| 1 | /* |
| 2 | Copyright (c) 2012,2013 Monty Program Ab |
| 3 | |
| 4 | This program is free software; you can redistribute it and/or modify |
| 5 | it under the terms of the GNU General Public License as published by |
| 6 | the Free Software Foundation; version 2 of the License. |
| 7 | |
| 8 | This program is distributed in the hope that it will be useful, |
| 9 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 10 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 11 | GNU General Public License for more details. |
| 12 | |
| 13 | You should have received a copy of the GNU General Public License |
| 14 | along with this program; if not, write to the Free Software |
| 15 | Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ |
| 16 | |
| 17 | #ifdef USE_PRAGMA_IMPLEMENTATION |
| 18 | #pragma implementation // gcc: Class implementation |
| 19 | #endif |
| 20 | |
| 21 | /* For use of 'PRIu64': */ |
| 22 | #define __STDC_FORMAT_MACROS |
| 23 | |
| 24 | #include <my_global.h> |
| 25 | /* This C++ file's header file */ |
| 26 | #include "./rdb_datadic.h" |
| 27 | |
| 28 | #include <inttypes.h> |
| 29 | /* C++ standard header files */ |
| 30 | #include <algorithm> |
| 31 | #include <array> |
| 32 | #include <limits> |
| 33 | #include <map> |
| 34 | #include <set> |
| 35 | #include <string> |
| 36 | #include <utility> |
| 37 | #include <vector> |
| 38 | |
| 39 | /* MySQL header files */ |
| 40 | #include "./field.h" |
| 41 | #include "./key.h" |
| 42 | #include "./m_ctype.h" |
| 43 | #include "./my_bit.h" |
| 44 | #include "./my_bitmap.h" |
| 45 | #include "./sql_table.h" |
| 46 | |
| 47 | /* MyRocks header files */ |
| 48 | #include "./ha_rocksdb_proto.h" |
| 49 | #include "./my_stacktrace.h" |
| 50 | #include "./rdb_cf_manager.h" |
| 51 | #include "./rdb_utils.h" |
| 52 | |
| 53 | namespace myrocks { |
| 54 | |
| 55 | void get_mem_comparable_space(const CHARSET_INFO *cs, |
| 56 | const std::vector<uchar> **xfrm, size_t *xfrm_len, |
| 57 | size_t *mb_len); |
| 58 | |
| 59 | /* |
| 60 | MariaDB's replacement for FB/MySQL Field::check_field_name_match : |
| 61 | */ |
| 62 | inline bool field_check_field_name_match(Field *field, const char *name) |
| 63 | { |
| 64 | return (0 == my_strcasecmp(system_charset_info, |
| 65 | field->field_name.str, |
| 66 | name)); |
| 67 | } |
| 68 | |
| 69 | |
| 70 | /* |
| 71 | Rdb_key_def class implementation |
| 72 | */ |
| 73 | |
| 74 | Rdb_key_def::Rdb_key_def(uint indexnr_arg, uint keyno_arg, |
| 75 | rocksdb::ColumnFamilyHandle *cf_handle_arg, |
| 76 | uint16_t index_dict_version_arg, uchar index_type_arg, |
| 77 | uint16_t kv_format_version_arg, bool is_reverse_cf_arg, |
| 78 | bool is_per_partition_cf_arg, const char *_name, |
| 79 | Rdb_index_stats _stats, uint32 index_flags_bitmap, |
| 80 | uint32 ttl_rec_offset, uint64 ttl_duration) |
| 81 | : m_index_number(indexnr_arg), m_cf_handle(cf_handle_arg), |
| 82 | m_index_dict_version(index_dict_version_arg), |
| 83 | m_index_type(index_type_arg), m_kv_format_version(kv_format_version_arg), |
| 84 | m_is_reverse_cf(is_reverse_cf_arg), |
| 85 | m_is_per_partition_cf(is_per_partition_cf_arg), m_name(_name), |
| 86 | m_stats(_stats), m_index_flags_bitmap(index_flags_bitmap), |
| 87 | m_ttl_rec_offset(ttl_rec_offset), m_ttl_duration(ttl_duration), |
| 88 | m_ttl_column("" ), m_pk_part_no(nullptr), m_pack_info(nullptr), |
| 89 | m_keyno(keyno_arg), m_key_parts(0), m_ttl_pk_key_part_offset(UINT_MAX), |
| 90 | m_ttl_field_offset(UINT_MAX), m_prefix_extractor(nullptr), |
| 91 | m_maxlength(0) // means 'not intialized' |
| 92 | { |
| 93 | mysql_mutex_init(0, &m_mutex, MY_MUTEX_INIT_FAST); |
| 94 | rdb_netbuf_store_index(m_index_number_storage_form, m_index_number); |
| 95 | m_total_index_flags_length = |
| 96 | calculate_index_flag_offset(m_index_flags_bitmap, MAX_FLAG); |
| 97 | DBUG_ASSERT_IMP(m_index_type == INDEX_TYPE_SECONDARY && |
| 98 | m_kv_format_version <= SECONDARY_FORMAT_VERSION_UPDATE2, |
| 99 | m_total_index_flags_length == 0); |
| 100 | DBUG_ASSERT_IMP(m_index_type == INDEX_TYPE_PRIMARY && |
| 101 | m_kv_format_version <= PRIMARY_FORMAT_VERSION_UPDATE2, |
| 102 | m_total_index_flags_length == 0); |
| 103 | DBUG_ASSERT(m_cf_handle != nullptr); |
| 104 | } |
| 105 | |
| 106 | Rdb_key_def::Rdb_key_def(const Rdb_key_def &k) |
| 107 | : m_index_number(k.m_index_number), m_cf_handle(k.m_cf_handle), |
| 108 | m_is_reverse_cf(k.m_is_reverse_cf), |
| 109 | m_is_per_partition_cf(k.m_is_per_partition_cf), m_name(k.m_name), |
| 110 | m_stats(k.m_stats), m_index_flags_bitmap(k.m_index_flags_bitmap), |
| 111 | m_ttl_rec_offset(k.m_ttl_rec_offset), m_ttl_duration(k.m_ttl_duration), |
| 112 | m_ttl_column(k.m_ttl_column), m_pk_part_no(k.m_pk_part_no), |
| 113 | m_pack_info(k.m_pack_info), m_keyno(k.m_keyno), |
| 114 | m_key_parts(k.m_key_parts), |
| 115 | m_ttl_pk_key_part_offset(k.m_ttl_pk_key_part_offset), |
| 116 | m_ttl_field_offset(UINT_MAX), m_prefix_extractor(k.m_prefix_extractor), |
| 117 | m_maxlength(k.m_maxlength) { |
| 118 | mysql_mutex_init(0, &m_mutex, MY_MUTEX_INIT_FAST); |
| 119 | rdb_netbuf_store_index(m_index_number_storage_form, m_index_number); |
| 120 | m_total_index_flags_length = |
| 121 | calculate_index_flag_offset(m_index_flags_bitmap, MAX_FLAG); |
| 122 | DBUG_ASSERT_IMP(m_index_type == INDEX_TYPE_SECONDARY && |
| 123 | m_kv_format_version <= SECONDARY_FORMAT_VERSION_UPDATE2, |
| 124 | m_total_index_flags_length == 0); |
| 125 | DBUG_ASSERT_IMP(m_index_type == INDEX_TYPE_PRIMARY && |
| 126 | m_kv_format_version <= PRIMARY_FORMAT_VERSION_UPDATE2, |
| 127 | m_total_index_flags_length == 0); |
| 128 | if (k.m_pack_info) { |
| 129 | const size_t size = sizeof(Rdb_field_packing) * k.m_key_parts; |
| 130 | m_pack_info = |
| 131 | reinterpret_cast<Rdb_field_packing *>(my_malloc(size, MYF(0))); |
| 132 | memcpy(m_pack_info, k.m_pack_info, size); |
| 133 | } |
| 134 | |
| 135 | if (k.m_pk_part_no) { |
| 136 | const size_t size = sizeof(uint) * m_key_parts; |
| 137 | m_pk_part_no = reinterpret_cast<uint *>(my_malloc(size, MYF(0))); |
| 138 | memcpy(m_pk_part_no, k.m_pk_part_no, size); |
| 139 | } |
| 140 | } |
| 141 | |
| 142 | Rdb_key_def::~Rdb_key_def() { |
| 143 | mysql_mutex_destroy(&m_mutex); |
| 144 | |
| 145 | my_free(m_pk_part_no); |
| 146 | m_pk_part_no = nullptr; |
| 147 | |
| 148 | my_free(m_pack_info); |
| 149 | m_pack_info = nullptr; |
| 150 | } |
| 151 | |
| 152 | void Rdb_key_def::setup(const TABLE *const tbl, |
| 153 | const Rdb_tbl_def *const tbl_def) { |
| 154 | DBUG_ASSERT(tbl != nullptr); |
| 155 | DBUG_ASSERT(tbl_def != nullptr); |
| 156 | |
| 157 | /* |
| 158 | Set max_length based on the table. This can be called concurrently from |
| 159 | multiple threads, so there is a mutex to protect this code. |
| 160 | */ |
| 161 | const bool is_hidden_pk = (m_index_type == INDEX_TYPE_HIDDEN_PRIMARY); |
| 162 | const bool hidden_pk_exists = table_has_hidden_pk(tbl); |
| 163 | const bool secondary_key = (m_index_type == INDEX_TYPE_SECONDARY); |
| 164 | if (!m_maxlength) { |
| 165 | RDB_MUTEX_LOCK_CHECK(m_mutex); |
| 166 | if (m_maxlength != 0) { |
| 167 | RDB_MUTEX_UNLOCK_CHECK(m_mutex); |
| 168 | return; |
| 169 | } |
| 170 | |
| 171 | KEY *key_info = nullptr; |
| 172 | KEY *pk_info = nullptr; |
| 173 | if (!is_hidden_pk) { |
| 174 | key_info = &tbl->key_info[m_keyno]; |
| 175 | if (!hidden_pk_exists) |
| 176 | pk_info = &tbl->key_info[tbl->s->primary_key]; |
| 177 | m_name = std::string(key_info->name.str); |
| 178 | } else { |
| 179 | m_name = HIDDEN_PK_NAME; |
| 180 | } |
| 181 | |
| 182 | if (secondary_key) |
| 183 | m_pk_key_parts= hidden_pk_exists ? 1 : pk_info->ext_key_parts; |
| 184 | else { |
| 185 | pk_info = nullptr; |
| 186 | m_pk_key_parts = 0; |
| 187 | } |
| 188 | |
| 189 | // "unique" secondary keys support: |
| 190 | m_key_parts= is_hidden_pk ? 1 : key_info->ext_key_parts; |
| 191 | |
| 192 | if (secondary_key) { |
| 193 | /* |
| 194 | In most cases, SQL layer puts PK columns as invisible suffix at the |
| 195 | end of secondary key. There are cases where this doesn't happen: |
| 196 | - unique secondary indexes. |
| 197 | - partitioned tables. |
| 198 | |
| 199 | Internally, we always need PK columns as suffix (and InnoDB does, |
| 200 | too, if you were wondering). |
| 201 | |
| 202 | The loop below will attempt to put all PK columns at the end of key |
| 203 | definition. Columns that are already included in the index (either |
| 204 | by the user or by "extended keys" feature) are not included for the |
| 205 | second time. |
| 206 | */ |
| 207 | m_key_parts += m_pk_key_parts; |
| 208 | } |
| 209 | |
| 210 | if (secondary_key) |
| 211 | m_pk_part_no = reinterpret_cast<uint *>( |
| 212 | my_malloc(sizeof(uint) * m_key_parts, MYF(0))); |
| 213 | else |
| 214 | m_pk_part_no = nullptr; |
| 215 | |
| 216 | const size_t size = sizeof(Rdb_field_packing) * m_key_parts; |
| 217 | m_pack_info = |
| 218 | reinterpret_cast<Rdb_field_packing *>(my_malloc(size, MYF(0))); |
| 219 | |
| 220 | /* |
| 221 | Guaranteed not to error here as checks have been made already during |
| 222 | table creation. |
| 223 | */ |
| 224 | Rdb_key_def::extract_ttl_col(tbl, tbl_def, &m_ttl_column, |
| 225 | &m_ttl_field_offset, true); |
| 226 | |
| 227 | size_t max_len = INDEX_NUMBER_SIZE; |
| 228 | int unpack_len = 0; |
| 229 | int max_part_len = 0; |
| 230 | bool simulating_extkey = false; |
| 231 | uint dst_i = 0; |
| 232 | |
| 233 | uint keyno_to_set = m_keyno; |
| 234 | uint keypart_to_set = 0; |
| 235 | |
| 236 | if (is_hidden_pk) { |
| 237 | Field *field = nullptr; |
| 238 | m_pack_info[dst_i].setup(this, field, keyno_to_set, 0, 0); |
| 239 | m_pack_info[dst_i].m_unpack_data_offset = unpack_len; |
| 240 | max_len += m_pack_info[dst_i].m_max_image_len; |
| 241 | max_part_len = std::max(max_part_len, m_pack_info[dst_i].m_max_image_len); |
| 242 | dst_i++; |
| 243 | } else { |
| 244 | KEY_PART_INFO *key_part = key_info->key_part; |
| 245 | |
| 246 | /* this loop also loops over the 'extended key' tail */ |
| 247 | for (uint src_i = 0; src_i < m_key_parts; src_i++, keypart_to_set++) { |
| 248 | Field *const field = key_part ? key_part->field : nullptr; |
| 249 | |
| 250 | if (simulating_extkey && !hidden_pk_exists) { |
| 251 | DBUG_ASSERT(secondary_key); |
| 252 | /* Check if this field is already present in the key definition */ |
| 253 | bool found = false; |
| 254 | for (uint j= 0; j < key_info->ext_key_parts; j++) { |
| 255 | if (field->field_index == |
| 256 | key_info->key_part[j].field->field_index && |
| 257 | key_part->length == key_info->key_part[j].length) { |
| 258 | found = true; |
| 259 | break; |
| 260 | } |
| 261 | } |
| 262 | |
| 263 | if (found) { |
| 264 | key_part++; |
| 265 | continue; |
| 266 | } |
| 267 | } |
| 268 | |
| 269 | if (field && field->real_maybe_null()) |
| 270 | max_len += 1; // NULL-byte |
| 271 | |
| 272 | m_pack_info[dst_i].setup(this, field, keyno_to_set, keypart_to_set, |
| 273 | key_part ? key_part->length : 0); |
| 274 | m_pack_info[dst_i].m_unpack_data_offset = unpack_len; |
| 275 | |
| 276 | if (pk_info) { |
| 277 | m_pk_part_no[dst_i] = -1; |
| 278 | for (uint j = 0; j < m_pk_key_parts; j++) { |
| 279 | if (field->field_index == pk_info->key_part[j].field->field_index) { |
| 280 | m_pk_part_no[dst_i] = j; |
| 281 | break; |
| 282 | } |
| 283 | } |
| 284 | } else if (secondary_key && hidden_pk_exists) { |
| 285 | /* |
| 286 | The hidden pk can never be part of the sk. So it is always |
| 287 | appended to the end of the sk. |
| 288 | */ |
| 289 | m_pk_part_no[dst_i] = -1; |
| 290 | if (simulating_extkey) |
| 291 | m_pk_part_no[dst_i] = 0; |
| 292 | } |
| 293 | |
| 294 | max_len += m_pack_info[dst_i].m_max_image_len; |
| 295 | |
| 296 | max_part_len = |
| 297 | std::max(max_part_len, m_pack_info[dst_i].m_max_image_len); |
| 298 | |
| 299 | /* |
| 300 | Check key part name here, if it matches the TTL column then we store |
| 301 | the offset of the TTL key part here. |
| 302 | */ |
| 303 | if (!m_ttl_column.empty() && |
| 304 | field_check_field_name_match(field, m_ttl_column.c_str())) { |
| 305 | DBUG_ASSERT(field->real_type() == MYSQL_TYPE_LONGLONG); |
| 306 | DBUG_ASSERT(field->key_type() == HA_KEYTYPE_ULONGLONG); |
| 307 | DBUG_ASSERT(!field->real_maybe_null()); |
| 308 | m_ttl_pk_key_part_offset = dst_i; |
| 309 | } |
| 310 | |
| 311 | key_part++; |
| 312 | /* |
| 313 | For "unique" secondary indexes, pretend they have |
| 314 | "index extensions". |
| 315 | |
| 316 | MariaDB also has this property: if an index has a partially-covered |
| 317 | column like KEY(varchar_col(N)), then the SQL layer will think it is |
| 318 | not "extended" with PK columns. The code below handles this case, |
| 319 | also. |
| 320 | */ |
| 321 | if (secondary_key && src_i+1 == key_info->ext_key_parts) { |
| 322 | simulating_extkey = true; |
| 323 | if (!hidden_pk_exists) { |
| 324 | keyno_to_set = tbl->s->primary_key; |
| 325 | key_part = pk_info->key_part; |
| 326 | keypart_to_set = (uint)-1; |
| 327 | } else { |
| 328 | keyno_to_set = tbl_def->m_key_count - 1; |
| 329 | key_part = nullptr; |
| 330 | keypart_to_set = 0; |
| 331 | } |
| 332 | } |
| 333 | |
| 334 | dst_i++; |
| 335 | } |
| 336 | } |
| 337 | |
| 338 | m_key_parts = dst_i; |
| 339 | |
| 340 | /* Initialize the memory needed by the stats structure */ |
| 341 | m_stats.m_distinct_keys_per_prefix.resize(get_key_parts()); |
| 342 | |
| 343 | /* Cache prefix extractor for bloom filter usage later */ |
| 344 | rocksdb::Options opt = rdb_get_rocksdb_db()->GetOptions(get_cf()); |
| 345 | m_prefix_extractor = opt.prefix_extractor; |
| 346 | |
| 347 | /* |
| 348 | This should be the last member variable set before releasing the mutex |
| 349 | so that other threads can't see the object partially set up. |
| 350 | */ |
| 351 | m_maxlength = max_len; |
| 352 | |
| 353 | RDB_MUTEX_UNLOCK_CHECK(m_mutex); |
| 354 | } |
| 355 | } |
| 356 | |
| 357 | /* |
| 358 | Determine if the table has TTL enabled by parsing the table comment. |
| 359 | |
| 360 | @param[IN] table_arg |
| 361 | @param[IN] tbl_def_arg |
| 362 | @param[OUT] ttl_duration Default TTL value parsed from table comment |
| 363 | */ |
| 364 | uint Rdb_key_def::(const TABLE *const table_arg, |
| 365 | const Rdb_tbl_def *const tbl_def_arg, |
| 366 | uint64 *ttl_duration) { |
| 367 | DBUG_ASSERT(table_arg != nullptr); |
| 368 | DBUG_ASSERT(tbl_def_arg != nullptr); |
| 369 | DBUG_ASSERT(ttl_duration != nullptr); |
| 370 | std::string (table_arg->s->comment.str, |
| 371 | table_arg->s->comment.length); |
| 372 | |
| 373 | bool ttl_duration_per_part_match_found = false; |
| 374 | std::string ttl_duration_str = Rdb_key_def::parse_comment_for_qualifier( |
| 375 | table_comment, table_arg, tbl_def_arg, &ttl_duration_per_part_match_found, |
| 376 | RDB_TTL_DURATION_QUALIFIER); |
| 377 | |
| 378 | /* If we don't have a ttl duration, nothing to do here. */ |
| 379 | if (ttl_duration_str.empty()) { |
| 380 | return HA_EXIT_SUCCESS; |
| 381 | } |
| 382 | |
| 383 | /* |
| 384 | Catch errors where a non-integral value was used as ttl duration, strtoull |
| 385 | will return 0. |
| 386 | */ |
| 387 | *ttl_duration = std::strtoull(ttl_duration_str.c_str(), nullptr, 0); |
| 388 | if (!*ttl_duration) { |
| 389 | my_error(ER_RDB_TTL_DURATION_FORMAT, MYF(0), ttl_duration_str.c_str()); |
| 390 | return HA_EXIT_FAILURE; |
| 391 | } |
| 392 | |
| 393 | return HA_EXIT_SUCCESS; |
| 394 | } |
| 395 | |
| 396 | /* |
| 397 | Determine if the table has TTL enabled by parsing the table comment. |
| 398 | |
| 399 | @param[IN] table_arg |
| 400 | @param[IN] tbl_def_arg |
| 401 | @param[OUT] ttl_column TTL column in the table |
| 402 | @param[IN] skip_checks Skip validation checks (when called in |
| 403 | setup()) |
| 404 | */ |
| 405 | uint Rdb_key_def::(const TABLE *const table_arg, |
| 406 | const Rdb_tbl_def *const tbl_def_arg, |
| 407 | std::string *ttl_column, |
| 408 | uint *ttl_field_offset, bool skip_checks) { |
| 409 | std::string (table_arg->s->comment.str, |
| 410 | table_arg->s->comment.length); |
| 411 | /* |
| 412 | Check if there is a TTL column specified. Note that this is not required |
| 413 | and if omitted, an 8-byte ttl field will be prepended to each record |
| 414 | implicitly. |
| 415 | */ |
| 416 | bool ttl_col_per_part_match_found = false; |
| 417 | std::string ttl_col_str = Rdb_key_def::parse_comment_for_qualifier( |
| 418 | table_comment, table_arg, tbl_def_arg, &ttl_col_per_part_match_found, |
| 419 | RDB_TTL_COL_QUALIFIER); |
| 420 | |
| 421 | if (skip_checks) { |
| 422 | for (uint i = 0; i < table_arg->s->fields; i++) { |
| 423 | Field *const field = table_arg->field[i]; |
| 424 | if (field_check_field_name_match(field, ttl_col_str.c_str())) { |
| 425 | *ttl_column = ttl_col_str; |
| 426 | *ttl_field_offset = i; |
| 427 | } |
| 428 | } |
| 429 | return HA_EXIT_SUCCESS; |
| 430 | } |
| 431 | |
| 432 | /* Check if TTL column exists in table */ |
| 433 | if (!ttl_col_str.empty()) { |
| 434 | bool found = false; |
| 435 | for (uint i = 0; i < table_arg->s->fields; i++) { |
| 436 | Field *const field = table_arg->field[i]; |
| 437 | if (field_check_field_name_match(field, ttl_col_str.c_str()) && |
| 438 | field->real_type() == MYSQL_TYPE_LONGLONG && |
| 439 | field->key_type() == HA_KEYTYPE_ULONGLONG && |
| 440 | !field->real_maybe_null()) { |
| 441 | *ttl_column = ttl_col_str; |
| 442 | *ttl_field_offset = i; |
| 443 | found = true; |
| 444 | break; |
| 445 | } |
| 446 | } |
| 447 | |
| 448 | if (!found) { |
| 449 | my_error(ER_RDB_TTL_COL_FORMAT, MYF(0), ttl_col_str.c_str()); |
| 450 | return HA_EXIT_FAILURE; |
| 451 | } |
| 452 | } |
| 453 | |
| 454 | return HA_EXIT_SUCCESS; |
| 455 | } |
| 456 | |
| 457 | const std::string |
| 458 | Rdb_key_def::gen_qualifier_for_table(const char *const qualifier, |
| 459 | const std::string &partition_name) { |
| 460 | bool has_partition = !partition_name.empty(); |
| 461 | std::string qualifier_str = "" ; |
| 462 | |
| 463 | if (!strcmp(qualifier, RDB_CF_NAME_QUALIFIER)) { |
| 464 | return has_partition ? gen_cf_name_qualifier_for_partition(partition_name) |
| 465 | : qualifier_str + RDB_CF_NAME_QUALIFIER + |
| 466 | RDB_QUALIFIER_VALUE_SEP; |
| 467 | } else if (!strcmp(qualifier, RDB_TTL_DURATION_QUALIFIER)) { |
| 468 | return has_partition |
| 469 | ? gen_ttl_duration_qualifier_for_partition(partition_name) |
| 470 | : qualifier_str + RDB_TTL_DURATION_QUALIFIER + |
| 471 | RDB_QUALIFIER_VALUE_SEP; |
| 472 | } else if (!strcmp(qualifier, RDB_TTL_COL_QUALIFIER)) { |
| 473 | return has_partition ? gen_ttl_col_qualifier_for_partition(partition_name) |
| 474 | : qualifier_str + RDB_TTL_COL_QUALIFIER + |
| 475 | RDB_QUALIFIER_VALUE_SEP; |
| 476 | } else { |
| 477 | DBUG_ASSERT(0); |
| 478 | } |
| 479 | |
| 480 | return qualifier_str; |
| 481 | } |
| 482 | |
| 483 | /* |
| 484 | Formats the string and returns the column family name assignment part for a |
| 485 | specific partition. |
| 486 | */ |
| 487 | const std::string |
| 488 | Rdb_key_def::gen_cf_name_qualifier_for_partition(const std::string &prefix) { |
| 489 | DBUG_ASSERT(!prefix.empty()); |
| 490 | |
| 491 | return prefix + RDB_PER_PARTITION_QUALIFIER_NAME_SEP + RDB_CF_NAME_QUALIFIER + |
| 492 | RDB_QUALIFIER_VALUE_SEP; |
| 493 | } |
| 494 | |
| 495 | const std::string Rdb_key_def::gen_ttl_duration_qualifier_for_partition( |
| 496 | const std::string &prefix) { |
| 497 | DBUG_ASSERT(!prefix.empty()); |
| 498 | |
| 499 | return prefix + RDB_PER_PARTITION_QUALIFIER_NAME_SEP + |
| 500 | RDB_TTL_DURATION_QUALIFIER + RDB_QUALIFIER_VALUE_SEP; |
| 501 | } |
| 502 | |
| 503 | const std::string |
| 504 | Rdb_key_def::gen_ttl_col_qualifier_for_partition(const std::string &prefix) { |
| 505 | DBUG_ASSERT(!prefix.empty()); |
| 506 | |
| 507 | return prefix + RDB_PER_PARTITION_QUALIFIER_NAME_SEP + RDB_TTL_COL_QUALIFIER + |
| 508 | RDB_QUALIFIER_VALUE_SEP; |
| 509 | } |
| 510 | |
| 511 | const std::string Rdb_key_def::( |
| 512 | const std::string &, const TABLE *const table_arg, |
| 513 | const Rdb_tbl_def *const tbl_def_arg, bool *per_part_match_found, |
| 514 | const char *const qualifier) { |
| 515 | DBUG_ASSERT(table_arg != nullptr); |
| 516 | DBUG_ASSERT(tbl_def_arg != nullptr); |
| 517 | DBUG_ASSERT(per_part_match_found != nullptr); |
| 518 | DBUG_ASSERT(qualifier != nullptr); |
| 519 | |
| 520 | std::string empty_result; |
| 521 | |
| 522 | // Flag which marks if partition specific options were found. |
| 523 | *per_part_match_found = false; |
| 524 | |
| 525 | if (comment.empty()) { |
| 526 | return empty_result; |
| 527 | } |
| 528 | |
| 529 | // Let's fetch the comment for a index and check if there's a custom key |
| 530 | // name specified for a partition we are handling. |
| 531 | std::vector<std::string> v = |
| 532 | myrocks::parse_into_tokens(comment, RDB_QUALIFIER_SEP); |
| 533 | |
| 534 | std::string search_str = gen_qualifier_for_table(qualifier); |
| 535 | |
| 536 | // If table has partitions then we need to check if user has requested |
| 537 | // qualifiers on a per partition basis. |
| 538 | // |
| 539 | // NOTE: this means if you specify a qualifier for a specific partition it |
| 540 | // will take precedence the 'table level' qualifier if one exists. |
| 541 | std::string search_str_part; |
| 542 | if (IF_PARTITIONING(table_arg->part_info,nullptr) != nullptr) { |
| 543 | std::string partition_name = tbl_def_arg->base_partition(); |
| 544 | DBUG_ASSERT(!partition_name.empty()); |
| 545 | search_str_part = gen_qualifier_for_table(qualifier, partition_name); |
| 546 | } |
| 547 | |
| 548 | DBUG_ASSERT(!search_str.empty()); |
| 549 | |
| 550 | // Basic O(N) search for a matching assignment. At most we expect maybe |
| 551 | // ten or so elements here. |
| 552 | if (!search_str_part.empty()) { |
| 553 | for (const auto &it : v) { |
| 554 | if (it.substr(0, search_str_part.length()) == search_str_part) { |
| 555 | // We found a prefix match. Try to parse it as an assignment. |
| 556 | std::vector<std::string> tokens = |
| 557 | myrocks::parse_into_tokens(it, RDB_QUALIFIER_VALUE_SEP); |
| 558 | |
| 559 | // We found a custom qualifier, it was in the form we expected it to be. |
| 560 | // Return that instead of whatever we initially wanted to return. In |
| 561 | // a case below the `foo` part will be returned to the caller. |
| 562 | // |
| 563 | // p3_cfname=foo |
| 564 | // |
| 565 | // If no value was specified then we'll return an empty string which |
| 566 | // later gets translated into using a default CF. |
| 567 | if (tokens.size() == 2) { |
| 568 | *per_part_match_found = true; |
| 569 | return tokens[1]; |
| 570 | } else { |
| 571 | return empty_result; |
| 572 | } |
| 573 | } |
| 574 | } |
| 575 | } |
| 576 | |
| 577 | // Do this loop again, this time searching for 'table level' qualifiers if we |
| 578 | // didn't find any partition level qualifiers above. |
| 579 | for (const auto &it : v) { |
| 580 | if (it.substr(0, search_str.length()) == search_str) { |
| 581 | std::vector<std::string> tokens = |
| 582 | myrocks::parse_into_tokens(it, RDB_QUALIFIER_VALUE_SEP); |
| 583 | if (tokens.size() == 2) { |
| 584 | return tokens[1]; |
| 585 | } else { |
| 586 | return empty_result; |
| 587 | } |
| 588 | } |
| 589 | } |
| 590 | |
| 591 | // If we didn't find any partitioned/non-partitioned qualifiers, return an |
| 592 | // empty string. |
| 593 | return empty_result; |
| 594 | } |
| 595 | |
| 596 | /** |
| 597 | Read a memcmp key part from a slice using the passed in reader. |
| 598 | |
| 599 | Returns -1 if field was null, 1 if error, 0 otherwise. |
| 600 | */ |
| 601 | int Rdb_key_def::read_memcmp_key_part(const TABLE *table_arg, |
| 602 | Rdb_string_reader *reader, |
| 603 | const uint part_num) const { |
| 604 | /* It is impossible to unpack the column. Skip it. */ |
| 605 | if (m_pack_info[part_num].m_maybe_null) { |
| 606 | const char *nullp; |
| 607 | if (!(nullp = reader->read(1))) |
| 608 | return 1; |
| 609 | if (*nullp == 0) { |
| 610 | /* This is a NULL value */ |
| 611 | return -1; |
| 612 | } else { |
| 613 | /* If NULL marker is not '0', it can be only '1' */ |
| 614 | if (*nullp != 1) |
| 615 | return 1; |
| 616 | } |
| 617 | } |
| 618 | |
| 619 | Rdb_field_packing *fpi = &m_pack_info[part_num]; |
| 620 | DBUG_ASSERT(table_arg->s != nullptr); |
| 621 | |
| 622 | bool is_hidden_pk_part = (part_num + 1 == m_key_parts) && |
| 623 | (table_arg->s->primary_key == MAX_INDEXES); |
| 624 | Field *field = nullptr; |
| 625 | if (!is_hidden_pk_part) |
| 626 | field = fpi->get_field_in_table(table_arg); |
| 627 | if ((this->*fpi->m_skip_func)(fpi, field, reader)) |
| 628 | return 1; |
| 629 | |
| 630 | return 0; |
| 631 | } |
| 632 | |
| 633 | /** |
| 634 | Get a mem-comparable form of Primary Key from mem-comparable form of this key |
| 635 | |
| 636 | @param |
| 637 | pk_descr Primary Key descriptor |
| 638 | key Index tuple from this key in mem-comparable form |
| 639 | pk_buffer OUT Put here mem-comparable form of the Primary Key. |
| 640 | |
| 641 | @note |
| 642 | It may or may not be possible to restore primary key columns to their |
| 643 | mem-comparable form. To handle all cases, this function copies mem- |
| 644 | comparable forms directly. |
| 645 | |
| 646 | RocksDB SE supports "Extended keys". This means that PK columns are present |
| 647 | at the end of every key. If the key already includes PK columns, then |
| 648 | these columns are not present at the end of the key. |
| 649 | |
| 650 | Because of the above, we copy each primary key column. |
| 651 | |
| 652 | @todo |
| 653 | If we checked crc32 checksums in this function, we would catch some CRC |
| 654 | violations that we currently don't. On the other hand, there is a broader |
| 655 | set of queries for which we would check the checksum twice. |
| 656 | */ |
| 657 | |
| 658 | uint Rdb_key_def::get_primary_key_tuple(const TABLE *const table, |
| 659 | const Rdb_key_def &pk_descr, |
| 660 | const rocksdb::Slice *const key, |
| 661 | uchar *const pk_buffer) const { |
| 662 | DBUG_ASSERT(table != nullptr); |
| 663 | DBUG_ASSERT(key != nullptr); |
| 664 | DBUG_ASSERT(pk_buffer); |
| 665 | |
| 666 | uint size = 0; |
| 667 | uchar *buf = pk_buffer; |
| 668 | DBUG_ASSERT(m_pk_key_parts); |
| 669 | |
| 670 | /* Put the PK number */ |
| 671 | rdb_netbuf_store_index(buf, pk_descr.m_index_number); |
| 672 | buf += INDEX_NUMBER_SIZE; |
| 673 | size += INDEX_NUMBER_SIZE; |
| 674 | |
| 675 | const char *start_offs[MAX_REF_PARTS]; |
| 676 | const char *end_offs[MAX_REF_PARTS]; |
| 677 | int pk_key_part; |
| 678 | uint i; |
| 679 | Rdb_string_reader reader(key); |
| 680 | |
| 681 | // Skip the index number |
| 682 | if ((!reader.read(INDEX_NUMBER_SIZE))) |
| 683 | return RDB_INVALID_KEY_LEN; |
| 684 | |
| 685 | for (i = 0; i < m_key_parts; i++) { |
| 686 | if ((pk_key_part = m_pk_part_no[i]) != -1) { |
| 687 | start_offs[pk_key_part] = reader.get_current_ptr(); |
| 688 | } |
| 689 | |
| 690 | if (read_memcmp_key_part(table, &reader, i) > 0) { |
| 691 | return RDB_INVALID_KEY_LEN; |
| 692 | } |
| 693 | |
| 694 | if (pk_key_part != -1) { |
| 695 | end_offs[pk_key_part] = reader.get_current_ptr(); |
| 696 | } |
| 697 | } |
| 698 | |
| 699 | for (i = 0; i < m_pk_key_parts; i++) { |
| 700 | const uint part_size = end_offs[i] - start_offs[i]; |
| 701 | memcpy(buf, start_offs[i], end_offs[i] - start_offs[i]); |
| 702 | buf += part_size; |
| 703 | size += part_size; |
| 704 | } |
| 705 | |
| 706 | return size; |
| 707 | } |
| 708 | |
| 709 | /** |
| 710 | Get a mem-comparable form of Secondary Key from mem-comparable form of this |
| 711 | key, without the extended primary key tail. |
| 712 | |
| 713 | @param |
| 714 | key Index tuple from this key in mem-comparable form |
| 715 | sk_buffer OUT Put here mem-comparable form of the Secondary Key. |
| 716 | n_null_fields OUT Put number of null fields contained within sk entry |
| 717 | */ |
| 718 | uint Rdb_key_def::get_memcmp_sk_parts(const TABLE *table, |
| 719 | const rocksdb::Slice &key, |
| 720 | uchar *sk_buffer, |
| 721 | uint *n_null_fields) const { |
| 722 | DBUG_ASSERT(table != nullptr); |
| 723 | DBUG_ASSERT(sk_buffer != nullptr); |
| 724 | DBUG_ASSERT(n_null_fields != nullptr); |
| 725 | DBUG_ASSERT(m_keyno != table->s->primary_key && !table_has_hidden_pk(table)); |
| 726 | |
| 727 | uchar *buf = sk_buffer; |
| 728 | |
| 729 | int res; |
| 730 | Rdb_string_reader reader(&key); |
| 731 | const char *start = reader.get_current_ptr(); |
| 732 | |
| 733 | // Skip the index number |
| 734 | if ((!reader.read(INDEX_NUMBER_SIZE))) |
| 735 | return RDB_INVALID_KEY_LEN; |
| 736 | |
| 737 | for (uint i = 0; i < table->key_info[m_keyno].user_defined_key_parts; i++) { |
| 738 | if ((res = read_memcmp_key_part(table, &reader, i)) > 0) { |
| 739 | return RDB_INVALID_KEY_LEN; |
| 740 | } else if (res == -1) { |
| 741 | (*n_null_fields)++; |
| 742 | } |
| 743 | } |
| 744 | |
| 745 | uint sk_memcmp_len = reader.get_current_ptr() - start; |
| 746 | memcpy(buf, start, sk_memcmp_len); |
| 747 | return sk_memcmp_len; |
| 748 | } |
| 749 | |
| 750 | /** |
| 751 | Convert index tuple into storage (i.e. mem-comparable) format |
| 752 | |
| 753 | @detail |
| 754 | Currently this is done by unpacking into table->record[0] and then |
| 755 | packing index columns into storage format. |
| 756 | |
| 757 | @param pack_buffer Temporary area for packing varchar columns. Its |
| 758 | size is at least max_storage_fmt_length() bytes. |
| 759 | */ |
| 760 | |
| 761 | uint Rdb_key_def::pack_index_tuple(TABLE *const tbl, uchar *const pack_buffer, |
| 762 | uchar *const packed_tuple, |
| 763 | const uchar *const key_tuple, |
| 764 | const key_part_map &keypart_map) const { |
| 765 | DBUG_ASSERT(tbl != nullptr); |
| 766 | DBUG_ASSERT(pack_buffer != nullptr); |
| 767 | DBUG_ASSERT(packed_tuple != nullptr); |
| 768 | DBUG_ASSERT(key_tuple != nullptr); |
| 769 | |
| 770 | /* We were given a record in KeyTupleFormat. First, save it to record */ |
| 771 | const uint key_len = calculate_key_len(tbl, m_keyno, key_tuple, keypart_map); |
| 772 | key_restore(tbl->record[0], key_tuple, &tbl->key_info[m_keyno], key_len); |
| 773 | |
| 774 | uint n_used_parts = my_count_bits(keypart_map); |
| 775 | if (keypart_map == HA_WHOLE_KEY) |
| 776 | n_used_parts = 0; // Full key is used |
| 777 | |
| 778 | /* Then, convert the record into a mem-comparable form */ |
| 779 | return pack_record(tbl, pack_buffer, tbl->record[0], packed_tuple, nullptr, |
| 780 | false, 0, n_used_parts); |
| 781 | } |
| 782 | |
| 783 | /** |
| 784 | @brief |
| 785 | Check if "unpack info" data includes checksum. |
| 786 | |
| 787 | @detail |
| 788 | This is used only by CHECK TABLE to count the number of rows that have |
| 789 | checksums. |
| 790 | */ |
| 791 | |
| 792 | bool Rdb_key_def::unpack_info_has_checksum(const rocksdb::Slice &unpack_info) { |
| 793 | size_t size = unpack_info.size(); |
| 794 | if (size == 0) { |
| 795 | return false; |
| 796 | } |
| 797 | const uchar *ptr = (const uchar *)unpack_info.data(); |
| 798 | |
| 799 | // Skip unpack info if present. |
| 800 | if (is_unpack_data_tag(ptr[0]) && size >= get_unpack_header_size(ptr[0])) { |
| 801 | const uint16 skip_len = rdb_netbuf_to_uint16(ptr + 1); |
| 802 | SHIP_ASSERT(size >= skip_len); |
| 803 | |
| 804 | size -= skip_len; |
| 805 | ptr += skip_len; |
| 806 | } |
| 807 | |
| 808 | return (size == RDB_CHECKSUM_CHUNK_SIZE && ptr[0] == RDB_CHECKSUM_DATA_TAG); |
| 809 | } |
| 810 | |
| 811 | /* |
| 812 | @return Number of bytes that were changed |
| 813 | */ |
| 814 | int Rdb_key_def::successor(uchar *const packed_tuple, const uint &len) { |
| 815 | DBUG_ASSERT(packed_tuple != nullptr); |
| 816 | |
| 817 | int changed = 0; |
| 818 | uchar *p = packed_tuple + len - 1; |
| 819 | for (; p > packed_tuple; p--) { |
| 820 | changed++; |
| 821 | if (*p != uchar(0xFF)) { |
| 822 | *p = *p + 1; |
| 823 | break; |
| 824 | } |
| 825 | *p = '\0'; |
| 826 | } |
| 827 | return changed; |
| 828 | } |
| 829 | |
| 830 | /* |
| 831 | @return Number of bytes that were changed |
| 832 | */ |
| 833 | int Rdb_key_def::predecessor(uchar *const packed_tuple, const uint &len) { |
| 834 | DBUG_ASSERT(packed_tuple != nullptr); |
| 835 | |
| 836 | int changed = 0; |
| 837 | uchar *p = packed_tuple + len - 1; |
| 838 | for (; p > packed_tuple; p--) { |
| 839 | changed++; |
| 840 | if (*p != uchar(0x00)) { |
| 841 | *p = *p - 1; |
| 842 | break; |
| 843 | } |
| 844 | *p = 0xFF; |
| 845 | } |
| 846 | return changed; |
| 847 | } |
| 848 | |
| 849 | static const std::map<char, size_t> = { |
| 850 | {RDB_UNPACK_DATA_TAG, RDB_UNPACK_HEADER_SIZE}, |
| 851 | {RDB_UNPACK_COVERED_DATA_TAG, RDB_UNPACK_COVERED_HEADER_SIZE}}; |
| 852 | |
| 853 | /* |
| 854 | @return The length in bytes of the header specified by the given tag |
| 855 | */ |
| 856 | size_t Rdb_key_def::(char tag) { |
| 857 | DBUG_ASSERT(is_unpack_data_tag(tag)); |
| 858 | return UNPACK_HEADER_SIZES.at(tag); |
| 859 | } |
| 860 | |
| 861 | /* |
| 862 | Get a bitmap indicating which varchar columns must be covered for this |
| 863 | lookup to be covered. If the bitmap is a subset of the covered bitmap, then |
| 864 | the lookup is covered. If it can already be determined that the lookup is |
| 865 | not covered, map->bitmap will be set to null. |
| 866 | */ |
| 867 | void Rdb_key_def::get_lookup_bitmap(const TABLE *table, MY_BITMAP *map) const { |
| 868 | DBUG_ASSERT(map->bitmap == nullptr); |
| 869 | bitmap_init(map, nullptr, MAX_REF_PARTS, false); |
| 870 | uint curr_bitmap_pos = 0; |
| 871 | |
| 872 | // Indicates which columns in the read set might be covered. |
| 873 | MY_BITMAP maybe_covered_bitmap; |
| 874 | bitmap_init(&maybe_covered_bitmap, nullptr, table->read_set->n_bits, false); |
| 875 | |
| 876 | for (uint i = 0; i < m_key_parts; i++) { |
| 877 | if (table_has_hidden_pk(table) && i + 1 == m_key_parts) { |
| 878 | continue; |
| 879 | } |
| 880 | |
| 881 | Field *const field = m_pack_info[i].get_field_in_table(table); |
| 882 | |
| 883 | // Columns which are always covered are not stored in the covered bitmap so |
| 884 | // we can ignore them here too. |
| 885 | if (m_pack_info[i].m_covered && |
| 886 | bitmap_is_set(table->read_set, field->field_index)) { |
| 887 | bitmap_set_bit(&maybe_covered_bitmap, field->field_index); |
| 888 | continue; |
| 889 | } |
| 890 | |
| 891 | switch (field->real_type()) { |
| 892 | // This type may be covered depending on the record. If it was requested, |
| 893 | // we require the covered bitmap to have this bit set. |
| 894 | case MYSQL_TYPE_VARCHAR: |
| 895 | if (curr_bitmap_pos < MAX_REF_PARTS) { |
| 896 | if (bitmap_is_set(table->read_set, field->field_index)) { |
| 897 | bitmap_set_bit(map, curr_bitmap_pos); |
| 898 | bitmap_set_bit(&maybe_covered_bitmap, field->field_index); |
| 899 | } |
| 900 | curr_bitmap_pos++; |
| 901 | } else { |
| 902 | bitmap_free(&maybe_covered_bitmap); |
| 903 | bitmap_free(map); |
| 904 | return; |
| 905 | } |
| 906 | break; |
| 907 | // This column is a type which is never covered. If it was requested, we |
| 908 | // know this lookup will never be covered. |
| 909 | default: |
| 910 | if (bitmap_is_set(table->read_set, field->field_index)) { |
| 911 | bitmap_free(&maybe_covered_bitmap); |
| 912 | bitmap_free(map); |
| 913 | return; |
| 914 | } |
| 915 | break; |
| 916 | } |
| 917 | } |
| 918 | |
| 919 | // If there are columns which are not covered in the read set, the lookup |
| 920 | // can't be covered. |
| 921 | if (!bitmap_cmp(table->read_set, &maybe_covered_bitmap)) { |
| 922 | bitmap_free(map); |
| 923 | } |
| 924 | bitmap_free(&maybe_covered_bitmap); |
| 925 | } |
| 926 | |
| 927 | /* |
| 928 | Return true if for this secondary index |
| 929 | - All of the requested columns are in the index |
| 930 | - All values for columns that are prefix-only indexes are shorter or equal |
| 931 | in length to the prefix |
| 932 | */ |
| 933 | bool Rdb_key_def::covers_lookup(TABLE *const table, |
| 934 | const rocksdb::Slice *const unpack_info, |
| 935 | const MY_BITMAP *const lookup_bitmap) const { |
| 936 | DBUG_ASSERT(lookup_bitmap != nullptr); |
| 937 | if (!use_covered_bitmap_format() || lookup_bitmap->bitmap == nullptr) { |
| 938 | return false; |
| 939 | } |
| 940 | |
| 941 | Rdb_string_reader unp_reader = Rdb_string_reader::read_or_empty(unpack_info); |
| 942 | |
| 943 | // Check if this unpack_info has a covered_bitmap |
| 944 | const char * = unp_reader.get_current_ptr(); |
| 945 | const bool has_covered_unpack_info = |
| 946 | unp_reader.remaining_bytes() && |
| 947 | unpack_header[0] == RDB_UNPACK_COVERED_DATA_TAG; |
| 948 | if (!has_covered_unpack_info || |
| 949 | !unp_reader.read(RDB_UNPACK_COVERED_HEADER_SIZE)) { |
| 950 | return false; |
| 951 | } |
| 952 | |
| 953 | MY_BITMAP covered_bitmap; |
| 954 | my_bitmap_map covered_bits; |
| 955 | bitmap_init(&covered_bitmap, &covered_bits, MAX_REF_PARTS, false); |
| 956 | covered_bits = rdb_netbuf_to_uint16((const uchar *)unpack_header + |
| 957 | sizeof(RDB_UNPACK_COVERED_DATA_TAG) + |
| 958 | RDB_UNPACK_COVERED_DATA_LEN_SIZE); |
| 959 | |
| 960 | return bitmap_is_subset(lookup_bitmap, &covered_bitmap); |
| 961 | } |
| 962 | |
| 963 | uchar *Rdb_key_def::pack_field(Field *const field, Rdb_field_packing *pack_info, |
| 964 | uchar *tuple, uchar *const packed_tuple, |
| 965 | uchar *const pack_buffer, |
| 966 | Rdb_string_writer *const unpack_info, |
| 967 | uint *const n_null_fields) const { |
| 968 | if (field->real_maybe_null()) { |
| 969 | DBUG_ASSERT(is_storage_available(tuple - packed_tuple, 1)); |
| 970 | if (field->is_real_null()) { |
| 971 | /* NULL value. store '\0' so that it sorts before non-NULL values */ |
| 972 | *tuple++ = 0; |
| 973 | /* That's it, don't store anything else */ |
| 974 | if (n_null_fields) |
| 975 | (*n_null_fields)++; |
| 976 | return tuple; |
| 977 | } else { |
| 978 | /* Not a NULL value. Store '1' */ |
| 979 | *tuple++ = 1; |
| 980 | } |
| 981 | } |
| 982 | |
| 983 | const bool create_unpack_info = |
| 984 | (unpack_info && // we were requested to generate unpack_info |
| 985 | pack_info->uses_unpack_info()); // and this keypart uses it |
| 986 | Rdb_pack_field_context pack_ctx(unpack_info); |
| 987 | |
| 988 | // Set the offset for methods which do not take an offset as an argument |
| 989 | DBUG_ASSERT(is_storage_available(tuple - packed_tuple, |
| 990 | pack_info->m_max_image_len)); |
| 991 | |
| 992 | (this->*pack_info->m_pack_func)(pack_info, field, pack_buffer, &tuple, |
| 993 | &pack_ctx); |
| 994 | |
| 995 | /* Make "unpack info" to be stored in the value */ |
| 996 | if (create_unpack_info) { |
| 997 | (this->*pack_info->m_make_unpack_info_func)(pack_info->m_charset_codec, |
| 998 | field, &pack_ctx); |
| 999 | } |
| 1000 | |
| 1001 | return tuple; |
| 1002 | } |
| 1003 | |
| 1004 | /** |
| 1005 | Get index columns from the record and pack them into mem-comparable form. |
| 1006 | |
| 1007 | @param |
| 1008 | tbl Table we're working on |
| 1009 | record IN Record buffer with fields in table->record format |
| 1010 | pack_buffer IN Temporary area for packing varchars. The size is |
| 1011 | at least max_storage_fmt_length() bytes. |
| 1012 | packed_tuple OUT Key in the mem-comparable form |
| 1013 | unpack_info OUT Unpack data |
| 1014 | unpack_info_len OUT Unpack data length |
| 1015 | n_key_parts Number of keyparts to process. 0 means all of them. |
| 1016 | n_null_fields OUT Number of key fields with NULL value. |
| 1017 | ttl_pk_offset OUT Offset of the ttl column if specified and in the key |
| 1018 | |
| 1019 | @detail |
| 1020 | Some callers do not need the unpack information, they can pass |
| 1021 | unpack_info=nullptr, unpack_info_len=nullptr. |
| 1022 | |
| 1023 | @return |
| 1024 | Length of the packed tuple |
| 1025 | */ |
| 1026 | |
| 1027 | uint Rdb_key_def::pack_record( |
| 1028 | const TABLE *const tbl, uchar *const pack_buffer, const uchar *const record, |
| 1029 | uchar *const packed_tuple, Rdb_string_writer *const unpack_info, |
| 1030 | const bool &should_store_row_debug_checksums, const longlong &hidden_pk_id, |
| 1031 | uint n_key_parts, uint *const n_null_fields, uint *const ttl_pk_offset, |
| 1032 | const char *const ttl_bytes) const { |
| 1033 | DBUG_ASSERT(tbl != nullptr); |
| 1034 | DBUG_ASSERT(pack_buffer != nullptr); |
| 1035 | DBUG_ASSERT(record != nullptr); |
| 1036 | DBUG_ASSERT(packed_tuple != nullptr); |
| 1037 | // Checksums for PKs are made when record is packed. |
| 1038 | // We should never attempt to make checksum just from PK values |
| 1039 | DBUG_ASSERT_IMP(should_store_row_debug_checksums, |
| 1040 | (m_index_type == INDEX_TYPE_SECONDARY)); |
| 1041 | |
| 1042 | uchar *tuple = packed_tuple; |
| 1043 | size_t unpack_start_pos = size_t(-1); |
| 1044 | size_t unpack_len_pos = size_t(-1); |
| 1045 | size_t covered_bitmap_pos = size_t(-1); |
| 1046 | const bool hidden_pk_exists = table_has_hidden_pk(tbl); |
| 1047 | |
| 1048 | rdb_netbuf_store_index(tuple, m_index_number); |
| 1049 | tuple += INDEX_NUMBER_SIZE; |
| 1050 | |
| 1051 | // If n_key_parts is 0, it means all columns. |
| 1052 | // The following includes the 'extended key' tail. |
| 1053 | // The 'extended key' includes primary key. This is done to 'uniqify' |
| 1054 | // non-unique indexes |
| 1055 | const bool use_all_columns = n_key_parts == 0 || n_key_parts == MAX_REF_PARTS; |
| 1056 | |
| 1057 | // If hidden pk exists, but hidden pk wasnt passed in, we can't pack the |
| 1058 | // hidden key part. So we skip it (its always 1 part). |
| 1059 | if (hidden_pk_exists && !hidden_pk_id && use_all_columns) |
| 1060 | n_key_parts = m_key_parts - 1; |
| 1061 | else if (use_all_columns) |
| 1062 | n_key_parts = m_key_parts; |
| 1063 | |
| 1064 | if (n_null_fields) |
| 1065 | *n_null_fields = 0; |
| 1066 | |
| 1067 | // Check if we need a covered bitmap. If it is certain that all key parts are |
| 1068 | // covering, we don't need one. |
| 1069 | bool store_covered_bitmap = false; |
| 1070 | if (unpack_info && use_covered_bitmap_format()) { |
| 1071 | for (uint i = 0; i < n_key_parts; i++) { |
| 1072 | if (!m_pack_info[i].m_covered) { |
| 1073 | store_covered_bitmap = true; |
| 1074 | break; |
| 1075 | } |
| 1076 | } |
| 1077 | } |
| 1078 | |
| 1079 | const char tag = |
| 1080 | store_covered_bitmap ? RDB_UNPACK_COVERED_DATA_TAG : RDB_UNPACK_DATA_TAG; |
| 1081 | |
| 1082 | if (unpack_info) { |
| 1083 | unpack_info->clear(); |
| 1084 | |
| 1085 | if (m_index_type == INDEX_TYPE_SECONDARY && |
| 1086 | m_total_index_flags_length > 0) { |
| 1087 | // Reserve space for index flag fields |
| 1088 | unpack_info->allocate(m_total_index_flags_length); |
| 1089 | |
| 1090 | // Insert TTL timestamp |
| 1091 | if (has_ttl() && ttl_bytes) { |
| 1092 | write_index_flag_field(unpack_info, |
| 1093 | reinterpret_cast<const uchar *const>(ttl_bytes), |
| 1094 | Rdb_key_def::TTL_FLAG); |
| 1095 | } |
| 1096 | } |
| 1097 | |
| 1098 | unpack_start_pos = unpack_info->get_current_pos(); |
| 1099 | unpack_info->write_uint8(tag); |
| 1100 | unpack_len_pos = unpack_info->get_current_pos(); |
| 1101 | // we don't know the total length yet, so write a zero |
| 1102 | unpack_info->write_uint16(0); |
| 1103 | |
| 1104 | if (store_covered_bitmap) { |
| 1105 | // Reserve two bytes for the covered bitmap. This will store, for key |
| 1106 | // parts which are not always covering, whether or not it is covering |
| 1107 | // for this record. |
| 1108 | covered_bitmap_pos = unpack_info->get_current_pos(); |
| 1109 | unpack_info->write_uint16(0); |
| 1110 | } |
| 1111 | } |
| 1112 | |
| 1113 | MY_BITMAP covered_bitmap; |
| 1114 | my_bitmap_map covered_bits; |
| 1115 | uint curr_bitmap_pos = 0; |
| 1116 | bitmap_init(&covered_bitmap, &covered_bits, MAX_REF_PARTS, false); |
| 1117 | |
| 1118 | for (uint i = 0; i < n_key_parts; i++) { |
| 1119 | // Fill hidden pk id into the last key part for secondary keys for tables |
| 1120 | // with no pk |
| 1121 | if (hidden_pk_exists && hidden_pk_id && i + 1 == n_key_parts) { |
| 1122 | m_pack_info[i].fill_hidden_pk_val(&tuple, hidden_pk_id); |
| 1123 | break; |
| 1124 | } |
| 1125 | |
| 1126 | Field *const field = m_pack_info[i].get_field_in_table(tbl); |
| 1127 | DBUG_ASSERT(field != nullptr); |
| 1128 | |
| 1129 | uint field_offset = field->ptr - tbl->record[0]; |
| 1130 | uint null_offset = field->null_offset(tbl->record[0]); |
| 1131 | bool maybe_null = field->real_maybe_null(); |
| 1132 | |
| 1133 | // Save the ttl duration offset in the key so we can store it in front of |
| 1134 | // the record later. |
| 1135 | if (ttl_pk_offset && m_ttl_duration > 0 && i == m_ttl_pk_key_part_offset) { |
| 1136 | DBUG_ASSERT(field_check_field_name_match(field, m_ttl_column.c_str())); |
| 1137 | DBUG_ASSERT(field->real_type() == MYSQL_TYPE_LONGLONG); |
| 1138 | DBUG_ASSERT(field->key_type() == HA_KEYTYPE_ULONGLONG); |
| 1139 | DBUG_ASSERT(!field->real_maybe_null()); |
| 1140 | *ttl_pk_offset = tuple - packed_tuple; |
| 1141 | } |
| 1142 | |
| 1143 | field->move_field(const_cast<uchar*>(record) + field_offset, |
| 1144 | maybe_null ? const_cast<uchar*>(record) + null_offset : nullptr, |
| 1145 | field->null_bit); |
| 1146 | // WARNING! Don't return without restoring field->ptr and field->null_ptr |
| 1147 | |
| 1148 | tuple = pack_field(field, &m_pack_info[i], tuple, packed_tuple, pack_buffer, |
| 1149 | unpack_info, n_null_fields); |
| 1150 | |
| 1151 | // If this key part is a prefix of a VARCHAR field, check if it's covered. |
| 1152 | if (store_covered_bitmap && field->real_type() == MYSQL_TYPE_VARCHAR && |
| 1153 | !m_pack_info[i].m_covered && curr_bitmap_pos < MAX_REF_PARTS) { |
| 1154 | size_t data_length = field->data_length(); |
| 1155 | uint16 key_length; |
| 1156 | if (m_pk_part_no[i] == (uint)-1) { |
| 1157 | key_length = tbl->key_info[get_keyno()].key_part[i].length; |
| 1158 | } else { |
| 1159 | key_length = |
| 1160 | tbl->key_info[tbl->s->primary_key].key_part[m_pk_part_no[i]].length; |
| 1161 | } |
| 1162 | |
| 1163 | if (m_pack_info[i].m_unpack_func != nullptr && |
| 1164 | data_length <= key_length) { |
| 1165 | bitmap_set_bit(&covered_bitmap, curr_bitmap_pos); |
| 1166 | } |
| 1167 | curr_bitmap_pos++; |
| 1168 | } |
| 1169 | |
| 1170 | // Restore field->ptr and field->null_ptr |
| 1171 | field->move_field(tbl->record[0] + field_offset, |
| 1172 | maybe_null ? tbl->record[0] + null_offset : nullptr, |
| 1173 | field->null_bit); |
| 1174 | } |
| 1175 | |
| 1176 | if (unpack_info) { |
| 1177 | const size_t len = unpack_info->get_current_pos() - unpack_start_pos; |
| 1178 | DBUG_ASSERT(len <= std::numeric_limits<uint16_t>::max()); |
| 1179 | |
| 1180 | // Don't store the unpack_info if it has only the header (that is, there's |
| 1181 | // no meaningful content). |
| 1182 | // Primary Keys are special: for them, store the unpack_info even if it's |
| 1183 | // empty (provided m_maybe_unpack_info==true, see |
| 1184 | // ha_rocksdb::convert_record_to_storage_format) |
| 1185 | if (m_index_type == Rdb_key_def::INDEX_TYPE_SECONDARY) { |
| 1186 | if (len == get_unpack_header_size(tag) && !covered_bits) { |
| 1187 | unpack_info->truncate(unpack_start_pos); |
| 1188 | } else if (store_covered_bitmap) { |
| 1189 | unpack_info->write_uint16_at(covered_bitmap_pos, covered_bits); |
| 1190 | } |
| 1191 | } else { |
| 1192 | unpack_info->write_uint16_at(unpack_len_pos, len); |
| 1193 | } |
| 1194 | |
| 1195 | // |
| 1196 | // Secondary keys have key and value checksums in the value part |
| 1197 | // Primary key is a special case (the value part has non-indexed columns), |
| 1198 | // so the checksums are computed and stored by |
| 1199 | // ha_rocksdb::convert_record_to_storage_format |
| 1200 | // |
| 1201 | if (should_store_row_debug_checksums) { |
| 1202 | const uint32_t key_crc32 = crc32(0, packed_tuple, tuple - packed_tuple); |
| 1203 | const uint32_t val_crc32 = |
| 1204 | crc32(0, unpack_info->ptr(), unpack_info->get_current_pos()); |
| 1205 | |
| 1206 | unpack_info->write_uint8(RDB_CHECKSUM_DATA_TAG); |
| 1207 | unpack_info->write_uint32(key_crc32); |
| 1208 | unpack_info->write_uint32(val_crc32); |
| 1209 | } |
| 1210 | } |
| 1211 | |
| 1212 | DBUG_ASSERT(is_storage_available(tuple - packed_tuple, 0)); |
| 1213 | |
| 1214 | return tuple - packed_tuple; |
| 1215 | } |
| 1216 | |
| 1217 | /** |
| 1218 | Pack the hidden primary key into mem-comparable form. |
| 1219 | |
| 1220 | @param |
| 1221 | tbl Table we're working on |
| 1222 | hidden_pk_id IN New value to be packed into key |
| 1223 | packed_tuple OUT Key in the mem-comparable form |
| 1224 | |
| 1225 | @return |
| 1226 | Length of the packed tuple |
| 1227 | */ |
| 1228 | |
| 1229 | uint Rdb_key_def::pack_hidden_pk(const longlong &hidden_pk_id, |
| 1230 | uchar *const packed_tuple) const { |
| 1231 | DBUG_ASSERT(packed_tuple != nullptr); |
| 1232 | |
| 1233 | uchar *tuple = packed_tuple; |
| 1234 | rdb_netbuf_store_index(tuple, m_index_number); |
| 1235 | tuple += INDEX_NUMBER_SIZE; |
| 1236 | DBUG_ASSERT(m_key_parts == 1); |
| 1237 | DBUG_ASSERT(is_storage_available(tuple - packed_tuple, |
| 1238 | m_pack_info[0].m_max_image_len)); |
| 1239 | |
| 1240 | m_pack_info[0].fill_hidden_pk_val(&tuple, hidden_pk_id); |
| 1241 | |
| 1242 | DBUG_ASSERT(is_storage_available(tuple - packed_tuple, 0)); |
| 1243 | return tuple - packed_tuple; |
| 1244 | } |
| 1245 | |
| 1246 | /* |
| 1247 | Function of type rdb_index_field_pack_t |
| 1248 | */ |
| 1249 | |
| 1250 | void Rdb_key_def::pack_with_make_sort_key( |
| 1251 | Rdb_field_packing *const fpi, Field *const field, |
| 1252 | uchar *const buf MY_ATTRIBUTE((__unused__)), uchar **dst, |
| 1253 | Rdb_pack_field_context *const pack_ctx MY_ATTRIBUTE((__unused__))) const { |
| 1254 | DBUG_ASSERT(fpi != nullptr); |
| 1255 | DBUG_ASSERT(field != nullptr); |
| 1256 | DBUG_ASSERT(dst != nullptr); |
| 1257 | DBUG_ASSERT(*dst != nullptr); |
| 1258 | |
| 1259 | const int max_len = fpi->m_max_image_len; |
| 1260 | my_bitmap_map *old_map; |
| 1261 | |
| 1262 | old_map= dbug_tmp_use_all_columns(field->table, |
| 1263 | field->table->read_set); |
| 1264 | field->sort_string(*dst, max_len); |
| 1265 | dbug_tmp_restore_column_map(field->table->read_set, old_map); |
| 1266 | *dst += max_len; |
| 1267 | } |
| 1268 | |
| 1269 | /* |
| 1270 | Compares two keys without unpacking |
| 1271 | |
| 1272 | @detail |
| 1273 | @return |
| 1274 | 0 - Ok. column_index is the index of the first column which is different. |
| 1275 | -1 if two kes are equal |
| 1276 | 1 - Data format error. |
| 1277 | */ |
| 1278 | int Rdb_key_def::compare_keys(const rocksdb::Slice *key1, |
| 1279 | const rocksdb::Slice *key2, |
| 1280 | std::size_t *const column_index) const { |
| 1281 | DBUG_ASSERT(key1 != nullptr); |
| 1282 | DBUG_ASSERT(key2 != nullptr); |
| 1283 | DBUG_ASSERT(column_index != nullptr); |
| 1284 | |
| 1285 | // the caller should check the return value and |
| 1286 | // not rely on column_index being valid |
| 1287 | *column_index = 0xbadf00d; |
| 1288 | |
| 1289 | Rdb_string_reader reader1(key1); |
| 1290 | Rdb_string_reader reader2(key2); |
| 1291 | |
| 1292 | // Skip the index number |
| 1293 | if ((!reader1.read(INDEX_NUMBER_SIZE))) |
| 1294 | return HA_EXIT_FAILURE; |
| 1295 | |
| 1296 | if ((!reader2.read(INDEX_NUMBER_SIZE))) |
| 1297 | return HA_EXIT_FAILURE; |
| 1298 | |
| 1299 | for (uint i = 0; i < m_key_parts; i++) { |
| 1300 | const Rdb_field_packing *const fpi = &m_pack_info[i]; |
| 1301 | if (fpi->m_maybe_null) { |
| 1302 | const auto nullp1 = reader1.read(1); |
| 1303 | const auto nullp2 = reader2.read(1); |
| 1304 | |
| 1305 | if (nullp1 == nullptr || nullp2 == nullptr) { |
| 1306 | return HA_EXIT_FAILURE; |
| 1307 | } |
| 1308 | |
| 1309 | if (*nullp1 != *nullp2) { |
| 1310 | *column_index = i; |
| 1311 | return HA_EXIT_SUCCESS; |
| 1312 | } |
| 1313 | |
| 1314 | if (*nullp1 == 0) { |
| 1315 | /* This is a NULL value */ |
| 1316 | continue; |
| 1317 | } |
| 1318 | } |
| 1319 | |
| 1320 | const auto before_skip1 = reader1.get_current_ptr(); |
| 1321 | const auto before_skip2 = reader2.get_current_ptr(); |
| 1322 | DBUG_ASSERT(fpi->m_skip_func); |
| 1323 | if ((this->*fpi->m_skip_func)(fpi, nullptr, &reader1)) |
| 1324 | return HA_EXIT_FAILURE; |
| 1325 | if ((this->*fpi->m_skip_func)(fpi, nullptr, &reader2)) |
| 1326 | return HA_EXIT_FAILURE; |
| 1327 | const auto size1 = reader1.get_current_ptr() - before_skip1; |
| 1328 | const auto size2 = reader2.get_current_ptr() - before_skip2; |
| 1329 | if (size1 != size2) { |
| 1330 | *column_index = i; |
| 1331 | return HA_EXIT_SUCCESS; |
| 1332 | } |
| 1333 | |
| 1334 | if (memcmp(before_skip1, before_skip2, size1) != 0) { |
| 1335 | *column_index = i; |
| 1336 | return HA_EXIT_SUCCESS; |
| 1337 | } |
| 1338 | } |
| 1339 | |
| 1340 | *column_index = m_key_parts; |
| 1341 | return HA_EXIT_SUCCESS; |
| 1342 | } |
| 1343 | |
| 1344 | /* |
| 1345 | @brief |
| 1346 | Given a zero-padded key, determine its real key length |
| 1347 | |
| 1348 | @detail |
| 1349 | Fixed-size skip functions just read. |
| 1350 | */ |
| 1351 | |
| 1352 | size_t Rdb_key_def::key_length(const TABLE *const table, |
| 1353 | const rocksdb::Slice &key) const { |
| 1354 | DBUG_ASSERT(table != nullptr); |
| 1355 | |
| 1356 | Rdb_string_reader reader(&key); |
| 1357 | |
| 1358 | if ((!reader.read(INDEX_NUMBER_SIZE))) |
| 1359 | return size_t(-1); |
| 1360 | |
| 1361 | for (uint i = 0; i < m_key_parts; i++) { |
| 1362 | const Rdb_field_packing *fpi = &m_pack_info[i]; |
| 1363 | const Field *field = nullptr; |
| 1364 | if (m_index_type != INDEX_TYPE_HIDDEN_PRIMARY) |
| 1365 | field = fpi->get_field_in_table(table); |
| 1366 | if ((this->*fpi->m_skip_func)(fpi, field, &reader)) |
| 1367 | return size_t(-1); |
| 1368 | } |
| 1369 | return key.size() - reader.remaining_bytes(); |
| 1370 | } |
| 1371 | |
| 1372 | int Rdb_key_def::unpack_field( |
| 1373 | Rdb_field_packing *const fpi, |
| 1374 | Field *const field, |
| 1375 | Rdb_string_reader* reader, |
| 1376 | const uchar *const default_value, |
| 1377 | Rdb_string_reader* unp_reader) const |
| 1378 | { |
| 1379 | if (fpi->m_maybe_null) { |
| 1380 | const char *nullp; |
| 1381 | if (!(nullp = reader->read(1))) { |
| 1382 | return HA_EXIT_FAILURE; |
| 1383 | } |
| 1384 | |
| 1385 | if (*nullp == 0) { |
| 1386 | /* Set the NULL-bit of this field */ |
| 1387 | field->set_null(); |
| 1388 | /* Also set the field to its default value */ |
| 1389 | memcpy(field->ptr, default_value, field->pack_length()); |
| 1390 | return HA_EXIT_SUCCESS; |
| 1391 | } else if (*nullp == 1) { |
| 1392 | field->set_notnull(); |
| 1393 | } else { |
| 1394 | return HA_EXIT_FAILURE; |
| 1395 | } |
| 1396 | } |
| 1397 | |
| 1398 | return (this->*fpi->m_unpack_func)(fpi, field, field->ptr, reader, |
| 1399 | unp_reader); |
| 1400 | } |
| 1401 | |
| 1402 | /* |
| 1403 | Take mem-comparable form and unpack_info and unpack it to Table->record |
| 1404 | |
| 1405 | @detail |
| 1406 | not all indexes support this |
| 1407 | |
| 1408 | @return |
| 1409 | HA_EXIT_SUCCESS OK |
| 1410 | other HA_ERR error code |
| 1411 | */ |
| 1412 | |
| 1413 | int Rdb_key_def::unpack_record(TABLE *const table, uchar *const buf, |
| 1414 | const rocksdb::Slice *const packed_key, |
| 1415 | const rocksdb::Slice *const unpack_info, |
| 1416 | const bool &verify_row_debug_checksums) const { |
| 1417 | Rdb_string_reader reader(packed_key); |
| 1418 | Rdb_string_reader unp_reader = Rdb_string_reader::read_or_empty(unpack_info); |
| 1419 | |
| 1420 | const bool is_hidden_pk = (m_index_type == INDEX_TYPE_HIDDEN_PRIMARY); |
| 1421 | const bool hidden_pk_exists = table_has_hidden_pk(table); |
| 1422 | const bool secondary_key = (m_index_type == INDEX_TYPE_SECONDARY); |
| 1423 | // There is no checksuming data after unpack_info for primary keys, because |
| 1424 | // the layout there is different. The checksum is verified in |
| 1425 | // ha_rocksdb::convert_record_from_storage_format instead. |
| 1426 | DBUG_ASSERT_IMP(!secondary_key, !verify_row_debug_checksums); |
| 1427 | |
| 1428 | // Skip the index number |
| 1429 | if ((!reader.read(INDEX_NUMBER_SIZE))) { |
| 1430 | return HA_ERR_ROCKSDB_CORRUPT_DATA; |
| 1431 | } |
| 1432 | |
| 1433 | // For secondary keys, we expect the value field to contain unpack data and |
| 1434 | // checksum data in that order. One or both can be missing, but they cannot |
| 1435 | // be reordered. |
| 1436 | const char * = unp_reader.get_current_ptr(); |
| 1437 | const bool has_unpack_info = |
| 1438 | unp_reader.remaining_bytes() && is_unpack_data_tag(unpack_header[0]); |
| 1439 | if (has_unpack_info) { |
| 1440 | if ((m_index_type == INDEX_TYPE_SECONDARY && |
| 1441 | m_total_index_flags_length > 0 && |
| 1442 | !unp_reader.read(m_total_index_flags_length)) || |
| 1443 | !unp_reader.read(get_unpack_header_size(unpack_header[0]))) { |
| 1444 | return HA_ERR_ROCKSDB_CORRUPT_DATA; |
| 1445 | } |
| 1446 | } |
| 1447 | |
| 1448 | // Read the covered bitmap |
| 1449 | MY_BITMAP covered_bitmap; |
| 1450 | my_bitmap_map covered_bits; |
| 1451 | uint curr_bitmap_pos = 0; |
| 1452 | |
| 1453 | const bool has_covered_bitmap = |
| 1454 | has_unpack_info && (unpack_header[0] == RDB_UNPACK_COVERED_DATA_TAG); |
| 1455 | if (has_covered_bitmap) { |
| 1456 | bitmap_init(&covered_bitmap, &covered_bits, MAX_REF_PARTS, false); |
| 1457 | covered_bits = rdb_netbuf_to_uint16((const uchar *)unpack_header + |
| 1458 | sizeof(RDB_UNPACK_COVERED_DATA_TAG) + |
| 1459 | RDB_UNPACK_COVERED_DATA_LEN_SIZE); |
| 1460 | } |
| 1461 | |
| 1462 | for (uint i = 0; i < m_key_parts; i++) { |
| 1463 | Rdb_field_packing *const fpi = &m_pack_info[i]; |
| 1464 | |
| 1465 | /* |
| 1466 | Hidden pk field is packed at the end of the secondary keys, but the SQL |
| 1467 | layer does not know about it. Skip retrieving field if hidden pk. |
| 1468 | */ |
| 1469 | if ((secondary_key && hidden_pk_exists && i + 1 == m_key_parts) || |
| 1470 | is_hidden_pk) { |
| 1471 | DBUG_ASSERT(fpi->m_unpack_func); |
| 1472 | if ((this->*fpi->m_skip_func)(fpi, nullptr, &reader)) { |
| 1473 | return HA_ERR_ROCKSDB_CORRUPT_DATA; |
| 1474 | } |
| 1475 | continue; |
| 1476 | } |
| 1477 | |
| 1478 | Field *const field = fpi->get_field_in_table(table); |
| 1479 | |
| 1480 | bool covered_column = true; |
| 1481 | if (has_covered_bitmap && field->real_type() == MYSQL_TYPE_VARCHAR && |
| 1482 | !m_pack_info[i].m_covered) { |
| 1483 | covered_column = curr_bitmap_pos < MAX_REF_PARTS && |
| 1484 | bitmap_is_set(&covered_bitmap, curr_bitmap_pos); |
| 1485 | curr_bitmap_pos++; |
| 1486 | } |
| 1487 | if (fpi->m_unpack_func && covered_column) { |
| 1488 | /* It is possible to unpack this column. Do it. */ |
| 1489 | |
| 1490 | uint field_offset = field->ptr - table->record[0]; |
| 1491 | uint null_offset = field->null_offset(); |
| 1492 | bool maybe_null = field->real_maybe_null(); |
| 1493 | field->move_field(buf + field_offset, |
| 1494 | maybe_null ? buf + null_offset : nullptr, |
| 1495 | field->null_bit); |
| 1496 | // WARNING! Don't return without restoring field->ptr and field->null_ptr |
| 1497 | |
| 1498 | // If we need unpack info, but there is none, tell the unpack function |
| 1499 | // this by passing unp_reader as nullptr. If we never read unpack_info |
| 1500 | // during unpacking anyway, then there won't an error. |
| 1501 | const bool maybe_missing_unpack = |
| 1502 | !has_unpack_info && fpi->uses_unpack_info(); |
| 1503 | int res = unpack_field(fpi, field, &reader, |
| 1504 | table->s->default_values + field_offset, |
| 1505 | maybe_missing_unpack ? nullptr : &unp_reader); |
| 1506 | |
| 1507 | // Restore field->ptr and field->null_ptr |
| 1508 | field->move_field(table->record[0] + field_offset, |
| 1509 | maybe_null ? table->record[0] + null_offset : nullptr, |
| 1510 | field->null_bit); |
| 1511 | |
| 1512 | if (res != UNPACK_SUCCESS) { |
| 1513 | return HA_ERR_ROCKSDB_CORRUPT_DATA; |
| 1514 | } |
| 1515 | } else { |
| 1516 | /* It is impossible to unpack the column. Skip it. */ |
| 1517 | if (fpi->m_maybe_null) { |
| 1518 | const char *nullp; |
| 1519 | if (!(nullp = reader.read(1))) |
| 1520 | return HA_ERR_ROCKSDB_CORRUPT_DATA; |
| 1521 | if (*nullp == 0) { |
| 1522 | /* This is a NULL value */ |
| 1523 | continue; |
| 1524 | } |
| 1525 | /* If NULL marker is not '0', it can be only '1' */ |
| 1526 | if (*nullp != 1) |
| 1527 | return HA_ERR_ROCKSDB_CORRUPT_DATA; |
| 1528 | } |
| 1529 | if ((this->*fpi->m_skip_func)(fpi, field, &reader)) |
| 1530 | return HA_ERR_ROCKSDB_CORRUPT_DATA; |
| 1531 | |
| 1532 | // If this is a space padded varchar, we need to skip the indicator |
| 1533 | // bytes for trailing bytes. They're useless since we can't restore the |
| 1534 | // field anyway. |
| 1535 | // |
| 1536 | // There is a special case for prefixed varchars where we do not |
| 1537 | // generate unpack info, because we know prefixed varchars cannot be |
| 1538 | // unpacked. In this case, it is not necessary to skip. |
| 1539 | if (fpi->m_skip_func == &Rdb_key_def::skip_variable_space_pad && |
| 1540 | !fpi->m_unpack_info_stores_value) { |
| 1541 | unp_reader.read(fpi->m_unpack_info_uses_two_bytes ? 2 : 1); |
| 1542 | } |
| 1543 | } |
| 1544 | } |
| 1545 | |
| 1546 | /* |
| 1547 | Check checksum values if present |
| 1548 | */ |
| 1549 | const char *ptr; |
| 1550 | if ((ptr = unp_reader.read(1)) && *ptr == RDB_CHECKSUM_DATA_TAG) { |
| 1551 | if (verify_row_debug_checksums) { |
| 1552 | uint32_t stored_key_chksum = rdb_netbuf_to_uint32( |
| 1553 | (const uchar *)unp_reader.read(RDB_CHECKSUM_SIZE)); |
| 1554 | const uint32_t stored_val_chksum = rdb_netbuf_to_uint32( |
| 1555 | (const uchar *)unp_reader.read(RDB_CHECKSUM_SIZE)); |
| 1556 | |
| 1557 | const uint32_t computed_key_chksum = |
| 1558 | crc32(0, (const uchar *)packed_key->data(), packed_key->size()); |
| 1559 | const uint32_t computed_val_chksum = |
| 1560 | crc32(0, (const uchar *)unpack_info->data(), |
| 1561 | unpack_info->size() - RDB_CHECKSUM_CHUNK_SIZE); |
| 1562 | |
| 1563 | DBUG_EXECUTE_IF("myrocks_simulate_bad_key_checksum1" , |
| 1564 | stored_key_chksum++;); |
| 1565 | |
| 1566 | if (stored_key_chksum != computed_key_chksum) { |
| 1567 | report_checksum_mismatch(true, packed_key->data(), packed_key->size()); |
| 1568 | return HA_ERR_ROCKSDB_CHECKSUM_MISMATCH; |
| 1569 | } |
| 1570 | |
| 1571 | if (stored_val_chksum != computed_val_chksum) { |
| 1572 | report_checksum_mismatch(false, unpack_info->data(), |
| 1573 | unpack_info->size() - RDB_CHECKSUM_CHUNK_SIZE); |
| 1574 | return HA_ERR_ROCKSDB_CHECKSUM_MISMATCH; |
| 1575 | } |
| 1576 | } else { |
| 1577 | /* The checksums are present but we are not checking checksums */ |
| 1578 | } |
| 1579 | } |
| 1580 | |
| 1581 | if (reader.remaining_bytes()) |
| 1582 | return HA_ERR_ROCKSDB_CORRUPT_DATA; |
| 1583 | |
| 1584 | return HA_EXIT_SUCCESS; |
| 1585 | } |
| 1586 | |
| 1587 | bool Rdb_key_def::table_has_hidden_pk(const TABLE *const table) { |
| 1588 | return table->s->primary_key == MAX_INDEXES; |
| 1589 | } |
| 1590 | |
| 1591 | void Rdb_key_def::report_checksum_mismatch(const bool &is_key, |
| 1592 | const char *const data, |
| 1593 | const size_t data_size) const { |
| 1594 | // NO_LINT_DEBUG |
| 1595 | sql_print_error("Checksum mismatch in %s of key-value pair for index 0x%x" , |
| 1596 | is_key ? "key" : "value" , get_index_number()); |
| 1597 | |
| 1598 | const std::string buf = rdb_hexdump(data, data_size, RDB_MAX_HEXDUMP_LEN); |
| 1599 | // NO_LINT_DEBUG |
| 1600 | sql_print_error("Data with incorrect checksum (%" PRIu64 " bytes): %s" , |
| 1601 | (uint64_t)data_size, buf.c_str()); |
| 1602 | |
| 1603 | my_error(ER_INTERNAL_ERROR, MYF(0), "Record checksum mismatch" ); |
| 1604 | } |
| 1605 | |
| 1606 | bool Rdb_key_def::index_format_min_check(const int &pk_min, |
| 1607 | const int &sk_min) const { |
| 1608 | switch (m_index_type) { |
| 1609 | case INDEX_TYPE_PRIMARY: |
| 1610 | case INDEX_TYPE_HIDDEN_PRIMARY: |
| 1611 | return (m_kv_format_version >= pk_min); |
| 1612 | case INDEX_TYPE_SECONDARY: |
| 1613 | return (m_kv_format_version >= sk_min); |
| 1614 | default: |
| 1615 | DBUG_ASSERT(0); |
| 1616 | return false; |
| 1617 | } |
| 1618 | } |
| 1619 | |
| 1620 | /////////////////////////////////////////////////////////////////////////////////////////// |
| 1621 | // Rdb_field_packing |
| 1622 | /////////////////////////////////////////////////////////////////////////////////////////// |
| 1623 | |
| 1624 | /* |
| 1625 | Function of type rdb_index_field_skip_t |
| 1626 | */ |
| 1627 | |
| 1628 | int Rdb_key_def::skip_max_length(const Rdb_field_packing *const fpi, |
| 1629 | const Field *const field |
| 1630 | MY_ATTRIBUTE((__unused__)), |
| 1631 | Rdb_string_reader *const reader) const { |
| 1632 | if (!reader->read(fpi->m_max_image_len)) |
| 1633 | return HA_EXIT_FAILURE; |
| 1634 | return HA_EXIT_SUCCESS; |
| 1635 | } |
| 1636 | |
| 1637 | /* |
| 1638 | (RDB_ESCAPE_LENGTH-1) must be an even number so that pieces of lines are not |
| 1639 | split in the middle of an UTF-8 character. See the implementation of |
| 1640 | unpack_binary_or_utf8_varchar. |
| 1641 | */ |
| 1642 | |
| 1643 | #define RDB_ESCAPE_LENGTH 9 |
| 1644 | #define RDB_LEGACY_ESCAPE_LENGTH RDB_ESCAPE_LENGTH |
| 1645 | static_assert((RDB_ESCAPE_LENGTH - 1) % 2 == 0, |
| 1646 | "RDB_ESCAPE_LENGTH-1 must be even." ); |
| 1647 | |
| 1648 | #define RDB_ENCODED_SIZE(len) \ |
| 1649 | ((len + (RDB_ESCAPE_LENGTH - 2)) / (RDB_ESCAPE_LENGTH - 1)) * \ |
| 1650 | RDB_ESCAPE_LENGTH |
| 1651 | |
| 1652 | #define RDB_LEGACY_ENCODED_SIZE(len) \ |
| 1653 | ((len + (RDB_LEGACY_ESCAPE_LENGTH - 1)) / (RDB_LEGACY_ESCAPE_LENGTH - 1)) * \ |
| 1654 | RDB_LEGACY_ESCAPE_LENGTH |
| 1655 | |
| 1656 | /* |
| 1657 | Function of type rdb_index_field_skip_t |
| 1658 | */ |
| 1659 | |
| 1660 | int Rdb_key_def::skip_variable_length( |
| 1661 | const Rdb_field_packing *const fpi MY_ATTRIBUTE((__unused__)), |
| 1662 | const Field *const field, Rdb_string_reader *const reader) const { |
| 1663 | const uchar *ptr; |
| 1664 | bool finished = false; |
| 1665 | |
| 1666 | size_t dst_len; /* How much data can be there */ |
| 1667 | if (field) { |
| 1668 | const Field_varstring *const field_var = |
| 1669 | static_cast<const Field_varstring *>(field); |
| 1670 | dst_len = field_var->pack_length() - field_var->length_bytes; |
| 1671 | } else { |
| 1672 | dst_len = UINT_MAX; |
| 1673 | } |
| 1674 | |
| 1675 | bool use_legacy_format = use_legacy_varbinary_format(); |
| 1676 | |
| 1677 | /* Decode the length-emitted encoding here */ |
| 1678 | while ((ptr = (const uchar *)reader->read(RDB_ESCAPE_LENGTH))) { |
| 1679 | uint used_bytes; |
| 1680 | |
| 1681 | /* See pack_with_varchar_encoding. */ |
| 1682 | if (use_legacy_format) { |
| 1683 | used_bytes = calc_unpack_legacy_variable_format( |
| 1684 | ptr[RDB_ESCAPE_LENGTH - 1], &finished); |
| 1685 | } else { |
| 1686 | used_bytes = |
| 1687 | calc_unpack_variable_format(ptr[RDB_ESCAPE_LENGTH - 1], &finished); |
| 1688 | } |
| 1689 | |
| 1690 | if (used_bytes == (uint)-1 || dst_len < used_bytes) { |
| 1691 | return HA_EXIT_FAILURE; // Corruption in the data |
| 1692 | } |
| 1693 | |
| 1694 | if (finished) { |
| 1695 | break; |
| 1696 | } |
| 1697 | |
| 1698 | dst_len -= used_bytes; |
| 1699 | } |
| 1700 | |
| 1701 | if (!finished) { |
| 1702 | return HA_EXIT_FAILURE; |
| 1703 | } |
| 1704 | |
| 1705 | return HA_EXIT_SUCCESS; |
| 1706 | } |
| 1707 | |
| 1708 | const int VARCHAR_CMP_LESS_THAN_SPACES = 1; |
| 1709 | const int VARCHAR_CMP_EQUAL_TO_SPACES = 2; |
| 1710 | const int VARCHAR_CMP_GREATER_THAN_SPACES = 3; |
| 1711 | |
| 1712 | /* |
| 1713 | Skip a keypart that uses Variable-Length Space-Padded encoding |
| 1714 | */ |
| 1715 | |
| 1716 | int Rdb_key_def::skip_variable_space_pad( |
| 1717 | const Rdb_field_packing *const fpi, const Field *const field, |
| 1718 | Rdb_string_reader *const reader) const { |
| 1719 | const uchar *ptr; |
| 1720 | bool finished = false; |
| 1721 | |
| 1722 | size_t dst_len = UINT_MAX; /* How much data can be there */ |
| 1723 | |
| 1724 | if (field) { |
| 1725 | const Field_varstring *const field_var = |
| 1726 | static_cast<const Field_varstring *>(field); |
| 1727 | dst_len = field_var->pack_length() - field_var->length_bytes; |
| 1728 | } |
| 1729 | |
| 1730 | /* Decode the length-emitted encoding here */ |
| 1731 | while ((ptr = (const uchar *)reader->read(fpi->m_segment_size))) { |
| 1732 | // See pack_with_varchar_space_pad |
| 1733 | const uchar c = ptr[fpi->m_segment_size - 1]; |
| 1734 | if (c == VARCHAR_CMP_EQUAL_TO_SPACES) { |
| 1735 | // This is the last segment |
| 1736 | finished = true; |
| 1737 | break; |
| 1738 | } else if (c == VARCHAR_CMP_LESS_THAN_SPACES || |
| 1739 | c == VARCHAR_CMP_GREATER_THAN_SPACES) { |
| 1740 | // This is not the last segment |
| 1741 | if ((fpi->m_segment_size - 1) > dst_len) { |
| 1742 | // The segment is full of data but the table field can't hold that |
| 1743 | // much! This must be data corruption. |
| 1744 | return HA_EXIT_FAILURE; |
| 1745 | } |
| 1746 | dst_len -= (fpi->m_segment_size - 1); |
| 1747 | } else { |
| 1748 | // Encountered a value that's none of the VARCHAR_CMP* constants |
| 1749 | // It's data corruption. |
| 1750 | return HA_EXIT_FAILURE; |
| 1751 | } |
| 1752 | } |
| 1753 | return finished ? HA_EXIT_SUCCESS : HA_EXIT_FAILURE; |
| 1754 | } |
| 1755 | |
| 1756 | /* |
| 1757 | Function of type rdb_index_field_unpack_t |
| 1758 | */ |
| 1759 | |
| 1760 | int Rdb_key_def::unpack_integer( |
| 1761 | Rdb_field_packing *const fpi, Field *const field, uchar *const to, |
| 1762 | Rdb_string_reader *const reader, |
| 1763 | Rdb_string_reader *const unp_reader MY_ATTRIBUTE((__unused__))) const { |
| 1764 | const int length = fpi->m_max_image_len; |
| 1765 | |
| 1766 | const uchar *from; |
| 1767 | if (!(from = (const uchar *)reader->read(length))) |
| 1768 | return UNPACK_FAILURE; /* Mem-comparable image doesn't have enough bytes */ |
| 1769 | |
| 1770 | #ifdef WORDS_BIGENDIAN |
| 1771 | { |
| 1772 | if (((Field_num *)field)->unsigned_flag) |
| 1773 | to[0] = from[0]; |
| 1774 | else |
| 1775 | to[0] = (char)(from[0] ^ 128); // Reverse the sign bit. |
| 1776 | memcpy(to + 1, from + 1, length - 1); |
| 1777 | } |
| 1778 | #else |
| 1779 | { |
| 1780 | const int sign_byte = from[0]; |
| 1781 | if (((Field_num *)field)->unsigned_flag) |
| 1782 | to[length - 1] = sign_byte; |
| 1783 | else |
| 1784 | to[length - 1] = |
| 1785 | static_cast<char>(sign_byte ^ 128); // Reverse the sign bit. |
| 1786 | for (int i = 0, j = length - 1; i < length - 1; ++i, --j) |
| 1787 | to[i] = from[j]; |
| 1788 | } |
| 1789 | #endif |
| 1790 | return UNPACK_SUCCESS; |
| 1791 | } |
| 1792 | |
| 1793 | #if !defined(WORDS_BIGENDIAN) |
| 1794 | static void rdb_swap_double_bytes(uchar *const dst, const uchar *const src) { |
| 1795 | #if defined(__FLOAT_WORD_ORDER) && (__FLOAT_WORD_ORDER == __BIG_ENDIAN) |
| 1796 | // A few systems store the most-significant _word_ first on little-endian |
| 1797 | dst[0] = src[3]; |
| 1798 | dst[1] = src[2]; |
| 1799 | dst[2] = src[1]; |
| 1800 | dst[3] = src[0]; |
| 1801 | dst[4] = src[7]; |
| 1802 | dst[5] = src[6]; |
| 1803 | dst[6] = src[5]; |
| 1804 | dst[7] = src[4]; |
| 1805 | #else |
| 1806 | dst[0] = src[7]; |
| 1807 | dst[1] = src[6]; |
| 1808 | dst[2] = src[5]; |
| 1809 | dst[3] = src[4]; |
| 1810 | dst[4] = src[3]; |
| 1811 | dst[5] = src[2]; |
| 1812 | dst[6] = src[1]; |
| 1813 | dst[7] = src[0]; |
| 1814 | #endif |
| 1815 | } |
| 1816 | |
| 1817 | static void rdb_swap_float_bytes(uchar *const dst, const uchar *const src) { |
| 1818 | dst[0] = src[3]; |
| 1819 | dst[1] = src[2]; |
| 1820 | dst[2] = src[1]; |
| 1821 | dst[3] = src[0]; |
| 1822 | } |
| 1823 | #else |
| 1824 | #define rdb_swap_double_bytes nullptr |
| 1825 | #define rdb_swap_float_bytes nullptr |
| 1826 | #endif |
| 1827 | |
| 1828 | int Rdb_key_def::unpack_floating_point( |
| 1829 | uchar *const dst, Rdb_string_reader *const reader, const size_t &size, |
| 1830 | const int &exp_digit, const uchar *const zero_pattern, |
| 1831 | const uchar *const zero_val, |
| 1832 | void (*swap_func)(uchar *, const uchar *)) const { |
| 1833 | const uchar *const from = (const uchar *)reader->read(size); |
| 1834 | if (from == nullptr) |
| 1835 | return UNPACK_FAILURE; /* Mem-comparable image doesn't have enough bytes */ |
| 1836 | |
| 1837 | /* Check to see if the value is zero */ |
| 1838 | if (memcmp(from, zero_pattern, size) == 0) { |
| 1839 | memcpy(dst, zero_val, size); |
| 1840 | return UNPACK_SUCCESS; |
| 1841 | } |
| 1842 | |
| 1843 | #if defined(WORDS_BIGENDIAN) |
| 1844 | // On big-endian, output can go directly into result |
| 1845 | uchar *const tmp = dst; |
| 1846 | #else |
| 1847 | // Otherwise use a temporary buffer to make byte-swapping easier later |
| 1848 | uchar tmp[8]; |
| 1849 | #endif |
| 1850 | |
| 1851 | memcpy(tmp, from, size); |
| 1852 | |
| 1853 | if (tmp[0] & 0x80) { |
| 1854 | // If the high bit is set the original value was positive so |
| 1855 | // remove the high bit and subtract one from the exponent. |
| 1856 | ushort exp_part = ((ushort)tmp[0] << 8) | (ushort)tmp[1]; |
| 1857 | exp_part &= 0x7FFF; // clear high bit; |
| 1858 | exp_part -= (ushort)1 << (16 - 1 - exp_digit); // subtract from exponent |
| 1859 | tmp[0] = (uchar)(exp_part >> 8); |
| 1860 | tmp[1] = (uchar)exp_part; |
| 1861 | } else { |
| 1862 | // Otherwise the original value was negative and all bytes have been |
| 1863 | // negated. |
| 1864 | for (size_t ii = 0; ii < size; ii++) |
| 1865 | tmp[ii] ^= 0xFF; |
| 1866 | } |
| 1867 | |
| 1868 | #if !defined(WORDS_BIGENDIAN) |
| 1869 | // On little-endian, swap the bytes around |
| 1870 | swap_func(dst, tmp); |
| 1871 | #else |
| 1872 | DBUG_ASSERT(swap_func == nullptr); |
| 1873 | #endif |
| 1874 | |
| 1875 | return UNPACK_SUCCESS; |
| 1876 | } |
| 1877 | |
| 1878 | #if !defined(DBL_EXP_DIG) |
| 1879 | #define DBL_EXP_DIG (sizeof(double) * 8 - DBL_MANT_DIG) |
| 1880 | #endif |
| 1881 | |
| 1882 | /* |
| 1883 | Function of type rdb_index_field_unpack_t |
| 1884 | |
| 1885 | Unpack a double by doing the reverse action of change_double_for_sort |
| 1886 | (sql/filesort.cc). Note that this only works on IEEE values. |
| 1887 | Note also that this code assumes that NaN and +/-Infinity are never |
| 1888 | allowed in the database. |
| 1889 | */ |
| 1890 | int Rdb_key_def::unpack_double( |
| 1891 | Rdb_field_packing *const fpi MY_ATTRIBUTE((__unused__)), |
| 1892 | Field *const field MY_ATTRIBUTE((__unused__)), uchar *const field_ptr, |
| 1893 | Rdb_string_reader *const reader, |
| 1894 | Rdb_string_reader *const unp_reader MY_ATTRIBUTE((__unused__))) const { |
| 1895 | static double zero_val = 0.0; |
| 1896 | static const uchar zero_pattern[8] = {128, 0, 0, 0, 0, 0, 0, 0}; |
| 1897 | |
| 1898 | return unpack_floating_point(field_ptr, reader, sizeof(double), DBL_EXP_DIG, |
| 1899 | zero_pattern, (const uchar *)&zero_val, |
| 1900 | rdb_swap_double_bytes); |
| 1901 | } |
| 1902 | |
| 1903 | #if !defined(FLT_EXP_DIG) |
| 1904 | #define FLT_EXP_DIG (sizeof(float) * 8 - FLT_MANT_DIG) |
| 1905 | #endif |
| 1906 | |
| 1907 | /* |
| 1908 | Function of type rdb_index_field_unpack_t |
| 1909 | |
| 1910 | Unpack a float by doing the reverse action of Field_float::make_sort_key |
| 1911 | (sql/field.cc). Note that this only works on IEEE values. |
| 1912 | Note also that this code assumes that NaN and +/-Infinity are never |
| 1913 | allowed in the database. |
| 1914 | */ |
| 1915 | int Rdb_key_def::unpack_float( |
| 1916 | Rdb_field_packing *const fpi, Field *const field MY_ATTRIBUTE((__unused__)), |
| 1917 | uchar *const field_ptr, Rdb_string_reader *const reader, |
| 1918 | Rdb_string_reader *const unp_reader MY_ATTRIBUTE((__unused__))) const { |
| 1919 | static float zero_val = 0.0; |
| 1920 | static const uchar zero_pattern[4] = {128, 0, 0, 0}; |
| 1921 | |
| 1922 | return unpack_floating_point(field_ptr, reader, sizeof(float), FLT_EXP_DIG, |
| 1923 | zero_pattern, (const uchar *)&zero_val, |
| 1924 | rdb_swap_float_bytes); |
| 1925 | } |
| 1926 | |
| 1927 | /* |
| 1928 | Function of type rdb_index_field_unpack_t used to |
| 1929 | Unpack by doing the reverse action to Field_newdate::make_sort_key. |
| 1930 | */ |
| 1931 | |
| 1932 | int Rdb_key_def::unpack_newdate( |
| 1933 | Rdb_field_packing *const fpi, Field *const field MY_ATTRIBUTE((__unused__)), |
| 1934 | uchar *const field_ptr, Rdb_string_reader *const reader, |
| 1935 | Rdb_string_reader *const unp_reader MY_ATTRIBUTE((__unused__))) const { |
| 1936 | const char *from; |
| 1937 | DBUG_ASSERT(fpi->m_max_image_len == 3); |
| 1938 | |
| 1939 | if (!(from = reader->read(3))) |
| 1940 | return UNPACK_FAILURE; /* Mem-comparable image doesn't have enough bytes */ |
| 1941 | |
| 1942 | field_ptr[0] = from[2]; |
| 1943 | field_ptr[1] = from[1]; |
| 1944 | field_ptr[2] = from[0]; |
| 1945 | return UNPACK_SUCCESS; |
| 1946 | } |
| 1947 | |
| 1948 | /* |
| 1949 | Function of type rdb_index_field_unpack_t, used to |
| 1950 | Unpack the string by copying it over. |
| 1951 | This is for BINARY(n) where the value occupies the whole length. |
| 1952 | */ |
| 1953 | |
| 1954 | int Rdb_key_def::unpack_binary_str( |
| 1955 | Rdb_field_packing *const fpi, Field *const field, uchar *const to, |
| 1956 | Rdb_string_reader *const reader, |
| 1957 | Rdb_string_reader *const unp_reader MY_ATTRIBUTE((__unused__))) const { |
| 1958 | const char *from; |
| 1959 | if (!(from = reader->read(fpi->m_max_image_len))) |
| 1960 | return UNPACK_FAILURE; /* Mem-comparable image doesn't have enough bytes */ |
| 1961 | |
| 1962 | memcpy(to, from, fpi->m_max_image_len); |
| 1963 | return UNPACK_SUCCESS; |
| 1964 | } |
| 1965 | |
| 1966 | /* |
| 1967 | Function of type rdb_index_field_unpack_t. |
| 1968 | For UTF-8, we need to convert 2-byte wide-character entities back into |
| 1969 | UTF8 sequences. |
| 1970 | */ |
| 1971 | |
| 1972 | int Rdb_key_def::unpack_utf8_str( |
| 1973 | Rdb_field_packing *const fpi, Field *const field, uchar *dst, |
| 1974 | Rdb_string_reader *const reader, |
| 1975 | Rdb_string_reader *const unp_reader MY_ATTRIBUTE((__unused__))) const { |
| 1976 | my_core::CHARSET_INFO *const cset = (my_core::CHARSET_INFO *)field->charset(); |
| 1977 | const uchar *src; |
| 1978 | if (!(src = (const uchar *)reader->read(fpi->m_max_image_len))) |
| 1979 | return UNPACK_FAILURE; /* Mem-comparable image doesn't have enough bytes */ |
| 1980 | |
| 1981 | const uchar *const src_end = src + fpi->m_max_image_len; |
| 1982 | uchar *const dst_end = dst + field->pack_length(); |
| 1983 | |
| 1984 | while (src < src_end) { |
| 1985 | my_wc_t wc = (src[0] << 8) | src[1]; |
| 1986 | src += 2; |
| 1987 | int res = cset->cset->wc_mb(cset, wc, dst, dst_end); |
| 1988 | DBUG_ASSERT(res > 0 && res <= 3); |
| 1989 | if (res < 0) |
| 1990 | return UNPACK_FAILURE; |
| 1991 | dst += res; |
| 1992 | } |
| 1993 | |
| 1994 | cset->cset->fill(cset, reinterpret_cast<char *>(dst), dst_end - dst, |
| 1995 | cset->pad_char); |
| 1996 | return UNPACK_SUCCESS; |
| 1997 | } |
| 1998 | |
| 1999 | /* |
| 2000 | This is the original algorithm to encode a variable binary field. It |
| 2001 | sets a flag byte every Nth byte. The flag value is (255 - #pad) where |
| 2002 | #pad is the number of padding bytes that were needed (0 if all N-1 |
| 2003 | bytes were used). |
| 2004 | |
| 2005 | If N=8 and the field is: |
| 2006 | * 3 bytes (1, 2, 3) this is encoded as: 1, 2, 3, 0, 0, 0, 0, 251 |
| 2007 | * 4 bytes (1, 2, 3, 0) this is encoded as: 1, 2, 3, 0, 0, 0, 0, 252 |
| 2008 | And the 4 byte string compares as greater than the 3 byte string |
| 2009 | |
| 2010 | Unfortunately the algorithm has a flaw. If the input is exactly a |
| 2011 | multiple of N-1, an extra N bytes are written. Since we usually use |
| 2012 | N=9, an 8 byte input will generate 18 bytes of output instead of the |
| 2013 | 9 bytes of output that is optimal. |
| 2014 | |
| 2015 | See pack_variable_format for the newer algorithm. |
| 2016 | */ |
| 2017 | void Rdb_key_def::pack_legacy_variable_format( |
| 2018 | const uchar *src, // The data to encode |
| 2019 | size_t src_len, // The length of the data to encode |
| 2020 | uchar **dst) const // The location to encode the data |
| 2021 | { |
| 2022 | size_t copy_len; |
| 2023 | size_t padding_bytes; |
| 2024 | uchar *ptr = *dst; |
| 2025 | |
| 2026 | do { |
| 2027 | copy_len = std::min((size_t)RDB_LEGACY_ESCAPE_LENGTH - 1, src_len); |
| 2028 | padding_bytes = RDB_LEGACY_ESCAPE_LENGTH - 1 - copy_len; |
| 2029 | memcpy(ptr, src, copy_len); |
| 2030 | ptr += copy_len; |
| 2031 | src += copy_len; |
| 2032 | // pad with zeros if necessary |
| 2033 | if (padding_bytes > 0) { |
| 2034 | memset(ptr, 0, padding_bytes); |
| 2035 | ptr += padding_bytes; |
| 2036 | } |
| 2037 | |
| 2038 | *(ptr++) = 255 - padding_bytes; |
| 2039 | |
| 2040 | src_len -= copy_len; |
| 2041 | } while (padding_bytes == 0); |
| 2042 | |
| 2043 | *dst = ptr; |
| 2044 | } |
| 2045 | |
| 2046 | /* |
| 2047 | This is the new algorithm. Similarly to the legacy format the input |
| 2048 | is split up into N-1 bytes and a flag byte is used as the Nth byte |
| 2049 | in the output. |
| 2050 | |
| 2051 | - If the previous segment needed any padding the flag is set to the |
| 2052 | number of bytes used (0..N-2). 0 is possible in the first segment |
| 2053 | if the input is 0 bytes long. |
| 2054 | - If no padding was used and there is no more data left in the input |
| 2055 | the flag is set to N-1 |
| 2056 | - If no padding was used and there is still data left in the input the |
| 2057 | flag is set to N. |
| 2058 | |
| 2059 | For N=9, the following input values encode to the specified |
| 2060 | outout (where 'X' indicates a byte of the original input): |
| 2061 | - 0 bytes is encoded as 0 0 0 0 0 0 0 0 0 |
| 2062 | - 1 byte is encoded as X 0 0 0 0 0 0 0 1 |
| 2063 | - 2 bytes is encoded as X X 0 0 0 0 0 0 2 |
| 2064 | - 7 bytes is encoded as X X X X X X X 0 7 |
| 2065 | - 8 bytes is encoded as X X X X X X X X 8 |
| 2066 | - 9 bytes is encoded as X X X X X X X X 9 X 0 0 0 0 0 0 0 1 |
| 2067 | - 10 bytes is encoded as X X X X X X X X 9 X X 0 0 0 0 0 0 2 |
| 2068 | */ |
| 2069 | void Rdb_key_def::pack_variable_format( |
| 2070 | const uchar *src, // The data to encode |
| 2071 | size_t src_len, // The length of the data to encode |
| 2072 | uchar **dst) const // The location to encode the data |
| 2073 | { |
| 2074 | uchar *ptr = *dst; |
| 2075 | |
| 2076 | for (;;) { |
| 2077 | // Figure out how many bytes to copy, copy them and adjust pointers |
| 2078 | const size_t copy_len = std::min((size_t)RDB_ESCAPE_LENGTH - 1, src_len); |
| 2079 | memcpy(ptr, src, copy_len); |
| 2080 | ptr += copy_len; |
| 2081 | src += copy_len; |
| 2082 | src_len -= copy_len; |
| 2083 | |
| 2084 | // Are we at the end of the input? |
| 2085 | if (src_len == 0) { |
| 2086 | // pad with zeros if necessary; |
| 2087 | const size_t padding_bytes = RDB_ESCAPE_LENGTH - 1 - copy_len; |
| 2088 | if (padding_bytes > 0) { |
| 2089 | memset(ptr, 0, padding_bytes); |
| 2090 | ptr += padding_bytes; |
| 2091 | } |
| 2092 | |
| 2093 | // Put the flag byte (0 - N-1) in the output |
| 2094 | *(ptr++) = (uchar)copy_len; |
| 2095 | break; |
| 2096 | } |
| 2097 | |
| 2098 | // We have more data - put the flag byte (N) in and continue |
| 2099 | *(ptr++) = RDB_ESCAPE_LENGTH; |
| 2100 | } |
| 2101 | |
| 2102 | *dst = ptr; |
| 2103 | } |
| 2104 | |
| 2105 | /* |
| 2106 | Function of type rdb_index_field_pack_t |
| 2107 | */ |
| 2108 | |
| 2109 | void Rdb_key_def::pack_with_varchar_encoding( |
| 2110 | Rdb_field_packing *const fpi, Field *const field, uchar *buf, uchar **dst, |
| 2111 | Rdb_pack_field_context *const pack_ctx MY_ATTRIBUTE((__unused__))) const { |
| 2112 | const CHARSET_INFO *const charset = field->charset(); |
| 2113 | Field_varstring *const field_var = (Field_varstring *)field; |
| 2114 | |
| 2115 | const size_t value_length = (field_var->length_bytes == 1) |
| 2116 | ? (uint)*field->ptr |
| 2117 | : uint2korr(field->ptr); |
| 2118 | size_t xfrm_len = charset->coll->strnxfrm( |
| 2119 | charset, buf, fpi->m_max_image_len, field_var->char_length(), |
| 2120 | field_var->ptr + field_var->length_bytes, value_length, 0); |
| 2121 | |
| 2122 | /* Got a mem-comparable image in 'buf'. Now, produce varlength encoding */ |
| 2123 | if (use_legacy_varbinary_format()) { |
| 2124 | pack_legacy_variable_format(buf, xfrm_len, dst); |
| 2125 | } else { |
| 2126 | pack_variable_format(buf, xfrm_len, dst); |
| 2127 | } |
| 2128 | } |
| 2129 | |
| 2130 | /* |
| 2131 | Compare the string in [buf..buf_end) with a string that is an infinite |
| 2132 | sequence of strings in space_xfrm |
| 2133 | */ |
| 2134 | |
| 2135 | static int |
| 2136 | rdb_compare_string_with_spaces(const uchar *buf, const uchar *const buf_end, |
| 2137 | const std::vector<uchar> *const space_xfrm) { |
| 2138 | int cmp = 0; |
| 2139 | while (buf < buf_end) { |
| 2140 | size_t bytes = std::min((size_t)(buf_end - buf), space_xfrm->size()); |
| 2141 | if ((cmp = memcmp(buf, space_xfrm->data(), bytes)) != 0) |
| 2142 | break; |
| 2143 | buf += bytes; |
| 2144 | } |
| 2145 | return cmp; |
| 2146 | } |
| 2147 | |
| 2148 | static const int RDB_TRIMMED_CHARS_OFFSET = 8; |
| 2149 | /* |
| 2150 | Pack the data with Variable-Length Space-Padded Encoding. |
| 2151 | |
| 2152 | The encoding is there to meet two goals: |
| 2153 | |
| 2154 | Goal#1. Comparison. The SQL standard says |
| 2155 | |
| 2156 | " If the collation for the comparison has the PAD SPACE characteristic, |
| 2157 | for the purposes of the comparison, the shorter value is effectively |
| 2158 | extended to the length of the longer by concatenation of <space>s on the |
| 2159 | right. |
| 2160 | |
| 2161 | At the moment, all MySQL collations except one have the PAD SPACE |
| 2162 | characteristic. The exception is the "binary" collation that is used by |
| 2163 | [VAR]BINARY columns. (Note that binary collations for specific charsets, |
| 2164 | like utf8_bin or latin1_bin are not the same as "binary" collation, they have |
| 2165 | the PAD SPACE characteristic). |
| 2166 | |
| 2167 | Goal#2 is to preserve the number of trailing spaces in the original value. |
| 2168 | |
| 2169 | This is achieved by using the following encoding: |
| 2170 | The key part: |
| 2171 | - Stores mem-comparable image of the column |
| 2172 | - It is stored in chunks of fpi->m_segment_size bytes (*) |
| 2173 | = If the remainder of the chunk is not occupied, it is padded with mem- |
| 2174 | comparable image of the space character (cs->pad_char to be precise). |
| 2175 | - The last byte of the chunk shows how the rest of column's mem-comparable |
| 2176 | image would compare to mem-comparable image of the column extended with |
| 2177 | spaces. There are three possible values. |
| 2178 | - VARCHAR_CMP_LESS_THAN_SPACES, |
| 2179 | - VARCHAR_CMP_EQUAL_TO_SPACES |
| 2180 | - VARCHAR_CMP_GREATER_THAN_SPACES |
| 2181 | |
| 2182 | VARCHAR_CMP_EQUAL_TO_SPACES means that this chunk is the last one (the rest |
| 2183 | is spaces, or something that sorts as spaces, so there is no reason to store |
| 2184 | it). |
| 2185 | |
| 2186 | Example: if fpi->m_segment_size=5, and the collation is latin1_bin: |
| 2187 | |
| 2188 | 'abcd\0' => [ 'abcd' <VARCHAR_CMP_LESS> ]['\0 ' <VARCHAR_CMP_EQUAL> ] |
| 2189 | 'abcd' => [ 'abcd' <VARCHAR_CMP_EQUAL>] |
| 2190 | 'abcd ' => [ 'abcd' <VARCHAR_CMP_EQUAL>] |
| 2191 | 'abcdZZZZ' => [ 'abcd' <VARCHAR_CMP_GREATER>][ 'ZZZZ' <VARCHAR_CMP_EQUAL>] |
| 2192 | |
| 2193 | As mentioned above, the last chunk is padded with mem-comparable images of |
| 2194 | cs->pad_char. It can be 1-byte long (latin1), 2 (utf8_bin), 3 (utf8mb4), etc. |
| 2195 | |
| 2196 | fpi->m_segment_size depends on the used collation. It is chosen to be such |
| 2197 | that no mem-comparable image of space will ever stretch across the segments |
| 2198 | (see get_segment_size_from_collation). |
| 2199 | |
| 2200 | == The value part (aka unpack_info) == |
| 2201 | The value part stores the number of space characters that one needs to add |
| 2202 | when unpacking the string. |
| 2203 | - If the number is positive, it means add this many spaces at the end |
| 2204 | - If the number is negative, it means padding has added extra spaces which |
| 2205 | must be removed. |
| 2206 | |
| 2207 | Storage considerations |
| 2208 | - depending on column's max size, the number may occupy 1 or 2 bytes |
| 2209 | - the number of spaces that need to be removed is not more than |
| 2210 | RDB_TRIMMED_CHARS_OFFSET=8, so we offset the number by that value and |
| 2211 | then store it as unsigned. |
| 2212 | |
| 2213 | @seealso |
| 2214 | unpack_binary_or_utf8_varchar_space_pad |
| 2215 | unpack_simple_varchar_space_pad |
| 2216 | dummy_make_unpack_info |
| 2217 | skip_variable_space_pad |
| 2218 | */ |
| 2219 | |
| 2220 | void Rdb_key_def::pack_with_varchar_space_pad( |
| 2221 | Rdb_field_packing *const fpi, Field *const field, uchar *buf, uchar **dst, |
| 2222 | Rdb_pack_field_context *const pack_ctx) const { |
| 2223 | Rdb_string_writer *const unpack_info = pack_ctx->writer; |
| 2224 | const CHARSET_INFO *const charset = field->charset(); |
| 2225 | const auto field_var = static_cast<Field_varstring *>(field); |
| 2226 | |
| 2227 | const size_t value_length = (field_var->length_bytes == 1) |
| 2228 | ? (uint)*field->ptr |
| 2229 | : uint2korr(field->ptr); |
| 2230 | |
| 2231 | const size_t trimmed_len = charset->cset->lengthsp( |
| 2232 | charset, (const char *)field_var->ptr + field_var->length_bytes, |
| 2233 | value_length); |
| 2234 | const size_t xfrm_len = charset->coll->strnxfrm( |
| 2235 | charset, buf, fpi->m_max_image_len, field_var->char_length(), |
| 2236 | field_var->ptr + field_var->length_bytes, trimmed_len, 0); |
| 2237 | |
| 2238 | /* Got a mem-comparable image in 'buf'. Now, produce varlength encoding */ |
| 2239 | uchar *const buf_end = buf + xfrm_len; |
| 2240 | |
| 2241 | size_t encoded_size = 0; |
| 2242 | uchar *ptr = *dst; |
| 2243 | size_t padding_bytes; |
| 2244 | while (true) { |
| 2245 | const size_t copy_len = |
| 2246 | std::min<size_t>(fpi->m_segment_size - 1, buf_end - buf); |
| 2247 | padding_bytes = fpi->m_segment_size - 1 - copy_len; |
| 2248 | memcpy(ptr, buf, copy_len); |
| 2249 | ptr += copy_len; |
| 2250 | buf += copy_len; |
| 2251 | |
| 2252 | if (padding_bytes) { |
| 2253 | memcpy(ptr, fpi->space_xfrm->data(), padding_bytes); |
| 2254 | ptr += padding_bytes; |
| 2255 | *ptr = VARCHAR_CMP_EQUAL_TO_SPACES; // last segment |
| 2256 | } else { |
| 2257 | // Compare the string suffix with a hypothetical infinite string of |
| 2258 | // spaces. It could be that the first difference is beyond the end of |
| 2259 | // current chunk. |
| 2260 | const int cmp = |
| 2261 | rdb_compare_string_with_spaces(buf, buf_end, fpi->space_xfrm); |
| 2262 | |
| 2263 | if (cmp < 0) |
| 2264 | *ptr = VARCHAR_CMP_LESS_THAN_SPACES; |
| 2265 | else if (cmp > 0) |
| 2266 | *ptr = VARCHAR_CMP_GREATER_THAN_SPACES; |
| 2267 | else { |
| 2268 | // It turns out all the rest are spaces. |
| 2269 | *ptr = VARCHAR_CMP_EQUAL_TO_SPACES; |
| 2270 | } |
| 2271 | } |
| 2272 | encoded_size += fpi->m_segment_size; |
| 2273 | |
| 2274 | if (*(ptr++) == VARCHAR_CMP_EQUAL_TO_SPACES) |
| 2275 | break; |
| 2276 | } |
| 2277 | |
| 2278 | // m_unpack_info_stores_value means unpack_info stores the whole original |
| 2279 | // value. There is no need to store the number of trimmed/padded endspaces |
| 2280 | // in that case. |
| 2281 | if (unpack_info && !fpi->m_unpack_info_stores_value) { |
| 2282 | // (value_length - trimmed_len) is the number of trimmed space *characters* |
| 2283 | // then, padding_bytes is the number of *bytes* added as padding |
| 2284 | // then, we add 8, because we don't store negative values. |
| 2285 | DBUG_ASSERT(padding_bytes % fpi->space_xfrm_len == 0); |
| 2286 | DBUG_ASSERT((value_length - trimmed_len) % fpi->space_mb_len == 0); |
| 2287 | const size_t removed_chars = |
| 2288 | RDB_TRIMMED_CHARS_OFFSET + |
| 2289 | (value_length - trimmed_len) / fpi->space_mb_len - |
| 2290 | padding_bytes / fpi->space_xfrm_len; |
| 2291 | |
| 2292 | if (fpi->m_unpack_info_uses_two_bytes) { |
| 2293 | unpack_info->write_uint16(removed_chars); |
| 2294 | } else { |
| 2295 | DBUG_ASSERT(removed_chars < 0x100); |
| 2296 | unpack_info->write_uint8(removed_chars); |
| 2297 | } |
| 2298 | } |
| 2299 | |
| 2300 | *dst += encoded_size; |
| 2301 | } |
| 2302 | |
| 2303 | /* |
| 2304 | Calculate the number of used bytes in the chunk and whether this is the |
| 2305 | last chunk in the input. This is based on the old legacy format - see |
| 2306 | pack_legacy_variable_format. |
| 2307 | */ |
| 2308 | uint Rdb_key_def::calc_unpack_legacy_variable_format(uchar flag, |
| 2309 | bool *done) const { |
| 2310 | uint pad = 255 - flag; |
| 2311 | uint used_bytes = RDB_LEGACY_ESCAPE_LENGTH - 1 - pad; |
| 2312 | if (used_bytes > RDB_LEGACY_ESCAPE_LENGTH - 1) { |
| 2313 | return (uint)-1; |
| 2314 | } |
| 2315 | |
| 2316 | *done = used_bytes < RDB_LEGACY_ESCAPE_LENGTH - 1; |
| 2317 | return used_bytes; |
| 2318 | } |
| 2319 | |
| 2320 | /* |
| 2321 | Calculate the number of used bytes in the chunk and whether this is the |
| 2322 | last chunk in the input. This is based on the new format - see |
| 2323 | pack_variable_format. |
| 2324 | */ |
| 2325 | uint Rdb_key_def::calc_unpack_variable_format(uchar flag, bool *done) const { |
| 2326 | // Check for invalid flag values |
| 2327 | if (flag > RDB_ESCAPE_LENGTH) { |
| 2328 | return (uint)-1; |
| 2329 | } |
| 2330 | |
| 2331 | // Values from 1 to N-1 indicate this is the last chunk and that is how |
| 2332 | // many bytes were used |
| 2333 | if (flag < RDB_ESCAPE_LENGTH) { |
| 2334 | *done = true; |
| 2335 | return flag; |
| 2336 | } |
| 2337 | |
| 2338 | // A value of N means we used N-1 bytes and had more to go |
| 2339 | *done = false; |
| 2340 | return RDB_ESCAPE_LENGTH - 1; |
| 2341 | } |
| 2342 | |
| 2343 | /* |
| 2344 | Unpack data that has charset information. Each two bytes of the input is |
| 2345 | treated as a wide-character and converted to its multibyte equivalent in |
| 2346 | the output. |
| 2347 | */ |
| 2348 | static int |
| 2349 | unpack_charset(const CHARSET_INFO *cset, // character set information |
| 2350 | const uchar *src, // source data to unpack |
| 2351 | uint src_len, // length of source data |
| 2352 | uchar *dst, // destination of unpacked data |
| 2353 | uint dst_len, // length of destination data |
| 2354 | uint *used_bytes) // output number of bytes used |
| 2355 | { |
| 2356 | if (src_len & 1) { |
| 2357 | /* |
| 2358 | UTF-8 characters are encoded into two-byte entities. There is no way |
| 2359 | we can have an odd number of bytes after encoding. |
| 2360 | */ |
| 2361 | return UNPACK_FAILURE; |
| 2362 | } |
| 2363 | |
| 2364 | uchar *dst_end = dst + dst_len; |
| 2365 | uint used = 0; |
| 2366 | |
| 2367 | for (uint ii = 0; ii < src_len; ii += 2) { |
| 2368 | my_wc_t wc = (src[ii] << 8) | src[ii + 1]; |
| 2369 | int res = cset->cset->wc_mb(cset, wc, dst + used, dst_end); |
| 2370 | DBUG_ASSERT(res > 0 && res <= 3); |
| 2371 | if (res < 0) { |
| 2372 | return UNPACK_FAILURE; |
| 2373 | } |
| 2374 | |
| 2375 | used += res; |
| 2376 | } |
| 2377 | |
| 2378 | *used_bytes = used; |
| 2379 | return UNPACK_SUCCESS; |
| 2380 | } |
| 2381 | |
| 2382 | /* |
| 2383 | Function of type rdb_index_field_unpack_t |
| 2384 | */ |
| 2385 | |
| 2386 | int Rdb_key_def::unpack_binary_or_utf8_varchar( |
| 2387 | Rdb_field_packing *const fpi, Field *const field, uchar *dst, |
| 2388 | Rdb_string_reader *const reader, |
| 2389 | Rdb_string_reader *const unp_reader MY_ATTRIBUTE((__unused__))) const { |
| 2390 | const uchar *ptr; |
| 2391 | size_t len = 0; |
| 2392 | bool finished = false; |
| 2393 | uchar *d0 = dst; |
| 2394 | Field_varstring *const field_var = (Field_varstring *)field; |
| 2395 | dst += field_var->length_bytes; |
| 2396 | // How much we can unpack |
| 2397 | size_t dst_len = field_var->pack_length() - field_var->length_bytes; |
| 2398 | |
| 2399 | bool use_legacy_format = use_legacy_varbinary_format(); |
| 2400 | |
| 2401 | /* Decode the length-emitted encoding here */ |
| 2402 | while ((ptr = (const uchar *)reader->read(RDB_ESCAPE_LENGTH))) { |
| 2403 | uint used_bytes; |
| 2404 | |
| 2405 | /* See pack_with_varchar_encoding. */ |
| 2406 | if (use_legacy_format) { |
| 2407 | used_bytes = calc_unpack_legacy_variable_format( |
| 2408 | ptr[RDB_ESCAPE_LENGTH - 1], &finished); |
| 2409 | } else { |
| 2410 | used_bytes = |
| 2411 | calc_unpack_variable_format(ptr[RDB_ESCAPE_LENGTH - 1], &finished); |
| 2412 | } |
| 2413 | |
| 2414 | if (used_bytes == (uint)-1 || dst_len < used_bytes) { |
| 2415 | return UNPACK_FAILURE; // Corruption in the data |
| 2416 | } |
| 2417 | |
| 2418 | /* |
| 2419 | Now, we need to decode used_bytes of data and append them to the value. |
| 2420 | */ |
| 2421 | if (fpi->m_varchar_charset->number == COLLATION_UTF8_BIN) { |
| 2422 | int err = unpack_charset(fpi->m_varchar_charset, ptr, used_bytes, dst, |
| 2423 | dst_len, &used_bytes); |
| 2424 | if (err != UNPACK_SUCCESS) { |
| 2425 | return err; |
| 2426 | } |
| 2427 | } else { |
| 2428 | memcpy(dst, ptr, used_bytes); |
| 2429 | } |
| 2430 | |
| 2431 | dst += used_bytes; |
| 2432 | dst_len -= used_bytes; |
| 2433 | len += used_bytes; |
| 2434 | |
| 2435 | if (finished) { |
| 2436 | break; |
| 2437 | } |
| 2438 | } |
| 2439 | |
| 2440 | if (!finished) { |
| 2441 | return UNPACK_FAILURE; |
| 2442 | } |
| 2443 | |
| 2444 | /* Save the length */ |
| 2445 | if (field_var->length_bytes == 1) { |
| 2446 | d0[0] = (uchar)len; |
| 2447 | } else { |
| 2448 | DBUG_ASSERT(field_var->length_bytes == 2); |
| 2449 | int2store(d0, len); |
| 2450 | } |
| 2451 | return UNPACK_SUCCESS; |
| 2452 | } |
| 2453 | |
| 2454 | /* |
| 2455 | @seealso |
| 2456 | pack_with_varchar_space_pad - packing function |
| 2457 | unpack_simple_varchar_space_pad - unpacking function for 'simple' |
| 2458 | charsets. |
| 2459 | skip_variable_space_pad - skip function |
| 2460 | */ |
| 2461 | int Rdb_key_def::unpack_binary_or_utf8_varchar_space_pad( |
| 2462 | Rdb_field_packing *const fpi, Field *const field, uchar *dst, |
| 2463 | Rdb_string_reader *const reader, |
| 2464 | Rdb_string_reader *const unp_reader) const { |
| 2465 | const uchar *ptr; |
| 2466 | size_t len = 0; |
| 2467 | bool finished = false; |
| 2468 | Field_varstring *const field_var = static_cast<Field_varstring *>(field); |
| 2469 | uchar *d0 = dst; |
| 2470 | uchar *dst_end = dst + field_var->pack_length(); |
| 2471 | dst += field_var->length_bytes; |
| 2472 | |
| 2473 | uint space_padding_bytes = 0; |
| 2474 | uint ; |
| 2475 | if ((fpi->m_unpack_info_uses_two_bytes |
| 2476 | ? unp_reader->read_uint16(&extra_spaces) |
| 2477 | : unp_reader->read_uint8(&extra_spaces))) { |
| 2478 | return UNPACK_FAILURE; |
| 2479 | } |
| 2480 | |
| 2481 | if (extra_spaces <= RDB_TRIMMED_CHARS_OFFSET) { |
| 2482 | space_padding_bytes = |
| 2483 | -(static_cast<int>(extra_spaces) - RDB_TRIMMED_CHARS_OFFSET); |
| 2484 | extra_spaces = 0; |
| 2485 | } else |
| 2486 | extra_spaces -= RDB_TRIMMED_CHARS_OFFSET; |
| 2487 | |
| 2488 | space_padding_bytes *= fpi->space_xfrm_len; |
| 2489 | |
| 2490 | /* Decode the length-emitted encoding here */ |
| 2491 | while ((ptr = (const uchar *)reader->read(fpi->m_segment_size))) { |
| 2492 | const char last_byte = ptr[fpi->m_segment_size - 1]; |
| 2493 | size_t used_bytes; |
| 2494 | if (last_byte == VARCHAR_CMP_EQUAL_TO_SPACES) // this is the last segment |
| 2495 | { |
| 2496 | if (space_padding_bytes > (fpi->m_segment_size - 1)) |
| 2497 | return UNPACK_FAILURE; // Cannot happen, corrupted data |
| 2498 | used_bytes = (fpi->m_segment_size - 1) - space_padding_bytes; |
| 2499 | finished = true; |
| 2500 | } else { |
| 2501 | if (last_byte != VARCHAR_CMP_LESS_THAN_SPACES && |
| 2502 | last_byte != VARCHAR_CMP_GREATER_THAN_SPACES) { |
| 2503 | return UNPACK_FAILURE; // Invalid value |
| 2504 | } |
| 2505 | used_bytes = fpi->m_segment_size - 1; |
| 2506 | } |
| 2507 | |
| 2508 | // Now, need to decode used_bytes of data and append them to the value. |
| 2509 | if (fpi->m_varchar_charset->number == COLLATION_UTF8_BIN) { |
| 2510 | if (used_bytes & 1) { |
| 2511 | /* |
| 2512 | UTF-8 characters are encoded into two-byte entities. There is no way |
| 2513 | we can have an odd number of bytes after encoding. |
| 2514 | */ |
| 2515 | return UNPACK_FAILURE; |
| 2516 | } |
| 2517 | |
| 2518 | const uchar *src = ptr; |
| 2519 | const uchar *const src_end = ptr + used_bytes; |
| 2520 | while (src < src_end) { |
| 2521 | my_wc_t wc = (src[0] << 8) | src[1]; |
| 2522 | src += 2; |
| 2523 | const CHARSET_INFO *cset = fpi->m_varchar_charset; |
| 2524 | int res = cset->cset->wc_mb(cset, wc, dst, dst_end); |
| 2525 | DBUG_ASSERT(res <= 3); |
| 2526 | if (res <= 0) |
| 2527 | return UNPACK_FAILURE; |
| 2528 | dst += res; |
| 2529 | len += res; |
| 2530 | } |
| 2531 | } else { |
| 2532 | if (dst + used_bytes > dst_end) |
| 2533 | return UNPACK_FAILURE; |
| 2534 | memcpy(dst, ptr, used_bytes); |
| 2535 | dst += used_bytes; |
| 2536 | len += used_bytes; |
| 2537 | } |
| 2538 | |
| 2539 | if (finished) { |
| 2540 | if (extra_spaces) { |
| 2541 | // Both binary and UTF-8 charset store space as ' ', |
| 2542 | // so the following is ok: |
| 2543 | if (dst + extra_spaces > dst_end) |
| 2544 | return UNPACK_FAILURE; |
| 2545 | memset(dst, fpi->m_varchar_charset->pad_char, extra_spaces); |
| 2546 | len += extra_spaces; |
| 2547 | } |
| 2548 | break; |
| 2549 | } |
| 2550 | } |
| 2551 | |
| 2552 | if (!finished) |
| 2553 | return UNPACK_FAILURE; |
| 2554 | |
| 2555 | /* Save the length */ |
| 2556 | if (field_var->length_bytes == 1) { |
| 2557 | d0[0] = (uchar)len; |
| 2558 | } else { |
| 2559 | DBUG_ASSERT(field_var->length_bytes == 2); |
| 2560 | int2store(d0, len); |
| 2561 | } |
| 2562 | return UNPACK_SUCCESS; |
| 2563 | } |
| 2564 | |
| 2565 | ///////////////////////////////////////////////////////////////////////// |
| 2566 | |
| 2567 | /* |
| 2568 | Function of type rdb_make_unpack_info_t |
| 2569 | */ |
| 2570 | |
| 2571 | void Rdb_key_def::make_unpack_unknown( |
| 2572 | const Rdb_collation_codec *codec MY_ATTRIBUTE((__unused__)), |
| 2573 | const Field *const field, Rdb_pack_field_context *const pack_ctx) const { |
| 2574 | pack_ctx->writer->write(field->ptr, field->pack_length()); |
| 2575 | } |
| 2576 | |
| 2577 | /* |
| 2578 | This point of this function is only to indicate that unpack_info is |
| 2579 | available. |
| 2580 | |
| 2581 | The actual unpack_info data is produced by the function that packs the key, |
| 2582 | that is, pack_with_varchar_space_pad. |
| 2583 | */ |
| 2584 | |
| 2585 | void Rdb_key_def::dummy_make_unpack_info( |
| 2586 | const Rdb_collation_codec *codec MY_ATTRIBUTE((__unused__)), |
| 2587 | const Field *field MY_ATTRIBUTE((__unused__)), |
| 2588 | Rdb_pack_field_context *pack_ctx MY_ATTRIBUTE((__unused__))) const { |
| 2589 | // Do nothing |
| 2590 | } |
| 2591 | |
| 2592 | /* |
| 2593 | Function of type rdb_index_field_unpack_t |
| 2594 | */ |
| 2595 | |
| 2596 | int Rdb_key_def::unpack_unknown(Rdb_field_packing *const fpi, |
| 2597 | Field *const field, uchar *const dst, |
| 2598 | Rdb_string_reader *const reader, |
| 2599 | Rdb_string_reader *const unp_reader) const { |
| 2600 | const uchar *ptr; |
| 2601 | const uint len = fpi->m_unpack_data_len; |
| 2602 | // We don't use anything from the key, so skip over it. |
| 2603 | if (skip_max_length(fpi, field, reader)) { |
| 2604 | return UNPACK_FAILURE; |
| 2605 | } |
| 2606 | |
| 2607 | DBUG_ASSERT_IMP(len > 0, unp_reader != nullptr); |
| 2608 | |
| 2609 | if ((ptr = (const uchar *)unp_reader->read(len))) { |
| 2610 | memcpy(dst, ptr, len); |
| 2611 | return UNPACK_SUCCESS; |
| 2612 | } |
| 2613 | return UNPACK_FAILURE; |
| 2614 | } |
| 2615 | |
| 2616 | /* |
| 2617 | Function of type rdb_make_unpack_info_t |
| 2618 | */ |
| 2619 | |
| 2620 | void Rdb_key_def::make_unpack_unknown_varchar( |
| 2621 | const Rdb_collation_codec *const codec MY_ATTRIBUTE((__unused__)), |
| 2622 | const Field *const field, Rdb_pack_field_context *const pack_ctx) const { |
| 2623 | const auto f = static_cast<const Field_varstring *>(field); |
| 2624 | uint len = f->length_bytes == 1 ? (uint)*f->ptr : uint2korr(f->ptr); |
| 2625 | len += f->length_bytes; |
| 2626 | pack_ctx->writer->write(field->ptr, len); |
| 2627 | } |
| 2628 | |
| 2629 | /* |
| 2630 | Function of type rdb_index_field_unpack_t |
| 2631 | |
| 2632 | @detail |
| 2633 | Unpack a key part in an "unknown" collation from its |
| 2634 | (mem_comparable_form, unpack_info) form. |
| 2635 | |
| 2636 | "Unknown" means we have no clue about how mem_comparable_form is made from |
| 2637 | the original string, so we keep the whole original string in the unpack_info. |
| 2638 | |
| 2639 | @seealso |
| 2640 | make_unpack_unknown, unpack_unknown |
| 2641 | */ |
| 2642 | |
| 2643 | int Rdb_key_def::unpack_unknown_varchar( |
| 2644 | Rdb_field_packing *const fpi, Field *const field, uchar *dst, |
| 2645 | Rdb_string_reader *const reader, |
| 2646 | Rdb_string_reader *const unp_reader) const { |
| 2647 | const uchar *ptr; |
| 2648 | uchar *const d0 = dst; |
| 2649 | const auto f = static_cast<Field_varstring *>(field); |
| 2650 | dst += f->length_bytes; |
| 2651 | const uint len_bytes = f->length_bytes; |
| 2652 | // We don't use anything from the key, so skip over it. |
| 2653 | if ((this->*fpi->m_skip_func)(fpi, field, reader)) { |
| 2654 | return UNPACK_FAILURE; |
| 2655 | } |
| 2656 | |
| 2657 | DBUG_ASSERT(len_bytes > 0); |
| 2658 | DBUG_ASSERT(unp_reader != nullptr); |
| 2659 | |
| 2660 | if ((ptr = (const uchar *)unp_reader->read(len_bytes))) { |
| 2661 | memcpy(d0, ptr, len_bytes); |
| 2662 | const uint len = len_bytes == 1 ? (uint)*ptr : uint2korr(ptr); |
| 2663 | if ((ptr = (const uchar *)unp_reader->read(len))) { |
| 2664 | memcpy(dst, ptr, len); |
| 2665 | return UNPACK_SUCCESS; |
| 2666 | } |
| 2667 | } |
| 2668 | return UNPACK_FAILURE; |
| 2669 | } |
| 2670 | |
| 2671 | /* |
| 2672 | Write unpack_data for a "simple" collation |
| 2673 | */ |
| 2674 | static void rdb_write_unpack_simple(Rdb_bit_writer *const writer, |
| 2675 | const Rdb_collation_codec *const codec, |
| 2676 | const uchar *const src, |
| 2677 | const size_t src_len) { |
| 2678 | for (uint i = 0; i < src_len; i++) { |
| 2679 | writer->write(codec->m_enc_size[src[i]], codec->m_enc_idx[src[i]]); |
| 2680 | } |
| 2681 | } |
| 2682 | |
| 2683 | static uint rdb_read_unpack_simple(Rdb_bit_reader *const reader, |
| 2684 | const Rdb_collation_codec *const codec, |
| 2685 | const uchar *const src, |
| 2686 | const size_t &src_len, uchar *const dst) { |
| 2687 | for (uint i = 0; i < src_len; i++) { |
| 2688 | if (codec->m_dec_size[src[i]] > 0) { |
| 2689 | uint *ret; |
| 2690 | DBUG_ASSERT(reader != nullptr); |
| 2691 | |
| 2692 | if ((ret = reader->read(codec->m_dec_size[src[i]])) == nullptr) { |
| 2693 | return UNPACK_FAILURE; |
| 2694 | } |
| 2695 | dst[i] = codec->m_dec_idx[*ret][src[i]]; |
| 2696 | } else { |
| 2697 | dst[i] = codec->m_dec_idx[0][src[i]]; |
| 2698 | } |
| 2699 | } |
| 2700 | |
| 2701 | return UNPACK_SUCCESS; |
| 2702 | } |
| 2703 | |
| 2704 | /* |
| 2705 | Function of type rdb_make_unpack_info_t |
| 2706 | |
| 2707 | @detail |
| 2708 | Make unpack_data for VARCHAR(n) in a "simple" charset. |
| 2709 | */ |
| 2710 | |
| 2711 | void Rdb_key_def::make_unpack_simple_varchar( |
| 2712 | const Rdb_collation_codec *const codec, const Field *const field, |
| 2713 | Rdb_pack_field_context *const pack_ctx) const { |
| 2714 | const auto f = static_cast<const Field_varstring *>(field); |
| 2715 | uchar *const src = f->ptr + f->length_bytes; |
| 2716 | const size_t src_len = |
| 2717 | f->length_bytes == 1 ? (uint)*f->ptr : uint2korr(f->ptr); |
| 2718 | Rdb_bit_writer bit_writer(pack_ctx->writer); |
| 2719 | // The std::min compares characters with bytes, but for simple collations, |
| 2720 | // mbmaxlen = 1. |
| 2721 | rdb_write_unpack_simple(&bit_writer, codec, src, |
| 2722 | std::min((size_t)f->char_length(), src_len)); |
| 2723 | } |
| 2724 | |
| 2725 | /* |
| 2726 | Function of type rdb_index_field_unpack_t |
| 2727 | |
| 2728 | @seealso |
| 2729 | pack_with_varchar_space_pad - packing function |
| 2730 | unpack_binary_or_utf8_varchar_space_pad - a similar unpacking function |
| 2731 | */ |
| 2732 | |
| 2733 | int Rdb_key_def::unpack_simple_varchar_space_pad( |
| 2734 | Rdb_field_packing *const fpi, Field *const field, uchar *dst, |
| 2735 | Rdb_string_reader *const reader, |
| 2736 | Rdb_string_reader *const unp_reader) const { |
| 2737 | const uchar *ptr; |
| 2738 | size_t len = 0; |
| 2739 | bool finished = false; |
| 2740 | uchar *d0 = dst; |
| 2741 | const Field_varstring *const field_var = |
| 2742 | static_cast<Field_varstring *>(field); |
| 2743 | // For simple collations, char_length is also number of bytes. |
| 2744 | DBUG_ASSERT((size_t)fpi->m_max_image_len >= field_var->char_length()); |
| 2745 | uchar *dst_end = dst + field_var->pack_length(); |
| 2746 | dst += field_var->length_bytes; |
| 2747 | Rdb_bit_reader bit_reader(unp_reader); |
| 2748 | |
| 2749 | uint space_padding_bytes = 0; |
| 2750 | uint ; |
| 2751 | DBUG_ASSERT(unp_reader != nullptr); |
| 2752 | |
| 2753 | if ((fpi->m_unpack_info_uses_two_bytes |
| 2754 | ? unp_reader->read_uint16(&extra_spaces) |
| 2755 | : unp_reader->read_uint8(&extra_spaces))) { |
| 2756 | return UNPACK_FAILURE; |
| 2757 | } |
| 2758 | |
| 2759 | if (extra_spaces <= 8) { |
| 2760 | space_padding_bytes = -(static_cast<int>(extra_spaces) - 8); |
| 2761 | extra_spaces = 0; |
| 2762 | } else |
| 2763 | extra_spaces -= 8; |
| 2764 | |
| 2765 | space_padding_bytes *= fpi->space_xfrm_len; |
| 2766 | |
| 2767 | /* Decode the length-emitted encoding here */ |
| 2768 | while ((ptr = (const uchar *)reader->read(fpi->m_segment_size))) { |
| 2769 | const char last_byte = |
| 2770 | ptr[fpi->m_segment_size - 1]; // number of padding bytes |
| 2771 | size_t used_bytes; |
| 2772 | if (last_byte == VARCHAR_CMP_EQUAL_TO_SPACES) { |
| 2773 | // this is the last one |
| 2774 | if (space_padding_bytes > (fpi->m_segment_size - 1)) |
| 2775 | return UNPACK_FAILURE; // Cannot happen, corrupted data |
| 2776 | used_bytes = (fpi->m_segment_size - 1) - space_padding_bytes; |
| 2777 | finished = true; |
| 2778 | } else { |
| 2779 | if (last_byte != VARCHAR_CMP_LESS_THAN_SPACES && |
| 2780 | last_byte != VARCHAR_CMP_GREATER_THAN_SPACES) { |
| 2781 | return UNPACK_FAILURE; |
| 2782 | } |
| 2783 | used_bytes = fpi->m_segment_size - 1; |
| 2784 | } |
| 2785 | |
| 2786 | if (dst + used_bytes > dst_end) { |
| 2787 | // The value on disk is longer than the field definition allows? |
| 2788 | return UNPACK_FAILURE; |
| 2789 | } |
| 2790 | |
| 2791 | uint ret; |
| 2792 | if ((ret = rdb_read_unpack_simple(&bit_reader, fpi->m_charset_codec, ptr, |
| 2793 | used_bytes, dst)) != UNPACK_SUCCESS) { |
| 2794 | return ret; |
| 2795 | } |
| 2796 | |
| 2797 | dst += used_bytes; |
| 2798 | len += used_bytes; |
| 2799 | |
| 2800 | if (finished) { |
| 2801 | if (extra_spaces) { |
| 2802 | if (dst + extra_spaces > dst_end) |
| 2803 | return UNPACK_FAILURE; |
| 2804 | // pad_char has a 1-byte form in all charsets that |
| 2805 | // are handled by rdb_init_collation_mapping. |
| 2806 | memset(dst, field_var->charset()->pad_char, extra_spaces); |
| 2807 | len += extra_spaces; |
| 2808 | } |
| 2809 | break; |
| 2810 | } |
| 2811 | } |
| 2812 | |
| 2813 | if (!finished) |
| 2814 | return UNPACK_FAILURE; |
| 2815 | |
| 2816 | /* Save the length */ |
| 2817 | if (field_var->length_bytes == 1) { |
| 2818 | d0[0] = (uchar)len; |
| 2819 | } else { |
| 2820 | DBUG_ASSERT(field_var->length_bytes == 2); |
| 2821 | int2store(d0, len); |
| 2822 | } |
| 2823 | return UNPACK_SUCCESS; |
| 2824 | } |
| 2825 | |
| 2826 | /* |
| 2827 | Function of type rdb_make_unpack_info_t |
| 2828 | |
| 2829 | @detail |
| 2830 | Make unpack_data for CHAR(n) value in a "simple" charset. |
| 2831 | It is CHAR(N), so SQL layer has padded the value with spaces up to N chars. |
| 2832 | |
| 2833 | @seealso |
| 2834 | The VARCHAR variant is in make_unpack_simple_varchar |
| 2835 | */ |
| 2836 | |
| 2837 | void Rdb_key_def::make_unpack_simple( |
| 2838 | const Rdb_collation_codec *const codec, const Field *const field, |
| 2839 | Rdb_pack_field_context *const pack_ctx) const { |
| 2840 | const uchar *const src = field->ptr; |
| 2841 | Rdb_bit_writer bit_writer(pack_ctx->writer); |
| 2842 | rdb_write_unpack_simple(&bit_writer, codec, src, field->pack_length()); |
| 2843 | } |
| 2844 | |
| 2845 | /* |
| 2846 | Function of type rdb_index_field_unpack_t |
| 2847 | */ |
| 2848 | |
| 2849 | int Rdb_key_def::unpack_simple(Rdb_field_packing *const fpi, |
| 2850 | Field *const field MY_ATTRIBUTE((__unused__)), |
| 2851 | uchar *const dst, |
| 2852 | Rdb_string_reader *const reader, |
| 2853 | Rdb_string_reader *const unp_reader) const { |
| 2854 | const uchar *ptr; |
| 2855 | const uint len = fpi->m_max_image_len; |
| 2856 | Rdb_bit_reader bit_reader(unp_reader); |
| 2857 | |
| 2858 | if (!(ptr = (const uchar *)reader->read(len))) { |
| 2859 | return UNPACK_FAILURE; |
| 2860 | } |
| 2861 | |
| 2862 | return rdb_read_unpack_simple(unp_reader ? &bit_reader : nullptr, |
| 2863 | fpi->m_charset_codec, ptr, len, dst); |
| 2864 | } |
| 2865 | |
| 2866 | // See Rdb_charset_space_info::spaces_xfrm |
| 2867 | const int RDB_SPACE_XFRM_SIZE = 32; |
| 2868 | |
| 2869 | // A class holding information about how space character is represented in a |
| 2870 | // charset. |
| 2871 | class Rdb_charset_space_info { |
| 2872 | public: |
| 2873 | Rdb_charset_space_info(const Rdb_charset_space_info &) = delete; |
| 2874 | Rdb_charset_space_info &operator=(const Rdb_charset_space_info &) = delete; |
| 2875 | Rdb_charset_space_info() = default; |
| 2876 | |
| 2877 | // A few strxfrm'ed space characters, at least RDB_SPACE_XFRM_SIZE bytes |
| 2878 | std::vector<uchar> spaces_xfrm; |
| 2879 | |
| 2880 | // length(strxfrm(' ')) |
| 2881 | size_t space_xfrm_len; |
| 2882 | |
| 2883 | // length of the space character itself |
| 2884 | // Typically space is just 0x20 (length=1) but in ucs2 it is 0x00 0x20 |
| 2885 | // (length=2) |
| 2886 | size_t space_mb_len; |
| 2887 | }; |
| 2888 | |
| 2889 | static std::array<std::unique_ptr<Rdb_charset_space_info>, MY_ALL_CHARSETS_SIZE> |
| 2890 | rdb_mem_comparable_space; |
| 2891 | |
| 2892 | /* |
| 2893 | @brief |
| 2894 | For a given charset, get |
| 2895 | - strxfrm(' '), a sample that is at least RDB_SPACE_XFRM_SIZE bytes long. |
| 2896 | - length of strxfrm(charset, ' ') |
| 2897 | - length of the space character in the charset |
| 2898 | |
| 2899 | @param cs IN Charset to get the space for |
| 2900 | @param ptr OUT A few space characters |
| 2901 | @param len OUT Return length of the space (in bytes) |
| 2902 | |
| 2903 | @detail |
| 2904 | It is tempting to pre-generate mem-comparable form of space character for |
| 2905 | every charset on server startup. |
| 2906 | One can't do that: some charsets are not initialized until somebody |
| 2907 | attempts to use them (e.g. create or open a table that has a field that |
| 2908 | uses the charset). |
| 2909 | */ |
| 2910 | |
| 2911 | static void rdb_get_mem_comparable_space(const CHARSET_INFO *const cs, |
| 2912 | const std::vector<uchar> **xfrm, |
| 2913 | size_t *const xfrm_len, |
| 2914 | size_t *const mb_len) { |
| 2915 | DBUG_ASSERT(cs->number < MY_ALL_CHARSETS_SIZE); |
| 2916 | if (!rdb_mem_comparable_space[cs->number].get()) { |
| 2917 | RDB_MUTEX_LOCK_CHECK(rdb_mem_cmp_space_mutex); |
| 2918 | if (!rdb_mem_comparable_space[cs->number].get()) { |
| 2919 | // Upper bound of how many bytes can be occupied by multi-byte form of a |
| 2920 | // character in any charset. |
| 2921 | const int MAX_MULTI_BYTE_CHAR_SIZE = 4; |
| 2922 | DBUG_ASSERT(cs->mbmaxlen <= MAX_MULTI_BYTE_CHAR_SIZE); |
| 2923 | |
| 2924 | // multi-byte form of the ' ' (space) character |
| 2925 | uchar space_mb[MAX_MULTI_BYTE_CHAR_SIZE]; |
| 2926 | |
| 2927 | const size_t space_mb_len = cs->cset->wc_mb( |
| 2928 | cs, (my_wc_t)cs->pad_char, space_mb, space_mb + sizeof(space_mb)); |
| 2929 | |
| 2930 | uchar space[20]; // mem-comparable image of the space character |
| 2931 | |
| 2932 | const size_t space_len = cs->coll->strnxfrm(cs, space, sizeof(space), 1, |
| 2933 | space_mb, space_mb_len, 0); |
| 2934 | Rdb_charset_space_info *const info = new Rdb_charset_space_info; |
| 2935 | info->space_xfrm_len = space_len; |
| 2936 | info->space_mb_len = space_mb_len; |
| 2937 | while (info->spaces_xfrm.size() < RDB_SPACE_XFRM_SIZE) { |
| 2938 | info->spaces_xfrm.insert(info->spaces_xfrm.end(), space, |
| 2939 | space + space_len); |
| 2940 | } |
| 2941 | rdb_mem_comparable_space[cs->number].reset(info); |
| 2942 | } |
| 2943 | RDB_MUTEX_UNLOCK_CHECK(rdb_mem_cmp_space_mutex); |
| 2944 | } |
| 2945 | |
| 2946 | *xfrm = &rdb_mem_comparable_space[cs->number]->spaces_xfrm; |
| 2947 | *xfrm_len = rdb_mem_comparable_space[cs->number]->space_xfrm_len; |
| 2948 | *mb_len = rdb_mem_comparable_space[cs->number]->space_mb_len; |
| 2949 | } |
| 2950 | |
| 2951 | mysql_mutex_t rdb_mem_cmp_space_mutex; |
| 2952 | |
| 2953 | std::array<const Rdb_collation_codec *, MY_ALL_CHARSETS_SIZE> |
| 2954 | rdb_collation_data; |
| 2955 | mysql_mutex_t rdb_collation_data_mutex; |
| 2956 | |
| 2957 | bool rdb_is_collation_supported(const my_core::CHARSET_INFO *const cs) { |
| 2958 | return cs->strxfrm_multiply==1 && cs->mbmaxlen == 1 && |
| 2959 | !(cs->state & (MY_CS_BINSORT | MY_CS_NOPAD)); |
| 2960 | } |
| 2961 | |
| 2962 | static const Rdb_collation_codec * |
| 2963 | rdb_init_collation_mapping(const my_core::CHARSET_INFO *const cs) { |
| 2964 | DBUG_ASSERT(cs && cs->state & MY_CS_AVAILABLE); |
| 2965 | const Rdb_collation_codec *codec = rdb_collation_data[cs->number]; |
| 2966 | |
| 2967 | if (codec == nullptr && rdb_is_collation_supported(cs)) { |
| 2968 | RDB_MUTEX_LOCK_CHECK(rdb_collation_data_mutex); |
| 2969 | |
| 2970 | codec = rdb_collation_data[cs->number]; |
| 2971 | if (codec == nullptr) { |
| 2972 | Rdb_collation_codec *cur = nullptr; |
| 2973 | |
| 2974 | // Compute reverse mapping for simple collations. |
| 2975 | if (rdb_is_collation_supported(cs)) { |
| 2976 | cur = new Rdb_collation_codec; |
| 2977 | std::map<uchar, std::vector<uchar>> rev_map; |
| 2978 | size_t max_conflict_size = 0; |
| 2979 | for (int src = 0; src < 256; src++) { |
| 2980 | uchar dst = cs->sort_order[src]; |
| 2981 | rev_map[dst].push_back(src); |
| 2982 | max_conflict_size = std::max(max_conflict_size, rev_map[dst].size()); |
| 2983 | } |
| 2984 | cur->m_dec_idx.resize(max_conflict_size); |
| 2985 | |
| 2986 | for (auto const &p : rev_map) { |
| 2987 | uchar dst = p.first; |
| 2988 | for (uint idx = 0; idx < p.second.size(); idx++) { |
| 2989 | uchar src = p.second[idx]; |
| 2990 | uchar bits = |
| 2991 | my_bit_log2(my_round_up_to_next_power(p.second.size())); |
| 2992 | cur->m_enc_idx[src] = idx; |
| 2993 | cur->m_enc_size[src] = bits; |
| 2994 | cur->m_dec_size[dst] = bits; |
| 2995 | cur->m_dec_idx[idx][dst] = src; |
| 2996 | } |
| 2997 | } |
| 2998 | |
| 2999 | cur->m_make_unpack_info_func = { |
| 3000 | &Rdb_key_def::make_unpack_simple_varchar, |
| 3001 | &Rdb_key_def::make_unpack_simple}; |
| 3002 | cur->m_unpack_func = {&Rdb_key_def::unpack_simple_varchar_space_pad, |
| 3003 | &Rdb_key_def::unpack_simple}; |
| 3004 | } else { |
| 3005 | // Out of luck for now. |
| 3006 | } |
| 3007 | |
| 3008 | if (cur != nullptr) { |
| 3009 | codec = cur; |
| 3010 | cur->m_cs = cs; |
| 3011 | rdb_collation_data[cs->number] = cur; |
| 3012 | } |
| 3013 | } |
| 3014 | |
| 3015 | RDB_MUTEX_UNLOCK_CHECK(rdb_collation_data_mutex); |
| 3016 | } |
| 3017 | |
| 3018 | return codec; |
| 3019 | } |
| 3020 | |
| 3021 | static int get_segment_size_from_collation(const CHARSET_INFO *const cs) { |
| 3022 | int ret; |
| 3023 | if (cs->number == COLLATION_UTF8MB4_BIN || cs->number == COLLATION_UTF16_BIN || |
| 3024 | cs->number == COLLATION_UTF16LE_BIN || cs->number == COLLATION_UTF32_BIN) { |
| 3025 | /* |
| 3026 | In these collations, a character produces one weight, which is 3 bytes. |
| 3027 | Segment has 3 characters, add one byte for VARCHAR_CMP_* marker, and we |
| 3028 | get 3*3+1=10 |
| 3029 | */ |
| 3030 | ret = 10; |
| 3031 | } else { |
| 3032 | /* |
| 3033 | All other collations. There are two classes: |
| 3034 | - Unicode-based, except for collations mentioned in the if-condition. |
| 3035 | For these all weights are 2 bytes long, a character may produce 0..8 |
| 3036 | weights. |
| 3037 | in any case, 8 bytes of payload in the segment guarantee that the last |
| 3038 | space character won't span across segments. |
| 3039 | |
| 3040 | - Collations not based on unicode. These have length(strxfrm(' '))=1, |
| 3041 | there nothing to worry about. |
| 3042 | |
| 3043 | In both cases, take 8 bytes payload + 1 byte for VARCHAR_CMP* marker. |
| 3044 | */ |
| 3045 | ret = 9; |
| 3046 | } |
| 3047 | DBUG_ASSERT(ret < RDB_SPACE_XFRM_SIZE); |
| 3048 | return ret; |
| 3049 | } |
| 3050 | |
| 3051 | /* |
| 3052 | @brief |
| 3053 | Setup packing of index field into its mem-comparable form |
| 3054 | |
| 3055 | @detail |
| 3056 | - It is possible produce mem-comparable form for any datatype. |
| 3057 | - Some datatypes also allow to unpack the original value from its |
| 3058 | mem-comparable form. |
| 3059 | = Some of these require extra information to be stored in "unpack_info". |
| 3060 | unpack_info is not a part of mem-comparable form, it is only used to |
| 3061 | restore the original value |
| 3062 | |
| 3063 | @param |
| 3064 | field IN field to be packed/un-packed |
| 3065 | |
| 3066 | @return |
| 3067 | TRUE - Field can be read with index-only reads |
| 3068 | FALSE - Otherwise |
| 3069 | */ |
| 3070 | |
| 3071 | bool Rdb_field_packing::setup(const Rdb_key_def *const key_descr, |
| 3072 | const Field *const field, const uint &keynr_arg, |
| 3073 | const uint &key_part_arg, |
| 3074 | const uint16 &key_length) { |
| 3075 | int res = false; |
| 3076 | enum_field_types type = field ? field->real_type() : MYSQL_TYPE_LONGLONG; |
| 3077 | |
| 3078 | m_keynr = keynr_arg; |
| 3079 | m_key_part = key_part_arg; |
| 3080 | |
| 3081 | m_maybe_null = field ? field->real_maybe_null() : false; |
| 3082 | m_unpack_func = nullptr; |
| 3083 | m_make_unpack_info_func = nullptr; |
| 3084 | m_unpack_data_len = 0; |
| 3085 | space_xfrm = nullptr; // safety |
| 3086 | |
| 3087 | /* Calculate image length. By default, is is pack_length() */ |
| 3088 | m_max_image_len = |
| 3089 | field ? field->pack_length() : ROCKSDB_SIZEOF_HIDDEN_PK_COLUMN; |
| 3090 | m_skip_func = &Rdb_key_def::skip_max_length; |
| 3091 | m_pack_func = &Rdb_key_def::pack_with_make_sort_key; |
| 3092 | |
| 3093 | m_covered = false; |
| 3094 | |
| 3095 | switch (type) { |
| 3096 | case MYSQL_TYPE_LONGLONG: |
| 3097 | case MYSQL_TYPE_LONG: |
| 3098 | case MYSQL_TYPE_INT24: |
| 3099 | case MYSQL_TYPE_SHORT: |
| 3100 | case MYSQL_TYPE_TINY: |
| 3101 | m_unpack_func = &Rdb_key_def::unpack_integer; |
| 3102 | m_covered = true; |
| 3103 | return true; |
| 3104 | |
| 3105 | case MYSQL_TYPE_DOUBLE: |
| 3106 | m_unpack_func = &Rdb_key_def::unpack_double; |
| 3107 | m_covered = true; |
| 3108 | return true; |
| 3109 | |
| 3110 | case MYSQL_TYPE_FLOAT: |
| 3111 | m_unpack_func = &Rdb_key_def::unpack_float; |
| 3112 | m_covered = true; |
| 3113 | return true; |
| 3114 | |
| 3115 | case MYSQL_TYPE_NEWDECIMAL: |
| 3116 | /* |
| 3117 | Decimal is packed with Field_new_decimal::make_sort_key, which just |
| 3118 | does memcpy. |
| 3119 | Unpacking decimal values was supported only after fix for issue#253, |
| 3120 | because of that ha_rocksdb::get_storage_type() handles decimal values |
| 3121 | in a special way. |
| 3122 | */ |
| 3123 | case MYSQL_TYPE_DATETIME2: |
| 3124 | case MYSQL_TYPE_TIMESTAMP2: |
| 3125 | /* These are packed with Field_temporal_with_date_and_timef::make_sort_key */ |
| 3126 | case MYSQL_TYPE_TIME2: /* TIME is packed with Field_timef::make_sort_key */ |
| 3127 | case MYSQL_TYPE_YEAR: /* YEAR is packed with Field_tiny::make_sort_key */ |
| 3128 | /* Everything that comes here is packed with just a memcpy(). */ |
| 3129 | m_unpack_func = &Rdb_key_def::unpack_binary_str; |
| 3130 | m_covered = true; |
| 3131 | return true; |
| 3132 | |
| 3133 | case MYSQL_TYPE_NEWDATE: |
| 3134 | /* |
| 3135 | This is packed by Field_newdate::make_sort_key. It assumes the data is |
| 3136 | 3 bytes, and packing is done by swapping the byte order (for both big- |
| 3137 | and little-endian) |
| 3138 | */ |
| 3139 | m_unpack_func = &Rdb_key_def::unpack_newdate; |
| 3140 | m_covered = true; |
| 3141 | return true; |
| 3142 | case MYSQL_TYPE_TINY_BLOB: |
| 3143 | case MYSQL_TYPE_MEDIUM_BLOB: |
| 3144 | case MYSQL_TYPE_LONG_BLOB: |
| 3145 | case MYSQL_TYPE_BLOB: { |
| 3146 | if (key_descr) { |
| 3147 | // The my_charset_bin collation is special in that it will consider |
| 3148 | // shorter strings sorting as less than longer strings. |
| 3149 | // |
| 3150 | // See Field_blob::make_sort_key for details. |
| 3151 | m_max_image_len = |
| 3152 | key_length + (field->charset()->number == COLLATION_BINARY |
| 3153 | ? reinterpret_cast<const Field_blob *>(field) |
| 3154 | ->pack_length_no_ptr() |
| 3155 | : 0); |
| 3156 | // Return false because indexes on text/blob will always require |
| 3157 | // a prefix. With a prefix, the optimizer will not be able to do an |
| 3158 | // index-only scan since there may be content occuring after the prefix |
| 3159 | // length. |
| 3160 | return false; |
| 3161 | } |
| 3162 | } |
| 3163 | default: |
| 3164 | break; |
| 3165 | } |
| 3166 | |
| 3167 | m_unpack_info_stores_value = false; |
| 3168 | /* Handle [VAR](CHAR|BINARY) */ |
| 3169 | |
| 3170 | if (type == MYSQL_TYPE_VARCHAR || type == MYSQL_TYPE_STRING) { |
| 3171 | /* |
| 3172 | For CHAR-based columns, check how strxfrm image will take. |
| 3173 | field->field_length = field->char_length() * cs->mbmaxlen. |
| 3174 | */ |
| 3175 | const CHARSET_INFO *cs = field->charset(); |
| 3176 | m_max_image_len = cs->coll->strnxfrmlen(cs, field->field_length); |
| 3177 | } |
| 3178 | const bool is_varchar = (type == MYSQL_TYPE_VARCHAR); |
| 3179 | const CHARSET_INFO *cs = field->charset(); |
| 3180 | // max_image_len before chunking is taken into account |
| 3181 | const int max_image_len_before_chunks = m_max_image_len; |
| 3182 | |
| 3183 | if (is_varchar) { |
| 3184 | // The default for varchar is variable-length, without space-padding for |
| 3185 | // comparisons |
| 3186 | m_varchar_charset = cs; |
| 3187 | m_skip_func = &Rdb_key_def::skip_variable_length; |
| 3188 | m_pack_func = &Rdb_key_def::pack_with_varchar_encoding; |
| 3189 | if (!key_descr || key_descr->use_legacy_varbinary_format()) { |
| 3190 | m_max_image_len = RDB_LEGACY_ENCODED_SIZE(m_max_image_len); |
| 3191 | } else { |
| 3192 | // Calculate the maximum size of the short section plus the |
| 3193 | // maximum size of the long section |
| 3194 | m_max_image_len = RDB_ENCODED_SIZE(m_max_image_len); |
| 3195 | } |
| 3196 | |
| 3197 | const auto field_var = static_cast<const Field_varstring *>(field); |
| 3198 | m_unpack_info_uses_two_bytes = (field_var->field_length + 8 >= 0x100); |
| 3199 | } |
| 3200 | |
| 3201 | if (type == MYSQL_TYPE_VARCHAR || type == MYSQL_TYPE_STRING) { |
| 3202 | // See http://dev.mysql.com/doc/refman/5.7/en/string-types.html for |
| 3203 | // information about character-based datatypes are compared. |
| 3204 | bool use_unknown_collation = false; |
| 3205 | DBUG_EXECUTE_IF("myrocks_enable_unknown_collation_index_only_scans" , |
| 3206 | use_unknown_collation = true;); |
| 3207 | |
| 3208 | if (cs->number == COLLATION_BINARY) { |
| 3209 | // - SQL layer pads BINARY(N) so that it always is N bytes long. |
| 3210 | // - For VARBINARY(N), values may have different lengths, so we're using |
| 3211 | // variable-length encoding. This is also the only charset where the |
| 3212 | // values are not space-padded for comparison. |
| 3213 | m_unpack_func = is_varchar ? &Rdb_key_def::unpack_binary_or_utf8_varchar |
| 3214 | : &Rdb_key_def::unpack_binary_str; |
| 3215 | res = true; |
| 3216 | } else if (cs->number == COLLATION_LATIN1_BIN || cs->number == COLLATION_UTF8_BIN) { |
| 3217 | // For _bin collations, mem-comparable form of the string is the string |
| 3218 | // itself. |
| 3219 | |
| 3220 | if (is_varchar) { |
| 3221 | // VARCHARs - are compared as if they were space-padded - but are |
| 3222 | // not actually space-padded (reading the value back produces the |
| 3223 | // original value, without the padding) |
| 3224 | m_unpack_func = &Rdb_key_def::unpack_binary_or_utf8_varchar_space_pad; |
| 3225 | m_skip_func = &Rdb_key_def::skip_variable_space_pad; |
| 3226 | m_pack_func = &Rdb_key_def::pack_with_varchar_space_pad; |
| 3227 | m_make_unpack_info_func = &Rdb_key_def::dummy_make_unpack_info; |
| 3228 | m_segment_size = get_segment_size_from_collation(cs); |
| 3229 | m_max_image_len = |
| 3230 | (max_image_len_before_chunks / (m_segment_size - 1) + 1) * |
| 3231 | m_segment_size; |
| 3232 | rdb_get_mem_comparable_space(cs, &space_xfrm, &space_xfrm_len, |
| 3233 | &space_mb_len); |
| 3234 | } else { |
| 3235 | // SQL layer pads CHAR(N) values to their maximum length. |
| 3236 | // We just store that and restore it back. |
| 3237 | m_unpack_func = (cs->number == COLLATION_LATIN1_BIN) ? |
| 3238 | &Rdb_key_def::unpack_binary_str |
| 3239 | : &Rdb_key_def::unpack_utf8_str; |
| 3240 | } |
| 3241 | res = true; |
| 3242 | } else { |
| 3243 | // This is [VAR]CHAR(n) and the collation is not $(charset_name)_bin |
| 3244 | |
| 3245 | res = true; // index-only scans are possible |
| 3246 | m_unpack_data_len = is_varchar ? 0 : field->field_length; |
| 3247 | const uint idx = is_varchar ? 0 : 1; |
| 3248 | const Rdb_collation_codec *codec = nullptr; |
| 3249 | |
| 3250 | if (is_varchar) { |
| 3251 | // VARCHAR requires space-padding for doing comparisons |
| 3252 | // |
| 3253 | // The check for cs->levels_for_order is to catch |
| 3254 | // latin2_czech_cs and cp1250_czech_cs - multi-level collations |
| 3255 | // that Variable-Length Space Padded Encoding can't handle. |
| 3256 | // It is not expected to work for any other multi-level collations, |
| 3257 | // either. |
| 3258 | // Currently we handle these collations as NO_PAD, even if they have |
| 3259 | // PAD_SPACE attribute. |
| 3260 | if (cs->levels_for_order == 1) { |
| 3261 | m_pack_func = &Rdb_key_def::pack_with_varchar_space_pad; |
| 3262 | m_skip_func = &Rdb_key_def::skip_variable_space_pad; |
| 3263 | m_segment_size = get_segment_size_from_collation(cs); |
| 3264 | m_max_image_len = |
| 3265 | (max_image_len_before_chunks / (m_segment_size - 1) + 1) * |
| 3266 | m_segment_size; |
| 3267 | rdb_get_mem_comparable_space(cs, &space_xfrm, &space_xfrm_len, |
| 3268 | &space_mb_len); |
| 3269 | } else { |
| 3270 | // NO_LINT_DEBUG |
| 3271 | sql_print_warning("RocksDB: you're trying to create an index " |
| 3272 | "with a multi-level collation %s" , |
| 3273 | cs->name); |
| 3274 | // NO_LINT_DEBUG |
| 3275 | sql_print_warning("MyRocks will handle this collation internally " |
| 3276 | " as if it had a NO_PAD attribute." ); |
| 3277 | m_pack_func = &Rdb_key_def::pack_with_varchar_encoding; |
| 3278 | m_skip_func = &Rdb_key_def::skip_variable_length; |
| 3279 | } |
| 3280 | } |
| 3281 | |
| 3282 | if ((codec = rdb_init_collation_mapping(cs)) != nullptr) { |
| 3283 | // The collation allows to store extra information in the unpack_info |
| 3284 | // which can be used to restore the original value from the |
| 3285 | // mem-comparable form. |
| 3286 | m_make_unpack_info_func = codec->m_make_unpack_info_func[idx]; |
| 3287 | m_unpack_func = codec->m_unpack_func[idx]; |
| 3288 | m_charset_codec = codec; |
| 3289 | } else if (use_unknown_collation) { |
| 3290 | // We have no clue about how this collation produces mem-comparable |
| 3291 | // form. Our way of restoring the original value is to keep a copy of |
| 3292 | // the original value in unpack_info. |
| 3293 | m_unpack_info_stores_value = true; |
| 3294 | m_make_unpack_info_func = |
| 3295 | is_varchar ? &Rdb_key_def::make_unpack_unknown_varchar |
| 3296 | : &Rdb_key_def::make_unpack_unknown; |
| 3297 | m_unpack_func = is_varchar ? &Rdb_key_def::unpack_unknown_varchar |
| 3298 | : &Rdb_key_def::unpack_unknown; |
| 3299 | } else { |
| 3300 | // Same as above: we don't know how to restore the value from its |
| 3301 | // mem-comparable form. |
| 3302 | // Here, we just indicate to the SQL layer we can't do it. |
| 3303 | DBUG_ASSERT(m_unpack_func == nullptr); |
| 3304 | m_unpack_info_stores_value = false; |
| 3305 | res = false; // Indicate that index-only reads are not possible |
| 3306 | } |
| 3307 | } |
| 3308 | |
| 3309 | // Make an adjustment: if this column is partially covered, tell the SQL |
| 3310 | // layer we can't do index-only scans. Later when we perform an index read, |
| 3311 | // we'll check on a record-by-record basis if we can do an index-only scan |
| 3312 | // or not. |
| 3313 | uint field_length; |
| 3314 | if (field->table) { |
| 3315 | field_length = field->table->field[field->field_index]->field_length; |
| 3316 | } else { |
| 3317 | field_length = field->field_length; |
| 3318 | } |
| 3319 | |
| 3320 | if (field_length != key_length) { |
| 3321 | res = false; |
| 3322 | // If this index doesn't support covered bitmaps, then we won't know |
| 3323 | // during a read if the column is actually covered or not. If so, we need |
| 3324 | // to assume the column isn't covered and skip it during unpacking. |
| 3325 | // |
| 3326 | // If key_descr == NULL, then this is a dummy field and we probably don't |
| 3327 | // need to perform this step. However, to preserve the behavior before |
| 3328 | // this change, we'll only skip this step if we have an index which |
| 3329 | // supports covered bitmaps. |
| 3330 | if (!key_descr || !key_descr->use_covered_bitmap_format()) { |
| 3331 | m_unpack_func = nullptr; |
| 3332 | m_make_unpack_info_func = nullptr; |
| 3333 | m_unpack_info_stores_value = true; |
| 3334 | } |
| 3335 | } |
| 3336 | } |
| 3337 | |
| 3338 | m_covered = res; |
| 3339 | return res; |
| 3340 | } |
| 3341 | |
| 3342 | Field *Rdb_field_packing::get_field_in_table(const TABLE *const tbl) const { |
| 3343 | return tbl->key_info[m_keynr].key_part[m_key_part].field; |
| 3344 | } |
| 3345 | |
| 3346 | void Rdb_field_packing::fill_hidden_pk_val(uchar **dst, |
| 3347 | const longlong &hidden_pk_id) const { |
| 3348 | DBUG_ASSERT(m_max_image_len == 8); |
| 3349 | |
| 3350 | String to; |
| 3351 | rdb_netstr_append_uint64(&to, hidden_pk_id); |
| 3352 | memcpy(*dst, to.ptr(), m_max_image_len); |
| 3353 | |
| 3354 | *dst += m_max_image_len; |
| 3355 | } |
| 3356 | |
| 3357 | /////////////////////////////////////////////////////////////////////////////////////////// |
| 3358 | // Rdb_ddl_manager |
| 3359 | /////////////////////////////////////////////////////////////////////////////////////////// |
| 3360 | |
| 3361 | Rdb_tbl_def::~Rdb_tbl_def() { |
| 3362 | auto ddl_manager = rdb_get_ddl_manager(); |
| 3363 | /* Don't free key definitions */ |
| 3364 | if (m_key_descr_arr) { |
| 3365 | for (uint i = 0; i < m_key_count; i++) { |
| 3366 | if (ddl_manager && m_key_descr_arr[i]) { |
| 3367 | ddl_manager->erase_index_num(m_key_descr_arr[i]->get_gl_index_id()); |
| 3368 | } |
| 3369 | |
| 3370 | m_key_descr_arr[i] = nullptr; |
| 3371 | } |
| 3372 | |
| 3373 | delete[] m_key_descr_arr; |
| 3374 | m_key_descr_arr = nullptr; |
| 3375 | } |
| 3376 | } |
| 3377 | |
| 3378 | /* |
| 3379 | Put table definition DDL entry. Actual write is done at |
| 3380 | Rdb_dict_manager::commit. |
| 3381 | |
| 3382 | We write |
| 3383 | dbname.tablename -> version + {key_entry, key_entry, key_entry, ... } |
| 3384 | |
| 3385 | Where key entries are a tuple of |
| 3386 | ( cf_id, index_nr ) |
| 3387 | */ |
| 3388 | |
| 3389 | bool Rdb_tbl_def::put_dict(Rdb_dict_manager *const dict, |
| 3390 | rocksdb::WriteBatch *const batch, uchar *const key, |
| 3391 | const size_t &keylen) { |
| 3392 | StringBuffer<8 * Rdb_key_def::PACKED_SIZE> indexes; |
| 3393 | indexes.alloc(Rdb_key_def::VERSION_SIZE + |
| 3394 | m_key_count * Rdb_key_def::PACKED_SIZE * 2); |
| 3395 | rdb_netstr_append_uint16(&indexes, Rdb_key_def::DDL_ENTRY_INDEX_VERSION); |
| 3396 | |
| 3397 | for (uint i = 0; i < m_key_count; i++) { |
| 3398 | const Rdb_key_def &kd = *m_key_descr_arr[i]; |
| 3399 | |
| 3400 | uchar flags = |
| 3401 | (kd.m_is_reverse_cf ? Rdb_key_def::REVERSE_CF_FLAG : 0) | |
| 3402 | (kd.m_is_per_partition_cf ? Rdb_key_def::PER_PARTITION_CF_FLAG : 0); |
| 3403 | |
| 3404 | const uint cf_id = kd.get_cf()->GetID(); |
| 3405 | /* |
| 3406 | If cf_id already exists, cf_flags must be the same. |
| 3407 | To prevent race condition, reading/modifying/committing CF flags |
| 3408 | need to be protected by mutex (dict_manager->lock()). |
| 3409 | When RocksDB supports transaction with pessimistic concurrency |
| 3410 | control, we can switch to use it and removing mutex. |
| 3411 | */ |
| 3412 | uint existing_cf_flags; |
| 3413 | const std::string cf_name = kd.get_cf()->GetName(); |
| 3414 | |
| 3415 | if (dict->get_cf_flags(cf_id, &existing_cf_flags)) { |
| 3416 | // For the purposes of comparison we'll clear the partitioning bit. The |
| 3417 | // intent here is to make sure that both partitioned and non-partitioned |
| 3418 | // tables can refer to the same CF. |
| 3419 | existing_cf_flags &= ~Rdb_key_def::CF_FLAGS_TO_IGNORE; |
| 3420 | flags &= ~Rdb_key_def::CF_FLAGS_TO_IGNORE; |
| 3421 | |
| 3422 | if (existing_cf_flags != flags) { |
| 3423 | my_error(ER_CF_DIFFERENT, MYF(0), cf_name.c_str(), flags, |
| 3424 | existing_cf_flags); |
| 3425 | return true; |
| 3426 | } |
| 3427 | } else { |
| 3428 | dict->add_cf_flags(batch, cf_id, flags); |
| 3429 | } |
| 3430 | |
| 3431 | rdb_netstr_append_uint32(&indexes, cf_id); |
| 3432 | rdb_netstr_append_uint32(&indexes, kd.m_index_number); |
| 3433 | |
| 3434 | struct Rdb_index_info index_info; |
| 3435 | index_info.m_gl_index_id = {cf_id, kd.m_index_number}; |
| 3436 | index_info.m_index_dict_version = Rdb_key_def::INDEX_INFO_VERSION_LATEST; |
| 3437 | index_info.m_index_type = kd.m_index_type; |
| 3438 | index_info.m_kv_version = kd.m_kv_format_version; |
| 3439 | index_info.m_index_flags = kd.m_index_flags_bitmap; |
| 3440 | index_info.m_ttl_duration = kd.m_ttl_duration; |
| 3441 | |
| 3442 | dict->add_or_update_index_cf_mapping(batch, &index_info); |
| 3443 | } |
| 3444 | |
| 3445 | const rocksdb::Slice skey((char *)key, keylen); |
| 3446 | const rocksdb::Slice svalue(indexes.c_ptr(), indexes.length()); |
| 3447 | |
| 3448 | dict->put_key(batch, skey, svalue); |
| 3449 | return false; |
| 3450 | } |
| 3451 | |
| 3452 | // Length that each index flag takes inside the record. |
| 3453 | // Each index in the array maps to the enum INDEX_FLAG |
| 3454 | static const std::array<uint, 1> index_flag_lengths = { |
| 3455 | {ROCKSDB_SIZEOF_TTL_RECORD}}; |
| 3456 | |
| 3457 | bool Rdb_key_def::has_index_flag(uint32 index_flags, enum INDEX_FLAG flag) { |
| 3458 | return flag & index_flags; |
| 3459 | } |
| 3460 | |
| 3461 | uint32 Rdb_key_def::calculate_index_flag_offset(uint32 index_flags, |
| 3462 | enum INDEX_FLAG flag, |
| 3463 | uint *const length) { |
| 3464 | |
| 3465 | DBUG_ASSERT_IMP(flag != MAX_FLAG, |
| 3466 | Rdb_key_def::has_index_flag(index_flags, flag)); |
| 3467 | |
| 3468 | uint offset = 0; |
| 3469 | for (size_t bit = 0; bit < sizeof(index_flags) * CHAR_BIT; ++bit) { |
| 3470 | int mask = 1 << bit; |
| 3471 | |
| 3472 | /* Exit once we've reached the proper flag */ |
| 3473 | if (flag & mask) { |
| 3474 | if (length != nullptr) { |
| 3475 | *length = index_flag_lengths[bit]; |
| 3476 | } |
| 3477 | break; |
| 3478 | } |
| 3479 | |
| 3480 | if (index_flags & mask) { |
| 3481 | offset += index_flag_lengths[bit]; |
| 3482 | } |
| 3483 | } |
| 3484 | |
| 3485 | return offset; |
| 3486 | } |
| 3487 | |
| 3488 | void Rdb_key_def::write_index_flag_field(Rdb_string_writer *const buf, |
| 3489 | const uchar *const val, |
| 3490 | enum INDEX_FLAG flag) const { |
| 3491 | uint len; |
| 3492 | uint offset = calculate_index_flag_offset(m_index_flags_bitmap, flag, &len); |
| 3493 | DBUG_ASSERT(offset + len <= buf->get_current_pos()); |
| 3494 | memcpy(buf->ptr() + offset, val, len); |
| 3495 | } |
| 3496 | |
| 3497 | void Rdb_tbl_def::check_if_is_mysql_system_table() { |
| 3498 | static const char *const system_dbs[] = { |
| 3499 | "mysql" , "performance_schema" , "information_schema" , |
| 3500 | }; |
| 3501 | |
| 3502 | m_is_mysql_system_table = false; |
| 3503 | for (uint ii = 0; ii < array_elements(system_dbs); ii++) { |
| 3504 | if (strcmp(m_dbname.c_str(), system_dbs[ii]) == 0) { |
| 3505 | m_is_mysql_system_table = true; |
| 3506 | break; |
| 3507 | } |
| 3508 | } |
| 3509 | } |
| 3510 | |
| 3511 | void Rdb_tbl_def::set_name(const std::string &name) { |
| 3512 | int err MY_ATTRIBUTE((__unused__)); |
| 3513 | |
| 3514 | m_dbname_tablename = name; |
| 3515 | err = rdb_split_normalized_tablename(name, &m_dbname, &m_tablename, |
| 3516 | &m_partition); |
| 3517 | DBUG_ASSERT(err == 0); |
| 3518 | |
| 3519 | check_if_is_mysql_system_table(); |
| 3520 | } |
| 3521 | |
| 3522 | GL_INDEX_ID Rdb_tbl_def::get_autoincr_gl_index_id() { |
| 3523 | for (uint i = 0; i < m_key_count; i++) { |
| 3524 | auto &k = m_key_descr_arr[i]; |
| 3525 | if (k->m_index_type == Rdb_key_def::INDEX_TYPE_PRIMARY || |
| 3526 | k->m_index_type == Rdb_key_def::INDEX_TYPE_HIDDEN_PRIMARY) { |
| 3527 | return k->get_gl_index_id(); |
| 3528 | } |
| 3529 | } |
| 3530 | |
| 3531 | // Every table must have a primary key, even if it's hidden. |
| 3532 | abort(); |
| 3533 | return GL_INDEX_ID(); |
| 3534 | } |
| 3535 | |
| 3536 | /* |
| 3537 | Static function of type my_hash_get_key that gets invoked by |
| 3538 | the m_ddl_hash object of type my_core::HASH. |
| 3539 | It manufactures a key (db+table name in our case) from a record |
| 3540 | (Rdb_tbl_def in our case). |
| 3541 | */ |
| 3542 | const uchar * |
| 3543 | Rdb_ddl_manager::get_hash_key(Rdb_tbl_def *const rec, size_t *const length, |
| 3544 | my_bool not_used MY_ATTRIBUTE((__unused__))) { |
| 3545 | const std::string &dbname_tablename = rec->full_tablename(); |
| 3546 | *length = dbname_tablename.size(); |
| 3547 | return reinterpret_cast<const uchar *>(dbname_tablename.c_str()); |
| 3548 | } |
| 3549 | |
| 3550 | /* |
| 3551 | Static function of type void (*my_hash_free_element_func_t)(void*) that gets |
| 3552 | invoked by the m_ddl_hash object of type my_core::HASH. |
| 3553 | It deletes a record (Rdb_tbl_def in our case). |
| 3554 | */ |
| 3555 | void Rdb_ddl_manager::free_hash_elem(void *const data) { |
| 3556 | Rdb_tbl_def *elem = reinterpret_cast<Rdb_tbl_def *>(data); |
| 3557 | delete elem; |
| 3558 | } |
| 3559 | |
| 3560 | void Rdb_ddl_manager::erase_index_num(const GL_INDEX_ID &gl_index_id) { |
| 3561 | m_index_num_to_keydef.erase(gl_index_id); |
| 3562 | } |
| 3563 | |
| 3564 | void Rdb_ddl_manager::add_uncommitted_keydefs( |
| 3565 | const std::unordered_set<std::shared_ptr<Rdb_key_def>> &indexes) { |
| 3566 | mysql_rwlock_wrlock(&m_rwlock); |
| 3567 | for (const auto &index : indexes) { |
| 3568 | m_index_num_to_uncommitted_keydef[index->get_gl_index_id()] = index; |
| 3569 | } |
| 3570 | mysql_rwlock_unlock(&m_rwlock); |
| 3571 | } |
| 3572 | |
| 3573 | void Rdb_ddl_manager::remove_uncommitted_keydefs( |
| 3574 | const std::unordered_set<std::shared_ptr<Rdb_key_def>> &indexes) { |
| 3575 | mysql_rwlock_wrlock(&m_rwlock); |
| 3576 | for (const auto &index : indexes) { |
| 3577 | m_index_num_to_uncommitted_keydef.erase(index->get_gl_index_id()); |
| 3578 | } |
| 3579 | mysql_rwlock_unlock(&m_rwlock); |
| 3580 | } |
| 3581 | |
| 3582 | namespace // anonymous namespace = not visible outside this source file |
| 3583 | { |
| 3584 | struct Rdb_validate_tbls : public Rdb_tables_scanner { |
| 3585 | using tbl_info_t = std::pair<std::string, bool>; |
| 3586 | using tbl_list_t = std::map<std::string, std::set<tbl_info_t>>; |
| 3587 | |
| 3588 | tbl_list_t m_list; |
| 3589 | |
| 3590 | int add_table(Rdb_tbl_def *tdef) override; |
| 3591 | |
| 3592 | bool compare_to_actual_tables(const std::string &datadir, bool *has_errors); |
| 3593 | |
| 3594 | bool scan_for_frms(const std::string &datadir, const std::string &dbname, |
| 3595 | bool *has_errors); |
| 3596 | |
| 3597 | bool check_frm_file(const std::string &fullpath, const std::string &dbname, |
| 3598 | const std::string &tablename, bool *has_errors); |
| 3599 | }; |
| 3600 | } // anonymous namespace |
| 3601 | |
| 3602 | /* |
| 3603 | Get a list of tables that we expect to have .frm files for. This will use the |
| 3604 | information just read from the RocksDB data dictionary. |
| 3605 | */ |
| 3606 | int Rdb_validate_tbls::add_table(Rdb_tbl_def *tdef) { |
| 3607 | DBUG_ASSERT(tdef != nullptr); |
| 3608 | |
| 3609 | /* Add the database/table into the list that are not temp table */ |
| 3610 | if (tdef->base_tablename().find(tmp_file_prefix) == std::string::npos) { |
| 3611 | bool is_partition = tdef->base_partition().size() != 0; |
| 3612 | m_list[tdef->base_dbname()].insert( |
| 3613 | tbl_info_t(tdef->base_tablename(), is_partition)); |
| 3614 | } |
| 3615 | |
| 3616 | return HA_EXIT_SUCCESS; |
| 3617 | } |
| 3618 | |
| 3619 | /* |
| 3620 | Access the .frm file for this dbname/tablename and see if it is a RocksDB |
| 3621 | table (or partition table). |
| 3622 | */ |
| 3623 | bool Rdb_validate_tbls::check_frm_file(const std::string &fullpath, |
| 3624 | const std::string &dbname, |
| 3625 | const std::string &tablename, |
| 3626 | bool *has_errors) { |
| 3627 | /* Check this .frm file to see what engine it uses */ |
| 3628 | String fullfilename(fullpath.c_str(), &my_charset_bin); |
| 3629 | fullfilename.append(FN_DIRSEP); |
| 3630 | fullfilename.append(tablename.c_str()); |
| 3631 | fullfilename.append(".frm" ); |
| 3632 | |
| 3633 | /* |
| 3634 | This function will return the legacy_db_type of the table. Currently |
| 3635 | it does not reference the first parameter (THD* thd), but if it ever |
| 3636 | did in the future we would need to make a version that does it without |
| 3637 | the connection handle as we don't have one here. |
| 3638 | */ |
| 3639 | char eng_type_buf[NAME_CHAR_LEN+1]; |
| 3640 | LEX_CSTRING eng_type_str = {eng_type_buf, 0}; |
| 3641 | bool is_sequence; |
| 3642 | enum Table_type type = dd_frm_type(nullptr, fullfilename.c_ptr(), &eng_type_str, &is_sequence); |
| 3643 | if (type == TABLE_TYPE_UNKNOWN) { |
| 3644 | sql_print_warning("RocksDB: Failed to open/read .from file: %s" , |
| 3645 | fullfilename.ptr()); |
| 3646 | return false; |
| 3647 | } |
| 3648 | |
| 3649 | if (type == TABLE_TYPE_NORMAL) { |
| 3650 | /* For a RocksDB table do we have a reference in the data dictionary? */ |
| 3651 | if (!strncmp(eng_type_str.str, "ROCKSDB" , eng_type_str.length)) { |
| 3652 | /* |
| 3653 | Attempt to remove the table entry from the list of tables. If this |
| 3654 | fails then we know we had a .frm file that wasn't registered in RocksDB. |
| 3655 | */ |
| 3656 | tbl_info_t element(tablename, false); |
| 3657 | if (m_list.count(dbname) == 0 || m_list[dbname].erase(element) == 0) { |
| 3658 | sql_print_warning("RocksDB: Schema mismatch - " |
| 3659 | "A .frm file exists for table %s.%s, " |
| 3660 | "but that table is not registered in RocksDB" , |
| 3661 | dbname.c_str(), tablename.c_str()); |
| 3662 | *has_errors = true; |
| 3663 | } |
| 3664 | } else if (!strncmp(eng_type_str.str, "partition" , eng_type_str.length)) { |
| 3665 | /* |
| 3666 | For partition tables, see if it is in the m_list as a partition, |
| 3667 | but don't generate an error if it isn't there - we don't know that the |
| 3668 | .frm is for RocksDB. |
| 3669 | */ |
| 3670 | if (m_list.count(dbname) > 0) { |
| 3671 | m_list[dbname].erase(tbl_info_t(tablename, true)); |
| 3672 | } |
| 3673 | } |
| 3674 | } |
| 3675 | |
| 3676 | return true; |
| 3677 | } |
| 3678 | |
| 3679 | /* Scan the database subdirectory for .frm files */ |
| 3680 | bool Rdb_validate_tbls::scan_for_frms(const std::string &datadir, |
| 3681 | const std::string &dbname, |
| 3682 | bool *has_errors) { |
| 3683 | bool result = true; |
| 3684 | std::string fullpath = datadir + dbname; |
| 3685 | struct st_my_dir *dir_info = my_dir(fullpath.c_str(), MYF(MY_DONT_SORT)); |
| 3686 | |
| 3687 | /* Access the directory */ |
| 3688 | if (dir_info == nullptr) { |
| 3689 | sql_print_warning("RocksDB: Could not open database directory: %s" , |
| 3690 | fullpath.c_str()); |
| 3691 | return false; |
| 3692 | } |
| 3693 | |
| 3694 | /* Scan through the files in the directory */ |
| 3695 | struct fileinfo *file_info = dir_info->dir_entry; |
| 3696 | for (uint ii = 0; ii < dir_info->number_of_files; ii++, file_info++) { |
| 3697 | /* Find .frm files that are not temp files (those that contain '#sql') */ |
| 3698 | const char *ext = strrchr(file_info->name, '.'); |
| 3699 | if (ext != nullptr && strstr(file_info->name, tmp_file_prefix) == nullptr && |
| 3700 | strcmp(ext, ".frm" ) == 0) { |
| 3701 | std::string tablename = |
| 3702 | std::string(file_info->name, ext - file_info->name); |
| 3703 | |
| 3704 | /* Check to see if the .frm file is from RocksDB */ |
| 3705 | if (!check_frm_file(fullpath, dbname, tablename, has_errors)) { |
| 3706 | result = false; |
| 3707 | break; |
| 3708 | } |
| 3709 | } |
| 3710 | } |
| 3711 | |
| 3712 | /* Remove any databases who have no more tables listed */ |
| 3713 | if (m_list.count(dbname) == 1 && m_list[dbname].size() == 0) { |
| 3714 | m_list.erase(dbname); |
| 3715 | } |
| 3716 | |
| 3717 | /* Release the directory entry */ |
| 3718 | my_dirend(dir_info); |
| 3719 | |
| 3720 | return result; |
| 3721 | } |
| 3722 | |
| 3723 | /* |
| 3724 | Scan the datadir for all databases (subdirectories) and get a list of .frm |
| 3725 | files they contain |
| 3726 | */ |
| 3727 | bool Rdb_validate_tbls::compare_to_actual_tables(const std::string &datadir, |
| 3728 | bool *has_errors) { |
| 3729 | bool result = true; |
| 3730 | struct st_my_dir *dir_info; |
| 3731 | struct fileinfo *file_info; |
| 3732 | |
| 3733 | dir_info = my_dir(datadir.c_str(), MYF(MY_DONT_SORT | MY_WANT_STAT)); |
| 3734 | if (dir_info == nullptr) { |
| 3735 | sql_print_warning("RocksDB: could not open datadir: %s" , datadir.c_str()); |
| 3736 | return false; |
| 3737 | } |
| 3738 | |
| 3739 | file_info = dir_info->dir_entry; |
| 3740 | for (uint ii = 0; ii < dir_info->number_of_files; ii++, file_info++) { |
| 3741 | /* Ignore files/dirs starting with '.' */ |
| 3742 | if (file_info->name[0] == '.') |
| 3743 | continue; |
| 3744 | |
| 3745 | /* Ignore all non-directory files */ |
| 3746 | if (!MY_S_ISDIR(file_info->mystat->st_mode)) |
| 3747 | continue; |
| 3748 | |
| 3749 | /* Scan all the .frm files in the directory */ |
| 3750 | if (!scan_for_frms(datadir, file_info->name, has_errors)) { |
| 3751 | result = false; |
| 3752 | break; |
| 3753 | } |
| 3754 | } |
| 3755 | |
| 3756 | /* Release the directory info */ |
| 3757 | my_dirend(dir_info); |
| 3758 | |
| 3759 | return result; |
| 3760 | } |
| 3761 | |
| 3762 | /* |
| 3763 | Validate that all auto increment values in the data dictionary are on a |
| 3764 | supported version. |
| 3765 | */ |
| 3766 | bool Rdb_ddl_manager::validate_auto_incr() { |
| 3767 | std::unique_ptr<rocksdb::Iterator> it(m_dict->new_iterator()); |
| 3768 | |
| 3769 | uchar auto_incr_entry[Rdb_key_def::INDEX_NUMBER_SIZE]; |
| 3770 | rdb_netbuf_store_index(auto_incr_entry, Rdb_key_def::AUTO_INC); |
| 3771 | const rocksdb::Slice auto_incr_entry_slice( |
| 3772 | reinterpret_cast<char *>(auto_incr_entry), |
| 3773 | Rdb_key_def::INDEX_NUMBER_SIZE); |
| 3774 | for (it->Seek(auto_incr_entry_slice); it->Valid(); it->Next()) { |
| 3775 | const rocksdb::Slice key = it->key(); |
| 3776 | const rocksdb::Slice val = it->value(); |
| 3777 | GL_INDEX_ID gl_index_id; |
| 3778 | |
| 3779 | if (key.size() >= Rdb_key_def::INDEX_NUMBER_SIZE && |
| 3780 | memcmp(key.data(), auto_incr_entry, Rdb_key_def::INDEX_NUMBER_SIZE)) |
| 3781 | break; |
| 3782 | |
| 3783 | if (key.size() != Rdb_key_def::INDEX_NUMBER_SIZE * 3) { |
| 3784 | return false; |
| 3785 | } |
| 3786 | |
| 3787 | if (val.size() <= Rdb_key_def::VERSION_SIZE) { |
| 3788 | return false; |
| 3789 | } |
| 3790 | |
| 3791 | // Check if we have orphaned entries for whatever reason by cross |
| 3792 | // referencing ddl entries. |
| 3793 | auto ptr = reinterpret_cast<const uchar *>(key.data()); |
| 3794 | ptr += Rdb_key_def::INDEX_NUMBER_SIZE; |
| 3795 | rdb_netbuf_read_gl_index(&ptr, &gl_index_id); |
| 3796 | if (!m_dict->get_index_info(gl_index_id, nullptr)) { |
| 3797 | // NO_LINT_DEBUG |
| 3798 | sql_print_warning("RocksDB: AUTOINC mismatch - " |
| 3799 | "Index number (%u, %u) found in AUTOINC " |
| 3800 | "but does not exist as a DDL entry" , |
| 3801 | gl_index_id.cf_id, gl_index_id.index_id); |
| 3802 | return false; |
| 3803 | } |
| 3804 | |
| 3805 | ptr = reinterpret_cast<const uchar *>(val.data()); |
| 3806 | const int version = rdb_netbuf_read_uint16(&ptr); |
| 3807 | if (version > Rdb_key_def::AUTO_INCREMENT_VERSION) { |
| 3808 | // NO_LINT_DEBUG |
| 3809 | sql_print_warning("RocksDB: AUTOINC mismatch - " |
| 3810 | "Index number (%u, %u) found in AUTOINC " |
| 3811 | "is on unsupported version %d" , |
| 3812 | gl_index_id.cf_id, gl_index_id.index_id, version); |
| 3813 | return false; |
| 3814 | } |
| 3815 | } |
| 3816 | |
| 3817 | if (!it->status().ok()) { |
| 3818 | return false; |
| 3819 | } |
| 3820 | |
| 3821 | return true; |
| 3822 | } |
| 3823 | |
| 3824 | /* |
| 3825 | Validate that all the tables in the RocksDB database dictionary match the .frm |
| 3826 | files in the datadir |
| 3827 | */ |
| 3828 | bool Rdb_ddl_manager::validate_schemas(void) { |
| 3829 | bool has_errors = false; |
| 3830 | const std::string datadir = std::string(mysql_real_data_home); |
| 3831 | Rdb_validate_tbls table_list; |
| 3832 | |
| 3833 | /* Get the list of tables from the database dictionary */ |
| 3834 | if (scan_for_tables(&table_list) != 0) { |
| 3835 | return false; |
| 3836 | } |
| 3837 | |
| 3838 | /* Compare that to the list of actual .frm files */ |
| 3839 | if (!table_list.compare_to_actual_tables(datadir, &has_errors)) { |
| 3840 | return false; |
| 3841 | } |
| 3842 | |
| 3843 | /* |
| 3844 | Any tables left in the tables list are ones that are registered in RocksDB |
| 3845 | but don't have .frm files. |
| 3846 | */ |
| 3847 | for (const auto &db : table_list.m_list) { |
| 3848 | for (const auto &table : db.second) { |
| 3849 | sql_print_warning("RocksDB: Schema mismatch - " |
| 3850 | "Table %s.%s is registered in RocksDB " |
| 3851 | "but does not have a .frm file" , |
| 3852 | db.first.c_str(), table.first.c_str()); |
| 3853 | has_errors = true; |
| 3854 | } |
| 3855 | } |
| 3856 | |
| 3857 | return !has_errors; |
| 3858 | } |
| 3859 | |
| 3860 | bool Rdb_ddl_manager::init(Rdb_dict_manager *const dict_arg, |
| 3861 | Rdb_cf_manager *const cf_manager, |
| 3862 | const uint32_t &validate_tables) { |
| 3863 | const ulong TABLE_HASH_SIZE = 32; |
| 3864 | m_dict = dict_arg; |
| 3865 | mysql_rwlock_init(0, &m_rwlock); |
| 3866 | (void)my_hash_init(&m_ddl_hash, |
| 3867 | /*system_charset_info*/ &my_charset_bin, TABLE_HASH_SIZE, |
| 3868 | 0, 0, (my_hash_get_key)Rdb_ddl_manager::get_hash_key, |
| 3869 | Rdb_ddl_manager::free_hash_elem, 0); |
| 3870 | |
| 3871 | /* Read the data dictionary and populate the hash */ |
| 3872 | uchar ddl_entry[Rdb_key_def::INDEX_NUMBER_SIZE]; |
| 3873 | rdb_netbuf_store_index(ddl_entry, Rdb_key_def::DDL_ENTRY_INDEX_START_NUMBER); |
| 3874 | const rocksdb::Slice ddl_entry_slice((char *)ddl_entry, |
| 3875 | Rdb_key_def::INDEX_NUMBER_SIZE); |
| 3876 | |
| 3877 | /* Reading data dictionary should always skip bloom filter */ |
| 3878 | rocksdb::Iterator *it = m_dict->new_iterator(); |
| 3879 | int i = 0; |
| 3880 | |
| 3881 | uint max_index_id_in_dict = 0; |
| 3882 | m_dict->get_max_index_id(&max_index_id_in_dict); |
| 3883 | |
| 3884 | for (it->Seek(ddl_entry_slice); it->Valid(); it->Next()) { |
| 3885 | const uchar *ptr; |
| 3886 | const uchar *ptr_end; |
| 3887 | const rocksdb::Slice key = it->key(); |
| 3888 | const rocksdb::Slice val = it->value(); |
| 3889 | |
| 3890 | if (key.size() >= Rdb_key_def::INDEX_NUMBER_SIZE && |
| 3891 | memcmp(key.data(), ddl_entry, Rdb_key_def::INDEX_NUMBER_SIZE)) |
| 3892 | break; |
| 3893 | |
| 3894 | if (key.size() <= Rdb_key_def::INDEX_NUMBER_SIZE) { |
| 3895 | sql_print_error("RocksDB: Table_store: key has length %d (corruption?)" , |
| 3896 | (int)key.size()); |
| 3897 | return true; |
| 3898 | } |
| 3899 | |
| 3900 | Rdb_tbl_def *const tdef = |
| 3901 | new Rdb_tbl_def(key, Rdb_key_def::INDEX_NUMBER_SIZE); |
| 3902 | |
| 3903 | // Now, read the DDLs. |
| 3904 | const int real_val_size = val.size() - Rdb_key_def::VERSION_SIZE; |
| 3905 | if (real_val_size % Rdb_key_def::PACKED_SIZE * 2 > 0) { |
| 3906 | sql_print_error("RocksDB: Table_store: invalid keylist for table %s" , |
| 3907 | tdef->full_tablename().c_str()); |
| 3908 | return true; |
| 3909 | } |
| 3910 | tdef->m_key_count = real_val_size / (Rdb_key_def::PACKED_SIZE * 2); |
| 3911 | tdef->m_key_descr_arr = new std::shared_ptr<Rdb_key_def>[tdef->m_key_count]; |
| 3912 | |
| 3913 | ptr = reinterpret_cast<const uchar *>(val.data()); |
| 3914 | const int version = rdb_netbuf_read_uint16(&ptr); |
| 3915 | if (version != Rdb_key_def::DDL_ENTRY_INDEX_VERSION) { |
| 3916 | sql_print_error("RocksDB: DDL ENTRY Version was not expected." |
| 3917 | "Expected: %d, Actual: %d" , |
| 3918 | Rdb_key_def::DDL_ENTRY_INDEX_VERSION, version); |
| 3919 | return true; |
| 3920 | } |
| 3921 | ptr_end = ptr + real_val_size; |
| 3922 | for (uint keyno = 0; ptr < ptr_end; keyno++) { |
| 3923 | GL_INDEX_ID gl_index_id; |
| 3924 | rdb_netbuf_read_gl_index(&ptr, &gl_index_id); |
| 3925 | uint flags = 0; |
| 3926 | struct Rdb_index_info index_info; |
| 3927 | if (!m_dict->get_index_info(gl_index_id, &index_info)) { |
| 3928 | sql_print_error("RocksDB: Could not get index information " |
| 3929 | "for Index Number (%u,%u), table %s" , |
| 3930 | gl_index_id.cf_id, gl_index_id.index_id, |
| 3931 | tdef->full_tablename().c_str()); |
| 3932 | return true; |
| 3933 | } |
| 3934 | if (max_index_id_in_dict < gl_index_id.index_id) { |
| 3935 | sql_print_error("RocksDB: Found max index id %u from data dictionary " |
| 3936 | "but also found larger index id %u from dictionary. " |
| 3937 | "This should never happen and possibly a bug." , |
| 3938 | max_index_id_in_dict, gl_index_id.index_id); |
| 3939 | return true; |
| 3940 | } |
| 3941 | if (!m_dict->get_cf_flags(gl_index_id.cf_id, &flags)) { |
| 3942 | sql_print_error("RocksDB: Could not get Column Family Flags " |
| 3943 | "for CF Number %d, table %s" , |
| 3944 | gl_index_id.cf_id, tdef->full_tablename().c_str()); |
| 3945 | return true; |
| 3946 | } |
| 3947 | |
| 3948 | if ((flags & Rdb_key_def::AUTO_CF_FLAG) != 0) { |
| 3949 | // The per-index cf option is deprecated. Make sure we don't have the |
| 3950 | // flag set in any existing database. NO_LINT_DEBUG |
| 3951 | sql_print_error("RocksDB: The defunct AUTO_CF_FLAG is enabled for CF " |
| 3952 | "number %d, table %s" , |
| 3953 | gl_index_id.cf_id, tdef->full_tablename().c_str()); |
| 3954 | } |
| 3955 | |
| 3956 | rocksdb::ColumnFamilyHandle *const cfh = |
| 3957 | cf_manager->get_cf(gl_index_id.cf_id); |
| 3958 | DBUG_ASSERT(cfh != nullptr); |
| 3959 | |
| 3960 | uint32 ttl_rec_offset = |
| 3961 | Rdb_key_def::has_index_flag(index_info.m_index_flags, |
| 3962 | Rdb_key_def::TTL_FLAG) |
| 3963 | ? Rdb_key_def::calculate_index_flag_offset( |
| 3964 | index_info.m_index_flags, Rdb_key_def::TTL_FLAG) |
| 3965 | : UINT_MAX; |
| 3966 | |
| 3967 | /* |
| 3968 | We can't fully initialize Rdb_key_def object here, because full |
| 3969 | initialization requires that there is an open TABLE* where we could |
| 3970 | look at Field* objects and set max_length and other attributes |
| 3971 | */ |
| 3972 | tdef->m_key_descr_arr[keyno] = std::make_shared<Rdb_key_def>( |
| 3973 | gl_index_id.index_id, keyno, cfh, index_info.m_index_dict_version, |
| 3974 | index_info.m_index_type, index_info.m_kv_version, |
| 3975 | flags & Rdb_key_def::REVERSE_CF_FLAG, |
| 3976 | flags & Rdb_key_def::PER_PARTITION_CF_FLAG, "" , |
| 3977 | m_dict->get_stats(gl_index_id), index_info.m_index_flags, |
| 3978 | ttl_rec_offset, index_info.m_ttl_duration); |
| 3979 | } |
| 3980 | put(tdef); |
| 3981 | i++; |
| 3982 | } |
| 3983 | |
| 3984 | /* |
| 3985 | If validate_tables is greater than 0 run the validation. Only fail the |
| 3986 | initialzation if the setting is 1. If the setting is 2 we continue. |
| 3987 | */ |
| 3988 | if (validate_tables > 0) { |
| 3989 | std::string msg; |
| 3990 | if (!validate_schemas()) { |
| 3991 | msg = "RocksDB: Problems validating data dictionary " |
| 3992 | "against .frm files, exiting" ; |
| 3993 | } else if (!validate_auto_incr()) { |
| 3994 | msg = "RocksDB: Problems validating auto increment values in " |
| 3995 | "data dictionary, exiting" ; |
| 3996 | } |
| 3997 | if (validate_tables == 1 && !msg.empty()) { |
| 3998 | // NO_LINT_DEBUG |
| 3999 | sql_print_error("%s" , msg.c_str()); |
| 4000 | return true; |
| 4001 | } |
| 4002 | } |
| 4003 | |
| 4004 | // index ids used by applications should not conflict with |
| 4005 | // data dictionary index ids |
| 4006 | if (max_index_id_in_dict < Rdb_key_def::END_DICT_INDEX_ID) { |
| 4007 | max_index_id_in_dict = Rdb_key_def::END_DICT_INDEX_ID; |
| 4008 | } |
| 4009 | |
| 4010 | m_sequence.init(max_index_id_in_dict + 1); |
| 4011 | |
| 4012 | if (!it->status().ok()) { |
| 4013 | rdb_log_status_error(it->status(), "Table_store load error" ); |
| 4014 | return true; |
| 4015 | } |
| 4016 | delete it; |
| 4017 | sql_print_information("RocksDB: Table_store: loaded DDL data for %d tables" , |
| 4018 | i); |
| 4019 | return false; |
| 4020 | } |
| 4021 | |
| 4022 | Rdb_tbl_def *Rdb_ddl_manager::find(const std::string &table_name, |
| 4023 | const bool &lock) { |
| 4024 | if (lock) { |
| 4025 | mysql_rwlock_rdlock(&m_rwlock); |
| 4026 | } |
| 4027 | |
| 4028 | Rdb_tbl_def *const rec = reinterpret_cast<Rdb_tbl_def *>(my_hash_search( |
| 4029 | &m_ddl_hash, reinterpret_cast<const uchar *>(table_name.c_str()), |
| 4030 | table_name.size())); |
| 4031 | |
| 4032 | if (lock) { |
| 4033 | mysql_rwlock_unlock(&m_rwlock); |
| 4034 | } |
| 4035 | |
| 4036 | return rec; |
| 4037 | } |
| 4038 | |
| 4039 | // this is a safe version of the find() function below. It acquires a read |
| 4040 | // lock on m_rwlock to make sure the Rdb_key_def is not discarded while we |
| 4041 | // are finding it. Copying it into 'ret' increments the count making sure |
| 4042 | // that the object will not be discarded until we are finished with it. |
| 4043 | std::shared_ptr<const Rdb_key_def> |
| 4044 | Rdb_ddl_manager::safe_find(GL_INDEX_ID gl_index_id) { |
| 4045 | std::shared_ptr<const Rdb_key_def> ret(nullptr); |
| 4046 | |
| 4047 | mysql_rwlock_rdlock(&m_rwlock); |
| 4048 | |
| 4049 | auto it = m_index_num_to_keydef.find(gl_index_id); |
| 4050 | if (it != m_index_num_to_keydef.end()) { |
| 4051 | const auto table_def = find(it->second.first, false); |
| 4052 | if (table_def && it->second.second < table_def->m_key_count) { |
| 4053 | const auto &kd = table_def->m_key_descr_arr[it->second.second]; |
| 4054 | if (kd->max_storage_fmt_length() != 0) { |
| 4055 | ret = kd; |
| 4056 | } |
| 4057 | } |
| 4058 | } else { |
| 4059 | auto it = m_index_num_to_uncommitted_keydef.find(gl_index_id); |
| 4060 | if (it != m_index_num_to_uncommitted_keydef.end()) { |
| 4061 | const auto &kd = it->second; |
| 4062 | if (kd->max_storage_fmt_length() != 0) { |
| 4063 | ret = kd; |
| 4064 | } |
| 4065 | } |
| 4066 | } |
| 4067 | |
| 4068 | mysql_rwlock_unlock(&m_rwlock); |
| 4069 | |
| 4070 | return ret; |
| 4071 | } |
| 4072 | |
| 4073 | // this method assumes at least read-only lock on m_rwlock |
| 4074 | const std::shared_ptr<Rdb_key_def> & |
| 4075 | Rdb_ddl_manager::find(GL_INDEX_ID gl_index_id) { |
| 4076 | auto it = m_index_num_to_keydef.find(gl_index_id); |
| 4077 | if (it != m_index_num_to_keydef.end()) { |
| 4078 | auto table_def = find(it->second.first, false); |
| 4079 | if (table_def) { |
| 4080 | if (it->second.second < table_def->m_key_count) { |
| 4081 | return table_def->m_key_descr_arr[it->second.second]; |
| 4082 | } |
| 4083 | } |
| 4084 | } else { |
| 4085 | auto it = m_index_num_to_uncommitted_keydef.find(gl_index_id); |
| 4086 | if (it != m_index_num_to_uncommitted_keydef.end()) { |
| 4087 | return it->second; |
| 4088 | } |
| 4089 | } |
| 4090 | |
| 4091 | static std::shared_ptr<Rdb_key_def> empty = nullptr; |
| 4092 | |
| 4093 | return empty; |
| 4094 | } |
| 4095 | |
| 4096 | // this method returns the name of the table based on an index id. It acquires |
| 4097 | // a read lock on m_rwlock. |
| 4098 | const std::string |
| 4099 | Rdb_ddl_manager::safe_get_table_name(const GL_INDEX_ID &gl_index_id) { |
| 4100 | std::string ret; |
| 4101 | mysql_rwlock_rdlock(&m_rwlock); |
| 4102 | auto it = m_index_num_to_keydef.find(gl_index_id); |
| 4103 | if (it != m_index_num_to_keydef.end()) { |
| 4104 | ret = it->second.first; |
| 4105 | } |
| 4106 | mysql_rwlock_unlock(&m_rwlock); |
| 4107 | return ret; |
| 4108 | } |
| 4109 | |
| 4110 | void Rdb_ddl_manager::set_stats( |
| 4111 | const std::unordered_map<GL_INDEX_ID, Rdb_index_stats> &stats) { |
| 4112 | mysql_rwlock_wrlock(&m_rwlock); |
| 4113 | for (auto src : stats) { |
| 4114 | const auto &keydef = find(src.second.m_gl_index_id); |
| 4115 | if (keydef) { |
| 4116 | keydef->m_stats = src.second; |
| 4117 | m_stats2store[keydef->m_stats.m_gl_index_id] = keydef->m_stats; |
| 4118 | } |
| 4119 | } |
| 4120 | mysql_rwlock_unlock(&m_rwlock); |
| 4121 | } |
| 4122 | |
| 4123 | void Rdb_ddl_manager::adjust_stats( |
| 4124 | const std::vector<Rdb_index_stats> &new_data, |
| 4125 | const std::vector<Rdb_index_stats> &deleted_data) { |
| 4126 | mysql_rwlock_wrlock(&m_rwlock); |
| 4127 | int i = 0; |
| 4128 | for (const auto &data : {new_data, deleted_data}) { |
| 4129 | for (const auto &src : data) { |
| 4130 | const auto &keydef = find(src.m_gl_index_id); |
| 4131 | if (keydef) { |
| 4132 | keydef->m_stats.m_distinct_keys_per_prefix.resize( |
| 4133 | keydef->get_key_parts()); |
| 4134 | keydef->m_stats.merge(src, i == 0, keydef->max_storage_fmt_length()); |
| 4135 | m_stats2store[keydef->m_stats.m_gl_index_id] = keydef->m_stats; |
| 4136 | } |
| 4137 | } |
| 4138 | i++; |
| 4139 | } |
| 4140 | const bool should_save_stats = !m_stats2store.empty(); |
| 4141 | mysql_rwlock_unlock(&m_rwlock); |
| 4142 | if (should_save_stats) { |
| 4143 | // Queue an async persist_stats(false) call to the background thread. |
| 4144 | rdb_queue_save_stats_request(); |
| 4145 | } |
| 4146 | } |
| 4147 | |
| 4148 | void Rdb_ddl_manager::persist_stats(const bool &sync) { |
| 4149 | mysql_rwlock_wrlock(&m_rwlock); |
| 4150 | const auto local_stats2store = std::move(m_stats2store); |
| 4151 | m_stats2store.clear(); |
| 4152 | mysql_rwlock_unlock(&m_rwlock); |
| 4153 | |
| 4154 | // Persist stats |
| 4155 | const std::unique_ptr<rocksdb::WriteBatch> wb = m_dict->begin(); |
| 4156 | std::vector<Rdb_index_stats> stats; |
| 4157 | std::transform(local_stats2store.begin(), local_stats2store.end(), |
| 4158 | std::back_inserter(stats), |
| 4159 | [](const std::pair<GL_INDEX_ID, Rdb_index_stats> &s) { |
| 4160 | return s.second; |
| 4161 | }); |
| 4162 | m_dict->add_stats(wb.get(), stats); |
| 4163 | m_dict->commit(wb.get(), sync); |
| 4164 | } |
| 4165 | |
| 4166 | /* |
| 4167 | Put table definition of `tbl` into the mapping, and also write it to the |
| 4168 | on-disk data dictionary. |
| 4169 | */ |
| 4170 | |
| 4171 | int Rdb_ddl_manager::put_and_write(Rdb_tbl_def *const tbl, |
| 4172 | rocksdb::WriteBatch *const batch) { |
| 4173 | uchar buf[FN_LEN * 2 + Rdb_key_def::INDEX_NUMBER_SIZE]; |
| 4174 | uint pos = 0; |
| 4175 | |
| 4176 | rdb_netbuf_store_index(buf, Rdb_key_def::DDL_ENTRY_INDEX_START_NUMBER); |
| 4177 | pos += Rdb_key_def::INDEX_NUMBER_SIZE; |
| 4178 | |
| 4179 | const std::string &dbname_tablename = tbl->full_tablename(); |
| 4180 | memcpy(buf + pos, dbname_tablename.c_str(), dbname_tablename.size()); |
| 4181 | pos += dbname_tablename.size(); |
| 4182 | |
| 4183 | int res; |
| 4184 | if ((res = tbl->put_dict(m_dict, batch, buf, pos))) { |
| 4185 | return res; |
| 4186 | } |
| 4187 | if ((res = put(tbl))) { |
| 4188 | return res; |
| 4189 | } |
| 4190 | return HA_EXIT_SUCCESS; |
| 4191 | } |
| 4192 | |
| 4193 | /* Return 0 - ok, other value - error */ |
| 4194 | /* TODO: |
| 4195 | This function modifies m_ddl_hash and m_index_num_to_keydef. |
| 4196 | However, these changes need to be reversed if dict_manager.commit fails |
| 4197 | See the discussion here: https://reviews.facebook.net/D35925#inline-259167 |
| 4198 | Tracked by https://github.com/facebook/mysql-5.6/issues/33 |
| 4199 | */ |
| 4200 | int Rdb_ddl_manager::put(Rdb_tbl_def *const tbl, const bool &lock) { |
| 4201 | Rdb_tbl_def *rec; |
| 4202 | my_bool result; |
| 4203 | const std::string &dbname_tablename = tbl->full_tablename(); |
| 4204 | |
| 4205 | if (lock) |
| 4206 | mysql_rwlock_wrlock(&m_rwlock); |
| 4207 | |
| 4208 | // We have to do this find because 'tbl' is not yet in the list. We need |
| 4209 | // to find the one we are replacing ('rec') |
| 4210 | rec = find(dbname_tablename, false); |
| 4211 | if (rec) { |
| 4212 | // this will free the old record. |
| 4213 | my_hash_delete(&m_ddl_hash, reinterpret_cast<uchar *>(rec)); |
| 4214 | } |
| 4215 | result = my_hash_insert(&m_ddl_hash, reinterpret_cast<uchar *>(tbl)); |
| 4216 | |
| 4217 | for (uint keyno = 0; keyno < tbl->m_key_count; keyno++) { |
| 4218 | m_index_num_to_keydef[tbl->m_key_descr_arr[keyno]->get_gl_index_id()] = |
| 4219 | std::make_pair(dbname_tablename, keyno); |
| 4220 | } |
| 4221 | |
| 4222 | if (lock) |
| 4223 | mysql_rwlock_unlock(&m_rwlock); |
| 4224 | return result; |
| 4225 | } |
| 4226 | |
| 4227 | void Rdb_ddl_manager::remove(Rdb_tbl_def *const tbl, |
| 4228 | rocksdb::WriteBatch *const batch, |
| 4229 | const bool &lock) { |
| 4230 | if (lock) |
| 4231 | mysql_rwlock_wrlock(&m_rwlock); |
| 4232 | |
| 4233 | uchar buf[FN_LEN * 2 + Rdb_key_def::INDEX_NUMBER_SIZE]; |
| 4234 | uint pos = 0; |
| 4235 | |
| 4236 | rdb_netbuf_store_index(buf, Rdb_key_def::DDL_ENTRY_INDEX_START_NUMBER); |
| 4237 | pos += Rdb_key_def::INDEX_NUMBER_SIZE; |
| 4238 | |
| 4239 | const std::string &dbname_tablename = tbl->full_tablename(); |
| 4240 | memcpy(buf + pos, dbname_tablename.c_str(), dbname_tablename.size()); |
| 4241 | pos += dbname_tablename.size(); |
| 4242 | |
| 4243 | const rocksdb::Slice tkey((char *)buf, pos); |
| 4244 | m_dict->delete_key(batch, tkey); |
| 4245 | |
| 4246 | /* The following will also delete the object: */ |
| 4247 | my_hash_delete(&m_ddl_hash, reinterpret_cast<uchar *>(tbl)); |
| 4248 | |
| 4249 | if (lock) |
| 4250 | mysql_rwlock_unlock(&m_rwlock); |
| 4251 | } |
| 4252 | |
| 4253 | bool Rdb_ddl_manager::rename(const std::string &from, const std::string &to, |
| 4254 | rocksdb::WriteBatch *const batch) { |
| 4255 | Rdb_tbl_def *rec; |
| 4256 | Rdb_tbl_def *new_rec; |
| 4257 | bool res = true; |
| 4258 | uchar new_buf[FN_LEN * 2 + Rdb_key_def::INDEX_NUMBER_SIZE]; |
| 4259 | uint new_pos = 0; |
| 4260 | |
| 4261 | mysql_rwlock_wrlock(&m_rwlock); |
| 4262 | if (!(rec = find(from, false))) { |
| 4263 | mysql_rwlock_unlock(&m_rwlock); |
| 4264 | return true; |
| 4265 | } |
| 4266 | |
| 4267 | new_rec = new Rdb_tbl_def(to); |
| 4268 | |
| 4269 | new_rec->m_key_count = rec->m_key_count; |
| 4270 | new_rec->m_auto_incr_val = |
| 4271 | rec->m_auto_incr_val.load(std::memory_order_relaxed); |
| 4272 | new_rec->m_key_descr_arr = rec->m_key_descr_arr; |
| 4273 | |
| 4274 | new_rec->m_hidden_pk_val = |
| 4275 | rec->m_hidden_pk_val.load(std::memory_order_relaxed); |
| 4276 | |
| 4277 | // so that it's not free'd when deleting the old rec |
| 4278 | rec->m_key_descr_arr = nullptr; |
| 4279 | |
| 4280 | // Create a new key |
| 4281 | rdb_netbuf_store_index(new_buf, Rdb_key_def::DDL_ENTRY_INDEX_START_NUMBER); |
| 4282 | new_pos += Rdb_key_def::INDEX_NUMBER_SIZE; |
| 4283 | |
| 4284 | const std::string &dbname_tablename = new_rec->full_tablename(); |
| 4285 | memcpy(new_buf + new_pos, dbname_tablename.c_str(), dbname_tablename.size()); |
| 4286 | new_pos += dbname_tablename.size(); |
| 4287 | |
| 4288 | // Create a key to add |
| 4289 | if (!new_rec->put_dict(m_dict, batch, new_buf, new_pos)) { |
| 4290 | remove(rec, batch, false); |
| 4291 | put(new_rec, false); |
| 4292 | res = false; // ok |
| 4293 | } |
| 4294 | |
| 4295 | mysql_rwlock_unlock(&m_rwlock); |
| 4296 | return res; |
| 4297 | } |
| 4298 | |
| 4299 | void Rdb_ddl_manager::cleanup() { |
| 4300 | my_hash_free(&m_ddl_hash); |
| 4301 | mysql_rwlock_destroy(&m_rwlock); |
| 4302 | m_sequence.cleanup(); |
| 4303 | } |
| 4304 | |
| 4305 | int Rdb_ddl_manager::scan_for_tables(Rdb_tables_scanner *const tables_scanner) { |
| 4306 | int i, ret; |
| 4307 | Rdb_tbl_def *rec; |
| 4308 | |
| 4309 | DBUG_ASSERT(tables_scanner != nullptr); |
| 4310 | |
| 4311 | mysql_rwlock_rdlock(&m_rwlock); |
| 4312 | |
| 4313 | ret = 0; |
| 4314 | i = 0; |
| 4315 | |
| 4316 | while (( |
| 4317 | rec = reinterpret_cast<Rdb_tbl_def *>(my_hash_element(&m_ddl_hash, i)))) { |
| 4318 | ret = tables_scanner->add_table(rec); |
| 4319 | if (ret) |
| 4320 | break; |
| 4321 | i++; |
| 4322 | } |
| 4323 | |
| 4324 | mysql_rwlock_unlock(&m_rwlock); |
| 4325 | return ret; |
| 4326 | } |
| 4327 | |
| 4328 | /* |
| 4329 | Rdb_binlog_manager class implementation |
| 4330 | */ |
| 4331 | |
| 4332 | bool Rdb_binlog_manager::init(Rdb_dict_manager *const dict_arg) { |
| 4333 | DBUG_ASSERT(dict_arg != nullptr); |
| 4334 | m_dict = dict_arg; |
| 4335 | |
| 4336 | rdb_netbuf_store_index(m_key_buf, Rdb_key_def::BINLOG_INFO_INDEX_NUMBER); |
| 4337 | m_key_slice = rocksdb::Slice(reinterpret_cast<char *>(m_key_buf), |
| 4338 | Rdb_key_def::INDEX_NUMBER_SIZE); |
| 4339 | return false; |
| 4340 | } |
| 4341 | |
| 4342 | void Rdb_binlog_manager::cleanup() {} |
| 4343 | |
| 4344 | /** |
| 4345 | Set binlog name, pos and optionally gtid into WriteBatch. |
| 4346 | This function should be called as part of transaction commit, |
| 4347 | since binlog info is set only at transaction commit. |
| 4348 | Actual write into RocksDB is not done here, so checking if |
| 4349 | write succeeded or not is not possible here. |
| 4350 | @param binlog_name Binlog name |
| 4351 | @param binlog_pos Binlog pos |
| 4352 | @param batch WriteBatch |
| 4353 | */ |
| 4354 | void Rdb_binlog_manager::update(const char *const binlog_name, |
| 4355 | const my_off_t binlog_pos, |
| 4356 | rocksdb::WriteBatchBase *const batch) { |
| 4357 | if (binlog_name && binlog_pos) { |
| 4358 | // max binlog length (512) + binlog pos (4) + binlog gtid (57) < 1024 |
| 4359 | const size_t RDB_MAX_BINLOG_INFO_LEN = 1024; |
| 4360 | uchar value_buf[RDB_MAX_BINLOG_INFO_LEN]; |
| 4361 | m_dict->put_key( |
| 4362 | batch, m_key_slice, |
| 4363 | pack_value(value_buf, binlog_name, binlog_pos, NULL)); |
| 4364 | } |
| 4365 | } |
| 4366 | |
| 4367 | /** |
| 4368 | Read binlog committed entry stored in RocksDB, then unpack |
| 4369 | @param[OUT] binlog_name Binlog name |
| 4370 | @param[OUT] binlog_pos Binlog pos |
| 4371 | @param[OUT] binlog_gtid Binlog GTID |
| 4372 | @return |
| 4373 | true is binlog info was found (valid behavior) |
| 4374 | false otherwise |
| 4375 | */ |
| 4376 | bool Rdb_binlog_manager::read(char *const binlog_name, |
| 4377 | my_off_t *const binlog_pos, |
| 4378 | char *const binlog_gtid) const { |
| 4379 | bool ret = false; |
| 4380 | if (binlog_name) { |
| 4381 | std::string value; |
| 4382 | rocksdb::Status status = m_dict->get_value(m_key_slice, &value); |
| 4383 | if (status.ok()) { |
| 4384 | if (!unpack_value((const uchar *)value.c_str(), value.size(), binlog_name, binlog_pos, |
| 4385 | binlog_gtid)) |
| 4386 | ret = true; |
| 4387 | } |
| 4388 | } |
| 4389 | return ret; |
| 4390 | } |
| 4391 | |
| 4392 | /** |
| 4393 | Pack binlog_name, binlog_pos, binlog_gtid into preallocated |
| 4394 | buffer, then converting and returning a RocksDB Slice |
| 4395 | @param buf Preallocated buffer to set binlog info. |
| 4396 | @param binlog_name Binlog name |
| 4397 | @param binlog_pos Binlog pos |
| 4398 | @return rocksdb::Slice converted from buf and its length |
| 4399 | */ |
| 4400 | rocksdb::Slice |
| 4401 | Rdb_binlog_manager::pack_value(uchar *const buf, const char *const binlog_name, |
| 4402 | const my_off_t &binlog_pos, |
| 4403 | const char *const binlog_gtid) const { |
| 4404 | uint pack_len = 0; |
| 4405 | |
| 4406 | // store version |
| 4407 | rdb_netbuf_store_uint16(buf, Rdb_key_def::BINLOG_INFO_INDEX_NUMBER_VERSION); |
| 4408 | pack_len += Rdb_key_def::VERSION_SIZE; |
| 4409 | |
| 4410 | // store binlog file name length |
| 4411 | DBUG_ASSERT(strlen(binlog_name) <= FN_REFLEN); |
| 4412 | const uint16_t binlog_name_len = (uint16_t)strlen(binlog_name); |
| 4413 | rdb_netbuf_store_uint16(buf + pack_len, binlog_name_len); |
| 4414 | pack_len += sizeof(uint16); |
| 4415 | |
| 4416 | // store binlog file name |
| 4417 | memcpy(buf + pack_len, binlog_name, binlog_name_len); |
| 4418 | pack_len += binlog_name_len; |
| 4419 | |
| 4420 | // store binlog pos |
| 4421 | rdb_netbuf_store_uint32(buf + pack_len, binlog_pos); |
| 4422 | pack_len += sizeof(uint32); |
| 4423 | |
| 4424 | // store binlog gtid length. |
| 4425 | // If gtid was not set, store 0 instead |
| 4426 | #ifdef MARIAROCKS_NOT_YET |
| 4427 | const uint16_t binlog_gtid_len = binlog_gtid ? (uint16_t)strlen(binlog_gtid) : 0; |
| 4428 | rdb_netbuf_store_uint16(buf + pack_len, binlog_gtid_len); |
| 4429 | #endif |
| 4430 | pack_len += sizeof(uint16); |
| 4431 | // MariaDB: |
| 4432 | rdb_netbuf_store_uint16(buf + pack_len, 0); |
| 4433 | |
| 4434 | #ifdef MARIAROCKS_NOT_YET |
| 4435 | if (binlog_gtid_len > 0) { |
| 4436 | // store binlog gtid |
| 4437 | memcpy(buf + pack_len, binlog_gtid, binlog_gtid_len); |
| 4438 | pack_len += binlog_gtid_len; |
| 4439 | } |
| 4440 | #endif |
| 4441 | |
| 4442 | return rocksdb::Slice((char *)buf, pack_len); |
| 4443 | } |
| 4444 | |
| 4445 | /** |
| 4446 | Unpack value then split into binlog_name, binlog_pos (and binlog_gtid) |
| 4447 | @param[IN] value Binlog state info fetched from RocksDB |
| 4448 | @param[OUT] binlog_name Binlog name |
| 4449 | @param[OUT] binlog_pos Binlog pos |
| 4450 | @param[OUT] binlog_gtid Binlog GTID |
| 4451 | @return true on error |
| 4452 | */ |
| 4453 | bool Rdb_binlog_manager::unpack_value(const uchar *const value, |
| 4454 | size_t value_size_arg, |
| 4455 | char *const binlog_name, |
| 4456 | my_off_t *const binlog_pos, |
| 4457 | char *const binlog_gtid) const { |
| 4458 | uint pack_len = 0; |
| 4459 | intmax_t value_size= value_size_arg; |
| 4460 | |
| 4461 | DBUG_ASSERT(binlog_pos != nullptr); |
| 4462 | |
| 4463 | if ((value_size -= Rdb_key_def::VERSION_SIZE) < 0) |
| 4464 | return true; |
| 4465 | // read version |
| 4466 | const uint16_t version = rdb_netbuf_to_uint16(value); |
| 4467 | |
| 4468 | pack_len += Rdb_key_def::VERSION_SIZE; |
| 4469 | if (version != Rdb_key_def::BINLOG_INFO_INDEX_NUMBER_VERSION) |
| 4470 | return true; |
| 4471 | |
| 4472 | if ((value_size -= sizeof(uint16)) < 0) |
| 4473 | return true; |
| 4474 | |
| 4475 | // read binlog file name length |
| 4476 | const uint16_t binlog_name_len = rdb_netbuf_to_uint16(value + pack_len); |
| 4477 | pack_len += sizeof(uint16); |
| 4478 | |
| 4479 | if (binlog_name_len >= (FN_REFLEN+1)) |
| 4480 | return true; |
| 4481 | |
| 4482 | if ((value_size -= binlog_name_len) < 0) |
| 4483 | return true; |
| 4484 | |
| 4485 | if (binlog_name_len) { |
| 4486 | // read and set binlog name |
| 4487 | memcpy(binlog_name, value + pack_len, binlog_name_len); |
| 4488 | binlog_name[binlog_name_len] = '\0'; |
| 4489 | pack_len += binlog_name_len; |
| 4490 | |
| 4491 | if ((value_size -= sizeof(uint32)) < 0) |
| 4492 | return true; |
| 4493 | // read and set binlog pos |
| 4494 | *binlog_pos = rdb_netbuf_to_uint32(value + pack_len); |
| 4495 | pack_len += sizeof(uint32); |
| 4496 | |
| 4497 | if ((value_size -= sizeof(uint16)) < 0) |
| 4498 | return true; |
| 4499 | // read gtid length |
| 4500 | const uint16_t binlog_gtid_len = rdb_netbuf_to_uint16(value + pack_len); |
| 4501 | pack_len += sizeof(uint16); |
| 4502 | |
| 4503 | if (binlog_gtid_len >= GTID_BUF_LEN) |
| 4504 | return true; |
| 4505 | if ((value_size -= binlog_gtid_len) < 0) |
| 4506 | return true; |
| 4507 | |
| 4508 | if (binlog_gtid && binlog_gtid_len > 0) { |
| 4509 | // read and set gtid |
| 4510 | memcpy(binlog_gtid, value + pack_len, binlog_gtid_len); |
| 4511 | binlog_gtid[binlog_gtid_len] = '\0'; |
| 4512 | pack_len += binlog_gtid_len; |
| 4513 | } |
| 4514 | } |
| 4515 | return false; |
| 4516 | } |
| 4517 | |
| 4518 | /** |
| 4519 | Inserts a row into mysql.slave_gtid_info table. Doing this inside |
| 4520 | storage engine is more efficient than inserting/updating through MySQL. |
| 4521 | |
| 4522 | @param[IN] id Primary key of the table. |
| 4523 | @param[IN] db Database name. This is column 2 of the table. |
| 4524 | @param[IN] gtid Gtid in human readable form. This is column 3 of the table. |
| 4525 | @param[IN] write_batch Handle to storage engine writer. |
| 4526 | */ |
| 4527 | void Rdb_binlog_manager::update_slave_gtid_info( |
| 4528 | const uint &id, const char *const db, const char *const gtid, |
| 4529 | rocksdb::WriteBatchBase *const write_batch) { |
| 4530 | if (id && db && gtid) { |
| 4531 | // Make sure that if the slave_gtid_info table exists we have a |
| 4532 | // pointer to it via m_slave_gtid_info_tbl. |
| 4533 | if (!m_slave_gtid_info_tbl.load()) { |
| 4534 | m_slave_gtid_info_tbl.store( |
| 4535 | rdb_get_ddl_manager()->find("mysql.slave_gtid_info" )); |
| 4536 | } |
| 4537 | if (!m_slave_gtid_info_tbl.load()) { |
| 4538 | // slave_gtid_info table is not present. Simply return. |
| 4539 | return; |
| 4540 | } |
| 4541 | DBUG_ASSERT(m_slave_gtid_info_tbl.load()->m_key_count == 1); |
| 4542 | |
| 4543 | const std::shared_ptr<const Rdb_key_def> &kd = |
| 4544 | m_slave_gtid_info_tbl.load()->m_key_descr_arr[0]; |
| 4545 | String value; |
| 4546 | |
| 4547 | // Build key |
| 4548 | uchar key_buf[Rdb_key_def::INDEX_NUMBER_SIZE + 4] = {0}; |
| 4549 | uchar *buf = key_buf; |
| 4550 | rdb_netbuf_store_index(buf, kd->get_index_number()); |
| 4551 | buf += Rdb_key_def::INDEX_NUMBER_SIZE; |
| 4552 | rdb_netbuf_store_uint32(buf, id); |
| 4553 | buf += 4; |
| 4554 | const rocksdb::Slice key_slice = |
| 4555 | rocksdb::Slice((const char *)key_buf, buf - key_buf); |
| 4556 | |
| 4557 | // Build value |
| 4558 | uchar value_buf[128] = {0}; |
| 4559 | DBUG_ASSERT(gtid); |
| 4560 | const uint db_len = strlen(db); |
| 4561 | const uint gtid_len = strlen(gtid); |
| 4562 | buf = value_buf; |
| 4563 | // 1 byte used for flags. Empty here. |
| 4564 | buf++; |
| 4565 | |
| 4566 | // Write column 1. |
| 4567 | DBUG_ASSERT(strlen(db) <= 64); |
| 4568 | rdb_netbuf_store_byte(buf, db_len); |
| 4569 | buf++; |
| 4570 | memcpy(buf, db, db_len); |
| 4571 | buf += db_len; |
| 4572 | |
| 4573 | // Write column 2. |
| 4574 | DBUG_ASSERT(gtid_len <= 56); |
| 4575 | rdb_netbuf_store_byte(buf, gtid_len); |
| 4576 | buf++; |
| 4577 | memcpy(buf, gtid, gtid_len); |
| 4578 | buf += gtid_len; |
| 4579 | const rocksdb::Slice value_slice = |
| 4580 | rocksdb::Slice((const char *)value_buf, buf - value_buf); |
| 4581 | |
| 4582 | write_batch->Put(kd->get_cf(), key_slice, value_slice); |
| 4583 | } |
| 4584 | } |
| 4585 | |
| 4586 | bool Rdb_dict_manager::init(rocksdb::DB *const rdb_dict, |
| 4587 | Rdb_cf_manager *const cf_manager) { |
| 4588 | DBUG_ASSERT(rdb_dict != nullptr); |
| 4589 | DBUG_ASSERT(cf_manager != nullptr); |
| 4590 | |
| 4591 | mysql_mutex_init(0, &m_mutex, MY_MUTEX_INIT_FAST); |
| 4592 | |
| 4593 | m_db = rdb_dict; |
| 4594 | |
| 4595 | m_system_cfh = cf_manager->get_or_create_cf(m_db, DEFAULT_SYSTEM_CF_NAME); |
| 4596 | rocksdb::ColumnFamilyHandle *default_cfh = |
| 4597 | cf_manager->get_cf(DEFAULT_CF_NAME); |
| 4598 | |
| 4599 | // System CF and default CF should be initialized |
| 4600 | if (m_system_cfh == nullptr || default_cfh == nullptr) { |
| 4601 | return HA_EXIT_FAILURE; |
| 4602 | } |
| 4603 | |
| 4604 | rdb_netbuf_store_index(m_key_buf_max_index_id, Rdb_key_def::MAX_INDEX_ID); |
| 4605 | |
| 4606 | m_key_slice_max_index_id = |
| 4607 | rocksdb::Slice(reinterpret_cast<char *>(m_key_buf_max_index_id), |
| 4608 | Rdb_key_def::INDEX_NUMBER_SIZE); |
| 4609 | |
| 4610 | resume_drop_indexes(); |
| 4611 | rollback_ongoing_index_creation(); |
| 4612 | |
| 4613 | // Initialize system CF and default CF flags |
| 4614 | const std::unique_ptr<rocksdb::WriteBatch> wb = begin(); |
| 4615 | rocksdb::WriteBatch *const batch = wb.get(); |
| 4616 | |
| 4617 | add_cf_flags(batch, m_system_cfh->GetID(), 0); |
| 4618 | add_cf_flags(batch, default_cfh->GetID(), 0); |
| 4619 | commit(batch); |
| 4620 | |
| 4621 | return HA_EXIT_SUCCESS; |
| 4622 | } |
| 4623 | |
| 4624 | std::unique_ptr<rocksdb::WriteBatch> Rdb_dict_manager::begin() const { |
| 4625 | return std::unique_ptr<rocksdb::WriteBatch>(new rocksdb::WriteBatch); |
| 4626 | } |
| 4627 | |
| 4628 | void Rdb_dict_manager::put_key(rocksdb::WriteBatchBase *const batch, |
| 4629 | const rocksdb::Slice &key, |
| 4630 | const rocksdb::Slice &value) const { |
| 4631 | batch->Put(m_system_cfh, key, value); |
| 4632 | } |
| 4633 | |
| 4634 | rocksdb::Status Rdb_dict_manager::get_value(const rocksdb::Slice &key, |
| 4635 | std::string *const value) const { |
| 4636 | rocksdb::ReadOptions options; |
| 4637 | options.total_order_seek = true; |
| 4638 | return m_db->Get(options, m_system_cfh, key, value); |
| 4639 | } |
| 4640 | |
| 4641 | void Rdb_dict_manager::delete_key(rocksdb::WriteBatchBase *batch, |
| 4642 | const rocksdb::Slice &key) const { |
| 4643 | batch->Delete(m_system_cfh, key); |
| 4644 | } |
| 4645 | |
| 4646 | rocksdb::Iterator *Rdb_dict_manager::new_iterator() const { |
| 4647 | /* Reading data dictionary should always skip bloom filter */ |
| 4648 | rocksdb::ReadOptions read_options; |
| 4649 | read_options.total_order_seek = true; |
| 4650 | return m_db->NewIterator(read_options, m_system_cfh); |
| 4651 | } |
| 4652 | |
| 4653 | int Rdb_dict_manager::commit(rocksdb::WriteBatch *const batch, |
| 4654 | const bool &sync) const { |
| 4655 | if (!batch) |
| 4656 | return HA_ERR_ROCKSDB_COMMIT_FAILED; |
| 4657 | int res = HA_EXIT_SUCCESS; |
| 4658 | rocksdb::WriteOptions options; |
| 4659 | options.sync = sync; |
| 4660 | rocksdb::Status s = m_db->Write(options, batch); |
| 4661 | res = !s.ok(); // we return true when something failed |
| 4662 | if (res) { |
| 4663 | rdb_handle_io_error(s, RDB_IO_ERROR_DICT_COMMIT); |
| 4664 | } |
| 4665 | batch->Clear(); |
| 4666 | return res; |
| 4667 | } |
| 4668 | |
| 4669 | void Rdb_dict_manager::dump_index_id(uchar *const netbuf, |
| 4670 | Rdb_key_def::DATA_DICT_TYPE dict_type, |
| 4671 | const GL_INDEX_ID &gl_index_id) { |
| 4672 | rdb_netbuf_store_uint32(netbuf, dict_type); |
| 4673 | rdb_netbuf_store_uint32(netbuf + Rdb_key_def::INDEX_NUMBER_SIZE, |
| 4674 | gl_index_id.cf_id); |
| 4675 | rdb_netbuf_store_uint32(netbuf + 2 * Rdb_key_def::INDEX_NUMBER_SIZE, |
| 4676 | gl_index_id.index_id); |
| 4677 | } |
| 4678 | |
| 4679 | void Rdb_dict_manager::delete_with_prefix( |
| 4680 | rocksdb::WriteBatch *const batch, Rdb_key_def::DATA_DICT_TYPE dict_type, |
| 4681 | const GL_INDEX_ID &gl_index_id) const { |
| 4682 | uchar key_buf[Rdb_key_def::INDEX_NUMBER_SIZE * 3] = {0}; |
| 4683 | dump_index_id(key_buf, dict_type, gl_index_id); |
| 4684 | rocksdb::Slice key = rocksdb::Slice((char *)key_buf, sizeof(key_buf)); |
| 4685 | |
| 4686 | delete_key(batch, key); |
| 4687 | } |
| 4688 | |
| 4689 | void Rdb_dict_manager::add_or_update_index_cf_mapping( |
| 4690 | rocksdb::WriteBatch *batch, struct Rdb_index_info *const index_info) const { |
| 4691 | uchar key_buf[Rdb_key_def::INDEX_NUMBER_SIZE * 3] = {0}; |
| 4692 | uchar value_buf[256] = {0}; |
| 4693 | dump_index_id(key_buf, Rdb_key_def::INDEX_INFO, index_info->m_gl_index_id); |
| 4694 | const rocksdb::Slice key = rocksdb::Slice((char *)key_buf, sizeof(key_buf)); |
| 4695 | |
| 4696 | uchar *ptr = value_buf; |
| 4697 | rdb_netbuf_store_uint16(ptr, Rdb_key_def::INDEX_INFO_VERSION_LATEST); |
| 4698 | ptr += RDB_SIZEOF_INDEX_INFO_VERSION; |
| 4699 | rdb_netbuf_store_byte(ptr, index_info->m_index_type); |
| 4700 | ptr += RDB_SIZEOF_INDEX_TYPE; |
| 4701 | rdb_netbuf_store_uint16(ptr, index_info->m_kv_version); |
| 4702 | ptr += RDB_SIZEOF_KV_VERSION; |
| 4703 | rdb_netbuf_store_uint32(ptr, index_info->m_index_flags); |
| 4704 | ptr += RDB_SIZEOF_INDEX_FLAGS; |
| 4705 | rdb_netbuf_store_uint64(ptr, index_info->m_ttl_duration); |
| 4706 | ptr += ROCKSDB_SIZEOF_TTL_RECORD; |
| 4707 | |
| 4708 | const rocksdb::Slice value = |
| 4709 | rocksdb::Slice((char *)value_buf, ptr - value_buf); |
| 4710 | batch->Put(m_system_cfh, key, value); |
| 4711 | } |
| 4712 | |
| 4713 | void Rdb_dict_manager::add_cf_flags(rocksdb::WriteBatch *const batch, |
| 4714 | const uint32_t &cf_id, |
| 4715 | const uint32_t &cf_flags) const { |
| 4716 | DBUG_ASSERT(batch != nullptr); |
| 4717 | |
| 4718 | uchar key_buf[Rdb_key_def::INDEX_NUMBER_SIZE * 2] = {0}; |
| 4719 | uchar value_buf[Rdb_key_def::VERSION_SIZE + Rdb_key_def::INDEX_NUMBER_SIZE] = |
| 4720 | {0}; |
| 4721 | rdb_netbuf_store_uint32(key_buf, Rdb_key_def::CF_DEFINITION); |
| 4722 | rdb_netbuf_store_uint32(key_buf + Rdb_key_def::INDEX_NUMBER_SIZE, cf_id); |
| 4723 | const rocksdb::Slice key = rocksdb::Slice((char *)key_buf, sizeof(key_buf)); |
| 4724 | |
| 4725 | rdb_netbuf_store_uint16(value_buf, Rdb_key_def::CF_DEFINITION_VERSION); |
| 4726 | rdb_netbuf_store_uint32(value_buf + Rdb_key_def::VERSION_SIZE, cf_flags); |
| 4727 | const rocksdb::Slice value = |
| 4728 | rocksdb::Slice((char *)value_buf, sizeof(value_buf)); |
| 4729 | batch->Put(m_system_cfh, key, value); |
| 4730 | } |
| 4731 | |
| 4732 | void Rdb_dict_manager::delete_index_info(rocksdb::WriteBatch *batch, |
| 4733 | const GL_INDEX_ID &gl_index_id) const { |
| 4734 | delete_with_prefix(batch, Rdb_key_def::INDEX_INFO, gl_index_id); |
| 4735 | delete_with_prefix(batch, Rdb_key_def::INDEX_STATISTICS, gl_index_id); |
| 4736 | delete_with_prefix(batch, Rdb_key_def::AUTO_INC, gl_index_id); |
| 4737 | } |
| 4738 | |
| 4739 | bool Rdb_dict_manager::get_index_info( |
| 4740 | const GL_INDEX_ID &gl_index_id, |
| 4741 | struct Rdb_index_info *const index_info) const { |
| 4742 | |
| 4743 | if (index_info) { |
| 4744 | index_info->m_gl_index_id = gl_index_id; |
| 4745 | } |
| 4746 | |
| 4747 | bool found = false; |
| 4748 | bool error = false; |
| 4749 | std::string value; |
| 4750 | uchar key_buf[Rdb_key_def::INDEX_NUMBER_SIZE * 3] = {0}; |
| 4751 | dump_index_id(key_buf, Rdb_key_def::INDEX_INFO, gl_index_id); |
| 4752 | const rocksdb::Slice &key = rocksdb::Slice((char *)key_buf, sizeof(key_buf)); |
| 4753 | |
| 4754 | const rocksdb::Status &status = get_value(key, &value); |
| 4755 | if (status.ok()) { |
| 4756 | if (!index_info) { |
| 4757 | return true; |
| 4758 | } |
| 4759 | |
| 4760 | const uchar *const val = (const uchar *)value.c_str(); |
| 4761 | const uchar *ptr = val; |
| 4762 | index_info->m_index_dict_version = rdb_netbuf_to_uint16(val); |
| 4763 | ptr += RDB_SIZEOF_INDEX_INFO_VERSION; |
| 4764 | |
| 4765 | switch (index_info->m_index_dict_version) { |
| 4766 | case Rdb_key_def::INDEX_INFO_VERSION_FIELD_FLAGS: |
| 4767 | /* Sanity check to prevent reading bogus TTL record. */ |
| 4768 | if (value.size() != RDB_SIZEOF_INDEX_INFO_VERSION + |
| 4769 | RDB_SIZEOF_INDEX_TYPE + RDB_SIZEOF_KV_VERSION + |
| 4770 | RDB_SIZEOF_INDEX_FLAGS + |
| 4771 | ROCKSDB_SIZEOF_TTL_RECORD) { |
| 4772 | error = true; |
| 4773 | break; |
| 4774 | } |
| 4775 | index_info->m_index_type = rdb_netbuf_to_byte(ptr); |
| 4776 | ptr += RDB_SIZEOF_INDEX_TYPE; |
| 4777 | index_info->m_kv_version = rdb_netbuf_to_uint16(ptr); |
| 4778 | ptr += RDB_SIZEOF_KV_VERSION; |
| 4779 | index_info->m_index_flags = rdb_netbuf_to_uint32(ptr); |
| 4780 | ptr += RDB_SIZEOF_INDEX_FLAGS; |
| 4781 | index_info->m_ttl_duration = rdb_netbuf_to_uint64(ptr); |
| 4782 | found = true; |
| 4783 | break; |
| 4784 | |
| 4785 | case Rdb_key_def::INDEX_INFO_VERSION_TTL: |
| 4786 | /* Sanity check to prevent reading bogus into TTL record. */ |
| 4787 | if (value.size() != RDB_SIZEOF_INDEX_INFO_VERSION + |
| 4788 | RDB_SIZEOF_INDEX_TYPE + RDB_SIZEOF_KV_VERSION + |
| 4789 | ROCKSDB_SIZEOF_TTL_RECORD) { |
| 4790 | error = true; |
| 4791 | break; |
| 4792 | } |
| 4793 | index_info->m_index_type = rdb_netbuf_to_byte(ptr); |
| 4794 | ptr += RDB_SIZEOF_INDEX_TYPE; |
| 4795 | index_info->m_kv_version = rdb_netbuf_to_uint16(ptr); |
| 4796 | ptr += RDB_SIZEOF_KV_VERSION; |
| 4797 | index_info->m_ttl_duration = rdb_netbuf_to_uint64(ptr); |
| 4798 | if ((index_info->m_kv_version == |
| 4799 | Rdb_key_def::PRIMARY_FORMAT_VERSION_TTL) && |
| 4800 | index_info->m_ttl_duration > 0) { |
| 4801 | index_info->m_index_flags = Rdb_key_def::TTL_FLAG; |
| 4802 | } |
| 4803 | found = true; |
| 4804 | break; |
| 4805 | |
| 4806 | case Rdb_key_def::INDEX_INFO_VERSION_VERIFY_KV_FORMAT: |
| 4807 | case Rdb_key_def::INDEX_INFO_VERSION_GLOBAL_ID: |
| 4808 | index_info->m_index_type = rdb_netbuf_to_byte(ptr); |
| 4809 | ptr += RDB_SIZEOF_INDEX_TYPE; |
| 4810 | index_info->m_kv_version = rdb_netbuf_to_uint16(ptr); |
| 4811 | found = true; |
| 4812 | break; |
| 4813 | |
| 4814 | default: |
| 4815 | error = true; |
| 4816 | break; |
| 4817 | } |
| 4818 | |
| 4819 | switch (index_info->m_index_type) { |
| 4820 | case Rdb_key_def::INDEX_TYPE_PRIMARY: |
| 4821 | case Rdb_key_def::INDEX_TYPE_HIDDEN_PRIMARY: { |
| 4822 | error = |
| 4823 | index_info->m_kv_version > Rdb_key_def::PRIMARY_FORMAT_VERSION_LATEST; |
| 4824 | break; |
| 4825 | } |
| 4826 | case Rdb_key_def::INDEX_TYPE_SECONDARY: |
| 4827 | error = index_info->m_kv_version > |
| 4828 | Rdb_key_def::SECONDARY_FORMAT_VERSION_LATEST; |
| 4829 | break; |
| 4830 | default: |
| 4831 | error = true; |
| 4832 | break; |
| 4833 | } |
| 4834 | } |
| 4835 | |
| 4836 | if (error) { |
| 4837 | // NO_LINT_DEBUG |
| 4838 | sql_print_error( |
| 4839 | "RocksDB: Found invalid key version number (%u, %u, %u, %llu) " |
| 4840 | "from data dictionary. This should never happen " |
| 4841 | "and it may be a bug." , |
| 4842 | index_info->m_index_dict_version, index_info->m_index_type, |
| 4843 | index_info->m_kv_version, index_info->m_ttl_duration); |
| 4844 | abort(); |
| 4845 | } |
| 4846 | |
| 4847 | return found; |
| 4848 | } |
| 4849 | |
| 4850 | bool Rdb_dict_manager::get_cf_flags(const uint32_t &cf_id, |
| 4851 | uint32_t *const cf_flags) const { |
| 4852 | DBUG_ASSERT(cf_flags != nullptr); |
| 4853 | |
| 4854 | bool found = false; |
| 4855 | std::string value; |
| 4856 | uchar key_buf[Rdb_key_def::INDEX_NUMBER_SIZE * 2] = {0}; |
| 4857 | |
| 4858 | rdb_netbuf_store_uint32(key_buf, Rdb_key_def::CF_DEFINITION); |
| 4859 | rdb_netbuf_store_uint32(key_buf + Rdb_key_def::INDEX_NUMBER_SIZE, cf_id); |
| 4860 | |
| 4861 | const rocksdb::Slice key = |
| 4862 | rocksdb::Slice(reinterpret_cast<char *>(key_buf), sizeof(key_buf)); |
| 4863 | const rocksdb::Status status = get_value(key, &value); |
| 4864 | |
| 4865 | if (status.ok()) { |
| 4866 | const uchar *val = (const uchar *)value.c_str(); |
| 4867 | DBUG_ASSERT(val); |
| 4868 | |
| 4869 | const uint16_t version = rdb_netbuf_to_uint16(val); |
| 4870 | |
| 4871 | if (version == Rdb_key_def::CF_DEFINITION_VERSION) { |
| 4872 | *cf_flags = rdb_netbuf_to_uint32(val + Rdb_key_def::VERSION_SIZE); |
| 4873 | found = true; |
| 4874 | } |
| 4875 | } |
| 4876 | |
| 4877 | return found; |
| 4878 | } |
| 4879 | |
| 4880 | /* |
| 4881 | Returning index ids that were marked as deleted (via DROP TABLE) but |
| 4882 | still not removed by drop_index_thread yet, or indexes that are marked as |
| 4883 | ongoing creation. |
| 4884 | */ |
| 4885 | void Rdb_dict_manager::get_ongoing_index_operation( |
| 4886 | std::unordered_set<GL_INDEX_ID> *gl_index_ids, |
| 4887 | Rdb_key_def::DATA_DICT_TYPE dd_type) const { |
| 4888 | DBUG_ASSERT(dd_type == Rdb_key_def::DDL_DROP_INDEX_ONGOING || |
| 4889 | dd_type == Rdb_key_def::DDL_CREATE_INDEX_ONGOING); |
| 4890 | |
| 4891 | uchar index_buf[Rdb_key_def::INDEX_NUMBER_SIZE]; |
| 4892 | rdb_netbuf_store_uint32(index_buf, dd_type); |
| 4893 | const rocksdb::Slice index_slice(reinterpret_cast<char *>(index_buf), |
| 4894 | Rdb_key_def::INDEX_NUMBER_SIZE); |
| 4895 | |
| 4896 | rocksdb::Iterator *it = new_iterator(); |
| 4897 | for (it->Seek(index_slice); it->Valid(); it->Next()) { |
| 4898 | rocksdb::Slice key = it->key(); |
| 4899 | const uchar *const ptr = (const uchar *)key.data(); |
| 4900 | |
| 4901 | /* |
| 4902 | Ongoing drop/create index operations require key to be of the form: |
| 4903 | dd_type + cf_id + index_id (== INDEX_NUMBER_SIZE * 3) |
| 4904 | |
| 4905 | This may need to be changed in the future if we want to process a new |
| 4906 | ddl_type with different format. |
| 4907 | */ |
| 4908 | if (key.size() != Rdb_key_def::INDEX_NUMBER_SIZE * 3 || |
| 4909 | rdb_netbuf_to_uint32(ptr) != dd_type) { |
| 4910 | break; |
| 4911 | } |
| 4912 | |
| 4913 | // We don't check version right now since currently we always store only |
| 4914 | // Rdb_key_def::DDL_DROP_INDEX_ONGOING_VERSION = 1 as a value. |
| 4915 | // If increasing version number, we need to add version check logic here. |
| 4916 | GL_INDEX_ID gl_index_id; |
| 4917 | gl_index_id.cf_id = |
| 4918 | rdb_netbuf_to_uint32(ptr + Rdb_key_def::INDEX_NUMBER_SIZE); |
| 4919 | gl_index_id.index_id = |
| 4920 | rdb_netbuf_to_uint32(ptr + 2 * Rdb_key_def::INDEX_NUMBER_SIZE); |
| 4921 | gl_index_ids->insert(gl_index_id); |
| 4922 | } |
| 4923 | delete it; |
| 4924 | } |
| 4925 | |
| 4926 | /* |
| 4927 | Returning true if index_id is create/delete ongoing (undergoing creation or |
| 4928 | marked as deleted via DROP TABLE but drop_index_thread has not wiped yet) |
| 4929 | or not. |
| 4930 | */ |
| 4931 | bool Rdb_dict_manager::is_index_operation_ongoing( |
| 4932 | const GL_INDEX_ID &gl_index_id, Rdb_key_def::DATA_DICT_TYPE dd_type) const { |
| 4933 | DBUG_ASSERT(dd_type == Rdb_key_def::DDL_DROP_INDEX_ONGOING || |
| 4934 | dd_type == Rdb_key_def::DDL_CREATE_INDEX_ONGOING); |
| 4935 | |
| 4936 | bool found = false; |
| 4937 | std::string value; |
| 4938 | uchar key_buf[Rdb_key_def::INDEX_NUMBER_SIZE * 3] = {0}; |
| 4939 | dump_index_id(key_buf, dd_type, gl_index_id); |
| 4940 | const rocksdb::Slice key = rocksdb::Slice((char *)key_buf, sizeof(key_buf)); |
| 4941 | |
| 4942 | const rocksdb::Status status = get_value(key, &value); |
| 4943 | if (status.ok()) { |
| 4944 | found = true; |
| 4945 | } |
| 4946 | return found; |
| 4947 | } |
| 4948 | |
| 4949 | /* |
| 4950 | Adding index_id to data dictionary so that the index id is removed |
| 4951 | by drop_index_thread, or to track online index creation. |
| 4952 | */ |
| 4953 | void Rdb_dict_manager::start_ongoing_index_operation( |
| 4954 | rocksdb::WriteBatch *const batch, const GL_INDEX_ID &gl_index_id, |
| 4955 | Rdb_key_def::DATA_DICT_TYPE dd_type) const { |
| 4956 | DBUG_ASSERT(dd_type == Rdb_key_def::DDL_DROP_INDEX_ONGOING || |
| 4957 | dd_type == Rdb_key_def::DDL_CREATE_INDEX_ONGOING); |
| 4958 | |
| 4959 | uchar key_buf[Rdb_key_def::INDEX_NUMBER_SIZE * 3] = {0}; |
| 4960 | uchar value_buf[Rdb_key_def::VERSION_SIZE] = {0}; |
| 4961 | dump_index_id(key_buf, dd_type, gl_index_id); |
| 4962 | |
| 4963 | // version as needed |
| 4964 | if (dd_type == Rdb_key_def::DDL_DROP_INDEX_ONGOING) { |
| 4965 | rdb_netbuf_store_uint16(value_buf, |
| 4966 | Rdb_key_def::DDL_DROP_INDEX_ONGOING_VERSION); |
| 4967 | } else { |
| 4968 | rdb_netbuf_store_uint16(value_buf, |
| 4969 | Rdb_key_def::DDL_CREATE_INDEX_ONGOING_VERSION); |
| 4970 | } |
| 4971 | |
| 4972 | const rocksdb::Slice key = rocksdb::Slice((char *)key_buf, sizeof(key_buf)); |
| 4973 | const rocksdb::Slice value = |
| 4974 | rocksdb::Slice((char *)value_buf, sizeof(value_buf)); |
| 4975 | batch->Put(m_system_cfh, key, value); |
| 4976 | } |
| 4977 | |
| 4978 | /* |
| 4979 | Removing index_id from data dictionary to confirm drop_index_thread |
| 4980 | completed dropping entire key/values of the index_id |
| 4981 | */ |
| 4982 | void Rdb_dict_manager::end_ongoing_index_operation( |
| 4983 | rocksdb::WriteBatch *const batch, const GL_INDEX_ID &gl_index_id, |
| 4984 | Rdb_key_def::DATA_DICT_TYPE dd_type) const { |
| 4985 | DBUG_ASSERT(dd_type == Rdb_key_def::DDL_DROP_INDEX_ONGOING || |
| 4986 | dd_type == Rdb_key_def::DDL_CREATE_INDEX_ONGOING); |
| 4987 | |
| 4988 | delete_with_prefix(batch, dd_type, gl_index_id); |
| 4989 | } |
| 4990 | |
| 4991 | /* |
| 4992 | Returning true if there is no target index ids to be removed |
| 4993 | by drop_index_thread |
| 4994 | */ |
| 4995 | bool Rdb_dict_manager::is_drop_index_empty() const { |
| 4996 | std::unordered_set<GL_INDEX_ID> gl_index_ids; |
| 4997 | get_ongoing_drop_indexes(&gl_index_ids); |
| 4998 | return gl_index_ids.empty(); |
| 4999 | } |
| 5000 | |
| 5001 | /* |
| 5002 | This function is supposed to be called by DROP TABLE. Logging messages |
| 5003 | that dropping indexes started, and adding data dictionary so that |
| 5004 | all associated indexes to be removed |
| 5005 | */ |
| 5006 | void Rdb_dict_manager::add_drop_table( |
| 5007 | std::shared_ptr<Rdb_key_def> *const key_descr, const uint32 &n_keys, |
| 5008 | rocksdb::WriteBatch *const batch) const { |
| 5009 | std::unordered_set<GL_INDEX_ID> dropped_index_ids; |
| 5010 | for (uint32 i = 0; i < n_keys; i++) { |
| 5011 | dropped_index_ids.insert(key_descr[i]->get_gl_index_id()); |
| 5012 | } |
| 5013 | |
| 5014 | add_drop_index(dropped_index_ids, batch); |
| 5015 | } |
| 5016 | |
| 5017 | /* |
| 5018 | Called during inplace index drop operations. Logging messages |
| 5019 | that dropping indexes started, and adding data dictionary so that |
| 5020 | all associated indexes to be removed |
| 5021 | */ |
| 5022 | void Rdb_dict_manager::add_drop_index( |
| 5023 | const std::unordered_set<GL_INDEX_ID> &gl_index_ids, |
| 5024 | rocksdb::WriteBatch *const batch) const { |
| 5025 | for (const auto &gl_index_id : gl_index_ids) { |
| 5026 | log_start_drop_index(gl_index_id, "Begin" ); |
| 5027 | start_drop_index(batch, gl_index_id); |
| 5028 | } |
| 5029 | } |
| 5030 | |
| 5031 | /* |
| 5032 | Called during inplace index creation operations. Logging messages |
| 5033 | that adding indexes started, and updates data dictionary with all associated |
| 5034 | indexes to be added. |
| 5035 | */ |
| 5036 | void Rdb_dict_manager::add_create_index( |
| 5037 | const std::unordered_set<GL_INDEX_ID> &gl_index_ids, |
| 5038 | rocksdb::WriteBatch *const batch) const { |
| 5039 | for (const auto &gl_index_id : gl_index_ids) { |
| 5040 | // NO_LINT_DEBUG |
| 5041 | sql_print_verbose_info("RocksDB: Begin index creation (%u,%u)" , |
| 5042 | gl_index_id.cf_id, gl_index_id.index_id); |
| 5043 | start_create_index(batch, gl_index_id); |
| 5044 | } |
| 5045 | } |
| 5046 | |
| 5047 | /* |
| 5048 | This function is supposed to be called by drop_index_thread, when it |
| 5049 | finished dropping any index, or at the completion of online index creation. |
| 5050 | */ |
| 5051 | void Rdb_dict_manager::finish_indexes_operation( |
| 5052 | const std::unordered_set<GL_INDEX_ID> &gl_index_ids, |
| 5053 | Rdb_key_def::DATA_DICT_TYPE dd_type) const { |
| 5054 | DBUG_ASSERT(dd_type == Rdb_key_def::DDL_DROP_INDEX_ONGOING || |
| 5055 | dd_type == Rdb_key_def::DDL_CREATE_INDEX_ONGOING); |
| 5056 | |
| 5057 | const std::unique_ptr<rocksdb::WriteBatch> wb = begin(); |
| 5058 | rocksdb::WriteBatch *const batch = wb.get(); |
| 5059 | |
| 5060 | std::unordered_set<GL_INDEX_ID> incomplete_create_indexes; |
| 5061 | get_ongoing_create_indexes(&incomplete_create_indexes); |
| 5062 | |
| 5063 | for (const auto &gl_index_id : gl_index_ids) { |
| 5064 | if (is_index_operation_ongoing(gl_index_id, dd_type)) { |
| 5065 | end_ongoing_index_operation(batch, gl_index_id, dd_type); |
| 5066 | |
| 5067 | /* |
| 5068 | Remove the corresponding incomplete create indexes from data |
| 5069 | dictionary as well |
| 5070 | */ |
| 5071 | if (dd_type == Rdb_key_def::DDL_DROP_INDEX_ONGOING) { |
| 5072 | if (incomplete_create_indexes.count(gl_index_id)) { |
| 5073 | end_ongoing_index_operation(batch, gl_index_id, |
| 5074 | Rdb_key_def::DDL_CREATE_INDEX_ONGOING); |
| 5075 | } |
| 5076 | } |
| 5077 | } |
| 5078 | |
| 5079 | if (dd_type == Rdb_key_def::DDL_DROP_INDEX_ONGOING) { |
| 5080 | delete_index_info(batch, gl_index_id); |
| 5081 | } |
| 5082 | } |
| 5083 | commit(batch); |
| 5084 | } |
| 5085 | |
| 5086 | /* |
| 5087 | This function is supposed to be called when initializing |
| 5088 | Rdb_dict_manager (at startup). If there is any index ids that are |
| 5089 | drop ongoing, printing out messages for diagnostics purposes. |
| 5090 | */ |
| 5091 | void Rdb_dict_manager::resume_drop_indexes() const { |
| 5092 | std::unordered_set<GL_INDEX_ID> gl_index_ids; |
| 5093 | get_ongoing_drop_indexes(&gl_index_ids); |
| 5094 | |
| 5095 | uint max_index_id_in_dict = 0; |
| 5096 | get_max_index_id(&max_index_id_in_dict); |
| 5097 | |
| 5098 | for (const auto &gl_index_id : gl_index_ids) { |
| 5099 | log_start_drop_index(gl_index_id, "Resume" ); |
| 5100 | if (max_index_id_in_dict < gl_index_id.index_id) { |
| 5101 | sql_print_error("RocksDB: Found max index id %u from data dictionary " |
| 5102 | "but also found dropped index id (%u,%u) from drop_index " |
| 5103 | "dictionary. This should never happen and is possibly a " |
| 5104 | "bug." , |
| 5105 | max_index_id_in_dict, gl_index_id.cf_id, |
| 5106 | gl_index_id.index_id); |
| 5107 | abort(); |
| 5108 | } |
| 5109 | } |
| 5110 | } |
| 5111 | |
| 5112 | void Rdb_dict_manager::rollback_ongoing_index_creation() const { |
| 5113 | const std::unique_ptr<rocksdb::WriteBatch> wb = begin(); |
| 5114 | rocksdb::WriteBatch *const batch = wb.get(); |
| 5115 | |
| 5116 | std::unordered_set<GL_INDEX_ID> gl_index_ids; |
| 5117 | get_ongoing_create_indexes(&gl_index_ids); |
| 5118 | |
| 5119 | for (const auto &gl_index_id : gl_index_ids) { |
| 5120 | // NO_LINT_DEBUG |
| 5121 | sql_print_verbose_info("RocksDB: Removing incomplete create index (%u,%u)" , |
| 5122 | gl_index_id.cf_id, gl_index_id.index_id); |
| 5123 | |
| 5124 | start_drop_index(batch, gl_index_id); |
| 5125 | } |
| 5126 | |
| 5127 | commit(batch); |
| 5128 | } |
| 5129 | |
| 5130 | void Rdb_dict_manager::log_start_drop_table( |
| 5131 | const std::shared_ptr<Rdb_key_def> *const key_descr, const uint32 &n_keys, |
| 5132 | const char *const log_action) const { |
| 5133 | for (uint32 i = 0; i < n_keys; i++) { |
| 5134 | log_start_drop_index(key_descr[i]->get_gl_index_id(), log_action); |
| 5135 | } |
| 5136 | } |
| 5137 | |
| 5138 | void Rdb_dict_manager::log_start_drop_index(GL_INDEX_ID gl_index_id, |
| 5139 | const char *log_action) const { |
| 5140 | struct Rdb_index_info index_info; |
| 5141 | if (!get_index_info(gl_index_id, &index_info)) { |
| 5142 | /* |
| 5143 | If we don't find the index info, it could be that it's because it was a |
| 5144 | partially created index that isn't in the data dictionary yet that needs |
| 5145 | to be rolled back. |
| 5146 | */ |
| 5147 | std::unordered_set<GL_INDEX_ID> incomplete_create_indexes; |
| 5148 | get_ongoing_create_indexes(&incomplete_create_indexes); |
| 5149 | |
| 5150 | if (!incomplete_create_indexes.count(gl_index_id)) { |
| 5151 | /* If it's not a partially created index, something is very wrong. */ |
| 5152 | sql_print_error("RocksDB: Failed to get column family info " |
| 5153 | "from index id (%u,%u). MyRocks data dictionary may " |
| 5154 | "get corrupted." , |
| 5155 | gl_index_id.cf_id, gl_index_id.index_id); |
| 5156 | abort(); |
| 5157 | } |
| 5158 | } |
| 5159 | } |
| 5160 | |
| 5161 | bool Rdb_dict_manager::get_max_index_id(uint32_t *const index_id) const { |
| 5162 | bool found = false; |
| 5163 | std::string value; |
| 5164 | |
| 5165 | const rocksdb::Status status = get_value(m_key_slice_max_index_id, &value); |
| 5166 | if (status.ok()) { |
| 5167 | const uchar *const val = (const uchar *)value.c_str(); |
| 5168 | const uint16_t &version = rdb_netbuf_to_uint16(val); |
| 5169 | if (version == Rdb_key_def::MAX_INDEX_ID_VERSION) { |
| 5170 | *index_id = rdb_netbuf_to_uint32(val + Rdb_key_def::VERSION_SIZE); |
| 5171 | found = true; |
| 5172 | } |
| 5173 | } |
| 5174 | return found; |
| 5175 | } |
| 5176 | |
| 5177 | bool Rdb_dict_manager::update_max_index_id(rocksdb::WriteBatch *const batch, |
| 5178 | const uint32_t &index_id) const { |
| 5179 | DBUG_ASSERT(batch != nullptr); |
| 5180 | |
| 5181 | uint32_t old_index_id = -1; |
| 5182 | if (get_max_index_id(&old_index_id)) { |
| 5183 | if (old_index_id > index_id) { |
| 5184 | sql_print_error("RocksDB: Found max index id %u from data dictionary " |
| 5185 | "but trying to update to older value %u. This should " |
| 5186 | "never happen and possibly a bug." , |
| 5187 | old_index_id, index_id); |
| 5188 | return true; |
| 5189 | } |
| 5190 | } |
| 5191 | |
| 5192 | uchar value_buf[Rdb_key_def::VERSION_SIZE + Rdb_key_def::INDEX_NUMBER_SIZE] = |
| 5193 | {0}; |
| 5194 | rdb_netbuf_store_uint16(value_buf, Rdb_key_def::MAX_INDEX_ID_VERSION); |
| 5195 | rdb_netbuf_store_uint32(value_buf + Rdb_key_def::VERSION_SIZE, index_id); |
| 5196 | const rocksdb::Slice value = |
| 5197 | rocksdb::Slice((char *)value_buf, sizeof(value_buf)); |
| 5198 | batch->Put(m_system_cfh, m_key_slice_max_index_id, value); |
| 5199 | return false; |
| 5200 | } |
| 5201 | |
| 5202 | void Rdb_dict_manager::add_stats( |
| 5203 | rocksdb::WriteBatch *const batch, |
| 5204 | const std::vector<Rdb_index_stats> &stats) const { |
| 5205 | DBUG_ASSERT(batch != nullptr); |
| 5206 | |
| 5207 | for (const auto &it : stats) { |
| 5208 | uchar key_buf[Rdb_key_def::INDEX_NUMBER_SIZE * 3] = {0}; |
| 5209 | dump_index_id(key_buf, Rdb_key_def::INDEX_STATISTICS, it.m_gl_index_id); |
| 5210 | |
| 5211 | // IndexStats::materialize takes complete care of serialization including |
| 5212 | // storing the version |
| 5213 | const auto value = |
| 5214 | Rdb_index_stats::materialize(std::vector<Rdb_index_stats>{it}); |
| 5215 | |
| 5216 | batch->Put(m_system_cfh, rocksdb::Slice((char *)key_buf, sizeof(key_buf)), |
| 5217 | value); |
| 5218 | } |
| 5219 | } |
| 5220 | |
| 5221 | Rdb_index_stats Rdb_dict_manager::get_stats(GL_INDEX_ID gl_index_id) const { |
| 5222 | uchar key_buf[Rdb_key_def::INDEX_NUMBER_SIZE * 3] = {0}; |
| 5223 | dump_index_id(key_buf, Rdb_key_def::INDEX_STATISTICS, gl_index_id); |
| 5224 | |
| 5225 | std::string value; |
| 5226 | const rocksdb::Status status = get_value( |
| 5227 | rocksdb::Slice(reinterpret_cast<char *>(key_buf), sizeof(key_buf)), |
| 5228 | &value); |
| 5229 | if (status.ok()) { |
| 5230 | std::vector<Rdb_index_stats> v; |
| 5231 | // unmaterialize checks if the version matches |
| 5232 | if (Rdb_index_stats::unmaterialize(value, &v) == 0 && v.size() == 1) { |
| 5233 | return v[0]; |
| 5234 | } |
| 5235 | } |
| 5236 | |
| 5237 | return Rdb_index_stats(); |
| 5238 | } |
| 5239 | |
| 5240 | rocksdb::Status |
| 5241 | Rdb_dict_manager::put_auto_incr_val(rocksdb::WriteBatchBase *batch, |
| 5242 | const GL_INDEX_ID &gl_index_id, |
| 5243 | ulonglong val, bool overwrite) const { |
| 5244 | uchar key_buf[Rdb_key_def::INDEX_NUMBER_SIZE * 3] = {0}; |
| 5245 | dump_index_id(key_buf, Rdb_key_def::AUTO_INC, gl_index_id); |
| 5246 | const rocksdb::Slice key = |
| 5247 | rocksdb::Slice(reinterpret_cast<char *>(key_buf), sizeof(key_buf)); |
| 5248 | |
| 5249 | // Value is constructed by storing the version and the value. |
| 5250 | uchar value_buf[RDB_SIZEOF_AUTO_INCREMENT_VERSION + |
| 5251 | ROCKSDB_SIZEOF_AUTOINC_VALUE] = {0}; |
| 5252 | uchar *ptr = value_buf; |
| 5253 | rdb_netbuf_store_uint16(ptr, Rdb_key_def::AUTO_INCREMENT_VERSION); |
| 5254 | ptr += RDB_SIZEOF_AUTO_INCREMENT_VERSION; |
| 5255 | rdb_netbuf_store_uint64(ptr, val); |
| 5256 | ptr += ROCKSDB_SIZEOF_AUTOINC_VALUE; |
| 5257 | const rocksdb::Slice value = |
| 5258 | rocksdb::Slice(reinterpret_cast<char *>(value_buf), ptr - value_buf); |
| 5259 | |
| 5260 | if (overwrite) { |
| 5261 | return batch->Put(m_system_cfh, key, value); |
| 5262 | } |
| 5263 | return batch->Merge(m_system_cfh, key, value); |
| 5264 | } |
| 5265 | |
| 5266 | bool Rdb_dict_manager::get_auto_incr_val(const GL_INDEX_ID &gl_index_id, |
| 5267 | ulonglong *new_val) const { |
| 5268 | uchar key_buf[Rdb_key_def::INDEX_NUMBER_SIZE * 3] = {0}; |
| 5269 | dump_index_id(key_buf, Rdb_key_def::AUTO_INC, gl_index_id); |
| 5270 | |
| 5271 | std::string value; |
| 5272 | const rocksdb::Status status = get_value( |
| 5273 | rocksdb::Slice(reinterpret_cast<char *>(key_buf), sizeof(key_buf)), |
| 5274 | &value); |
| 5275 | |
| 5276 | if (status.ok()) { |
| 5277 | const uchar *const val = reinterpret_cast<const uchar *>(value.data()); |
| 5278 | |
| 5279 | if (rdb_netbuf_to_uint16(val) <= Rdb_key_def::AUTO_INCREMENT_VERSION) { |
| 5280 | *new_val = rdb_netbuf_to_uint64(val + RDB_SIZEOF_AUTO_INCREMENT_VERSION); |
| 5281 | return true; |
| 5282 | } |
| 5283 | } |
| 5284 | return false; |
| 5285 | } |
| 5286 | |
| 5287 | uint Rdb_seq_generator::get_and_update_next_number( |
| 5288 | Rdb_dict_manager *const dict) { |
| 5289 | DBUG_ASSERT(dict != nullptr); |
| 5290 | |
| 5291 | uint res; |
| 5292 | RDB_MUTEX_LOCK_CHECK(m_mutex); |
| 5293 | |
| 5294 | res = m_next_number++; |
| 5295 | |
| 5296 | const std::unique_ptr<rocksdb::WriteBatch> wb = dict->begin(); |
| 5297 | rocksdb::WriteBatch *const batch = wb.get(); |
| 5298 | |
| 5299 | DBUG_ASSERT(batch != nullptr); |
| 5300 | dict->update_max_index_id(batch, res); |
| 5301 | dict->commit(batch); |
| 5302 | |
| 5303 | RDB_MUTEX_UNLOCK_CHECK(m_mutex); |
| 5304 | |
| 5305 | return res; |
| 5306 | } |
| 5307 | |
| 5308 | } // namespace myrocks |
| 5309 | |