| 1 | /* Copyright (c) 2002-2007 MySQL AB |
| 2 | Use is subject to license terms |
| 3 | |
| 4 | This program is free software; you can redistribute it and/or modify |
| 5 | it under the terms of the GNU General Public License as published by |
| 6 | the Free Software Foundation; version 2 of the License. |
| 7 | |
| 8 | This program is distributed in the hope that it will be useful, |
| 9 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 10 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 11 | GNU General Public License for more details. |
| 12 | |
| 13 | You should have received a copy of the GNU General Public License |
| 14 | along with this program; if not, write to the Free Software |
| 15 | Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ |
| 16 | |
| 17 | #include "myisamdef.h" |
| 18 | |
| 19 | #ifdef HAVE_RTREE_KEYS |
| 20 | |
| 21 | #include "rt_index.h" |
| 22 | #include "rt_mbr.h" |
| 23 | |
| 24 | #define INTERSECT_CMP(amin, amax, bmin, bmax) ((amin > bmax) || (bmin > amax)) |
| 25 | #define CONTAIN_CMP(amin, amax, bmin, bmax) ((bmin > amin) || (bmax < amax)) |
| 26 | #define WITHIN_CMP(amin, amax, bmin, bmax) ((amin > bmin) || (amax < bmax)) |
| 27 | #define DISJOINT_CMP(amin, amax, bmin, bmax) ((amin <= bmax) && (bmin <= amax)) |
| 28 | #define EQUAL_CMP(amin, amax, bmin, bmax) ((amin != bmin) || (amax != bmax)) |
| 29 | |
| 30 | #define FCMP(A, B) ((int)(A) - (int)(B)) |
| 31 | #define p_inc(A, B, X) {A += X; B += X;} |
| 32 | |
| 33 | #define RT_CMP(nextflag) \ |
| 34 | if (nextflag & MBR_INTERSECT) \ |
| 35 | { \ |
| 36 | if (INTERSECT_CMP(amin, amax, bmin, bmax)) \ |
| 37 | return 1; \ |
| 38 | } \ |
| 39 | else if (nextflag & MBR_CONTAIN) \ |
| 40 | { \ |
| 41 | if (CONTAIN_CMP(amin, amax, bmin, bmax)) \ |
| 42 | return 1; \ |
| 43 | } \ |
| 44 | else if (nextflag & MBR_WITHIN) \ |
| 45 | { \ |
| 46 | if (WITHIN_CMP(amin, amax, bmin, bmax)) \ |
| 47 | return 1; \ |
| 48 | } \ |
| 49 | else if (nextflag & MBR_EQUAL) \ |
| 50 | { \ |
| 51 | if (EQUAL_CMP(amin, amax, bmin, bmax)) \ |
| 52 | return 1; \ |
| 53 | } \ |
| 54 | else if (nextflag & MBR_DISJOINT) \ |
| 55 | { \ |
| 56 | if (DISJOINT_CMP(amin, amax, bmin, bmax)) \ |
| 57 | return 1; \ |
| 58 | }\ |
| 59 | else /* if unknown comparison operator */ \ |
| 60 | { \ |
| 61 | DBUG_ASSERT(0); \ |
| 62 | } |
| 63 | |
| 64 | #define RT_CMP_KORR(type, korr_func, len, nextflag) \ |
| 65 | { \ |
| 66 | type amin, amax, bmin, bmax; \ |
| 67 | amin = korr_func(a); \ |
| 68 | bmin = korr_func(b); \ |
| 69 | amax = korr_func(a+len); \ |
| 70 | bmax = korr_func(b+len); \ |
| 71 | RT_CMP(nextflag); \ |
| 72 | } |
| 73 | |
| 74 | #define RT_CMP_GET(type, get_func, len, nextflag) \ |
| 75 | { \ |
| 76 | type amin, amax, bmin, bmax; \ |
| 77 | get_func(amin, a); \ |
| 78 | get_func(bmin, b); \ |
| 79 | get_func(amax, a+len); \ |
| 80 | get_func(bmax, b+len); \ |
| 81 | RT_CMP(nextflag); \ |
| 82 | } |
| 83 | |
| 84 | /* |
| 85 | Compares two keys a and b depending on nextflag |
| 86 | nextflag can contain these flags: |
| 87 | MBR_INTERSECT(a,b) a overlaps b |
| 88 | MBR_CONTAIN(a,b) a contains b |
| 89 | MBR_DISJOINT(a,b) a disjoint b |
| 90 | MBR_WITHIN(a,b) a within b |
| 91 | MBR_EQUAL(a,b) All coordinates of MBRs are equal |
| 92 | MBR_DATA(a,b) Data reference is the same |
| 93 | Returns 0 on success. |
| 94 | */ |
| 95 | int rtree_key_cmp(HA_KEYSEG *keyseg, uchar *b, uchar *a, uint key_length, |
| 96 | uint nextflag) |
| 97 | { |
| 98 | for (; (int) key_length > 0; keyseg += 2 ) |
| 99 | { |
| 100 | uint32 keyseg_length; |
| 101 | switch ((enum ha_base_keytype) keyseg->type) { |
| 102 | case HA_KEYTYPE_INT8: |
| 103 | RT_CMP_KORR(int8, mi_sint1korr, 1, nextflag); |
| 104 | break; |
| 105 | case HA_KEYTYPE_BINARY: |
| 106 | RT_CMP_KORR(uint8, mi_uint1korr, 1, nextflag); |
| 107 | break; |
| 108 | case HA_KEYTYPE_SHORT_INT: |
| 109 | RT_CMP_KORR(int16, mi_sint2korr, 2, nextflag); |
| 110 | break; |
| 111 | case HA_KEYTYPE_USHORT_INT: |
| 112 | RT_CMP_KORR(uint16, mi_uint2korr, 2, nextflag); |
| 113 | break; |
| 114 | case HA_KEYTYPE_INT24: |
| 115 | RT_CMP_KORR(int32, mi_sint3korr, 3, nextflag); |
| 116 | break; |
| 117 | case HA_KEYTYPE_UINT24: |
| 118 | RT_CMP_KORR(uint32, mi_uint3korr, 3, nextflag); |
| 119 | break; |
| 120 | case HA_KEYTYPE_LONG_INT: |
| 121 | RT_CMP_KORR(int32, mi_sint4korr, 4, nextflag); |
| 122 | break; |
| 123 | case HA_KEYTYPE_ULONG_INT: |
| 124 | RT_CMP_KORR(uint32, mi_uint4korr, 4, nextflag); |
| 125 | break; |
| 126 | #ifdef HAVE_LONG_LONG |
| 127 | case HA_KEYTYPE_LONGLONG: |
| 128 | RT_CMP_KORR(longlong, mi_sint8korr, 8, nextflag) |
| 129 | break; |
| 130 | case HA_KEYTYPE_ULONGLONG: |
| 131 | RT_CMP_KORR(ulonglong, mi_uint8korr, 8, nextflag) |
| 132 | break; |
| 133 | #endif |
| 134 | case HA_KEYTYPE_FLOAT: |
| 135 | /* The following should be safe, even if we compare doubles */ |
| 136 | RT_CMP_GET(float, mi_float4get, 4, nextflag); |
| 137 | break; |
| 138 | case HA_KEYTYPE_DOUBLE: |
| 139 | RT_CMP_GET(double, mi_float8get, 8, nextflag); |
| 140 | break; |
| 141 | case HA_KEYTYPE_END: |
| 142 | goto end; |
| 143 | default: |
| 144 | return 1; |
| 145 | } |
| 146 | keyseg_length= keyseg->length * 2; |
| 147 | key_length-= keyseg_length; |
| 148 | a+= keyseg_length; |
| 149 | b+= keyseg_length; |
| 150 | } |
| 151 | |
| 152 | end: |
| 153 | if (nextflag & MBR_DATA) |
| 154 | { |
| 155 | uchar *end = a + keyseg->length; |
| 156 | do |
| 157 | { |
| 158 | if (*a++ != *b++) |
| 159 | return FCMP(a[-1], b[-1]); |
| 160 | } while (a != end); |
| 161 | } |
| 162 | return 0; |
| 163 | } |
| 164 | |
| 165 | #define RT_VOL_KORR(type, korr_func, len, cast) \ |
| 166 | { \ |
| 167 | type amin, amax; \ |
| 168 | amin = korr_func(a); \ |
| 169 | amax = korr_func(a+len); \ |
| 170 | res *= (cast(amax) - cast(amin)); \ |
| 171 | } |
| 172 | |
| 173 | #define RT_VOL_GET(type, get_func, len, cast) \ |
| 174 | { \ |
| 175 | type amin, amax; \ |
| 176 | get_func(amin, a); \ |
| 177 | get_func(amax, a+len); \ |
| 178 | res *= (cast(amax) - cast(amin)); \ |
| 179 | } |
| 180 | |
| 181 | /* |
| 182 | Calculates rectangle volume |
| 183 | */ |
| 184 | double rtree_rect_volume(HA_KEYSEG *keyseg, uchar *a, uint key_length) |
| 185 | { |
| 186 | double res = 1; |
| 187 | for (; (int)key_length > 0; keyseg += 2) |
| 188 | { |
| 189 | uint32 keyseg_length; |
| 190 | switch ((enum ha_base_keytype) keyseg->type) { |
| 191 | case HA_KEYTYPE_INT8: |
| 192 | RT_VOL_KORR(int8, mi_sint1korr, 1, (double)); |
| 193 | break; |
| 194 | case HA_KEYTYPE_BINARY: |
| 195 | RT_VOL_KORR(uint8, mi_uint1korr, 1, (double)); |
| 196 | break; |
| 197 | case HA_KEYTYPE_SHORT_INT: |
| 198 | RT_VOL_KORR(int16, mi_sint2korr, 2, (double)); |
| 199 | break; |
| 200 | case HA_KEYTYPE_USHORT_INT: |
| 201 | RT_VOL_KORR(uint16, mi_uint2korr, 2, (double)); |
| 202 | break; |
| 203 | case HA_KEYTYPE_INT24: |
| 204 | RT_VOL_KORR(int32, mi_sint3korr, 3, (double)); |
| 205 | break; |
| 206 | case HA_KEYTYPE_UINT24: |
| 207 | RT_VOL_KORR(uint32, mi_uint3korr, 3, (double)); |
| 208 | break; |
| 209 | case HA_KEYTYPE_LONG_INT: |
| 210 | RT_VOL_KORR(int32, mi_sint4korr, 4, (double)); |
| 211 | break; |
| 212 | case HA_KEYTYPE_ULONG_INT: |
| 213 | RT_VOL_KORR(uint32, mi_uint4korr, 4, (double)); |
| 214 | break; |
| 215 | #ifdef HAVE_LONG_LONG |
| 216 | case HA_KEYTYPE_LONGLONG: |
| 217 | RT_VOL_KORR(longlong, mi_sint8korr, 8, (double)); |
| 218 | break; |
| 219 | case HA_KEYTYPE_ULONGLONG: |
| 220 | RT_VOL_KORR(longlong, mi_sint8korr, 8, ulonglong2double); |
| 221 | break; |
| 222 | #endif |
| 223 | case HA_KEYTYPE_FLOAT: |
| 224 | RT_VOL_GET(float, mi_float4get, 4, (double)); |
| 225 | break; |
| 226 | case HA_KEYTYPE_DOUBLE: |
| 227 | RT_VOL_GET(double, mi_float8get, 8, (double)); |
| 228 | break; |
| 229 | case HA_KEYTYPE_END: |
| 230 | key_length = 0; |
| 231 | break; |
| 232 | default: |
| 233 | return -1; |
| 234 | } |
| 235 | keyseg_length= keyseg->length * 2; |
| 236 | key_length-= keyseg_length; |
| 237 | a+= keyseg_length; |
| 238 | } |
| 239 | return res; |
| 240 | } |
| 241 | |
| 242 | #define RT_D_MBR_KORR(type, korr_func, len, cast) \ |
| 243 | { \ |
| 244 | type amin, amax; \ |
| 245 | amin = korr_func(a); \ |
| 246 | amax = korr_func(a+len); \ |
| 247 | *res++ = cast(amin); \ |
| 248 | *res++ = cast(amax); \ |
| 249 | } |
| 250 | |
| 251 | #define RT_D_MBR_GET(type, get_func, len, cast) \ |
| 252 | { \ |
| 253 | type amin, amax; \ |
| 254 | get_func(amin, a); \ |
| 255 | get_func(amax, a+len); \ |
| 256 | *res++ = cast(amin); \ |
| 257 | *res++ = cast(amax); \ |
| 258 | } |
| 259 | |
| 260 | |
| 261 | /* |
| 262 | Creates an MBR as an array of doubles. |
| 263 | */ |
| 264 | |
| 265 | int rtree_d_mbr(HA_KEYSEG *keyseg, uchar *a, uint key_length, double *res) |
| 266 | { |
| 267 | for (; (int)key_length > 0; keyseg += 2) |
| 268 | { |
| 269 | uint32 keyseg_length; |
| 270 | switch ((enum ha_base_keytype) keyseg->type) { |
| 271 | case HA_KEYTYPE_INT8: |
| 272 | RT_D_MBR_KORR(int8, mi_sint1korr, 1, (double)); |
| 273 | break; |
| 274 | case HA_KEYTYPE_BINARY: |
| 275 | RT_D_MBR_KORR(uint8, mi_uint1korr, 1, (double)); |
| 276 | break; |
| 277 | case HA_KEYTYPE_SHORT_INT: |
| 278 | RT_D_MBR_KORR(int16, mi_sint2korr, 2, (double)); |
| 279 | break; |
| 280 | case HA_KEYTYPE_USHORT_INT: |
| 281 | RT_D_MBR_KORR(uint16, mi_uint2korr, 2, (double)); |
| 282 | break; |
| 283 | case HA_KEYTYPE_INT24: |
| 284 | RT_D_MBR_KORR(int32, mi_sint3korr, 3, (double)); |
| 285 | break; |
| 286 | case HA_KEYTYPE_UINT24: |
| 287 | RT_D_MBR_KORR(uint32, mi_uint3korr, 3, (double)); |
| 288 | break; |
| 289 | case HA_KEYTYPE_LONG_INT: |
| 290 | RT_D_MBR_KORR(int32, mi_sint4korr, 4, (double)); |
| 291 | break; |
| 292 | case HA_KEYTYPE_ULONG_INT: |
| 293 | RT_D_MBR_KORR(uint32, mi_uint4korr, 4, (double)); |
| 294 | break; |
| 295 | #ifdef HAVE_LONG_LONG |
| 296 | case HA_KEYTYPE_LONGLONG: |
| 297 | RT_D_MBR_KORR(longlong, mi_sint8korr, 8, (double)); |
| 298 | break; |
| 299 | case HA_KEYTYPE_ULONGLONG: |
| 300 | RT_D_MBR_KORR(longlong, mi_sint8korr, 8, ulonglong2double); |
| 301 | break; |
| 302 | #endif |
| 303 | case HA_KEYTYPE_FLOAT: |
| 304 | RT_D_MBR_GET(float, mi_float4get, 4, (double)); |
| 305 | break; |
| 306 | case HA_KEYTYPE_DOUBLE: |
| 307 | RT_D_MBR_GET(double, mi_float8get, 8, (double)); |
| 308 | break; |
| 309 | case HA_KEYTYPE_END: |
| 310 | key_length = 0; |
| 311 | break; |
| 312 | default: |
| 313 | return 1; |
| 314 | } |
| 315 | keyseg_length= keyseg->length * 2; |
| 316 | key_length-= keyseg_length; |
| 317 | a+= keyseg_length; |
| 318 | } |
| 319 | return 0; |
| 320 | } |
| 321 | |
| 322 | #define RT_COMB_KORR(type, korr_func, store_func, len) \ |
| 323 | { \ |
| 324 | type amin, amax, bmin, bmax; \ |
| 325 | amin = korr_func(a); \ |
| 326 | bmin = korr_func(b); \ |
| 327 | amax = korr_func(a+len); \ |
| 328 | bmax = korr_func(b+len); \ |
| 329 | amin = MY_MIN(amin, bmin); \ |
| 330 | amax = MY_MAX(amax, bmax); \ |
| 331 | store_func(c, amin); \ |
| 332 | store_func(c+len, amax); \ |
| 333 | } |
| 334 | |
| 335 | #define RT_COMB_GET(type, get_func, store_func, len) \ |
| 336 | { \ |
| 337 | type amin, amax, bmin, bmax; \ |
| 338 | get_func(amin, a); \ |
| 339 | get_func(bmin, b); \ |
| 340 | get_func(amax, a+len); \ |
| 341 | get_func(bmax, b+len); \ |
| 342 | amin = MY_MIN(amin, bmin); \ |
| 343 | amax = MY_MAX(amax, bmax); \ |
| 344 | store_func(c, amin); \ |
| 345 | store_func(c+len, amax); \ |
| 346 | } |
| 347 | |
| 348 | /* |
| 349 | Creates common minimal bounding rectungle |
| 350 | for two input rectagnles a and b |
| 351 | Result is written to c |
| 352 | */ |
| 353 | |
| 354 | int rtree_combine_rect(HA_KEYSEG *keyseg, uchar* a, uchar* b, uchar* c, |
| 355 | uint key_length) |
| 356 | { |
| 357 | for ( ; (int) key_length > 0 ; keyseg += 2) |
| 358 | { |
| 359 | uint32 keyseg_length; |
| 360 | switch ((enum ha_base_keytype) keyseg->type) { |
| 361 | case HA_KEYTYPE_INT8: |
| 362 | RT_COMB_KORR(int8, mi_sint1korr, mi_int1store, 1); |
| 363 | break; |
| 364 | case HA_KEYTYPE_BINARY: |
| 365 | RT_COMB_KORR(uint8, mi_uint1korr, mi_int1store, 1); |
| 366 | break; |
| 367 | case HA_KEYTYPE_SHORT_INT: |
| 368 | RT_COMB_KORR(int16, mi_sint2korr, mi_int2store, 2); |
| 369 | break; |
| 370 | case HA_KEYTYPE_USHORT_INT: |
| 371 | RT_COMB_KORR(uint16, mi_uint2korr, mi_int2store, 2); |
| 372 | break; |
| 373 | case HA_KEYTYPE_INT24: |
| 374 | RT_COMB_KORR(int32, mi_sint3korr, mi_int3store, 3); |
| 375 | break; |
| 376 | case HA_KEYTYPE_UINT24: |
| 377 | RT_COMB_KORR(uint32, mi_uint3korr, mi_int3store, 3); |
| 378 | break; |
| 379 | case HA_KEYTYPE_LONG_INT: |
| 380 | RT_COMB_KORR(int32, mi_sint4korr, mi_int4store, 4); |
| 381 | break; |
| 382 | case HA_KEYTYPE_ULONG_INT: |
| 383 | RT_COMB_KORR(uint32, mi_uint4korr, mi_int4store, 4); |
| 384 | break; |
| 385 | #ifdef HAVE_LONG_LONG |
| 386 | case HA_KEYTYPE_LONGLONG: |
| 387 | RT_COMB_KORR(longlong, mi_sint8korr, mi_int8store, 8); |
| 388 | break; |
| 389 | case HA_KEYTYPE_ULONGLONG: |
| 390 | RT_COMB_KORR(ulonglong, mi_uint8korr, mi_int8store, 8); |
| 391 | break; |
| 392 | #endif |
| 393 | case HA_KEYTYPE_FLOAT: |
| 394 | RT_COMB_GET(float, mi_float4get, mi_float4store, 4); |
| 395 | break; |
| 396 | case HA_KEYTYPE_DOUBLE: |
| 397 | RT_COMB_GET(double, mi_float8get, mi_float8store, 8); |
| 398 | break; |
| 399 | case HA_KEYTYPE_END: |
| 400 | return 0; |
| 401 | default: |
| 402 | return 1; |
| 403 | } |
| 404 | keyseg_length= keyseg->length * 2; |
| 405 | key_length-= keyseg_length; |
| 406 | a+= keyseg_length; |
| 407 | b+= keyseg_length; |
| 408 | c+= keyseg_length; |
| 409 | } |
| 410 | return 0; |
| 411 | } |
| 412 | |
| 413 | |
| 414 | #define RT_OVL_AREA_KORR(type, korr_func, len) \ |
| 415 | { \ |
| 416 | type amin, amax, bmin, bmax; \ |
| 417 | amin = korr_func(a); \ |
| 418 | bmin = korr_func(b); \ |
| 419 | amax = korr_func(a+len); \ |
| 420 | bmax = korr_func(b+len); \ |
| 421 | amin = MY_MAX(amin, bmin); \ |
| 422 | amax = MY_MIN(amax, bmax); \ |
| 423 | if (amin >= amax) \ |
| 424 | return 0; \ |
| 425 | res *= amax - amin; \ |
| 426 | } |
| 427 | |
| 428 | #define RT_OVL_AREA_GET(type, get_func, len) \ |
| 429 | { \ |
| 430 | type amin, amax, bmin, bmax; \ |
| 431 | get_func(amin, a); \ |
| 432 | get_func(bmin, b); \ |
| 433 | get_func(amax, a+len); \ |
| 434 | get_func(bmax, b+len); \ |
| 435 | amin = MY_MAX(amin, bmin); \ |
| 436 | amax = MY_MIN(amax, bmax); \ |
| 437 | if (amin >= amax) \ |
| 438 | return 0; \ |
| 439 | res *= amax - amin; \ |
| 440 | } |
| 441 | |
| 442 | /* |
| 443 | Calculates overlapping area of two MBRs a & b |
| 444 | */ |
| 445 | double rtree_overlapping_area(HA_KEYSEG *keyseg, uchar* a, uchar* b, |
| 446 | uint key_length) |
| 447 | { |
| 448 | double res = 1; |
| 449 | for (; (int) key_length > 0 ; keyseg += 2) |
| 450 | { |
| 451 | uint32 keyseg_length; |
| 452 | switch ((enum ha_base_keytype) keyseg->type) { |
| 453 | case HA_KEYTYPE_INT8: |
| 454 | RT_OVL_AREA_KORR(int8, mi_sint1korr, 1); |
| 455 | break; |
| 456 | case HA_KEYTYPE_BINARY: |
| 457 | RT_OVL_AREA_KORR(uint8, mi_uint1korr, 1); |
| 458 | break; |
| 459 | case HA_KEYTYPE_SHORT_INT: |
| 460 | RT_OVL_AREA_KORR(int16, mi_sint2korr, 2); |
| 461 | break; |
| 462 | case HA_KEYTYPE_USHORT_INT: |
| 463 | RT_OVL_AREA_KORR(uint16, mi_uint2korr, 2); |
| 464 | break; |
| 465 | case HA_KEYTYPE_INT24: |
| 466 | RT_OVL_AREA_KORR(int32, mi_sint3korr, 3); |
| 467 | break; |
| 468 | case HA_KEYTYPE_UINT24: |
| 469 | RT_OVL_AREA_KORR(uint32, mi_uint3korr, 3); |
| 470 | break; |
| 471 | case HA_KEYTYPE_LONG_INT: |
| 472 | RT_OVL_AREA_KORR(int32, mi_sint4korr, 4); |
| 473 | break; |
| 474 | case HA_KEYTYPE_ULONG_INT: |
| 475 | RT_OVL_AREA_KORR(uint32, mi_uint4korr, 4); |
| 476 | break; |
| 477 | #ifdef HAVE_LONG_LONG |
| 478 | case HA_KEYTYPE_LONGLONG: |
| 479 | RT_OVL_AREA_KORR(longlong, mi_sint8korr, 8); |
| 480 | break; |
| 481 | case HA_KEYTYPE_ULONGLONG: |
| 482 | RT_OVL_AREA_KORR(longlong, mi_sint8korr, 8); |
| 483 | break; |
| 484 | #endif |
| 485 | case HA_KEYTYPE_FLOAT: |
| 486 | RT_OVL_AREA_GET(float, mi_float4get, 4); |
| 487 | break; |
| 488 | case HA_KEYTYPE_DOUBLE: |
| 489 | RT_OVL_AREA_GET(double, mi_float8get, 8); |
| 490 | break; |
| 491 | case HA_KEYTYPE_END: |
| 492 | return res; |
| 493 | default: |
| 494 | return -1; |
| 495 | } |
| 496 | keyseg_length= keyseg->length * 2; |
| 497 | key_length-= keyseg_length; |
| 498 | a+= keyseg_length; |
| 499 | b+= keyseg_length; |
| 500 | } |
| 501 | return res; |
| 502 | } |
| 503 | |
| 504 | #define RT_AREA_INC_KORR(type, korr_func, len) \ |
| 505 | { \ |
| 506 | type amin, amax, bmin, bmax; \ |
| 507 | amin = korr_func(a); \ |
| 508 | bmin = korr_func(b); \ |
| 509 | amax = korr_func(a+len); \ |
| 510 | bmax = korr_func(b+len); \ |
| 511 | a_area *= (((double)amax) - ((double)amin)); \ |
| 512 | loc_ab_area *= ((double)MY_MAX(amax, bmax) - (double)MY_MIN(amin, bmin)); \ |
| 513 | } |
| 514 | |
| 515 | #define RT_AREA_INC_GET(type, get_func, len)\ |
| 516 | {\ |
| 517 | type amin, amax, bmin, bmax; \ |
| 518 | get_func(amin, a); \ |
| 519 | get_func(bmin, b); \ |
| 520 | get_func(amax, a+len); \ |
| 521 | get_func(bmax, b+len); \ |
| 522 | a_area *= (((double)amax) - ((double)amin)); \ |
| 523 | loc_ab_area *= ((double)MY_MAX(amax, bmax) - (double)MY_MIN(amin, bmin)); \ |
| 524 | } |
| 525 | |
| 526 | /* |
| 527 | Calculates MBR_AREA(a+b) - MBR_AREA(a) |
| 528 | Note: when 'a' and 'b' objects are far from each other, |
| 529 | the area increase can be really big, so this function |
| 530 | can return 'inf' as a result. |
| 531 | */ |
| 532 | double rtree_area_increase(HA_KEYSEG *keyseg, uchar* a, uchar* b, |
| 533 | uint key_length, double *ab_area) |
| 534 | { |
| 535 | double a_area= 1.0; |
| 536 | double loc_ab_area= 1.0; |
| 537 | |
| 538 | *ab_area= 1.0; |
| 539 | for (; (int)key_length > 0; keyseg += 2) |
| 540 | { |
| 541 | uint32 keyseg_length; |
| 542 | |
| 543 | if (keyseg->null_bit) /* Handle NULL part */ |
| 544 | return -1; |
| 545 | |
| 546 | switch ((enum ha_base_keytype) keyseg->type) { |
| 547 | case HA_KEYTYPE_INT8: |
| 548 | RT_AREA_INC_KORR(int8, mi_sint1korr, 1); |
| 549 | break; |
| 550 | case HA_KEYTYPE_BINARY: |
| 551 | RT_AREA_INC_KORR(uint8, mi_uint1korr, 1); |
| 552 | break; |
| 553 | case HA_KEYTYPE_SHORT_INT: |
| 554 | RT_AREA_INC_KORR(int16, mi_sint2korr, 2); |
| 555 | break; |
| 556 | case HA_KEYTYPE_USHORT_INT: |
| 557 | RT_AREA_INC_KORR(uint16, mi_uint2korr, 2); |
| 558 | break; |
| 559 | case HA_KEYTYPE_INT24: |
| 560 | RT_AREA_INC_KORR(int32, mi_sint3korr, 3); |
| 561 | break; |
| 562 | case HA_KEYTYPE_UINT24: |
| 563 | RT_AREA_INC_KORR(int32, mi_uint3korr, 3); |
| 564 | break; |
| 565 | case HA_KEYTYPE_LONG_INT: |
| 566 | RT_AREA_INC_KORR(int32, mi_sint4korr, 4); |
| 567 | break; |
| 568 | case HA_KEYTYPE_ULONG_INT: |
| 569 | RT_AREA_INC_KORR(uint32, mi_uint4korr, 4); |
| 570 | break; |
| 571 | #ifdef HAVE_LONG_LONG |
| 572 | case HA_KEYTYPE_LONGLONG: |
| 573 | RT_AREA_INC_KORR(longlong, mi_sint8korr, 8); |
| 574 | break; |
| 575 | case HA_KEYTYPE_ULONGLONG: |
| 576 | RT_AREA_INC_KORR(longlong, mi_sint8korr, 8); |
| 577 | break; |
| 578 | #endif |
| 579 | case HA_KEYTYPE_FLOAT: |
| 580 | RT_AREA_INC_GET(float, mi_float4get, 4); |
| 581 | break; |
| 582 | case HA_KEYTYPE_DOUBLE: |
| 583 | RT_AREA_INC_GET(double, mi_float8get, 8); |
| 584 | break; |
| 585 | case HA_KEYTYPE_END: |
| 586 | goto safe_end; |
| 587 | default: |
| 588 | return -1; |
| 589 | } |
| 590 | keyseg_length= keyseg->length * 2; |
| 591 | key_length-= keyseg_length; |
| 592 | a+= keyseg_length; |
| 593 | b+= keyseg_length; |
| 594 | } |
| 595 | safe_end: |
| 596 | *ab_area= loc_ab_area; |
| 597 | return loc_ab_area - a_area; |
| 598 | } |
| 599 | |
| 600 | #define RT_PERIM_INC_KORR(type, korr_func, len) \ |
| 601 | { \ |
| 602 | type amin, amax, bmin, bmax; \ |
| 603 | amin = korr_func(a); \ |
| 604 | bmin = korr_func(b); \ |
| 605 | amax = korr_func(a+len); \ |
| 606 | bmax = korr_func(b+len); \ |
| 607 | a_perim+= (((double)amax) - ((double)amin)); \ |
| 608 | *ab_perim+= ((double)MY_MAX(amax, bmax) - (double)MY_MIN(amin, bmin)); \ |
| 609 | } |
| 610 | |
| 611 | #define RT_PERIM_INC_GET(type, get_func, len)\ |
| 612 | {\ |
| 613 | type amin, amax, bmin, bmax; \ |
| 614 | get_func(amin, a); \ |
| 615 | get_func(bmin, b); \ |
| 616 | get_func(amax, a+len); \ |
| 617 | get_func(bmax, b+len); \ |
| 618 | a_perim+= (((double)amax) - ((double)amin)); \ |
| 619 | *ab_perim+= ((double)MY_MAX(amax, bmax) - (double)MY_MIN(amin, bmin)); \ |
| 620 | } |
| 621 | |
| 622 | /* |
| 623 | Calculates MBR_PERIMETER(a+b) - MBR_PERIMETER(a) |
| 624 | */ |
| 625 | double rtree_perimeter_increase(HA_KEYSEG *keyseg, uchar* a, uchar* b, |
| 626 | uint key_length, double *ab_perim) |
| 627 | { |
| 628 | double a_perim = 0.0; |
| 629 | |
| 630 | *ab_perim= 0.0; |
| 631 | for (; (int)key_length > 0; keyseg += 2) |
| 632 | { |
| 633 | uint32 keyseg_length; |
| 634 | |
| 635 | if (keyseg->null_bit) /* Handle NULL part */ |
| 636 | return -1; |
| 637 | |
| 638 | switch ((enum ha_base_keytype) keyseg->type) { |
| 639 | case HA_KEYTYPE_INT8: |
| 640 | RT_PERIM_INC_KORR(int8, mi_sint1korr, 1); |
| 641 | break; |
| 642 | case HA_KEYTYPE_BINARY: |
| 643 | RT_PERIM_INC_KORR(uint8, mi_uint1korr, 1); |
| 644 | break; |
| 645 | case HA_KEYTYPE_SHORT_INT: |
| 646 | RT_PERIM_INC_KORR(int16, mi_sint2korr, 2); |
| 647 | break; |
| 648 | case HA_KEYTYPE_USHORT_INT: |
| 649 | RT_PERIM_INC_KORR(uint16, mi_uint2korr, 2); |
| 650 | break; |
| 651 | case HA_KEYTYPE_INT24: |
| 652 | RT_PERIM_INC_KORR(int32, mi_sint3korr, 3); |
| 653 | break; |
| 654 | case HA_KEYTYPE_UINT24: |
| 655 | RT_PERIM_INC_KORR(int32, mi_uint3korr, 3); |
| 656 | break; |
| 657 | case HA_KEYTYPE_LONG_INT: |
| 658 | RT_PERIM_INC_KORR(int32, mi_sint4korr, 4); |
| 659 | break; |
| 660 | case HA_KEYTYPE_ULONG_INT: |
| 661 | RT_PERIM_INC_KORR(uint32, mi_uint4korr, 4); |
| 662 | break; |
| 663 | #ifdef HAVE_LONG_LONG |
| 664 | case HA_KEYTYPE_LONGLONG: |
| 665 | RT_PERIM_INC_KORR(longlong, mi_sint8korr, 8); |
| 666 | break; |
| 667 | case HA_KEYTYPE_ULONGLONG: |
| 668 | RT_PERIM_INC_KORR(longlong, mi_sint8korr, 8); |
| 669 | break; |
| 670 | #endif |
| 671 | case HA_KEYTYPE_FLOAT: |
| 672 | RT_PERIM_INC_GET(float, mi_float4get, 4); |
| 673 | break; |
| 674 | case HA_KEYTYPE_DOUBLE: |
| 675 | RT_PERIM_INC_GET(double, mi_float8get, 8); |
| 676 | break; |
| 677 | case HA_KEYTYPE_END: |
| 678 | return *ab_perim - a_perim; |
| 679 | default: |
| 680 | return -1; |
| 681 | } |
| 682 | keyseg_length= keyseg->length * 2; |
| 683 | key_length-= keyseg_length; |
| 684 | a+= keyseg_length; |
| 685 | b+= keyseg_length; |
| 686 | } |
| 687 | return *ab_perim - a_perim; |
| 688 | } |
| 689 | |
| 690 | |
| 691 | #define RT_PAGE_MBR_KORR(type, korr_func, store_func, len) \ |
| 692 | { \ |
| 693 | type amin, amax, bmin, bmax; \ |
| 694 | amin = korr_func(k + inc); \ |
| 695 | amax = korr_func(k + inc + len); \ |
| 696 | k = rt_PAGE_NEXT_KEY(k, k_len, nod_flag); \ |
| 697 | for (; k < last; k = rt_PAGE_NEXT_KEY(k, k_len, nod_flag)) \ |
| 698 | { \ |
| 699 | bmin = korr_func(k + inc); \ |
| 700 | bmax = korr_func(k + inc + len); \ |
| 701 | if (amin > bmin) \ |
| 702 | amin = bmin; \ |
| 703 | if (amax < bmax) \ |
| 704 | amax = bmax; \ |
| 705 | } \ |
| 706 | store_func(c, amin); \ |
| 707 | c += len; \ |
| 708 | store_func(c, amax); \ |
| 709 | c += len; \ |
| 710 | inc += 2 * len; \ |
| 711 | } |
| 712 | |
| 713 | #define RT_PAGE_MBR_GET(type, get_func, store_func, len) \ |
| 714 | { \ |
| 715 | type amin, amax, bmin, bmax; \ |
| 716 | get_func(amin, k + inc); \ |
| 717 | get_func(amax, k + inc + len); \ |
| 718 | k = rt_PAGE_NEXT_KEY(k, k_len, nod_flag); \ |
| 719 | for (; k < last; k = rt_PAGE_NEXT_KEY(k, k_len, nod_flag)) \ |
| 720 | { \ |
| 721 | get_func(bmin, k + inc); \ |
| 722 | get_func(bmax, k + inc + len); \ |
| 723 | if (amin > bmin) \ |
| 724 | amin = bmin; \ |
| 725 | if (amax < bmax) \ |
| 726 | amax = bmax; \ |
| 727 | } \ |
| 728 | store_func(c, amin); \ |
| 729 | c += len; \ |
| 730 | store_func(c, amax); \ |
| 731 | c += len; \ |
| 732 | inc += 2 * len; \ |
| 733 | } |
| 734 | |
| 735 | /* |
| 736 | Calculates key page total MBR = MBR(key1) + MBR(key2) + ... |
| 737 | */ |
| 738 | int rtree_page_mbr(MI_INFO *info, HA_KEYSEG *keyseg, uchar *page_buf, |
| 739 | uchar *c, uint key_length) |
| 740 | { |
| 741 | uint inc = 0; |
| 742 | uint k_len = key_length; |
| 743 | uint nod_flag = mi_test_if_nod(page_buf); |
| 744 | uchar *k; |
| 745 | uchar *last = rt_PAGE_END(page_buf); |
| 746 | |
| 747 | for (; (int)key_length > 0; keyseg += 2) |
| 748 | { |
| 749 | key_length -= keyseg->length * 2; |
| 750 | |
| 751 | /* Handle NULL part */ |
| 752 | if (keyseg->null_bit) |
| 753 | { |
| 754 | return 1; |
| 755 | } |
| 756 | |
| 757 | k = rt_PAGE_FIRST_KEY(page_buf, nod_flag); |
| 758 | |
| 759 | switch ((enum ha_base_keytype) keyseg->type) { |
| 760 | case HA_KEYTYPE_INT8: |
| 761 | RT_PAGE_MBR_KORR(int8, mi_sint1korr, mi_int1store, 1); |
| 762 | break; |
| 763 | case HA_KEYTYPE_BINARY: |
| 764 | RT_PAGE_MBR_KORR(uint8, mi_uint1korr, mi_int1store, 1); |
| 765 | break; |
| 766 | case HA_KEYTYPE_SHORT_INT: |
| 767 | RT_PAGE_MBR_KORR(int16, mi_sint2korr, mi_int2store, 2); |
| 768 | break; |
| 769 | case HA_KEYTYPE_USHORT_INT: |
| 770 | RT_PAGE_MBR_KORR(uint16, mi_uint2korr, mi_int2store, 2); |
| 771 | break; |
| 772 | case HA_KEYTYPE_INT24: |
| 773 | RT_PAGE_MBR_KORR(int32, mi_sint3korr, mi_int3store, 3); |
| 774 | break; |
| 775 | case HA_KEYTYPE_UINT24: |
| 776 | RT_PAGE_MBR_KORR(uint32, mi_uint3korr, mi_int3store, 3); |
| 777 | break; |
| 778 | case HA_KEYTYPE_LONG_INT: |
| 779 | RT_PAGE_MBR_KORR(int32, mi_sint4korr, mi_int4store, 4); |
| 780 | break; |
| 781 | case HA_KEYTYPE_ULONG_INT: |
| 782 | RT_PAGE_MBR_KORR(uint32, mi_uint4korr, mi_int4store, 4); |
| 783 | break; |
| 784 | #ifdef HAVE_LONG_LONG |
| 785 | case HA_KEYTYPE_LONGLONG: |
| 786 | RT_PAGE_MBR_KORR(longlong, mi_sint8korr, mi_int8store, 8); |
| 787 | break; |
| 788 | case HA_KEYTYPE_ULONGLONG: |
| 789 | RT_PAGE_MBR_KORR(ulonglong, mi_uint8korr, mi_int8store, 8); |
| 790 | break; |
| 791 | #endif |
| 792 | case HA_KEYTYPE_FLOAT: |
| 793 | RT_PAGE_MBR_GET(float, mi_float4get, mi_float4store, 4); |
| 794 | break; |
| 795 | case HA_KEYTYPE_DOUBLE: |
| 796 | RT_PAGE_MBR_GET(double, mi_float8get, mi_float8store, 8); |
| 797 | break; |
| 798 | case HA_KEYTYPE_END: |
| 799 | return 0; |
| 800 | default: |
| 801 | return 1; |
| 802 | } |
| 803 | } |
| 804 | return 0; |
| 805 | } |
| 806 | |
| 807 | #endif /*HAVE_RTREE_KEYS*/ |
| 808 | |