| 1 | /* Copyright (c) 2008, 2015, Oracle and/or its affiliates. All rights reserved. |
| 2 | |
| 3 | This program is free software; you can redistribute it and/or modify |
| 4 | it under the terms of the GNU General Public License as published by |
| 5 | the Free Software Foundation; version 2 of the License. |
| 6 | |
| 7 | This program is distributed in the hope that it will be useful, |
| 8 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 9 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 10 | GNU General Public License for more details. |
| 11 | |
| 12 | You should have received a copy of the GNU General Public License |
| 13 | along with this program; if not, write to the Free Software Foundation, |
| 14 | 51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA */ |
| 15 | |
| 16 | /** |
| 17 | @file storage/perfschema/pfs_timer.cc |
| 18 | Performance schema timers (implementation). |
| 19 | */ |
| 20 | |
| 21 | #include "my_global.h" |
| 22 | #include "pfs_timer.h" |
| 23 | #include "my_rdtsc.h" |
| 24 | |
| 25 | enum_timer_name idle_timer= TIMER_NAME_MICROSEC; |
| 26 | enum_timer_name wait_timer= TIMER_NAME_CYCLE; |
| 27 | enum_timer_name stage_timer= TIMER_NAME_NANOSEC; |
| 28 | enum_timer_name statement_timer= TIMER_NAME_NANOSEC; |
| 29 | MY_TIMER_INFO pfs_timer_info; |
| 30 | |
| 31 | static ulonglong cycle_v0; |
| 32 | static ulonglong nanosec_v0; |
| 33 | static ulonglong microsec_v0; |
| 34 | static ulonglong millisec_v0; |
| 35 | static ulonglong tick_v0; |
| 36 | |
| 37 | static ulong cycle_to_pico; /* 1000 at 1 GHz, 333 at 3GHz, 250 at 4GHz */ |
| 38 | static ulong nanosec_to_pico; /* In theory, 1 000 */ |
| 39 | static ulong microsec_to_pico; /* In theory, 1 000 000 */ |
| 40 | static ulong millisec_to_pico; /* In theory, 1 000 000 000, fits in uint32 */ |
| 41 | static ulonglong tick_to_pico; /* 1e10 at 100 Hz, 1.666e10 at 60 Hz */ |
| 42 | |
| 43 | /* Indexed by enum enum_timer_name */ |
| 44 | static struct time_normalizer to_pico_data[FIRST_TIMER_NAME + COUNT_TIMER_NAME]= |
| 45 | { |
| 46 | { 0, 0}, /* unused */ |
| 47 | { 0, 0}, /* cycle */ |
| 48 | { 0, 0}, /* nanosec */ |
| 49 | { 0, 0}, /* microsec */ |
| 50 | { 0, 0}, /* millisec */ |
| 51 | { 0, 0} /* tick */ |
| 52 | }; |
| 53 | |
| 54 | static inline ulong round_to_ulong(double value) |
| 55 | { |
| 56 | return (ulong) (value + 0.5); |
| 57 | } |
| 58 | |
| 59 | static inline ulonglong round_to_ulonglong(double value) |
| 60 | { |
| 61 | return (ulonglong) (value + 0.5); |
| 62 | } |
| 63 | |
| 64 | void init_timers(void) |
| 65 | { |
| 66 | double pico_frequency= 1.0e12; |
| 67 | |
| 68 | my_timer_init(&pfs_timer_info); |
| 69 | |
| 70 | cycle_v0= my_timer_cycles(); |
| 71 | nanosec_v0= my_timer_nanoseconds(); |
| 72 | microsec_v0= my_timer_microseconds(); |
| 73 | millisec_v0= my_timer_milliseconds(); |
| 74 | tick_v0= my_timer_ticks(); |
| 75 | |
| 76 | if (pfs_timer_info.cycles.frequency > 0) |
| 77 | cycle_to_pico= round_to_ulong(pico_frequency/ |
| 78 | (double)pfs_timer_info.cycles.frequency); |
| 79 | else |
| 80 | cycle_to_pico= 0; |
| 81 | |
| 82 | if (pfs_timer_info.nanoseconds.frequency > 0) |
| 83 | nanosec_to_pico= round_to_ulong(pico_frequency/ |
| 84 | (double)pfs_timer_info.nanoseconds.frequency); |
| 85 | else |
| 86 | nanosec_to_pico= 0; |
| 87 | |
| 88 | if (pfs_timer_info.microseconds.frequency > 0) |
| 89 | microsec_to_pico= round_to_ulong(pico_frequency/ |
| 90 | (double)pfs_timer_info.microseconds.frequency); |
| 91 | else |
| 92 | microsec_to_pico= 0; |
| 93 | |
| 94 | if (pfs_timer_info.milliseconds.frequency > 0) |
| 95 | millisec_to_pico= round_to_ulong(pico_frequency/ |
| 96 | (double)pfs_timer_info.milliseconds.frequency); |
| 97 | else |
| 98 | millisec_to_pico= 0; |
| 99 | |
| 100 | if (pfs_timer_info.ticks.frequency > 0) |
| 101 | tick_to_pico= round_to_ulonglong(pico_frequency/ |
| 102 | (double)pfs_timer_info.ticks.frequency); |
| 103 | else |
| 104 | tick_to_pico= 0; |
| 105 | |
| 106 | to_pico_data[TIMER_NAME_CYCLE].m_v0= cycle_v0; |
| 107 | to_pico_data[TIMER_NAME_CYCLE].m_factor= cycle_to_pico; |
| 108 | |
| 109 | to_pico_data[TIMER_NAME_NANOSEC].m_v0= nanosec_v0; |
| 110 | to_pico_data[TIMER_NAME_NANOSEC].m_factor= nanosec_to_pico; |
| 111 | |
| 112 | to_pico_data[TIMER_NAME_MICROSEC].m_v0= microsec_v0; |
| 113 | to_pico_data[TIMER_NAME_MICROSEC].m_factor= microsec_to_pico; |
| 114 | |
| 115 | to_pico_data[TIMER_NAME_MILLISEC].m_v0= millisec_v0; |
| 116 | to_pico_data[TIMER_NAME_MILLISEC].m_factor= millisec_to_pico; |
| 117 | |
| 118 | to_pico_data[TIMER_NAME_TICK].m_v0= tick_v0; |
| 119 | to_pico_data[TIMER_NAME_TICK].m_factor= tick_to_pico; |
| 120 | |
| 121 | /* |
| 122 | Depending on the platform and build options, |
| 123 | some timers may not be available. |
| 124 | Pick best replacements. |
| 125 | */ |
| 126 | |
| 127 | /* |
| 128 | For WAIT, the cycle timer is used by default. However, it is not available |
| 129 | on all architectures. Fall back to the nanosecond timer in this case. It is |
| 130 | unlikely that neither cycle nor nanosecond are available, but we continue |
| 131 | probing less resolution timers anyway for consistency with other events. |
| 132 | */ |
| 133 | |
| 134 | if (cycle_to_pico != 0) |
| 135 | { |
| 136 | /* Normal case. */ |
| 137 | wait_timer= TIMER_NAME_CYCLE; |
| 138 | } |
| 139 | else if (nanosec_to_pico != 0) |
| 140 | { |
| 141 | /* Robustness, no known cases. */ |
| 142 | wait_timer= TIMER_NAME_NANOSEC; |
| 143 | } |
| 144 | else if (microsec_to_pico != 0) |
| 145 | { |
| 146 | /* Robustness, no known cases. */ |
| 147 | wait_timer= TIMER_NAME_MICROSEC; |
| 148 | } |
| 149 | else if (millisec_to_pico != 0) |
| 150 | { |
| 151 | /* Robustness, no known cases. */ |
| 152 | wait_timer= TIMER_NAME_MILLISEC; |
| 153 | } |
| 154 | else |
| 155 | { |
| 156 | /* |
| 157 | Will never be reached on any architecture, but must provide a default if |
| 158 | no other timers are available. |
| 159 | */ |
| 160 | wait_timer= TIMER_NAME_TICK; |
| 161 | } |
| 162 | |
| 163 | /* |
| 164 | For STAGE and STATEMENT, a timer with a fixed frequency is better. |
| 165 | The prefered timer is nanosecond, or lower resolutions. |
| 166 | */ |
| 167 | |
| 168 | if (nanosec_to_pico != 0) |
| 169 | { |
| 170 | /* Normal case. */ |
| 171 | stage_timer= TIMER_NAME_NANOSEC; |
| 172 | statement_timer= TIMER_NAME_NANOSEC; |
| 173 | } |
| 174 | else if (microsec_to_pico != 0) |
| 175 | { |
| 176 | /* Windows. */ |
| 177 | stage_timer= TIMER_NAME_MICROSEC; |
| 178 | statement_timer= TIMER_NAME_MICROSEC; |
| 179 | } |
| 180 | else if (millisec_to_pico != 0) |
| 181 | { |
| 182 | /* Robustness, no known cases. */ |
| 183 | stage_timer= TIMER_NAME_MILLISEC; |
| 184 | statement_timer= TIMER_NAME_MILLISEC; |
| 185 | } |
| 186 | else if (tick_to_pico != 0) |
| 187 | { |
| 188 | /* Robustness, no known cases. */ |
| 189 | stage_timer= TIMER_NAME_TICK; |
| 190 | statement_timer= TIMER_NAME_TICK; |
| 191 | } |
| 192 | else |
| 193 | { |
| 194 | /* Robustness, no known cases. */ |
| 195 | stage_timer= TIMER_NAME_CYCLE; |
| 196 | statement_timer= TIMER_NAME_CYCLE; |
| 197 | } |
| 198 | |
| 199 | /* |
| 200 | For IDLE, a timer with a fixed frequency is critical, |
| 201 | as the CPU clock may slow down a lot if the server is completely idle. |
| 202 | The prefered timer is microsecond, or lower resolutions. |
| 203 | */ |
| 204 | |
| 205 | if (microsec_to_pico != 0) |
| 206 | { |
| 207 | /* Normal case. */ |
| 208 | idle_timer= TIMER_NAME_MICROSEC; |
| 209 | } |
| 210 | else if (millisec_to_pico != 0) |
| 211 | { |
| 212 | /* Robustness, no known cases. */ |
| 213 | wait_timer= TIMER_NAME_MILLISEC; |
| 214 | } |
| 215 | else if (tick_to_pico != 0) |
| 216 | { |
| 217 | /* Robustness, no known cases. */ |
| 218 | idle_timer= TIMER_NAME_TICK; |
| 219 | } |
| 220 | else |
| 221 | { |
| 222 | /* Robustness, no known cases. */ |
| 223 | idle_timer= TIMER_NAME_CYCLE; |
| 224 | } |
| 225 | } |
| 226 | |
| 227 | ulonglong get_timer_raw_value(enum_timer_name timer_name) |
| 228 | { |
| 229 | switch (timer_name) |
| 230 | { |
| 231 | case TIMER_NAME_CYCLE: |
| 232 | return my_timer_cycles(); |
| 233 | case TIMER_NAME_NANOSEC: |
| 234 | return my_timer_nanoseconds(); |
| 235 | case TIMER_NAME_MICROSEC: |
| 236 | return my_timer_microseconds(); |
| 237 | case TIMER_NAME_MILLISEC: |
| 238 | return my_timer_milliseconds(); |
| 239 | case TIMER_NAME_TICK: |
| 240 | return my_timer_ticks(); |
| 241 | default: |
| 242 | DBUG_ASSERT(false); |
| 243 | } |
| 244 | return 0; |
| 245 | } |
| 246 | |
| 247 | ulonglong get_timer_raw_value_and_function(enum_timer_name timer_name, timer_fct_t *fct) |
| 248 | { |
| 249 | switch (timer_name) |
| 250 | { |
| 251 | case TIMER_NAME_CYCLE: |
| 252 | *fct= my_timer_cycles; |
| 253 | return my_timer_cycles(); |
| 254 | case TIMER_NAME_NANOSEC: |
| 255 | *fct= my_timer_nanoseconds; |
| 256 | return my_timer_nanoseconds(); |
| 257 | case TIMER_NAME_MICROSEC: |
| 258 | *fct= my_timer_microseconds; |
| 259 | return my_timer_microseconds(); |
| 260 | case TIMER_NAME_MILLISEC: |
| 261 | *fct= my_timer_milliseconds; |
| 262 | return my_timer_milliseconds(); |
| 263 | case TIMER_NAME_TICK: |
| 264 | *fct= my_timer_ticks; |
| 265 | return my_timer_ticks(); |
| 266 | default: |
| 267 | *fct= NULL; |
| 268 | DBUG_ASSERT(false); |
| 269 | } |
| 270 | return 0; |
| 271 | } |
| 272 | |
| 273 | ulonglong get_timer_pico_value(enum_timer_name timer_name) |
| 274 | { |
| 275 | ulonglong result; |
| 276 | |
| 277 | switch (timer_name) |
| 278 | { |
| 279 | case TIMER_NAME_CYCLE: |
| 280 | result= (my_timer_cycles() - cycle_v0) * cycle_to_pico; |
| 281 | break; |
| 282 | case TIMER_NAME_NANOSEC: |
| 283 | result= (my_timer_nanoseconds() - nanosec_v0) * nanosec_to_pico; |
| 284 | break; |
| 285 | case TIMER_NAME_MICROSEC: |
| 286 | result= (my_timer_microseconds() - microsec_v0) * microsec_to_pico; |
| 287 | break; |
| 288 | case TIMER_NAME_MILLISEC: |
| 289 | result= (my_timer_milliseconds() - millisec_v0) * millisec_to_pico; |
| 290 | break; |
| 291 | case TIMER_NAME_TICK: |
| 292 | result= (my_timer_ticks() - tick_v0) * tick_to_pico; |
| 293 | break; |
| 294 | default: |
| 295 | result= 0; |
| 296 | DBUG_ASSERT(false); |
| 297 | } |
| 298 | return result; |
| 299 | } |
| 300 | |
| 301 | time_normalizer* time_normalizer::get(enum_timer_name timer_name) |
| 302 | { |
| 303 | uint index= static_cast<uint> (timer_name); |
| 304 | |
| 305 | DBUG_ASSERT(index >= FIRST_TIMER_NAME); |
| 306 | DBUG_ASSERT(index <= LAST_TIMER_NAME); |
| 307 | |
| 308 | return & to_pico_data[index]; |
| 309 | } |
| 310 | |
| 311 | void time_normalizer::to_pico(ulonglong start, ulonglong end, |
| 312 | ulonglong *pico_start, ulonglong *pico_end, ulonglong *pico_wait) |
| 313 | { |
| 314 | if (start == 0) |
| 315 | { |
| 316 | *pico_start= 0; |
| 317 | *pico_end= 0; |
| 318 | *pico_wait= 0; |
| 319 | } |
| 320 | else |
| 321 | { |
| 322 | *pico_start= (start - m_v0) * m_factor; |
| 323 | if (end == 0) |
| 324 | { |
| 325 | *pico_end= 0; |
| 326 | *pico_wait= 0; |
| 327 | } |
| 328 | else |
| 329 | { |
| 330 | *pico_end= (end - m_v0) * m_factor; |
| 331 | *pico_wait= (end - start) * m_factor; |
| 332 | } |
| 333 | } |
| 334 | } |
| 335 | |
| 336 | |