1 | /***************************************************************************** |
2 | |
3 | Copyright (c) 1996, 2017, Oracle and/or its affiliates. All Rights Reserved. |
4 | Copyright (c) 2013, 2018, MariaDB Corporation. |
5 | |
6 | This program is free software; you can redistribute it and/or modify it under |
7 | the terms of the GNU General Public License as published by the Free Software |
8 | Foundation; version 2 of the License. |
9 | |
10 | This program is distributed in the hope that it will be useful, but WITHOUT |
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
12 | FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
13 | |
14 | You should have received a copy of the GNU General Public License along with |
15 | this program; if not, write to the Free Software Foundation, Inc., |
16 | 51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA |
17 | |
18 | *****************************************************************************/ |
19 | |
20 | /******************************************************************//** |
21 | @file include/dict0dict.ic |
22 | Data dictionary system |
23 | |
24 | Created 1/8/1996 Heikki Tuuri |
25 | ***********************************************************************/ |
26 | |
27 | #include "data0type.h" |
28 | #include "dict0load.h" |
29 | #include "rem0types.h" |
30 | #include "fsp0fsp.h" |
31 | #include "srv0srv.h" |
32 | #include "sync0rw.h" |
33 | #include "fsp0sysspace.h" |
34 | |
35 | /*********************************************************************//** |
36 | Gets the minimum number of bytes per character. |
37 | @return minimum multi-byte char size, in bytes */ |
38 | UNIV_INLINE |
39 | ulint |
40 | dict_col_get_mbminlen( |
41 | /*==================*/ |
42 | const dict_col_t* col) /*!< in: column */ |
43 | { |
44 | return col->mbminlen; |
45 | } |
46 | /*********************************************************************//** |
47 | Gets the maximum number of bytes per character. |
48 | @return maximum multi-byte char size, in bytes */ |
49 | UNIV_INLINE |
50 | ulint |
51 | dict_col_get_mbmaxlen( |
52 | /*==================*/ |
53 | const dict_col_t* col) /*!< in: column */ |
54 | { |
55 | return col->mbmaxlen; |
56 | } |
57 | /*********************************************************************//** |
58 | Gets the column data type. */ |
59 | UNIV_INLINE |
60 | void |
61 | dict_col_copy_type( |
62 | /*===============*/ |
63 | const dict_col_t* col, /*!< in: column */ |
64 | dtype_t* type) /*!< out: data type */ |
65 | { |
66 | ut_ad(col != NULL); |
67 | ut_ad(type != NULL); |
68 | |
69 | type->mtype = col->mtype; |
70 | type->prtype = col->prtype; |
71 | type->len = col->len; |
72 | type->mbminlen = col->mbminlen; |
73 | type->mbmaxlen = col->mbmaxlen; |
74 | } |
75 | |
76 | #ifdef UNIV_DEBUG |
77 | /*********************************************************************//** |
78 | Assert that a column and a data type match. |
79 | @return TRUE */ |
80 | UNIV_INLINE |
81 | ibool |
82 | dict_col_type_assert_equal( |
83 | /*=======================*/ |
84 | const dict_col_t* col, /*!< in: column */ |
85 | const dtype_t* type) /*!< in: data type */ |
86 | { |
87 | ut_ad(col); |
88 | ut_ad(type); |
89 | |
90 | ut_ad(col->mtype == type->mtype); |
91 | ut_ad(col->prtype == type->prtype); |
92 | //ut_ad(col->len == type->len); |
93 | ut_ad(col->mbminlen == type->mbminlen); |
94 | ut_ad(col->mbmaxlen == type->mbmaxlen); |
95 | |
96 | return(TRUE); |
97 | } |
98 | #endif /* UNIV_DEBUG */ |
99 | |
100 | /***********************************************************************//** |
101 | Returns the minimum size of the column. |
102 | @return minimum size */ |
103 | UNIV_INLINE |
104 | ulint |
105 | dict_col_get_min_size( |
106 | /*==================*/ |
107 | const dict_col_t* col) /*!< in: column */ |
108 | { |
109 | return(dtype_get_min_size_low(col->mtype, col->prtype, col->len, |
110 | col->mbminlen, col->mbmaxlen)); |
111 | } |
112 | /***********************************************************************//** |
113 | Returns the maximum size of the column. |
114 | @return maximum size */ |
115 | UNIV_INLINE |
116 | ulint |
117 | dict_col_get_max_size( |
118 | /*==================*/ |
119 | const dict_col_t* col) /*!< in: column */ |
120 | { |
121 | return(dtype_get_max_size_low(col->mtype, col->len)); |
122 | } |
123 | /***********************************************************************//** |
124 | Returns the size of a fixed size column, 0 if not a fixed size column. |
125 | @return fixed size, or 0 */ |
126 | UNIV_INLINE |
127 | ulint |
128 | dict_col_get_fixed_size( |
129 | /*====================*/ |
130 | const dict_col_t* col, /*!< in: column */ |
131 | ulint comp) /*!< in: nonzero=ROW_FORMAT=COMPACT */ |
132 | { |
133 | return(dtype_get_fixed_size_low(col->mtype, col->prtype, col->len, |
134 | col->mbminlen, col->mbmaxlen, comp)); |
135 | } |
136 | /***********************************************************************//** |
137 | Returns the ROW_FORMAT=REDUNDANT stored SQL NULL size of a column. |
138 | For fixed length types it is the fixed length of the type, otherwise 0. |
139 | @return SQL null storage size in ROW_FORMAT=REDUNDANT */ |
140 | UNIV_INLINE |
141 | ulint |
142 | dict_col_get_sql_null_size( |
143 | /*=======================*/ |
144 | const dict_col_t* col, /*!< in: column */ |
145 | ulint comp) /*!< in: nonzero=ROW_FORMAT=COMPACT */ |
146 | { |
147 | return(dict_col_get_fixed_size(col, comp)); |
148 | } |
149 | |
150 | /*********************************************************************//** |
151 | Gets the column number. |
152 | @return col->ind, table column position (starting from 0) */ |
153 | UNIV_INLINE |
154 | ulint |
155 | dict_col_get_no( |
156 | /*============*/ |
157 | const dict_col_t* col) /*!< in: column */ |
158 | { |
159 | ut_ad(col); |
160 | |
161 | return(col->ind); |
162 | } |
163 | |
164 | /*********************************************************************//** |
165 | Gets the column position in the clustered index. */ |
166 | UNIV_INLINE |
167 | ulint |
168 | dict_col_get_clust_pos( |
169 | /*===================*/ |
170 | const dict_col_t* col, /*!< in: table column */ |
171 | const dict_index_t* clust_index) /*!< in: clustered index */ |
172 | { |
173 | ulint i; |
174 | |
175 | ut_ad(col); |
176 | ut_ad(clust_index); |
177 | ut_ad(dict_index_is_clust(clust_index)); |
178 | |
179 | for (i = 0; i < clust_index->n_def; i++) { |
180 | const dict_field_t* field = &clust_index->fields[i]; |
181 | |
182 | if (!field->prefix_len && field->col == col) { |
183 | return(i); |
184 | } |
185 | } |
186 | |
187 | return(ULINT_UNDEFINED); |
188 | } |
189 | |
190 | /** Gets the column position in the given index. |
191 | @param[in] col table column |
192 | @param[in] index index to be searched for column |
193 | @return position of column in the given index. */ |
194 | UNIV_INLINE |
195 | ulint |
196 | dict_col_get_index_pos( |
197 | const dict_col_t* col, |
198 | const dict_index_t* index) |
199 | { |
200 | ulint i; |
201 | |
202 | ut_ad(col); |
203 | |
204 | for (i = 0; i < index->n_def; i++) { |
205 | const dict_field_t* field = &index->fields[i]; |
206 | |
207 | if (!field->prefix_len && field->col == col) { |
208 | return(i); |
209 | } |
210 | } |
211 | |
212 | return(ULINT_UNDEFINED); |
213 | } |
214 | |
215 | #ifdef UNIV_DEBUG |
216 | /********************************************************************//** |
217 | Gets the first index on the table (the clustered index). |
218 | @return index, NULL if none exists */ |
219 | UNIV_INLINE |
220 | dict_index_t* |
221 | dict_table_get_first_index( |
222 | /*=======================*/ |
223 | const dict_table_t* table) /*!< in: table */ |
224 | { |
225 | ut_ad(table); |
226 | ut_ad(table->magic_n == DICT_TABLE_MAGIC_N); |
227 | |
228 | return(UT_LIST_GET_FIRST(((dict_table_t*) table)->indexes)); |
229 | } |
230 | |
231 | /********************************************************************//** |
232 | Gets the last index on the table. |
233 | @return index, NULL if none exists */ |
234 | UNIV_INLINE |
235 | dict_index_t* |
236 | dict_table_get_last_index( |
237 | /*=======================*/ |
238 | const dict_table_t* table) /*!< in: table */ |
239 | { |
240 | ut_ad(table); |
241 | ut_ad(table->magic_n == DICT_TABLE_MAGIC_N); |
242 | |
243 | return(UT_LIST_GET_LAST((const_cast<dict_table_t*>(table)) |
244 | ->indexes)); |
245 | } |
246 | |
247 | /********************************************************************//** |
248 | Gets the next index on the table. |
249 | @return index, NULL if none left */ |
250 | UNIV_INLINE |
251 | dict_index_t* |
252 | dict_table_get_next_index( |
253 | /*======================*/ |
254 | const dict_index_t* index) /*!< in: index */ |
255 | { |
256 | ut_ad(index); |
257 | ut_ad(index->magic_n == DICT_INDEX_MAGIC_N); |
258 | |
259 | return(UT_LIST_GET_NEXT(indexes, (dict_index_t*) index)); |
260 | } |
261 | #endif /* UNIV_DEBUG */ |
262 | |
263 | /********************************************************************//** |
264 | Check whether the index is the clustered index. |
265 | @return nonzero for clustered index, zero for other indexes */ |
266 | UNIV_INLINE |
267 | ulint |
268 | dict_index_is_clust( |
269 | /*================*/ |
270 | const dict_index_t* index) /*!< in: index */ |
271 | { |
272 | ut_ad(index->magic_n == DICT_INDEX_MAGIC_N); |
273 | return(index->type & DICT_CLUSTERED); |
274 | } |
275 | |
276 | /** Check if index is auto-generated clustered index. |
277 | @param[in] index index |
278 | |
279 | @return true if index is auto-generated clustered index. */ |
280 | UNIV_INLINE |
281 | bool |
282 | dict_index_is_auto_gen_clust( |
283 | const dict_index_t* index) |
284 | { |
285 | return(index->type == DICT_CLUSTERED); |
286 | } |
287 | |
288 | /********************************************************************//** |
289 | Check whether the index is unique. |
290 | @return nonzero for unique index, zero for other indexes */ |
291 | UNIV_INLINE |
292 | ulint |
293 | dict_index_is_unique( |
294 | /*=================*/ |
295 | const dict_index_t* index) /*!< in: index */ |
296 | { |
297 | ut_ad(index->magic_n == DICT_INDEX_MAGIC_N); |
298 | |
299 | return(index->type & DICT_UNIQUE); |
300 | } |
301 | |
302 | /********************************************************************//** |
303 | Check whether the index is a Spatial Index. |
304 | @return nonzero for Spatial Index, zero for other indexes */ |
305 | UNIV_INLINE |
306 | ulint |
307 | dict_index_is_spatial( |
308 | /*==================*/ |
309 | const dict_index_t* index) /*!< in: index */ |
310 | { |
311 | ut_ad(index); |
312 | ut_ad(index->magic_n == DICT_INDEX_MAGIC_N); |
313 | |
314 | return ulint(UNIV_EXPECT(index->type & DICT_SPATIAL, 0)); |
315 | } |
316 | |
317 | /** Check whether the index contains a virtual column |
318 | @param[in] index index |
319 | @return nonzero for the index has virtual column, zero for other indexes */ |
320 | UNIV_INLINE |
321 | ulint |
322 | dict_index_has_virtual( |
323 | const dict_index_t* index) |
324 | { |
325 | ut_ad(index); |
326 | ut_ad(index->magic_n == DICT_INDEX_MAGIC_N); |
327 | |
328 | return(index->type & DICT_VIRTUAL); |
329 | } |
330 | |
331 | /********************************************************************//** |
332 | Check whether the index is the insert buffer tree. |
333 | @return nonzero for insert buffer, zero for other indexes */ |
334 | UNIV_INLINE |
335 | ulint |
336 | dict_index_is_ibuf( |
337 | /*===============*/ |
338 | const dict_index_t* index) /*!< in: index */ |
339 | { |
340 | ut_ad(index); |
341 | ut_ad(index->magic_n == DICT_INDEX_MAGIC_N); |
342 | |
343 | return(index->type & DICT_IBUF); |
344 | } |
345 | |
346 | /********************************************************************//** |
347 | Check whether the index is a secondary index or the insert buffer tree. |
348 | @return nonzero for insert buffer, zero for other indexes */ |
349 | UNIV_INLINE |
350 | ulint |
351 | dict_index_is_sec_or_ibuf( |
352 | /*======================*/ |
353 | const dict_index_t* index) /*!< in: index */ |
354 | { |
355 | ut_ad(index->magic_n == DICT_INDEX_MAGIC_N); |
356 | |
357 | return((index->type & (DICT_CLUSTERED | DICT_IBUF)) != DICT_CLUSTERED); |
358 | } |
359 | |
360 | /********************************************************************//** |
361 | Gets the number of user-defined non-virtual columns in a table in the |
362 | dictionary cache. |
363 | @return number of user-defined (e.g., not ROW_ID) non-virtual |
364 | columns of a table */ |
365 | UNIV_INLINE |
366 | ulint |
367 | dict_table_get_n_user_cols( |
368 | /*=======================*/ |
369 | const dict_table_t* table) /*!< in: table */ |
370 | { |
371 | ut_ad(table->magic_n == DICT_TABLE_MAGIC_N); |
372 | /* n_cols counts stored columns only. A table may contain |
373 | virtual columns and no user-specified stored columns at all. */ |
374 | ut_ad(table->n_cols >= DATA_N_SYS_COLS); |
375 | return unsigned(table->n_cols) - DATA_N_SYS_COLS; |
376 | } |
377 | |
378 | /********************************************************************//** |
379 | Gets the number of all non-virtual columns (also system) in a table |
380 | in the dictionary cache. |
381 | @return number of non-virtual columns of a table */ |
382 | UNIV_INLINE |
383 | ulint |
384 | dict_table_get_n_cols( |
385 | /*==================*/ |
386 | const dict_table_t* table) /*!< in: table */ |
387 | { |
388 | ut_ad(table->magic_n == DICT_TABLE_MAGIC_N); |
389 | |
390 | return(table->n_cols); |
391 | } |
392 | |
393 | /** Gets the number of virtual columns in a table in the dictionary cache. |
394 | @param[in] table the table to check |
395 | @return number of virtual columns of a table */ |
396 | UNIV_INLINE |
397 | ulint |
398 | dict_table_get_n_v_cols( |
399 | const dict_table_t* table) |
400 | { |
401 | ut_ad(table); |
402 | ut_ad(table->magic_n == DICT_TABLE_MAGIC_N); |
403 | |
404 | return(table->n_v_cols); |
405 | } |
406 | |
407 | /** Check if a table has indexed virtual columns |
408 | @param[in] table the table to check |
409 | @return true is the table has indexed virtual columns */ |
410 | UNIV_INLINE |
411 | bool |
412 | dict_table_has_indexed_v_cols( |
413 | const dict_table_t* table) |
414 | { |
415 | |
416 | for (ulint i = 0; i < table->n_v_cols; i++) { |
417 | const dict_v_col_t* col = dict_table_get_nth_v_col(table, i); |
418 | if (col->m_col.ord_part) { |
419 | return(true); |
420 | } |
421 | } |
422 | |
423 | return(false); |
424 | } |
425 | |
426 | /********************************************************************//** |
427 | Gets the approximately estimated number of rows in the table. |
428 | @return estimated number of rows */ |
429 | UNIV_INLINE |
430 | ib_uint64_t |
431 | dict_table_get_n_rows( |
432 | /*==================*/ |
433 | const dict_table_t* table) /*!< in: table */ |
434 | { |
435 | ut_ad(table->stat_initialized); |
436 | |
437 | return(table->stat_n_rows); |
438 | } |
439 | |
440 | /********************************************************************//** |
441 | Increment the number of rows in the table by one. |
442 | Notice that this operation is not protected by any latch, the number is |
443 | approximate. */ |
444 | UNIV_INLINE |
445 | void |
446 | dict_table_n_rows_inc( |
447 | /*==================*/ |
448 | dict_table_t* table) /*!< in/out: table */ |
449 | { |
450 | if (table->stat_initialized) { |
451 | ib_uint64_t n_rows = table->stat_n_rows; |
452 | if (n_rows < 0xFFFFFFFFFFFFFFFFULL) { |
453 | table->stat_n_rows = n_rows + 1; |
454 | } |
455 | } |
456 | } |
457 | |
458 | /********************************************************************//** |
459 | Decrement the number of rows in the table by one. |
460 | Notice that this operation is not protected by any latch, the number is |
461 | approximate. */ |
462 | UNIV_INLINE |
463 | void |
464 | dict_table_n_rows_dec( |
465 | /*==================*/ |
466 | dict_table_t* table) /*!< in/out: table */ |
467 | { |
468 | if (table->stat_initialized) { |
469 | ib_uint64_t n_rows = table->stat_n_rows; |
470 | if (n_rows > 0) { |
471 | table->stat_n_rows = n_rows - 1; |
472 | } |
473 | } |
474 | } |
475 | |
476 | #ifdef UNIV_DEBUG |
477 | /********************************************************************//** |
478 | Gets the nth column of a table. |
479 | @return pointer to column object */ |
480 | UNIV_INLINE |
481 | dict_col_t* |
482 | dict_table_get_nth_col( |
483 | /*===================*/ |
484 | const dict_table_t* table, /*!< in: table */ |
485 | ulint pos) /*!< in: position of column */ |
486 | { |
487 | ut_ad(table); |
488 | ut_ad(pos < table->n_def); |
489 | ut_ad(table->magic_n == DICT_TABLE_MAGIC_N); |
490 | |
491 | return((dict_col_t*) (table->cols) + pos); |
492 | } |
493 | |
494 | /** Gets the nth virtual column of a table. |
495 | @param[in] table table |
496 | @param[in] pos position of virtual column |
497 | @return pointer to virtual column object */ |
498 | UNIV_INLINE |
499 | dict_v_col_t* |
500 | dict_table_get_nth_v_col( |
501 | const dict_table_t* table, |
502 | ulint pos) |
503 | { |
504 | ut_ad(table); |
505 | ut_ad(pos < table->n_v_def); |
506 | ut_ad(table->magic_n == DICT_TABLE_MAGIC_N); |
507 | ut_ad(!table->v_cols[pos].m_col.is_instant()); |
508 | return &table->v_cols[pos]; |
509 | } |
510 | |
511 | /********************************************************************//** |
512 | Gets the given system column of a table. |
513 | @return pointer to column object */ |
514 | UNIV_INLINE |
515 | dict_col_t* |
516 | dict_table_get_sys_col( |
517 | /*===================*/ |
518 | const dict_table_t* table, /*!< in: table */ |
519 | ulint sys) /*!< in: DATA_ROW_ID, ... */ |
520 | { |
521 | dict_col_t* col; |
522 | col = dict_table_get_nth_col(table, |
523 | dict_table_get_sys_col_no(table, sys)); |
524 | ut_ad(col->mtype == DATA_SYS); |
525 | ut_ad(col->prtype == (sys | DATA_NOT_NULL)); |
526 | |
527 | return(col); |
528 | } |
529 | #endif /* UNIV_DEBUG */ |
530 | |
531 | /********************************************************************//** |
532 | Gets the given system column number of a table. |
533 | @return column number */ |
534 | UNIV_INLINE |
535 | ulint |
536 | dict_table_get_sys_col_no( |
537 | /*======================*/ |
538 | const dict_table_t* table, /*!< in: table */ |
539 | ulint sys) /*!< in: DATA_ROW_ID, ... */ |
540 | { |
541 | ut_ad(table); |
542 | ut_ad(sys < DATA_N_SYS_COLS); |
543 | ut_ad(table->magic_n == DICT_TABLE_MAGIC_N); |
544 | |
545 | return unsigned(table->n_cols) + (sys - DATA_N_SYS_COLS); |
546 | } |
547 | |
548 | /********************************************************************//** |
549 | Check whether the table uses the compact page format. |
550 | @return TRUE if table uses the compact page format */ |
551 | UNIV_INLINE |
552 | bool |
553 | dict_table_is_comp( |
554 | /*===============*/ |
555 | const dict_table_t* table) /*!< in: table */ |
556 | { |
557 | ut_ad(table); |
558 | return (table->flags & DICT_TF_COMPACT) != 0; |
559 | } |
560 | |
561 | /************************************************************************ |
562 | Check if the table has an FTS index. */ |
563 | UNIV_INLINE |
564 | ibool |
565 | dict_table_has_fts_index( |
566 | /*=====================*/ |
567 | /* out: TRUE if table has an FTS index */ |
568 | dict_table_t* table) /* in: table */ |
569 | { |
570 | ut_ad(table); |
571 | |
572 | return(DICT_TF2_FLAG_IS_SET(table, DICT_TF2_FTS)); |
573 | } |
574 | |
575 | /** Validate the flags for tables that are not ROW_FORMAT=REDUNDANT. |
576 | @param[in] flags table flags |
577 | @return whether the flags are valid */ |
578 | inline |
579 | bool |
580 | dict_tf_is_valid_not_redundant(ulint flags) |
581 | { |
582 | const bool atomic_blobs = DICT_TF_HAS_ATOMIC_BLOBS(flags); |
583 | |
584 | ulint zip_ssize = DICT_TF_GET_ZIP_SSIZE(flags); |
585 | |
586 | if (!zip_ssize) { |
587 | /* Not ROW_FORMAT=COMPRESSED */ |
588 | } else if (!atomic_blobs) { |
589 | /* ROW_FORMAT=COMPRESSED implies ROW_FORMAT=DYNAMIC |
590 | for the uncompressed page format */ |
591 | return(false); |
592 | } else if (zip_ssize > PAGE_ZIP_SSIZE_MAX |
593 | || zip_ssize > srv_page_size_shift |
594 | || srv_page_size_shift > UNIV_ZIP_SIZE_SHIFT_MAX) { |
595 | /* KEY_BLOCK_SIZE is out of bounds, or |
596 | ROW_FORMAT=COMPRESSED is not supported with this |
597 | innodb_page_size (only up to 16KiB) */ |
598 | return(false); |
599 | } |
600 | |
601 | switch (DICT_TF_GET_PAGE_COMPRESSION_LEVEL(flags)) { |
602 | case 0: |
603 | /* PAGE_COMPRESSION_LEVEL=0 should imply PAGE_COMPRESSED=NO */ |
604 | return(!DICT_TF_GET_PAGE_COMPRESSION(flags)); |
605 | case 1: case 2: case 3: case 4: case 5: case 6: case 7: case 8: case 9: |
606 | /* PAGE_COMPRESSION_LEVEL requires |
607 | ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC |
608 | (not ROW_FORMAT=COMPRESSED or ROW_FORMAT=REDUNDANT) |
609 | and PAGE_COMPRESSED=YES */ |
610 | return(!zip_ssize && DICT_TF_GET_PAGE_COMPRESSION(flags)); |
611 | default: |
612 | /* Invalid PAGE_COMPRESSION_LEVEL value */ |
613 | return(false); |
614 | } |
615 | } |
616 | |
617 | /** Validate the table flags. |
618 | @param[in] flags Table flags |
619 | @return true if valid. */ |
620 | UNIV_INLINE |
621 | bool |
622 | dict_tf_is_valid( |
623 | ulint flags) |
624 | { |
625 | ut_ad(flags < 1U << DICT_TF_BITS); |
626 | /* The DATA_DIRECTORY flag can be assigned fully independently |
627 | of all other persistent table flags. */ |
628 | flags &= ~DICT_TF_MASK_DATA_DIR; |
629 | if (!(flags & 1)) { |
630 | /* Only ROW_FORMAT=REDUNDANT has 0 in the least significant |
631 | bit. For ROW_FORMAT=REDUNDANT, only the DATA_DIR flag |
632 | (which we cleared above) can be set. If any other flags |
633 | are set, the flags are invalid. */ |
634 | return(flags == 0 || flags == DICT_TF_MASK_NO_ROLLBACK); |
635 | } |
636 | |
637 | return(dict_tf_is_valid_not_redundant(flags)); |
638 | } |
639 | |
640 | /** Validate both table flags and table flags2 and make sure they |
641 | are compatible. |
642 | @param[in] flags Table flags |
643 | @param[in] flags2 Table flags2 |
644 | @return true if valid. */ |
645 | UNIV_INLINE |
646 | bool |
647 | dict_tf2_is_valid( |
648 | ulint flags, |
649 | ulint flags2) |
650 | { |
651 | if (!dict_tf_is_valid(flags)) { |
652 | return(false); |
653 | } |
654 | |
655 | if ((flags2 & DICT_TF2_UNUSED_BIT_MASK) != 0) { |
656 | return(false); |
657 | } |
658 | |
659 | return(true); |
660 | } |
661 | |
662 | /********************************************************************//** |
663 | Determine the file format from dict_table_t::flags |
664 | The low order bit will be zero for REDUNDANT and 1 for COMPACT. For any |
665 | other row_format, file_format is > 0 and DICT_TF_COMPACT will also be set. |
666 | @return file format version */ |
667 | UNIV_INLINE |
668 | rec_format_t |
669 | dict_tf_get_rec_format( |
670 | /*===================*/ |
671 | ulint flags) /*!< in: dict_table_t::flags */ |
672 | { |
673 | ut_a(dict_tf_is_valid(flags)); |
674 | |
675 | if (!DICT_TF_GET_COMPACT(flags)) { |
676 | return(REC_FORMAT_REDUNDANT); |
677 | } |
678 | |
679 | if (!DICT_TF_HAS_ATOMIC_BLOBS(flags)) { |
680 | return(REC_FORMAT_COMPACT); |
681 | } |
682 | |
683 | if (DICT_TF_GET_ZIP_SSIZE(flags)) { |
684 | return(REC_FORMAT_COMPRESSED); |
685 | } |
686 | |
687 | return(REC_FORMAT_DYNAMIC); |
688 | } |
689 | |
690 | /** Set the various values in a dict_table_t::flags pointer. |
691 | @param[in,out] flags, Pointer to a 4 byte Table Flags |
692 | @param[in] format File Format |
693 | @param[in] zip_ssize Zip Shift Size |
694 | @param[in] use_data_dir Table uses DATA DIRECTORY |
695 | @param[in] page_compressed Table uses page compression |
696 | @param[in] page_compression_level Page compression level */ |
697 | UNIV_INLINE |
698 | void |
699 | dict_tf_set( |
700 | /*========*/ |
701 | ulint* flags, |
702 | rec_format_t format, |
703 | ulint zip_ssize, |
704 | bool use_data_dir, |
705 | bool page_compressed, |
706 | ulint page_compression_level) |
707 | { |
708 | switch (format) { |
709 | case REC_FORMAT_REDUNDANT: |
710 | *flags = 0; |
711 | ut_ad(zip_ssize == 0); |
712 | break; |
713 | case REC_FORMAT_COMPACT: |
714 | *flags = DICT_TF_COMPACT; |
715 | ut_ad(zip_ssize == 0); |
716 | break; |
717 | case REC_FORMAT_COMPRESSED: |
718 | *flags = DICT_TF_COMPACT |
719 | | (1 << DICT_TF_POS_ATOMIC_BLOBS) |
720 | | (zip_ssize << DICT_TF_POS_ZIP_SSIZE); |
721 | break; |
722 | case REC_FORMAT_DYNAMIC: |
723 | *flags = DICT_TF_COMPACT |
724 | | (1 << DICT_TF_POS_ATOMIC_BLOBS); |
725 | ut_ad(zip_ssize == 0); |
726 | break; |
727 | } |
728 | |
729 | if (use_data_dir) { |
730 | *flags |= (1 << DICT_TF_POS_DATA_DIR); |
731 | } |
732 | |
733 | if (page_compressed) { |
734 | *flags |= (1 << DICT_TF_POS_ATOMIC_BLOBS) |
735 | | (1 << DICT_TF_POS_PAGE_COMPRESSION) |
736 | | (page_compression_level << DICT_TF_POS_PAGE_COMPRESSION_LEVEL); |
737 | |
738 | ut_ad(zip_ssize == 0); |
739 | ut_ad(dict_tf_get_page_compression(*flags) == TRUE); |
740 | ut_ad(dict_tf_get_page_compression_level(*flags) == page_compression_level); |
741 | } |
742 | } |
743 | |
744 | /** Convert a 32 bit integer table flags to the 32 bit FSP Flags. |
745 | Fsp Flags are written into the tablespace header at the offset |
746 | FSP_SPACE_FLAGS and are also stored in the fil_space_t::flags field. |
747 | The following chart shows the translation of the low order bit. |
748 | Other bits are the same. |
749 | ========================= Low order bit ========================== |
750 | | REDUNDANT | COMPACT | COMPRESSED | DYNAMIC |
751 | dict_table_t::flags | 0 | 1 | 1 | 1 |
752 | fil_space_t::flags | 0 | 0 | 1 | 1 |
753 | ================================================================== |
754 | @param[in] table_flags dict_table_t::flags |
755 | @return tablespace flags (fil_space_t::flags) */ |
756 | UNIV_INLINE |
757 | ulint |
758 | dict_tf_to_fsp_flags(ulint table_flags) |
759 | { |
760 | ulint fsp_flags; |
761 | ulint page_compression_level = DICT_TF_GET_PAGE_COMPRESSION_LEVEL( |
762 | table_flags); |
763 | |
764 | ut_ad((DICT_TF_GET_PAGE_COMPRESSION(table_flags) == 0) |
765 | == (page_compression_level == 0)); |
766 | |
767 | DBUG_EXECUTE_IF("dict_tf_to_fsp_flags_failure" , |
768 | return(ULINT_UNDEFINED);); |
769 | |
770 | /* Adjust bit zero. */ |
771 | fsp_flags = DICT_TF_HAS_ATOMIC_BLOBS(table_flags) ? 1 : 0; |
772 | |
773 | /* ZIP_SSIZE and ATOMIC_BLOBS are at the same position. */ |
774 | fsp_flags |= table_flags |
775 | & (DICT_TF_MASK_ZIP_SSIZE | DICT_TF_MASK_ATOMIC_BLOBS); |
776 | |
777 | fsp_flags |= FSP_FLAGS_PAGE_SSIZE(); |
778 | |
779 | if (page_compression_level) { |
780 | fsp_flags |= FSP_FLAGS_MASK_PAGE_COMPRESSION; |
781 | } |
782 | |
783 | ut_a(fsp_flags_is_valid(fsp_flags, false)); |
784 | |
785 | if (DICT_TF_HAS_DATA_DIR(table_flags)) { |
786 | fsp_flags |= 1U << FSP_FLAGS_MEM_DATA_DIR; |
787 | } |
788 | |
789 | fsp_flags |= page_compression_level << FSP_FLAGS_MEM_COMPRESSION_LEVEL; |
790 | |
791 | return(fsp_flags); |
792 | } |
793 | |
794 | /********************************************************************//** |
795 | Convert a 32 bit integer table flags to the 32bit integer that is written |
796 | to a SYS_TABLES.TYPE field. The following chart shows the translation of |
797 | the low order bit. Other bits are the same. |
798 | ========================= Low order bit ========================== |
799 | | REDUNDANT | COMPACT | COMPRESSED and DYNAMIC |
800 | dict_table_t::flags | 0 | 1 | 1 |
801 | SYS_TABLES.TYPE | 1 | 1 | 1 |
802 | ================================================================== |
803 | @return ulint containing SYS_TABLES.TYPE */ |
804 | UNIV_INLINE |
805 | ulint |
806 | dict_tf_to_sys_tables_type( |
807 | /*=======================*/ |
808 | ulint flags) /*!< in: dict_table_t::flags */ |
809 | { |
810 | ulint type; |
811 | |
812 | ut_a(dict_tf_is_valid(flags)); |
813 | |
814 | /* Adjust bit zero. It is always 1 in SYS_TABLES.TYPE */ |
815 | type = 1; |
816 | |
817 | /* ZIP_SSIZE, ATOMIC_BLOBS, DATA_DIR, PAGE_COMPRESSION, |
818 | PAGE_COMPRESSION_LEVEL are the same. */ |
819 | type |= flags & (DICT_TF_MASK_ZIP_SSIZE |
820 | | DICT_TF_MASK_ATOMIC_BLOBS |
821 | | DICT_TF_MASK_DATA_DIR |
822 | | DICT_TF_MASK_PAGE_COMPRESSION |
823 | | DICT_TF_MASK_PAGE_COMPRESSION_LEVEL |
824 | | DICT_TF_MASK_NO_ROLLBACK); |
825 | |
826 | return(type); |
827 | } |
828 | |
829 | /** Extract the page size info from table flags. |
830 | @param[in] flags flags |
831 | @return a structure containing the compressed and uncompressed |
832 | page sizes and a boolean indicating if the page is compressed. */ |
833 | UNIV_INLINE |
834 | const page_size_t |
835 | dict_tf_get_page_size( |
836 | ulint flags) |
837 | { |
838 | const ulint zip_ssize = DICT_TF_GET_ZIP_SSIZE(flags); |
839 | |
840 | if (zip_ssize == 0) { |
841 | return(univ_page_size); |
842 | } |
843 | |
844 | const ulint zip_size = (UNIV_ZIP_SIZE_MIN >> 1) << zip_ssize; |
845 | |
846 | ut_ad(zip_size <= UNIV_ZIP_SIZE_MAX); |
847 | |
848 | return(page_size_t(zip_size, srv_page_size, true)); |
849 | } |
850 | |
851 | /*********************************************************************//** |
852 | Obtain exclusive locks on all index trees of the table. This is to prevent |
853 | accessing index trees while InnoDB is updating internal metadata for |
854 | operations such as truncate tables. */ |
855 | UNIV_INLINE |
856 | void |
857 | dict_table_x_lock_indexes( |
858 | /*======================*/ |
859 | dict_table_t* table) /*!< in: table */ |
860 | { |
861 | dict_index_t* index; |
862 | |
863 | ut_a(table); |
864 | ut_ad(mutex_own(&dict_sys->mutex)); |
865 | |
866 | /* Loop through each index of the table and lock them */ |
867 | for (index = dict_table_get_first_index(table); |
868 | index != NULL; |
869 | index = dict_table_get_next_index(index)) { |
870 | rw_lock_x_lock(dict_index_get_lock(index)); |
871 | } |
872 | } |
873 | |
874 | /*********************************************************************//** |
875 | Returns true if the particular FTS index in the table is still syncing |
876 | in the background, false otherwise. |
877 | @param [in] table Table containing FTS index |
878 | @return True if sync of fts index is still going in the background */ |
879 | UNIV_INLINE |
880 | bool |
881 | dict_fts_index_syncing( |
882 | dict_table_t* table) |
883 | { |
884 | dict_index_t* index; |
885 | |
886 | for (index = dict_table_get_first_index(table); |
887 | index != NULL; |
888 | index = dict_table_get_next_index(index)) { |
889 | if (index->index_fts_syncing) { |
890 | return(true); |
891 | } |
892 | } |
893 | return(false); |
894 | } |
895 | /*********************************************************************//** |
896 | Release the exclusive locks on all index tree. */ |
897 | UNIV_INLINE |
898 | void |
899 | dict_table_x_unlock_indexes( |
900 | /*========================*/ |
901 | dict_table_t* table) /*!< in: table */ |
902 | { |
903 | dict_index_t* index; |
904 | |
905 | ut_a(table); |
906 | ut_ad(mutex_own(&dict_sys->mutex)); |
907 | |
908 | for (index = dict_table_get_first_index(table); |
909 | index != NULL; |
910 | index = dict_table_get_next_index(index)) { |
911 | rw_lock_x_unlock(dict_index_get_lock(index)); |
912 | } |
913 | } |
914 | |
915 | /********************************************************************//** |
916 | Gets the number of fields in the internal representation of an index, |
917 | including fields added by the dictionary system. |
918 | @return number of fields */ |
919 | UNIV_INLINE |
920 | ulint |
921 | dict_index_get_n_fields( |
922 | /*====================*/ |
923 | const dict_index_t* index) /*!< in: an internal |
924 | representation of index (in |
925 | the dictionary cache) */ |
926 | { |
927 | ut_ad(index); |
928 | ut_ad(index->magic_n == DICT_INDEX_MAGIC_N); |
929 | |
930 | return(index->n_fields); |
931 | } |
932 | |
933 | /********************************************************************//** |
934 | Gets the number of fields in the internal representation of an index |
935 | that uniquely determine the position of an index entry in the index, if |
936 | we do not take multiversioning into account: in the B-tree use the value |
937 | returned by dict_index_get_n_unique_in_tree. |
938 | @return number of fields */ |
939 | UNIV_INLINE |
940 | ulint |
941 | dict_index_get_n_unique( |
942 | /*====================*/ |
943 | const dict_index_t* index) /*!< in: an internal representation |
944 | of index (in the dictionary cache) */ |
945 | { |
946 | ut_ad(index); |
947 | ut_ad(index->magic_n == DICT_INDEX_MAGIC_N); |
948 | ut_ad(index->cached); |
949 | |
950 | return(index->n_uniq); |
951 | } |
952 | |
953 | /********************************************************************//** |
954 | Gets the number of fields in the internal representation of an index |
955 | which uniquely determine the position of an index entry in the index, if |
956 | we also take multiversioning into account. |
957 | @return number of fields */ |
958 | UNIV_INLINE |
959 | ulint |
960 | dict_index_get_n_unique_in_tree( |
961 | /*============================*/ |
962 | const dict_index_t* index) /*!< in: an internal representation |
963 | of index (in the dictionary cache) */ |
964 | { |
965 | ut_ad(index); |
966 | ut_ad(index->magic_n == DICT_INDEX_MAGIC_N); |
967 | ut_ad(index->cached); |
968 | |
969 | if (dict_index_is_clust(index)) { |
970 | |
971 | return(dict_index_get_n_unique(index)); |
972 | } |
973 | |
974 | return(dict_index_get_n_fields(index)); |
975 | } |
976 | |
977 | /** |
978 | Gets the number of fields on nonleaf page level in the internal representation |
979 | of an index which uniquely determine the position of an index entry in the |
980 | index, if we also take multiversioning into account. Note, it doesn't |
981 | include page no field. |
982 | @param[in] index index |
983 | @return number of fields */ |
984 | UNIV_INLINE |
985 | ulint |
986 | dict_index_get_n_unique_in_tree_nonleaf( |
987 | const dict_index_t* index) |
988 | { |
989 | ut_ad(index->magic_n == DICT_INDEX_MAGIC_N); |
990 | ut_ad(index->cached); |
991 | |
992 | if (dict_index_is_spatial(index)) { |
993 | /* For spatial index, on non-leaf page, we have only |
994 | 2 fields(mbr+page_no). So, except page no field, |
995 | there's one field there. */ |
996 | return(DICT_INDEX_SPATIAL_NODEPTR_SIZE); |
997 | } else { |
998 | return(dict_index_get_n_unique_in_tree(index)); |
999 | } |
1000 | } |
1001 | |
1002 | /********************************************************************//** |
1003 | Gets the number of user-defined ordering fields in the index. In the internal |
1004 | representation of clustered indexes we add the row id to the ordering fields |
1005 | to make a clustered index unique, but this function returns the number of |
1006 | fields the user defined in the index as ordering fields. |
1007 | @return number of fields */ |
1008 | UNIV_INLINE |
1009 | ulint |
1010 | dict_index_get_n_ordering_defined_by_user( |
1011 | /*======================================*/ |
1012 | const dict_index_t* index) /*!< in: an internal representation |
1013 | of index (in the dictionary cache) */ |
1014 | { |
1015 | return(index->n_user_defined_cols); |
1016 | } |
1017 | |
1018 | #ifdef UNIV_DEBUG |
1019 | /********************************************************************//** |
1020 | Gets the nth field of an index. |
1021 | @return pointer to field object */ |
1022 | UNIV_INLINE |
1023 | dict_field_t* |
1024 | dict_index_get_nth_field( |
1025 | /*=====================*/ |
1026 | const dict_index_t* index, /*!< in: index */ |
1027 | ulint pos) /*!< in: position of field */ |
1028 | { |
1029 | ut_ad(index); |
1030 | ut_ad(pos < index->n_def); |
1031 | ut_ad(index->magic_n == DICT_INDEX_MAGIC_N); |
1032 | |
1033 | return((dict_field_t*) (index->fields) + pos); |
1034 | } |
1035 | #endif /* UNIV_DEBUG */ |
1036 | |
1037 | /********************************************************************//** |
1038 | Returns the position of a system column in an index. |
1039 | @return position, ULINT_UNDEFINED if not contained */ |
1040 | UNIV_INLINE |
1041 | ulint |
1042 | dict_index_get_sys_col_pos( |
1043 | /*=======================*/ |
1044 | const dict_index_t* index, /*!< in: index */ |
1045 | ulint type) /*!< in: DATA_ROW_ID, ... */ |
1046 | { |
1047 | ut_ad(index); |
1048 | ut_ad(index->magic_n == DICT_INDEX_MAGIC_N); |
1049 | ut_ad(!dict_index_is_ibuf(index)); |
1050 | |
1051 | if (dict_index_is_clust(index)) { |
1052 | |
1053 | return(dict_col_get_clust_pos( |
1054 | dict_table_get_sys_col(index->table, type), |
1055 | index)); |
1056 | } |
1057 | |
1058 | return(dict_index_get_nth_col_pos( |
1059 | index, dict_table_get_sys_col_no(index->table, type), NULL)); |
1060 | } |
1061 | |
1062 | /*********************************************************************//** |
1063 | Gets the field column. |
1064 | @return field->col, pointer to the table column */ |
1065 | UNIV_INLINE |
1066 | const dict_col_t* |
1067 | dict_field_get_col( |
1068 | /*===============*/ |
1069 | const dict_field_t* field) /*!< in: index field */ |
1070 | { |
1071 | ut_ad(field); |
1072 | |
1073 | return(field->col); |
1074 | } |
1075 | |
1076 | /********************************************************************//** |
1077 | Gets pointer to the nth column in an index. |
1078 | @return column */ |
1079 | UNIV_INLINE |
1080 | const dict_col_t* |
1081 | dict_index_get_nth_col( |
1082 | /*===================*/ |
1083 | const dict_index_t* index, /*!< in: index */ |
1084 | ulint pos) /*!< in: position of the field */ |
1085 | { |
1086 | return(dict_field_get_col(dict_index_get_nth_field(index, pos))); |
1087 | } |
1088 | |
1089 | /********************************************************************//** |
1090 | Gets the column number the nth field in an index. |
1091 | @return column number */ |
1092 | UNIV_INLINE |
1093 | ulint |
1094 | dict_index_get_nth_col_no( |
1095 | /*======================*/ |
1096 | const dict_index_t* index, /*!< in: index */ |
1097 | ulint pos) /*!< in: position of the field */ |
1098 | { |
1099 | return(dict_col_get_no(dict_index_get_nth_col(index, pos))); |
1100 | } |
1101 | |
1102 | /********************************************************************//** |
1103 | Looks for column n in an index. |
1104 | @return position in internal representation of the index; |
1105 | ULINT_UNDEFINED if not contained */ |
1106 | UNIV_INLINE |
1107 | ulint |
1108 | dict_index_get_nth_col_pos( |
1109 | /*=======================*/ |
1110 | const dict_index_t* index, /*!< in: index */ |
1111 | ulint n, /*!< in: column number */ |
1112 | ulint* prefix_col_pos) /*!< out: col num if prefix */ |
1113 | { |
1114 | return(dict_index_get_nth_col_or_prefix_pos(index, n, false, false, |
1115 | prefix_col_pos)); |
1116 | } |
1117 | |
1118 | /********************************************************************//** |
1119 | Returns the minimum data size of an index record. |
1120 | @return minimum data size in bytes */ |
1121 | UNIV_INLINE |
1122 | ulint |
1123 | dict_index_get_min_size( |
1124 | /*====================*/ |
1125 | const dict_index_t* index) /*!< in: index */ |
1126 | { |
1127 | ulint n = dict_index_get_n_fields(index); |
1128 | ulint size = 0; |
1129 | |
1130 | while (n--) { |
1131 | size += dict_col_get_min_size(dict_index_get_nth_col(index, |
1132 | n)); |
1133 | } |
1134 | |
1135 | return(size); |
1136 | } |
1137 | |
1138 | /*********************************************************************//** |
1139 | Gets the page number of the root of the index tree. |
1140 | @return page number */ |
1141 | UNIV_INLINE |
1142 | ulint |
1143 | dict_index_get_page( |
1144 | /*================*/ |
1145 | const dict_index_t* index) /*!< in: index */ |
1146 | { |
1147 | ut_ad(index); |
1148 | ut_ad(index->magic_n == DICT_INDEX_MAGIC_N); |
1149 | |
1150 | return(index->page); |
1151 | } |
1152 | |
1153 | /*********************************************************************//** |
1154 | Gets the read-write lock of the index tree. |
1155 | @return read-write lock */ |
1156 | UNIV_INLINE |
1157 | rw_lock_t* |
1158 | dict_index_get_lock( |
1159 | /*================*/ |
1160 | dict_index_t* index) /*!< in: index */ |
1161 | { |
1162 | ut_ad(index); |
1163 | ut_ad(index->magic_n == DICT_INDEX_MAGIC_N); |
1164 | |
1165 | return(&(index->lock)); |
1166 | } |
1167 | |
1168 | /********************************************************************//** |
1169 | Returns free space reserved for future updates of records. This is |
1170 | relevant only in the case of many consecutive inserts, as updates |
1171 | which make the records bigger might fragment the index. |
1172 | @return number of free bytes on page, reserved for updates */ |
1173 | UNIV_INLINE |
1174 | ulint |
1175 | dict_index_get_space_reserve(void) |
1176 | /*==============================*/ |
1177 | { |
1178 | return(srv_page_size / 16); |
1179 | } |
1180 | |
1181 | /********************************************************************//** |
1182 | Gets the status of online index creation. |
1183 | @return the status */ |
1184 | UNIV_INLINE |
1185 | enum online_index_status |
1186 | dict_index_get_online_status( |
1187 | /*=========================*/ |
1188 | const dict_index_t* index) /*!< in: secondary index */ |
1189 | { |
1190 | enum online_index_status status; |
1191 | |
1192 | status = (enum online_index_status) index->online_status; |
1193 | |
1194 | /* Without the index->lock protection, the online |
1195 | status can change from ONLINE_INDEX_CREATION to |
1196 | ONLINE_INDEX_COMPLETE (or ONLINE_INDEX_ABORTED) in |
1197 | row_log_apply() once log application is done. So to make |
1198 | sure the status is ONLINE_INDEX_CREATION or ONLINE_INDEX_COMPLETE |
1199 | you should always do the recheck after acquiring index->lock */ |
1200 | |
1201 | #ifdef UNIV_DEBUG |
1202 | switch (status) { |
1203 | case ONLINE_INDEX_COMPLETE: |
1204 | case ONLINE_INDEX_CREATION: |
1205 | case ONLINE_INDEX_ABORTED: |
1206 | case ONLINE_INDEX_ABORTED_DROPPED: |
1207 | return(status); |
1208 | } |
1209 | ut_error; |
1210 | #endif /* UNIV_DEBUG */ |
1211 | return(status); |
1212 | } |
1213 | |
1214 | /********************************************************************//** |
1215 | Sets the status of online index creation. */ |
1216 | UNIV_INLINE |
1217 | void |
1218 | dict_index_set_online_status( |
1219 | /*=========================*/ |
1220 | dict_index_t* index, /*!< in/out: index */ |
1221 | enum online_index_status status) /*!< in: status */ |
1222 | { |
1223 | ut_ad(!(index->type & DICT_FTS)); |
1224 | ut_ad(rw_lock_own(dict_index_get_lock(index), RW_LOCK_X)); |
1225 | |
1226 | #ifdef UNIV_DEBUG |
1227 | switch (dict_index_get_online_status(index)) { |
1228 | case ONLINE_INDEX_COMPLETE: |
1229 | case ONLINE_INDEX_CREATION: |
1230 | break; |
1231 | case ONLINE_INDEX_ABORTED: |
1232 | ut_ad(status == ONLINE_INDEX_ABORTED_DROPPED); |
1233 | break; |
1234 | case ONLINE_INDEX_ABORTED_DROPPED: |
1235 | ut_error; |
1236 | } |
1237 | #endif /* UNIV_DEBUG */ |
1238 | |
1239 | index->online_status = status; |
1240 | ut_ad(dict_index_get_online_status(index) == status); |
1241 | } |
1242 | |
1243 | /********************************************************************//** |
1244 | Determines if a secondary index is being or has been created online, |
1245 | or if the table is being rebuilt online, allowing concurrent modifications |
1246 | to the table. |
1247 | @retval true if the index is being or has been built online, or |
1248 | if this is a clustered index and the table is being or has been rebuilt online |
1249 | @retval false if the index has been created or the table has been |
1250 | rebuilt completely */ |
1251 | UNIV_INLINE |
1252 | bool |
1253 | dict_index_is_online_ddl( |
1254 | /*=====================*/ |
1255 | const dict_index_t* index) /*!< in: index */ |
1256 | { |
1257 | #ifdef UNIV_DEBUG |
1258 | if (dict_index_is_clust(index)) { |
1259 | switch (dict_index_get_online_status(index)) { |
1260 | case ONLINE_INDEX_CREATION: |
1261 | return(true); |
1262 | case ONLINE_INDEX_COMPLETE: |
1263 | return(false); |
1264 | case ONLINE_INDEX_ABORTED: |
1265 | case ONLINE_INDEX_ABORTED_DROPPED: |
1266 | break; |
1267 | } |
1268 | ut_ad(0); |
1269 | return(false); |
1270 | } |
1271 | #endif /* UNIV_DEBUG */ |
1272 | |
1273 | return(UNIV_UNLIKELY(dict_index_get_online_status(index) |
1274 | != ONLINE_INDEX_COMPLETE)); |
1275 | } |
1276 | |
1277 | /**********************************************************************//** |
1278 | Check whether a column exists in an FTS index. |
1279 | @return ULINT_UNDEFINED if no match else the offset within the vector */ |
1280 | UNIV_INLINE |
1281 | ulint |
1282 | dict_table_is_fts_column( |
1283 | /*=====================*/ |
1284 | ib_vector_t* indexes,/*!< in: vector containing only FTS indexes */ |
1285 | ulint col_no, /*!< in: col number to search for */ |
1286 | bool is_virtual) /*!< in: whether it is a virtual column */ |
1287 | |
1288 | { |
1289 | ulint i; |
1290 | |
1291 | for (i = 0; i < ib_vector_size(indexes); ++i) { |
1292 | dict_index_t* index; |
1293 | |
1294 | index = (dict_index_t*) ib_vector_getp(indexes, i); |
1295 | |
1296 | if (dict_index_contains_col_or_prefix( |
1297 | index, col_no, is_virtual)) { |
1298 | |
1299 | return(i); |
1300 | } |
1301 | } |
1302 | |
1303 | return(ULINT_UNDEFINED); |
1304 | } |
1305 | |
1306 | /**********************************************************************//** |
1307 | Determine bytes of column prefix to be stored in the undo log. Please |
1308 | note that if !dict_table_has_atomic_blobs(table), no prefix |
1309 | needs to be stored in the undo log. |
1310 | @return bytes of column prefix to be stored in the undo log */ |
1311 | UNIV_INLINE |
1312 | ulint |
1313 | dict_max_field_len_store_undo( |
1314 | /*==========================*/ |
1315 | dict_table_t* table, /*!< in: table */ |
1316 | const dict_col_t* col) /*!< in: column which index prefix |
1317 | is based on */ |
1318 | { |
1319 | if (!dict_table_has_atomic_blobs(table)) { |
1320 | return(0); |
1321 | } |
1322 | |
1323 | if (col->max_prefix != 0) { |
1324 | return(col->max_prefix); |
1325 | } |
1326 | |
1327 | return(REC_VERSION_56_MAX_INDEX_COL_LEN); |
1328 | } |
1329 | |
1330 | /** Determine maximum bytes of a virtual column need to be stored |
1331 | in the undo log. |
1332 | @param[in] table dict_table_t for the table |
1333 | @param[in] col_no virtual column number |
1334 | @return maximum bytes of virtual column to be stored in the undo log */ |
1335 | UNIV_INLINE |
1336 | ulint |
1337 | dict_max_v_field_len_store_undo( |
1338 | dict_table_t* table, |
1339 | ulint col_no) |
1340 | { |
1341 | const dict_col_t* col |
1342 | = &dict_table_get_nth_v_col(table, col_no)->m_col; |
1343 | ulint max_log_len; |
1344 | |
1345 | /* This calculation conforms to the non-virtual column |
1346 | maximum log length calculation: |
1347 | 1) if No atomic BLOB, upto REC_ANTELOPE_MAX_INDEX_COL_LEN |
1348 | 2) if atomic BLOB, upto col->max_prefix or |
1349 | REC_VERSION_56_MAX_INDEX_COL_LEN, whichever is less */ |
1350 | if (dict_table_has_atomic_blobs(table)) { |
1351 | if (DATA_BIG_COL(col) && col->max_prefix > 0) { |
1352 | max_log_len = col->max_prefix; |
1353 | } else { |
1354 | max_log_len = DICT_MAX_FIELD_LEN_BY_FORMAT(table); |
1355 | } |
1356 | } else { |
1357 | max_log_len = REC_ANTELOPE_MAX_INDEX_COL_LEN; |
1358 | } |
1359 | |
1360 | return(max_log_len); |
1361 | } |
1362 | |
1363 | /**********************************************************************//** |
1364 | Prevent table eviction by moving a table to the non-LRU list from the |
1365 | LRU list if it is not already there. */ |
1366 | UNIV_INLINE |
1367 | void |
1368 | dict_table_prevent_eviction( |
1369 | /*========================*/ |
1370 | dict_table_t* table) /*!< in: table to prevent eviction */ |
1371 | { |
1372 | ut_ad(mutex_own(&dict_sys->mutex)); |
1373 | if (table->can_be_evicted) { |
1374 | dict_table_move_from_lru_to_non_lru(table); |
1375 | } |
1376 | } |
1377 | |
1378 | /********************************************************************//** |
1379 | Check whether the table is corrupted. |
1380 | @return nonzero for corrupted table, zero for valid tables */ |
1381 | UNIV_INLINE |
1382 | ulint |
1383 | dict_table_is_corrupted( |
1384 | /*====================*/ |
1385 | const dict_table_t* table) /*!< in: table */ |
1386 | { |
1387 | ut_ad(table); |
1388 | ut_ad(table->magic_n == DICT_TABLE_MAGIC_N); |
1389 | |
1390 | return(table->corrupted); |
1391 | } |
1392 | |
1393 | /** Check if the table is found is a file_per_table tablespace. |
1394 | This test does not use table flags2 since some REDUNDANT tables in the |
1395 | system tablespace may have garbage in the MIX_LEN field where flags2 is |
1396 | stored. These garbage MIX_LEN fields were written before v3.23.52. |
1397 | A patch was added to v3.23.52 which initializes the MIX_LEN field to 0. |
1398 | Since file-per-table tablespaces were added in 4.1, any SYS_TABLES |
1399 | record with a non-zero space ID will have a reliable MIX_LEN field. |
1400 | However, this test does not use flags2 from SYS_TABLES.MIX_LEN. Instead, |
1401 | assume that if the tablespace is not a predefined system tablespace, |
1402 | then it must be file-per-table. |
1403 | Also, during ALTER TABLE, the DICT_TF2_USE_FILE_PER_TABLE flag may not be |
1404 | set on one of the file-per-table tablespaces. |
1405 | This test cannot be done on a table in the process of being created |
1406 | because the space_id will be zero until the tablespace is created. |
1407 | @param[in] table An existing open table to check |
1408 | @return true if this table was created as a file-per-table tablespace. */ |
1409 | UNIV_INLINE |
1410 | bool |
1411 | dict_table_is_file_per_table( |
1412 | const dict_table_t* table) /*!< in: table to check */ |
1413 | { |
1414 | return table->space != fil_system.sys_space |
1415 | && table->space != fil_system.temp_space; |
1416 | } |
1417 | |
1418 | /** Get reference count. |
1419 | @return current value of n_ref_count */ |
1420 | inline |
1421 | ulint |
1422 | dict_table_t::get_ref_count() const |
1423 | { |
1424 | ut_ad(mutex_own(&dict_sys->mutex)); |
1425 | return(n_ref_count); |
1426 | } |
1427 | |
1428 | /** Acquire the table handle. */ |
1429 | inline |
1430 | void |
1431 | dict_table_t::acquire() |
1432 | { |
1433 | ut_ad(mutex_own(&dict_sys->mutex)); |
1434 | ++n_ref_count; |
1435 | } |
1436 | |
1437 | /** Release the table handle. |
1438 | @return whether the last handle was released */ |
1439 | inline |
1440 | bool |
1441 | dict_table_t::release() |
1442 | { |
1443 | ut_ad(mutex_own(&dict_sys->mutex)); |
1444 | ut_ad(n_ref_count > 0); |
1445 | return !--n_ref_count; |
1446 | } |
1447 | |
1448 | /** Encode the number of columns and number of virtual columns in a |
1449 | 4 bytes value. We could do this because the number of columns in |
1450 | InnoDB is limited to 1017 |
1451 | @param[in] n_col number of non-virtual column |
1452 | @param[in] n_v_col number of virtual column |
1453 | @return encoded value */ |
1454 | UNIV_INLINE |
1455 | ulint |
1456 | dict_table_encode_n_col( |
1457 | ulint n_col, |
1458 | ulint n_v_col) |
1459 | { |
1460 | return(n_col + (n_v_col<<16)); |
1461 | } |
1462 | |
1463 | /** decode number of virtual and non-virtual columns in one 4 bytes value. |
1464 | @param[in] encoded encoded value |
1465 | @param[in,out] n_col number of non-virtual column |
1466 | @param[in,out] n_v_col number of virtual column */ |
1467 | UNIV_INLINE |
1468 | void |
1469 | dict_table_decode_n_col( |
1470 | ulint encoded, |
1471 | ulint* n_col, |
1472 | ulint* n_v_col) |
1473 | { |
1474 | |
1475 | ulint num = encoded & ~DICT_N_COLS_COMPACT; |
1476 | *n_v_col = num >> 16; |
1477 | *n_col = num & 0xFFFF; |
1478 | } |
1479 | |
1480 | /** Free the virtual column template |
1481 | @param[in,out] vc_templ virtual column template */ |
1482 | void |
1483 | dict_free_vc_templ( |
1484 | dict_vcol_templ_t* vc_templ) |
1485 | { |
1486 | if (vc_templ->vtempl != NULL) { |
1487 | ut_ad(vc_templ->n_v_col > 0); |
1488 | for (ulint i = 0; i < vc_templ->n_col |
1489 | + vc_templ->n_v_col; i++) { |
1490 | if (vc_templ->vtempl[i] != NULL) { |
1491 | ut_free(vc_templ->vtempl[i]); |
1492 | } |
1493 | } |
1494 | ut_free(vc_templ->vtempl); |
1495 | vc_templ->vtempl = NULL; |
1496 | } |
1497 | } |
1498 | |
1499 | /** Check whether the table have virtual index. |
1500 | @param[in] table InnoDB table |
1501 | @return true if the table have virtual index, false otherwise. */ |
1502 | UNIV_INLINE |
1503 | bool |
1504 | dict_table_have_virtual_index( |
1505 | dict_table_t* table) |
1506 | { |
1507 | for (ulint col_no = 0; col_no < dict_table_get_n_v_cols(table); |
1508 | col_no++) { |
1509 | const dict_v_col_t* col |
1510 | = dict_table_get_nth_v_col(table, col_no); |
1511 | |
1512 | if (col->m_col.ord_part) { |
1513 | return(true); |
1514 | } |
1515 | } |
1516 | |
1517 | return(false); |
1518 | } |
1519 | |