| 1 | /***************************************************************************** |
| 2 | |
| 3 | Copyright (c) 1997, 2016, Oracle and/or its affiliates. All Rights Reserved. |
| 4 | |
| 5 | This program is free software; you can redistribute it and/or modify it under |
| 6 | the terms of the GNU General Public License as published by the Free Software |
| 7 | Foundation; version 2 of the License. |
| 8 | |
| 9 | This program is distributed in the hope that it will be useful, but WITHOUT |
| 10 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| 11 | FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
| 12 | |
| 13 | You should have received a copy of the GNU General Public License along with |
| 14 | this program; if not, write to the Free Software Foundation, Inc., |
| 15 | 51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA |
| 16 | |
| 17 | *****************************************************************************/ |
| 18 | |
| 19 | /**************************************************//** |
| 20 | @file pars/pars0opt.cc |
| 21 | Simple SQL optimizer |
| 22 | |
| 23 | Created 12/21/1997 Heikki Tuuri |
| 24 | *******************************************************/ |
| 25 | |
| 26 | #include "pars0opt.h" |
| 27 | #include "row0sel.h" |
| 28 | #include "row0ins.h" |
| 29 | #include "row0upd.h" |
| 30 | #include "dict0boot.h" |
| 31 | #include "dict0dict.h" |
| 32 | #include "dict0mem.h" |
| 33 | #include "que0que.h" |
| 34 | #include "pars0grm.h" |
| 35 | #include "pars0pars.h" |
| 36 | #include "lock0lock.h" |
| 37 | |
| 38 | #define OPT_EQUAL 1 /* comparison by = */ |
| 39 | #define OPT_COMPARISON 2 /* comparison by <, >, <=, or >= */ |
| 40 | |
| 41 | #define OPT_NOT_COND 1 |
| 42 | #define OPT_END_COND 2 |
| 43 | #define OPT_TEST_COND 3 |
| 44 | #define OPT_SCROLL_COND 4 |
| 45 | |
| 46 | |
| 47 | /*******************************************************************//** |
| 48 | Inverts a comparison operator. |
| 49 | @return the equivalent operator when the order of the arguments is switched */ |
| 50 | static |
| 51 | int |
| 52 | opt_invert_cmp_op( |
| 53 | /*==============*/ |
| 54 | int op) /*!< in: operator */ |
| 55 | { |
| 56 | if (op == '<') { |
| 57 | return('>'); |
| 58 | } else if (op == '>') { |
| 59 | return('<'); |
| 60 | } else if (op == '=') { |
| 61 | return('='); |
| 62 | } else if (op == PARS_LE_TOKEN) { |
| 63 | return(PARS_GE_TOKEN); |
| 64 | } else if (op == PARS_GE_TOKEN) { |
| 65 | return(PARS_LE_TOKEN); |
| 66 | } else { |
| 67 | /* TODO: LIKE operator */ |
| 68 | ut_error; |
| 69 | } |
| 70 | |
| 71 | return(0); |
| 72 | } |
| 73 | |
| 74 | /*******************************************************************//** |
| 75 | Checks if the value of an expression can be calculated BEFORE the nth table |
| 76 | in a join is accessed. If this is the case, it can possibly be used in an |
| 77 | index search for the nth table. |
| 78 | @return TRUE if already determined */ |
| 79 | static |
| 80 | ibool |
| 81 | opt_check_exp_determined_before( |
| 82 | /*============================*/ |
| 83 | que_node_t* exp, /*!< in: expression */ |
| 84 | sel_node_t* sel_node, /*!< in: select node */ |
| 85 | ulint nth_table) /*!< in: nth table will be accessed */ |
| 86 | { |
| 87 | func_node_t* func_node; |
| 88 | sym_node_t* sym_node; |
| 89 | dict_table_t* table; |
| 90 | que_node_t* arg; |
| 91 | ulint i; |
| 92 | |
| 93 | ut_ad(exp && sel_node); |
| 94 | |
| 95 | if (que_node_get_type(exp) == QUE_NODE_FUNC) { |
| 96 | func_node = static_cast<func_node_t*>(exp); |
| 97 | |
| 98 | arg = func_node->args; |
| 99 | |
| 100 | while (arg) { |
| 101 | if (!opt_check_exp_determined_before(arg, sel_node, |
| 102 | nth_table)) { |
| 103 | return(FALSE); |
| 104 | } |
| 105 | |
| 106 | arg = que_node_get_next(arg); |
| 107 | } |
| 108 | |
| 109 | return(TRUE); |
| 110 | } |
| 111 | |
| 112 | ut_a(que_node_get_type(exp) == QUE_NODE_SYMBOL); |
| 113 | |
| 114 | sym_node = static_cast<sym_node_t*>(exp); |
| 115 | |
| 116 | if (sym_node->token_type != SYM_COLUMN) { |
| 117 | |
| 118 | return(TRUE); |
| 119 | } |
| 120 | |
| 121 | for (i = 0; i < nth_table; i++) { |
| 122 | |
| 123 | table = sel_node_get_nth_plan(sel_node, i)->table; |
| 124 | |
| 125 | if (sym_node->table == table) { |
| 126 | |
| 127 | return(TRUE); |
| 128 | } |
| 129 | } |
| 130 | |
| 131 | return(FALSE); |
| 132 | } |
| 133 | |
| 134 | /*******************************************************************//** |
| 135 | Looks in a comparison condition if a column value is already restricted by |
| 136 | it BEFORE the nth table is accessed. |
| 137 | @return expression restricting the value of the column, or NULL if not known */ |
| 138 | static |
| 139 | que_node_t* |
| 140 | opt_look_for_col_in_comparison_before( |
| 141 | /*==================================*/ |
| 142 | ulint cmp_type, /*!< in: OPT_EQUAL, OPT_COMPARISON */ |
| 143 | ulint col_no, /*!< in: column number */ |
| 144 | func_node_t* search_cond, /*!< in: comparison condition */ |
| 145 | sel_node_t* sel_node, /*!< in: select node */ |
| 146 | ulint nth_table, /*!< in: nth table in a join (a query |
| 147 | from a single table is considered a |
| 148 | join of 1 table) */ |
| 149 | ulint* op) /*!< out: comparison operator ('=', |
| 150 | PARS_GE_TOKEN, ... ); this is inverted |
| 151 | if the column appears on the right |
| 152 | side */ |
| 153 | { |
| 154 | sym_node_t* sym_node; |
| 155 | dict_table_t* table; |
| 156 | que_node_t* exp; |
| 157 | que_node_t* arg; |
| 158 | |
| 159 | ut_ad(search_cond); |
| 160 | |
| 161 | ut_a((search_cond->func == '<') |
| 162 | || (search_cond->func == '>') |
| 163 | || (search_cond->func == '=') |
| 164 | || (search_cond->func == PARS_GE_TOKEN) |
| 165 | || (search_cond->func == PARS_LE_TOKEN) |
| 166 | || (search_cond->func == PARS_LIKE_TOKEN_EXACT) |
| 167 | || (search_cond->func == PARS_LIKE_TOKEN_PREFIX) |
| 168 | || (search_cond->func == PARS_LIKE_TOKEN_SUFFIX) |
| 169 | || (search_cond->func == PARS_LIKE_TOKEN_SUBSTR)); |
| 170 | |
| 171 | table = sel_node_get_nth_plan(sel_node, nth_table)->table; |
| 172 | |
| 173 | if ((cmp_type == OPT_EQUAL) |
| 174 | && (search_cond->func != '=') |
| 175 | && (search_cond->func != PARS_LIKE_TOKEN_EXACT) |
| 176 | && (search_cond->func != PARS_LIKE_TOKEN_PREFIX)) { |
| 177 | |
| 178 | return(NULL); |
| 179 | |
| 180 | } else if ((cmp_type == OPT_COMPARISON) |
| 181 | && (search_cond->func != '<') |
| 182 | && (search_cond->func != '>') |
| 183 | && (search_cond->func != PARS_GE_TOKEN) |
| 184 | && (search_cond->func != PARS_LE_TOKEN) |
| 185 | && (search_cond->func != PARS_LIKE_TOKEN_PREFIX) |
| 186 | && (search_cond->func != PARS_LIKE_TOKEN_SUFFIX)) { |
| 187 | |
| 188 | return(NULL); |
| 189 | } |
| 190 | |
| 191 | arg = search_cond->args; |
| 192 | |
| 193 | if (que_node_get_type(arg) == QUE_NODE_SYMBOL) { |
| 194 | sym_node = static_cast<sym_node_t*>(arg); |
| 195 | |
| 196 | if ((sym_node->token_type == SYM_COLUMN) |
| 197 | && (sym_node->table == table) |
| 198 | && (sym_node->col_no == col_no)) { |
| 199 | |
| 200 | /* sym_node contains the desired column id */ |
| 201 | |
| 202 | /* Check if the expression on the right side of the |
| 203 | operator is already determined */ |
| 204 | |
| 205 | exp = que_node_get_next(arg); |
| 206 | |
| 207 | if (opt_check_exp_determined_before(exp, sel_node, |
| 208 | nth_table)) { |
| 209 | *op = ulint(search_cond->func); |
| 210 | |
| 211 | return(exp); |
| 212 | } |
| 213 | } |
| 214 | } |
| 215 | |
| 216 | exp = search_cond->args; |
| 217 | arg = que_node_get_next(arg); |
| 218 | |
| 219 | if (que_node_get_type(arg) == QUE_NODE_SYMBOL) { |
| 220 | sym_node = static_cast<sym_node_t*>(arg); |
| 221 | |
| 222 | if ((sym_node->token_type == SYM_COLUMN) |
| 223 | && (sym_node->table == table) |
| 224 | && (sym_node->col_no == col_no)) { |
| 225 | |
| 226 | if (opt_check_exp_determined_before(exp, sel_node, |
| 227 | nth_table)) { |
| 228 | *op = ulint(opt_invert_cmp_op( |
| 229 | search_cond->func)); |
| 230 | |
| 231 | return(exp); |
| 232 | } |
| 233 | } |
| 234 | } |
| 235 | |
| 236 | return(NULL); |
| 237 | } |
| 238 | |
| 239 | /*******************************************************************//** |
| 240 | Looks in a search condition if a column value is already restricted by the |
| 241 | search condition BEFORE the nth table is accessed. Takes into account that |
| 242 | if we will fetch in an ascending order, we cannot utilize an upper limit for |
| 243 | a column value; in a descending order, respectively, a lower limit. |
| 244 | @return expression restricting the value of the column, or NULL if not known */ |
| 245 | static |
| 246 | que_node_t* |
| 247 | opt_look_for_col_in_cond_before( |
| 248 | /*============================*/ |
| 249 | ulint cmp_type, /*!< in: OPT_EQUAL, OPT_COMPARISON */ |
| 250 | ulint col_no, /*!< in: column number */ |
| 251 | func_node_t* search_cond, /*!< in: search condition or NULL */ |
| 252 | sel_node_t* sel_node, /*!< in: select node */ |
| 253 | ulint nth_table, /*!< in: nth table in a join (a query |
| 254 | from a single table is considered a |
| 255 | join of 1 table) */ |
| 256 | ulint* op) /*!< out: comparison operator ('=', |
| 257 | PARS_GE_TOKEN, ... ) */ |
| 258 | { |
| 259 | func_node_t* new_cond; |
| 260 | que_node_t* exp; |
| 261 | |
| 262 | if (search_cond == NULL) { |
| 263 | |
| 264 | return(NULL); |
| 265 | } |
| 266 | |
| 267 | ut_a(que_node_get_type(search_cond) == QUE_NODE_FUNC); |
| 268 | ut_a(search_cond->func != PARS_OR_TOKEN); |
| 269 | ut_a(search_cond->func != PARS_NOT_TOKEN); |
| 270 | |
| 271 | if (search_cond->func == PARS_AND_TOKEN) { |
| 272 | new_cond = static_cast<func_node_t*>(search_cond->args); |
| 273 | |
| 274 | exp = opt_look_for_col_in_cond_before(cmp_type, col_no, |
| 275 | new_cond, sel_node, |
| 276 | nth_table, op); |
| 277 | if (exp) { |
| 278 | |
| 279 | return(exp); |
| 280 | } |
| 281 | |
| 282 | new_cond = static_cast<func_node_t*>( |
| 283 | que_node_get_next(new_cond)); |
| 284 | |
| 285 | exp = opt_look_for_col_in_cond_before(cmp_type, col_no, |
| 286 | new_cond, sel_node, |
| 287 | nth_table, op); |
| 288 | return(exp); |
| 289 | } |
| 290 | |
| 291 | exp = opt_look_for_col_in_comparison_before(cmp_type, col_no, |
| 292 | search_cond, sel_node, |
| 293 | nth_table, op); |
| 294 | if (exp == NULL) { |
| 295 | |
| 296 | return(NULL); |
| 297 | } |
| 298 | |
| 299 | /* If we will fetch in an ascending order, we cannot utilize an upper |
| 300 | limit for a column value; in a descending order, respectively, a lower |
| 301 | limit */ |
| 302 | |
| 303 | if (sel_node->asc && ((*op == '<') || (*op == PARS_LE_TOKEN))) { |
| 304 | |
| 305 | return(NULL); |
| 306 | |
| 307 | } else if (!sel_node->asc |
| 308 | && ((*op == '>') || (*op == PARS_GE_TOKEN))) { |
| 309 | |
| 310 | return(NULL); |
| 311 | } |
| 312 | |
| 313 | return(exp); |
| 314 | } |
| 315 | |
| 316 | /*******************************************************************//** |
| 317 | Calculates the goodness for an index according to a select node. The |
| 318 | goodness is 4 times the number of first fields in index whose values we |
| 319 | already know exactly in the query. If we have a comparison condition for |
| 320 | an additional field, 2 point are added. If the index is unique, and we know |
| 321 | all the unique fields for the index we add 1024 points. For a clustered index |
| 322 | we add 1 point. |
| 323 | @return goodness */ |
| 324 | static |
| 325 | ulint |
| 326 | opt_calc_index_goodness( |
| 327 | /*====================*/ |
| 328 | dict_index_t* index, /*!< in: index */ |
| 329 | sel_node_t* sel_node, /*!< in: parsed select node */ |
| 330 | ulint nth_table, /*!< in: nth table in a join */ |
| 331 | que_node_t** index_plan, /*!< in/out: comparison expressions for |
| 332 | this index */ |
| 333 | ulint* last_op) /*!< out: last comparison operator, if |
| 334 | goodness > 1 */ |
| 335 | { |
| 336 | que_node_t* exp; |
| 337 | ulint goodness; |
| 338 | ulint n_fields; |
| 339 | ulint col_no; |
| 340 | ulint op; |
| 341 | ulint j; |
| 342 | |
| 343 | /* At least for now we don't support using FTS indexes for queries |
| 344 | done through InnoDB's own SQL parser. */ |
| 345 | if (dict_index_is_online_ddl(index) || (index->type & DICT_FTS)) { |
| 346 | return(0); |
| 347 | } |
| 348 | |
| 349 | goodness = 0; |
| 350 | |
| 351 | /* Note that as higher level node pointers in the B-tree contain |
| 352 | page addresses as the last field, we must not put more fields in |
| 353 | the search tuple than dict_index_get_n_unique_in_tree(index); see |
| 354 | the note in btr_cur_search_to_nth_level. */ |
| 355 | |
| 356 | n_fields = dict_index_get_n_unique_in_tree(index); |
| 357 | |
| 358 | for (j = 0; j < n_fields; j++) { |
| 359 | |
| 360 | col_no = dict_index_get_nth_col_no(index, j); |
| 361 | |
| 362 | exp = opt_look_for_col_in_cond_before( |
| 363 | OPT_EQUAL, col_no, |
| 364 | static_cast<func_node_t*>(sel_node->search_cond), |
| 365 | sel_node, nth_table, &op); |
| 366 | if (exp) { |
| 367 | /* The value for this column is exactly known already |
| 368 | at this stage of the join */ |
| 369 | |
| 370 | index_plan[j] = exp; |
| 371 | *last_op = op; |
| 372 | goodness += 4; |
| 373 | } else { |
| 374 | /* Look for non-equality comparisons */ |
| 375 | |
| 376 | exp = opt_look_for_col_in_cond_before( |
| 377 | OPT_COMPARISON, col_no, |
| 378 | static_cast<func_node_t*>( |
| 379 | sel_node->search_cond), |
| 380 | sel_node, nth_table, &op); |
| 381 | if (exp) { |
| 382 | index_plan[j] = exp; |
| 383 | *last_op = op; |
| 384 | goodness += 2; |
| 385 | } |
| 386 | |
| 387 | break; |
| 388 | } |
| 389 | } |
| 390 | |
| 391 | if (goodness >= 4 * dict_index_get_n_unique(index)) { |
| 392 | goodness += 1024; |
| 393 | |
| 394 | if (dict_index_is_clust(index)) { |
| 395 | |
| 396 | goodness += 1024; |
| 397 | } |
| 398 | } |
| 399 | |
| 400 | /* We have to test for goodness here, as last_op may not be set */ |
| 401 | if (goodness && dict_index_is_clust(index)) { |
| 402 | |
| 403 | goodness++; |
| 404 | } |
| 405 | |
| 406 | return(goodness); |
| 407 | } |
| 408 | |
| 409 | /*******************************************************************//** |
| 410 | Calculates the number of matched fields based on an index goodness. |
| 411 | @return number of excatly or partially matched fields */ |
| 412 | UNIV_INLINE |
| 413 | ulint |
| 414 | opt_calc_n_fields_from_goodness( |
| 415 | /*============================*/ |
| 416 | ulint goodness) /*!< in: goodness */ |
| 417 | { |
| 418 | return(((goodness % 1024) + 2) / 4); |
| 419 | } |
| 420 | |
| 421 | /*******************************************************************//** |
| 422 | Converts a comparison operator to the corresponding search mode PAGE_CUR_GE, |
| 423 | ... |
| 424 | @return search mode */ |
| 425 | UNIV_INLINE |
| 426 | page_cur_mode_t |
| 427 | opt_op_to_search_mode( |
| 428 | /*==================*/ |
| 429 | ibool asc, /*!< in: TRUE if the rows should be fetched in an |
| 430 | ascending order */ |
| 431 | ulint op) /*!< in: operator '=', PARS_GE_TOKEN, ... */ |
| 432 | { |
| 433 | if (op == '=' |
| 434 | || op == PARS_LIKE_TOKEN_EXACT |
| 435 | || op == PARS_LIKE_TOKEN_PREFIX |
| 436 | || op == PARS_LIKE_TOKEN_SUFFIX |
| 437 | || op == PARS_LIKE_TOKEN_SUBSTR) { |
| 438 | |
| 439 | if (asc) { |
| 440 | return(PAGE_CUR_GE); |
| 441 | } else { |
| 442 | return(PAGE_CUR_LE); |
| 443 | } |
| 444 | } else if (op == '<') { |
| 445 | ut_a(!asc); |
| 446 | return(PAGE_CUR_L); |
| 447 | } else if (op == '>') { |
| 448 | ut_a(asc); |
| 449 | return(PAGE_CUR_G); |
| 450 | } else if (op == PARS_GE_TOKEN) { |
| 451 | ut_a(asc); |
| 452 | return(PAGE_CUR_GE); |
| 453 | } else if (op == PARS_LE_TOKEN) { |
| 454 | ut_a(!asc); |
| 455 | return(PAGE_CUR_LE); |
| 456 | } else { |
| 457 | ut_error; |
| 458 | } |
| 459 | |
| 460 | return(PAGE_CUR_UNSUPP); |
| 461 | } |
| 462 | |
| 463 | /*******************************************************************//** |
| 464 | Determines if a node is an argument node of a function node. |
| 465 | @return TRUE if is an argument */ |
| 466 | static |
| 467 | ibool |
| 468 | opt_is_arg( |
| 469 | /*=======*/ |
| 470 | que_node_t* arg_node, /*!< in: possible argument node */ |
| 471 | func_node_t* func_node) /*!< in: function node */ |
| 472 | { |
| 473 | que_node_t* arg; |
| 474 | |
| 475 | arg = func_node->args; |
| 476 | |
| 477 | while (arg) { |
| 478 | if (arg == arg_node) { |
| 479 | |
| 480 | return(TRUE); |
| 481 | } |
| 482 | |
| 483 | arg = que_node_get_next(arg); |
| 484 | } |
| 485 | |
| 486 | return(FALSE); |
| 487 | } |
| 488 | |
| 489 | /*******************************************************************//** |
| 490 | Decides if the fetching of rows should be made in a descending order, and |
| 491 | also checks that the chosen query plan produces a result which satisfies |
| 492 | the order-by. */ |
| 493 | static |
| 494 | void |
| 495 | opt_check_order_by( |
| 496 | /*===============*/ |
| 497 | sel_node_t* sel_node) /*!< in: select node; asserts an error |
| 498 | if the plan does not agree with the |
| 499 | order-by */ |
| 500 | { |
| 501 | order_node_t* order_node; |
| 502 | dict_table_t* order_table; |
| 503 | ulint order_col_no; |
| 504 | plan_t* plan; |
| 505 | ulint i; |
| 506 | |
| 507 | if (!sel_node->order_by) { |
| 508 | |
| 509 | return; |
| 510 | } |
| 511 | |
| 512 | order_node = sel_node->order_by; |
| 513 | order_col_no = order_node->column->col_no; |
| 514 | order_table = order_node->column->table; |
| 515 | |
| 516 | /* If there is an order-by clause, the first non-exactly matched field |
| 517 | in the index used for the last table in the table list should be the |
| 518 | column defined in the order-by clause, and for all the other tables |
| 519 | we should get only at most a single row, otherwise we cannot presently |
| 520 | calculate the order-by, as we have no sort utility */ |
| 521 | |
| 522 | for (i = 0; i < sel_node->n_tables; i++) { |
| 523 | |
| 524 | plan = sel_node_get_nth_plan(sel_node, i); |
| 525 | |
| 526 | if (i < sel_node->n_tables - 1) { |
| 527 | ut_a(dict_index_get_n_unique(plan->index) |
| 528 | <= plan->n_exact_match); |
| 529 | } else { |
| 530 | ut_a(plan->table == order_table); |
| 531 | |
| 532 | ut_a((dict_index_get_n_unique(plan->index) |
| 533 | <= plan->n_exact_match) |
| 534 | || (dict_index_get_nth_col_no(plan->index, |
| 535 | plan->n_exact_match) |
| 536 | == order_col_no)); |
| 537 | } |
| 538 | } |
| 539 | } |
| 540 | |
| 541 | /*******************************************************************//** |
| 542 | Optimizes a select. Decides which indexes to tables to use. The tables |
| 543 | are accessed in the order that they were written to the FROM part in the |
| 544 | select statement. */ |
| 545 | static |
| 546 | void |
| 547 | opt_search_plan_for_table( |
| 548 | /*======================*/ |
| 549 | sel_node_t* sel_node, /*!< in: parsed select node */ |
| 550 | ulint i, /*!< in: this is the ith table */ |
| 551 | dict_table_t* table) /*!< in: table */ |
| 552 | { |
| 553 | plan_t* plan; |
| 554 | dict_index_t* index; |
| 555 | dict_index_t* best_index; |
| 556 | ulint n_fields; |
| 557 | ulint goodness; |
| 558 | ulint last_op = 75946965; /* Eliminate a Purify |
| 559 | warning */ |
| 560 | ulint best_goodness; |
| 561 | ulint best_last_op = 0; /* remove warning */ |
| 562 | que_node_t* index_plan[256]; |
| 563 | que_node_t* best_index_plan[256]; |
| 564 | |
| 565 | plan = sel_node_get_nth_plan(sel_node, i); |
| 566 | |
| 567 | plan->table = table; |
| 568 | plan->asc = sel_node->asc; |
| 569 | plan->pcur_is_open = FALSE; |
| 570 | plan->cursor_at_end = FALSE; |
| 571 | |
| 572 | /* Calculate goodness for each index of the table */ |
| 573 | |
| 574 | index = dict_table_get_first_index(table); |
| 575 | best_index = index; /* Eliminate compiler warning */ |
| 576 | best_goodness = 0; |
| 577 | |
| 578 | /* should be do ... until ? comment by Jani */ |
| 579 | while (index) { |
| 580 | goodness = opt_calc_index_goodness(index, sel_node, i, |
| 581 | index_plan, &last_op); |
| 582 | if (goodness > best_goodness) { |
| 583 | |
| 584 | best_index = index; |
| 585 | best_goodness = goodness; |
| 586 | n_fields = opt_calc_n_fields_from_goodness(goodness); |
| 587 | |
| 588 | ut_memcpy(best_index_plan, index_plan, |
| 589 | n_fields * sizeof(void*)); |
| 590 | best_last_op = last_op; |
| 591 | } |
| 592 | |
| 593 | dict_table_next_uncorrupted_index(index); |
| 594 | } |
| 595 | |
| 596 | plan->index = best_index; |
| 597 | |
| 598 | n_fields = opt_calc_n_fields_from_goodness(best_goodness); |
| 599 | |
| 600 | if (n_fields == 0) { |
| 601 | plan->tuple = NULL; |
| 602 | plan->n_exact_match = 0; |
| 603 | } else { |
| 604 | plan->tuple = dtuple_create(pars_sym_tab_global->heap, |
| 605 | n_fields); |
| 606 | dict_index_copy_types(plan->tuple, plan->index, n_fields); |
| 607 | |
| 608 | plan->tuple_exps = static_cast<que_node_t**>( |
| 609 | mem_heap_alloc( |
| 610 | pars_sym_tab_global->heap, |
| 611 | n_fields * sizeof(void*))); |
| 612 | |
| 613 | ut_memcpy(plan->tuple_exps, best_index_plan, |
| 614 | n_fields * sizeof(void*)); |
| 615 | if (best_last_op == '=' |
| 616 | || best_last_op == PARS_LIKE_TOKEN_EXACT |
| 617 | || best_last_op == PARS_LIKE_TOKEN_PREFIX |
| 618 | || best_last_op == PARS_LIKE_TOKEN_SUFFIX |
| 619 | || best_last_op == PARS_LIKE_TOKEN_SUBSTR) { |
| 620 | plan->n_exact_match = n_fields; |
| 621 | } else { |
| 622 | plan->n_exact_match = n_fields - 1; |
| 623 | } |
| 624 | |
| 625 | plan->mode = opt_op_to_search_mode(sel_node->asc, |
| 626 | best_last_op); |
| 627 | } |
| 628 | |
| 629 | if (dict_index_is_clust(best_index) |
| 630 | && (plan->n_exact_match >= dict_index_get_n_unique(best_index))) { |
| 631 | |
| 632 | plan->unique_search = TRUE; |
| 633 | } else { |
| 634 | plan->unique_search = FALSE; |
| 635 | } |
| 636 | |
| 637 | plan->old_vers_heap = NULL; |
| 638 | |
| 639 | btr_pcur_init(&(plan->pcur)); |
| 640 | btr_pcur_init(&(plan->clust_pcur)); |
| 641 | } |
| 642 | |
| 643 | /*******************************************************************//** |
| 644 | Looks at a comparison condition and decides if it can, and need, be tested for |
| 645 | a table AFTER the table has been accessed. |
| 646 | @return OPT_NOT_COND if not for this table, else OPT_END_COND, |
| 647 | OPT_TEST_COND, or OPT_SCROLL_COND, where the last means that the |
| 648 | condition need not be tested, except when scroll cursors are used */ |
| 649 | static |
| 650 | ulint |
| 651 | opt_classify_comparison( |
| 652 | /*====================*/ |
| 653 | sel_node_t* sel_node, /*!< in: select node */ |
| 654 | ulint i, /*!< in: ith table in the join */ |
| 655 | func_node_t* cond) /*!< in: comparison condition */ |
| 656 | { |
| 657 | plan_t* plan; |
| 658 | ulint n_fields; |
| 659 | ulint op; |
| 660 | ulint j; |
| 661 | |
| 662 | ut_ad(cond && sel_node); |
| 663 | |
| 664 | plan = sel_node_get_nth_plan(sel_node, i); |
| 665 | |
| 666 | /* Check if the condition is determined after the ith table has been |
| 667 | accessed, but not after the i - 1:th */ |
| 668 | |
| 669 | if (!opt_check_exp_determined_before(cond, sel_node, i + 1)) { |
| 670 | |
| 671 | return(OPT_NOT_COND); |
| 672 | } |
| 673 | |
| 674 | if ((i > 0) && opt_check_exp_determined_before(cond, sel_node, i)) { |
| 675 | |
| 676 | return(OPT_NOT_COND); |
| 677 | } |
| 678 | |
| 679 | /* If the condition is an exact match condition used in constructing |
| 680 | the search tuple, it is classified as OPT_END_COND */ |
| 681 | |
| 682 | if (plan->tuple) { |
| 683 | n_fields = dtuple_get_n_fields(plan->tuple); |
| 684 | } else { |
| 685 | n_fields = 0; |
| 686 | } |
| 687 | |
| 688 | for (j = 0; j < plan->n_exact_match; j++) { |
| 689 | |
| 690 | if (opt_is_arg(plan->tuple_exps[j], cond)) { |
| 691 | |
| 692 | return(OPT_END_COND); |
| 693 | } |
| 694 | } |
| 695 | |
| 696 | /* If the condition is an non-exact match condition used in |
| 697 | constructing the search tuple, it is classified as OPT_SCROLL_COND. |
| 698 | When the cursor is positioned, and if a non-scroll cursor is used, |
| 699 | there is no need to test this condition; if a scroll cursor is used |
| 700 | the testing is necessary when the cursor is reversed. */ |
| 701 | |
| 702 | if ((n_fields > plan->n_exact_match) |
| 703 | && opt_is_arg(plan->tuple_exps[n_fields - 1], cond)) { |
| 704 | |
| 705 | return(OPT_SCROLL_COND); |
| 706 | } |
| 707 | |
| 708 | /* If the condition is a non-exact match condition on the first field |
| 709 | in index for which there is no exact match, and it limits the search |
| 710 | range from the opposite side of the search tuple already BEFORE we |
| 711 | access the table, it is classified as OPT_END_COND */ |
| 712 | |
| 713 | if ((dict_index_get_n_fields(plan->index) > plan->n_exact_match) |
| 714 | && opt_look_for_col_in_comparison_before( |
| 715 | OPT_COMPARISON, |
| 716 | dict_index_get_nth_col_no(plan->index, |
| 717 | plan->n_exact_match), |
| 718 | cond, sel_node, i, &op)) { |
| 719 | |
| 720 | if (sel_node->asc && ((op == '<') || (op == PARS_LE_TOKEN))) { |
| 721 | |
| 722 | return(OPT_END_COND); |
| 723 | } |
| 724 | |
| 725 | if (!sel_node->asc && ((op == '>') || (op == PARS_GE_TOKEN))) { |
| 726 | |
| 727 | return(OPT_END_COND); |
| 728 | } |
| 729 | } |
| 730 | |
| 731 | /* Otherwise, cond is classified as OPT_TEST_COND */ |
| 732 | |
| 733 | return(OPT_TEST_COND); |
| 734 | } |
| 735 | |
| 736 | /*******************************************************************//** |
| 737 | Recursively looks for test conditions for a table in a join. */ |
| 738 | static |
| 739 | void |
| 740 | opt_find_test_conds( |
| 741 | /*================*/ |
| 742 | sel_node_t* sel_node, /*!< in: select node */ |
| 743 | ulint i, /*!< in: ith table in the join */ |
| 744 | func_node_t* cond) /*!< in: conjunction of search |
| 745 | conditions or NULL */ |
| 746 | { |
| 747 | func_node_t* new_cond; |
| 748 | ulint fclass; |
| 749 | plan_t* plan; |
| 750 | |
| 751 | if (cond == NULL) { |
| 752 | |
| 753 | return; |
| 754 | } |
| 755 | |
| 756 | if (cond->func == PARS_AND_TOKEN) { |
| 757 | new_cond = static_cast<func_node_t*>(cond->args); |
| 758 | |
| 759 | opt_find_test_conds(sel_node, i, new_cond); |
| 760 | |
| 761 | new_cond = static_cast<func_node_t*>( |
| 762 | que_node_get_next(new_cond)); |
| 763 | |
| 764 | opt_find_test_conds(sel_node, i, new_cond); |
| 765 | |
| 766 | return; |
| 767 | } |
| 768 | |
| 769 | plan = sel_node_get_nth_plan(sel_node, i); |
| 770 | |
| 771 | fclass = opt_classify_comparison(sel_node, i, cond); |
| 772 | |
| 773 | if (fclass == OPT_END_COND) { |
| 774 | UT_LIST_ADD_LAST(plan->end_conds, cond); |
| 775 | |
| 776 | } else if (fclass == OPT_TEST_COND) { |
| 777 | UT_LIST_ADD_LAST(plan->other_conds, cond); |
| 778 | |
| 779 | } |
| 780 | } |
| 781 | |
| 782 | /*******************************************************************//** |
| 783 | Normalizes a list of comparison conditions so that a column of the table |
| 784 | appears on the left side of the comparison if possible. This is accomplished |
| 785 | by switching the arguments of the operator. */ |
| 786 | static |
| 787 | void |
| 788 | opt_normalize_cmp_conds( |
| 789 | /*====================*/ |
| 790 | func_node_t* cond, /*!< in: first in a list of comparison |
| 791 | conditions, or NULL */ |
| 792 | dict_table_t* table) /*!< in: table */ |
| 793 | { |
| 794 | que_node_t* arg1; |
| 795 | que_node_t* arg2; |
| 796 | sym_node_t* sym_node; |
| 797 | |
| 798 | while (cond) { |
| 799 | arg1 = cond->args; |
| 800 | arg2 = que_node_get_next(arg1); |
| 801 | |
| 802 | if (que_node_get_type(arg2) == QUE_NODE_SYMBOL) { |
| 803 | |
| 804 | sym_node = static_cast<sym_node_t*>(arg2); |
| 805 | |
| 806 | if ((sym_node->token_type == SYM_COLUMN) |
| 807 | && (sym_node->table == table)) { |
| 808 | |
| 809 | /* Switch the order of the arguments */ |
| 810 | |
| 811 | cond->args = arg2; |
| 812 | que_node_list_add_last(NULL, arg2); |
| 813 | que_node_list_add_last(arg2, arg1); |
| 814 | |
| 815 | /* Invert the operator */ |
| 816 | cond->func = opt_invert_cmp_op(cond->func); |
| 817 | } |
| 818 | } |
| 819 | |
| 820 | cond = UT_LIST_GET_NEXT(cond_list, cond); |
| 821 | } |
| 822 | } |
| 823 | |
| 824 | /*******************************************************************//** |
| 825 | Finds out the search condition conjuncts we can, and need, to test as the ith |
| 826 | table in a join is accessed. The search tuple can eliminate the need to test |
| 827 | some conjuncts. */ |
| 828 | static |
| 829 | void |
| 830 | opt_determine_and_normalize_test_conds( |
| 831 | /*===================================*/ |
| 832 | sel_node_t* sel_node, /*!< in: select node */ |
| 833 | ulint i) /*!< in: ith table in the join */ |
| 834 | { |
| 835 | plan_t* plan; |
| 836 | |
| 837 | plan = sel_node_get_nth_plan(sel_node, i); |
| 838 | |
| 839 | UT_LIST_INIT(plan->end_conds, &func_node_t::cond_list); |
| 840 | UT_LIST_INIT(plan->other_conds, &func_node_t::cond_list); |
| 841 | |
| 842 | /* Recursively go through the conjuncts and classify them */ |
| 843 | |
| 844 | opt_find_test_conds( |
| 845 | sel_node, |
| 846 | i, |
| 847 | static_cast<func_node_t*>(sel_node->search_cond)); |
| 848 | |
| 849 | opt_normalize_cmp_conds(UT_LIST_GET_FIRST(plan->end_conds), |
| 850 | plan->table); |
| 851 | |
| 852 | ut_a(UT_LIST_GET_LEN(plan->end_conds) >= plan->n_exact_match); |
| 853 | } |
| 854 | |
| 855 | /*******************************************************************//** |
| 856 | Looks for occurrences of the columns of the table in the query subgraph and |
| 857 | adds them to the list of columns if an occurrence of the same column does not |
| 858 | already exist in the list. If the column is already in the list, puts a value |
| 859 | indirection to point to the occurrence in the column list, except if the |
| 860 | column occurrence we are looking at is in the column list, in which case |
| 861 | nothing is done. */ |
| 862 | void |
| 863 | opt_find_all_cols( |
| 864 | /*==============*/ |
| 865 | ibool copy_val, /*!< in: if TRUE, new found columns are |
| 866 | added as columns to copy */ |
| 867 | dict_index_t* index, /*!< in: index of the table to use */ |
| 868 | sym_node_list_t* col_list, /*!< in: base node of a list where |
| 869 | to add new found columns */ |
| 870 | plan_t* plan, /*!< in: plan or NULL */ |
| 871 | que_node_t* exp) /*!< in: expression or condition or |
| 872 | NULL */ |
| 873 | { |
| 874 | func_node_t* func_node; |
| 875 | que_node_t* arg; |
| 876 | sym_node_t* sym_node; |
| 877 | sym_node_t* col_node; |
| 878 | ulint col_pos; |
| 879 | |
| 880 | if (exp == NULL) { |
| 881 | |
| 882 | return; |
| 883 | } |
| 884 | |
| 885 | if (que_node_get_type(exp) == QUE_NODE_FUNC) { |
| 886 | func_node = static_cast<func_node_t*>(exp); |
| 887 | |
| 888 | for (arg = func_node->args; |
| 889 | arg != 0; |
| 890 | arg = que_node_get_next(arg)) { |
| 891 | |
| 892 | opt_find_all_cols( |
| 893 | copy_val, index, col_list, plan, arg); |
| 894 | } |
| 895 | |
| 896 | return; |
| 897 | } |
| 898 | |
| 899 | ut_a(que_node_get_type(exp) == QUE_NODE_SYMBOL); |
| 900 | |
| 901 | sym_node = static_cast<sym_node_t*>(exp); |
| 902 | |
| 903 | if (sym_node->token_type != SYM_COLUMN) { |
| 904 | |
| 905 | return; |
| 906 | } |
| 907 | |
| 908 | if (sym_node->table != index->table) { |
| 909 | |
| 910 | return; |
| 911 | } |
| 912 | |
| 913 | /* Look for an occurrence of the same column in the plan column |
| 914 | list */ |
| 915 | |
| 916 | col_node = UT_LIST_GET_FIRST(*col_list); |
| 917 | |
| 918 | while (col_node) { |
| 919 | if (col_node->col_no == sym_node->col_no) { |
| 920 | |
| 921 | if (col_node == sym_node) { |
| 922 | /* sym_node was already in a list: do |
| 923 | nothing */ |
| 924 | |
| 925 | return; |
| 926 | } |
| 927 | |
| 928 | /* Put an indirection */ |
| 929 | sym_node->indirection = col_node; |
| 930 | sym_node->alias = col_node; |
| 931 | |
| 932 | return; |
| 933 | } |
| 934 | |
| 935 | col_node = UT_LIST_GET_NEXT(col_var_list, col_node); |
| 936 | } |
| 937 | |
| 938 | /* The same column did not occur in the list: add it */ |
| 939 | |
| 940 | UT_LIST_ADD_LAST(*col_list, sym_node); |
| 941 | |
| 942 | sym_node->copy_val = copy_val; |
| 943 | |
| 944 | /* Fill in the field_no fields in sym_node */ |
| 945 | |
| 946 | sym_node->field_nos[SYM_CLUST_FIELD_NO] = dict_index_get_nth_col_pos( |
| 947 | dict_table_get_first_index(index->table), sym_node->col_no, |
| 948 | NULL); |
| 949 | if (!dict_index_is_clust(index)) { |
| 950 | |
| 951 | ut_a(plan); |
| 952 | |
| 953 | col_pos = dict_index_get_nth_col_pos(index, sym_node->col_no, |
| 954 | NULL); |
| 955 | |
| 956 | if (col_pos == ULINT_UNDEFINED) { |
| 957 | |
| 958 | plan->must_get_clust = TRUE; |
| 959 | } |
| 960 | |
| 961 | sym_node->field_nos[SYM_SEC_FIELD_NO] = col_pos; |
| 962 | } |
| 963 | } |
| 964 | |
| 965 | /*******************************************************************//** |
| 966 | Looks for occurrences of the columns of the table in conditions which are |
| 967 | not yet determined AFTER the join operation has fetched a row in the ith |
| 968 | table. The values for these column must be copied to dynamic memory for |
| 969 | later use. */ |
| 970 | static |
| 971 | void |
| 972 | opt_find_copy_cols( |
| 973 | /*===============*/ |
| 974 | sel_node_t* sel_node, /*!< in: select node */ |
| 975 | ulint i, /*!< in: ith table in the join */ |
| 976 | func_node_t* search_cond) /*!< in: search condition or NULL */ |
| 977 | { |
| 978 | func_node_t* new_cond; |
| 979 | plan_t* plan; |
| 980 | |
| 981 | if (search_cond == NULL) { |
| 982 | |
| 983 | return; |
| 984 | } |
| 985 | |
| 986 | ut_ad(que_node_get_type(search_cond) == QUE_NODE_FUNC); |
| 987 | |
| 988 | if (search_cond->func == PARS_AND_TOKEN) { |
| 989 | new_cond = static_cast<func_node_t*>(search_cond->args); |
| 990 | |
| 991 | opt_find_copy_cols(sel_node, i, new_cond); |
| 992 | |
| 993 | new_cond = static_cast<func_node_t*>( |
| 994 | que_node_get_next(new_cond)); |
| 995 | |
| 996 | opt_find_copy_cols(sel_node, i, new_cond); |
| 997 | |
| 998 | return; |
| 999 | } |
| 1000 | |
| 1001 | if (!opt_check_exp_determined_before(search_cond, sel_node, i + 1)) { |
| 1002 | |
| 1003 | /* Any ith table columns occurring in search_cond should be |
| 1004 | copied, as this condition cannot be tested already on the |
| 1005 | fetch from the ith table */ |
| 1006 | |
| 1007 | plan = sel_node_get_nth_plan(sel_node, i); |
| 1008 | |
| 1009 | opt_find_all_cols(TRUE, plan->index, &(plan->columns), plan, |
| 1010 | search_cond); |
| 1011 | } |
| 1012 | } |
| 1013 | |
| 1014 | /*******************************************************************//** |
| 1015 | Classifies the table columns according to whether we use the column only while |
| 1016 | holding the latch on the page, or whether we have to copy the column value to |
| 1017 | dynamic memory. Puts the first occurrence of a column to either list in the |
| 1018 | plan node, and puts indirections to later occurrences of the column. */ |
| 1019 | static |
| 1020 | void |
| 1021 | opt_classify_cols( |
| 1022 | /*==============*/ |
| 1023 | sel_node_t* sel_node, /*!< in: select node */ |
| 1024 | ulint i) /*!< in: ith table in the join */ |
| 1025 | { |
| 1026 | plan_t* plan; |
| 1027 | que_node_t* exp; |
| 1028 | |
| 1029 | plan = sel_node_get_nth_plan(sel_node, i); |
| 1030 | |
| 1031 | /* The final value of the following field will depend on the |
| 1032 | environment of the select statement: */ |
| 1033 | |
| 1034 | plan->must_get_clust = FALSE; |
| 1035 | |
| 1036 | UT_LIST_INIT(plan->columns, &sym_node_t::col_var_list); |
| 1037 | |
| 1038 | /* All select list columns should be copied: therefore TRUE as the |
| 1039 | first argument */ |
| 1040 | |
| 1041 | for (exp = sel_node->select_list; |
| 1042 | exp != 0; |
| 1043 | exp = que_node_get_next(exp)) { |
| 1044 | |
| 1045 | opt_find_all_cols( |
| 1046 | TRUE, plan->index, &(plan->columns), plan, exp); |
| 1047 | } |
| 1048 | |
| 1049 | opt_find_copy_cols( |
| 1050 | sel_node, i, static_cast<func_node_t*>(sel_node->search_cond)); |
| 1051 | |
| 1052 | /* All remaining columns in the search condition are temporary |
| 1053 | columns: therefore FALSE */ |
| 1054 | |
| 1055 | opt_find_all_cols( |
| 1056 | FALSE, plan->index, &plan->columns, plan, |
| 1057 | static_cast<func_node_t*>(sel_node->search_cond)); |
| 1058 | } |
| 1059 | |
| 1060 | /*******************************************************************//** |
| 1061 | Fills in the info in plan which is used in accessing a clustered index |
| 1062 | record. The columns must already be classified for the plan node. */ |
| 1063 | static |
| 1064 | void |
| 1065 | opt_clust_access( |
| 1066 | /*=============*/ |
| 1067 | sel_node_t* sel_node, /*!< in: select node */ |
| 1068 | ulint n) /*!< in: nth table in select */ |
| 1069 | { |
| 1070 | plan_t* plan; |
| 1071 | dict_table_t* table; |
| 1072 | dict_index_t* clust_index; |
| 1073 | dict_index_t* index; |
| 1074 | mem_heap_t* heap; |
| 1075 | ulint n_fields; |
| 1076 | ulint pos; |
| 1077 | ulint i; |
| 1078 | |
| 1079 | plan = sel_node_get_nth_plan(sel_node, n); |
| 1080 | |
| 1081 | index = plan->index; |
| 1082 | |
| 1083 | /* The final value of the following field depends on the environment |
| 1084 | of the select statement: */ |
| 1085 | |
| 1086 | plan->no_prefetch = FALSE; |
| 1087 | |
| 1088 | if (dict_index_is_clust(index)) { |
| 1089 | plan->clust_map = NULL; |
| 1090 | plan->clust_ref = NULL; |
| 1091 | |
| 1092 | return; |
| 1093 | } |
| 1094 | |
| 1095 | table = index->table; |
| 1096 | |
| 1097 | clust_index = dict_table_get_first_index(table); |
| 1098 | |
| 1099 | n_fields = dict_index_get_n_unique(clust_index); |
| 1100 | |
| 1101 | heap = pars_sym_tab_global->heap; |
| 1102 | |
| 1103 | plan->clust_ref = dtuple_create(heap, n_fields); |
| 1104 | |
| 1105 | dict_index_copy_types(plan->clust_ref, clust_index, n_fields); |
| 1106 | |
| 1107 | plan->clust_map = static_cast<ulint*>( |
| 1108 | mem_heap_alloc(heap, n_fields * sizeof(ulint))); |
| 1109 | |
| 1110 | for (i = 0; i < n_fields; i++) { |
| 1111 | pos = dict_index_get_nth_field_pos(index, clust_index, i); |
| 1112 | |
| 1113 | ut_a(pos != ULINT_UNDEFINED); |
| 1114 | |
| 1115 | /* We optimize here only queries to InnoDB's internal system |
| 1116 | tables, and they should not contain column prefix indexes. */ |
| 1117 | |
| 1118 | if (dict_is_sys_table(index->table->id) |
| 1119 | && (dict_index_get_nth_field(index, pos)->prefix_len != 0 |
| 1120 | || dict_index_get_nth_field(clust_index, i) |
| 1121 | ->prefix_len != 0)) { |
| 1122 | ib::error() << "Error in pars0opt.cc: table " |
| 1123 | << index->table->name |
| 1124 | << " has prefix_len != 0" ; |
| 1125 | } |
| 1126 | |
| 1127 | *(plan->clust_map + i) = pos; |
| 1128 | |
| 1129 | ut_ad(pos != ULINT_UNDEFINED); |
| 1130 | } |
| 1131 | } |
| 1132 | |
| 1133 | #ifdef UNIV_SQL_DEBUG |
| 1134 | /** Print info of a query plan. |
| 1135 | @param[in,out] sel_node select node */ |
| 1136 | static |
| 1137 | void |
| 1138 | opt_print_query_plan( |
| 1139 | sel_node_t* sel_node); |
| 1140 | #endif |
| 1141 | |
| 1142 | /*******************************************************************//** |
| 1143 | Optimizes a select. Decides which indexes to tables to use. The tables |
| 1144 | are accessed in the order that they were written to the FROM part in the |
| 1145 | select statement. */ |
| 1146 | void |
| 1147 | opt_search_plan( |
| 1148 | /*============*/ |
| 1149 | sel_node_t* sel_node) /*!< in: parsed select node */ |
| 1150 | { |
| 1151 | sym_node_t* table_node; |
| 1152 | dict_table_t* table; |
| 1153 | order_node_t* order_by; |
| 1154 | ulint i; |
| 1155 | |
| 1156 | sel_node->plans = static_cast<plan_t*>( |
| 1157 | mem_heap_alloc( |
| 1158 | pars_sym_tab_global->heap, |
| 1159 | sel_node->n_tables * sizeof(plan_t))); |
| 1160 | |
| 1161 | /* Analyze the search condition to find out what we know at each |
| 1162 | join stage about the conditions that the columns of a table should |
| 1163 | satisfy */ |
| 1164 | |
| 1165 | table_node = sel_node->table_list; |
| 1166 | |
| 1167 | if (sel_node->order_by == NULL) { |
| 1168 | sel_node->asc = TRUE; |
| 1169 | } else { |
| 1170 | order_by = sel_node->order_by; |
| 1171 | |
| 1172 | sel_node->asc = order_by->asc; |
| 1173 | } |
| 1174 | |
| 1175 | for (i = 0; i < sel_node->n_tables; i++) { |
| 1176 | |
| 1177 | table = table_node->table; |
| 1178 | |
| 1179 | /* Choose index through which to access the table */ |
| 1180 | |
| 1181 | opt_search_plan_for_table(sel_node, i, table); |
| 1182 | |
| 1183 | /* Determine the search condition conjuncts we can test at |
| 1184 | this table; normalize the end conditions */ |
| 1185 | |
| 1186 | opt_determine_and_normalize_test_conds(sel_node, i); |
| 1187 | |
| 1188 | table_node = static_cast<sym_node_t*>( |
| 1189 | que_node_get_next(table_node)); |
| 1190 | } |
| 1191 | |
| 1192 | table_node = sel_node->table_list; |
| 1193 | |
| 1194 | for (i = 0; i < sel_node->n_tables; i++) { |
| 1195 | |
| 1196 | /* Classify the table columns into those we only need to access |
| 1197 | but not copy, and to those we must copy to dynamic memory */ |
| 1198 | |
| 1199 | opt_classify_cols(sel_node, i); |
| 1200 | |
| 1201 | /* Calculate possible info for accessing the clustered index |
| 1202 | record */ |
| 1203 | |
| 1204 | opt_clust_access(sel_node, i); |
| 1205 | |
| 1206 | table_node = static_cast<sym_node_t*>( |
| 1207 | que_node_get_next(table_node)); |
| 1208 | } |
| 1209 | |
| 1210 | /* Check that the plan obeys a possible order-by clause: if not, |
| 1211 | an assertion error occurs */ |
| 1212 | |
| 1213 | opt_check_order_by(sel_node); |
| 1214 | |
| 1215 | #ifdef UNIV_SQL_DEBUG |
| 1216 | opt_print_query_plan(sel_node); |
| 1217 | #endif |
| 1218 | } |
| 1219 | |
| 1220 | #ifdef UNIV_SQL_DEBUG |
| 1221 | /** Print info of a query plan. |
| 1222 | @param[in,out] sel_node select node */ |
| 1223 | static |
| 1224 | void |
| 1225 | opt_print_query_plan( |
| 1226 | sel_node_t* sel_node) |
| 1227 | { |
| 1228 | plan_t* plan; |
| 1229 | ulint n_fields; |
| 1230 | ulint i; |
| 1231 | |
| 1232 | fputs("QUERY PLAN FOR A SELECT NODE\n" , stderr); |
| 1233 | |
| 1234 | fputs(sel_node->asc ? "Asc. search; " : "Desc. search; " , stderr); |
| 1235 | |
| 1236 | if (sel_node->set_x_locks) { |
| 1237 | fputs("sets row x-locks; " , stderr); |
| 1238 | ut_a(sel_node->row_lock_mode == LOCK_X); |
| 1239 | ut_a(!sel_node->consistent_read); |
| 1240 | } else if (sel_node->consistent_read) { |
| 1241 | fputs("consistent read; " , stderr); |
| 1242 | } else { |
| 1243 | ut_a(sel_node->row_lock_mode == LOCK_S); |
| 1244 | fputs("sets row s-locks; " , stderr); |
| 1245 | } |
| 1246 | |
| 1247 | putc('\n', stderr); |
| 1248 | |
| 1249 | for (i = 0; i < sel_node->n_tables; i++) { |
| 1250 | plan = sel_node_get_nth_plan(sel_node, i); |
| 1251 | |
| 1252 | if (plan->tuple) { |
| 1253 | n_fields = dtuple_get_n_fields(plan->tuple); |
| 1254 | } else { |
| 1255 | n_fields = 0; |
| 1256 | } |
| 1257 | |
| 1258 | fprintf(stderr, |
| 1259 | "Index %s of table %s" |
| 1260 | "; exact m. %lu, match %lu, end conds %lu\n" , |
| 1261 | plan->index->name(), plan->index->table->name.m_name, |
| 1262 | (unsigned long) plan->n_exact_match, |
| 1263 | (unsigned long) n_fields, |
| 1264 | (unsigned long) UT_LIST_GET_LEN(plan->end_conds)); |
| 1265 | } |
| 1266 | } |
| 1267 | #endif /* UNIV_SQL_DEBUG */ |
| 1268 | |