1 | /***************************************************************************** |
2 | |
3 | Copyright (c) 1996, 2016, Oracle and/or its affiliates. All Rights Reserved. |
4 | Copyright (c) 2018, MariaDB Corporation. |
5 | |
6 | This program is free software; you can redistribute it and/or modify it under |
7 | the terms of the GNU General Public License as published by the Free Software |
8 | Foundation; version 2 of the License. |
9 | |
10 | This program is distributed in the hope that it will be useful, but WITHOUT |
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
12 | FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
13 | |
14 | You should have received a copy of the GNU General Public License along with |
15 | this program; if not, write to the Free Software Foundation, Inc., |
16 | 51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA |
17 | |
18 | *****************************************************************************/ |
19 | |
20 | /**************************************************//** |
21 | @file row/row0row.cc |
22 | General row routines |
23 | |
24 | Created 4/20/1996 Heikki Tuuri |
25 | *******************************************************/ |
26 | |
27 | #include "ha_prototypes.h" |
28 | |
29 | #include "row0row.h" |
30 | #include "data0type.h" |
31 | #include "dict0dict.h" |
32 | #include "dict0boot.h" |
33 | #include "btr0btr.h" |
34 | #include "mach0data.h" |
35 | #include "trx0rseg.h" |
36 | #include "trx0trx.h" |
37 | #include "trx0roll.h" |
38 | #include "trx0undo.h" |
39 | #include "trx0purge.h" |
40 | #include "trx0rec.h" |
41 | #include "que0que.h" |
42 | #include "row0ext.h" |
43 | #include "row0upd.h" |
44 | #include "rem0cmp.h" |
45 | #include "ut0mem.h" |
46 | #include "gis0geo.h" |
47 | #include "row0mysql.h" |
48 | |
49 | /*****************************************************************//** |
50 | When an insert or purge to a table is performed, this function builds |
51 | the entry to be inserted into or purged from an index on the table. |
52 | @return index entry which should be inserted or purged |
53 | @retval NULL if the externally stored columns in the clustered index record |
54 | are unavailable and ext != NULL, or row is missing some needed columns. */ |
55 | dtuple_t* |
56 | row_build_index_entry_low( |
57 | /*======================*/ |
58 | const dtuple_t* row, /*!< in: row which should be |
59 | inserted or purged */ |
60 | const row_ext_t* ext, /*!< in: externally stored column |
61 | prefixes, or NULL */ |
62 | dict_index_t* index, /*!< in: index on the table */ |
63 | mem_heap_t* heap, /*!< in: memory heap from which |
64 | the memory for the index entry |
65 | is allocated */ |
66 | ulint flag) /*!< in: ROW_BUILD_NORMAL, |
67 | ROW_BUILD_FOR_PURGE |
68 | or ROW_BUILD_FOR_UNDO */ |
69 | { |
70 | dtuple_t* entry; |
71 | ulint entry_len; |
72 | ulint i; |
73 | ulint num_v = 0; |
74 | |
75 | entry_len = dict_index_get_n_fields(index); |
76 | |
77 | if (flag == ROW_BUILD_FOR_INSERT && dict_index_is_clust(index)) { |
78 | num_v = dict_table_get_n_v_cols(index->table); |
79 | entry = dtuple_create_with_vcol(heap, entry_len, num_v); |
80 | } else { |
81 | entry = dtuple_create(heap, entry_len); |
82 | } |
83 | |
84 | if (dict_index_is_ibuf(index)) { |
85 | dtuple_set_n_fields_cmp(entry, entry_len); |
86 | /* There may only be externally stored columns |
87 | in a clustered index B-tree of a user table. */ |
88 | ut_a(!ext); |
89 | } else { |
90 | dtuple_set_n_fields_cmp( |
91 | entry, dict_index_get_n_unique_in_tree(index)); |
92 | } |
93 | |
94 | for (i = 0; i < entry_len + num_v; i++) { |
95 | const dict_field_t* ind_field = NULL; |
96 | const dict_col_t* col; |
97 | ulint col_no = 0; |
98 | dfield_t* dfield; |
99 | dfield_t* dfield2; |
100 | ulint len; |
101 | |
102 | if (i >= entry_len) { |
103 | /* This is to insert new rows to cluster index */ |
104 | ut_ad(dict_index_is_clust(index) |
105 | && flag == ROW_BUILD_FOR_INSERT); |
106 | dfield = dtuple_get_nth_v_field(entry, i - entry_len); |
107 | col = &dict_table_get_nth_v_col( |
108 | index->table, i - entry_len)->m_col; |
109 | |
110 | } else { |
111 | ind_field = dict_index_get_nth_field(index, i); |
112 | col = ind_field->col; |
113 | col_no = dict_col_get_no(col); |
114 | dfield = dtuple_get_nth_field(entry, i); |
115 | } |
116 | |
117 | compile_time_assert(DATA_MISSING == 0); |
118 | |
119 | if (col->is_virtual()) { |
120 | const dict_v_col_t* v_col |
121 | = reinterpret_cast<const dict_v_col_t*>(col); |
122 | |
123 | ut_ad(v_col->v_pos < dtuple_get_n_v_fields(row)); |
124 | dfield2 = dtuple_get_nth_v_field(row, v_col->v_pos); |
125 | |
126 | ut_ad(dfield_is_null(dfield2) || |
127 | dfield_get_len(dfield2) == 0 || dfield2->data); |
128 | } else { |
129 | dfield2 = dtuple_get_nth_field(row, col_no); |
130 | ut_ad(dfield_get_type(dfield2)->mtype == DATA_MISSING |
131 | || (!(dfield_get_type(dfield2)->prtype |
132 | & DATA_VIRTUAL))); |
133 | } |
134 | |
135 | if (UNIV_UNLIKELY(dfield_get_type(dfield2)->mtype |
136 | == DATA_MISSING)) { |
137 | /* The field has not been initialized in the row. |
138 | This should be from trx_undo_rec_get_partial_row(). */ |
139 | return(NULL); |
140 | } |
141 | |
142 | #ifdef UNIV_DEBUG |
143 | if (dfield_get_type(dfield2)->prtype & DATA_VIRTUAL |
144 | && dict_index_is_clust(index)) { |
145 | ut_ad(flag == ROW_BUILD_FOR_INSERT); |
146 | } |
147 | #endif /* UNIV_DEBUG */ |
148 | |
149 | /* Special handle spatial index, set the first field |
150 | which is for store MBR. */ |
151 | if (dict_index_is_spatial(index) && i == 0) { |
152 | double* mbr; |
153 | |
154 | dfield_copy(dfield, dfield2); |
155 | dfield->type.prtype |= DATA_GIS_MBR; |
156 | |
157 | /* Allocate memory for mbr field */ |
158 | ulint mbr_len = DATA_MBR_LEN; |
159 | mbr = static_cast<double*>(mem_heap_alloc(heap, mbr_len)); |
160 | |
161 | /* Set mbr field data. */ |
162 | dfield_set_data(dfield, mbr, mbr_len); |
163 | |
164 | if (dfield2->data) { |
165 | uchar* dptr = NULL; |
166 | ulint dlen = 0; |
167 | ulint flen = 0; |
168 | double tmp_mbr[SPDIMS * 2]; |
169 | mem_heap_t* temp_heap = NULL; |
170 | |
171 | if (dfield_is_ext(dfield2)) { |
172 | if (flag == ROW_BUILD_FOR_PURGE) { |
173 | byte* ptr = NULL; |
174 | |
175 | spatial_status_t spatial_status; |
176 | spatial_status = |
177 | dfield_get_spatial_status( |
178 | dfield2); |
179 | |
180 | switch (spatial_status) { |
181 | case SPATIAL_ONLY: |
182 | ptr = static_cast<byte*>( |
183 | dfield_get_data( |
184 | dfield2)); |
185 | ut_ad(dfield_get_len(dfield2) |
186 | == DATA_MBR_LEN); |
187 | break; |
188 | |
189 | case SPATIAL_MIXED: |
190 | ptr = static_cast<byte*>( |
191 | dfield_get_data( |
192 | dfield2)) |
193 | + dfield_get_len( |
194 | dfield2); |
195 | break; |
196 | |
197 | case SPATIAL_UNKNOWN: |
198 | ut_ad(0); |
199 | /* fall through */ |
200 | case SPATIAL_NONE: |
201 | /* Undo record is logged before |
202 | spatial index is created.*/ |
203 | return(NULL); |
204 | } |
205 | |
206 | memcpy(mbr, ptr, DATA_MBR_LEN); |
207 | continue; |
208 | } |
209 | |
210 | if (flag == ROW_BUILD_FOR_UNDO |
211 | && dict_table_has_atomic_blobs( |
212 | index->table)) { |
213 | /* For build entry for undo, and |
214 | the table is Barrcuda, we need |
215 | to skip the prefix data. */ |
216 | flen = BTR_EXTERN_FIELD_REF_SIZE; |
217 | ut_ad(dfield_get_len(dfield2) >= |
218 | BTR_EXTERN_FIELD_REF_SIZE); |
219 | dptr = static_cast<byte*>( |
220 | dfield_get_data(dfield2)) |
221 | + dfield_get_len(dfield2) |
222 | - BTR_EXTERN_FIELD_REF_SIZE; |
223 | } else { |
224 | flen = dfield_get_len(dfield2); |
225 | dptr = static_cast<byte*>( |
226 | dfield_get_data(dfield2)); |
227 | } |
228 | |
229 | temp_heap = mem_heap_create(1000); |
230 | |
231 | const page_size_t page_size |
232 | = (ext != NULL) |
233 | ? ext->page_size |
234 | : dict_table_page_size( |
235 | index->table); |
236 | |
237 | dptr = btr_copy_externally_stored_field( |
238 | &dlen, dptr, |
239 | page_size, |
240 | flen, |
241 | temp_heap); |
242 | } else { |
243 | dptr = static_cast<uchar*>( |
244 | dfield_get_data(dfield2)); |
245 | dlen = dfield_get_len(dfield2); |
246 | |
247 | } |
248 | |
249 | if (dlen <= GEO_DATA_HEADER_SIZE) { |
250 | for (uint i = 0; i < SPDIMS; ++i) { |
251 | tmp_mbr[i * 2] = DBL_MAX; |
252 | tmp_mbr[i * 2 + 1] = -DBL_MAX; |
253 | } |
254 | } else { |
255 | rtree_mbr_from_wkb(dptr + GEO_DATA_HEADER_SIZE, |
256 | static_cast<uint>(dlen |
257 | - GEO_DATA_HEADER_SIZE), |
258 | SPDIMS, tmp_mbr); |
259 | } |
260 | dfield_write_mbr(dfield, tmp_mbr); |
261 | if (temp_heap) { |
262 | mem_heap_free(temp_heap); |
263 | } |
264 | } |
265 | continue; |
266 | } |
267 | |
268 | len = dfield_get_len(dfield2); |
269 | |
270 | dfield_copy(dfield, dfield2); |
271 | |
272 | if (dfield_is_null(dfield)) { |
273 | continue; |
274 | } |
275 | |
276 | if ((!ind_field || ind_field->prefix_len == 0) |
277 | && (!dfield_is_ext(dfield) |
278 | || dict_index_is_clust(index))) { |
279 | /* The dfield_copy() above suffices for |
280 | columns that are stored in-page, or for |
281 | clustered index record columns that are not |
282 | part of a column prefix in the PRIMARY KEY, |
283 | or for virtaul columns in cluster index record. */ |
284 | continue; |
285 | } |
286 | |
287 | /* If the column is stored externally (off-page) in |
288 | the clustered index, it must be an ordering field in |
289 | the secondary index. If !atomic_blobs, the only way |
290 | we may have a secondary index pointing to a clustered |
291 | index record with an off-page column is when it is a |
292 | column prefix index. If atomic_blobs, also fully |
293 | indexed long columns may be stored off-page. */ |
294 | ut_ad(col->ord_part); |
295 | |
296 | if (ext) { |
297 | /* See if the column is stored externally. */ |
298 | const byte* buf = row_ext_lookup(ext, col_no, |
299 | &len); |
300 | if (UNIV_LIKELY_NULL(buf)) { |
301 | if (UNIV_UNLIKELY(buf == field_ref_zero)) { |
302 | return(NULL); |
303 | } |
304 | dfield_set_data(dfield, buf, len); |
305 | } |
306 | |
307 | if (ind_field->prefix_len == 0) { |
308 | /* If ROW_FORMAT=DYNAMIC or |
309 | ROW_FORMAT=COMPRESSED, we can have a |
310 | secondary index on an entire column |
311 | that is stored off-page in the |
312 | clustered index. As this is not a |
313 | prefix index (prefix_len == 0), |
314 | include the entire off-page column in |
315 | the secondary index record. */ |
316 | continue; |
317 | } |
318 | } else if (dfield_is_ext(dfield)) { |
319 | /* This table is either in |
320 | (ROW_FORMAT=REDUNDANT or ROW_FORMAT=COMPACT) |
321 | or a purge record where the ordered part of |
322 | the field is not external. |
323 | In ROW_FORMAT=REDUNDANT and ROW_FORMAT=COMPACT, |
324 | the maximum column prefix |
325 | index length is 767 bytes, and the clustered |
326 | index record contains a 768-byte prefix of |
327 | each off-page column. */ |
328 | ut_a(len >= BTR_EXTERN_FIELD_REF_SIZE); |
329 | len -= BTR_EXTERN_FIELD_REF_SIZE; |
330 | dfield_set_len(dfield, len); |
331 | } |
332 | |
333 | /* If a column prefix index, take only the prefix. */ |
334 | if (ind_field->prefix_len) { |
335 | len = dtype_get_at_most_n_mbchars( |
336 | col->prtype, col->mbminlen, col->mbmaxlen, |
337 | ind_field->prefix_len, len, |
338 | static_cast<char*>(dfield_get_data(dfield))); |
339 | dfield_set_len(dfield, len); |
340 | } |
341 | } |
342 | |
343 | return(entry); |
344 | } |
345 | |
346 | /** An inverse function to row_build_index_entry. Builds a row from a |
347 | record in a clustered index, with possible indexing on ongoing |
348 | addition of new virtual columns. |
349 | @param[in] type ROW_COPY_POINTERS or ROW_COPY_DATA; |
350 | @param[in] index clustered index |
351 | @param[in] rec record in the clustered index |
352 | @param[in] offsets rec_get_offsets(rec,index) or NULL |
353 | @param[in] col_table table, to check which |
354 | externally stored columns |
355 | occur in the ordering columns |
356 | of an index, or NULL if |
357 | index->table should be |
358 | consulted instead |
359 | @param[in] defaults default values of added/changed columns, or NULL |
360 | @param[in] add_v new virtual columns added |
361 | along with new indexes |
362 | @param[in] col_map mapping of old column |
363 | numbers to new ones, or NULL |
364 | @param[in] ext cache of externally stored column |
365 | prefixes, or NULL |
366 | @param[in] heap memory heap from which |
367 | the memory needed is allocated |
368 | @return own: row built; */ |
369 | static inline |
370 | dtuple_t* |
371 | row_build_low( |
372 | ulint type, |
373 | const dict_index_t* index, |
374 | const rec_t* rec, |
375 | const ulint* offsets, |
376 | const dict_table_t* col_table, |
377 | const dtuple_t* defaults, |
378 | const dict_add_v_col_t* add_v, |
379 | const ulint* col_map, |
380 | row_ext_t** ext, |
381 | mem_heap_t* heap) |
382 | { |
383 | const byte* copy; |
384 | dtuple_t* row; |
385 | ulint n_ext_cols; |
386 | ulint* ext_cols = NULL; /* remove warning */ |
387 | ulint len; |
388 | byte* buf; |
389 | ulint j; |
390 | mem_heap_t* tmp_heap = NULL; |
391 | ulint offsets_[REC_OFFS_NORMAL_SIZE]; |
392 | rec_offs_init(offsets_); |
393 | |
394 | ut_ad(index != NULL); |
395 | ut_ad(rec != NULL); |
396 | ut_ad(heap != NULL); |
397 | ut_ad(dict_index_is_clust(index)); |
398 | ut_ad(!mutex_own(&trx_sys.mutex)); |
399 | ut_ad(!col_map || col_table); |
400 | |
401 | if (!offsets) { |
402 | offsets = rec_get_offsets(rec, index, offsets_, true, |
403 | ULINT_UNDEFINED, &tmp_heap); |
404 | } else { |
405 | ut_ad(rec_offs_validate(rec, index, offsets)); |
406 | } |
407 | |
408 | #if defined UNIV_DEBUG || defined UNIV_BLOB_LIGHT_DEBUG |
409 | /* Some blob refs can be NULL during crash recovery before |
410 | trx_rollback_active() has completed execution, or when a concurrently |
411 | executing insert or update has committed the B-tree mini-transaction |
412 | but has not yet managed to restore the cursor position for writing |
413 | the big_rec. Note that the mini-transaction can be committed multiple |
414 | times, and the cursor restore can happen multiple times for single |
415 | insert or update statement. */ |
416 | ut_a(!rec_offs_any_null_extern(rec, offsets) |
417 | || trx_sys.is_registered(current_trx(), |
418 | row_get_rec_trx_id(rec, index, |
419 | offsets))); |
420 | #endif /* UNIV_DEBUG || UNIV_BLOB_LIGHT_DEBUG */ |
421 | |
422 | if (type != ROW_COPY_POINTERS) { |
423 | /* Take a copy of rec to heap */ |
424 | buf = static_cast<byte*>( |
425 | mem_heap_alloc(heap, rec_offs_size(offsets))); |
426 | |
427 | copy = rec_copy(buf, rec, offsets); |
428 | } else { |
429 | copy = rec; |
430 | } |
431 | |
432 | n_ext_cols = rec_offs_n_extern(offsets); |
433 | if (n_ext_cols) { |
434 | ext_cols = static_cast<ulint*>( |
435 | mem_heap_alloc(heap, n_ext_cols * sizeof *ext_cols)); |
436 | } |
437 | |
438 | /* Avoid a debug assertion in rec_offs_validate(). */ |
439 | rec_offs_make_valid(copy, index, true, const_cast<ulint*>(offsets)); |
440 | |
441 | if (!col_table) { |
442 | ut_ad(!col_map); |
443 | ut_ad(!defaults); |
444 | col_table = index->table; |
445 | } |
446 | |
447 | if (defaults) { |
448 | ut_ad(col_map); |
449 | row = dtuple_copy(defaults, heap); |
450 | /* dict_table_copy_types() would set the fields to NULL */ |
451 | for (ulint i = 0; i < dict_table_get_n_cols(col_table); i++) { |
452 | dict_col_copy_type( |
453 | dict_table_get_nth_col(col_table, i), |
454 | dfield_get_type(dtuple_get_nth_field(row, i))); |
455 | } |
456 | } else if (add_v != NULL) { |
457 | row = dtuple_create_with_vcol( |
458 | heap, dict_table_get_n_cols(col_table), |
459 | dict_table_get_n_v_cols(col_table) + add_v->n_v_col); |
460 | dict_table_copy_types(row, col_table); |
461 | |
462 | for (ulint i = 0; i < add_v->n_v_col; i++) { |
463 | dict_col_copy_type( |
464 | &add_v->v_col[i].m_col, |
465 | dfield_get_type(dtuple_get_nth_v_field( |
466 | row, i + col_table->n_v_def))); |
467 | } |
468 | } else { |
469 | row = dtuple_create_with_vcol( |
470 | heap, dict_table_get_n_cols(col_table), |
471 | dict_table_get_n_v_cols(col_table)); |
472 | dict_table_copy_types(row, col_table); |
473 | } |
474 | |
475 | dtuple_set_info_bits(row, rec_get_info_bits( |
476 | copy, rec_offs_comp(offsets))); |
477 | |
478 | j = 0; |
479 | |
480 | for (ulint i = 0; i < rec_offs_n_fields(offsets); i++) { |
481 | const dict_field_t* ind_field |
482 | = dict_index_get_nth_field(index, i); |
483 | |
484 | if (ind_field->prefix_len) { |
485 | /* Column prefixes can only occur in key |
486 | fields, which cannot be stored externally. For |
487 | a column prefix, there should also be the full |
488 | field in the clustered index tuple. The row |
489 | tuple comprises full fields, not prefixes. */ |
490 | ut_ad(!rec_offs_nth_extern(offsets, i)); |
491 | continue; |
492 | } |
493 | |
494 | const dict_col_t* col |
495 | = dict_field_get_col(ind_field); |
496 | ulint col_no |
497 | = dict_col_get_no(col); |
498 | |
499 | if (col_map) { |
500 | col_no = col_map[col_no]; |
501 | |
502 | if (col_no == ULINT_UNDEFINED) { |
503 | /* dropped column */ |
504 | continue; |
505 | } |
506 | } |
507 | |
508 | dfield_t* dfield = dtuple_get_nth_field(row, col_no); |
509 | const void* field = rec_get_nth_field( |
510 | copy, offsets, i, &len); |
511 | if (len == UNIV_SQL_DEFAULT) { |
512 | field = index->instant_field_value(i, &len); |
513 | if (field && type != ROW_COPY_POINTERS) { |
514 | field = mem_heap_dup(heap, field, len); |
515 | } |
516 | } |
517 | dfield_set_data(dfield, field, len); |
518 | |
519 | if (rec_offs_nth_extern(offsets, i)) { |
520 | dfield_set_ext(dfield); |
521 | |
522 | col = dict_table_get_nth_col(col_table, col_no); |
523 | |
524 | if (col->ord_part) { |
525 | /* We will have to fetch prefixes of |
526 | externally stored columns that are |
527 | referenced by column prefixes. */ |
528 | ext_cols[j++] = col_no; |
529 | } |
530 | } |
531 | } |
532 | |
533 | rec_offs_make_valid(rec, index, true, const_cast<ulint*>(offsets)); |
534 | |
535 | ut_ad(dtuple_check_typed(row)); |
536 | |
537 | if (!ext) { |
538 | /* REDUNDANT and COMPACT formats store a local |
539 | 768-byte prefix of each externally stored |
540 | column. No cache is needed. |
541 | |
542 | During online table rebuild, |
543 | row_log_table_apply_delete_low() |
544 | may use a cache that was set up by |
545 | row_log_table_delete(). */ |
546 | |
547 | } else if (j) { |
548 | *ext = row_ext_create(j, ext_cols, index->table->flags, row, |
549 | heap); |
550 | } else { |
551 | *ext = NULL; |
552 | } |
553 | |
554 | if (tmp_heap) { |
555 | mem_heap_free(tmp_heap); |
556 | } |
557 | |
558 | return(row); |
559 | } |
560 | |
561 | |
562 | /*******************************************************************//** |
563 | An inverse function to row_build_index_entry. Builds a row from a |
564 | record in a clustered index. |
565 | @return own: row built; see the NOTE below! */ |
566 | dtuple_t* |
567 | row_build( |
568 | /*======*/ |
569 | ulint type, /*!< in: ROW_COPY_POINTERS or |
570 | ROW_COPY_DATA; the latter |
571 | copies also the data fields to |
572 | heap while the first only |
573 | places pointers to data fields |
574 | on the index page, and thus is |
575 | more efficient */ |
576 | const dict_index_t* index, /*!< in: clustered index */ |
577 | const rec_t* rec, /*!< in: record in the clustered |
578 | index; NOTE: in the case |
579 | ROW_COPY_POINTERS the data |
580 | fields in the row will point |
581 | directly into this record, |
582 | therefore, the buffer page of |
583 | this record must be at least |
584 | s-latched and the latch held |
585 | as long as the row dtuple is used! */ |
586 | const ulint* offsets,/*!< in: rec_get_offsets(rec,index) |
587 | or NULL, in which case this function |
588 | will invoke rec_get_offsets() */ |
589 | const dict_table_t* col_table, |
590 | /*!< in: table, to check which |
591 | externally stored columns |
592 | occur in the ordering columns |
593 | of an index, or NULL if |
594 | index->table should be |
595 | consulted instead */ |
596 | const dtuple_t* defaults, |
597 | /*!< in: default values of |
598 | added and changed columns, or NULL */ |
599 | const ulint* col_map,/*!< in: mapping of old column |
600 | numbers to new ones, or NULL */ |
601 | row_ext_t** ext, /*!< out, own: cache of |
602 | externally stored column |
603 | prefixes, or NULL */ |
604 | mem_heap_t* heap) /*!< in: memory heap from which |
605 | the memory needed is allocated */ |
606 | { |
607 | return(row_build_low(type, index, rec, offsets, col_table, |
608 | defaults, NULL, col_map, ext, heap)); |
609 | } |
610 | |
611 | /** An inverse function to row_build_index_entry. Builds a row from a |
612 | record in a clustered index, with possible indexing on ongoing |
613 | addition of new virtual columns. |
614 | @param[in] type ROW_COPY_POINTERS or ROW_COPY_DATA; |
615 | @param[in] index clustered index |
616 | @param[in] rec record in the clustered index |
617 | @param[in] offsets rec_get_offsets(rec,index) or NULL |
618 | @param[in] col_table table, to check which |
619 | externally stored columns |
620 | occur in the ordering columns |
621 | of an index, or NULL if |
622 | index->table should be |
623 | consulted instead |
624 | @param[in] defaults default values of added, changed columns, or NULL |
625 | @param[in] add_v new virtual columns added |
626 | along with new indexes |
627 | @param[in] col_map mapping of old column |
628 | numbers to new ones, or NULL |
629 | @param[in] ext cache of externally stored column |
630 | prefixes, or NULL |
631 | @param[in] heap memory heap from which |
632 | the memory needed is allocated |
633 | @return own: row built; */ |
634 | dtuple_t* |
635 | row_build_w_add_vcol( |
636 | ulint type, |
637 | const dict_index_t* index, |
638 | const rec_t* rec, |
639 | const ulint* offsets, |
640 | const dict_table_t* col_table, |
641 | const dtuple_t* defaults, |
642 | const dict_add_v_col_t* add_v, |
643 | const ulint* col_map, |
644 | row_ext_t** ext, |
645 | mem_heap_t* heap) |
646 | { |
647 | return(row_build_low(type, index, rec, offsets, col_table, |
648 | defaults, add_v, col_map, ext, heap)); |
649 | } |
650 | |
651 | /** Convert an index record to a data tuple. |
652 | @tparam def whether the index->instant_field_value() needs to be accessed |
653 | @param[in] rec index record |
654 | @param[in] index index |
655 | @param[in] offsets rec_get_offsets(rec, index) |
656 | @param[out] n_ext number of externally stored columns |
657 | @param[in,out] heap memory heap for allocations |
658 | @return index entry built; does not set info_bits, and the data fields |
659 | in the entry will point directly to rec */ |
660 | template<bool def> |
661 | static inline |
662 | dtuple_t* |
663 | row_rec_to_index_entry_impl( |
664 | const rec_t* rec, |
665 | const dict_index_t* index, |
666 | const ulint* offsets, |
667 | ulint* n_ext, |
668 | mem_heap_t* heap) |
669 | { |
670 | dtuple_t* entry; |
671 | dfield_t* dfield; |
672 | ulint i; |
673 | const byte* field; |
674 | ulint len; |
675 | ulint rec_len; |
676 | |
677 | ut_ad(rec != NULL); |
678 | ut_ad(heap != NULL); |
679 | ut_ad(index != NULL); |
680 | ut_ad(def || !rec_offs_any_default(offsets)); |
681 | |
682 | /* Because this function may be invoked by row0merge.cc |
683 | on a record whose header is in different format, the check |
684 | rec_offs_validate(rec, index, offsets) must be avoided here. */ |
685 | ut_ad(n_ext); |
686 | *n_ext = 0; |
687 | |
688 | rec_len = rec_offs_n_fields(offsets); |
689 | |
690 | entry = dtuple_create(heap, rec_len); |
691 | |
692 | dtuple_set_n_fields_cmp(entry, |
693 | dict_index_get_n_unique_in_tree(index)); |
694 | ut_ad(rec_len == dict_index_get_n_fields(index) |
695 | /* a record for older SYS_INDEXES table |
696 | (missing merge_threshold column) is acceptable. */ |
697 | || (index->table->id == DICT_INDEXES_ID |
698 | && rec_len == dict_index_get_n_fields(index) - 1)); |
699 | |
700 | dict_index_copy_types(entry, index, rec_len); |
701 | |
702 | for (i = 0; i < rec_len; i++) { |
703 | |
704 | dfield = dtuple_get_nth_field(entry, i); |
705 | field = def |
706 | ? rec_get_nth_cfield(rec, index, offsets, i, &len) |
707 | : rec_get_nth_field(rec, offsets, i, &len); |
708 | |
709 | dfield_set_data(dfield, field, len); |
710 | |
711 | if (rec_offs_nth_extern(offsets, i)) { |
712 | dfield_set_ext(dfield); |
713 | (*n_ext)++; |
714 | } |
715 | } |
716 | |
717 | ut_ad(dtuple_check_typed(entry)); |
718 | return(entry); |
719 | } |
720 | |
721 | /** Convert an index record to a data tuple. |
722 | @param[in] rec index record |
723 | @param[in] index index |
724 | @param[in] offsets rec_get_offsets(rec, index) |
725 | @param[out] n_ext number of externally stored columns |
726 | @param[in,out] heap memory heap for allocations */ |
727 | dtuple_t* |
728 | row_rec_to_index_entry_low( |
729 | const rec_t* rec, |
730 | const dict_index_t* index, |
731 | const ulint* offsets, |
732 | ulint* n_ext, |
733 | mem_heap_t* heap) |
734 | { |
735 | return row_rec_to_index_entry_impl<false>( |
736 | rec, index, offsets, n_ext, heap); |
737 | } |
738 | |
739 | /*******************************************************************//** |
740 | Converts an index record to a typed data tuple. NOTE that externally |
741 | stored (often big) fields are NOT copied to heap. |
742 | @return own: index entry built */ |
743 | dtuple_t* |
744 | row_rec_to_index_entry( |
745 | /*===================*/ |
746 | const rec_t* rec, /*!< in: record in the index */ |
747 | const dict_index_t* index, /*!< in: index */ |
748 | const ulint* offsets,/*!< in: rec_get_offsets(rec) */ |
749 | ulint* n_ext, /*!< out: number of externally |
750 | stored columns */ |
751 | mem_heap_t* heap) /*!< in: memory heap from which |
752 | the memory needed is allocated */ |
753 | { |
754 | dtuple_t* entry; |
755 | byte* buf; |
756 | const rec_t* copy_rec; |
757 | |
758 | ut_ad(rec != NULL); |
759 | ut_ad(heap != NULL); |
760 | ut_ad(index != NULL); |
761 | ut_ad(rec_offs_validate(rec, index, offsets)); |
762 | |
763 | /* Take a copy of rec to heap */ |
764 | buf = static_cast<byte*>( |
765 | mem_heap_alloc(heap, rec_offs_size(offsets))); |
766 | |
767 | copy_rec = rec_copy(buf, rec, offsets); |
768 | |
769 | rec_offs_make_valid(copy_rec, index, true, |
770 | const_cast<ulint*>(offsets)); |
771 | entry = row_rec_to_index_entry_impl<true>( |
772 | copy_rec, index, offsets, n_ext, heap); |
773 | rec_offs_make_valid(rec, index, true, |
774 | const_cast<ulint*>(offsets)); |
775 | |
776 | dtuple_set_info_bits(entry, |
777 | rec_get_info_bits(rec, rec_offs_comp(offsets))); |
778 | |
779 | return(entry); |
780 | } |
781 | |
782 | /*******************************************************************//** |
783 | Builds from a secondary index record a row reference with which we can |
784 | search the clustered index record. |
785 | @return own: row reference built; see the NOTE below! */ |
786 | dtuple_t* |
787 | row_build_row_ref( |
788 | /*==============*/ |
789 | ulint type, /*!< in: ROW_COPY_DATA, or ROW_COPY_POINTERS: |
790 | the former copies also the data fields to |
791 | heap, whereas the latter only places pointers |
792 | to data fields on the index page */ |
793 | dict_index_t* index, /*!< in: secondary index */ |
794 | const rec_t* rec, /*!< in: record in the index; |
795 | NOTE: in the case ROW_COPY_POINTERS |
796 | the data fields in the row will point |
797 | directly into this record, therefore, |
798 | the buffer page of this record must be |
799 | at least s-latched and the latch held |
800 | as long as the row reference is used! */ |
801 | mem_heap_t* heap) /*!< in: memory heap from which the memory |
802 | needed is allocated */ |
803 | { |
804 | dict_table_t* table; |
805 | dict_index_t* clust_index; |
806 | dfield_t* dfield; |
807 | dtuple_t* ref; |
808 | const byte* field; |
809 | ulint len; |
810 | ulint ref_len; |
811 | ulint pos; |
812 | byte* buf; |
813 | ulint clust_col_prefix_len; |
814 | ulint i; |
815 | mem_heap_t* tmp_heap = NULL; |
816 | ulint offsets_[REC_OFFS_NORMAL_SIZE]; |
817 | ulint* offsets = offsets_; |
818 | rec_offs_init(offsets_); |
819 | |
820 | ut_ad(index != NULL); |
821 | ut_ad(rec != NULL); |
822 | ut_ad(heap != NULL); |
823 | ut_ad(!dict_index_is_clust(index)); |
824 | |
825 | offsets = rec_get_offsets(rec, index, offsets, true, |
826 | ULINT_UNDEFINED, &tmp_heap); |
827 | /* Secondary indexes must not contain externally stored columns. */ |
828 | ut_ad(!rec_offs_any_extern(offsets)); |
829 | |
830 | if (type == ROW_COPY_DATA) { |
831 | /* Take a copy of rec to heap */ |
832 | |
833 | buf = static_cast<byte*>( |
834 | mem_heap_alloc(heap, rec_offs_size(offsets))); |
835 | |
836 | rec = rec_copy(buf, rec, offsets); |
837 | rec_offs_make_valid(rec, index, true, offsets); |
838 | } |
839 | |
840 | table = index->table; |
841 | |
842 | clust_index = dict_table_get_first_index(table); |
843 | |
844 | ref_len = dict_index_get_n_unique(clust_index); |
845 | |
846 | ref = dtuple_create(heap, ref_len); |
847 | |
848 | dict_index_copy_types(ref, clust_index, ref_len); |
849 | |
850 | for (i = 0; i < ref_len; i++) { |
851 | dfield = dtuple_get_nth_field(ref, i); |
852 | |
853 | pos = dict_index_get_nth_field_pos(index, clust_index, i); |
854 | |
855 | ut_a(pos != ULINT_UNDEFINED); |
856 | |
857 | ut_ad(!rec_offs_nth_default(offsets, pos)); |
858 | field = rec_get_nth_field(rec, offsets, pos, &len); |
859 | |
860 | dfield_set_data(dfield, field, len); |
861 | |
862 | /* If the primary key contains a column prefix, then the |
863 | secondary index may contain a longer prefix of the same |
864 | column, or the full column, and we must adjust the length |
865 | accordingly. */ |
866 | |
867 | clust_col_prefix_len = dict_index_get_nth_field( |
868 | clust_index, i)->prefix_len; |
869 | |
870 | if (clust_col_prefix_len > 0) { |
871 | if (len != UNIV_SQL_NULL) { |
872 | |
873 | const dtype_t* dtype |
874 | = dfield_get_type(dfield); |
875 | |
876 | dfield_set_len(dfield, |
877 | dtype_get_at_most_n_mbchars( |
878 | dtype->prtype, |
879 | dtype->mbminlen, |
880 | dtype->mbmaxlen, |
881 | clust_col_prefix_len, |
882 | len, (char*) field)); |
883 | } |
884 | } |
885 | } |
886 | |
887 | ut_ad(dtuple_check_typed(ref)); |
888 | if (tmp_heap) { |
889 | mem_heap_free(tmp_heap); |
890 | } |
891 | |
892 | return(ref); |
893 | } |
894 | |
895 | /*******************************************************************//** |
896 | Builds from a secondary index record a row reference with which we can |
897 | search the clustered index record. */ |
898 | void |
899 | row_build_row_ref_in_tuple( |
900 | /*=======================*/ |
901 | dtuple_t* ref, /*!< in/out: row reference built; |
902 | see the NOTE below! */ |
903 | const rec_t* rec, /*!< in: record in the index; |
904 | NOTE: the data fields in ref |
905 | will point directly into this |
906 | record, therefore, the buffer |
907 | page of this record must be at |
908 | least s-latched and the latch |
909 | held as long as the row |
910 | reference is used! */ |
911 | const dict_index_t* index, /*!< in: secondary index */ |
912 | ulint* offsets)/*!< in: rec_get_offsets(rec, index) |
913 | or NULL */ |
914 | { |
915 | const dict_index_t* clust_index; |
916 | dfield_t* dfield; |
917 | const byte* field; |
918 | ulint len; |
919 | ulint ref_len; |
920 | ulint pos; |
921 | ulint clust_col_prefix_len; |
922 | ulint i; |
923 | mem_heap_t* heap = NULL; |
924 | ulint offsets_[REC_OFFS_NORMAL_SIZE]; |
925 | rec_offs_init(offsets_); |
926 | |
927 | ut_a(ref); |
928 | ut_a(index); |
929 | ut_a(rec); |
930 | ut_ad(!dict_index_is_clust(index)); |
931 | ut_a(index->table); |
932 | |
933 | clust_index = dict_table_get_first_index(index->table); |
934 | ut_ad(clust_index); |
935 | |
936 | if (!offsets) { |
937 | offsets = rec_get_offsets(rec, index, offsets_, true, |
938 | ULINT_UNDEFINED, &heap); |
939 | } else { |
940 | ut_ad(rec_offs_validate(rec, index, offsets)); |
941 | } |
942 | |
943 | /* Secondary indexes must not contain externally stored columns. */ |
944 | ut_ad(!rec_offs_any_extern(offsets)); |
945 | ref_len = dict_index_get_n_unique(clust_index); |
946 | |
947 | ut_ad(ref_len == dtuple_get_n_fields(ref)); |
948 | |
949 | dict_index_copy_types(ref, clust_index, ref_len); |
950 | |
951 | for (i = 0; i < ref_len; i++) { |
952 | dfield = dtuple_get_nth_field(ref, i); |
953 | |
954 | pos = dict_index_get_nth_field_pos(index, clust_index, i); |
955 | |
956 | ut_a(pos != ULINT_UNDEFINED); |
957 | |
958 | ut_ad(!rec_offs_nth_default(offsets, pos)); |
959 | field = rec_get_nth_field(rec, offsets, pos, &len); |
960 | |
961 | dfield_set_data(dfield, field, len); |
962 | |
963 | /* If the primary key contains a column prefix, then the |
964 | secondary index may contain a longer prefix of the same |
965 | column, or the full column, and we must adjust the length |
966 | accordingly. */ |
967 | |
968 | clust_col_prefix_len = dict_index_get_nth_field( |
969 | clust_index, i)->prefix_len; |
970 | |
971 | if (clust_col_prefix_len > 0) { |
972 | if (len != UNIV_SQL_NULL) { |
973 | |
974 | const dtype_t* dtype |
975 | = dfield_get_type(dfield); |
976 | |
977 | dfield_set_len(dfield, |
978 | dtype_get_at_most_n_mbchars( |
979 | dtype->prtype, |
980 | dtype->mbminlen, |
981 | dtype->mbmaxlen, |
982 | clust_col_prefix_len, |
983 | len, (char*) field)); |
984 | } |
985 | } |
986 | } |
987 | |
988 | ut_ad(dtuple_check_typed(ref)); |
989 | if (UNIV_LIKELY_NULL(heap)) { |
990 | mem_heap_free(heap); |
991 | } |
992 | } |
993 | |
994 | /***************************************************************//** |
995 | Searches the clustered index record for a row, if we have the row reference. |
996 | @return TRUE if found */ |
997 | ibool |
998 | row_search_on_row_ref( |
999 | /*==================*/ |
1000 | btr_pcur_t* pcur, /*!< out: persistent cursor, which must |
1001 | be closed by the caller */ |
1002 | ulint mode, /*!< in: BTR_MODIFY_LEAF, ... */ |
1003 | const dict_table_t* table, /*!< in: table */ |
1004 | const dtuple_t* ref, /*!< in: row reference */ |
1005 | mtr_t* mtr) /*!< in/out: mtr */ |
1006 | { |
1007 | ulint low_match; |
1008 | rec_t* rec; |
1009 | dict_index_t* index; |
1010 | |
1011 | ut_ad(dtuple_check_typed(ref)); |
1012 | |
1013 | index = dict_table_get_first_index(table); |
1014 | |
1015 | if (UNIV_UNLIKELY(ref->info_bits != 0)) { |
1016 | ut_ad(ref->info_bits == REC_INFO_DEFAULT_ROW); |
1017 | ut_ad(ref->n_fields <= index->n_uniq); |
1018 | btr_pcur_open_at_index_side(true, index, mode, pcur, true, 0, |
1019 | mtr); |
1020 | btr_pcur_move_to_next_user_rec(pcur, mtr); |
1021 | /* We do not necessarily have index->is_instant() here, |
1022 | because we could be executing a rollback of an |
1023 | instant ADD COLUMN operation. The function |
1024 | rec_is_default_row() asserts index->is_instant(); |
1025 | we do not want to call it here. */ |
1026 | return rec_get_info_bits(btr_pcur_get_rec(pcur), |
1027 | dict_table_is_comp(index->table)) |
1028 | & REC_INFO_MIN_REC_FLAG; |
1029 | } else { |
1030 | ut_a(ref->n_fields == index->n_uniq); |
1031 | btr_pcur_open(index, ref, PAGE_CUR_LE, mode, pcur, mtr); |
1032 | } |
1033 | |
1034 | low_match = btr_pcur_get_low_match(pcur); |
1035 | |
1036 | rec = btr_pcur_get_rec(pcur); |
1037 | |
1038 | if (page_rec_is_infimum(rec)) { |
1039 | |
1040 | return(FALSE); |
1041 | } |
1042 | |
1043 | if (low_match != dtuple_get_n_fields(ref)) { |
1044 | |
1045 | return(FALSE); |
1046 | } |
1047 | |
1048 | return(TRUE); |
1049 | } |
1050 | |
1051 | /*********************************************************************//** |
1052 | Fetches the clustered index record for a secondary index record. The latches |
1053 | on the secondary index record are preserved. |
1054 | @return record or NULL, if no record found */ |
1055 | rec_t* |
1056 | row_get_clust_rec( |
1057 | /*==============*/ |
1058 | ulint mode, /*!< in: BTR_MODIFY_LEAF, ... */ |
1059 | const rec_t* rec, /*!< in: record in a secondary index */ |
1060 | dict_index_t* index, /*!< in: secondary index */ |
1061 | dict_index_t** clust_index,/*!< out: clustered index */ |
1062 | mtr_t* mtr) /*!< in: mtr */ |
1063 | { |
1064 | mem_heap_t* heap; |
1065 | dtuple_t* ref; |
1066 | dict_table_t* table; |
1067 | btr_pcur_t pcur; |
1068 | ibool found; |
1069 | rec_t* clust_rec; |
1070 | |
1071 | ut_ad(!dict_index_is_clust(index)); |
1072 | |
1073 | table = index->table; |
1074 | |
1075 | heap = mem_heap_create(256); |
1076 | |
1077 | ref = row_build_row_ref(ROW_COPY_POINTERS, index, rec, heap); |
1078 | |
1079 | found = row_search_on_row_ref(&pcur, mode, table, ref, mtr); |
1080 | |
1081 | clust_rec = found ? btr_pcur_get_rec(&pcur) : NULL; |
1082 | |
1083 | mem_heap_free(heap); |
1084 | |
1085 | btr_pcur_close(&pcur); |
1086 | |
1087 | *clust_index = dict_table_get_first_index(table); |
1088 | |
1089 | return(clust_rec); |
1090 | } |
1091 | |
1092 | /***************************************************************//** |
1093 | Searches an index record. |
1094 | @return whether the record was found or buffered */ |
1095 | enum row_search_result |
1096 | row_search_index_entry( |
1097 | /*===================*/ |
1098 | dict_index_t* index, /*!< in: index */ |
1099 | const dtuple_t* entry, /*!< in: index entry */ |
1100 | ulint mode, /*!< in: BTR_MODIFY_LEAF, ... */ |
1101 | btr_pcur_t* pcur, /*!< in/out: persistent cursor, which must |
1102 | be closed by the caller */ |
1103 | mtr_t* mtr) /*!< in: mtr */ |
1104 | { |
1105 | ulint n_fields; |
1106 | ulint low_match; |
1107 | rec_t* rec; |
1108 | |
1109 | ut_ad(dtuple_check_typed(entry)); |
1110 | |
1111 | if (dict_index_is_spatial(index)) { |
1112 | ut_ad(mode & BTR_MODIFY_LEAF || mode & BTR_MODIFY_TREE); |
1113 | rtr_pcur_open(index, entry, PAGE_CUR_RTREE_LOCATE, |
1114 | mode, pcur, mtr); |
1115 | } else { |
1116 | btr_pcur_open(index, entry, PAGE_CUR_LE, mode, pcur, mtr); |
1117 | } |
1118 | |
1119 | switch (btr_pcur_get_btr_cur(pcur)->flag) { |
1120 | case BTR_CUR_DELETE_REF: |
1121 | ut_a(mode & BTR_DELETE && !dict_index_is_spatial(index)); |
1122 | return(ROW_NOT_DELETED_REF); |
1123 | |
1124 | case BTR_CUR_DEL_MARK_IBUF: |
1125 | case BTR_CUR_DELETE_IBUF: |
1126 | case BTR_CUR_INSERT_TO_IBUF: |
1127 | return(ROW_BUFFERED); |
1128 | |
1129 | case BTR_CUR_HASH: |
1130 | case BTR_CUR_HASH_FAIL: |
1131 | case BTR_CUR_BINARY: |
1132 | break; |
1133 | } |
1134 | |
1135 | low_match = btr_pcur_get_low_match(pcur); |
1136 | |
1137 | rec = btr_pcur_get_rec(pcur); |
1138 | |
1139 | n_fields = dtuple_get_n_fields(entry); |
1140 | |
1141 | if (page_rec_is_infimum(rec)) { |
1142 | |
1143 | return(ROW_NOT_FOUND); |
1144 | } else if (low_match != n_fields) { |
1145 | |
1146 | return(ROW_NOT_FOUND); |
1147 | } |
1148 | |
1149 | return(ROW_FOUND); |
1150 | } |
1151 | |
1152 | /*******************************************************************//** |
1153 | Formats the raw data in "data" (in InnoDB on-disk format) that is of |
1154 | type DATA_INT using "prtype" and writes the result to "buf". |
1155 | If the data is in unknown format, then nothing is written to "buf", |
1156 | 0 is returned and "format_in_hex" is set to TRUE, otherwise |
1157 | "format_in_hex" is left untouched. |
1158 | Not more than "buf_size" bytes are written to "buf". |
1159 | The result is always '\0'-terminated (provided buf_size > 0) and the |
1160 | number of bytes that were written to "buf" is returned (including the |
1161 | terminating '\0'). |
1162 | @return number of bytes that were written */ |
1163 | static |
1164 | ulint |
1165 | row_raw_format_int( |
1166 | /*===============*/ |
1167 | const char* data, /*!< in: raw data */ |
1168 | ulint data_len, /*!< in: raw data length |
1169 | in bytes */ |
1170 | ulint prtype, /*!< in: precise type */ |
1171 | char* buf, /*!< out: output buffer */ |
1172 | ulint buf_size, /*!< in: output buffer size |
1173 | in bytes */ |
1174 | ibool* format_in_hex) /*!< out: should the data be |
1175 | formated in hex */ |
1176 | { |
1177 | ulint ret; |
1178 | |
1179 | if (data_len <= sizeof(ib_uint64_t)) { |
1180 | |
1181 | ib_uint64_t value; |
1182 | ibool unsigned_type = prtype & DATA_UNSIGNED; |
1183 | |
1184 | value = mach_read_int_type( |
1185 | (const byte*) data, data_len, unsigned_type); |
1186 | |
1187 | ret = (ulint) snprintf( |
1188 | buf, buf_size, |
1189 | unsigned_type ? "%llu" : "%lld" , (longlong) value)+1; |
1190 | } else { |
1191 | |
1192 | *format_in_hex = TRUE; |
1193 | ret = 0; |
1194 | } |
1195 | |
1196 | return(ut_min(ret, buf_size)); |
1197 | } |
1198 | |
1199 | /*******************************************************************//** |
1200 | Formats the raw data in "data" (in InnoDB on-disk format) that is of |
1201 | type DATA_(CHAR|VARCHAR|MYSQL|VARMYSQL) using "prtype" and writes the |
1202 | result to "buf". |
1203 | If the data is in binary format, then nothing is written to "buf", |
1204 | 0 is returned and "format_in_hex" is set to TRUE, otherwise |
1205 | "format_in_hex" is left untouched. |
1206 | Not more than "buf_size" bytes are written to "buf". |
1207 | The result is always '\0'-terminated (provided buf_size > 0) and the |
1208 | number of bytes that were written to "buf" is returned (including the |
1209 | terminating '\0'). |
1210 | @return number of bytes that were written */ |
1211 | static |
1212 | ulint |
1213 | row_raw_format_str( |
1214 | /*===============*/ |
1215 | const char* data, /*!< in: raw data */ |
1216 | ulint data_len, /*!< in: raw data length |
1217 | in bytes */ |
1218 | ulint prtype, /*!< in: precise type */ |
1219 | char* buf, /*!< out: output buffer */ |
1220 | ulint buf_size, /*!< in: output buffer size |
1221 | in bytes */ |
1222 | ibool* format_in_hex) /*!< out: should the data be |
1223 | formated in hex */ |
1224 | { |
1225 | ulint charset_coll; |
1226 | |
1227 | if (buf_size == 0) { |
1228 | |
1229 | return(0); |
1230 | } |
1231 | |
1232 | /* we assume system_charset_info is UTF-8 */ |
1233 | |
1234 | charset_coll = dtype_get_charset_coll(prtype); |
1235 | |
1236 | if (UNIV_LIKELY(dtype_is_utf8(prtype))) { |
1237 | |
1238 | return(ut_str_sql_format(data, data_len, buf, buf_size)); |
1239 | } |
1240 | /* else */ |
1241 | |
1242 | if (charset_coll == DATA_MYSQL_BINARY_CHARSET_COLL) { |
1243 | |
1244 | *format_in_hex = TRUE; |
1245 | return(0); |
1246 | } |
1247 | /* else */ |
1248 | |
1249 | return(innobase_raw_format(data, data_len, charset_coll, |
1250 | buf, buf_size)); |
1251 | } |
1252 | |
1253 | /*******************************************************************//** |
1254 | Formats the raw data in "data" (in InnoDB on-disk format) using |
1255 | "dict_field" and writes the result to "buf". |
1256 | Not more than "buf_size" bytes are written to "buf". |
1257 | The result is always NUL-terminated (provided buf_size is positive) and the |
1258 | number of bytes that were written to "buf" is returned (including the |
1259 | terminating NUL). |
1260 | @return number of bytes that were written */ |
1261 | ulint |
1262 | row_raw_format( |
1263 | /*===========*/ |
1264 | const char* data, /*!< in: raw data */ |
1265 | ulint data_len, /*!< in: raw data length |
1266 | in bytes */ |
1267 | const dict_field_t* dict_field, /*!< in: index field */ |
1268 | char* buf, /*!< out: output buffer */ |
1269 | ulint buf_size) /*!< in: output buffer size |
1270 | in bytes */ |
1271 | { |
1272 | ulint mtype; |
1273 | ulint prtype; |
1274 | ulint ret; |
1275 | ibool format_in_hex; |
1276 | |
1277 | ut_ad(data_len != UNIV_SQL_DEFAULT); |
1278 | |
1279 | if (buf_size == 0) { |
1280 | |
1281 | return(0); |
1282 | } |
1283 | |
1284 | if (data_len == UNIV_SQL_NULL) { |
1285 | |
1286 | ret = snprintf((char*) buf, buf_size, "NULL" ) + 1; |
1287 | |
1288 | return(ut_min(ret, buf_size)); |
1289 | } |
1290 | |
1291 | mtype = dict_field->col->mtype; |
1292 | prtype = dict_field->col->prtype; |
1293 | |
1294 | format_in_hex = FALSE; |
1295 | |
1296 | switch (mtype) { |
1297 | case DATA_INT: |
1298 | |
1299 | ret = row_raw_format_int(data, data_len, prtype, |
1300 | buf, buf_size, &format_in_hex); |
1301 | if (format_in_hex) { |
1302 | |
1303 | goto format_in_hex; |
1304 | } |
1305 | break; |
1306 | case DATA_CHAR: |
1307 | case DATA_VARCHAR: |
1308 | case DATA_MYSQL: |
1309 | case DATA_VARMYSQL: |
1310 | |
1311 | ret = row_raw_format_str(data, data_len, prtype, |
1312 | buf, buf_size, &format_in_hex); |
1313 | if (format_in_hex) { |
1314 | |
1315 | goto format_in_hex; |
1316 | } |
1317 | |
1318 | break; |
1319 | /* XXX support more data types */ |
1320 | default: |
1321 | format_in_hex: |
1322 | |
1323 | if (UNIV_LIKELY(buf_size > 2)) { |
1324 | |
1325 | memcpy(buf, "0x" , 2); |
1326 | buf += 2; |
1327 | buf_size -= 2; |
1328 | ret = 2 + ut_raw_to_hex(data, data_len, |
1329 | buf, buf_size); |
1330 | } else { |
1331 | |
1332 | buf[0] = '\0'; |
1333 | ret = 1; |
1334 | } |
1335 | } |
1336 | |
1337 | return(ret); |
1338 | } |
1339 | |
1340 | #ifdef UNIV_ENABLE_UNIT_TEST_ROW_RAW_FORMAT_INT |
1341 | |
1342 | #ifdef HAVE_UT_CHRONO_T |
1343 | |
1344 | void |
1345 | test_row_raw_format_int() |
1346 | { |
1347 | ulint ret; |
1348 | char buf[128]; |
1349 | ibool format_in_hex; |
1350 | ulint i; |
1351 | |
1352 | #define CALL_AND_TEST(data, data_len, prtype, buf, buf_size,\ |
1353 | ret_expected, buf_expected, format_in_hex_expected)\ |
1354 | do {\ |
1355 | ibool ok = TRUE;\ |
1356 | ulint i;\ |
1357 | memset(buf, 'x', 10);\ |
1358 | buf[10] = '\0';\ |
1359 | format_in_hex = FALSE;\ |
1360 | fprintf(stderr, "TESTING \"\\x");\ |
1361 | for (i = 0; i < data_len; i++) {\ |
1362 | fprintf(stderr, "%02hhX", data[i]);\ |
1363 | }\ |
1364 | fprintf(stderr, "\", %lu, %lu, %lu\n",\ |
1365 | (ulint) data_len, (ulint) prtype,\ |
1366 | (ulint) buf_size);\ |
1367 | ret = row_raw_format_int(data, data_len, prtype,\ |
1368 | buf, buf_size, &format_in_hex);\ |
1369 | if (ret != ret_expected) {\ |
1370 | fprintf(stderr, "expected ret %lu, got %lu\n",\ |
1371 | (ulint) ret_expected, ret);\ |
1372 | ok = FALSE;\ |
1373 | }\ |
1374 | if (strcmp((char*) buf, buf_expected) != 0) {\ |
1375 | fprintf(stderr, "expected buf \"%s\", got \"%s\"\n",\ |
1376 | buf_expected, buf);\ |
1377 | ok = FALSE;\ |
1378 | }\ |
1379 | if (format_in_hex != format_in_hex_expected) {\ |
1380 | fprintf(stderr, "expected format_in_hex %d, got %d\n",\ |
1381 | (int) format_in_hex_expected,\ |
1382 | (int) format_in_hex);\ |
1383 | ok = FALSE;\ |
1384 | }\ |
1385 | if (ok) {\ |
1386 | fprintf(stderr, "OK: %lu, \"%s\" %d\n\n",\ |
1387 | (ulint) ret, buf, (int) format_in_hex);\ |
1388 | } else {\ |
1389 | return;\ |
1390 | }\ |
1391 | } while (0) |
1392 | |
1393 | #if 1 |
1394 | /* min values for signed 1-8 byte integers */ |
1395 | |
1396 | CALL_AND_TEST("\x00" , 1, 0, |
1397 | buf, sizeof(buf), 5, "-128" , 0); |
1398 | |
1399 | CALL_AND_TEST("\x00\x00" , 2, 0, |
1400 | buf, sizeof(buf), 7, "-32768" , 0); |
1401 | |
1402 | CALL_AND_TEST("\x00\x00\x00" , 3, 0, |
1403 | buf, sizeof(buf), 9, "-8388608" , 0); |
1404 | |
1405 | CALL_AND_TEST("\x00\x00\x00\x00" , 4, 0, |
1406 | buf, sizeof(buf), 12, "-2147483648" , 0); |
1407 | |
1408 | CALL_AND_TEST("\x00\x00\x00\x00\x00" , 5, 0, |
1409 | buf, sizeof(buf), 14, "-549755813888" , 0); |
1410 | |
1411 | CALL_AND_TEST("\x00\x00\x00\x00\x00\x00" , 6, 0, |
1412 | buf, sizeof(buf), 17, "-140737488355328" , 0); |
1413 | |
1414 | CALL_AND_TEST("\x00\x00\x00\x00\x00\x00\x00" , 7, 0, |
1415 | buf, sizeof(buf), 19, "-36028797018963968" , 0); |
1416 | |
1417 | CALL_AND_TEST("\x00\x00\x00\x00\x00\x00\x00\x00" , 8, 0, |
1418 | buf, sizeof(buf), 21, "-9223372036854775808" , 0); |
1419 | |
1420 | /* min values for unsigned 1-8 byte integers */ |
1421 | |
1422 | CALL_AND_TEST("\x00" , 1, DATA_UNSIGNED, |
1423 | buf, sizeof(buf), 2, "0" , 0); |
1424 | |
1425 | CALL_AND_TEST("\x00\x00" , 2, DATA_UNSIGNED, |
1426 | buf, sizeof(buf), 2, "0" , 0); |
1427 | |
1428 | CALL_AND_TEST("\x00\x00\x00" , 3, DATA_UNSIGNED, |
1429 | buf, sizeof(buf), 2, "0" , 0); |
1430 | |
1431 | CALL_AND_TEST("\x00\x00\x00\x00" , 4, DATA_UNSIGNED, |
1432 | buf, sizeof(buf), 2, "0" , 0); |
1433 | |
1434 | CALL_AND_TEST("\x00\x00\x00\x00\x00" , 5, DATA_UNSIGNED, |
1435 | buf, sizeof(buf), 2, "0" , 0); |
1436 | |
1437 | CALL_AND_TEST("\x00\x00\x00\x00\x00\x00" , 6, DATA_UNSIGNED, |
1438 | buf, sizeof(buf), 2, "0" , 0); |
1439 | |
1440 | CALL_AND_TEST("\x00\x00\x00\x00\x00\x00\x00" , 7, DATA_UNSIGNED, |
1441 | buf, sizeof(buf), 2, "0" , 0); |
1442 | |
1443 | CALL_AND_TEST("\x00\x00\x00\x00\x00\x00\x00\x00" , 8, DATA_UNSIGNED, |
1444 | buf, sizeof(buf), 2, "0" , 0); |
1445 | |
1446 | /* max values for signed 1-8 byte integers */ |
1447 | |
1448 | CALL_AND_TEST("\xFF" , 1, 0, |
1449 | buf, sizeof(buf), 4, "127" , 0); |
1450 | |
1451 | CALL_AND_TEST("\xFF\xFF" , 2, 0, |
1452 | buf, sizeof(buf), 6, "32767" , 0); |
1453 | |
1454 | CALL_AND_TEST("\xFF\xFF\xFF" , 3, 0, |
1455 | buf, sizeof(buf), 8, "8388607" , 0); |
1456 | |
1457 | CALL_AND_TEST("\xFF\xFF\xFF\xFF" , 4, 0, |
1458 | buf, sizeof(buf), 11, "2147483647" , 0); |
1459 | |
1460 | CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF" , 5, 0, |
1461 | buf, sizeof(buf), 13, "549755813887" , 0); |
1462 | |
1463 | CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF" , 6, 0, |
1464 | buf, sizeof(buf), 16, "140737488355327" , 0); |
1465 | |
1466 | CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF\xFF" , 7, 0, |
1467 | buf, sizeof(buf), 18, "36028797018963967" , 0); |
1468 | |
1469 | CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF" , 8, 0, |
1470 | buf, sizeof(buf), 20, "9223372036854775807" , 0); |
1471 | |
1472 | /* max values for unsigned 1-8 byte integers */ |
1473 | |
1474 | CALL_AND_TEST("\xFF" , 1, DATA_UNSIGNED, |
1475 | buf, sizeof(buf), 4, "255" , 0); |
1476 | |
1477 | CALL_AND_TEST("\xFF\xFF" , 2, DATA_UNSIGNED, |
1478 | buf, sizeof(buf), 6, "65535" , 0); |
1479 | |
1480 | CALL_AND_TEST("\xFF\xFF\xFF" , 3, DATA_UNSIGNED, |
1481 | buf, sizeof(buf), 9, "16777215" , 0); |
1482 | |
1483 | CALL_AND_TEST("\xFF\xFF\xFF\xFF" , 4, DATA_UNSIGNED, |
1484 | buf, sizeof(buf), 11, "4294967295" , 0); |
1485 | |
1486 | CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF" , 5, DATA_UNSIGNED, |
1487 | buf, sizeof(buf), 14, "1099511627775" , 0); |
1488 | |
1489 | CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF" , 6, DATA_UNSIGNED, |
1490 | buf, sizeof(buf), 16, "281474976710655" , 0); |
1491 | |
1492 | CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF\xFF" , 7, DATA_UNSIGNED, |
1493 | buf, sizeof(buf), 18, "72057594037927935" , 0); |
1494 | |
1495 | CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF" , 8, DATA_UNSIGNED, |
1496 | buf, sizeof(buf), 21, "18446744073709551615" , 0); |
1497 | |
1498 | /* some random values */ |
1499 | |
1500 | CALL_AND_TEST("\x52" , 1, 0, |
1501 | buf, sizeof(buf), 4, "-46" , 0); |
1502 | |
1503 | CALL_AND_TEST("\x0E" , 1, DATA_UNSIGNED, |
1504 | buf, sizeof(buf), 3, "14" , 0); |
1505 | |
1506 | CALL_AND_TEST("\x62\xCE" , 2, 0, |
1507 | buf, sizeof(buf), 6, "-7474" , 0); |
1508 | |
1509 | CALL_AND_TEST("\x29\xD6" , 2, DATA_UNSIGNED, |
1510 | buf, sizeof(buf), 6, "10710" , 0); |
1511 | |
1512 | CALL_AND_TEST("\x7F\xFF\x90" , 3, 0, |
1513 | buf, sizeof(buf), 5, "-112" , 0); |
1514 | |
1515 | CALL_AND_TEST("\x00\xA1\x16" , 3, DATA_UNSIGNED, |
1516 | buf, sizeof(buf), 6, "41238" , 0); |
1517 | |
1518 | CALL_AND_TEST("\x7F\xFF\xFF\xF7" , 4, 0, |
1519 | buf, sizeof(buf), 3, "-9" , 0); |
1520 | |
1521 | CALL_AND_TEST("\x00\x00\x00\x5C" , 4, DATA_UNSIGNED, |
1522 | buf, sizeof(buf), 3, "92" , 0); |
1523 | |
1524 | CALL_AND_TEST("\x7F\xFF\xFF\xFF\xFF\xFF\xDC\x63" , 8, 0, |
1525 | buf, sizeof(buf), 6, "-9117" , 0); |
1526 | |
1527 | CALL_AND_TEST("\x00\x00\x00\x00\x00\x01\x64\x62" , 8, DATA_UNSIGNED, |
1528 | buf, sizeof(buf), 6, "91234" , 0); |
1529 | #endif |
1530 | |
1531 | /* speed test */ |
1532 | |
1533 | ut_chrono_t ch(__func__); |
1534 | |
1535 | for (i = 0; i < 1000000; i++) { |
1536 | row_raw_format_int("\x23" , 1, |
1537 | 0, buf, sizeof(buf), |
1538 | &format_in_hex); |
1539 | row_raw_format_int("\x23" , 1, |
1540 | DATA_UNSIGNED, buf, sizeof(buf), |
1541 | &format_in_hex); |
1542 | |
1543 | row_raw_format_int("\x00\x00\x00\x00\x00\x01\x64\x62" , 8, |
1544 | 0, buf, sizeof(buf), |
1545 | &format_in_hex); |
1546 | row_raw_format_int("\x00\x00\x00\x00\x00\x01\x64\x62" , 8, |
1547 | DATA_UNSIGNED, buf, sizeof(buf), |
1548 | &format_in_hex); |
1549 | } |
1550 | } |
1551 | |
1552 | #endif /* HAVE_UT_CHRONO_T */ |
1553 | |
1554 | #endif /* UNIV_ENABLE_UNIT_TEST_ROW_RAW_FORMAT_INT */ |
1555 | |