get_first_index(table); |
960 | |
961 | table->stat_n_rows = index->stat_n_diff_key_vals[ |
962 | dict_index_get_n_unique(index) - 1]; |
963 | |
964 | table->stat_clustered_index_size = index->stat_index_size; |
965 | |
966 | table->stat_sum_of_other_index_sizes = sum_of_index_sizes |
967 | - index->stat_index_size; |
968 | |
969 | table->stats_last_recalc = ut_time(); |
970 | |
971 | table->stat_modified_counter = 0; |
972 | |
973 | table->stat_initialized = TRUE; |
974 | } |
975 | |
976 | /* @{ Pseudo code about the relation between the following functions |
977 | |
978 | let N = N_SAMPLE_PAGES(index) |
979 | |
980 | dict_stats_analyze_index() |
981 | for each n_prefix |
982 | search for good enough level: |
983 | dict_stats_analyze_index_level() // only called if level has <= N pages |
984 | // full scan of the level in one mtr |
985 | collect statistics about the given level |
986 | if we are not satisfied with the level, search next lower level |
987 | we have found a good enough level here |
988 | dict_stats_analyze_index_for_n_prefix(that level, stats collected above) |
989 | // full scan of the level in one mtr |
990 | dive below some records and analyze the leaf page there: |
991 | dict_stats_analyze_index_below_cur() |
992 | @} */ |
993 | |
994 | /*********************************************************************//** |
995 | Find the total number and the number of distinct keys on a given level in |
996 | an index. Each of the 1..n_uniq prefixes are looked up and the results are |
997 | saved in the array n_diff[0] .. n_diff[n_uniq - 1]. The total number of |
998 | records on the level is saved in total_recs. |
999 | Also, the index of the last record in each group of equal records is saved |
1000 | in n_diff_boundaries[0..n_uniq - 1], records indexing starts from the leftmost |
1001 | record on the level and continues cross pages boundaries, counting from 0. */ |
1002 | static |
1003 | void |
1004 | dict_stats_analyze_index_level( |
1005 | /*===========================*/ |
1006 | dict_index_t* index, /*!< in: index */ |
1007 | ulint level, /*!< in: level */ |
1008 | ib_uint64_t* n_diff, /*!< out: array for number of |
1009 | distinct keys for all prefixes */ |
1010 | ib_uint64_t* total_recs, /*!< out: total number of records */ |
1011 | ib_uint64_t* total_pages, /*!< out: total number of pages */ |
1012 | boundaries_t* n_diff_boundaries,/*!< out: boundaries of the groups |
1013 | of distinct keys */ |
1014 | mtr_t* mtr) /*!< in/out: mini-transaction */ |
1015 | { |
1016 | ulint n_uniq; |
1017 | mem_heap_t* heap; |
1018 | btr_pcur_t pcur; |
1019 | const page_t* page; |
1020 | const rec_t* rec; |
1021 | const rec_t* prev_rec; |
1022 | bool prev_rec_is_copied; |
1023 | byte* prev_rec_buf = NULL; |
1024 | ulint prev_rec_buf_size = 0; |
1025 | ulint* rec_offsets; |
1026 | ulint* prev_rec_offsets; |
1027 | ulint i; |
1028 | |
1029 | DEBUG_PRINTF(" %s(table=%s, index=%s, level=" ULINTPF ")\n" , |
1030 | __func__, index->table->name, index->name, level); |
1031 | |
1032 | ut_ad(mtr_memo_contains(mtr, dict_index_get_lock(index), |
1033 | MTR_MEMO_SX_LOCK)); |
1034 | |
1035 | n_uniq = dict_index_get_n_unique(index); |
1036 | |
1037 | /* elements in the n_diff array are 0..n_uniq-1 (inclusive) */ |
1038 | memset(n_diff, 0x0, n_uniq * sizeof(n_diff[0])); |
1039 | |
1040 | /* Allocate space for the offsets header (the allocation size at |
1041 | offsets[0] and the REC_OFFS_HEADER_SIZE bytes), and n_uniq + 1, |
1042 | so that this will never be less than the size calculated in |
1043 | rec_get_offsets_func(). */ |
1044 | i = (REC_OFFS_HEADER_SIZE + 1 + 1) + n_uniq; |
1045 | |
1046 | heap = mem_heap_create((2 * sizeof *rec_offsets) * i); |
1047 | rec_offsets = static_cast<ulint*>( |
1048 | mem_heap_alloc(heap, i * sizeof *rec_offsets)); |
1049 | prev_rec_offsets = static_cast<ulint*>( |
1050 | mem_heap_alloc(heap, i * sizeof *prev_rec_offsets)); |
1051 | rec_offs_set_n_alloc(rec_offsets, i); |
1052 | rec_offs_set_n_alloc(prev_rec_offsets, i); |
1053 | |
1054 | /* reset the dynamic arrays n_diff_boundaries[0..n_uniq-1] */ |
1055 | if (n_diff_boundaries != NULL) { |
1056 | for (i = 0; i < n_uniq; i++) { |
1057 | n_diff_boundaries[i].erase( |
1058 | n_diff_boundaries[i].begin(), |
1059 | n_diff_boundaries[i].end()); |
1060 | } |
1061 | } |
1062 | |
1063 | /* Position pcur on the leftmost record on the leftmost page |
1064 | on the desired level. */ |
1065 | |
1066 | btr_pcur_open_at_index_side( |
1067 | true, index, BTR_SEARCH_TREE_ALREADY_S_LATCHED, |
1068 | &pcur, true, level, mtr); |
1069 | btr_pcur_move_to_next_on_page(&pcur); |
1070 | |
1071 | page = btr_pcur_get_page(&pcur); |
1072 | |
1073 | /* The page must not be empty, except when |
1074 | it is the root page (and the whole index is empty). */ |
1075 | ut_ad(btr_pcur_is_on_user_rec(&pcur) || page_is_leaf(page)); |
1076 | ut_ad(btr_pcur_get_rec(&pcur) |
1077 | == page_rec_get_next_const(page_get_infimum_rec(page))); |
1078 | |
1079 | /* check that we are indeed on the desired level */ |
1080 | ut_a(btr_page_get_level(page) == level); |
1081 | |
1082 | /* there should not be any pages on the left */ |
1083 | ut_a(!page_has_prev(page)); |
1084 | |
1085 | if (REC_INFO_MIN_REC_FLAG & rec_get_info_bits( |
1086 | btr_pcur_get_rec(&pcur), page_is_comp(page))) { |
1087 | ut_ad(btr_pcur_is_on_user_rec(&pcur)); |
1088 | if (level == 0) { |
1089 | /* Skip the 'default row' pseudo-record */ |
1090 | ut_ad(index->is_instant()); |
1091 | btr_pcur_move_to_next_user_rec(&pcur, mtr); |
1092 | } |
1093 | } else { |
1094 | /* The first record on the leftmost page must be |
1095 | marked as such on each level except the leaf level. */ |
1096 | ut_a(level == 0); |
1097 | } |
1098 | |
1099 | prev_rec = NULL; |
1100 | prev_rec_is_copied = false; |
1101 | |
1102 | /* no records by default */ |
1103 | *total_recs = 0; |
1104 | |
1105 | *total_pages = 0; |
1106 | |
1107 | /* iterate over all user records on this level |
1108 | and compare each two adjacent ones, even the last on page |
1109 | X and the fist on page X+1 */ |
1110 | for (; |
1111 | btr_pcur_is_on_user_rec(&pcur); |
1112 | btr_pcur_move_to_next_user_rec(&pcur, mtr)) { |
1113 | |
1114 | bool rec_is_last_on_page; |
1115 | |
1116 | rec = btr_pcur_get_rec(&pcur); |
1117 | |
1118 | /* If rec and prev_rec are on different pages, then prev_rec |
1119 | must have been copied, because we hold latch only on the page |
1120 | where rec resides. */ |
1121 | if (prev_rec != NULL |
1122 | && page_align(rec) != page_align(prev_rec)) { |
1123 | |
1124 | ut_a(prev_rec_is_copied); |
1125 | } |
1126 | |
1127 | rec_is_last_on_page = |
1128 | page_rec_is_supremum(page_rec_get_next_const(rec)); |
1129 | |
1130 | /* increment the pages counter at the end of each page */ |
1131 | if (rec_is_last_on_page) { |
1132 | |
1133 | (*total_pages)++; |
1134 | } |
1135 | |
1136 | /* Skip delete-marked records on the leaf level. If we |
1137 | do not skip them, then ANALYZE quickly after DELETE |
1138 | could count them or not (purge may have already wiped |
1139 | them away) which brings non-determinism. We skip only |
1140 | leaf-level delete marks because delete marks on |
1141 | non-leaf level do not make sense. */ |
1142 | |
1143 | if (level == 0 |
1144 | && !srv_stats_include_delete_marked |
1145 | && rec_get_deleted_flag( |
1146 | rec, |
1147 | page_is_comp(btr_pcur_get_page(&pcur)))) { |
1148 | |
1149 | if (rec_is_last_on_page |
1150 | && !prev_rec_is_copied |
1151 | && prev_rec != NULL) { |
1152 | /* copy prev_rec */ |
1153 | |
1154 | prev_rec_offsets = rec_get_offsets( |
1155 | prev_rec, index, prev_rec_offsets, |
1156 | true, |
1157 | n_uniq, &heap); |
1158 | |
1159 | prev_rec = rec_copy_prefix_to_buf( |
1160 | prev_rec, index, n_uniq, |
1161 | &prev_rec_buf, &prev_rec_buf_size); |
1162 | |
1163 | prev_rec_is_copied = true; |
1164 | } |
1165 | |
1166 | continue; |
1167 | } |
1168 | rec_offsets = rec_get_offsets( |
1169 | rec, index, rec_offsets, !level, n_uniq, &heap); |
1170 | |
1171 | (*total_recs)++; |
1172 | |
1173 | if (prev_rec != NULL) { |
1174 | ulint matched_fields; |
1175 | |
1176 | prev_rec_offsets = rec_get_offsets( |
1177 | prev_rec, index, prev_rec_offsets, !level, |
1178 | n_uniq, &heap); |
1179 | |
1180 | cmp_rec_rec_with_match(rec, |
1181 | prev_rec, |
1182 | rec_offsets, |
1183 | prev_rec_offsets, |
1184 | index, |
1185 | FALSE, |
1186 | &matched_fields); |
1187 | |
1188 | for (i = matched_fields; i < n_uniq; i++) { |
1189 | |
1190 | if (n_diff_boundaries != NULL) { |
1191 | /* push the index of the previous |
1192 | record, that is - the last one from |
1193 | a group of equal keys */ |
1194 | |
1195 | ib_uint64_t idx; |
1196 | |
1197 | /* the index of the current record |
1198 | is total_recs - 1, the index of the |
1199 | previous record is total_recs - 2; |
1200 | we know that idx is not going to |
1201 | become negative here because if we |
1202 | are in this branch then there is a |
1203 | previous record and thus |
1204 | total_recs >= 2 */ |
1205 | idx = *total_recs - 2; |
1206 | |
1207 | n_diff_boundaries[i].push_back(idx); |
1208 | } |
1209 | |
1210 | /* increment the number of different keys |
1211 | for n_prefix=i+1 (e.g. if i=0 then we increment |
1212 | for n_prefix=1 which is stored in n_diff[0]) */ |
1213 | n_diff[i]++; |
1214 | } |
1215 | } else { |
1216 | /* this is the first non-delete marked record */ |
1217 | for (i = 0; i < n_uniq; i++) { |
1218 | n_diff[i] = 1; |
1219 | } |
1220 | } |
1221 | |
1222 | if (rec_is_last_on_page) { |
1223 | /* end of a page has been reached */ |
1224 | |
1225 | /* we need to copy the record instead of assigning |
1226 | like prev_rec = rec; because when we traverse the |
1227 | records on this level at some point we will jump from |
1228 | one page to the next and then rec and prev_rec will |
1229 | be on different pages and |
1230 | btr_pcur_move_to_next_user_rec() will release the |
1231 | latch on the page that prev_rec is on */ |
1232 | prev_rec = rec_copy_prefix_to_buf( |
1233 | rec, index, n_uniq, |
1234 | &prev_rec_buf, &prev_rec_buf_size); |
1235 | prev_rec_is_copied = true; |
1236 | |
1237 | } else { |
1238 | /* still on the same page, the next call to |
1239 | btr_pcur_move_to_next_user_rec() will not jump |
1240 | on the next page, we can simply assign pointers |
1241 | instead of copying the records like above */ |
1242 | |
1243 | prev_rec = rec; |
1244 | prev_rec_is_copied = false; |
1245 | } |
1246 | } |
1247 | |
1248 | /* if *total_pages is left untouched then the above loop was not |
1249 | entered at all and there is one page in the whole tree which is |
1250 | empty or the loop was entered but this is level 0, contains one page |
1251 | and all records are delete-marked */ |
1252 | if (*total_pages == 0) { |
1253 | |
1254 | ut_ad(level == 0); |
1255 | ut_ad(*total_recs == 0); |
1256 | |
1257 | *total_pages = 1; |
1258 | } |
1259 | |
1260 | /* if there are records on this level and boundaries |
1261 | should be saved */ |
1262 | if (*total_recs > 0 && n_diff_boundaries != NULL) { |
1263 | |
1264 | /* remember the index of the last record on the level as the |
1265 | last one from the last group of equal keys; this holds for |
1266 | all possible prefixes */ |
1267 | for (i = 0; i < n_uniq; i++) { |
1268 | ib_uint64_t idx; |
1269 | |
1270 | idx = *total_recs - 1; |
1271 | |
1272 | n_diff_boundaries[i].push_back(idx); |
1273 | } |
1274 | } |
1275 | |
1276 | /* now in n_diff_boundaries[i] there are exactly n_diff[i] integers, |
1277 | for i=0..n_uniq-1 */ |
1278 | |
1279 | #ifdef UNIV_STATS_DEBUG |
1280 | for (i = 0; i < n_uniq; i++) { |
1281 | |
1282 | DEBUG_PRINTF(" %s(): total recs: " UINT64PF |
1283 | ", total pages: " UINT64PF |
1284 | ", n_diff[" ULINTPF "]: " UINT64PF "\n" , |
1285 | __func__, *total_recs, |
1286 | *total_pages, |
1287 | i, n_diff[i]); |
1288 | |
1289 | #if 0 |
1290 | if (n_diff_boundaries != NULL) { |
1291 | ib_uint64_t j; |
1292 | |
1293 | DEBUG_PRINTF(" %s(): boundaries[%lu]: " , |
1294 | __func__, i); |
1295 | |
1296 | for (j = 0; j < n_diff[i]; j++) { |
1297 | ib_uint64_t idx; |
1298 | |
1299 | idx = n_diff_boundaries[i][j]; |
1300 | |
1301 | DEBUG_PRINTF(UINT64PF "=" UINT64PF ", " , |
1302 | j, idx); |
1303 | } |
1304 | DEBUG_PRINTF("\n" ); |
1305 | } |
1306 | #endif |
1307 | } |
1308 | #endif /* UNIV_STATS_DEBUG */ |
1309 | |
1310 | /* Release the latch on the last page, because that is not done by |
1311 | btr_pcur_close(). This function works also for non-leaf pages. */ |
1312 | btr_leaf_page_release(btr_pcur_get_block(&pcur), BTR_SEARCH_LEAF, mtr); |
1313 | |
1314 | btr_pcur_close(&pcur); |
1315 | ut_free(prev_rec_buf); |
1316 | mem_heap_free(heap); |
1317 | } |
1318 | |
1319 | /** Scan a page, reading records from left to right and counting the number |
1320 | of distinct records (looking only at the first n_prefix |
1321 | columns) and the number of external pages pointed by records from this page. |
1322 | If scan_method is QUIT_ON_FIRST_NON_BORING then the function |
1323 | will return as soon as it finds a record that does not match its neighbor |
1324 | to the right, which means that in the case of QUIT_ON_FIRST_NON_BORING the |
1325 | returned n_diff can either be 0 (empty page), 1 (the whole page has all keys |
1326 | equal) or 2 (the function found a non-boring record and returned). |
1327 | @param[out] out_rec record, or NULL |
1328 | @param[out] offsets1 rec_get_offsets() working space (must |
1329 | be big enough) |
1330 | @param[out] offsets2 rec_get_offsets() working space (must |
1331 | be big enough) |
1332 | @param[in] index index of the page |
1333 | @param[in] page the page to scan |
1334 | @param[in] n_prefix look at the first n_prefix columns |
1335 | @param[in] is_leaf whether this is the leaf page |
1336 | @param[out] n_diff number of distinct records encountered |
1337 | @param[out] n_external_pages if this is non-NULL then it will be set |
1338 | to the number of externally stored pages which were encountered |
1339 | @return offsets1 or offsets2 (the offsets of *out_rec), |
1340 | or NULL if the page is empty and does not contain user records. */ |
1341 | UNIV_INLINE |
1342 | ulint* |
1343 | dict_stats_scan_page( |
1344 | const rec_t** out_rec, |
1345 | ulint* offsets1, |
1346 | ulint* offsets2, |
1347 | const dict_index_t* index, |
1348 | const page_t* page, |
1349 | ulint n_prefix, |
1350 | bool is_leaf, |
1351 | ib_uint64_t* n_diff, |
1352 | ib_uint64_t* n_external_pages) |
1353 | { |
1354 | ulint* offsets_rec = offsets1; |
1355 | ulint* offsets_next_rec = offsets2; |
1356 | const rec_t* rec; |
1357 | const rec_t* next_rec; |
1358 | /* A dummy heap, to be passed to rec_get_offsets(). |
1359 | Because offsets1,offsets2 should be big enough, |
1360 | this memory heap should never be used. */ |
1361 | mem_heap_t* heap = NULL; |
1362 | ut_ad(is_leaf == page_is_leaf(page)); |
1363 | const rec_t* (*get_next)(const rec_t*) |
1364 | = !is_leaf || srv_stats_include_delete_marked |
1365 | ? page_rec_get_next_const |
1366 | : page_rec_get_next_non_del_marked; |
1367 | |
1368 | const bool should_count_external_pages = n_external_pages != NULL; |
1369 | |
1370 | if (should_count_external_pages) { |
1371 | *n_external_pages = 0; |
1372 | } |
1373 | |
1374 | rec = get_next(page_get_infimum_rec(page)); |
1375 | |
1376 | if (page_rec_is_supremum(rec)) { |
1377 | /* the page is empty or contains only delete-marked records */ |
1378 | *n_diff = 0; |
1379 | *out_rec = NULL; |
1380 | return(NULL); |
1381 | } |
1382 | |
1383 | offsets_rec = rec_get_offsets(rec, index, offsets_rec, is_leaf, |
1384 | ULINT_UNDEFINED, &heap); |
1385 | |
1386 | if (should_count_external_pages) { |
1387 | *n_external_pages += btr_rec_get_externally_stored_len( |
1388 | rec, offsets_rec); |
1389 | } |
1390 | |
1391 | next_rec = get_next(rec); |
1392 | |
1393 | *n_diff = 1; |
1394 | |
1395 | while (!page_rec_is_supremum(next_rec)) { |
1396 | |
1397 | ulint matched_fields; |
1398 | |
1399 | offsets_next_rec = rec_get_offsets(next_rec, index, |
1400 | offsets_next_rec, is_leaf, |
1401 | ULINT_UNDEFINED, |
1402 | &heap); |
1403 | |
1404 | /* check whether rec != next_rec when looking at |
1405 | the first n_prefix fields */ |
1406 | cmp_rec_rec_with_match(rec, next_rec, |
1407 | offsets_rec, offsets_next_rec, |
1408 | index, FALSE, &matched_fields); |
1409 | |
1410 | if (matched_fields < n_prefix) { |
1411 | /* rec != next_rec, => rec is non-boring */ |
1412 | |
1413 | (*n_diff)++; |
1414 | |
1415 | if (!is_leaf) { |
1416 | break; |
1417 | } |
1418 | } |
1419 | |
1420 | rec = next_rec; |
1421 | { |
1422 | /* Assign offsets_rec = offsets_next_rec |
1423 | so that offsets_rec matches with rec which |
1424 | was just assigned rec = next_rec above. |
1425 | Also need to point offsets_next_rec to the |
1426 | place where offsets_rec was pointing before |
1427 | because we have just 2 placeholders where |
1428 | data is actually stored: |
1429 | offsets1 and offsets2 and we |
1430 | are using them in circular fashion |
1431 | (offsets[_next]_rec are just pointers to |
1432 | those placeholders). */ |
1433 | ulint* offsets_tmp; |
1434 | offsets_tmp = offsets_rec; |
1435 | offsets_rec = offsets_next_rec; |
1436 | offsets_next_rec = offsets_tmp; |
1437 | } |
1438 | |
1439 | if (should_count_external_pages) { |
1440 | *n_external_pages += btr_rec_get_externally_stored_len( |
1441 | rec, offsets_rec); |
1442 | } |
1443 | |
1444 | next_rec = get_next(next_rec); |
1445 | } |
1446 | |
1447 | /* offsets1,offsets2 should have been big enough */ |
1448 | ut_a(heap == NULL); |
1449 | *out_rec = rec; |
1450 | return(offsets_rec); |
1451 | } |
1452 | |
1453 | /** Dive below the current position of a cursor and calculate the number of |
1454 | distinct records on the leaf page, when looking at the fist n_prefix |
1455 | columns. Also calculate the number of external pages pointed by records |
1456 | on the leaf page. |
1457 | @param[in] cur cursor |
1458 | @param[in] n_prefix look at the first n_prefix columns |
1459 | when comparing records |
1460 | @param[out] n_diff number of distinct records |
1461 | @param[out] n_external_pages number of external pages |
1462 | @return number of distinct records on the leaf page */ |
1463 | static |
1464 | void |
1465 | dict_stats_analyze_index_below_cur( |
1466 | const btr_cur_t* cur, |
1467 | ulint n_prefix, |
1468 | ib_uint64_t* n_diff, |
1469 | ib_uint64_t* n_external_pages) |
1470 | { |
1471 | dict_index_t* index; |
1472 | buf_block_t* block; |
1473 | const page_t* page; |
1474 | mem_heap_t* heap; |
1475 | const rec_t* rec; |
1476 | ulint* offsets1; |
1477 | ulint* offsets2; |
1478 | ulint* offsets_rec; |
1479 | ulint size; |
1480 | mtr_t mtr; |
1481 | |
1482 | index = btr_cur_get_index(cur); |
1483 | |
1484 | /* Allocate offsets for the record and the node pointer, for |
1485 | node pointer records. In a secondary index, the node pointer |
1486 | record will consist of all index fields followed by a child |
1487 | page number. |
1488 | Allocate space for the offsets header (the allocation size at |
1489 | offsets[0] and the REC_OFFS_HEADER_SIZE bytes), and n_fields + 1, |
1490 | so that this will never be less than the size calculated in |
1491 | rec_get_offsets_func(). */ |
1492 | size = (1 + REC_OFFS_HEADER_SIZE) + 1 + dict_index_get_n_fields(index); |
1493 | |
1494 | heap = mem_heap_create(size * (sizeof *offsets1 + sizeof *offsets2)); |
1495 | |
1496 | offsets1 = static_cast<ulint*>(mem_heap_alloc( |
1497 | heap, size * sizeof *offsets1)); |
1498 | |
1499 | offsets2 = static_cast<ulint*>(mem_heap_alloc( |
1500 | heap, size * sizeof *offsets2)); |
1501 | |
1502 | rec_offs_set_n_alloc(offsets1, size); |
1503 | rec_offs_set_n_alloc(offsets2, size); |
1504 | |
1505 | rec = btr_cur_get_rec(cur); |
1506 | ut_ad(!page_rec_is_leaf(rec)); |
1507 | |
1508 | offsets_rec = rec_get_offsets(rec, index, offsets1, false, |
1509 | ULINT_UNDEFINED, &heap); |
1510 | |
1511 | page_id_t page_id(index->table->space->id, |
1512 | btr_node_ptr_get_child_page_no( |
1513 | rec, offsets_rec)); |
1514 | const page_size_t page_size(index->table->space->flags); |
1515 | |
1516 | /* assume no external pages by default - in case we quit from this |
1517 | function without analyzing any leaf pages */ |
1518 | *n_external_pages = 0; |
1519 | |
1520 | mtr_start(&mtr); |
1521 | |
1522 | /* descend to the leaf level on the B-tree */ |
1523 | for (;;) { |
1524 | |
1525 | dberr_t err = DB_SUCCESS; |
1526 | |
1527 | block = buf_page_get_gen(page_id, page_size, RW_S_LATCH, |
1528 | NULL /* no guessed block */, |
1529 | BUF_GET, __FILE__, __LINE__, &mtr, &err); |
1530 | |
1531 | page = buf_block_get_frame(block); |
1532 | |
1533 | if (page_is_leaf(page)) { |
1534 | /* leaf level */ |
1535 | break; |
1536 | } |
1537 | /* else */ |
1538 | |
1539 | /* search for the first non-boring record on the page */ |
1540 | offsets_rec = dict_stats_scan_page( |
1541 | &rec, offsets1, offsets2, index, page, n_prefix, |
1542 | false, n_diff, NULL); |
1543 | |
1544 | /* pages on level > 0 are not allowed to be empty */ |
1545 | ut_a(offsets_rec != NULL); |
1546 | /* if page is not empty (offsets_rec != NULL) then n_diff must |
1547 | be > 0, otherwise there is a bug in dict_stats_scan_page() */ |
1548 | ut_a(*n_diff > 0); |
1549 | |
1550 | if (*n_diff == 1) { |
1551 | mtr_commit(&mtr); |
1552 | |
1553 | /* page has all keys equal and the end of the page |
1554 | was reached by dict_stats_scan_page(), no need to |
1555 | descend to the leaf level */ |
1556 | mem_heap_free(heap); |
1557 | /* can't get an estimate for n_external_pages here |
1558 | because we do not dive to the leaf level, assume no |
1559 | external pages (*n_external_pages was assigned to 0 |
1560 | above). */ |
1561 | return; |
1562 | } |
1563 | /* else */ |
1564 | |
1565 | /* when we instruct dict_stats_scan_page() to quit on the |
1566 | first non-boring record it finds, then the returned n_diff |
1567 | can either be 0 (empty page), 1 (page has all keys equal) or |
1568 | 2 (non-boring record was found) */ |
1569 | ut_a(*n_diff == 2); |
1570 | |
1571 | /* we have a non-boring record in rec, descend below it */ |
1572 | |
1573 | page_id.set_page_no( |
1574 | btr_node_ptr_get_child_page_no(rec, offsets_rec)); |
1575 | } |
1576 | |
1577 | /* make sure we got a leaf page as a result from the above loop */ |
1578 | ut_ad(page_is_leaf(page)); |
1579 | |
1580 | /* scan the leaf page and find the number of distinct keys, |
1581 | when looking only at the first n_prefix columns; also estimate |
1582 | the number of externally stored pages pointed by records on this |
1583 | page */ |
1584 | |
1585 | offsets_rec = dict_stats_scan_page( |
1586 | &rec, offsets1, offsets2, index, page, n_prefix, |
1587 | true, n_diff, |
1588 | n_external_pages); |
1589 | |
1590 | #if 0 |
1591 | DEBUG_PRINTF(" %s(): n_diff below page_no=%lu: " UINT64PF "\n" , |
1592 | __func__, page_no, n_diff); |
1593 | #endif |
1594 | |
1595 | mtr_commit(&mtr); |
1596 | mem_heap_free(heap); |
1597 | } |
1598 | |
1599 | /** Input data that is used to calculate dict_index_t::stat_n_diff_key_vals[] |
1600 | for each n-columns prefix (n from 1 to n_uniq). */ |
1601 | struct n_diff_data_t { |
1602 | /** Index of the level on which the descent through the btree |
1603 | stopped. level 0 is the leaf level. This is >= 1 because we |
1604 | avoid scanning the leaf level because it may contain too many |
1605 | pages and doing so is useless when combined with the random dives - |
1606 | if we are to scan the leaf level, this means a full scan and we can |
1607 | simply do that instead of fiddling with picking random records higher |
1608 | in the tree and to dive below them. At the start of the analyzing |
1609 | we may decide to do full scan of the leaf level, but then this |
1610 | structure is not used in that code path. */ |
1611 | ulint level; |
1612 | |
1613 | /** Number of records on the level where the descend through the btree |
1614 | stopped. When we scan the btree from the root, we stop at some mid |
1615 | level, choose some records from it and dive below them towards a leaf |
1616 | page to analyze. */ |
1617 | ib_uint64_t n_recs_on_level; |
1618 | |
1619 | /** Number of different key values that were found on the mid level. */ |
1620 | ib_uint64_t n_diff_on_level; |
1621 | |
1622 | /** Number of leaf pages that are analyzed. This is also the same as |
1623 | the number of records that we pick from the mid level and dive below |
1624 | them. */ |
1625 | ib_uint64_t n_leaf_pages_to_analyze; |
1626 | |
1627 | /** Cumulative sum of the number of different key values that were |
1628 | found on all analyzed pages. */ |
1629 | ib_uint64_t n_diff_all_analyzed_pages; |
1630 | |
1631 | /** Cumulative sum of the number of external pages (stored outside of |
1632 | the btree but in the same file segment). */ |
1633 | ib_uint64_t n_external_pages_sum; |
1634 | }; |
1635 | |
1636 | /** Estimate the number of different key values in an index when looking at |
1637 | the first n_prefix columns. For a given level in an index select |
1638 | n_diff_data->n_leaf_pages_to_analyze records from that level and dive below |
1639 | them to the corresponding leaf pages, then scan those leaf pages and save the |
1640 | sampling results in n_diff_data->n_diff_all_analyzed_pages. |
1641 | @param[in] index index |
1642 | @param[in] n_prefix look at first 'n_prefix' columns when |
1643 | comparing records |
1644 | @param[in] boundaries a vector that contains |
1645 | n_diff_data->n_diff_on_level integers each of which represents the index (on |
1646 | level 'level', counting from left/smallest to right/biggest from 0) of the |
1647 | last record from each group of distinct keys |
1648 | @param[in,out] n_diff_data n_diff_all_analyzed_pages and |
1649 | n_external_pages_sum in this structure will be set by this function. The |
1650 | members level, n_diff_on_level and n_leaf_pages_to_analyze must be set by the |
1651 | caller in advance - they are used by some calculations inside this function |
1652 | @param[in,out] mtr mini-transaction */ |
1653 | static |
1654 | void |
1655 | dict_stats_analyze_index_for_n_prefix( |
1656 | dict_index_t* index, |
1657 | ulint n_prefix, |
1658 | const boundaries_t* boundaries, |
1659 | n_diff_data_t* n_diff_data, |
1660 | mtr_t* mtr) |
1661 | { |
1662 | btr_pcur_t pcur; |
1663 | const page_t* page; |
1664 | ib_uint64_t rec_idx; |
1665 | ib_uint64_t i; |
1666 | |
1667 | #if 0 |
1668 | DEBUG_PRINTF(" %s(table=%s, index=%s, level=%lu, n_prefix=%lu," |
1669 | " n_diff_on_level=" UINT64PF ")\n" , |
1670 | __func__, index->table->name, index->name, level, |
1671 | n_prefix, n_diff_data->n_diff_on_level); |
1672 | #endif |
1673 | |
1674 | ut_ad(mtr_memo_contains(mtr, dict_index_get_lock(index), |
1675 | MTR_MEMO_SX_LOCK)); |
1676 | |
1677 | /* Position pcur on the leftmost record on the leftmost page |
1678 | on the desired level. */ |
1679 | |
1680 | btr_pcur_open_at_index_side( |
1681 | true, index, BTR_SEARCH_TREE_ALREADY_S_LATCHED, |
1682 | &pcur, true, n_diff_data->level, mtr); |
1683 | btr_pcur_move_to_next_on_page(&pcur); |
1684 | |
1685 | page = btr_pcur_get_page(&pcur); |
1686 | |
1687 | const rec_t* first_rec = btr_pcur_get_rec(&pcur); |
1688 | |
1689 | /* We shouldn't be scanning the leaf level. The caller of this function |
1690 | should have stopped the descend on level 1 or higher. */ |
1691 | ut_ad(n_diff_data->level > 0); |
1692 | ut_ad(!page_is_leaf(page)); |
1693 | |
1694 | /* The page must not be empty, except when |
1695 | it is the root page (and the whole index is empty). */ |
1696 | ut_ad(btr_pcur_is_on_user_rec(&pcur)); |
1697 | ut_ad(first_rec == page_rec_get_next_const(page_get_infimum_rec(page))); |
1698 | |
1699 | /* check that we are indeed on the desired level */ |
1700 | ut_a(btr_page_get_level(page) == n_diff_data->level); |
1701 | |
1702 | /* there should not be any pages on the left */ |
1703 | ut_a(!page_has_prev(page)); |
1704 | |
1705 | /* check whether the first record on the leftmost page is marked |
1706 | as such; we are on a non-leaf level */ |
1707 | ut_a(rec_get_info_bits(first_rec, page_is_comp(page)) |
1708 | & REC_INFO_MIN_REC_FLAG); |
1709 | |
1710 | const ib_uint64_t last_idx_on_level = boundaries->at( |
1711 | static_cast<unsigned>(n_diff_data->n_diff_on_level - 1)); |
1712 | |
1713 | rec_idx = 0; |
1714 | |
1715 | n_diff_data->n_diff_all_analyzed_pages = 0; |
1716 | n_diff_data->n_external_pages_sum = 0; |
1717 | |
1718 | for (i = 0; i < n_diff_data->n_leaf_pages_to_analyze; i++) { |
1719 | /* there are n_diff_on_level elements |
1720 | in 'boundaries' and we divide those elements |
1721 | into n_leaf_pages_to_analyze segments, for example: |
1722 | |
1723 | let n_diff_on_level=100, n_leaf_pages_to_analyze=4, then: |
1724 | segment i=0: [0, 24] |
1725 | segment i=1: [25, 49] |
1726 | segment i=2: [50, 74] |
1727 | segment i=3: [75, 99] or |
1728 | |
1729 | let n_diff_on_level=1, n_leaf_pages_to_analyze=1, then: |
1730 | segment i=0: [0, 0] or |
1731 | |
1732 | let n_diff_on_level=2, n_leaf_pages_to_analyze=2, then: |
1733 | segment i=0: [0, 0] |
1734 | segment i=1: [1, 1] or |
1735 | |
1736 | let n_diff_on_level=13, n_leaf_pages_to_analyze=7, then: |
1737 | segment i=0: [0, 0] |
1738 | segment i=1: [1, 2] |
1739 | segment i=2: [3, 4] |
1740 | segment i=3: [5, 6] |
1741 | segment i=4: [7, 8] |
1742 | segment i=5: [9, 10] |
1743 | segment i=6: [11, 12] |
1744 | |
1745 | then we select a random record from each segment and dive |
1746 | below it */ |
1747 | const ib_uint64_t n_diff = n_diff_data->n_diff_on_level; |
1748 | const ib_uint64_t n_pick |
1749 | = n_diff_data->n_leaf_pages_to_analyze; |
1750 | |
1751 | const ib_uint64_t left = n_diff * i / n_pick; |
1752 | const ib_uint64_t right = n_diff * (i + 1) / n_pick - 1; |
1753 | |
1754 | ut_a(left <= right); |
1755 | ut_a(right <= last_idx_on_level); |
1756 | |
1757 | const ulint rnd = right == left ? 0 : |
1758 | ut_rnd_gen_ulint() % (right - left); |
1759 | |
1760 | const ib_uint64_t dive_below_idx |
1761 | = boundaries->at(static_cast<unsigned>(left + rnd)); |
1762 | |
1763 | #if 0 |
1764 | DEBUG_PRINTF(" %s(): dive below record with index=" |
1765 | UINT64PF "\n" , __func__, dive_below_idx); |
1766 | #endif |
1767 | |
1768 | /* seek to the record with index dive_below_idx */ |
1769 | while (rec_idx < dive_below_idx |
1770 | && btr_pcur_is_on_user_rec(&pcur)) { |
1771 | |
1772 | btr_pcur_move_to_next_user_rec(&pcur, mtr); |
1773 | rec_idx++; |
1774 | } |
1775 | |
1776 | /* if the level has finished before the record we are |
1777 | searching for, this means that the B-tree has changed in |
1778 | the meantime, quit our sampling and use whatever stats |
1779 | we have collected so far */ |
1780 | if (rec_idx < dive_below_idx) { |
1781 | |
1782 | ut_ad(!btr_pcur_is_on_user_rec(&pcur)); |
1783 | break; |
1784 | } |
1785 | |
1786 | /* it could be that the tree has changed in such a way that |
1787 | the record under dive_below_idx is the supremum record, in |
1788 | this case rec_idx == dive_below_idx and pcur is positioned |
1789 | on the supremum, we do not want to dive below it */ |
1790 | if (!btr_pcur_is_on_user_rec(&pcur)) { |
1791 | break; |
1792 | } |
1793 | |
1794 | ut_a(rec_idx == dive_below_idx); |
1795 | |
1796 | ib_uint64_t n_diff_on_leaf_page; |
1797 | ib_uint64_t n_external_pages; |
1798 | |
1799 | dict_stats_analyze_index_below_cur(btr_pcur_get_btr_cur(&pcur), |
1800 | n_prefix, |
1801 | &n_diff_on_leaf_page, |
1802 | &n_external_pages); |
1803 | |
1804 | /* We adjust n_diff_on_leaf_page here to avoid counting |
1805 | one value twice - once as the last on some page and once |
1806 | as the first on another page. Consider the following example: |
1807 | Leaf level: |
1808 | page: (2,2,2,2,3,3) |
1809 | ... many pages like (3,3,3,3,3,3) ... |
1810 | page: (3,3,3,3,5,5) |
1811 | ... many pages like (5,5,5,5,5,5) ... |
1812 | page: (5,5,5,5,8,8) |
1813 | page: (8,8,8,8,9,9) |
1814 | our algo would (correctly) get an estimate that there are |
1815 | 2 distinct records per page (average). Having 4 pages below |
1816 | non-boring records, it would (wrongly) estimate the number |
1817 | of distinct records to 8. */ |
1818 | if (n_diff_on_leaf_page > 0) { |
1819 | n_diff_on_leaf_page--; |
1820 | } |
1821 | |
1822 | n_diff_data->n_diff_all_analyzed_pages += n_diff_on_leaf_page; |
1823 | |
1824 | n_diff_data->n_external_pages_sum += n_external_pages; |
1825 | } |
1826 | |
1827 | btr_pcur_close(&pcur); |
1828 | } |
1829 | |
1830 | /** Set dict_index_t::stat_n_diff_key_vals[] and stat_n_sample_sizes[]. |
1831 | @param[in] n_diff_data input data to use to derive the results |
1832 | @param[in,out] index index whose stat_n_diff_key_vals[] to set */ |
1833 | UNIV_INLINE |
1834 | void |
1835 | dict_stats_index_set_n_diff( |
1836 | const n_diff_data_t* n_diff_data, |
1837 | dict_index_t* index) |
1838 | { |
1839 | for (ulint n_prefix = dict_index_get_n_unique(index); |
1840 | n_prefix >= 1; |
1841 | n_prefix--) { |
1842 | /* n_diff_all_analyzed_pages can be 0 here if |
1843 | all the leaf pages sampled contained only |
1844 | delete-marked records. In this case we should assign |
1845 | 0 to index->stat_n_diff_key_vals[n_prefix - 1], which |
1846 | the formula below does. */ |
1847 | |
1848 | const n_diff_data_t* data = &n_diff_data[n_prefix - 1]; |
1849 | |
1850 | ut_ad(data->n_leaf_pages_to_analyze > 0); |
1851 | ut_ad(data->n_recs_on_level > 0); |
1852 | |
1853 | ib_uint64_t n_ordinary_leaf_pages; |
1854 | |
1855 | if (data->level == 1) { |
1856 | /* If we know the number of records on level 1, then |
1857 | this number is the same as the number of pages on |
1858 | level 0 (leaf). */ |
1859 | n_ordinary_leaf_pages = data->n_recs_on_level; |
1860 | } else { |
1861 | /* If we analyzed D ordinary leaf pages and found E |
1862 | external pages in total linked from those D ordinary |
1863 | leaf pages, then this means that the ratio |
1864 | ordinary/external is D/E. Then the ratio ordinary/total |
1865 | is D / (D + E). Knowing that the total number of pages |
1866 | is T (including ordinary and external) then we estimate |
1867 | that the total number of ordinary leaf pages is |
1868 | T * D / (D + E). */ |
1869 | n_ordinary_leaf_pages |
1870 | = index->stat_n_leaf_pages |
1871 | * data->n_leaf_pages_to_analyze |
1872 | / (data->n_leaf_pages_to_analyze |
1873 | + data->n_external_pages_sum); |
1874 | } |
1875 | |
1876 | /* See REF01 for an explanation of the algorithm */ |
1877 | index->stat_n_diff_key_vals[n_prefix - 1] |
1878 | = n_ordinary_leaf_pages |
1879 | |
1880 | * data->n_diff_on_level |
1881 | / data->n_recs_on_level |
1882 | |
1883 | * data->n_diff_all_analyzed_pages |
1884 | / data->n_leaf_pages_to_analyze; |
1885 | |
1886 | index->stat_n_sample_sizes[n_prefix - 1] |
1887 | = data->n_leaf_pages_to_analyze; |
1888 | |
1889 | DEBUG_PRINTF(" %s(): n_diff=" UINT64PF |
1890 | " for n_prefix=" ULINTPF |
1891 | " (" ULINTPF |
1892 | " * " UINT64PF " / " UINT64PF |
1893 | " * " UINT64PF " / " UINT64PF ")\n" , |
1894 | __func__, |
1895 | index->stat_n_diff_key_vals[n_prefix - 1], |
1896 | n_prefix, |
1897 | index->stat_n_leaf_pages, |
1898 | data->n_diff_on_level, |
1899 | data->n_recs_on_level, |
1900 | data->n_diff_all_analyzed_pages, |
1901 | data->n_leaf_pages_to_analyze); |
1902 | } |
1903 | } |
1904 | |
1905 | /*********************************************************************//** |
1906 | Calculates new statistics for a given index and saves them to the index |
1907 | members stat_n_diff_key_vals[], stat_n_sample_sizes[], stat_index_size and |
1908 | stat_n_leaf_pages. This function could be slow. */ |
1909 | static |
1910 | void |
1911 | dict_stats_analyze_index( |
1912 | /*=====================*/ |
1913 | dict_index_t* index) /*!< in/out: index to analyze */ |
1914 | { |
1915 | ulint root_level; |
1916 | ulint level; |
1917 | bool level_is_analyzed; |
1918 | ulint n_uniq; |
1919 | ulint n_prefix; |
1920 | ib_uint64_t total_recs; |
1921 | ib_uint64_t total_pages; |
1922 | mtr_t mtr; |
1923 | ulint size; |
1924 | DBUG_ENTER("dict_stats_analyze_index" ); |
1925 | |
1926 | DBUG_PRINT("info" , ("index: %s, online status: %d" , index->name(), |
1927 | dict_index_get_online_status(index))); |
1928 | |
1929 | /* Disable update statistic for Rtree */ |
1930 | if (dict_index_is_spatial(index)) { |
1931 | DBUG_VOID_RETURN; |
1932 | } |
1933 | |
1934 | DEBUG_PRINTF(" %s(index=%s)\n" , __func__, index->name()); |
1935 | |
1936 | dict_stats_empty_index(index, false); |
1937 | |
1938 | mtr_start(&mtr); |
1939 | |
1940 | mtr_s_lock(dict_index_get_lock(index), &mtr); |
1941 | |
1942 | size = btr_get_size(index, BTR_TOTAL_SIZE, &mtr); |
1943 | |
1944 | if (size != ULINT_UNDEFINED) { |
1945 | index->stat_index_size = size; |
1946 | size = btr_get_size(index, BTR_N_LEAF_PAGES, &mtr); |
1947 | } |
1948 | |
1949 | /* Release the X locks on the root page taken by btr_get_size() */ |
1950 | mtr_commit(&mtr); |
1951 | |
1952 | switch (size) { |
1953 | case ULINT_UNDEFINED: |
1954 | dict_stats_assert_initialized_index(index); |
1955 | DBUG_VOID_RETURN; |
1956 | case 0: |
1957 | /* The root node of the tree is a leaf */ |
1958 | size = 1; |
1959 | } |
1960 | |
1961 | index->stat_n_leaf_pages = size; |
1962 | |
1963 | mtr_start(&mtr); |
1964 | |
1965 | mtr_sx_lock(dict_index_get_lock(index), &mtr); |
1966 | |
1967 | root_level = btr_height_get(index, &mtr); |
1968 | |
1969 | n_uniq = dict_index_get_n_unique(index); |
1970 | |
1971 | /* If the tree has just one level (and one page) or if the user |
1972 | has requested to sample too many pages then do full scan. |
1973 | |
1974 | For each n-column prefix (for n=1..n_uniq) N_SAMPLE_PAGES(index) |
1975 | will be sampled, so in total N_SAMPLE_PAGES(index) * n_uniq leaf |
1976 | pages will be sampled. If that number is bigger than the total |
1977 | number of leaf pages then do full scan of the leaf level instead |
1978 | since it will be faster and will give better results. */ |
1979 | |
1980 | if (root_level == 0 |
1981 | || N_SAMPLE_PAGES(index) * n_uniq > index->stat_n_leaf_pages) { |
1982 | |
1983 | if (root_level == 0) { |
1984 | DEBUG_PRINTF(" %s(): just one page," |
1985 | " doing full scan\n" , __func__); |
1986 | } else { |
1987 | DEBUG_PRINTF(" %s(): too many pages requested for" |
1988 | " sampling, doing full scan\n" , __func__); |
1989 | } |
1990 | |
1991 | /* do full scan of level 0; save results directly |
1992 | into the index */ |
1993 | |
1994 | dict_stats_analyze_index_level(index, |
1995 | 0 /* leaf level */, |
1996 | index->stat_n_diff_key_vals, |
1997 | &total_recs, |
1998 | &total_pages, |
1999 | NULL /* boundaries not needed */, |
2000 | &mtr); |
2001 | |
2002 | for (ulint i = 0; i < n_uniq; i++) { |
2003 | index->stat_n_sample_sizes[i] = total_pages; |
2004 | } |
2005 | |
2006 | mtr_commit(&mtr); |
2007 | |
2008 | dict_stats_assert_initialized_index(index); |
2009 | DBUG_VOID_RETURN; |
2010 | } |
2011 | |
2012 | /* For each level that is being scanned in the btree, this contains the |
2013 | number of different key values for all possible n-column prefixes. */ |
2014 | ib_uint64_t* n_diff_on_level = UT_NEW_ARRAY( |
2015 | ib_uint64_t, n_uniq, mem_key_dict_stats_n_diff_on_level); |
2016 | |
2017 | /* For each level that is being scanned in the btree, this contains the |
2018 | index of the last record from each group of equal records (when |
2019 | comparing only the first n columns, n=1..n_uniq). */ |
2020 | boundaries_t* n_diff_boundaries = UT_NEW_ARRAY_NOKEY(boundaries_t, |
2021 | n_uniq); |
2022 | |
2023 | /* For each n-column prefix this array contains the input data that is |
2024 | used to calculate dict_index_t::stat_n_diff_key_vals[]. */ |
2025 | n_diff_data_t* n_diff_data = UT_NEW_ARRAY_NOKEY(n_diff_data_t, n_uniq); |
2026 | |
2027 | /* total_recs is also used to estimate the number of pages on one |
2028 | level below, so at the start we have 1 page (the root) */ |
2029 | total_recs = 1; |
2030 | |
2031 | /* Here we use the following optimization: |
2032 | If we find that level L is the first one (searching from the |
2033 | root) that contains at least D distinct keys when looking at |
2034 | the first n_prefix columns, then: |
2035 | if we look at the first n_prefix-1 columns then the first |
2036 | level that contains D distinct keys will be either L or a |
2037 | lower one. |
2038 | So if we find that the first level containing D distinct |
2039 | keys (on n_prefix columns) is L, we continue from L when |
2040 | searching for D distinct keys on n_prefix-1 columns. */ |
2041 | level = root_level; |
2042 | level_is_analyzed = false; |
2043 | |
2044 | for (n_prefix = n_uniq; n_prefix >= 1; n_prefix--) { |
2045 | |
2046 | DEBUG_PRINTF(" %s(): searching level with >=%llu " |
2047 | "distinct records, n_prefix=" ULINTPF "\n" , |
2048 | __func__, N_DIFF_REQUIRED(index), n_prefix); |
2049 | |
2050 | /* Commit the mtr to release the tree S lock to allow |
2051 | other threads to do some work too. */ |
2052 | mtr_commit(&mtr); |
2053 | mtr_start(&mtr); |
2054 | mtr_sx_lock(dict_index_get_lock(index), &mtr); |
2055 | if (root_level != btr_height_get(index, &mtr)) { |
2056 | /* Just quit if the tree has changed beyond |
2057 | recognition here. The old stats from previous |
2058 | runs will remain in the values that we have |
2059 | not calculated yet. Initially when the index |
2060 | object is created the stats members are given |
2061 | some sensible values so leaving them untouched |
2062 | here even the first time will not cause us to |
2063 | read uninitialized memory later. */ |
2064 | break; |
2065 | } |
2066 | |
2067 | /* check whether we should pick the current level; |
2068 | we pick level 1 even if it does not have enough |
2069 | distinct records because we do not want to scan the |
2070 | leaf level because it may contain too many records */ |
2071 | if (level_is_analyzed |
2072 | && (n_diff_on_level[n_prefix - 1] >= N_DIFF_REQUIRED(index) |
2073 | || level == 1)) { |
2074 | |
2075 | goto found_level; |
2076 | } |
2077 | |
2078 | /* search for a level that contains enough distinct records */ |
2079 | |
2080 | if (level_is_analyzed && level > 1) { |
2081 | |
2082 | /* if this does not hold we should be on |
2083 | "found_level" instead of here */ |
2084 | ut_ad(n_diff_on_level[n_prefix - 1] |
2085 | < N_DIFF_REQUIRED(index)); |
2086 | |
2087 | level--; |
2088 | level_is_analyzed = false; |
2089 | } |
2090 | |
2091 | /* descend into the tree, searching for "good enough" level */ |
2092 | for (;;) { |
2093 | |
2094 | /* make sure we do not scan the leaf level |
2095 | accidentally, it may contain too many pages */ |
2096 | ut_ad(level > 0); |
2097 | |
2098 | /* scanning the same level twice is an optimization |
2099 | bug */ |
2100 | ut_ad(!level_is_analyzed); |
2101 | |
2102 | /* Do not scan if this would read too many pages. |
2103 | Here we use the following fact: |
2104 | the number of pages on level L equals the number |
2105 | of records on level L+1, thus we deduce that the |
2106 | following call would scan total_recs pages, because |
2107 | total_recs is left from the previous iteration when |
2108 | we scanned one level upper or we have not scanned any |
2109 | levels yet in which case total_recs is 1. */ |
2110 | if (total_recs > N_SAMPLE_PAGES(index)) { |
2111 | |
2112 | /* if the above cond is true then we are |
2113 | not at the root level since on the root |
2114 | level total_recs == 1 (set before we |
2115 | enter the n-prefix loop) and cannot |
2116 | be > N_SAMPLE_PAGES(index) */ |
2117 | ut_a(level != root_level); |
2118 | |
2119 | /* step one level back and be satisfied with |
2120 | whatever it contains */ |
2121 | level++; |
2122 | level_is_analyzed = true; |
2123 | |
2124 | break; |
2125 | } |
2126 | |
2127 | dict_stats_analyze_index_level(index, |
2128 | level, |
2129 | n_diff_on_level, |
2130 | &total_recs, |
2131 | &total_pages, |
2132 | n_diff_boundaries, |
2133 | &mtr); |
2134 | |
2135 | level_is_analyzed = true; |
2136 | |
2137 | if (level == 1 |
2138 | || n_diff_on_level[n_prefix - 1] |
2139 | >= N_DIFF_REQUIRED(index)) { |
2140 | /* we have reached the last level we could scan |
2141 | or we found a good level with many distinct |
2142 | records */ |
2143 | break; |
2144 | } |
2145 | |
2146 | level--; |
2147 | level_is_analyzed = false; |
2148 | } |
2149 | found_level: |
2150 | |
2151 | DEBUG_PRINTF(" %s(): found level " ULINTPF |
2152 | " that has " UINT64PF |
2153 | " distinct records for n_prefix=" ULINTPF "\n" , |
2154 | __func__, level, n_diff_on_level[n_prefix - 1], |
2155 | n_prefix); |
2156 | /* here we are either on level 1 or the level that we are on |
2157 | contains >= N_DIFF_REQUIRED distinct keys or we did not scan |
2158 | deeper levels because they would contain too many pages */ |
2159 | |
2160 | ut_ad(level > 0); |
2161 | |
2162 | ut_ad(level_is_analyzed); |
2163 | |
2164 | /* if any of these is 0 then there is exactly one page in the |
2165 | B-tree and it is empty and we should have done full scan and |
2166 | should not be here */ |
2167 | ut_ad(total_recs > 0); |
2168 | ut_ad(n_diff_on_level[n_prefix - 1] > 0); |
2169 | |
2170 | ut_ad(N_SAMPLE_PAGES(index) > 0); |
2171 | |
2172 | n_diff_data_t* data = &n_diff_data[n_prefix - 1]; |
2173 | |
2174 | data->level = level; |
2175 | |
2176 | data->n_recs_on_level = total_recs; |
2177 | |
2178 | data->n_diff_on_level = n_diff_on_level[n_prefix - 1]; |
2179 | |
2180 | data->n_leaf_pages_to_analyze = std::min( |
2181 | N_SAMPLE_PAGES(index), |
2182 | n_diff_on_level[n_prefix - 1]); |
2183 | |
2184 | /* pick some records from this level and dive below them for |
2185 | the given n_prefix */ |
2186 | |
2187 | dict_stats_analyze_index_for_n_prefix( |
2188 | index, n_prefix, &n_diff_boundaries[n_prefix - 1], |
2189 | data, &mtr); |
2190 | } |
2191 | |
2192 | mtr_commit(&mtr); |
2193 | |
2194 | UT_DELETE_ARRAY(n_diff_boundaries); |
2195 | |
2196 | UT_DELETE_ARRAY(n_diff_on_level); |
2197 | |
2198 | /* n_prefix == 0 means that the above loop did not end up prematurely |
2199 | due to tree being changed and so n_diff_data[] is set up. */ |
2200 | if (n_prefix == 0) { |
2201 | dict_stats_index_set_n_diff(n_diff_data, index); |
2202 | } |
2203 | |
2204 | UT_DELETE_ARRAY(n_diff_data); |
2205 | |
2206 | dict_stats_assert_initialized_index(index); |
2207 | DBUG_VOID_RETURN; |
2208 | } |
2209 | |
2210 | /*********************************************************************//** |
2211 | Calculates new estimates for table and index statistics. This function |
2212 | is relatively slow and is used to calculate persistent statistics that |
2213 | will be saved on disk. |
2214 | @return DB_SUCCESS or error code */ |
2215 | static |
2216 | dberr_t |
2217 | dict_stats_update_persistent( |
2218 | /*=========================*/ |
2219 | dict_table_t* table) /*!< in/out: table */ |
2220 | { |
2221 | dict_index_t* index; |
2222 | |
2223 | DEBUG_PRINTF("%s(table=%s)\n" , __func__, table->name); |
2224 | |
2225 | dict_table_stats_lock(table, RW_X_LATCH); |
2226 | |
2227 | /* analyze the clustered index first */ |
2228 | |
2229 | index = dict_table_get_first_index(table); |
2230 | |
2231 | if (index == NULL |
2232 | || index->is_corrupted() |
2233 | || (index->type | DICT_UNIQUE) != (DICT_CLUSTERED | DICT_UNIQUE)) { |
2234 | |
2235 | /* Table definition is corrupt */ |
2236 | dict_table_stats_unlock(table, RW_X_LATCH); |
2237 | dict_stats_empty_table(table, true); |
2238 | |
2239 | return(DB_CORRUPTION); |
2240 | } |
2241 | |
2242 | ut_ad(!dict_index_is_ibuf(index)); |
2243 | |
2244 | dict_stats_analyze_index(index); |
2245 | |
2246 | ulint n_unique = dict_index_get_n_unique(index); |
2247 | |
2248 | table->stat_n_rows = index->stat_n_diff_key_vals[n_unique - 1]; |
2249 | |
2250 | table->stat_clustered_index_size = index->stat_index_size; |
2251 | |
2252 | /* analyze other indexes from the table, if any */ |
2253 | |
2254 | table->stat_sum_of_other_index_sizes = 0; |
2255 | |
2256 | for (index = dict_table_get_next_index(index); |
2257 | index != NULL; |
2258 | index = dict_table_get_next_index(index)) { |
2259 | |
2260 | ut_ad(!dict_index_is_ibuf(index)); |
2261 | |
2262 | if (index->type & DICT_FTS || dict_index_is_spatial(index)) { |
2263 | continue; |
2264 | } |
2265 | |
2266 | dict_stats_empty_index(index, false); |
2267 | |
2268 | if (dict_stats_should_ignore_index(index)) { |
2269 | continue; |
2270 | } |
2271 | |
2272 | if (!(table->stats_bg_flag & BG_STAT_SHOULD_QUIT)) { |
2273 | dict_stats_analyze_index(index); |
2274 | } |
2275 | |
2276 | table->stat_sum_of_other_index_sizes |
2277 | += index->stat_index_size; |
2278 | } |
2279 | |
2280 | table->stats_last_recalc = ut_time(); |
2281 | |
2282 | table->stat_modified_counter = 0; |
2283 | |
2284 | table->stat_initialized = TRUE; |
2285 | |
2286 | dict_stats_assert_initialized(table); |
2287 | |
2288 | dict_table_stats_unlock(table, RW_X_LATCH); |
2289 | |
2290 | return(DB_SUCCESS); |
2291 | } |
2292 | |
2293 | #include "mysql_com.h" |
2294 | /** Save an individual index's statistic into the persistent statistics |
2295 | storage. |
2296 | @param[in] index index to be updated |
2297 | @param[in] last_update timestamp of the stat |
2298 | @param[in] stat_name name of the stat |
2299 | @param[in] stat_value value of the stat |
2300 | @param[in] sample_size n pages sampled or NULL |
2301 | @param[in] stat_description description of the stat |
2302 | @param[in,out] trx in case of NULL the function will |
2303 | allocate and free the trx object. If it is not NULL then it will be |
2304 | rolled back only in the case of error, but not freed. |
2305 | @return DB_SUCCESS or error code */ |
2306 | dberr_t |
2307 | dict_stats_save_index_stat( |
2308 | dict_index_t* index, |
2309 | ib_time_t last_update, |
2310 | const char* stat_name, |
2311 | ib_uint64_t stat_value, |
2312 | ib_uint64_t* sample_size, |
2313 | const char* stat_description, |
2314 | trx_t* trx) |
2315 | { |
2316 | dberr_t ret; |
2317 | pars_info_t* pinfo; |
2318 | char db_utf8[MAX_DB_UTF8_LEN]; |
2319 | char table_utf8[MAX_TABLE_UTF8_LEN]; |
2320 | |
2321 | ut_ad(!trx || trx->internal || trx->mysql_thd); |
2322 | ut_ad(rw_lock_own(dict_operation_lock, RW_LOCK_X)); |
2323 | ut_ad(mutex_own(&dict_sys->mutex)); |
2324 | |
2325 | dict_fs2utf8(index->table->name.m_name, db_utf8, sizeof(db_utf8), |
2326 | table_utf8, sizeof(table_utf8)); |
2327 | |
2328 | pinfo = pars_info_create(); |
2329 | pars_info_add_str_literal(pinfo, "database_name" , db_utf8); |
2330 | pars_info_add_str_literal(pinfo, "table_name" , table_utf8); |
2331 | pars_info_add_str_literal(pinfo, "index_name" , index->name); |
2332 | UNIV_MEM_ASSERT_RW_ABORT(&last_update, 4); |
2333 | pars_info_add_int4_literal(pinfo, "last_update" , uint32(last_update)); |
2334 | UNIV_MEM_ASSERT_RW_ABORT(stat_name, strlen(stat_name)); |
2335 | pars_info_add_str_literal(pinfo, "stat_name" , stat_name); |
2336 | UNIV_MEM_ASSERT_RW_ABORT(&stat_value, 8); |
2337 | pars_info_add_ull_literal(pinfo, "stat_value" , stat_value); |
2338 | if (sample_size != NULL) { |
2339 | UNIV_MEM_ASSERT_RW_ABORT(sample_size, 8); |
2340 | pars_info_add_ull_literal(pinfo, "sample_size" , *sample_size); |
2341 | } else { |
2342 | pars_info_add_literal(pinfo, "sample_size" , NULL, |
2343 | UNIV_SQL_NULL, DATA_FIXBINARY, 0); |
2344 | } |
2345 | UNIV_MEM_ASSERT_RW_ABORT(stat_description, strlen(stat_description)); |
2346 | pars_info_add_str_literal(pinfo, "stat_description" , |
2347 | stat_description); |
2348 | |
2349 | ret = dict_stats_exec_sql( |
2350 | pinfo, |
2351 | "PROCEDURE INDEX_STATS_SAVE () IS\n" |
2352 | "BEGIN\n" |
2353 | |
2354 | "DELETE FROM \"" INDEX_STATS_NAME "\"\n" |
2355 | "WHERE\n" |
2356 | "database_name = :database_name AND\n" |
2357 | "table_name = :table_name AND\n" |
2358 | "index_name = :index_name AND\n" |
2359 | "stat_name = :stat_name;\n" |
2360 | |
2361 | "INSERT INTO \"" INDEX_STATS_NAME "\"\n" |
2362 | "VALUES\n" |
2363 | "(\n" |
2364 | ":database_name,\n" |
2365 | ":table_name,\n" |
2366 | ":index_name,\n" |
2367 | ":last_update,\n" |
2368 | ":stat_name,\n" |
2369 | ":stat_value,\n" |
2370 | ":sample_size,\n" |
2371 | ":stat_description\n" |
2372 | ");\n" |
2373 | "END;" , trx); |
2374 | |
2375 | if (ret != DB_SUCCESS) { |
2376 | if (innodb_index_stats_not_found == false && |
2377 | index->stats_error_printed == false) { |
2378 | ib::error() << "Cannot save index statistics for table " |
2379 | << index->table->name |
2380 | << ", index " << index->name |
2381 | << ", stat name \"" << stat_name << "\": " |
2382 | << ut_strerr(ret); |
2383 | index->stats_error_printed = true; |
2384 | } |
2385 | } |
2386 | |
2387 | return(ret); |
2388 | } |
2389 | |
2390 | /** Report an error if updating table statistics failed because |
2391 | .ibd file is missing, table decryption failed or table is corrupted. |
2392 | @param[in,out] table Table |
2393 | @param[in] defragment true if statistics is for defragment |
2394 | @retval DB_DECRYPTION_FAILED if decryption of the table failed |
2395 | @retval DB_TABLESPACE_DELETED if .ibd file is missing |
2396 | @retval DB_CORRUPTION if table is marked as corrupted */ |
2397 | dberr_t |
2398 | dict_stats_report_error(dict_table_t* table, bool defragment) |
2399 | { |
2400 | dberr_t err; |
2401 | |
2402 | const char* df = defragment ? " defragment" : "" ; |
2403 | |
2404 | if (!table->space) { |
2405 | ib::warn() << "Cannot save" << df << " statistics for table " |
2406 | << table->name |
2407 | << " because the .ibd file is missing. " |
2408 | << TROUBLESHOOTING_MSG; |
2409 | err = DB_TABLESPACE_DELETED; |
2410 | } else { |
2411 | ib::warn() << "Cannot save" << df << " statistics for table " |
2412 | << table->name |
2413 | << " because file " |
2414 | << table->space->chain.start->name |
2415 | << (table->corrupted |
2416 | ? " is corrupted." |
2417 | : " cannot be decrypted." ); |
2418 | err = table->corrupted ? DB_CORRUPTION : DB_DECRYPTION_FAILED; |
2419 | } |
2420 | |
2421 | dict_stats_empty_table(table, defragment); |
2422 | return err; |
2423 | } |
2424 | |
2425 | /** Save the table's statistics into the persistent statistics storage. |
2426 | @param[in] table_orig table whose stats to save |
2427 | @param[in] only_for_index if this is non-NULL, then stats for indexes |
2428 | that are not equal to it will not be saved, if NULL, then all indexes' stats |
2429 | are saved |
2430 | @return DB_SUCCESS or error code */ |
2431 | static |
2432 | dberr_t |
2433 | dict_stats_save( |
2434 | dict_table_t* table_orig, |
2435 | const index_id_t* only_for_index) |
2436 | { |
2437 | pars_info_t* pinfo; |
2438 | ib_time_t now; |
2439 | dberr_t ret; |
2440 | dict_table_t* table; |
2441 | char db_utf8[MAX_DB_UTF8_LEN]; |
2442 | char table_utf8[MAX_TABLE_UTF8_LEN]; |
2443 | |
2444 | if (high_level_read_only) { |
2445 | return DB_READ_ONLY; |
2446 | } |
2447 | |
2448 | if (!table_orig->is_readable()) { |
2449 | return (dict_stats_report_error(table_orig)); |
2450 | } |
2451 | |
2452 | table = dict_stats_snapshot_create(table_orig); |
2453 | |
2454 | dict_fs2utf8(table->name.m_name, db_utf8, sizeof(db_utf8), |
2455 | table_utf8, sizeof(table_utf8)); |
2456 | |
2457 | now = ut_time(); |
2458 | rw_lock_x_lock(dict_operation_lock); |
2459 | mutex_enter(&dict_sys->mutex); |
2460 | |
2461 | pinfo = pars_info_create(); |
2462 | |
2463 | pars_info_add_str_literal(pinfo, "database_name" , db_utf8); |
2464 | pars_info_add_str_literal(pinfo, "table_name" , table_utf8); |
2465 | pars_info_add_int4_literal(pinfo, "last_update" , uint32(now)); |
2466 | pars_info_add_ull_literal(pinfo, "n_rows" , table->stat_n_rows); |
2467 | pars_info_add_ull_literal(pinfo, "clustered_index_size" , |
2468 | table->stat_clustered_index_size); |
2469 | pars_info_add_ull_literal(pinfo, "sum_of_other_index_sizes" , |
2470 | table->stat_sum_of_other_index_sizes); |
2471 | |
2472 | ret = dict_stats_exec_sql( |
2473 | pinfo, |
2474 | "PROCEDURE TABLE_STATS_SAVE () IS\n" |
2475 | "BEGIN\n" |
2476 | |
2477 | "DELETE FROM \"" TABLE_STATS_NAME "\"\n" |
2478 | "WHERE\n" |
2479 | "database_name = :database_name AND\n" |
2480 | "table_name = :table_name;\n" |
2481 | |
2482 | "INSERT INTO \"" TABLE_STATS_NAME "\"\n" |
2483 | "VALUES\n" |
2484 | "(\n" |
2485 | ":database_name,\n" |
2486 | ":table_name,\n" |
2487 | ":last_update,\n" |
2488 | ":n_rows,\n" |
2489 | ":clustered_index_size,\n" |
2490 | ":sum_of_other_index_sizes\n" |
2491 | ");\n" |
2492 | "END;" , NULL); |
2493 | |
2494 | if (ret != DB_SUCCESS) { |
2495 | ib::error() << "Cannot save table statistics for table " |
2496 | << table->name << ": " << ut_strerr(ret); |
2497 | |
2498 | mutex_exit(&dict_sys->mutex); |
2499 | rw_lock_x_unlock(dict_operation_lock); |
2500 | |
2501 | dict_stats_snapshot_free(table); |
2502 | |
2503 | return(ret); |
2504 | } |
2505 | |
2506 | trx_t* trx = trx_create(); |
2507 | trx_start_internal(trx); |
2508 | |
2509 | dict_index_t* index; |
2510 | index_map_t indexes( |
2511 | (ut_strcmp_functor()), |
2512 | index_map_t_allocator(mem_key_dict_stats_index_map_t)); |
2513 | |
2514 | /* Below we do all the modifications in innodb_index_stats in a single |
2515 | transaction for performance reasons. Modifying more than one row in a |
2516 | single transaction may deadlock with other transactions if they |
2517 | lock the rows in different order. Other transaction could be for |
2518 | example when we DROP a table and do |
2519 | DELETE FROM innodb_index_stats WHERE database_name = '...' |
2520 | AND table_name = '...'; which will affect more than one row. To |
2521 | prevent deadlocks we always lock the rows in the same order - the |
2522 | order of the PK, which is (database_name, table_name, index_name, |
2523 | stat_name). This is why below we sort the indexes by name and then |
2524 | for each index, do the mods ordered by stat_name. */ |
2525 | |
2526 | for (index = dict_table_get_first_index(table); |
2527 | index != NULL; |
2528 | index = dict_table_get_next_index(index)) { |
2529 | |
2530 | indexes[index->name] = index; |
2531 | } |
2532 | |
2533 | index_map_t::const_iterator it; |
2534 | |
2535 | for (it = indexes.begin(); it != indexes.end(); ++it) { |
2536 | |
2537 | index = it->second; |
2538 | |
2539 | if (only_for_index != NULL && index->id != *only_for_index) { |
2540 | continue; |
2541 | } |
2542 | |
2543 | if (dict_stats_should_ignore_index(index)) { |
2544 | continue; |
2545 | } |
2546 | |
2547 | ut_ad(!dict_index_is_ibuf(index)); |
2548 | |
2549 | for (unsigned i = 0; i < index->n_uniq; i++) { |
2550 | |
2551 | char stat_name[16]; |
2552 | char stat_description[1024]; |
2553 | |
2554 | snprintf(stat_name, sizeof(stat_name), |
2555 | "n_diff_pfx%02u" , i + 1); |
2556 | |
2557 | /* craft a string that contains the column names */ |
2558 | snprintf(stat_description, sizeof(stat_description), |
2559 | "%s" , index->fields[0].name()); |
2560 | for (unsigned j = 1; j <= i; j++) { |
2561 | size_t len; |
2562 | |
2563 | len = strlen(stat_description); |
2564 | |
2565 | snprintf(stat_description + len, |
2566 | sizeof(stat_description) - len, |
2567 | ",%s" , index->fields[j].name()); |
2568 | } |
2569 | |
2570 | ret = dict_stats_save_index_stat( |
2571 | index, now, stat_name, |
2572 | index->stat_n_diff_key_vals[i], |
2573 | &index->stat_n_sample_sizes[i], |
2574 | stat_description, trx); |
2575 | |
2576 | if (ret != DB_SUCCESS) { |
2577 | goto end; |
2578 | } |
2579 | } |
2580 | |
2581 | ret = dict_stats_save_index_stat(index, now, "n_leaf_pages" , |
2582 | index->stat_n_leaf_pages, |
2583 | NULL, |
2584 | "Number of leaf pages " |
2585 | "in the index" , trx); |
2586 | if (ret != DB_SUCCESS) { |
2587 | goto end; |
2588 | } |
2589 | |
2590 | ret = dict_stats_save_index_stat(index, now, "size" , |
2591 | index->stat_index_size, |
2592 | NULL, |
2593 | "Number of pages " |
2594 | "in the index" , trx); |
2595 | if (ret != DB_SUCCESS) { |
2596 | goto end; |
2597 | } |
2598 | } |
2599 | |
2600 | trx_commit_for_mysql(trx); |
2601 | |
2602 | end: |
2603 | trx_free(trx); |
2604 | |
2605 | mutex_exit(&dict_sys->mutex); |
2606 | rw_lock_x_unlock(dict_operation_lock); |
2607 | |
2608 | dict_stats_snapshot_free(table); |
2609 | |
2610 | return(ret); |
2611 | } |
2612 | |
2613 | /*********************************************************************//** |
2614 | Called for the row that is selected by |
2615 | SELECT ... FROM mysql.innodb_table_stats WHERE table='...' |
2616 | The second argument is a pointer to the table and the fetched stats are |
2617 | written to it. |
2618 | @return non-NULL dummy */ |
2619 | static |
2620 | ibool |
2621 | dict_stats_fetch_table_stats_step( |
2622 | /*==============================*/ |
2623 | void* node_void, /*!< in: select node */ |
2624 | void* table_void) /*!< out: table */ |
2625 | { |
2626 | sel_node_t* node = (sel_node_t*) node_void; |
2627 | dict_table_t* table = (dict_table_t*) table_void; |
2628 | que_common_t* cnode; |
2629 | int i; |
2630 | |
2631 | /* this should loop exactly 3 times - for |
2632 | n_rows,clustered_index_size,sum_of_other_index_sizes */ |
2633 | for (cnode = static_cast<que_common_t*>(node->select_list), i = 0; |
2634 | cnode != NULL; |
2635 | cnode = static_cast<que_common_t*>(que_node_get_next(cnode)), |
2636 | i++) { |
2637 | |
2638 | const byte* data; |
2639 | dfield_t* dfield = que_node_get_val(cnode); |
2640 | dtype_t* type = dfield_get_type(dfield); |
2641 | ulint len = dfield_get_len(dfield); |
2642 | |
2643 | data = static_cast<const byte*>(dfield_get_data(dfield)); |
2644 | |
2645 | switch (i) { |
2646 | case 0: /* mysql.innodb_table_stats.n_rows */ |
2647 | |
2648 | ut_a(dtype_get_mtype(type) == DATA_INT); |
2649 | ut_a(len == 8); |
2650 | |
2651 | table->stat_n_rows = mach_read_from_8(data); |
2652 | |
2653 | break; |
2654 | |
2655 | case 1: /* mysql.innodb_table_stats.clustered_index_size */ |
2656 | |
2657 | ut_a(dtype_get_mtype(type) == DATA_INT); |
2658 | ut_a(len == 8); |
2659 | |
2660 | table->stat_clustered_index_size |
2661 | = (ulint) mach_read_from_8(data); |
2662 | |
2663 | break; |
2664 | |
2665 | case 2: /* mysql.innodb_table_stats.sum_of_other_index_sizes */ |
2666 | |
2667 | ut_a(dtype_get_mtype(type) == DATA_INT); |
2668 | ut_a(len == 8); |
2669 | |
2670 | table->stat_sum_of_other_index_sizes |
2671 | = (ulint) mach_read_from_8(data); |
2672 | |
2673 | break; |
2674 | |
2675 | default: |
2676 | |
2677 | /* someone changed SELECT |
2678 | n_rows,clustered_index_size,sum_of_other_index_sizes |
2679 | to select more columns from innodb_table_stats without |
2680 | adjusting here */ |
2681 | ut_error; |
2682 | } |
2683 | } |
2684 | |
2685 | /* if i < 3 this means someone changed the |
2686 | SELECT n_rows,clustered_index_size,sum_of_other_index_sizes |
2687 | to select less columns from innodb_table_stats without adjusting here; |
2688 | if i > 3 we would have ut_error'ed earlier */ |
2689 | ut_a(i == 3 /*n_rows,clustered_index_size,sum_of_other_index_sizes*/); |
2690 | |
2691 | /* XXX this is not used but returning non-NULL is necessary */ |
2692 | return(TRUE); |
2693 | } |
2694 | |
2695 | /** Aux struct used to pass a table and a boolean to |
2696 | dict_stats_fetch_index_stats_step(). */ |
2697 | struct index_fetch_t { |
2698 | dict_table_t* table; /*!< table whose indexes are to be modified */ |
2699 | bool stats_were_modified; /*!< will be set to true if at |
2700 | least one index stats were modified */ |
2701 | }; |
2702 | |
2703 | /*********************************************************************//** |
2704 | Called for the rows that are selected by |
2705 | SELECT ... FROM mysql.innodb_index_stats WHERE table='...' |
2706 | The second argument is a pointer to the table and the fetched stats are |
2707 | written to its indexes. |
2708 | Let a table has N indexes and each index has Ui unique columns for i=1..N, |
2709 | then mysql.innodb_index_stats will have SUM(Ui) i=1..N rows for that table. |
2710 | So this function will be called SUM(Ui) times where SUM(Ui) is of magnitude |
2711 | N*AVG(Ui). In each call it searches for the currently fetched index into |
2712 | table->indexes linearly, assuming this list is not sorted. Thus, overall, |
2713 | fetching all indexes' stats from mysql.innodb_index_stats is O(N^2) where N |
2714 | is the number of indexes. |
2715 | This can be improved if we sort table->indexes in a temporary area just once |
2716 | and then search in that sorted list. Then the complexity will be O(N*log(N)). |
2717 | We assume a table will not have more than 100 indexes, so we go with the |
2718 | simpler N^2 algorithm. |
2719 | @return non-NULL dummy */ |
2720 | static |
2721 | ibool |
2722 | dict_stats_fetch_index_stats_step( |
2723 | /*==============================*/ |
2724 | void* node_void, /*!< in: select node */ |
2725 | void* arg_void) /*!< out: table + a flag that tells if we |
2726 | modified anything */ |
2727 | { |
2728 | sel_node_t* node = (sel_node_t*) node_void; |
2729 | index_fetch_t* arg = (index_fetch_t*) arg_void; |
2730 | dict_table_t* table = arg->table; |
2731 | dict_index_t* index = NULL; |
2732 | que_common_t* cnode; |
2733 | const char* stat_name = NULL; |
2734 | ulint stat_name_len = ULINT_UNDEFINED; |
2735 | ib_uint64_t stat_value = UINT64_UNDEFINED; |
2736 | ib_uint64_t sample_size = UINT64_UNDEFINED; |
2737 | int i; |
2738 | |
2739 | /* this should loop exactly 4 times - for the columns that |
2740 | were selected: index_name,stat_name,stat_value,sample_size */ |
2741 | for (cnode = static_cast<que_common_t*>(node->select_list), i = 0; |
2742 | cnode != NULL; |
2743 | cnode = static_cast<que_common_t*>(que_node_get_next(cnode)), |
2744 | i++) { |
2745 | |
2746 | const byte* data; |
2747 | dfield_t* dfield = que_node_get_val(cnode); |
2748 | dtype_t* type = dfield_get_type(dfield); |
2749 | ulint len = dfield_get_len(dfield); |
2750 | |
2751 | data = static_cast<const byte*>(dfield_get_data(dfield)); |
2752 | |
2753 | switch (i) { |
2754 | case 0: /* mysql.innodb_index_stats.index_name */ |
2755 | |
2756 | ut_a(dtype_get_mtype(type) == DATA_VARMYSQL); |
2757 | |
2758 | /* search for index in table's indexes whose name |
2759 | matches data; the fetched index name is in data, |
2760 | has no terminating '\0' and has length len */ |
2761 | for (index = dict_table_get_first_index(table); |
2762 | index != NULL; |
2763 | index = dict_table_get_next_index(index)) { |
2764 | |
2765 | if (index->is_committed() |
2766 | && strlen(index->name) == len |
2767 | && memcmp(index->name, data, len) == 0) { |
2768 | /* the corresponding index was found */ |
2769 | break; |
2770 | } |
2771 | } |
2772 | |
2773 | /* if index is NULL here this means that |
2774 | mysql.innodb_index_stats contains more rows than the |
2775 | number of indexes in the table; this is ok, we just |
2776 | return ignoring those extra rows; in other words |
2777 | dict_stats_fetch_index_stats_step() has been called |
2778 | for a row from index_stats with unknown index_name |
2779 | column */ |
2780 | if (index == NULL) { |
2781 | |
2782 | return(TRUE); |
2783 | } |
2784 | |
2785 | break; |
2786 | |
2787 | case 1: /* mysql.innodb_index_stats.stat_name */ |
2788 | |
2789 | ut_a(dtype_get_mtype(type) == DATA_VARMYSQL); |
2790 | |
2791 | ut_a(index != NULL); |
2792 | |
2793 | stat_name = (const char*) data; |
2794 | stat_name_len = len; |
2795 | |
2796 | break; |
2797 | |
2798 | case 2: /* mysql.innodb_index_stats.stat_value */ |
2799 | |
2800 | ut_a(dtype_get_mtype(type) == DATA_INT); |
2801 | ut_a(len == 8); |
2802 | |
2803 | ut_a(index != NULL); |
2804 | ut_a(stat_name != NULL); |
2805 | ut_a(stat_name_len != ULINT_UNDEFINED); |
2806 | |
2807 | stat_value = mach_read_from_8(data); |
2808 | |
2809 | break; |
2810 | |
2811 | case 3: /* mysql.innodb_index_stats.sample_size */ |
2812 | |
2813 | ut_a(dtype_get_mtype(type) == DATA_INT); |
2814 | ut_a(len == 8 || len == UNIV_SQL_NULL); |
2815 | |
2816 | ut_a(index != NULL); |
2817 | ut_a(stat_name != NULL); |
2818 | ut_a(stat_name_len != ULINT_UNDEFINED); |
2819 | ut_a(stat_value != UINT64_UNDEFINED); |
2820 | |
2821 | if (len == UNIV_SQL_NULL) { |
2822 | break; |
2823 | } |
2824 | /* else */ |
2825 | |
2826 | sample_size = mach_read_from_8(data); |
2827 | |
2828 | break; |
2829 | |
2830 | default: |
2831 | |
2832 | /* someone changed |
2833 | SELECT index_name,stat_name,stat_value,sample_size |
2834 | to select more columns from innodb_index_stats without |
2835 | adjusting here */ |
2836 | ut_error; |
2837 | } |
2838 | } |
2839 | |
2840 | /* if i < 4 this means someone changed the |
2841 | SELECT index_name,stat_name,stat_value,sample_size |
2842 | to select less columns from innodb_index_stats without adjusting here; |
2843 | if i > 4 we would have ut_error'ed earlier */ |
2844 | ut_a(i == 4 /* index_name,stat_name,stat_value,sample_size */); |
2845 | |
2846 | ut_a(index != NULL); |
2847 | ut_a(stat_name != NULL); |
2848 | ut_a(stat_name_len != ULINT_UNDEFINED); |
2849 | ut_a(stat_value != UINT64_UNDEFINED); |
2850 | /* sample_size could be UINT64_UNDEFINED here, if it is NULL */ |
2851 | |
2852 | #define PFX "n_diff_pfx" |
2853 | #define PFX_LEN 10 |
2854 | |
2855 | if (stat_name_len == 4 /* strlen("size") */ |
2856 | && strncasecmp("size" , stat_name, stat_name_len) == 0) { |
2857 | index->stat_index_size = (ulint) stat_value; |
2858 | arg->stats_were_modified = true; |
2859 | } else if (stat_name_len == 12 /* strlen("n_leaf_pages") */ |
2860 | && strncasecmp("n_leaf_pages" , stat_name, stat_name_len) |
2861 | == 0) { |
2862 | index->stat_n_leaf_pages = (ulint) stat_value; |
2863 | arg->stats_were_modified = true; |
2864 | } else if (stat_name_len == 12 /* strlen("n_page_split") */ |
2865 | && strncasecmp("n_page_split" , stat_name, stat_name_len) |
2866 | == 0) { |
2867 | index->stat_defrag_n_page_split = (ulint) stat_value; |
2868 | arg->stats_were_modified = true; |
2869 | } else if (stat_name_len == 13 /* strlen("n_pages_freed") */ |
2870 | && strncasecmp("n_pages_freed" , stat_name, stat_name_len) |
2871 | == 0) { |
2872 | index->stat_defrag_n_pages_freed = (ulint) stat_value; |
2873 | arg->stats_were_modified = true; |
2874 | } else if (stat_name_len > PFX_LEN /* e.g. stat_name=="n_diff_pfx01" */ |
2875 | && strncasecmp(PFX, stat_name, PFX_LEN) == 0) { |
2876 | |
2877 | const char* num_ptr; |
2878 | unsigned long n_pfx; |
2879 | |
2880 | /* point num_ptr into "1" from "n_diff_pfx12..." */ |
2881 | num_ptr = stat_name + PFX_LEN; |
2882 | |
2883 | /* stat_name should have exactly 2 chars appended to PFX |
2884 | and they should be digits */ |
2885 | if (stat_name_len != PFX_LEN + 2 |
2886 | || num_ptr[0] < '0' || num_ptr[0] > '9' |
2887 | || num_ptr[1] < '0' || num_ptr[1] > '9') { |
2888 | |
2889 | char db_utf8[MAX_DB_UTF8_LEN]; |
2890 | char table_utf8[MAX_TABLE_UTF8_LEN]; |
2891 | |
2892 | dict_fs2utf8(table->name.m_name, |
2893 | db_utf8, sizeof(db_utf8), |
2894 | table_utf8, sizeof(table_utf8)); |
2895 | |
2896 | ib::info out; |
2897 | out << "Ignoring strange row from " |
2898 | << INDEX_STATS_NAME_PRINT << " WHERE" |
2899 | " database_name = '" << db_utf8 |
2900 | << "' AND table_name = '" << table_utf8 |
2901 | << "' AND index_name = '" << index->name() |
2902 | << "' AND stat_name = '" ; |
2903 | out.write(stat_name, stat_name_len); |
2904 | out << "'; because stat_name is malformed" ; |
2905 | return(TRUE); |
2906 | } |
2907 | /* else */ |
2908 | |
2909 | /* extract 12 from "n_diff_pfx12..." into n_pfx |
2910 | note that stat_name does not have a terminating '\0' */ |
2911 | n_pfx = ulong(num_ptr[0] - '0') * 10 + ulong(num_ptr[1] - '0'); |
2912 | |
2913 | ulint n_uniq = index->n_uniq; |
2914 | |
2915 | if (n_pfx == 0 || n_pfx > n_uniq) { |
2916 | |
2917 | char db_utf8[MAX_DB_UTF8_LEN]; |
2918 | char table_utf8[MAX_TABLE_UTF8_LEN]; |
2919 | |
2920 | dict_fs2utf8(table->name.m_name, |
2921 | db_utf8, sizeof(db_utf8), |
2922 | table_utf8, sizeof(table_utf8)); |
2923 | |
2924 | ib::info out; |
2925 | out << "Ignoring strange row from " |
2926 | << INDEX_STATS_NAME_PRINT << " WHERE" |
2927 | " database_name = '" << db_utf8 |
2928 | << "' AND table_name = '" << table_utf8 |
2929 | << "' AND index_name = '" << index->name() |
2930 | << "' AND stat_name = '" ; |
2931 | out.write(stat_name, stat_name_len); |
2932 | out << "'; because stat_name is out of range, the index" |
2933 | " has " << n_uniq << " unique columns" ; |
2934 | |
2935 | return(TRUE); |
2936 | } |
2937 | /* else */ |
2938 | |
2939 | index->stat_n_diff_key_vals[n_pfx - 1] = stat_value; |
2940 | |
2941 | if (sample_size != UINT64_UNDEFINED) { |
2942 | index->stat_n_sample_sizes[n_pfx - 1] = sample_size; |
2943 | } else { |
2944 | /* hmm, strange... the user must have UPDATEd the |
2945 | table manually and SET sample_size = NULL */ |
2946 | index->stat_n_sample_sizes[n_pfx - 1] = 0; |
2947 | } |
2948 | |
2949 | index->stat_n_non_null_key_vals[n_pfx - 1] = 0; |
2950 | |
2951 | arg->stats_were_modified = true; |
2952 | } else { |
2953 | /* silently ignore rows with unknown stat_name, the |
2954 | user may have developed her own stats */ |
2955 | } |
2956 | |
2957 | /* XXX this is not used but returning non-NULL is necessary */ |
2958 | return(TRUE); |
2959 | } |
2960 | |
2961 | /*********************************************************************//** |
2962 | Read table's statistics from the persistent statistics storage. |
2963 | @return DB_SUCCESS or error code */ |
2964 | static |
2965 | dberr_t |
2966 | dict_stats_fetch_from_ps( |
2967 | /*=====================*/ |
2968 | dict_table_t* table) /*!< in/out: table */ |
2969 | { |
2970 | index_fetch_t index_fetch_arg; |
2971 | trx_t* trx; |
2972 | pars_info_t* pinfo; |
2973 | dberr_t ret; |
2974 | char db_utf8[MAX_DB_UTF8_LEN]; |
2975 | char table_utf8[MAX_TABLE_UTF8_LEN]; |
2976 | |
2977 | ut_ad(!mutex_own(&dict_sys->mutex)); |
2978 | |
2979 | /* Initialize all stats to dummy values before fetching because if |
2980 | the persistent storage contains incomplete stats (e.g. missing stats |
2981 | for some index) then we would end up with (partially) uninitialized |
2982 | stats. */ |
2983 | dict_stats_empty_table(table, true); |
2984 | |
2985 | trx = trx_create(); |
2986 | |
2987 | /* Use 'read-uncommitted' so that the SELECTs we execute |
2988 | do not get blocked in case some user has locked the rows we |
2989 | are SELECTing */ |
2990 | |
2991 | trx->isolation_level = TRX_ISO_READ_UNCOMMITTED; |
2992 | |
2993 | if (srv_read_only_mode) { |
2994 | trx_start_internal_read_only(trx); |
2995 | } else { |
2996 | trx_start_internal(trx); |
2997 | } |
2998 | |
2999 | dict_fs2utf8(table->name.m_name, db_utf8, sizeof(db_utf8), |
3000 | table_utf8, sizeof(table_utf8)); |
3001 | |
3002 | pinfo = pars_info_create(); |
3003 | |
3004 | pars_info_add_str_literal(pinfo, "database_name" , db_utf8); |
3005 | |
3006 | pars_info_add_str_literal(pinfo, "table_name" , table_utf8); |
3007 | |
3008 | pars_info_bind_function(pinfo, |
3009 | "fetch_table_stats_step" , |
3010 | dict_stats_fetch_table_stats_step, |
3011 | table); |
3012 | |
3013 | index_fetch_arg.table = table; |
3014 | index_fetch_arg.stats_were_modified = false; |
3015 | pars_info_bind_function(pinfo, |
3016 | "fetch_index_stats_step" , |
3017 | dict_stats_fetch_index_stats_step, |
3018 | &index_fetch_arg); |
3019 | |
3020 | ret = que_eval_sql(pinfo, |
3021 | "PROCEDURE FETCH_STATS () IS\n" |
3022 | "found INT;\n" |
3023 | "DECLARE FUNCTION fetch_table_stats_step;\n" |
3024 | "DECLARE FUNCTION fetch_index_stats_step;\n" |
3025 | "DECLARE CURSOR table_stats_cur IS\n" |
3026 | " SELECT\n" |
3027 | /* if you change the selected fields, be |
3028 | sure to adjust |
3029 | dict_stats_fetch_table_stats_step() */ |
3030 | " n_rows,\n" |
3031 | " clustered_index_size,\n" |
3032 | " sum_of_other_index_sizes\n" |
3033 | " FROM \"" TABLE_STATS_NAME "\"\n" |
3034 | " WHERE\n" |
3035 | " database_name = :database_name AND\n" |
3036 | " table_name = :table_name;\n" |
3037 | "DECLARE CURSOR index_stats_cur IS\n" |
3038 | " SELECT\n" |
3039 | /* if you change the selected fields, be |
3040 | sure to adjust |
3041 | dict_stats_fetch_index_stats_step() */ |
3042 | " index_name,\n" |
3043 | " stat_name,\n" |
3044 | " stat_value,\n" |
3045 | " sample_size\n" |
3046 | " FROM \"" INDEX_STATS_NAME "\"\n" |
3047 | " WHERE\n" |
3048 | " database_name = :database_name AND\n" |
3049 | " table_name = :table_name;\n" |
3050 | |
3051 | "BEGIN\n" |
3052 | |
3053 | "OPEN table_stats_cur;\n" |
3054 | "FETCH table_stats_cur INTO\n" |
3055 | " fetch_table_stats_step();\n" |
3056 | "IF (SQL % NOTFOUND) THEN\n" |
3057 | " CLOSE table_stats_cur;\n" |
3058 | " RETURN;\n" |
3059 | "END IF;\n" |
3060 | "CLOSE table_stats_cur;\n" |
3061 | |
3062 | "OPEN index_stats_cur;\n" |
3063 | "found := 1;\n" |
3064 | "WHILE found = 1 LOOP\n" |
3065 | " FETCH index_stats_cur INTO\n" |
3066 | " fetch_index_stats_step();\n" |
3067 | " IF (SQL % NOTFOUND) THEN\n" |
3068 | " found := 0;\n" |
3069 | " END IF;\n" |
3070 | "END LOOP;\n" |
3071 | "CLOSE index_stats_cur;\n" |
3072 | |
3073 | "END;" , |
3074 | TRUE, trx); |
3075 | /* pinfo is freed by que_eval_sql() */ |
3076 | |
3077 | trx_commit_for_mysql(trx); |
3078 | |
3079 | trx_free(trx); |
3080 | |
3081 | if (!index_fetch_arg.stats_were_modified) { |
3082 | return(DB_STATS_DO_NOT_EXIST); |
3083 | } |
3084 | |
3085 | return(ret); |
3086 | } |
3087 | |
3088 | /*********************************************************************//** |
3089 | Clear defragmentation stats modified counter for all indices in table. */ |
3090 | static |
3091 | void |
3092 | dict_stats_empty_defrag_modified_counter( |
3093 | dict_table_t* table) /*!< in: table */ |
3094 | { |
3095 | dict_index_t* index; |
3096 | ut_a(table); |
3097 | for (index = dict_table_get_first_index(table); |
3098 | index != NULL; |
3099 | index = dict_table_get_next_index(index)) { |
3100 | index->stat_defrag_modified_counter = 0; |
3101 | } |
3102 | } |
3103 | |
3104 | /*********************************************************************//** |
3105 | Fetches or calculates new estimates for index statistics. */ |
3106 | void |
3107 | dict_stats_update_for_index( |
3108 | /*========================*/ |
3109 | dict_index_t* index) /*!< in/out: index */ |
3110 | { |
3111 | DBUG_ENTER("dict_stats_update_for_index" ); |
3112 | |
3113 | ut_ad(!mutex_own(&dict_sys->mutex)); |
3114 | |
3115 | if (dict_stats_is_persistent_enabled(index->table)) { |
3116 | |
3117 | if (dict_stats_persistent_storage_check(false)) { |
3118 | dict_table_stats_lock(index->table, RW_X_LATCH); |
3119 | dict_stats_analyze_index(index); |
3120 | dict_table_stats_unlock(index->table, RW_X_LATCH); |
3121 | dict_stats_save(index->table, &index->id); |
3122 | DBUG_VOID_RETURN; |
3123 | } |
3124 | /* else */ |
3125 | |
3126 | if (innodb_index_stats_not_found == false && |
3127 | index->stats_error_printed == false) { |
3128 | /* Fall back to transient stats since the persistent |
3129 | storage is not present or is corrupted */ |
3130 | |
3131 | ib::info() << "Recalculation of persistent statistics" |
3132 | " requested for table " << index->table->name |
3133 | << " index " << index->name |
3134 | << " but the required" |
3135 | " persistent statistics storage is not present or is" |
3136 | " corrupted. Using transient stats instead." ; |
3137 | index->stats_error_printed = false; |
3138 | } |
3139 | } |
3140 | |
3141 | dict_table_stats_lock(index->table, RW_X_LATCH); |
3142 | dict_stats_update_transient_for_index(index); |
3143 | dict_table_stats_unlock(index->table, RW_X_LATCH); |
3144 | |
3145 | DBUG_VOID_RETURN; |
3146 | } |
3147 | |
3148 | /*********************************************************************//** |
3149 | Calculates new estimates for table and index statistics. The statistics |
3150 | are used in query optimization. |
3151 | @return DB_SUCCESS or error code */ |
3152 | dberr_t |
3153 | dict_stats_update( |
3154 | /*==============*/ |
3155 | dict_table_t* table, /*!< in/out: table */ |
3156 | dict_stats_upd_option_t stats_upd_option) |
3157 | /*!< in: whether to (re) calc |
3158 | the stats or to fetch them from |
3159 | the persistent statistics |
3160 | storage */ |
3161 | { |
3162 | ut_ad(!mutex_own(&dict_sys->mutex)); |
3163 | |
3164 | if (!table->is_readable()) { |
3165 | return (dict_stats_report_error(table)); |
3166 | } else if (srv_force_recovery >= SRV_FORCE_NO_IBUF_MERGE) { |
3167 | /* If we have set a high innodb_force_recovery level, do |
3168 | not calculate statistics, as a badly corrupted index can |
3169 | cause a crash in it. */ |
3170 | dict_stats_empty_table(table, false); |
3171 | return(DB_SUCCESS); |
3172 | } |
3173 | |
3174 | switch (stats_upd_option) { |
3175 | case DICT_STATS_RECALC_PERSISTENT: |
3176 | |
3177 | if (srv_read_only_mode) { |
3178 | goto transient; |
3179 | } |
3180 | |
3181 | /* Persistent recalculation requested, called from |
3182 | 1) ANALYZE TABLE, or |
3183 | 2) the auto recalculation background thread, or |
3184 | 3) open table if stats do not exist on disk and auto recalc |
3185 | is enabled */ |
3186 | |
3187 | /* InnoDB internal tables (e.g. SYS_TABLES) cannot have |
3188 | persistent stats enabled */ |
3189 | ut_a(strchr(table->name.m_name, '/') != NULL); |
3190 | |
3191 | /* check if the persistent statistics storage exists |
3192 | before calling the potentially slow function |
3193 | dict_stats_update_persistent(); that is a |
3194 | prerequisite for dict_stats_save() succeeding */ |
3195 | if (dict_stats_persistent_storage_check(false)) { |
3196 | |
3197 | dberr_t err; |
3198 | |
3199 | err = dict_stats_update_persistent(table); |
3200 | |
3201 | if (err != DB_SUCCESS) { |
3202 | return(err); |
3203 | } |
3204 | |
3205 | err = dict_stats_save(table, NULL); |
3206 | |
3207 | return(err); |
3208 | } |
3209 | |
3210 | /* Fall back to transient stats since the persistent |
3211 | storage is not present or is corrupted */ |
3212 | |
3213 | if (innodb_table_stats_not_found == false && |
3214 | table->stats_error_printed == false) { |
3215 | ib::warn() << "Recalculation of persistent statistics" |
3216 | " requested for table " |
3217 | << table->name |
3218 | << " but the required persistent" |
3219 | " statistics storage is not present or is corrupted." |
3220 | " Using transient stats instead." ; |
3221 | table->stats_error_printed = true; |
3222 | } |
3223 | |
3224 | goto transient; |
3225 | |
3226 | case DICT_STATS_RECALC_TRANSIENT: |
3227 | |
3228 | goto transient; |
3229 | |
3230 | case DICT_STATS_EMPTY_TABLE: |
3231 | |
3232 | dict_stats_empty_table(table, true); |
3233 | |
3234 | /* If table is using persistent stats, |
3235 | then save the stats on disk */ |
3236 | |
3237 | if (dict_stats_is_persistent_enabled(table)) { |
3238 | |
3239 | if (dict_stats_persistent_storage_check(false)) { |
3240 | |
3241 | return(dict_stats_save(table, NULL)); |
3242 | } |
3243 | |
3244 | return(DB_STATS_DO_NOT_EXIST); |
3245 | } |
3246 | |
3247 | return(DB_SUCCESS); |
3248 | |
3249 | case DICT_STATS_FETCH_ONLY_IF_NOT_IN_MEMORY: |
3250 | |
3251 | /* fetch requested, either fetch from persistent statistics |
3252 | storage or use the old method */ |
3253 | |
3254 | if (table->stat_initialized) { |
3255 | return(DB_SUCCESS); |
3256 | } |
3257 | |
3258 | /* InnoDB internal tables (e.g. SYS_TABLES) cannot have |
3259 | persistent stats enabled */ |
3260 | ut_a(strchr(table->name.m_name, '/') != NULL); |
3261 | |
3262 | if (!dict_stats_persistent_storage_check(false)) { |
3263 | /* persistent statistics storage does not exist |
3264 | or is corrupted, calculate the transient stats */ |
3265 | |
3266 | if (innodb_table_stats_not_found == false && |
3267 | table->stats_error_printed == false) { |
3268 | ib::error() << "Fetch of persistent statistics" |
3269 | " requested for table " |
3270 | << table->name |
3271 | << " but the required system tables " |
3272 | << TABLE_STATS_NAME_PRINT |
3273 | << " and " << INDEX_STATS_NAME_PRINT |
3274 | << " are not present or have unexpected" |
3275 | " structure. Using transient stats instead." ; |
3276 | table->stats_error_printed = true; |
3277 | } |
3278 | |
3279 | goto transient; |
3280 | } |
3281 | |
3282 | dict_table_t* t; |
3283 | |
3284 | /* Create a dummy table object with the same name and |
3285 | indexes, suitable for fetching the stats into it. */ |
3286 | t = dict_stats_table_clone_create(table); |
3287 | |
3288 | dberr_t err = dict_stats_fetch_from_ps(t); |
3289 | |
3290 | t->stats_last_recalc = table->stats_last_recalc; |
3291 | t->stat_modified_counter = 0; |
3292 | dict_stats_empty_defrag_modified_counter(t); |
3293 | |
3294 | switch (err) { |
3295 | case DB_SUCCESS: |
3296 | |
3297 | dict_table_stats_lock(table, RW_X_LATCH); |
3298 | |
3299 | /* Pass reset_ignored_indexes=true as parameter |
3300 | to dict_stats_copy. This will cause statictics |
3301 | for corrupted indexes to be set to empty values */ |
3302 | dict_stats_copy(table, t, true); |
3303 | |
3304 | dict_stats_assert_initialized(table); |
3305 | |
3306 | dict_table_stats_unlock(table, RW_X_LATCH); |
3307 | |
3308 | dict_stats_table_clone_free(t); |
3309 | |
3310 | return(DB_SUCCESS); |
3311 | case DB_STATS_DO_NOT_EXIST: |
3312 | |
3313 | dict_stats_table_clone_free(t); |
3314 | |
3315 | if (srv_read_only_mode) { |
3316 | goto transient; |
3317 | } |
3318 | |
3319 | if (dict_stats_auto_recalc_is_enabled(table)) { |
3320 | return(dict_stats_update( |
3321 | table, |
3322 | DICT_STATS_RECALC_PERSISTENT)); |
3323 | } |
3324 | |
3325 | ib::info() << "Trying to use table " << table->name |
3326 | << " which has persistent statistics enabled," |
3327 | " but auto recalculation turned off and the" |
3328 | " statistics do not exist in " |
3329 | TABLE_STATS_NAME_PRINT |
3330 | " and " INDEX_STATS_NAME_PRINT |
3331 | ". Please either run \"ANALYZE TABLE " |
3332 | << table->name << ";\" manually or enable the" |
3333 | " auto recalculation with \"ALTER TABLE " |
3334 | << table->name << " STATS_AUTO_RECALC=1;\"." |
3335 | " InnoDB will now use transient statistics for " |
3336 | << table->name << "." ; |
3337 | |
3338 | goto transient; |
3339 | default: |
3340 | |
3341 | dict_stats_table_clone_free(t); |
3342 | |
3343 | if (innodb_table_stats_not_found == false && |
3344 | table->stats_error_printed == false) { |
3345 | ib::error() << "Error fetching persistent statistics" |
3346 | " for table " |
3347 | << table->name |
3348 | << " from " TABLE_STATS_NAME_PRINT " and " |
3349 | INDEX_STATS_NAME_PRINT ": " << ut_strerr(err) |
3350 | << ". Using transient stats method instead." ; |
3351 | } |
3352 | |
3353 | goto transient; |
3354 | } |
3355 | /* no "default:" in order to produce a compilation warning |
3356 | about unhandled enumeration value */ |
3357 | } |
3358 | |
3359 | transient: |
3360 | |
3361 | dict_table_stats_lock(table, RW_X_LATCH); |
3362 | |
3363 | dict_stats_update_transient(table); |
3364 | |
3365 | dict_table_stats_unlock(table, RW_X_LATCH); |
3366 | |
3367 | return(DB_SUCCESS); |
3368 | } |
3369 | |
3370 | /*********************************************************************//** |
3371 | Removes the information for a particular index's stats from the persistent |
3372 | storage if it exists and if there is data stored for this index. |
3373 | This function creates its own trx and commits it. |
3374 | A note from Marko why we cannot edit user and sys_* tables in one trx: |
3375 | marko: The problem is that ibuf merges should be disabled while we are |
3376 | rolling back dict transactions. |
3377 | marko: If ibuf merges are not disabled, we need to scan the *.ibd files. |
3378 | But we shouldn't open *.ibd files before we have rolled back dict |
3379 | transactions and opened the SYS_* records for the *.ibd files. |
3380 | @return DB_SUCCESS or error code */ |
3381 | dberr_t |
3382 | dict_stats_drop_index( |
3383 | /*==================*/ |
3384 | const char* db_and_table,/*!< in: db and table, e.g. 'db/table' */ |
3385 | const char* iname, /*!< in: index name */ |
3386 | char* errstr, /*!< out: error message if != DB_SUCCESS |
3387 | is returned */ |
3388 | ulint errstr_sz)/*!< in: size of the errstr buffer */ |
3389 | { |
3390 | char db_utf8[MAX_DB_UTF8_LEN]; |
3391 | char table_utf8[MAX_TABLE_UTF8_LEN]; |
3392 | pars_info_t* pinfo; |
3393 | dberr_t ret; |
3394 | |
3395 | ut_ad(!mutex_own(&dict_sys->mutex)); |
3396 | |
3397 | /* skip indexes whose table names do not contain a database name |
3398 | e.g. if we are dropping an index from SYS_TABLES */ |
3399 | if (strchr(db_and_table, '/') == NULL) { |
3400 | |
3401 | return(DB_SUCCESS); |
3402 | } |
3403 | |
3404 | dict_fs2utf8(db_and_table, db_utf8, sizeof(db_utf8), |
3405 | table_utf8, sizeof(table_utf8)); |
3406 | |
3407 | pinfo = pars_info_create(); |
3408 | |
3409 | pars_info_add_str_literal(pinfo, "database_name" , db_utf8); |
3410 | |
3411 | pars_info_add_str_literal(pinfo, "table_name" , table_utf8); |
3412 | |
3413 | pars_info_add_str_literal(pinfo, "index_name" , iname); |
3414 | |
3415 | rw_lock_x_lock(dict_operation_lock); |
3416 | mutex_enter(&dict_sys->mutex); |
3417 | |
3418 | ret = dict_stats_exec_sql( |
3419 | pinfo, |
3420 | "PROCEDURE DROP_INDEX_STATS () IS\n" |
3421 | "BEGIN\n" |
3422 | "DELETE FROM \"" INDEX_STATS_NAME "\" WHERE\n" |
3423 | "database_name = :database_name AND\n" |
3424 | "table_name = :table_name AND\n" |
3425 | "index_name = :index_name;\n" |
3426 | "END;\n" , NULL); |
3427 | |
3428 | mutex_exit(&dict_sys->mutex); |
3429 | rw_lock_x_unlock(dict_operation_lock); |
3430 | |
3431 | if (ret == DB_STATS_DO_NOT_EXIST) { |
3432 | ret = DB_SUCCESS; |
3433 | } |
3434 | |
3435 | if (ret != DB_SUCCESS) { |
3436 | snprintf(errstr, errstr_sz, |
3437 | "Unable to delete statistics for index %s" |
3438 | " from %s%s: %s. They can be deleted later using" |
3439 | " DELETE FROM %s WHERE" |
3440 | " database_name = '%s' AND" |
3441 | " table_name = '%s' AND" |
3442 | " index_name = '%s';" , |
3443 | iname, |
3444 | INDEX_STATS_NAME_PRINT, |
3445 | (ret == DB_LOCK_WAIT_TIMEOUT |
3446 | ? " because the rows are locked" |
3447 | : "" ), |
3448 | ut_strerr(ret), |
3449 | INDEX_STATS_NAME_PRINT, |
3450 | db_utf8, |
3451 | table_utf8, |
3452 | iname); |
3453 | |
3454 | ut_print_timestamp(stderr); |
3455 | fprintf(stderr, " InnoDB: %s\n" , errstr); |
3456 | } |
3457 | |
3458 | return(ret); |
3459 | } |
3460 | |
3461 | /*********************************************************************//** |
3462 | Executes |
3463 | DELETE FROM mysql.innodb_table_stats |
3464 | WHERE database_name = '...' AND table_name = '...'; |
3465 | Creates its own transaction and commits it. |
3466 | @return DB_SUCCESS or error code */ |
3467 | UNIV_INLINE |
3468 | dberr_t |
3469 | dict_stats_delete_from_table_stats( |
3470 | /*===============================*/ |
3471 | const char* database_name, /*!< in: database name, e.g. 'db' */ |
3472 | const char* table_name) /*!< in: table name, e.g. 'table' */ |
3473 | { |
3474 | pars_info_t* pinfo; |
3475 | dberr_t ret; |
3476 | |
3477 | ut_ad(rw_lock_own(dict_operation_lock, RW_LOCK_X)); |
3478 | ut_ad(mutex_own(&dict_sys->mutex)); |
3479 | |
3480 | pinfo = pars_info_create(); |
3481 | |
3482 | pars_info_add_str_literal(pinfo, "database_name" , database_name); |
3483 | pars_info_add_str_literal(pinfo, "table_name" , table_name); |
3484 | |
3485 | ret = dict_stats_exec_sql( |
3486 | pinfo, |
3487 | "PROCEDURE DELETE_FROM_TABLE_STATS () IS\n" |
3488 | "BEGIN\n" |
3489 | "DELETE FROM \"" TABLE_STATS_NAME "\" WHERE\n" |
3490 | "database_name = :database_name AND\n" |
3491 | "table_name = :table_name;\n" |
3492 | "END;\n" , NULL); |
3493 | |
3494 | return(ret); |
3495 | } |
3496 | |
3497 | /*********************************************************************//** |
3498 | Executes |
3499 | DELETE FROM mysql.innodb_index_stats |
3500 | WHERE database_name = '...' AND table_name = '...'; |
3501 | Creates its own transaction and commits it. |
3502 | @return DB_SUCCESS or error code */ |
3503 | UNIV_INLINE |
3504 | dberr_t |
3505 | dict_stats_delete_from_index_stats( |
3506 | /*===============================*/ |
3507 | const char* database_name, /*!< in: database name, e.g. 'db' */ |
3508 | const char* table_name) /*!< in: table name, e.g. 'table' */ |
3509 | { |
3510 | pars_info_t* pinfo; |
3511 | dberr_t ret; |
3512 | |
3513 | ut_ad(rw_lock_own(dict_operation_lock, RW_LOCK_X)); |
3514 | ut_ad(mutex_own(&dict_sys->mutex)); |
3515 | |
3516 | pinfo = pars_info_create(); |
3517 | |
3518 | pars_info_add_str_literal(pinfo, "database_name" , database_name); |
3519 | pars_info_add_str_literal(pinfo, "table_name" , table_name); |
3520 | |
3521 | ret = dict_stats_exec_sql( |
3522 | pinfo, |
3523 | "PROCEDURE DELETE_FROM_INDEX_STATS () IS\n" |
3524 | "BEGIN\n" |
3525 | "DELETE FROM \"" INDEX_STATS_NAME "\" WHERE\n" |
3526 | "database_name = :database_name AND\n" |
3527 | "table_name = :table_name;\n" |
3528 | "END;\n" , NULL); |
3529 | |
3530 | return(ret); |
3531 | } |
3532 | |
3533 | /*********************************************************************//** |
3534 | Removes the statistics for a table and all of its indexes from the |
3535 | persistent statistics storage if it exists and if there is data stored for |
3536 | the table. This function creates its own transaction and commits it. |
3537 | @return DB_SUCCESS or error code */ |
3538 | dberr_t |
3539 | dict_stats_drop_table( |
3540 | /*==================*/ |
3541 | const char* db_and_table, /*!< in: db and table, e.g. 'db/table' */ |
3542 | char* errstr, /*!< out: error message |
3543 | if != DB_SUCCESS is returned */ |
3544 | ulint errstr_sz) /*!< in: size of errstr buffer */ |
3545 | { |
3546 | char db_utf8[MAX_DB_UTF8_LEN]; |
3547 | char table_utf8[MAX_TABLE_UTF8_LEN]; |
3548 | dberr_t ret; |
3549 | |
3550 | ut_ad(rw_lock_own(dict_operation_lock, RW_LOCK_X)); |
3551 | ut_ad(mutex_own(&dict_sys->mutex)); |
3552 | |
3553 | /* skip tables that do not contain a database name |
3554 | e.g. if we are dropping SYS_TABLES */ |
3555 | if (strchr(db_and_table, '/') == NULL) { |
3556 | |
3557 | return(DB_SUCCESS); |
3558 | } |
3559 | |
3560 | /* skip innodb_table_stats and innodb_index_stats themselves */ |
3561 | if (strcmp(db_and_table, TABLE_STATS_NAME) == 0 |
3562 | || strcmp(db_and_table, INDEX_STATS_NAME) == 0) { |
3563 | |
3564 | return(DB_SUCCESS); |
3565 | } |
3566 | |
3567 | dict_fs2utf8(db_and_table, db_utf8, sizeof(db_utf8), |
3568 | table_utf8, sizeof(table_utf8)); |
3569 | |
3570 | ret = dict_stats_delete_from_table_stats(db_utf8, table_utf8); |
3571 | |
3572 | if (ret == DB_SUCCESS) { |
3573 | ret = dict_stats_delete_from_index_stats(db_utf8, table_utf8); |
3574 | } |
3575 | |
3576 | if (ret == DB_STATS_DO_NOT_EXIST) { |
3577 | ret = DB_SUCCESS; |
3578 | } |
3579 | |
3580 | if (ret != DB_SUCCESS) { |
3581 | |
3582 | snprintf(errstr, errstr_sz, |
3583 | "Unable to delete statistics for table %s.%s: %s." |
3584 | " They can be deleted later using" |
3585 | |
3586 | " DELETE FROM %s WHERE" |
3587 | " database_name = '%s' AND" |
3588 | " table_name = '%s';" |
3589 | |
3590 | " DELETE FROM %s WHERE" |
3591 | " database_name = '%s' AND" |
3592 | " table_name = '%s';" , |
3593 | |
3594 | db_utf8, table_utf8, |
3595 | ut_strerr(ret), |
3596 | |
3597 | INDEX_STATS_NAME_PRINT, |
3598 | db_utf8, table_utf8, |
3599 | |
3600 | TABLE_STATS_NAME_PRINT, |
3601 | db_utf8, table_utf8); |
3602 | } |
3603 | |
3604 | return(ret); |
3605 | } |
3606 | |
3607 | /*********************************************************************//** |
3608 | Executes |
3609 | UPDATE mysql.innodb_table_stats SET |
3610 | database_name = '...', table_name = '...' |
3611 | WHERE database_name = '...' AND table_name = '...'; |
3612 | Creates its own transaction and commits it. |
3613 | @return DB_SUCCESS or error code */ |
3614 | UNIV_INLINE |
3615 | dberr_t |
3616 | dict_stats_rename_table_in_table_stats( |
3617 | /*===================================*/ |
3618 | const char* old_dbname_utf8,/*!< in: database name, e.g. 'olddb' */ |
3619 | const char* old_tablename_utf8,/*!< in: table name, e.g. 'oldtable' */ |
3620 | const char* new_dbname_utf8,/*!< in: database name, e.g. 'newdb' */ |
3621 | const char* new_tablename_utf8)/*!< in: table name, e.g. 'newtable' */ |
3622 | { |
3623 | pars_info_t* pinfo; |
3624 | dberr_t ret; |
3625 | |
3626 | ut_ad(rw_lock_own(dict_operation_lock, RW_LOCK_X)); |
3627 | ut_ad(mutex_own(&dict_sys->mutex)); |
3628 | |
3629 | pinfo = pars_info_create(); |
3630 | |
3631 | pars_info_add_str_literal(pinfo, "old_dbname_utf8" , old_dbname_utf8); |
3632 | pars_info_add_str_literal(pinfo, "old_tablename_utf8" , old_tablename_utf8); |
3633 | pars_info_add_str_literal(pinfo, "new_dbname_utf8" , new_dbname_utf8); |
3634 | pars_info_add_str_literal(pinfo, "new_tablename_utf8" , new_tablename_utf8); |
3635 | |
3636 | ret = dict_stats_exec_sql( |
3637 | pinfo, |
3638 | "PROCEDURE RENAME_TABLE_IN_TABLE_STATS () IS\n" |
3639 | "BEGIN\n" |
3640 | "UPDATE \"" TABLE_STATS_NAME "\" SET\n" |
3641 | "database_name = :new_dbname_utf8,\n" |
3642 | "table_name = :new_tablename_utf8\n" |
3643 | "WHERE\n" |
3644 | "database_name = :old_dbname_utf8 AND\n" |
3645 | "table_name = :old_tablename_utf8;\n" |
3646 | "END;\n" , NULL); |
3647 | |
3648 | return(ret); |
3649 | } |
3650 | |
3651 | /*********************************************************************//** |
3652 | Executes |
3653 | UPDATE mysql.innodb_index_stats SET |
3654 | database_name = '...', table_name = '...' |
3655 | WHERE database_name = '...' AND table_name = '...'; |
3656 | Creates its own transaction and commits it. |
3657 | @return DB_SUCCESS or error code */ |
3658 | UNIV_INLINE |
3659 | dberr_t |
3660 | dict_stats_rename_table_in_index_stats( |
3661 | /*===================================*/ |
3662 | const char* old_dbname_utf8,/*!< in: database name, e.g. 'olddb' */ |
3663 | const char* old_tablename_utf8,/*!< in: table name, e.g. 'oldtable' */ |
3664 | const char* new_dbname_utf8,/*!< in: database name, e.g. 'newdb' */ |
3665 | const char* new_tablename_utf8)/*!< in: table name, e.g. 'newtable' */ |
3666 | { |
3667 | pars_info_t* pinfo; |
3668 | dberr_t ret; |
3669 | |
3670 | ut_ad(rw_lock_own(dict_operation_lock, RW_LOCK_X)); |
3671 | ut_ad(mutex_own(&dict_sys->mutex)); |
3672 | |
3673 | pinfo = pars_info_create(); |
3674 | |
3675 | pars_info_add_str_literal(pinfo, "old_dbname_utf8" , old_dbname_utf8); |
3676 | pars_info_add_str_literal(pinfo, "old_tablename_utf8" , old_tablename_utf8); |
3677 | pars_info_add_str_literal(pinfo, "new_dbname_utf8" , new_dbname_utf8); |
3678 | pars_info_add_str_literal(pinfo, "new_tablename_utf8" , new_tablename_utf8); |
3679 | |
3680 | ret = dict_stats_exec_sql( |
3681 | pinfo, |
3682 | "PROCEDURE RENAME_TABLE_IN_INDEX_STATS () IS\n" |
3683 | "BEGIN\n" |
3684 | "UPDATE \"" INDEX_STATS_NAME "\" SET\n" |
3685 | "database_name = :new_dbname_utf8,\n" |
3686 | "table_name = :new_tablename_utf8\n" |
3687 | "WHERE\n" |
3688 | "database_name = :old_dbname_utf8 AND\n" |
3689 | "table_name = :old_tablename_utf8;\n" |
3690 | "END;\n" , NULL); |
3691 | |
3692 | return(ret); |
3693 | } |
3694 | |
3695 | /*********************************************************************//** |
3696 | Renames a table in InnoDB persistent stats storage. |
3697 | This function creates its own transaction and commits it. |
3698 | @return DB_SUCCESS or error code */ |
3699 | dberr_t |
3700 | dict_stats_rename_table( |
3701 | /*====================*/ |
3702 | const char* old_name, /*!< in: old name, e.g. 'db/table' */ |
3703 | const char* new_name, /*!< in: new name, e.g. 'db/table' */ |
3704 | char* errstr, /*!< out: error string if != DB_SUCCESS |
3705 | is returned */ |
3706 | size_t errstr_sz) /*!< in: errstr size */ |
3707 | { |
3708 | char old_db_utf8[MAX_DB_UTF8_LEN]; |
3709 | char new_db_utf8[MAX_DB_UTF8_LEN]; |
3710 | char old_table_utf8[MAX_TABLE_UTF8_LEN]; |
3711 | char new_table_utf8[MAX_TABLE_UTF8_LEN]; |
3712 | dberr_t ret; |
3713 | |
3714 | ut_ad(!rw_lock_own(dict_operation_lock, RW_LOCK_X)); |
3715 | ut_ad(!mutex_own(&dict_sys->mutex)); |
3716 | |
3717 | /* skip innodb_table_stats and innodb_index_stats themselves */ |
3718 | if (strcmp(old_name, TABLE_STATS_NAME) == 0 |
3719 | || strcmp(old_name, INDEX_STATS_NAME) == 0 |
3720 | || strcmp(new_name, TABLE_STATS_NAME) == 0 |
3721 | || strcmp(new_name, INDEX_STATS_NAME) == 0) { |
3722 | |
3723 | return(DB_SUCCESS); |
3724 | } |
3725 | |
3726 | dict_fs2utf8(old_name, old_db_utf8, sizeof(old_db_utf8), |
3727 | old_table_utf8, sizeof(old_table_utf8)); |
3728 | |
3729 | dict_fs2utf8(new_name, new_db_utf8, sizeof(new_db_utf8), |
3730 | new_table_utf8, sizeof(new_table_utf8)); |
3731 | |
3732 | rw_lock_x_lock(dict_operation_lock); |
3733 | mutex_enter(&dict_sys->mutex); |
3734 | |
3735 | ulint n_attempts = 0; |
3736 | do { |
3737 | n_attempts++; |
3738 | |
3739 | ret = dict_stats_rename_table_in_table_stats( |
3740 | old_db_utf8, old_table_utf8, |
3741 | new_db_utf8, new_table_utf8); |
3742 | |
3743 | if (ret == DB_DUPLICATE_KEY) { |
3744 | dict_stats_delete_from_table_stats( |
3745 | new_db_utf8, new_table_utf8); |
3746 | } |
3747 | |
3748 | if (ret == DB_STATS_DO_NOT_EXIST) { |
3749 | ret = DB_SUCCESS; |
3750 | } |
3751 | |
3752 | if (ret != DB_SUCCESS) { |
3753 | mutex_exit(&dict_sys->mutex); |
3754 | rw_lock_x_unlock(dict_operation_lock); |
3755 | os_thread_sleep(200000 /* 0.2 sec */); |
3756 | rw_lock_x_lock(dict_operation_lock); |
3757 | mutex_enter(&dict_sys->mutex); |
3758 | } |
3759 | } while ((ret == DB_DEADLOCK |
3760 | || ret == DB_DUPLICATE_KEY |
3761 | || ret == DB_LOCK_WAIT_TIMEOUT) |
3762 | && n_attempts < 5); |
3763 | |
3764 | if (ret != DB_SUCCESS) { |
3765 | snprintf(errstr, errstr_sz, |
3766 | "Unable to rename statistics from" |
3767 | " %s.%s to %s.%s in %s: %s." |
3768 | " They can be renamed later using" |
3769 | |
3770 | " UPDATE %s SET" |
3771 | " database_name = '%s'," |
3772 | " table_name = '%s'" |
3773 | " WHERE" |
3774 | " database_name = '%s' AND" |
3775 | " table_name = '%s';" , |
3776 | |
3777 | old_db_utf8, old_table_utf8, |
3778 | new_db_utf8, new_table_utf8, |
3779 | TABLE_STATS_NAME_PRINT, |
3780 | ut_strerr(ret), |
3781 | |
3782 | TABLE_STATS_NAME_PRINT, |
3783 | new_db_utf8, new_table_utf8, |
3784 | old_db_utf8, old_table_utf8); |
3785 | mutex_exit(&dict_sys->mutex); |
3786 | rw_lock_x_unlock(dict_operation_lock); |
3787 | return(ret); |
3788 | } |
3789 | /* else */ |
3790 | |
3791 | n_attempts = 0; |
3792 | do { |
3793 | n_attempts++; |
3794 | |
3795 | ret = dict_stats_rename_table_in_index_stats( |
3796 | old_db_utf8, old_table_utf8, |
3797 | new_db_utf8, new_table_utf8); |
3798 | |
3799 | if (ret == DB_DUPLICATE_KEY) { |
3800 | dict_stats_delete_from_index_stats( |
3801 | new_db_utf8, new_table_utf8); |
3802 | } |
3803 | |
3804 | if (ret == DB_STATS_DO_NOT_EXIST) { |
3805 | ret = DB_SUCCESS; |
3806 | } |
3807 | |
3808 | if (ret != DB_SUCCESS) { |
3809 | mutex_exit(&dict_sys->mutex); |
3810 | rw_lock_x_unlock(dict_operation_lock); |
3811 | os_thread_sleep(200000 /* 0.2 sec */); |
3812 | rw_lock_x_lock(dict_operation_lock); |
3813 | mutex_enter(&dict_sys->mutex); |
3814 | } |
3815 | } while ((ret == DB_DEADLOCK |
3816 | || ret == DB_DUPLICATE_KEY |
3817 | || ret == DB_LOCK_WAIT_TIMEOUT) |
3818 | && n_attempts < 5); |
3819 | |
3820 | mutex_exit(&dict_sys->mutex); |
3821 | rw_lock_x_unlock(dict_operation_lock); |
3822 | |
3823 | if (ret != DB_SUCCESS) { |
3824 | snprintf(errstr, errstr_sz, |
3825 | "Unable to rename statistics from" |
3826 | " %s.%s to %s.%s in %s: %s." |
3827 | " They can be renamed later using" |
3828 | |
3829 | " UPDATE %s SET" |
3830 | " database_name = '%s'," |
3831 | " table_name = '%s'" |
3832 | " WHERE" |
3833 | " database_name = '%s' AND" |
3834 | " table_name = '%s';" , |
3835 | |
3836 | old_db_utf8, old_table_utf8, |
3837 | new_db_utf8, new_table_utf8, |
3838 | INDEX_STATS_NAME_PRINT, |
3839 | ut_strerr(ret), |
3840 | |
3841 | INDEX_STATS_NAME_PRINT, |
3842 | new_db_utf8, new_table_utf8, |
3843 | old_db_utf8, old_table_utf8); |
3844 | } |
3845 | |
3846 | return(ret); |
3847 | } |
3848 | |
3849 | #ifdef MYSQL_RENAME_INDEX |
3850 | /*********************************************************************//** |
3851 | Renames an index in InnoDB persistent stats storage. |
3852 | This function creates its own transaction and commits it. |
3853 | @return DB_SUCCESS or error code. DB_STATS_DO_NOT_EXIST will be returned |
3854 | if the persistent stats do not exist. */ |
3855 | dberr_t |
3856 | dict_stats_rename_index( |
3857 | /*====================*/ |
3858 | const dict_table_t* table, /*!< in: table whose index |
3859 | is renamed */ |
3860 | const char* old_index_name, /*!< in: old index name */ |
3861 | const char* new_index_name) /*!< in: new index name */ |
3862 | { |
3863 | rw_lock_x_lock(dict_operation_lock); |
3864 | mutex_enter(&dict_sys->mutex); |
3865 | |
3866 | if (!dict_stats_persistent_storage_check(true)) { |
3867 | mutex_exit(&dict_sys->mutex); |
3868 | rw_lock_x_unlock(dict_operation_lock); |
3869 | return(DB_STATS_DO_NOT_EXIST); |
3870 | } |
3871 | |
3872 | char dbname_utf8[MAX_DB_UTF8_LEN]; |
3873 | char tablename_utf8[MAX_TABLE_UTF8_LEN]; |
3874 | |
3875 | dict_fs2utf8(table->name.m_name, dbname_utf8, sizeof(dbname_utf8), |
3876 | tablename_utf8, sizeof(tablename_utf8)); |
3877 | |
3878 | pars_info_t* pinfo; |
3879 | |
3880 | pinfo = pars_info_create(); |
3881 | |
3882 | pars_info_add_str_literal(pinfo, "dbname_utf8" , dbname_utf8); |
3883 | pars_info_add_str_literal(pinfo, "tablename_utf8" , tablename_utf8); |
3884 | pars_info_add_str_literal(pinfo, "new_index_name" , new_index_name); |
3885 | pars_info_add_str_literal(pinfo, "old_index_name" , old_index_name); |
3886 | |
3887 | dberr_t ret; |
3888 | |
3889 | ret = dict_stats_exec_sql( |
3890 | pinfo, |
3891 | "PROCEDURE RENAME_INDEX_IN_INDEX_STATS () IS\n" |
3892 | "BEGIN\n" |
3893 | "UPDATE \"" INDEX_STATS_NAME "\" SET\n" |
3894 | "index_name = :new_index_name\n" |
3895 | "WHERE\n" |
3896 | "database_name = :dbname_utf8 AND\n" |
3897 | "table_name = :tablename_utf8 AND\n" |
3898 | "index_name = :old_index_name;\n" |
3899 | "END;\n" , NULL); |
3900 | |
3901 | mutex_exit(&dict_sys->mutex); |
3902 | rw_lock_x_unlock(dict_operation_lock); |
3903 | |
3904 | return(ret); |
3905 | } |
3906 | #endif /* MYSQL_RENAME_INDEX */ |
3907 | |
3908 | /* tests @{ */ |
3909 | #ifdef UNIV_ENABLE_UNIT_TEST_DICT_STATS |
3910 | |
3911 | /* The following unit tests test some of the functions in this file |
3912 | individually, such testing cannot be performed by the mysql-test framework |
3913 | via SQL. */ |
3914 | |
3915 | /* test_dict_table_schema_check() @{ */ |
3916 | void |
3917 | test_dict_table_schema_check() |
3918 | { |
3919 | /* |
3920 | CREATE TABLE tcheck ( |
3921 | c01 VARCHAR(123), |
3922 | c02 INT, |
3923 | c03 INT NOT NULL, |
3924 | c04 INT UNSIGNED, |
3925 | c05 BIGINT, |
3926 | c06 BIGINT UNSIGNED NOT NULL, |
3927 | c07 TIMESTAMP |
3928 | ) ENGINE=INNODB; |
3929 | */ |
3930 | /* definition for the table 'test/tcheck' */ |
3931 | dict_col_meta_t columns[] = { |
3932 | {"c01" , DATA_VARCHAR, 0, 123}, |
3933 | {"c02" , DATA_INT, 0, 4}, |
3934 | {"c03" , DATA_INT, DATA_NOT_NULL, 4}, |
3935 | {"c04" , DATA_INT, DATA_UNSIGNED, 4}, |
3936 | {"c05" , DATA_INT, 0, 8}, |
3937 | {"c06" , DATA_INT, DATA_NOT_NULL | DATA_UNSIGNED, 8}, |
3938 | {"c07" , DATA_INT, 0, 4}, |
3939 | {"c_extra" , DATA_INT, 0, 4} |
3940 | }; |
3941 | dict_table_schema_t schema = { |
3942 | "test/tcheck" , |
3943 | 0 /* will be set individually for each test below */, |
3944 | columns |
3945 | }; |
3946 | char errstr[512]; |
3947 | |
3948 | snprintf(errstr, sizeof(errstr), "Table not found" ); |
3949 | |
3950 | /* prevent any data dictionary modifications while we are checking |
3951 | the tables' structure */ |
3952 | |
3953 | mutex_enter(&dict_sys->mutex); |
3954 | |
3955 | /* check that a valid table is reported as valid */ |
3956 | schema.n_cols = 7; |
3957 | if (dict_table_schema_check(&schema, errstr, sizeof(errstr)) |
3958 | == DB_SUCCESS) { |
3959 | printf("OK: test.tcheck ok\n" ); |
3960 | } else { |
3961 | printf("ERROR: %s\n" , errstr); |
3962 | printf("ERROR: test.tcheck not present or corrupted\n" ); |
3963 | goto test_dict_table_schema_check_end; |
3964 | } |
3965 | |
3966 | /* check columns with wrong length */ |
3967 | schema.columns[1].len = 8; |
3968 | if (dict_table_schema_check(&schema, errstr, sizeof(errstr)) |
3969 | != DB_SUCCESS) { |
3970 | printf("OK: test.tcheck.c02 has different length and is" |
3971 | " reported as corrupted\n" ); |
3972 | } else { |
3973 | printf("OK: test.tcheck.c02 has different length but is" |
3974 | " reported as ok\n" ); |
3975 | goto test_dict_table_schema_check_end; |
3976 | } |
3977 | schema.columns[1].len = 4; |
3978 | |
3979 | /* request that c02 is NOT NULL while actually it does not have |
3980 | this flag set */ |
3981 | schema.columns[1].prtype_mask |= DATA_NOT_NULL; |
3982 | if (dict_table_schema_check(&schema, errstr, sizeof(errstr)) |
3983 | != DB_SUCCESS) { |
3984 | printf("OK: test.tcheck.c02 does not have NOT NULL while" |
3985 | " it should and is reported as corrupted\n" ); |
3986 | } else { |
3987 | printf("ERROR: test.tcheck.c02 does not have NOT NULL while" |
3988 | " it should and is not reported as corrupted\n" ); |
3989 | goto test_dict_table_schema_check_end; |
3990 | } |
3991 | schema.columns[1].prtype_mask &= ~DATA_NOT_NULL; |
3992 | |
3993 | /* check a table that contains some extra columns */ |
3994 | schema.n_cols = 6; |
3995 | if (dict_table_schema_check(&schema, errstr, sizeof(errstr)) |
3996 | == DB_SUCCESS) { |
3997 | printf("ERROR: test.tcheck has more columns but is not" |
3998 | " reported as corrupted\n" ); |
3999 | goto test_dict_table_schema_check_end; |
4000 | } else { |
4001 | printf("OK: test.tcheck has more columns and is" |
4002 | " reported as corrupted\n" ); |
4003 | } |
4004 | |
4005 | /* check a table that has some columns missing */ |
4006 | schema.n_cols = 8; |
4007 | if (dict_table_schema_check(&schema, errstr, sizeof(errstr)) |
4008 | != DB_SUCCESS) { |
4009 | printf("OK: test.tcheck has missing columns and is" |
4010 | " reported as corrupted\n" ); |
4011 | } else { |
4012 | printf("ERROR: test.tcheck has missing columns but is" |
4013 | " reported as ok\n" ); |
4014 | goto test_dict_table_schema_check_end; |
4015 | } |
4016 | |
4017 | /* check non-existent table */ |
4018 | schema.table_name = "test/tcheck_nonexistent" ; |
4019 | if (dict_table_schema_check(&schema, errstr, sizeof(errstr)) |
4020 | != DB_SUCCESS) { |
4021 | printf("OK: test.tcheck_nonexistent is not present\n" ); |
4022 | } else { |
4023 | printf("ERROR: test.tcheck_nonexistent is present!?\n" ); |
4024 | goto test_dict_table_schema_check_end; |
4025 | } |
4026 | |
4027 | test_dict_table_schema_check_end: |
4028 | |
4029 | mutex_exit(&dict_sys->mutex); |
4030 | } |
4031 | /* @} */ |
4032 | |
4033 | /* save/fetch aux macros @{ */ |
4034 | #define TEST_DATABASE_NAME "foobardb" |
4035 | #define TEST_TABLE_NAME "test_dict_stats" |
4036 | |
4037 | #define TEST_N_ROWS 111 |
4038 | #define TEST_CLUSTERED_INDEX_SIZE 222 |
4039 | #define TEST_SUM_OF_OTHER_INDEX_SIZES 333 |
4040 | |
4041 | #define TEST_IDX1_NAME "tidx1" |
4042 | #define TEST_IDX1_COL1_NAME "tidx1_col1" |
4043 | #define TEST_IDX1_INDEX_SIZE 123 |
4044 | #define TEST_IDX1_N_LEAF_PAGES 234 |
4045 | #define TEST_IDX1_N_DIFF1 50 |
4046 | #define TEST_IDX1_N_DIFF1_SAMPLE_SIZE 500 |
4047 | |
4048 | #define TEST_IDX2_NAME "tidx2" |
4049 | #define TEST_IDX2_COL1_NAME "tidx2_col1" |
4050 | #define TEST_IDX2_COL2_NAME "tidx2_col2" |
4051 | #define TEST_IDX2_COL3_NAME "tidx2_col3" |
4052 | #define TEST_IDX2_COL4_NAME "tidx2_col4" |
4053 | #define TEST_IDX2_INDEX_SIZE 321 |
4054 | #define TEST_IDX2_N_LEAF_PAGES 432 |
4055 | #define TEST_IDX2_N_DIFF1 60 |
4056 | #define TEST_IDX2_N_DIFF1_SAMPLE_SIZE 600 |
4057 | #define TEST_IDX2_N_DIFF2 61 |
4058 | #define TEST_IDX2_N_DIFF2_SAMPLE_SIZE 610 |
4059 | #define TEST_IDX2_N_DIFF3 62 |
4060 | #define TEST_IDX2_N_DIFF3_SAMPLE_SIZE 620 |
4061 | #define TEST_IDX2_N_DIFF4 63 |
4062 | #define TEST_IDX2_N_DIFF4_SAMPLE_SIZE 630 |
4063 | /* @} */ |
4064 | |
4065 | /* test_dict_stats_save() @{ */ |
4066 | void |
4067 | test_dict_stats_save() |
4068 | { |
4069 | dict_table_t table; |
4070 | dict_index_t index1; |
4071 | dict_field_t index1_fields[1]; |
4072 | ib_uint64_t index1_stat_n_diff_key_vals[1]; |
4073 | ib_uint64_t index1_stat_n_sample_sizes[1]; |
4074 | dict_index_t index2; |
4075 | dict_field_t index2_fields[4]; |
4076 | ib_uint64_t index2_stat_n_diff_key_vals[4]; |
4077 | ib_uint64_t index2_stat_n_sample_sizes[4]; |
4078 | dberr_t ret; |
4079 | |
4080 | /* craft a dummy dict_table_t */ |
4081 | table.name.m_name = (char*) (TEST_DATABASE_NAME "/" TEST_TABLE_NAME); |
4082 | table.stat_n_rows = TEST_N_ROWS; |
4083 | table.stat_clustered_index_size = TEST_CLUSTERED_INDEX_SIZE; |
4084 | table.stat_sum_of_other_index_sizes = TEST_SUM_OF_OTHER_INDEX_SIZES; |
4085 | UT_LIST_INIT(table.indexes, &dict_index_t::indexes); |
4086 | UT_LIST_ADD_LAST(table.indexes, &index1); |
4087 | UT_LIST_ADD_LAST(table.indexes, &index2); |
4088 | ut_d(table.magic_n = DICT_TABLE_MAGIC_N); |
4089 | ut_d(index1.magic_n = DICT_INDEX_MAGIC_N); |
4090 | |
4091 | index1.name = TEST_IDX1_NAME; |
4092 | index1.table = &table; |
4093 | index1.cached = 1; |
4094 | index1.n_uniq = 1; |
4095 | index1.fields = index1_fields; |
4096 | index1.stat_n_diff_key_vals = index1_stat_n_diff_key_vals; |
4097 | index1.stat_n_sample_sizes = index1_stat_n_sample_sizes; |
4098 | index1.stat_index_size = TEST_IDX1_INDEX_SIZE; |
4099 | index1.stat_n_leaf_pages = TEST_IDX1_N_LEAF_PAGES; |
4100 | index1_fields[0].name = TEST_IDX1_COL1_NAME; |
4101 | index1_stat_n_diff_key_vals[0] = TEST_IDX1_N_DIFF1; |
4102 | index1_stat_n_sample_sizes[0] = TEST_IDX1_N_DIFF1_SAMPLE_SIZE; |
4103 | |
4104 | ut_d(index2.magic_n = DICT_INDEX_MAGIC_N); |
4105 | index2.name = TEST_IDX2_NAME; |
4106 | index2.table = &table; |
4107 | index2.cached = 1; |
4108 | index2.n_uniq = 4; |
4109 | index2.fields = index2_fields; |
4110 | index2.stat_n_diff_key_vals = index2_stat_n_diff_key_vals; |
4111 | index2.stat_n_sample_sizes = index2_stat_n_sample_sizes; |
4112 | index2.stat_index_size = TEST_IDX2_INDEX_SIZE; |
4113 | index2.stat_n_leaf_pages = TEST_IDX2_N_LEAF_PAGES; |
4114 | index2_fields[0].name = TEST_IDX2_COL1_NAME; |
4115 | index2_fields[1].name = TEST_IDX2_COL2_NAME; |
4116 | index2_fields[2].name = TEST_IDX2_COL3_NAME; |
4117 | index2_fields[3].name = TEST_IDX2_COL4_NAME; |
4118 | index2_stat_n_diff_key_vals[0] = TEST_IDX2_N_DIFF1; |
4119 | index2_stat_n_diff_key_vals[1] = TEST_IDX2_N_DIFF2; |
4120 | index2_stat_n_diff_key_vals[2] = TEST_IDX2_N_DIFF3; |
4121 | index2_stat_n_diff_key_vals[3] = TEST_IDX2_N_DIFF4; |
4122 | index2_stat_n_sample_sizes[0] = TEST_IDX2_N_DIFF1_SAMPLE_SIZE; |
4123 | index2_stat_n_sample_sizes[1] = TEST_IDX2_N_DIFF2_SAMPLE_SIZE; |
4124 | index2_stat_n_sample_sizes[2] = TEST_IDX2_N_DIFF3_SAMPLE_SIZE; |
4125 | index2_stat_n_sample_sizes[3] = TEST_IDX2_N_DIFF4_SAMPLE_SIZE; |
4126 | |
4127 | ret = dict_stats_save(&table, NULL); |
4128 | |
4129 | ut_a(ret == DB_SUCCESS); |
4130 | |
4131 | printf("\nOK: stats saved successfully, now go ahead and read" |
4132 | " what's inside %s and %s:\n\n" , |
4133 | TABLE_STATS_NAME_PRINT, |
4134 | INDEX_STATS_NAME_PRINT); |
4135 | |
4136 | printf("SELECT COUNT(*) = 1 AS table_stats_saved_successfully\n" |
4137 | "FROM %s\n" |
4138 | "WHERE\n" |
4139 | "database_name = '%s' AND\n" |
4140 | "table_name = '%s' AND\n" |
4141 | "n_rows = %d AND\n" |
4142 | "clustered_index_size = %d AND\n" |
4143 | "sum_of_other_index_sizes = %d;\n" |
4144 | "\n" , |
4145 | TABLE_STATS_NAME_PRINT, |
4146 | TEST_DATABASE_NAME, |
4147 | TEST_TABLE_NAME, |
4148 | TEST_N_ROWS, |
4149 | TEST_CLUSTERED_INDEX_SIZE, |
4150 | TEST_SUM_OF_OTHER_INDEX_SIZES); |
4151 | |
4152 | printf("SELECT COUNT(*) = 3 AS tidx1_stats_saved_successfully\n" |
4153 | "FROM %s\n" |
4154 | "WHERE\n" |
4155 | "database_name = '%s' AND\n" |
4156 | "table_name = '%s' AND\n" |
4157 | "index_name = '%s' AND\n" |
4158 | "(\n" |
4159 | " (stat_name = 'size' AND stat_value = %d AND" |
4160 | " sample_size IS NULL) OR\n" |
4161 | " (stat_name = 'n_leaf_pages' AND stat_value = %d AND" |
4162 | " sample_size IS NULL) OR\n" |
4163 | " (stat_name = 'n_diff_pfx01' AND stat_value = %d AND" |
4164 | " sample_size = '%d' AND stat_description = '%s')\n" |
4165 | ");\n" |
4166 | "\n" , |
4167 | INDEX_STATS_NAME_PRINT, |
4168 | TEST_DATABASE_NAME, |
4169 | TEST_TABLE_NAME, |
4170 | TEST_IDX1_NAME, |
4171 | TEST_IDX1_INDEX_SIZE, |
4172 | TEST_IDX1_N_LEAF_PAGES, |
4173 | TEST_IDX1_N_DIFF1, |
4174 | TEST_IDX1_N_DIFF1_SAMPLE_SIZE, |
4175 | TEST_IDX1_COL1_NAME); |
4176 | |
4177 | printf("SELECT COUNT(*) = 6 AS tidx2_stats_saved_successfully\n" |
4178 | "FROM %s\n" |
4179 | "WHERE\n" |
4180 | "database_name = '%s' AND\n" |
4181 | "table_name = '%s' AND\n" |
4182 | "index_name = '%s' AND\n" |
4183 | "(\n" |
4184 | " (stat_name = 'size' AND stat_value = %d AND" |
4185 | " sample_size IS NULL) OR\n" |
4186 | " (stat_name = 'n_leaf_pages' AND stat_value = %d AND" |
4187 | " sample_size IS NULL) OR\n" |
4188 | " (stat_name = 'n_diff_pfx01' AND stat_value = %d AND" |
4189 | " sample_size = '%d' AND stat_description = '%s') OR\n" |
4190 | " (stat_name = 'n_diff_pfx02' AND stat_value = %d AND" |
4191 | " sample_size = '%d' AND stat_description = '%s,%s') OR\n" |
4192 | " (stat_name = 'n_diff_pfx03' AND stat_value = %d AND" |
4193 | " sample_size = '%d' AND stat_description = '%s,%s,%s') OR\n" |
4194 | " (stat_name = 'n_diff_pfx04' AND stat_value = %d AND" |
4195 | " sample_size = '%d' AND stat_description = '%s,%s,%s,%s')\n" |
4196 | ");\n" |
4197 | "\n" , |
4198 | INDEX_STATS_NAME_PRINT, |
4199 | TEST_DATABASE_NAME, |
4200 | TEST_TABLE_NAME, |
4201 | TEST_IDX2_NAME, |
4202 | TEST_IDX2_INDEX_SIZE, |
4203 | TEST_IDX2_N_LEAF_PAGES, |
4204 | TEST_IDX2_N_DIFF1, |
4205 | TEST_IDX2_N_DIFF1_SAMPLE_SIZE, TEST_IDX2_COL1_NAME, |
4206 | TEST_IDX2_N_DIFF2, |
4207 | TEST_IDX2_N_DIFF2_SAMPLE_SIZE, |
4208 | TEST_IDX2_COL1_NAME, TEST_IDX2_COL2_NAME, |
4209 | TEST_IDX2_N_DIFF3, |
4210 | TEST_IDX2_N_DIFF3_SAMPLE_SIZE, |
4211 | TEST_IDX2_COL1_NAME, TEST_IDX2_COL2_NAME, TEST_IDX2_COL3_NAME, |
4212 | TEST_IDX2_N_DIFF4, |
4213 | TEST_IDX2_N_DIFF4_SAMPLE_SIZE, |
4214 | TEST_IDX2_COL1_NAME, TEST_IDX2_COL2_NAME, TEST_IDX2_COL3_NAME, |
4215 | TEST_IDX2_COL4_NAME); |
4216 | } |
4217 | /* @} */ |
4218 | |
4219 | /* test_dict_stats_fetch_from_ps() @{ */ |
4220 | void |
4221 | test_dict_stats_fetch_from_ps() |
4222 | { |
4223 | dict_table_t table; |
4224 | dict_index_t index1; |
4225 | ib_uint64_t index1_stat_n_diff_key_vals[1]; |
4226 | ib_uint64_t index1_stat_n_sample_sizes[1]; |
4227 | dict_index_t index2; |
4228 | ib_uint64_t index2_stat_n_diff_key_vals[4]; |
4229 | ib_uint64_t index2_stat_n_sample_sizes[4]; |
4230 | dberr_t ret; |
4231 | |
4232 | /* craft a dummy dict_table_t */ |
4233 | table.name.m_name = (char*) (TEST_DATABASE_NAME "/" TEST_TABLE_NAME); |
4234 | UT_LIST_INIT(table.indexes, &dict_index_t::indexes); |
4235 | UT_LIST_ADD_LAST(table.indexes, &index1); |
4236 | UT_LIST_ADD_LAST(table.indexes, &index2); |
4237 | ut_d(table.magic_n = DICT_TABLE_MAGIC_N); |
4238 | |
4239 | index1.name = TEST_IDX1_NAME; |
4240 | ut_d(index1.magic_n = DICT_INDEX_MAGIC_N); |
4241 | index1.cached = 1; |
4242 | index1.n_uniq = 1; |
4243 | index1.stat_n_diff_key_vals = index1_stat_n_diff_key_vals; |
4244 | index1.stat_n_sample_sizes = index1_stat_n_sample_sizes; |
4245 | |
4246 | index2.name = TEST_IDX2_NAME; |
4247 | ut_d(index2.magic_n = DICT_INDEX_MAGIC_N); |
4248 | index2.cached = 1; |
4249 | index2.n_uniq = 4; |
4250 | index2.stat_n_diff_key_vals = index2_stat_n_diff_key_vals; |
4251 | index2.stat_n_sample_sizes = index2_stat_n_sample_sizes; |
4252 | |
4253 | ret = dict_stats_fetch_from_ps(&table); |
4254 | |
4255 | ut_a(ret == DB_SUCCESS); |
4256 | |
4257 | ut_a(table.stat_n_rows == TEST_N_ROWS); |
4258 | ut_a(table.stat_clustered_index_size == TEST_CLUSTERED_INDEX_SIZE); |
4259 | ut_a(table.stat_sum_of_other_index_sizes |
4260 | == TEST_SUM_OF_OTHER_INDEX_SIZES); |
4261 | |
4262 | ut_a(index1.stat_index_size == TEST_IDX1_INDEX_SIZE); |
4263 | ut_a(index1.stat_n_leaf_pages == TEST_IDX1_N_LEAF_PAGES); |
4264 | ut_a(index1_stat_n_diff_key_vals[0] == TEST_IDX1_N_DIFF1); |
4265 | ut_a(index1_stat_n_sample_sizes[0] == TEST_IDX1_N_DIFF1_SAMPLE_SIZE); |
4266 | |
4267 | ut_a(index2.stat_index_size == TEST_IDX2_INDEX_SIZE); |
4268 | ut_a(index2.stat_n_leaf_pages == TEST_IDX2_N_LEAF_PAGES); |
4269 | ut_a(index2_stat_n_diff_key_vals[0] == TEST_IDX2_N_DIFF1); |
4270 | ut_a(index2_stat_n_sample_sizes[0] == TEST_IDX2_N_DIFF1_SAMPLE_SIZE); |
4271 | ut_a(index2_stat_n_diff_key_vals[1] == TEST_IDX2_N_DIFF2); |
4272 | ut_a(index2_stat_n_sample_sizes[1] == TEST_IDX2_N_DIFF2_SAMPLE_SIZE); |
4273 | ut_a(index2_stat_n_diff_key_vals[2] == TEST_IDX2_N_DIFF3); |
4274 | ut_a(index2_stat_n_sample_sizes[2] == TEST_IDX2_N_DIFF3_SAMPLE_SIZE); |
4275 | ut_a(index2_stat_n_diff_key_vals[3] == TEST_IDX2_N_DIFF4); |
4276 | ut_a(index2_stat_n_sample_sizes[3] == TEST_IDX2_N_DIFF4_SAMPLE_SIZE); |
4277 | |
4278 | printf("OK: fetch successful\n" ); |
4279 | } |
4280 | /* @} */ |
4281 | |
4282 | /* test_dict_stats_all() @{ */ |
4283 | void |
4284 | test_dict_stats_all() |
4285 | { |
4286 | test_dict_table_schema_check(); |
4287 | |
4288 | test_dict_stats_save(); |
4289 | |
4290 | test_dict_stats_fetch_from_ps(); |
4291 | } |
4292 | /* @} */ |
4293 | |
4294 | #endif /* UNIV_ENABLE_UNIT_TEST_DICT_STATS */ |
4295 | /* @} */ |
4296 | |