1 | /***************************************************************************** |
2 | |
3 | Copyright (c) 1996, 2016, Oracle and/or its affiliates. All Rights Reserved. |
4 | Copyright (c) 2017, 2018, MariaDB Corporation. |
5 | |
6 | This program is free software; you can redistribute it and/or modify it under |
7 | the terms of the GNU General Public License as published by the Free Software |
8 | Foundation; version 2 of the License. |
9 | |
10 | This program is distributed in the hope that it will be useful, but WITHOUT |
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
12 | FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
13 | |
14 | You should have received a copy of the GNU General Public License along with |
15 | this program; if not, write to the Free Software Foundation, Inc., |
16 | 51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA |
17 | |
18 | *****************************************************************************/ |
19 | |
20 | /**************************************************//** |
21 | @file include/trx0sys.h |
22 | Transaction system |
23 | |
24 | Created 3/26/1996 Heikki Tuuri |
25 | *******************************************************/ |
26 | |
27 | #ifndef trx0sys_h |
28 | #define trx0sys_h |
29 | |
30 | #include "univ.i" |
31 | |
32 | #include "buf0buf.h" |
33 | #include "fil0fil.h" |
34 | #include "trx0types.h" |
35 | #include "mem0mem.h" |
36 | #include "mtr0mtr.h" |
37 | #include "ut0byte.h" |
38 | #include "ut0lst.h" |
39 | #include "read0types.h" |
40 | #include "page0types.h" |
41 | #include "ut0mutex.h" |
42 | #include "trx0trx.h" |
43 | #ifdef WITH_WSREP |
44 | #include "trx0xa.h" |
45 | #endif /* WITH_WSREP */ |
46 | |
47 | typedef UT_LIST_BASE_NODE_T(trx_t) trx_ut_list_t; |
48 | |
49 | /** Checks if a page address is the trx sys header page. |
50 | @param[in] page_id page id |
51 | @return true if trx sys header page */ |
52 | inline |
53 | bool |
54 | (const page_id_t& page_id) |
55 | { |
56 | return(page_id.space() == TRX_SYS_SPACE |
57 | && page_id.page_no() == TRX_SYS_PAGE_NO); |
58 | } |
59 | |
60 | /*****************************************************************//** |
61 | Creates and initializes the transaction system at the database creation. */ |
62 | void |
63 | trx_sys_create_sys_pages(void); |
64 | /*==========================*/ |
65 | /** Find an available rollback segment. |
66 | @param[in] sys_header |
67 | @return an unallocated rollback segment slot in the TRX_SYS header |
68 | @retval ULINT_UNDEFINED if not found */ |
69 | ulint |
70 | trx_sys_rseg_find_free(const buf_block_t* ); |
71 | /** Request the TRX_SYS page. |
72 | @param[in] rw whether to lock the page for writing |
73 | @return the TRX_SYS page |
74 | @retval NULL if the page cannot be read */ |
75 | inline |
76 | buf_block_t* |
77 | trx_sysf_get(mtr_t* mtr, bool rw = true) |
78 | { |
79 | buf_block_t* block = buf_page_get( |
80 | page_id_t(TRX_SYS_SPACE, TRX_SYS_PAGE_NO), |
81 | univ_page_size, rw ? RW_X_LATCH : RW_S_LATCH, mtr); |
82 | if (block) { |
83 | buf_block_dbg_add_level(block, SYNC_TRX_SYS_HEADER); |
84 | } |
85 | return block; |
86 | } |
87 | |
88 | #ifdef UNIV_DEBUG |
89 | /* Flag to control TRX_RSEG_N_SLOTS behavior debugging. */ |
90 | extern uint trx_rseg_n_slots_debug; |
91 | #endif |
92 | |
93 | /** Write DB_TRX_ID. |
94 | @param[out] db_trx_id the DB_TRX_ID field to be written to |
95 | @param[in] id transaction ID */ |
96 | UNIV_INLINE |
97 | void |
98 | trx_write_trx_id(byte* db_trx_id, trx_id_t id) |
99 | { |
100 | compile_time_assert(DATA_TRX_ID_LEN == 6); |
101 | ut_ad(id); |
102 | mach_write_to_6(db_trx_id, id); |
103 | } |
104 | |
105 | /** Read a transaction identifier. |
106 | @return id */ |
107 | inline |
108 | trx_id_t |
109 | trx_read_trx_id(const byte* ptr) |
110 | { |
111 | compile_time_assert(DATA_TRX_ID_LEN == 6); |
112 | return(mach_read_from_6(ptr)); |
113 | } |
114 | |
115 | #ifdef UNIV_DEBUG |
116 | /** Check that the DB_TRX_ID in a record is valid. |
117 | @param[in] db_trx_id the DB_TRX_ID column to validate |
118 | @param[in] trx_id the id of the ALTER TABLE transaction */ |
119 | inline bool trx_id_check(const void* db_trx_id, trx_id_t trx_id) |
120 | { |
121 | trx_id_t id = trx_read_trx_id(static_cast<const byte*>(db_trx_id)); |
122 | ut_ad(id == 0 || id > trx_id); |
123 | return true; |
124 | } |
125 | #endif |
126 | |
127 | /*****************************************************************//** |
128 | Updates the offset information about the end of the MySQL binlog entry |
129 | which corresponds to the transaction just being committed. In a MySQL |
130 | replication slave updates the latest master binlog position up to which |
131 | replication has proceeded. */ |
132 | void |
133 | trx_sys_update_mysql_binlog_offset( |
134 | /*===============================*/ |
135 | const char* file_name,/*!< in: MySQL log file name */ |
136 | int64_t offset, /*!< in: position in that log file */ |
137 | buf_block_t* , /*!< in,out: trx sys header */ |
138 | mtr_t* mtr); /*!< in,out: mini-transaction */ |
139 | /** Display the MySQL binlog offset info if it is present in the trx |
140 | system header. */ |
141 | void |
142 | trx_sys_print_mysql_binlog_offset(); |
143 | |
144 | /** Create the rollback segments. |
145 | @return whether the creation succeeded */ |
146 | bool |
147 | trx_sys_create_rsegs(); |
148 | |
149 | /** The automatically created system rollback segment has this id */ |
150 | #define TRX_SYS_SYSTEM_RSEG_ID 0 |
151 | |
152 | /** The offset of the transaction system header on the page */ |
153 | #define TRX_SYS FSEG_PAGE_DATA |
154 | |
155 | /** Transaction system header */ |
156 | /*------------------------------------------------------------- @{ */ |
157 | /** In old versions of InnoDB, this persisted the value of |
158 | trx_sys.get_max_trx_id(). Starting with MariaDB 10.3.5, |
159 | the field TRX_RSEG_MAX_TRX_ID in rollback segment header pages |
160 | and the fields TRX_UNDO_TRX_ID, TRX_UNDO_TRX_NO in undo log pages |
161 | are used instead. The field only exists for the purpose of upgrading |
162 | from older MySQL or MariaDB versions. */ |
163 | #define TRX_SYS_TRX_ID_STORE 0 |
164 | #define 8 /*!< segment header for the |
165 | tablespace segment the trx |
166 | system is created into */ |
167 | #define TRX_SYS_RSEGS (8 + FSEG_HEADER_SIZE) |
168 | /*!< the start of the array of |
169 | rollback segment specification |
170 | slots */ |
171 | /*------------------------------------------------------------- @} */ |
172 | |
173 | /** The number of rollback segments; rollback segment id must fit in |
174 | the 7 bits reserved for it in DB_ROLL_PTR. */ |
175 | #define TRX_SYS_N_RSEGS 128 |
176 | /** Maximum number of undo tablespaces (not counting the system tablespace) */ |
177 | #define TRX_SYS_MAX_UNDO_SPACES (TRX_SYS_N_RSEGS - 1) |
178 | |
179 | /* Rollback segment specification slot offsets */ |
180 | |
181 | /** the tablespace ID of an undo log header; starting with |
182 | MySQL/InnoDB 5.1.7, this is FIL_NULL if the slot is unused */ |
183 | #define TRX_SYS_RSEG_SPACE 0 |
184 | /** the page number of an undo log header, or FIL_NULL if unused */ |
185 | #define TRX_SYS_RSEG_PAGE_NO 4 |
186 | /** Size of a rollback segment specification slot */ |
187 | #define TRX_SYS_RSEG_SLOT_SIZE 8 |
188 | |
189 | /** Read the tablespace ID of a rollback segment slot. |
190 | @param[in] sys_header TRX_SYS page |
191 | @param[in] rseg_id rollback segment identifier |
192 | @return undo tablespace id */ |
193 | inline |
194 | uint32_t |
195 | trx_sysf_rseg_get_space(const buf_block_t* , ulint rseg_id) |
196 | { |
197 | ut_ad(rseg_id < TRX_SYS_N_RSEGS); |
198 | return mach_read_from_4(TRX_SYS + TRX_SYS_RSEGS + TRX_SYS_RSEG_SPACE |
199 | + rseg_id * TRX_SYS_RSEG_SLOT_SIZE |
200 | + sys_header->frame); |
201 | } |
202 | |
203 | /** Read the page number of a rollback segment slot. |
204 | @param[in] sys_header TRX_SYS page |
205 | @param[in] rseg_id rollback segment identifier |
206 | @return undo page number */ |
207 | inline |
208 | uint32_t |
209 | trx_sysf_rseg_get_page_no(const buf_block_t* , ulint rseg_id) |
210 | { |
211 | ut_ad(rseg_id < TRX_SYS_N_RSEGS); |
212 | return mach_read_from_4(TRX_SYS + TRX_SYS_RSEGS + TRX_SYS_RSEG_PAGE_NO |
213 | + rseg_id * TRX_SYS_RSEG_SLOT_SIZE |
214 | + sys_header->frame); |
215 | } |
216 | |
217 | /** Maximum length of MySQL binlog file name, in bytes. |
218 | (Used before MariaDB 10.3.5.) */ |
219 | #define TRX_SYS_MYSQL_LOG_NAME_LEN 512 |
220 | /** Contents of TRX_SYS_MYSQL_LOG_MAGIC_N_FLD */ |
221 | #define TRX_SYS_MYSQL_LOG_MAGIC_N 873422344 |
222 | |
223 | #if UNIV_PAGE_SIZE_MIN < 4096 |
224 | # error "UNIV_PAGE_SIZE_MIN < 4096" |
225 | #endif |
226 | /** The offset of the MySQL binlog offset info in the trx system header */ |
227 | #define TRX_SYS_MYSQL_LOG_INFO (srv_page_size - 1000) |
228 | #define TRX_SYS_MYSQL_LOG_MAGIC_N_FLD 0 /*!< magic number which is |
229 | TRX_SYS_MYSQL_LOG_MAGIC_N |
230 | if we have valid data in the |
231 | MySQL binlog info */ |
232 | #define TRX_SYS_MYSQL_LOG_OFFSET 4 /*!< the 64-bit offset |
233 | within that file */ |
234 | #define TRX_SYS_MYSQL_LOG_NAME 12 /*!< MySQL log file name */ |
235 | |
236 | /** Memory map TRX_SYS_PAGE_NO = 5 when srv_page_size = 4096 |
237 | |
238 | 0...37 FIL_HEADER |
239 | 38...45 TRX_SYS_TRX_ID_STORE |
240 | 46...55 TRX_SYS_FSEG_HEADER (FSEG_HEADER_SIZE == 10) |
241 | 56 TRX_SYS_RSEGS |
242 | 56...59 TRX_SYS_RSEG_SPACE for slot 0 |
243 | 60...63 TRX_SYS_RSEG_PAGE_NO for slot 0 |
244 | 64...67 TRX_SYS_RSEG_SPACE for slot 1 |
245 | 68...71 TRX_SYS_RSEG_PAGE_NO for slot 1 |
246 | .... |
247 | 594..597 TRX_SYS_RSEG_SPACE for slot 72 |
248 | 598..601 TRX_SYS_RSEG_PAGE_NO for slot 72 |
249 | ... |
250 | ...1063 TRX_SYS_RSEG_PAGE_NO for slot 126 |
251 | |
252 | (srv_page_size-3500 WSREP ::: FAIL would overwrite undo tablespace |
253 | space_id, page_no pairs :::) |
254 | 596 TRX_SYS_WSREP_XID_INFO TRX_SYS_WSREP_XID_MAGIC_N_FLD |
255 | 600 TRX_SYS_WSREP_XID_FORMAT |
256 | 604 TRX_SYS_WSREP_XID_GTRID_LEN |
257 | 608 TRX_SYS_WSREP_XID_BQUAL_LEN |
258 | 612 TRX_SYS_WSREP_XID_DATA (len = 128) |
259 | 739 TRX_SYS_WSREP_XID_DATA_END |
260 | |
261 | FIXED WSREP XID info offsets for 4k page size 10.0.32-galera |
262 | (srv_page_size-2500) |
263 | 1596 TRX_SYS_WSREP_XID_INFO TRX_SYS_WSREP_XID_MAGIC_N_FLD |
264 | 1600 TRX_SYS_WSREP_XID_FORMAT |
265 | 1604 TRX_SYS_WSREP_XID_GTRID_LEN |
266 | 1608 TRX_SYS_WSREP_XID_BQUAL_LEN |
267 | 1612 TRX_SYS_WSREP_XID_DATA (len = 128) |
268 | 1739 TRX_SYS_WSREP_XID_DATA_END |
269 | |
270 | (srv_page_size - 2000 MYSQL MASTER LOG) |
271 | 2096 TRX_SYS_MYSQL_MASTER_LOG_INFO TRX_SYS_MYSQL_LOG_MAGIC_N_FLD |
272 | 2100 TRX_SYS_MYSQL_LOG_OFFSET_HIGH |
273 | 2104 TRX_SYS_MYSQL_LOG_OFFSET_LOW |
274 | 2108 TRX_SYS_MYSQL_LOG_NAME |
275 | |
276 | (srv_page_size - 1000 MYSQL LOG) |
277 | 3096 TRX_SYS_MYSQL_LOG_INFO TRX_SYS_MYSQL_LOG_MAGIC_N_FLD |
278 | 3100 TRX_SYS_MYSQL_LOG_OFFSET_HIGH |
279 | 3104 TRX_SYS_MYSQL_LOG_OFFSET_LOW |
280 | 3108 TRX_SYS_MYSQL_LOG_NAME |
281 | |
282 | (srv_page_size - 200 DOUBLEWRITE) |
283 | 3896 TRX_SYS_DOUBLEWRITE TRX_SYS_DOUBLEWRITE_FSEG |
284 | 3906 TRX_SYS_DOUBLEWRITE_MAGIC |
285 | 3910 TRX_SYS_DOUBLEWRITE_BLOCK1 |
286 | 3914 TRX_SYS_DOUBLEWRITE_BLOCK2 |
287 | 3918 TRX_SYS_DOUBLEWRITE_REPEAT |
288 | 3930 TRX_SYS_DOUBLEWRITE_SPACE_ID_STORED_N |
289 | |
290 | (srv_page_size - 8, TAILER) |
291 | 4088..4096 FIL_TAILER |
292 | |
293 | */ |
294 | #ifdef WITH_WSREP |
295 | /** The offset to WSREP XID headers (used before MariaDB 10.3.5) */ |
296 | #define TRX_SYS_WSREP_XID_INFO std::max(srv_page_size - 3500, 1596UL) |
297 | #define TRX_SYS_WSREP_XID_MAGIC_N_FLD 0 |
298 | #define TRX_SYS_WSREP_XID_MAGIC_N 0x77737265 |
299 | |
300 | /** XID field: formatID, gtrid_len, bqual_len, xid_data */ |
301 | #define TRX_SYS_WSREP_XID_LEN (4 + 4 + 4 + XIDDATASIZE) |
302 | #define TRX_SYS_WSREP_XID_FORMAT 4 |
303 | #define TRX_SYS_WSREP_XID_GTRID_LEN 8 |
304 | #define TRX_SYS_WSREP_XID_BQUAL_LEN 12 |
305 | #define TRX_SYS_WSREP_XID_DATA 16 |
306 | #endif /* WITH_WSREP*/ |
307 | |
308 | /** Doublewrite buffer */ |
309 | /* @{ */ |
310 | /** The offset of the doublewrite buffer header on the trx system header page */ |
311 | #define TRX_SYS_DOUBLEWRITE (srv_page_size - 200) |
312 | /*-------------------------------------------------------------*/ |
313 | #define TRX_SYS_DOUBLEWRITE_FSEG 0 /*!< fseg header of the fseg |
314 | containing the doublewrite |
315 | buffer */ |
316 | #define TRX_SYS_DOUBLEWRITE_MAGIC FSEG_HEADER_SIZE |
317 | /*!< 4-byte magic number which |
318 | shows if we already have |
319 | created the doublewrite |
320 | buffer */ |
321 | #define TRX_SYS_DOUBLEWRITE_BLOCK1 (4 + FSEG_HEADER_SIZE) |
322 | /*!< page number of the |
323 | first page in the first |
324 | sequence of 64 |
325 | (= FSP_EXTENT_SIZE) consecutive |
326 | pages in the doublewrite |
327 | buffer */ |
328 | #define TRX_SYS_DOUBLEWRITE_BLOCK2 (8 + FSEG_HEADER_SIZE) |
329 | /*!< page number of the |
330 | first page in the second |
331 | sequence of 64 consecutive |
332 | pages in the doublewrite |
333 | buffer */ |
334 | #define TRX_SYS_DOUBLEWRITE_REPEAT 12 /*!< we repeat |
335 | TRX_SYS_DOUBLEWRITE_MAGIC, |
336 | TRX_SYS_DOUBLEWRITE_BLOCK1, |
337 | TRX_SYS_DOUBLEWRITE_BLOCK2 |
338 | so that if the trx sys |
339 | header is half-written |
340 | to disk, we still may |
341 | be able to recover the |
342 | information */ |
343 | /** If this is not yet set to TRX_SYS_DOUBLEWRITE_SPACE_ID_STORED_N, |
344 | we must reset the doublewrite buffer, because starting from 4.1.x the |
345 | space id of a data page is stored into |
346 | FIL_PAGE_ARCH_LOG_NO_OR_SPACE_ID. */ |
347 | #define TRX_SYS_DOUBLEWRITE_SPACE_ID_STORED (24 + FSEG_HEADER_SIZE) |
348 | |
349 | /*-------------------------------------------------------------*/ |
350 | /** Contents of TRX_SYS_DOUBLEWRITE_MAGIC */ |
351 | #define TRX_SYS_DOUBLEWRITE_MAGIC_N 536853855 |
352 | /** Contents of TRX_SYS_DOUBLEWRITE_SPACE_ID_STORED */ |
353 | #define TRX_SYS_DOUBLEWRITE_SPACE_ID_STORED_N 1783657386 |
354 | |
355 | /** Size of the doublewrite block in pages */ |
356 | #define TRX_SYS_DOUBLEWRITE_BLOCK_SIZE FSP_EXTENT_SIZE |
357 | /* @} */ |
358 | |
359 | trx_t* current_trx(); |
360 | |
361 | struct rw_trx_hash_element_t |
362 | { |
363 | rw_trx_hash_element_t(): trx(0) |
364 | { |
365 | mutex_create(LATCH_ID_RW_TRX_HASH_ELEMENT, &mutex); |
366 | } |
367 | |
368 | |
369 | ~rw_trx_hash_element_t() |
370 | { |
371 | mutex_free(&mutex); |
372 | } |
373 | |
374 | |
375 | trx_id_t id; /* lf_hash_init() relies on this to be first in the struct */ |
376 | trx_id_t no; |
377 | trx_t *trx; |
378 | ib_mutex_t mutex; |
379 | }; |
380 | |
381 | |
382 | /** |
383 | Wrapper around LF_HASH to store set of in memory read-write transactions. |
384 | */ |
385 | |
386 | class rw_trx_hash_t |
387 | { |
388 | LF_HASH hash; |
389 | |
390 | |
391 | /** |
392 | Constructor callback for lock-free allocator. |
393 | |
394 | Object is just allocated and is not yet accessible via rw_trx_hash by |
395 | concurrent threads. Object can be reused multiple times before it is freed. |
396 | Every time object is being reused initializer() callback is called. |
397 | */ |
398 | |
399 | static void rw_trx_hash_constructor(uchar *arg) |
400 | { |
401 | new(arg + LF_HASH_OVERHEAD) rw_trx_hash_element_t(); |
402 | } |
403 | |
404 | |
405 | /** |
406 | Destructor callback for lock-free allocator. |
407 | |
408 | Object is about to be freed and is not accessible via rw_trx_hash by |
409 | concurrent threads. |
410 | */ |
411 | |
412 | static void rw_trx_hash_destructor(uchar *arg) |
413 | { |
414 | reinterpret_cast<rw_trx_hash_element_t*> |
415 | (arg + LF_HASH_OVERHEAD)->~rw_trx_hash_element_t(); |
416 | } |
417 | |
418 | |
419 | /** |
420 | Destructor callback for lock-free allocator. |
421 | |
422 | This destructor is used at shutdown. It frees remaining transaction |
423 | objects. |
424 | |
425 | XA PREPARED transactions may remain if they haven't been committed or |
426 | rolled back. ACTIVE transactions may remain if startup was interrupted or |
427 | server is running in read-only mode or for certain srv_force_recovery |
428 | levels. |
429 | */ |
430 | |
431 | static void rw_trx_hash_shutdown_destructor(uchar *arg) |
432 | { |
433 | rw_trx_hash_element_t *element= |
434 | reinterpret_cast<rw_trx_hash_element_t*>(arg + LF_HASH_OVERHEAD); |
435 | if (trx_t *trx= element->trx) |
436 | { |
437 | ut_ad(trx_state_eq(trx, TRX_STATE_PREPARED) || |
438 | (trx_state_eq(trx, TRX_STATE_ACTIVE) && |
439 | (!srv_was_started || |
440 | srv_read_only_mode || |
441 | srv_force_recovery >= SRV_FORCE_NO_TRX_UNDO))); |
442 | trx_free_at_shutdown(trx); |
443 | } |
444 | element->~rw_trx_hash_element_t(); |
445 | } |
446 | |
447 | |
448 | /** |
449 | Initializer callback for lock-free hash. |
450 | |
451 | Object is not yet accessible via rw_trx_hash by concurrent threads, but is |
452 | about to become such. Object id can be changed only by this callback and |
453 | remains the same until all pins to this object are released. |
454 | |
455 | Object trx can be changed to 0 by erase() under object mutex protection, |
456 | which indicates it is about to be removed from lock-free hash and become |
457 | not accessible by concurrent threads. |
458 | */ |
459 | |
460 | static void rw_trx_hash_initializer(LF_HASH *, |
461 | rw_trx_hash_element_t *element, |
462 | trx_t *trx) |
463 | { |
464 | ut_ad(element->trx == 0); |
465 | element->trx= trx; |
466 | element->id= trx->id; |
467 | element->no= TRX_ID_MAX; |
468 | trx->rw_trx_hash_element= element; |
469 | } |
470 | |
471 | |
472 | /** |
473 | Gets LF_HASH pins. |
474 | |
475 | Pins are used to protect object from being destroyed or reused. They are |
476 | normally stored in trx object for quick access. If caller doesn't have trx |
477 | available, we try to get it using currnet_trx(). If caller doesn't have trx |
478 | at all, temporary pins are allocated. |
479 | */ |
480 | |
481 | LF_PINS *get_pins(trx_t *trx) |
482 | { |
483 | if (!trx->rw_trx_hash_pins) |
484 | { |
485 | trx->rw_trx_hash_pins= lf_hash_get_pins(&hash); |
486 | ut_a(trx->rw_trx_hash_pins); |
487 | } |
488 | return trx->rw_trx_hash_pins; |
489 | } |
490 | |
491 | |
492 | struct eliminate_duplicates_arg |
493 | { |
494 | trx_ids_t ids; |
495 | my_hash_walk_action action; |
496 | void *argument; |
497 | eliminate_duplicates_arg(size_t size, my_hash_walk_action act, void* arg): |
498 | action(act), argument(arg) { ids.reserve(size); } |
499 | }; |
500 | |
501 | |
502 | static my_bool eliminate_duplicates(rw_trx_hash_element_t *element, |
503 | eliminate_duplicates_arg *arg) |
504 | { |
505 | for (trx_ids_t::iterator it= arg->ids.begin(); it != arg->ids.end(); it++) |
506 | { |
507 | if (*it == element->id) |
508 | return 0; |
509 | } |
510 | arg->ids.push_back(element->id); |
511 | return arg->action(element, arg->argument); |
512 | } |
513 | |
514 | |
515 | #ifdef UNIV_DEBUG |
516 | static void validate_element(trx_t *trx) |
517 | { |
518 | ut_ad(!trx->read_only || !trx->rsegs.m_redo.rseg); |
519 | ut_ad(!trx_is_autocommit_non_locking(trx)); |
520 | mutex_enter(&trx->mutex); |
521 | ut_ad(trx_state_eq(trx, TRX_STATE_ACTIVE) || |
522 | trx_state_eq(trx, TRX_STATE_PREPARED)); |
523 | mutex_exit(&trx->mutex); |
524 | } |
525 | |
526 | |
527 | struct debug_iterator_arg |
528 | { |
529 | my_hash_walk_action action; |
530 | void *argument; |
531 | }; |
532 | |
533 | |
534 | static my_bool debug_iterator(rw_trx_hash_element_t *element, |
535 | debug_iterator_arg *arg) |
536 | { |
537 | mutex_enter(&element->mutex); |
538 | if (element->trx) |
539 | validate_element(element->trx); |
540 | mutex_exit(&element->mutex); |
541 | return arg->action(element, arg->argument); |
542 | } |
543 | #endif |
544 | |
545 | |
546 | public: |
547 | void init() |
548 | { |
549 | lf_hash_init(&hash, sizeof(rw_trx_hash_element_t), LF_HASH_UNIQUE, 0, |
550 | sizeof(trx_id_t), 0, &my_charset_bin); |
551 | hash.alloc.constructor= rw_trx_hash_constructor; |
552 | hash.alloc.destructor= rw_trx_hash_destructor; |
553 | hash.initializer= |
554 | reinterpret_cast<lf_hash_initializer>(rw_trx_hash_initializer); |
555 | } |
556 | |
557 | |
558 | void destroy() |
559 | { |
560 | hash.alloc.destructor= rw_trx_hash_shutdown_destructor; |
561 | lf_hash_destroy(&hash); |
562 | } |
563 | |
564 | |
565 | /** |
566 | Releases LF_HASH pins. |
567 | |
568 | Must be called by thread that owns trx_t object when the latter is being |
569 | "detached" from thread (e.g. released to the pool by trx_free()). Can be |
570 | called earlier if thread is expected not to use rw_trx_hash. |
571 | |
572 | Since pins are not allowed to be transferred to another thread, |
573 | initialisation thread calls this for recovered transactions. |
574 | */ |
575 | |
576 | void put_pins(trx_t *trx) |
577 | { |
578 | if (trx->rw_trx_hash_pins) |
579 | { |
580 | lf_hash_put_pins(trx->rw_trx_hash_pins); |
581 | trx->rw_trx_hash_pins= 0; |
582 | } |
583 | } |
584 | |
585 | |
586 | /** |
587 | Finds trx object in lock-free hash with given id. |
588 | |
589 | Only ACTIVE or PREPARED trx objects may participate in hash. Nevertheless |
590 | the transaction may get committed before this method returns. |
591 | |
592 | With do_ref_count == false the caller may dereference returned trx pointer |
593 | only if lock_sys.mutex was acquired before calling find(). |
594 | |
595 | With do_ref_count == true caller may dereference trx even if it is not |
596 | holding lock_sys.mutex. Caller is responsible for calling |
597 | trx->release_reference() when it is done playing with trx. |
598 | |
599 | Ideally this method should get caller rw_trx_hash_pins along with trx |
600 | object as a parameter, similar to insert() and erase(). However most |
601 | callers lose trx early in their call chains and it is not that easy to pass |
602 | them through. |
603 | |
604 | So we take more expensive approach: get trx through current_thd()->ha_data. |
605 | Some threads don't have trx attached to THD, and at least server |
606 | initialisation thread, fts_optimize_thread, srv_master_thread, |
607 | dict_stats_thread, srv_monitor_thread, btr_defragment_thread don't even |
608 | have THD at all. For such cases we allocate pins only for duration of |
609 | search and free them immediately. |
610 | |
611 | This has negative performance impact and should be fixed eventually (by |
612 | passing caller_trx as a parameter). Still stream of DML is more or less Ok. |
613 | |
614 | @return |
615 | @retval 0 not found |
616 | @retval pointer to trx |
617 | */ |
618 | |
619 | trx_t *find(trx_t *caller_trx, trx_id_t trx_id, bool do_ref_count= false) |
620 | { |
621 | /* |
622 | In MariaDB 10.3, purge will reset DB_TRX_ID to 0 |
623 | when the history is lost. Read/write transactions will |
624 | always have a nonzero trx_t::id; there the value 0 is |
625 | reserved for transactions that did not write or lock |
626 | anything yet. |
627 | */ |
628 | if (!trx_id) |
629 | return NULL; |
630 | if (caller_trx && caller_trx->id == trx_id) |
631 | { |
632 | if (do_ref_count) |
633 | caller_trx->reference(); |
634 | return caller_trx; |
635 | } |
636 | |
637 | trx_t *trx= 0; |
638 | LF_PINS *pins= caller_trx ? get_pins(caller_trx) : lf_hash_get_pins(&hash); |
639 | ut_a(pins); |
640 | |
641 | rw_trx_hash_element_t *element= reinterpret_cast<rw_trx_hash_element_t*> |
642 | (lf_hash_search(&hash, pins, reinterpret_cast<const void*>(&trx_id), |
643 | sizeof(trx_id_t))); |
644 | if (element) |
645 | { |
646 | mutex_enter(&element->mutex); |
647 | lf_hash_search_unpin(pins); |
648 | if ((trx= element->trx)) |
649 | { |
650 | if (do_ref_count) |
651 | trx->reference(); |
652 | ut_d(validate_element(trx)); |
653 | } |
654 | mutex_exit(&element->mutex); |
655 | } |
656 | if (!caller_trx) |
657 | lf_hash_put_pins(pins); |
658 | return trx; |
659 | } |
660 | |
661 | |
662 | /** |
663 | Inserts trx to lock-free hash. |
664 | |
665 | Object becomes accessible via rw_trx_hash. |
666 | */ |
667 | |
668 | void insert(trx_t *trx) |
669 | { |
670 | ut_d(validate_element(trx)); |
671 | int res= lf_hash_insert(&hash, get_pins(trx), |
672 | reinterpret_cast<void*>(trx)); |
673 | ut_a(res == 0); |
674 | } |
675 | |
676 | |
677 | /** |
678 | Removes trx from lock-free hash. |
679 | |
680 | Object becomes not accessible via rw_trx_hash. But it still can be pinned |
681 | by concurrent find(), which is supposed to release it immediately after |
682 | it sees object trx is 0. |
683 | */ |
684 | |
685 | void erase(trx_t *trx) |
686 | { |
687 | ut_d(validate_element(trx)); |
688 | mutex_enter(&trx->rw_trx_hash_element->mutex); |
689 | trx->rw_trx_hash_element->trx= 0; |
690 | mutex_exit(&trx->rw_trx_hash_element->mutex); |
691 | int res= lf_hash_delete(&hash, get_pins(trx), |
692 | reinterpret_cast<const void*>(&trx->id), |
693 | sizeof(trx_id_t)); |
694 | ut_a(res == 0); |
695 | } |
696 | |
697 | |
698 | /** |
699 | Returns the number of elements in the hash. |
700 | |
701 | The number is exact only if hash is protected against concurrent |
702 | modifications (e.g. single threaded startup or hash is protected |
703 | by some mutex). Otherwise the number may be used as a hint only, |
704 | because it may change even before this method returns. |
705 | */ |
706 | |
707 | uint32_t size() |
708 | { |
709 | return uint32_t(my_atomic_load32_explicit(&hash.count, |
710 | MY_MEMORY_ORDER_RELAXED)); |
711 | } |
712 | |
713 | |
714 | /** |
715 | Iterates the hash. |
716 | |
717 | @param caller_trx used to get/set pins |
718 | @param action called for every element in hash |
719 | @param argument opque argument passed to action |
720 | |
721 | May return the same element multiple times if hash is under contention. |
722 | If caller doesn't like to see the same transaction multiple times, it has |
723 | to call iterate_no_dups() instead. |
724 | |
725 | May return element with committed transaction. If caller doesn't like to |
726 | see committed transactions, it has to skip those under element mutex: |
727 | |
728 | mutex_enter(&element->mutex); |
729 | if (trx_t trx= element->trx) |
730 | { |
731 | // trx is protected against commit in this branch |
732 | } |
733 | mutex_exit(&element->mutex); |
734 | |
735 | May miss concurrently inserted transactions. |
736 | |
737 | @return |
738 | @retval 0 iteration completed successfully |
739 | @retval 1 iteration was interrupted (action returned 1) |
740 | */ |
741 | |
742 | int iterate(trx_t *caller_trx, my_hash_walk_action action, void *argument) |
743 | { |
744 | LF_PINS *pins= caller_trx ? get_pins(caller_trx) : lf_hash_get_pins(&hash); |
745 | ut_a(pins); |
746 | #ifdef UNIV_DEBUG |
747 | debug_iterator_arg debug_arg= { action, argument }; |
748 | action= reinterpret_cast<my_hash_walk_action>(debug_iterator); |
749 | argument= &debug_arg; |
750 | #endif |
751 | int res= lf_hash_iterate(&hash, pins, action, argument); |
752 | if (!caller_trx) |
753 | lf_hash_put_pins(pins); |
754 | return res; |
755 | } |
756 | |
757 | |
758 | int iterate(my_hash_walk_action action, void *argument) |
759 | { |
760 | return iterate(current_trx(), action, argument); |
761 | } |
762 | |
763 | |
764 | /** |
765 | Iterates the hash and eliminates duplicate elements. |
766 | |
767 | @sa iterate() |
768 | */ |
769 | |
770 | int iterate_no_dups(trx_t *caller_trx, my_hash_walk_action action, |
771 | void *argument) |
772 | { |
773 | eliminate_duplicates_arg arg(size() + 32, action, argument); |
774 | return iterate(caller_trx, reinterpret_cast<my_hash_walk_action> |
775 | (eliminate_duplicates), &arg); |
776 | } |
777 | |
778 | |
779 | int iterate_no_dups(my_hash_walk_action action, void *argument) |
780 | { |
781 | return iterate_no_dups(current_trx(), action, argument); |
782 | } |
783 | }; |
784 | |
785 | |
786 | /** The transaction system central memory data structure. */ |
787 | class trx_sys_t |
788 | { |
789 | /** |
790 | The smallest number not yet assigned as a transaction id or transaction |
791 | number. Accessed and updated with atomic operations. |
792 | */ |
793 | MY_ALIGNED(CACHE_LINE_SIZE) trx_id_t m_max_trx_id; |
794 | |
795 | |
796 | /** |
797 | Solves race conditions between register_rw() and snapshot_ids() as well as |
798 | race condition between assign_new_trx_no() and snapshot_ids(). |
799 | |
800 | @sa register_rw() |
801 | @sa assign_new_trx_no() |
802 | @sa snapshot_ids() |
803 | */ |
804 | MY_ALIGNED(CACHE_LINE_SIZE) trx_id_t m_rw_trx_hash_version; |
805 | |
806 | |
807 | /** |
808 | TRX_RSEG_HISTORY list length (number of committed transactions to purge) |
809 | */ |
810 | MY_ALIGNED(CACHE_LINE_SIZE) int32 rseg_history_len; |
811 | |
812 | bool m_initialised; |
813 | |
814 | public: |
815 | /** Mutex protecting trx_list. */ |
816 | MY_ALIGNED(CACHE_LINE_SIZE) mutable TrxSysMutex mutex; |
817 | |
818 | /** List of all transactions. */ |
819 | MY_ALIGNED(CACHE_LINE_SIZE) trx_ut_list_t trx_list; |
820 | |
821 | MY_ALIGNED(CACHE_LINE_SIZE) |
822 | /** Temporary rollback segments */ |
823 | trx_rseg_t* temp_rsegs[TRX_SYS_N_RSEGS]; |
824 | |
825 | MY_ALIGNED(CACHE_LINE_SIZE) |
826 | trx_rseg_t* rseg_array[TRX_SYS_N_RSEGS]; |
827 | /*!< Pointer array to rollback |
828 | segments; NULL if slot not in use; |
829 | created and destroyed in |
830 | single-threaded mode; not protected |
831 | by any mutex, because it is read-only |
832 | during multi-threaded operation */ |
833 | |
834 | /** |
835 | Lock-free hash of in memory read-write transactions. |
836 | Works faster when it is on it's own cache line (tested). |
837 | */ |
838 | |
839 | MY_ALIGNED(CACHE_LINE_SIZE) rw_trx_hash_t rw_trx_hash; |
840 | |
841 | |
842 | #ifdef WITH_WSREP |
843 | /** Latest recovered XID during startup */ |
844 | XID recovered_wsrep_xid; |
845 | #endif |
846 | /** Latest recovered binlog offset */ |
847 | uint64_t recovered_binlog_offset; |
848 | /** Latest recovred binlog file name */ |
849 | char recovered_binlog_filename[TRX_SYS_MYSQL_LOG_NAME_LEN]; |
850 | |
851 | |
852 | /** |
853 | Constructor. |
854 | |
855 | Some members may require late initialisation, thus we just mark object as |
856 | uninitialised. Real initialisation happens in create(). |
857 | */ |
858 | |
859 | trx_sys_t(): m_initialised(false) {} |
860 | |
861 | |
862 | /** |
863 | Returns the minimum trx id in rw trx list. |
864 | |
865 | This is the smallest id for which the trx can possibly be active. (But, you |
866 | must look at the trx->state to find out if the minimum trx id transaction |
867 | itself is active, or already committed.) |
868 | |
869 | @return the minimum trx id, or m_max_trx_id if the trx list is empty |
870 | */ |
871 | |
872 | trx_id_t get_min_trx_id() |
873 | { |
874 | trx_id_t id= get_max_trx_id(); |
875 | rw_trx_hash.iterate(reinterpret_cast<my_hash_walk_action> |
876 | (get_min_trx_id_callback), &id); |
877 | return id; |
878 | } |
879 | |
880 | |
881 | /** |
882 | Determines the maximum transaction id. |
883 | |
884 | @return maximum currently allocated trx id; will be stale after the |
885 | next call to trx_sys.get_new_trx_id() |
886 | */ |
887 | |
888 | trx_id_t get_max_trx_id() |
889 | { |
890 | return static_cast<trx_id_t> |
891 | (my_atomic_load64_explicit(reinterpret_cast<int64*>(&m_max_trx_id), |
892 | MY_MEMORY_ORDER_RELAXED)); |
893 | } |
894 | |
895 | |
896 | /** |
897 | Allocates a new transaction id. |
898 | @return new, allocated trx id |
899 | */ |
900 | |
901 | trx_id_t get_new_trx_id() |
902 | { |
903 | trx_id_t id= get_new_trx_id_no_refresh(); |
904 | refresh_rw_trx_hash_version(); |
905 | return id; |
906 | } |
907 | |
908 | |
909 | /** |
910 | Allocates and assigns new transaction serialisation number. |
911 | |
912 | There's a gap between m_max_trx_id increment and transaction serialisation |
913 | number becoming visible through rw_trx_hash. While we're in this gap |
914 | concurrent thread may come and do MVCC snapshot without seeing allocated |
915 | but not yet assigned serialisation number. Then at some point purge thread |
916 | may clone this view. As a result it won't see newly allocated serialisation |
917 | number and may remove "unnecessary" history data of this transaction from |
918 | rollback segments. |
919 | |
920 | m_rw_trx_hash_version is intended to solve this problem. MVCC snapshot has |
921 | to wait until m_max_trx_id == m_rw_trx_hash_version, which effectively |
922 | means that all transaction serialisation numbers up to m_max_trx_id are |
923 | available through rw_trx_hash. |
924 | |
925 | We rely on refresh_rw_trx_hash_version() to issue RELEASE memory barrier so |
926 | that m_rw_trx_hash_version increment happens after |
927 | trx->rw_trx_hash_element->no becomes visible through rw_trx_hash. |
928 | |
929 | @param trx transaction |
930 | */ |
931 | void assign_new_trx_no(trx_t *trx) |
932 | { |
933 | trx->no= get_new_trx_id_no_refresh(); |
934 | my_atomic_store64_explicit(reinterpret_cast<int64*> |
935 | (&trx->rw_trx_hash_element->no), |
936 | trx->no, MY_MEMORY_ORDER_RELAXED); |
937 | refresh_rw_trx_hash_version(); |
938 | } |
939 | |
940 | |
941 | /** |
942 | Takes MVCC snapshot. |
943 | |
944 | To reduce malloc probablility we reserver rw_trx_hash.size() + 32 elements |
945 | in ids. |
946 | |
947 | For details about get_rw_trx_hash_version() != get_max_trx_id() spin |
948 | @sa register_rw() and @sa assign_new_trx_no(). |
949 | |
950 | We rely on get_rw_trx_hash_version() to issue ACQUIRE memory barrier so |
951 | that loading of m_rw_trx_hash_version happens before accessing rw_trx_hash. |
952 | |
953 | To optimise snapshot creation rw_trx_hash.iterate() is being used instead |
954 | of rw_trx_hash.iterate_no_dups(). It means that some transaction |
955 | identifiers may appear multiple times in ids. |
956 | |
957 | @param[in,out] caller_trx used to get access to rw_trx_hash_pins |
958 | @param[out] ids array to store registered transaction identifiers |
959 | @param[out] max_trx_id variable to store m_max_trx_id value |
960 | @param[out] mix_trx_no variable to store min(trx->no) value |
961 | */ |
962 | |
963 | void snapshot_ids(trx_t *caller_trx, trx_ids_t *ids, trx_id_t *max_trx_id, |
964 | trx_id_t *min_trx_no) |
965 | { |
966 | ut_ad(!mutex_own(&mutex)); |
967 | snapshot_ids_arg arg(ids); |
968 | |
969 | while ((arg.m_id= get_rw_trx_hash_version()) != get_max_trx_id()) |
970 | ut_delay(1); |
971 | arg.m_no= arg.m_id; |
972 | |
973 | ids->clear(); |
974 | ids->reserve(rw_trx_hash.size() + 32); |
975 | rw_trx_hash.iterate(caller_trx, |
976 | reinterpret_cast<my_hash_walk_action>(copy_one_id), |
977 | &arg); |
978 | |
979 | *max_trx_id= arg.m_id; |
980 | *min_trx_no= arg.m_no; |
981 | } |
982 | |
983 | |
984 | /** Initialiser for m_max_trx_id and m_rw_trx_hash_version. */ |
985 | void init_max_trx_id(trx_id_t value) |
986 | { |
987 | m_max_trx_id= m_rw_trx_hash_version= value; |
988 | } |
989 | |
990 | |
991 | bool is_initialised() { return m_initialised; } |
992 | |
993 | |
994 | /** Initialise the transaction subsystem. */ |
995 | void create(); |
996 | |
997 | /** Close the transaction subsystem on shutdown. */ |
998 | void close(); |
999 | |
1000 | /** @return total number of active (non-prepared) transactions */ |
1001 | ulint any_active_transactions(); |
1002 | |
1003 | |
1004 | /** |
1005 | Registers read-write transaction. |
1006 | |
1007 | Transaction becomes visible to MVCC. |
1008 | |
1009 | There's a gap between m_max_trx_id increment and transaction becoming |
1010 | visible through rw_trx_hash. While we're in this gap concurrent thread may |
1011 | come and do MVCC snapshot. As a result concurrent read view will be able to |
1012 | observe records owned by this transaction even before it was committed. |
1013 | |
1014 | m_rw_trx_hash_version is intended to solve this problem. MVCC snapshot has |
1015 | to wait until m_max_trx_id == m_rw_trx_hash_version, which effectively |
1016 | means that all transactions up to m_max_trx_id are available through |
1017 | rw_trx_hash. |
1018 | |
1019 | We rely on refresh_rw_trx_hash_version() to issue RELEASE memory barrier so |
1020 | that m_rw_trx_hash_version increment happens after transaction becomes |
1021 | visible through rw_trx_hash. |
1022 | */ |
1023 | |
1024 | void register_rw(trx_t *trx) |
1025 | { |
1026 | trx->id= get_new_trx_id_no_refresh(); |
1027 | rw_trx_hash.insert(trx); |
1028 | refresh_rw_trx_hash_version(); |
1029 | } |
1030 | |
1031 | |
1032 | /** |
1033 | Deregisters read-write transaction. |
1034 | |
1035 | Transaction is removed from rw_trx_hash, which releases all implicit locks. |
1036 | MVCC snapshot won't see this transaction anymore. |
1037 | */ |
1038 | |
1039 | void deregister_rw(trx_t *trx) |
1040 | { |
1041 | rw_trx_hash.erase(trx); |
1042 | } |
1043 | |
1044 | |
1045 | bool is_registered(trx_t *caller_trx, trx_id_t id) |
1046 | { |
1047 | return rw_trx_hash.find(caller_trx, id); |
1048 | } |
1049 | |
1050 | |
1051 | trx_t *find(trx_t *caller_trx, trx_id_t id) |
1052 | { |
1053 | return rw_trx_hash.find(caller_trx, id, true); |
1054 | } |
1055 | |
1056 | |
1057 | /** |
1058 | Registers transaction in trx_sys. |
1059 | |
1060 | @param trx transaction |
1061 | */ |
1062 | void register_trx(trx_t *trx) |
1063 | { |
1064 | mutex_enter(&mutex); |
1065 | UT_LIST_ADD_FIRST(trx_list, trx); |
1066 | mutex_exit(&mutex); |
1067 | } |
1068 | |
1069 | |
1070 | /** |
1071 | Deregisters transaction in trx_sys. |
1072 | |
1073 | @param trx transaction |
1074 | */ |
1075 | void deregister_trx(trx_t *trx) |
1076 | { |
1077 | mutex_enter(&mutex); |
1078 | UT_LIST_REMOVE(trx_list, trx); |
1079 | mutex_exit(&mutex); |
1080 | } |
1081 | |
1082 | |
1083 | /** |
1084 | Clones the oldest view and stores it in view. |
1085 | |
1086 | No need to call ReadView::close(). The caller owns the view that is passed |
1087 | in. This function is called by purge thread to determine whether it should |
1088 | purge the delete marked record or not. |
1089 | */ |
1090 | void clone_oldest_view(); |
1091 | |
1092 | |
1093 | /** @return the number of active views */ |
1094 | size_t view_count() const |
1095 | { |
1096 | size_t count= 0; |
1097 | |
1098 | mutex_enter(&mutex); |
1099 | for (const trx_t *trx= UT_LIST_GET_FIRST(trx_list); trx; |
1100 | trx= UT_LIST_GET_NEXT(trx_list, trx)) |
1101 | { |
1102 | if (trx->read_view.get_state() == READ_VIEW_STATE_OPEN) |
1103 | ++count; |
1104 | } |
1105 | mutex_exit(&mutex); |
1106 | return count; |
1107 | } |
1108 | |
1109 | /** @return number of committed transactions waiting for purge */ |
1110 | ulint history_size() const |
1111 | { |
1112 | return uint32(my_atomic_load32(&const_cast<trx_sys_t*>(this) |
1113 | ->rseg_history_len)); |
1114 | } |
1115 | /** Add to the TRX_RSEG_HISTORY length (on database startup). */ |
1116 | void history_add(int32 len) |
1117 | { |
1118 | my_atomic_add32(&rseg_history_len, len); |
1119 | } |
1120 | /** Register a committed transaction. */ |
1121 | void history_insert() { history_add(1); } |
1122 | /** Note that a committed transaction was purged. */ |
1123 | void history_remove() { history_add(-1); } |
1124 | |
1125 | private: |
1126 | static my_bool get_min_trx_id_callback(rw_trx_hash_element_t *element, |
1127 | trx_id_t *id) |
1128 | { |
1129 | if (element->id < *id) |
1130 | { |
1131 | mutex_enter(&element->mutex); |
1132 | /* We don't care about read-only transactions here. */ |
1133 | if (element->trx && element->trx->rsegs.m_redo.rseg) |
1134 | *id= element->id; |
1135 | mutex_exit(&element->mutex); |
1136 | } |
1137 | return 0; |
1138 | } |
1139 | |
1140 | |
1141 | struct snapshot_ids_arg |
1142 | { |
1143 | snapshot_ids_arg(trx_ids_t *ids): m_ids(ids) {} |
1144 | trx_ids_t *m_ids; |
1145 | trx_id_t m_id; |
1146 | trx_id_t m_no; |
1147 | }; |
1148 | |
1149 | |
1150 | static my_bool copy_one_id(rw_trx_hash_element_t *element, |
1151 | snapshot_ids_arg *arg) |
1152 | { |
1153 | if (element->id < arg->m_id) |
1154 | { |
1155 | trx_id_t no= static_cast<trx_id_t>(my_atomic_load64_explicit( |
1156 | reinterpret_cast<int64*>(&element->no), MY_MEMORY_ORDER_RELAXED)); |
1157 | arg->m_ids->push_back(element->id); |
1158 | if (no < arg->m_no) |
1159 | arg->m_no= no; |
1160 | } |
1161 | return 0; |
1162 | } |
1163 | |
1164 | |
1165 | /** Getter for m_rw_trx_hash_version, must issue ACQUIRE memory barrier. */ |
1166 | trx_id_t get_rw_trx_hash_version() |
1167 | { |
1168 | return static_cast<trx_id_t> |
1169 | (my_atomic_load64_explicit(reinterpret_cast<int64*> |
1170 | (&m_rw_trx_hash_version), |
1171 | MY_MEMORY_ORDER_ACQUIRE)); |
1172 | } |
1173 | |
1174 | |
1175 | /** Increments m_rw_trx_hash_version, must issue RELEASE memory barrier. */ |
1176 | void refresh_rw_trx_hash_version() |
1177 | { |
1178 | my_atomic_add64_explicit(reinterpret_cast<int64*>(&m_rw_trx_hash_version), |
1179 | 1, MY_MEMORY_ORDER_RELEASE); |
1180 | } |
1181 | |
1182 | |
1183 | /** |
1184 | Allocates new transaction id without refreshing rw_trx_hash version. |
1185 | |
1186 | This method is extracted for exclusive use by register_rw() and |
1187 | assign_new_trx_no() where new id must be allocated atomically with |
1188 | payload of these methods from MVCC snapshot point of view. |
1189 | |
1190 | @sa get_new_trx_id() |
1191 | @sa assign_new_trx_no() |
1192 | |
1193 | @return new transaction id |
1194 | */ |
1195 | |
1196 | trx_id_t get_new_trx_id_no_refresh() |
1197 | { |
1198 | return static_cast<trx_id_t>(my_atomic_add64_explicit( |
1199 | reinterpret_cast<int64*>(&m_max_trx_id), 1, MY_MEMORY_ORDER_RELAXED)); |
1200 | } |
1201 | }; |
1202 | |
1203 | |
1204 | /** The transaction system */ |
1205 | extern trx_sys_t trx_sys; |
1206 | |
1207 | #endif |
1208 | |