| 1 | /* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */ |
| 2 | // vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4: |
| 3 | #ident "$Id$" |
| 4 | /*====== |
| 5 | This file is part of PerconaFT. |
| 6 | |
| 7 | |
| 8 | Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved. |
| 9 | |
| 10 | PerconaFT is free software: you can redistribute it and/or modify |
| 11 | it under the terms of the GNU General Public License, version 2, |
| 12 | as published by the Free Software Foundation. |
| 13 | |
| 14 | PerconaFT is distributed in the hope that it will be useful, |
| 15 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 17 | GNU General Public License for more details. |
| 18 | |
| 19 | You should have received a copy of the GNU General Public License |
| 20 | along with PerconaFT. If not, see <http://www.gnu.org/licenses/>. |
| 21 | |
| 22 | ---------------------------------------- |
| 23 | |
| 24 | PerconaFT is free software: you can redistribute it and/or modify |
| 25 | it under the terms of the GNU Affero General Public License, version 3, |
| 26 | as published by the Free Software Foundation. |
| 27 | |
| 28 | PerconaFT is distributed in the hope that it will be useful, |
| 29 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 30 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 31 | GNU Affero General Public License for more details. |
| 32 | |
| 33 | You should have received a copy of the GNU Affero General Public License |
| 34 | along with PerconaFT. If not, see <http://www.gnu.org/licenses/>. |
| 35 | ======= */ |
| 36 | |
| 37 | #ident "Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved." |
| 38 | |
| 39 | #include <my_global.h> |
| 40 | #include "ft/ft.h" |
| 41 | #include "ft/ft-cachetable-wrappers.h" |
| 42 | #include "ft/ft-internal.h" |
| 43 | #include "ft/ft-flusher.h" |
| 44 | #include "ft/ft-flusher-internal.h" |
| 45 | #include "ft/node.h" |
| 46 | #include "ft/serialize/block_table.h" |
| 47 | #include "ft/serialize/ft_node-serialize.h" |
| 48 | #include "portability/toku_assert.h" |
| 49 | #include "portability/toku_atomic.h" |
| 50 | #include "util/status.h" |
| 51 | #include "util/context.h" |
| 52 | |
| 53 | |
| 54 | void toku_ft_flusher_get_status(FT_FLUSHER_STATUS status) { |
| 55 | fl_status.init(); |
| 56 | *status = fl_status; |
| 57 | } |
| 58 | |
| 59 | // |
| 60 | // For test purposes only. |
| 61 | // These callbacks are never used in production code, only as a way |
| 62 | // to test the system (for example, by causing crashes at predictable times). |
| 63 | // |
| 64 | static void (*flusher_thread_callback)(int, void*) = NULL; |
| 65 | static void * = NULL; |
| 66 | |
| 67 | void toku_flusher_thread_set_callback(void (*callback_f)(int, void*), |
| 68 | void* ) { |
| 69 | flusher_thread_callback = callback_f; |
| 70 | flusher_thread_callback_extra = extra; |
| 71 | } |
| 72 | |
| 73 | static void call_flusher_thread_callback(int flt_state) { |
| 74 | if (flusher_thread_callback) { |
| 75 | flusher_thread_callback(flt_state, flusher_thread_callback_extra); |
| 76 | } |
| 77 | } |
| 78 | |
| 79 | static int |
| 80 | find_heaviest_child(FTNODE node) |
| 81 | { |
| 82 | int max_child = 0; |
| 83 | uint64_t max_weight = toku_bnc_nbytesinbuf(BNC(node, 0)) + BP_WORKDONE(node, 0); |
| 84 | |
| 85 | invariant(node->n_children > 0); |
| 86 | for (int i = 1; i < node->n_children; i++) { |
| 87 | uint64_t bytes_in_buf = toku_bnc_nbytesinbuf(BNC(node, i)); |
| 88 | uint64_t workdone = BP_WORKDONE(node, i); |
| 89 | if (workdone > 0) { |
| 90 | invariant(bytes_in_buf > 0); |
| 91 | } |
| 92 | uint64_t this_weight = bytes_in_buf + workdone; |
| 93 | if (max_weight < this_weight) { |
| 94 | max_child = i; |
| 95 | max_weight = this_weight; |
| 96 | } |
| 97 | } |
| 98 | return max_child; |
| 99 | } |
| 100 | |
| 101 | static void |
| 102 | update_flush_status(FTNODE child, int cascades) { |
| 103 | FL_STATUS_VAL(FT_FLUSHER_FLUSH_TOTAL)++; |
| 104 | if (cascades > 0) { |
| 105 | FL_STATUS_VAL(FT_FLUSHER_FLUSH_CASCADES)++; |
| 106 | switch (cascades) { |
| 107 | case 1: |
| 108 | FL_STATUS_VAL(FT_FLUSHER_FLUSH_CASCADES_1)++; break; |
| 109 | case 2: |
| 110 | FL_STATUS_VAL(FT_FLUSHER_FLUSH_CASCADES_2)++; break; |
| 111 | case 3: |
| 112 | FL_STATUS_VAL(FT_FLUSHER_FLUSH_CASCADES_3)++; break; |
| 113 | case 4: |
| 114 | FL_STATUS_VAL(FT_FLUSHER_FLUSH_CASCADES_4)++; break; |
| 115 | case 5: |
| 116 | FL_STATUS_VAL(FT_FLUSHER_FLUSH_CASCADES_5)++; break; |
| 117 | default: |
| 118 | FL_STATUS_VAL(FT_FLUSHER_FLUSH_CASCADES_GT_5)++; break; |
| 119 | } |
| 120 | } |
| 121 | bool flush_needs_io = false; |
| 122 | for (int i = 0; !flush_needs_io && i < child->n_children; ++i) { |
| 123 | if (BP_STATE(child, i) == PT_ON_DISK) { |
| 124 | flush_needs_io = true; |
| 125 | } |
| 126 | } |
| 127 | if (flush_needs_io) { |
| 128 | FL_STATUS_VAL(FT_FLUSHER_FLUSH_NEEDED_IO)++; |
| 129 | } else { |
| 130 | FL_STATUS_VAL(FT_FLUSHER_FLUSH_IN_MEMORY)++; |
| 131 | } |
| 132 | } |
| 133 | |
| 134 | static void |
| 135 | maybe_destroy_child_blbs(FTNODE node, FTNODE child, FT ft) |
| 136 | { |
| 137 | // If the node is already fully in memory, as in upgrade, we don't |
| 138 | // need to destroy the basement nodes because they are all equally |
| 139 | // up to date. |
| 140 | if (child->n_children > 1 && |
| 141 | child->height == 0 && |
| 142 | !child->dirty) { |
| 143 | for (int i = 0; i < child->n_children; ++i) { |
| 144 | if (BP_STATE(child, i) == PT_AVAIL && |
| 145 | node->max_msn_applied_to_node_on_disk.msn < BLB_MAX_MSN_APPLIED(child, i).msn) |
| 146 | { |
| 147 | toku_evict_bn_from_memory(child, i, ft); |
| 148 | } |
| 149 | } |
| 150 | } |
| 151 | } |
| 152 | |
| 153 | static void |
| 154 | ft_merge_child( |
| 155 | FT ft, |
| 156 | FTNODE node, |
| 157 | int childnum_to_merge, |
| 158 | bool *did_react, |
| 159 | struct flusher_advice *fa); |
| 160 | |
| 161 | static int |
| 162 | pick_heaviest_child(FT UU(ft), |
| 163 | FTNODE parent, |
| 164 | void* UU()) |
| 165 | { |
| 166 | int childnum = find_heaviest_child(parent); |
| 167 | paranoid_invariant(toku_bnc_n_entries(BNC(parent, childnum))>0); |
| 168 | return childnum; |
| 169 | } |
| 170 | |
| 171 | bool |
| 172 | dont_destroy_basement_nodes(void* UU()) |
| 173 | { |
| 174 | return false; |
| 175 | } |
| 176 | |
| 177 | static bool |
| 178 | do_destroy_basement_nodes(void* UU()) |
| 179 | { |
| 180 | return true; |
| 181 | } |
| 182 | |
| 183 | bool |
| 184 | always_recursively_flush(FTNODE UU(child), void* UU()) |
| 185 | { |
| 186 | return true; |
| 187 | } |
| 188 | |
| 189 | bool |
| 190 | never_recursively_flush(FTNODE UU(child), void* UU()) |
| 191 | { |
| 192 | return false; |
| 193 | } |
| 194 | |
| 195 | /** |
| 196 | * Flusher thread ("normal" flushing) implementation. |
| 197 | */ |
| 198 | struct { |
| 199 | int ; |
| 200 | uint32_t ; |
| 201 | }; |
| 202 | |
| 203 | static bool |
| 204 | recurse_if_child_is_gorged(FTNODE child, void* ) |
| 205 | { |
| 206 | struct flush_status_update_extra *fste = (flush_status_update_extra *)extra; |
| 207 | return toku_ftnode_nonleaf_is_gorged(child, fste->nodesize); |
| 208 | } |
| 209 | |
| 210 | int |
| 211 | default_pick_child_after_split(FT UU(ft), |
| 212 | FTNODE UU(parent), |
| 213 | int UU(childnuma), |
| 214 | int UU(childnumb), |
| 215 | void* UU()) |
| 216 | { |
| 217 | return -1; |
| 218 | } |
| 219 | |
| 220 | void |
| 221 | default_merge_child(struct flusher_advice *fa, |
| 222 | FT ft, |
| 223 | FTNODE parent, |
| 224 | int childnum, |
| 225 | FTNODE child, |
| 226 | void* UU()) |
| 227 | { |
| 228 | // |
| 229 | // There is probably a way to pass FTNODE child |
| 230 | // into ft_merge_child, but for simplicity for now, |
| 231 | // we are just going to unpin child and |
| 232 | // let ft_merge_child pin it again |
| 233 | // |
| 234 | toku_unpin_ftnode(ft, child); |
| 235 | // |
| 236 | // |
| 237 | // it is responsibility of ft_merge_child to unlock parent |
| 238 | // |
| 239 | bool did_react; |
| 240 | ft_merge_child(ft, parent, childnum, &did_react, fa); |
| 241 | } |
| 242 | |
| 243 | void |
| 244 | flusher_advice_init( |
| 245 | struct flusher_advice *fa, |
| 246 | FA_PICK_CHILD pick_child, |
| 247 | FA_SHOULD_DESTROY_BN should_destroy_basement_nodes, |
| 248 | FA_SHOULD_RECURSIVELY_FLUSH should_recursively_flush, |
| 249 | FA_MAYBE_MERGE_CHILD maybe_merge_child, |
| 250 | FA_UPDATE_STATUS update_status, |
| 251 | FA_PICK_CHILD_AFTER_SPLIT pick_child_after_split, |
| 252 | void* |
| 253 | ) |
| 254 | { |
| 255 | fa->pick_child = pick_child; |
| 256 | fa->should_destroy_basement_nodes = should_destroy_basement_nodes; |
| 257 | fa->should_recursively_flush = should_recursively_flush; |
| 258 | fa->maybe_merge_child = maybe_merge_child; |
| 259 | fa->update_status = update_status; |
| 260 | fa->pick_child_after_split = pick_child_after_split; |
| 261 | fa->extra = extra; |
| 262 | } |
| 263 | |
| 264 | static void |
| 265 | flt_update_status(FTNODE child, |
| 266 | int UU(dirtied), |
| 267 | void* ) |
| 268 | { |
| 269 | struct flush_status_update_extra *fste = (struct flush_status_update_extra *) extra; |
| 270 | update_flush_status(child, fste->cascades); |
| 271 | // If `toku_ft_flush_some_child` decides to recurse after this, we'll need |
| 272 | // cascades to increase. If not it doesn't matter. |
| 273 | fste->cascades++; |
| 274 | } |
| 275 | |
| 276 | static void |
| 277 | (struct flusher_advice *fa, struct flush_status_update_extra *fste, uint32_t nodesize) |
| 278 | { |
| 279 | fste->cascades = 0; |
| 280 | fste->nodesize = nodesize; |
| 281 | flusher_advice_init(fa, |
| 282 | pick_heaviest_child, |
| 283 | dont_destroy_basement_nodes, |
| 284 | recurse_if_child_is_gorged, |
| 285 | default_merge_child, |
| 286 | flt_update_status, |
| 287 | default_pick_child_after_split, |
| 288 | fste); |
| 289 | } |
| 290 | |
| 291 | struct { |
| 292 | bool ; |
| 293 | DBT ; |
| 294 | }; |
| 295 | |
| 296 | static int |
| 297 | ctm_pick_child(FT ft, |
| 298 | FTNODE parent, |
| 299 | void* ) |
| 300 | { |
| 301 | struct ctm_extra* ctme = (struct ctm_extra *) extra; |
| 302 | int childnum; |
| 303 | if (parent->height == 1 && ctme->is_last_child) { |
| 304 | childnum = parent->n_children - 1; |
| 305 | } else { |
| 306 | childnum = toku_ftnode_which_child(parent, &ctme->target_key, ft->cmp); |
| 307 | } |
| 308 | return childnum; |
| 309 | } |
| 310 | |
| 311 | static void |
| 312 | ctm_update_status( |
| 313 | FTNODE UU(child), |
| 314 | int dirtied, |
| 315 | void* UU() |
| 316 | ) |
| 317 | { |
| 318 | FL_STATUS_VAL(FT_FLUSHER_CLEANER_NUM_DIRTIED_FOR_LEAF_MERGE) += dirtied; |
| 319 | } |
| 320 | |
| 321 | static void |
| 322 | ctm_maybe_merge_child(struct flusher_advice *fa, |
| 323 | FT ft, |
| 324 | FTNODE parent, |
| 325 | int childnum, |
| 326 | FTNODE child, |
| 327 | void *) |
| 328 | { |
| 329 | if (child->height == 0) { |
| 330 | (void) toku_sync_fetch_and_add(&FL_STATUS_VAL(FT_FLUSHER_CLEANER_NUM_LEAF_MERGES_COMPLETED), 1); |
| 331 | } |
| 332 | default_merge_child(fa, ft, parent, childnum, child, extra); |
| 333 | } |
| 334 | |
| 335 | static void |
| 336 | ct_maybe_merge_child(struct flusher_advice *fa, |
| 337 | FT ft, |
| 338 | FTNODE parent, |
| 339 | int childnum, |
| 340 | FTNODE child, |
| 341 | void* ) |
| 342 | { |
| 343 | if (child->height > 0) { |
| 344 | default_merge_child(fa, ft, parent, childnum, child, extra); |
| 345 | } |
| 346 | else { |
| 347 | struct ctm_extra ctme; |
| 348 | paranoid_invariant(parent->n_children > 1); |
| 349 | int pivot_to_save; |
| 350 | // |
| 351 | // we have two cases, one where the childnum |
| 352 | // is the last child, and therefore the pivot we |
| 353 | // save is not of the pivot which we wish to descend |
| 354 | // and another where it is not the last child, |
| 355 | // so the pivot is sufficient for identifying the leaf |
| 356 | // to be merged |
| 357 | // |
| 358 | if (childnum == (parent->n_children - 1)) { |
| 359 | ctme.is_last_child = true; |
| 360 | pivot_to_save = childnum - 1; |
| 361 | } |
| 362 | else { |
| 363 | ctme.is_last_child = false; |
| 364 | pivot_to_save = childnum; |
| 365 | } |
| 366 | toku_clone_dbt(&ctme.target_key, parent->pivotkeys.get_pivot(pivot_to_save)); |
| 367 | |
| 368 | // at this point, ctme is properly setup, now we can do the merge |
| 369 | struct flusher_advice new_fa; |
| 370 | flusher_advice_init( |
| 371 | &new_fa, |
| 372 | ctm_pick_child, |
| 373 | dont_destroy_basement_nodes, |
| 374 | always_recursively_flush, |
| 375 | ctm_maybe_merge_child, |
| 376 | ctm_update_status, |
| 377 | default_pick_child_after_split, |
| 378 | &ctme); |
| 379 | |
| 380 | toku_unpin_ftnode(ft, parent); |
| 381 | toku_unpin_ftnode(ft, child); |
| 382 | |
| 383 | FTNODE root_node = NULL; |
| 384 | { |
| 385 | uint32_t fullhash; |
| 386 | CACHEKEY root; |
| 387 | toku_calculate_root_offset_pointer(ft, &root, &fullhash); |
| 388 | ftnode_fetch_extra bfe; |
| 389 | bfe.create_for_full_read(ft); |
| 390 | toku_pin_ftnode(ft, root, fullhash, &bfe, PL_WRITE_EXPENSIVE, &root_node, true); |
| 391 | toku_ftnode_assert_fully_in_memory(root_node); |
| 392 | } |
| 393 | |
| 394 | (void) toku_sync_fetch_and_add(&FL_STATUS_VAL(FT_FLUSHER_CLEANER_NUM_LEAF_MERGES_STARTED), 1); |
| 395 | (void) toku_sync_fetch_and_add(&FL_STATUS_VAL(FT_FLUSHER_CLEANER_NUM_LEAF_MERGES_RUNNING), 1); |
| 396 | |
| 397 | toku_ft_flush_some_child(ft, root_node, &new_fa); |
| 398 | |
| 399 | (void) toku_sync_fetch_and_sub(&FL_STATUS_VAL(FT_FLUSHER_CLEANER_NUM_LEAF_MERGES_RUNNING), 1); |
| 400 | |
| 401 | toku_destroy_dbt(&ctme.target_key); |
| 402 | } |
| 403 | } |
| 404 | |
| 405 | static void |
| 406 | ct_update_status(FTNODE child, |
| 407 | int dirtied, |
| 408 | void* ) |
| 409 | { |
| 410 | struct flush_status_update_extra* fste = (struct flush_status_update_extra *) extra; |
| 411 | update_flush_status(child, fste->cascades); |
| 412 | FL_STATUS_VAL(FT_FLUSHER_CLEANER_NODES_DIRTIED) += dirtied; |
| 413 | // Incrementing this in case `toku_ft_flush_some_child` decides to recurse. |
| 414 | fste->cascades++; |
| 415 | } |
| 416 | |
| 417 | static void |
| 418 | (struct flusher_advice *fa, struct flush_status_update_extra* fste, uint32_t nodesize) |
| 419 | { |
| 420 | fste->cascades = 0; |
| 421 | fste->nodesize = nodesize; |
| 422 | flusher_advice_init(fa, |
| 423 | pick_heaviest_child, |
| 424 | do_destroy_basement_nodes, |
| 425 | recurse_if_child_is_gorged, |
| 426 | ct_maybe_merge_child, |
| 427 | ct_update_status, |
| 428 | default_pick_child_after_split, |
| 429 | fste); |
| 430 | } |
| 431 | |
| 432 | // |
| 433 | // This returns true if the node MAY be reactive, |
| 434 | // false is we are absolutely sure that it is NOT reactive. |
| 435 | // The reason for inaccuracy is that the node may be |
| 436 | // a leaf node that is not entirely in memory. If so, then |
| 437 | // we cannot be sure if the node is reactive. |
| 438 | // |
| 439 | static bool ft_ftnode_may_be_reactive(FT ft, FTNODE node) |
| 440 | { |
| 441 | if (node->height == 0) { |
| 442 | return true; |
| 443 | } else { |
| 444 | return toku_ftnode_get_nonleaf_reactivity(node, ft->h->fanout) != RE_STABLE; |
| 445 | } |
| 446 | } |
| 447 | |
| 448 | /* NODE is a node with a child. |
| 449 | * childnum was split into two nodes childa, and childb. childa is the same as the original child. childb is a new child. |
| 450 | * We must slide things around, & move things from the old table to the new tables. |
| 451 | * Requires: the CHILDNUMth buffer of node is empty. |
| 452 | * We don't push anything down to children. We split the node, and things land wherever they land. |
| 453 | * We must delete the old buffer (but the old child is already deleted.) |
| 454 | * On return, the new children and node STAY PINNED. |
| 455 | */ |
| 456 | static void |
| 457 | handle_split_of_child( |
| 458 | FT ft, |
| 459 | FTNODE node, |
| 460 | int childnum, |
| 461 | FTNODE childa, |
| 462 | FTNODE childb, |
| 463 | DBT *splitk /* the data in the childsplitk is alloc'd and is consumed by this call. */ |
| 464 | ) |
| 465 | { |
| 466 | paranoid_invariant(node->height>0); |
| 467 | paranoid_invariant(0 <= childnum); |
| 468 | paranoid_invariant(childnum < node->n_children); |
| 469 | toku_ftnode_assert_fully_in_memory(node); |
| 470 | toku_ftnode_assert_fully_in_memory(childa); |
| 471 | toku_ftnode_assert_fully_in_memory(childb); |
| 472 | NONLEAF_CHILDINFO old_bnc = BNC(node, childnum); |
| 473 | paranoid_invariant(toku_bnc_nbytesinbuf(old_bnc)==0); |
| 474 | WHEN_NOT_GCOV( |
| 475 | if (toku_ft_debug_mode) { |
| 476 | printf("%s:%d Child %d splitting on %s\n" , __FILE__, __LINE__, childnum, (char*)splitk->data); |
| 477 | printf("%s:%d oldsplitkeys:" , __FILE__, __LINE__); |
| 478 | for(int i = 0; i < node->n_children - 1; i++) printf(" %s" , (char *) node->pivotkeys.get_pivot(i).data); |
| 479 | printf("\n" ); |
| 480 | } |
| 481 | ) |
| 482 | |
| 483 | node->dirty = 1; |
| 484 | |
| 485 | XREALLOC_N(node->n_children+1, node->bp); |
| 486 | // Slide the children over. |
| 487 | // suppose n_children is 10 and childnum is 5, meaning node->childnum[5] just got split |
| 488 | // this moves node->bp[6] through node->bp[9] over to |
| 489 | // node->bp[7] through node->bp[10] |
| 490 | for (int cnum=node->n_children; cnum>childnum+1; cnum--) { |
| 491 | node->bp[cnum] = node->bp[cnum-1]; |
| 492 | } |
| 493 | memset(&node->bp[childnum+1],0,sizeof(node->bp[0])); |
| 494 | node->n_children++; |
| 495 | |
| 496 | paranoid_invariant(BP_BLOCKNUM(node, childnum).b==childa->blocknum.b); // use the same child |
| 497 | |
| 498 | // We never set the rightmost blocknum to be the root. |
| 499 | // Instead, we wait for the root to split and let promotion initialize the rightmost |
| 500 | // blocknum to be the first non-root leaf node on the right extreme to receive an insert. |
| 501 | BLOCKNUM rightmost_blocknum = toku_unsafe_fetch(&ft->rightmost_blocknum); |
| 502 | invariant(ft->h->root_blocknum.b != rightmost_blocknum.b); |
| 503 | if (childa->blocknum.b == rightmost_blocknum.b) { |
| 504 | // The rightmost leaf (a) split into (a) and (b). We want (b) to swap pair values |
| 505 | // with (a), now that it is the new rightmost leaf. This keeps the rightmost blocknum |
| 506 | // constant, the same the way we keep the root blocknum constant. |
| 507 | toku_ftnode_swap_pair_values(childa, childb); |
| 508 | BP_BLOCKNUM(node, childnum) = childa->blocknum; |
| 509 | } |
| 510 | |
| 511 | BP_BLOCKNUM(node, childnum+1) = childb->blocknum; |
| 512 | BP_WORKDONE(node, childnum+1) = 0; |
| 513 | BP_STATE(node,childnum+1) = PT_AVAIL; |
| 514 | |
| 515 | NONLEAF_CHILDINFO new_bnc = toku_create_empty_nl(); |
| 516 | for (unsigned int i = 0; i < (sizeof new_bnc->flow) / (sizeof new_bnc->flow[0]); ++i) { |
| 517 | // just split the flows in half for now, can't guess much better |
| 518 | // at the moment |
| 519 | new_bnc->flow[i] = old_bnc->flow[i] / 2; |
| 520 | old_bnc->flow[i] = (old_bnc->flow[i] + 1) / 2; |
| 521 | } |
| 522 | set_BNC(node, childnum+1, new_bnc); |
| 523 | |
| 524 | // Insert the new split key , sliding the other keys over |
| 525 | node->pivotkeys.insert_at(splitk, childnum); |
| 526 | |
| 527 | WHEN_NOT_GCOV( |
| 528 | if (toku_ft_debug_mode) { |
| 529 | printf("%s:%d splitkeys:" , __FILE__, __LINE__); |
| 530 | for (int i = 0; i < node->n_children - 2; i++) printf(" %s" , (char *) node->pivotkeys.get_pivot(i).data); |
| 531 | printf("\n" ); |
| 532 | } |
| 533 | ) |
| 534 | |
| 535 | /* Keep pushing to the children, but not if the children would require a pushdown */ |
| 536 | toku_ftnode_assert_fully_in_memory(node); |
| 537 | toku_ftnode_assert_fully_in_memory(childa); |
| 538 | toku_ftnode_assert_fully_in_memory(childb); |
| 539 | |
| 540 | VERIFY_NODE(t, node); |
| 541 | VERIFY_NODE(t, childa); |
| 542 | VERIFY_NODE(t, childb); |
| 543 | } |
| 544 | |
| 545 | static void |
| 546 | verify_all_in_mempool(FTNODE UU() node) |
| 547 | { |
| 548 | #ifdef TOKU_DEBUG_PARANOID |
| 549 | if (node->height==0) { |
| 550 | for (int i = 0; i < node->n_children; i++) { |
| 551 | invariant(BP_STATE(node,i) == PT_AVAIL); |
| 552 | BLB_DATA(node, i)->verify_mempool(); |
| 553 | } |
| 554 | } |
| 555 | #endif |
| 556 | } |
| 557 | |
| 558 | static uint64_t |
| 559 | ftleaf_disk_size(FTNODE node) |
| 560 | // Effect: get the disk size of a leafentry |
| 561 | { |
| 562 | paranoid_invariant(node->height == 0); |
| 563 | toku_ftnode_assert_fully_in_memory(node); |
| 564 | uint64_t retval = 0; |
| 565 | for (int i = 0; i < node->n_children; i++) { |
| 566 | retval += BLB_DATA(node, i)->get_disk_size(); |
| 567 | } |
| 568 | return retval; |
| 569 | } |
| 570 | |
| 571 | static void |
| 572 | ftleaf_get_split_loc( |
| 573 | FTNODE node, |
| 574 | enum split_mode split_mode, |
| 575 | int *num_left_bns, // which basement within leaf |
| 576 | int *num_left_les // which key within basement |
| 577 | ) |
| 578 | // Effect: Find the location within a leaf node where we want to perform a split |
| 579 | // num_left_bns is how many basement nodes (which OMT) should be split to the left. |
| 580 | // num_left_les is how many leafentries in OMT of the last bn should be on the left side of the split. |
| 581 | { |
| 582 | switch (split_mode) { |
| 583 | case SPLIT_LEFT_HEAVY: { |
| 584 | *num_left_bns = node->n_children; |
| 585 | *num_left_les = BLB_DATA(node, *num_left_bns - 1)->num_klpairs(); |
| 586 | if (*num_left_les == 0) { |
| 587 | *num_left_bns = node->n_children - 1; |
| 588 | *num_left_les = BLB_DATA(node, *num_left_bns - 1)->num_klpairs(); |
| 589 | } |
| 590 | goto exit; |
| 591 | } |
| 592 | case SPLIT_RIGHT_HEAVY: { |
| 593 | *num_left_bns = 1; |
| 594 | *num_left_les = BLB_DATA(node, 0)->num_klpairs() ? 1 : 0; |
| 595 | goto exit; |
| 596 | } |
| 597 | case SPLIT_EVENLY: { |
| 598 | paranoid_invariant(node->height == 0); |
| 599 | // TODO: (Zardosht) see if we can/should make this faster, we iterate over the rows twice |
| 600 | uint64_t sumlesizes = ftleaf_disk_size(node); |
| 601 | uint32_t size_so_far = 0; |
| 602 | for (int i = 0; i < node->n_children; i++) { |
| 603 | bn_data* bd = BLB_DATA(node, i); |
| 604 | uint32_t n_leafentries = bd->num_klpairs(); |
| 605 | for (uint32_t j=0; j < n_leafentries; j++) { |
| 606 | size_t size_this_le; |
| 607 | int rr = bd->fetch_klpair_disksize(j, &size_this_le); |
| 608 | invariant_zero(rr); |
| 609 | size_so_far += size_this_le; |
| 610 | if (size_so_far >= sumlesizes/2) { |
| 611 | *num_left_bns = i + 1; |
| 612 | *num_left_les = j + 1; |
| 613 | if (*num_left_bns == node->n_children && |
| 614 | (unsigned int) *num_left_les == n_leafentries) { |
| 615 | // need to correct for when we're splitting after the |
| 616 | // last element, that makes no sense |
| 617 | if (*num_left_les > 1) { |
| 618 | (*num_left_les)--; |
| 619 | } else if (*num_left_bns > 1) { |
| 620 | (*num_left_bns)--; |
| 621 | *num_left_les = BLB_DATA(node, *num_left_bns - 1)->num_klpairs(); |
| 622 | } else { |
| 623 | // we are trying to split a leaf with only one |
| 624 | // leafentry in it |
| 625 | abort(); |
| 626 | } |
| 627 | } |
| 628 | goto exit; |
| 629 | } |
| 630 | } |
| 631 | } |
| 632 | } |
| 633 | } |
| 634 | abort(); |
| 635 | exit: |
| 636 | return; |
| 637 | } |
| 638 | |
| 639 | static void |
| 640 | move_leafentries( |
| 641 | BASEMENTNODE dest_bn, |
| 642 | BASEMENTNODE src_bn, |
| 643 | uint32_t lbi, //lower bound inclusive |
| 644 | uint32_t ube //upper bound exclusive |
| 645 | ) |
| 646 | //Effect: move leafentries in the range [lbi, upe) from src_omt to newly created dest_omt |
| 647 | { |
| 648 | invariant(ube == src_bn->data_buffer.num_klpairs()); |
| 649 | src_bn->data_buffer.split_klpairs(&dest_bn->data_buffer, lbi); |
| 650 | } |
| 651 | |
| 652 | static void ftnode_finalize_split(FTNODE node, FTNODE B, MSN max_msn_applied_to_node) { |
| 653 | // Effect: Finalizes a split by updating some bits and dirtying both nodes |
| 654 | toku_ftnode_assert_fully_in_memory(node); |
| 655 | toku_ftnode_assert_fully_in_memory(B); |
| 656 | verify_all_in_mempool(node); |
| 657 | verify_all_in_mempool(B); |
| 658 | |
| 659 | node->max_msn_applied_to_node_on_disk = max_msn_applied_to_node; |
| 660 | B->max_msn_applied_to_node_on_disk = max_msn_applied_to_node; |
| 661 | |
| 662 | // The new node in the split inherits the oldest known reference xid |
| 663 | B->oldest_referenced_xid_known = node->oldest_referenced_xid_known; |
| 664 | |
| 665 | node->dirty = 1; |
| 666 | B->dirty = 1; |
| 667 | } |
| 668 | |
| 669 | void |
| 670 | ftleaf_split( |
| 671 | FT ft, |
| 672 | FTNODE node, |
| 673 | FTNODE *nodea, |
| 674 | FTNODE *nodeb, |
| 675 | DBT *splitk, |
| 676 | bool create_new_node, |
| 677 | enum split_mode split_mode, |
| 678 | uint32_t num_dependent_nodes, |
| 679 | FTNODE* dependent_nodes) |
| 680 | // Effect: Split a leaf node. |
| 681 | // Argument "node" is node to be split. |
| 682 | // Upon return: |
| 683 | // nodea and nodeb point to new nodes that result from split of "node" |
| 684 | // nodea is the left node that results from the split |
| 685 | // splitk is the right-most key of nodea |
| 686 | { |
| 687 | |
| 688 | paranoid_invariant(node->height == 0); |
| 689 | FL_STATUS_VAL(FT_FLUSHER_SPLIT_LEAF)++; |
| 690 | if (node->n_children) { |
| 691 | // First move all the accumulated stat64info deltas into the first basement. |
| 692 | // After the split, either both nodes or neither node will be included in the next checkpoint. |
| 693 | // The accumulated stats in the dictionary will be correct in either case. |
| 694 | // By moving all the deltas into one (arbitrary) basement, we avoid the need to maintain |
| 695 | // correct information for a basement that is divided between two leafnodes (i.e. when split is |
| 696 | // not on a basement boundary). |
| 697 | STAT64INFO_S delta_for_leafnode = toku_get_and_clear_basement_stats(node); |
| 698 | BASEMENTNODE bn = BLB(node,0); |
| 699 | bn->stat64_delta = delta_for_leafnode; |
| 700 | } |
| 701 | |
| 702 | |
| 703 | FTNODE B = nullptr; |
| 704 | uint32_t fullhash; |
| 705 | BLOCKNUM name; |
| 706 | |
| 707 | if (create_new_node) { |
| 708 | // put value in cachetable and do checkpointing |
| 709 | // of dependent nodes |
| 710 | // |
| 711 | // We do this here, before evaluating the last_bn_on_left |
| 712 | // and last_le_on_left_within_bn because this operation |
| 713 | // may write to disk the dependent nodes. |
| 714 | // While doing so, we may rebalance the leaf node |
| 715 | // we are splitting, thereby invalidating the |
| 716 | // values of last_bn_on_left and last_le_on_left_within_bn. |
| 717 | // So, we must call this before evaluating |
| 718 | // those two values |
| 719 | cachetable_put_empty_node_with_dep_nodes( |
| 720 | ft, |
| 721 | num_dependent_nodes, |
| 722 | dependent_nodes, |
| 723 | &name, |
| 724 | &fullhash, |
| 725 | &B |
| 726 | ); |
| 727 | // GCC 4.8 seems to get confused and think B is maybe uninitialized at link time. |
| 728 | // TODO(leif): figure out why it thinks this and actually fix it. |
| 729 | invariant_notnull(B); |
| 730 | } |
| 731 | |
| 732 | |
| 733 | paranoid_invariant(node->height==0); |
| 734 | toku_ftnode_assert_fully_in_memory(node); |
| 735 | verify_all_in_mempool(node); |
| 736 | MSN max_msn_applied_to_node = node->max_msn_applied_to_node_on_disk; |
| 737 | |
| 738 | // variables that say where we will do the split. |
| 739 | // After the split, there will be num_left_bns basement nodes in the left node, |
| 740 | // and the last basement node in the left node will have num_left_les leafentries. |
| 741 | int num_left_bns; |
| 742 | int num_left_les; |
| 743 | ftleaf_get_split_loc(node, split_mode, &num_left_bns, &num_left_les); |
| 744 | { |
| 745 | // did we split right on the boundary between basement nodes? |
| 746 | const bool split_on_boundary = (num_left_les == 0) || (num_left_les == (int) BLB_DATA(node, num_left_bns - 1)->num_klpairs()); |
| 747 | // Now we know where we are going to break it |
| 748 | // the two nodes will have a total of n_children+1 basement nodes |
| 749 | // and n_children-1 pivots |
| 750 | // the left node, node, will have last_bn_on_left+1 basement nodes |
| 751 | // the right node, B, will have n_children-last_bn_on_left basement nodes |
| 752 | // the pivots of node will be the first last_bn_on_left pivots that originally exist |
| 753 | // the pivots of B will be the last (n_children - 1 - last_bn_on_left) pivots that originally exist |
| 754 | |
| 755 | // Note: The basements will not be rebalanced. Only the mempool of the basement that is split |
| 756 | // (if split_on_boundary is false) will be affected. All other mempools will remain intact. ??? |
| 757 | |
| 758 | //set up the basement nodes in the new node |
| 759 | int num_children_in_node = num_left_bns; |
| 760 | // In the SPLIT_RIGHT_HEAVY case, we need to add 1 back because |
| 761 | // while it's not on the boundary, we do need node->n_children |
| 762 | // children in B. |
| 763 | int num_children_in_b = node->n_children - num_left_bns + (!split_on_boundary ? 1 : 0); |
| 764 | if (num_children_in_b == 0) { |
| 765 | // for uneven split, make sure we have at least 1 bn |
| 766 | paranoid_invariant(split_mode == SPLIT_LEFT_HEAVY); |
| 767 | num_children_in_b = 1; |
| 768 | } |
| 769 | paranoid_invariant(num_children_in_node > 0); |
| 770 | if (create_new_node) { |
| 771 | toku_initialize_empty_ftnode( |
| 772 | B, |
| 773 | name, |
| 774 | 0, |
| 775 | num_children_in_b, |
| 776 | ft->h->layout_version, |
| 777 | ft->h->flags); |
| 778 | B->fullhash = fullhash; |
| 779 | } |
| 780 | else { |
| 781 | B = *nodeb; |
| 782 | REALLOC_N(num_children_in_b, B->bp); |
| 783 | B->n_children = num_children_in_b; |
| 784 | for (int i = 0; i < num_children_in_b; i++) { |
| 785 | BP_BLOCKNUM(B,i).b = 0; |
| 786 | BP_STATE(B,i) = PT_AVAIL; |
| 787 | BP_WORKDONE(B,i) = 0; |
| 788 | set_BLB(B, i, toku_create_empty_bn()); |
| 789 | } |
| 790 | } |
| 791 | |
| 792 | // now move all the data |
| 793 | |
| 794 | int curr_src_bn_index = num_left_bns - 1; |
| 795 | int curr_dest_bn_index = 0; |
| 796 | |
| 797 | // handle the move of a subset of data in last_bn_on_left from node to B |
| 798 | if (!split_on_boundary) { |
| 799 | BP_STATE(B,curr_dest_bn_index) = PT_AVAIL; |
| 800 | destroy_basement_node(BLB(B, curr_dest_bn_index)); // Destroy B's empty OMT, so I can rebuild it from an array |
| 801 | set_BNULL(B, curr_dest_bn_index); |
| 802 | set_BLB(B, curr_dest_bn_index, toku_create_empty_bn_no_buffer()); |
| 803 | move_leafentries(BLB(B, curr_dest_bn_index), |
| 804 | BLB(node, curr_src_bn_index), |
| 805 | num_left_les, // first row to be moved to B |
| 806 | BLB_DATA(node, curr_src_bn_index)->num_klpairs() // number of rows in basement to be split |
| 807 | ); |
| 808 | BLB_MAX_MSN_APPLIED(B, curr_dest_bn_index) = BLB_MAX_MSN_APPLIED(node, curr_src_bn_index); |
| 809 | curr_dest_bn_index++; |
| 810 | } |
| 811 | curr_src_bn_index++; |
| 812 | |
| 813 | paranoid_invariant(B->n_children >= curr_dest_bn_index); |
| 814 | paranoid_invariant(node->n_children >= curr_src_bn_index); |
| 815 | |
| 816 | // move the rest of the basement nodes |
| 817 | for ( ; curr_src_bn_index < node->n_children; curr_src_bn_index++, curr_dest_bn_index++) { |
| 818 | destroy_basement_node(BLB(B, curr_dest_bn_index)); |
| 819 | set_BNULL(B, curr_dest_bn_index); |
| 820 | B->bp[curr_dest_bn_index] = node->bp[curr_src_bn_index]; |
| 821 | } |
| 822 | if (curr_dest_bn_index < B->n_children) { |
| 823 | // B already has an empty basement node here. |
| 824 | BP_STATE(B, curr_dest_bn_index) = PT_AVAIL; |
| 825 | } |
| 826 | |
| 827 | // |
| 828 | // now handle the pivots |
| 829 | // |
| 830 | |
| 831 | // the child index in the original node that corresponds to the |
| 832 | // first node in the right node of the split |
| 833 | int split_idx = num_left_bns - (split_on_boundary ? 0 : 1); |
| 834 | node->pivotkeys.split_at(split_idx, &B->pivotkeys); |
| 835 | if (split_on_boundary && num_left_bns < node->n_children && splitk) { |
| 836 | toku_copyref_dbt(splitk, node->pivotkeys.get_pivot(num_left_bns - 1)); |
| 837 | } else if (splitk) { |
| 838 | bn_data* bd = BLB_DATA(node, num_left_bns - 1); |
| 839 | uint32_t keylen; |
| 840 | void *key; |
| 841 | int rr = bd->fetch_key_and_len(bd->num_klpairs() - 1, &keylen, &key); |
| 842 | invariant_zero(rr); |
| 843 | toku_memdup_dbt(splitk, key, keylen); |
| 844 | } |
| 845 | |
| 846 | node->n_children = num_children_in_node; |
| 847 | REALLOC_N(num_children_in_node, node->bp); |
| 848 | } |
| 849 | |
| 850 | ftnode_finalize_split(node, B, max_msn_applied_to_node); |
| 851 | *nodea = node; |
| 852 | *nodeb = B; |
| 853 | } // end of ftleaf_split() |
| 854 | |
| 855 | void |
| 856 | ft_nonleaf_split( |
| 857 | FT ft, |
| 858 | FTNODE node, |
| 859 | FTNODE *nodea, |
| 860 | FTNODE *nodeb, |
| 861 | DBT *splitk, |
| 862 | uint32_t num_dependent_nodes, |
| 863 | FTNODE* dependent_nodes) |
| 864 | { |
| 865 | //VERIFY_NODE(t,node); |
| 866 | FL_STATUS_VAL(FT_FLUSHER_SPLIT_NONLEAF)++; |
| 867 | toku_ftnode_assert_fully_in_memory(node); |
| 868 | int old_n_children = node->n_children; |
| 869 | int n_children_in_a = old_n_children/2; |
| 870 | int n_children_in_b = old_n_children-n_children_in_a; |
| 871 | MSN max_msn_applied_to_node = node->max_msn_applied_to_node_on_disk; |
| 872 | FTNODE B; |
| 873 | paranoid_invariant(node->height>0); |
| 874 | paranoid_invariant(node->n_children>=2); // Otherwise, how do we split? We need at least two children to split. */ |
| 875 | create_new_ftnode_with_dep_nodes(ft, &B, node->height, n_children_in_b, num_dependent_nodes, dependent_nodes); |
| 876 | { |
| 877 | /* The first n_children_in_a go into node a. |
| 878 | * That means that the first n_children_in_a-1 keys go into node a. |
| 879 | * The splitter key is key number n_children_in_a */ |
| 880 | for (int i = n_children_in_a; i<old_n_children; i++) { |
| 881 | int targchild = i-n_children_in_a; |
| 882 | // TODO: Figure out better way to handle this |
| 883 | // the problem is that create_new_ftnode_with_dep_nodes for B creates |
| 884 | // all the data structures, whereas we really don't want it to fill |
| 885 | // in anything for the bp's. |
| 886 | // Now we have to go free what it just created so we can |
| 887 | // slide the bp over |
| 888 | destroy_nonleaf_childinfo(BNC(B, targchild)); |
| 889 | // now move the bp over |
| 890 | B->bp[targchild] = node->bp[i]; |
| 891 | memset(&node->bp[i], 0, sizeof(node->bp[0])); |
| 892 | } |
| 893 | |
| 894 | // the split key for our parent is the rightmost pivot key in node |
| 895 | node->pivotkeys.split_at(n_children_in_a, &B->pivotkeys); |
| 896 | toku_clone_dbt(splitk, node->pivotkeys.get_pivot(n_children_in_a - 1)); |
| 897 | node->pivotkeys.delete_at(n_children_in_a - 1); |
| 898 | |
| 899 | node->n_children = n_children_in_a; |
| 900 | REALLOC_N(node->n_children, node->bp); |
| 901 | } |
| 902 | |
| 903 | ftnode_finalize_split(node, B, max_msn_applied_to_node); |
| 904 | *nodea = node; |
| 905 | *nodeb = B; |
| 906 | } |
| 907 | |
| 908 | // |
| 909 | // responsibility of ft_split_child is to take locked FTNODEs node and child |
| 910 | // and do the following: |
| 911 | // - split child, |
| 912 | // - fix node, |
| 913 | // - release lock on node |
| 914 | // - possibly flush either new children created from split, otherwise unlock children |
| 915 | // |
| 916 | static void |
| 917 | ft_split_child( |
| 918 | FT ft, |
| 919 | FTNODE node, |
| 920 | int childnum, |
| 921 | FTNODE child, |
| 922 | enum split_mode split_mode, |
| 923 | struct flusher_advice *fa) |
| 924 | { |
| 925 | paranoid_invariant(node->height>0); |
| 926 | paranoid_invariant(toku_bnc_nbytesinbuf(BNC(node, childnum))==0); // require that the buffer for this child is empty |
| 927 | FTNODE nodea, nodeb; |
| 928 | DBT splitk; |
| 929 | |
| 930 | // for test |
| 931 | call_flusher_thread_callback(flt_flush_before_split); |
| 932 | |
| 933 | FTNODE dep_nodes[2]; |
| 934 | dep_nodes[0] = node; |
| 935 | dep_nodes[1] = child; |
| 936 | if (child->height==0) { |
| 937 | ftleaf_split(ft, child, &nodea, &nodeb, &splitk, true, split_mode, 2, dep_nodes); |
| 938 | } else { |
| 939 | ft_nonleaf_split(ft, child, &nodea, &nodeb, &splitk, 2, dep_nodes); |
| 940 | } |
| 941 | // printf("%s:%d child did split\n", __FILE__, __LINE__); |
| 942 | handle_split_of_child (ft, node, childnum, nodea, nodeb, &splitk); |
| 943 | |
| 944 | // for test |
| 945 | call_flusher_thread_callback(flt_flush_during_split); |
| 946 | |
| 947 | // at this point, the split is complete |
| 948 | // now we need to unlock node, |
| 949 | // and possibly continue |
| 950 | // flushing one of the children |
| 951 | int picked_child = fa->pick_child_after_split(ft, node, childnum, childnum + 1, fa->extra); |
| 952 | toku_unpin_ftnode(ft, node); |
| 953 | if (picked_child == childnum || |
| 954 | (picked_child < 0 && nodea->height > 0 && fa->should_recursively_flush(nodea, fa->extra))) { |
| 955 | toku_unpin_ftnode(ft, nodeb); |
| 956 | toku_ft_flush_some_child(ft, nodea, fa); |
| 957 | } |
| 958 | else if (picked_child == childnum + 1 || |
| 959 | (picked_child < 0 && nodeb->height > 0 && fa->should_recursively_flush(nodeb, fa->extra))) { |
| 960 | toku_unpin_ftnode(ft, nodea); |
| 961 | toku_ft_flush_some_child(ft, nodeb, fa); |
| 962 | } |
| 963 | else { |
| 964 | toku_unpin_ftnode(ft, nodea); |
| 965 | toku_unpin_ftnode(ft, nodeb); |
| 966 | } |
| 967 | |
| 968 | toku_destroy_dbt(&splitk); |
| 969 | } |
| 970 | |
| 971 | static void bring_node_fully_into_memory(FTNODE node, FT ft) { |
| 972 | if (!toku_ftnode_fully_in_memory(node)) { |
| 973 | ftnode_fetch_extra bfe; |
| 974 | bfe.create_for_full_read(ft); |
| 975 | toku_cachetable_pf_pinned_pair( |
| 976 | node, |
| 977 | toku_ftnode_pf_callback, |
| 978 | &bfe, |
| 979 | ft->cf, |
| 980 | node->blocknum, |
| 981 | toku_cachetable_hash(ft->cf, node->blocknum) |
| 982 | ); |
| 983 | } |
| 984 | } |
| 985 | |
| 986 | static void |
| 987 | flush_this_child( |
| 988 | FT ft, |
| 989 | FTNODE node, |
| 990 | FTNODE child, |
| 991 | int childnum, |
| 992 | struct flusher_advice *fa) |
| 993 | // Effect: Push everything in the CHILDNUMth buffer of node down into the child. |
| 994 | { |
| 995 | update_flush_status(child, 0); |
| 996 | toku_ftnode_assert_fully_in_memory(node); |
| 997 | if (fa->should_destroy_basement_nodes(fa)) { |
| 998 | maybe_destroy_child_blbs(node, child, ft); |
| 999 | } |
| 1000 | bring_node_fully_into_memory(child, ft); |
| 1001 | toku_ftnode_assert_fully_in_memory(child); |
| 1002 | paranoid_invariant(node->height>0); |
| 1003 | paranoid_invariant(child->blocknum.b!=0); |
| 1004 | // VERIFY_NODE does not work off client thread as of now |
| 1005 | //VERIFY_NODE(t, child); |
| 1006 | node->dirty = 1; |
| 1007 | child->dirty = 1; |
| 1008 | |
| 1009 | BP_WORKDONE(node, childnum) = 0; // this buffer is drained, no work has been done by its contents |
| 1010 | NONLEAF_CHILDINFO bnc = BNC(node, childnum); |
| 1011 | set_BNC(node, childnum, toku_create_empty_nl()); |
| 1012 | |
| 1013 | // now we have a bnc to flush to the child. pass down the parent's |
| 1014 | // oldest known referenced xid as we flush down to the child. |
| 1015 | toku_bnc_flush_to_child(ft, bnc, child, node->oldest_referenced_xid_known); |
| 1016 | destroy_nonleaf_childinfo(bnc); |
| 1017 | } |
| 1018 | |
| 1019 | static void |
| 1020 | merge_leaf_nodes(FTNODE a, FTNODE b) |
| 1021 | { |
| 1022 | FL_STATUS_VAL(FT_FLUSHER_MERGE_LEAF)++; |
| 1023 | toku_ftnode_assert_fully_in_memory(a); |
| 1024 | toku_ftnode_assert_fully_in_memory(b); |
| 1025 | paranoid_invariant(a->height == 0); |
| 1026 | paranoid_invariant(b->height == 0); |
| 1027 | paranoid_invariant(a->n_children > 0); |
| 1028 | paranoid_invariant(b->n_children > 0); |
| 1029 | |
| 1030 | // Mark nodes as dirty before moving basements from b to a. |
| 1031 | // This way, whatever deltas are accumulated in the basements are |
| 1032 | // applied to the in_memory_stats in the header if they have not already |
| 1033 | // been (if nodes are clean). |
| 1034 | // TODO(leif): this is no longer the way in_memory_stats is |
| 1035 | // maintained. verify that it's ok to move this just before the unpin |
| 1036 | // and then do that. |
| 1037 | a->dirty = 1; |
| 1038 | b->dirty = 1; |
| 1039 | |
| 1040 | bn_data* a_last_bd = BLB_DATA(a, a->n_children-1); |
| 1041 | // this bool states if the last basement node in a has any items or not |
| 1042 | // If it does, then it stays in the merge. If it does not, the last basement node |
| 1043 | // of a gets eliminated because we do not have a pivot to store for it (because it has no elements) |
| 1044 | const bool a_has_tail = a_last_bd->num_klpairs() > 0; |
| 1045 | |
| 1046 | int num_children = a->n_children + b->n_children; |
| 1047 | if (!a_has_tail) { |
| 1048 | int lastchild = a->n_children - 1; |
| 1049 | BASEMENTNODE bn = BLB(a, lastchild); |
| 1050 | |
| 1051 | // verify that last basement in a is empty, then destroy mempool |
| 1052 | size_t used_space = a_last_bd->get_disk_size(); |
| 1053 | invariant_zero(used_space); |
| 1054 | destroy_basement_node(bn); |
| 1055 | set_BNULL(a, lastchild); |
| 1056 | num_children--; |
| 1057 | if (lastchild < a->pivotkeys.num_pivots()) { |
| 1058 | a->pivotkeys.delete_at(lastchild); |
| 1059 | } |
| 1060 | } else { |
| 1061 | // fill in pivot for what used to be max of node 'a', if it is needed |
| 1062 | uint32_t keylen; |
| 1063 | void *key; |
| 1064 | int r = a_last_bd->fetch_key_and_len(a_last_bd->num_klpairs() - 1, &keylen, &key); |
| 1065 | invariant_zero(r); |
| 1066 | DBT pivotkey; |
| 1067 | toku_fill_dbt(&pivotkey, key, keylen); |
| 1068 | a->pivotkeys.replace_at(&pivotkey, a->n_children - 1); |
| 1069 | } |
| 1070 | |
| 1071 | // realloc basement nodes in `a' |
| 1072 | REALLOC_N(num_children, a->bp); |
| 1073 | |
| 1074 | // move each basement node from b to a |
| 1075 | uint32_t offset = a_has_tail ? a->n_children : a->n_children - 1; |
| 1076 | for (int i = 0; i < b->n_children; i++) { |
| 1077 | a->bp[i + offset] = b->bp[i]; |
| 1078 | memset(&b->bp[i], 0, sizeof(b->bp[0])); |
| 1079 | } |
| 1080 | |
| 1081 | // append b's pivots to a's pivots |
| 1082 | a->pivotkeys.append(b->pivotkeys); |
| 1083 | |
| 1084 | // now that all the data has been moved from b to a, we can destroy the data in b |
| 1085 | a->n_children = num_children; |
| 1086 | b->pivotkeys.destroy(); |
| 1087 | b->n_children = 0; |
| 1088 | } |
| 1089 | |
| 1090 | static void balance_leaf_nodes( |
| 1091 | FTNODE a, |
| 1092 | FTNODE b, |
| 1093 | DBT *splitk) |
| 1094 | // Effect: |
| 1095 | // If b is bigger then move stuff from b to a until b is the smaller. |
| 1096 | // If a is bigger then move stuff from a to b until a is the smaller. |
| 1097 | { |
| 1098 | FL_STATUS_VAL(FT_FLUSHER_BALANCE_LEAF)++; |
| 1099 | // first merge all the data into a |
| 1100 | merge_leaf_nodes(a,b); |
| 1101 | // now split them |
| 1102 | // because we are not creating a new node, we can pass in no dependent nodes |
| 1103 | ftleaf_split(NULL, a, &a, &b, splitk, false, SPLIT_EVENLY, 0, NULL); |
| 1104 | } |
| 1105 | |
| 1106 | static void |
| 1107 | maybe_merge_pinned_leaf_nodes( |
| 1108 | FTNODE a, |
| 1109 | FTNODE b, |
| 1110 | const DBT *parent_splitk, |
| 1111 | bool *did_merge, |
| 1112 | bool *did_rebalance, |
| 1113 | DBT *splitk, |
| 1114 | uint32_t nodesize |
| 1115 | ) |
| 1116 | // Effect: Either merge a and b into one one node (merge them into a) and set *did_merge = true. |
| 1117 | // (We do this if the resulting node is not fissible) |
| 1118 | // or distribute the leafentries evenly between a and b, and set *did_rebalance = true. |
| 1119 | // (If a and be are already evenly distributed, we may do nothing.) |
| 1120 | { |
| 1121 | unsigned int sizea = toku_serialize_ftnode_size(a); |
| 1122 | unsigned int sizeb = toku_serialize_ftnode_size(b); |
| 1123 | uint32_t num_leafentries = toku_ftnode_leaf_num_entries(a) + toku_ftnode_leaf_num_entries(b); |
| 1124 | if (num_leafentries > 1 && (sizea + sizeb)*4 > (nodesize*3)) { |
| 1125 | // the combined size is more than 3/4 of a node, so don't merge them. |
| 1126 | *did_merge = false; |
| 1127 | if (sizea*4 > nodesize && sizeb*4 > nodesize) { |
| 1128 | // no need to do anything if both are more than 1/4 of a node. |
| 1129 | *did_rebalance = false; |
| 1130 | toku_clone_dbt(splitk, *parent_splitk); |
| 1131 | return; |
| 1132 | } |
| 1133 | // one is less than 1/4 of a node, and together they are more than 3/4 of a node. |
| 1134 | *did_rebalance = true; |
| 1135 | balance_leaf_nodes(a, b, splitk); |
| 1136 | } else { |
| 1137 | // we are merging them. |
| 1138 | *did_merge = true; |
| 1139 | *did_rebalance = false; |
| 1140 | toku_init_dbt(splitk); |
| 1141 | merge_leaf_nodes(a, b); |
| 1142 | } |
| 1143 | } |
| 1144 | |
| 1145 | static void |
| 1146 | maybe_merge_pinned_nonleaf_nodes( |
| 1147 | const DBT *parent_splitk, |
| 1148 | FTNODE a, |
| 1149 | FTNODE b, |
| 1150 | bool *did_merge, |
| 1151 | bool *did_rebalance, |
| 1152 | DBT *splitk) |
| 1153 | { |
| 1154 | toku_ftnode_assert_fully_in_memory(a); |
| 1155 | toku_ftnode_assert_fully_in_memory(b); |
| 1156 | invariant_notnull(parent_splitk->data); |
| 1157 | |
| 1158 | int old_n_children = a->n_children; |
| 1159 | int new_n_children = old_n_children + b->n_children; |
| 1160 | |
| 1161 | XREALLOC_N(new_n_children, a->bp); |
| 1162 | memcpy(a->bp + old_n_children, b->bp, b->n_children * sizeof(b->bp[0])); |
| 1163 | memset(b->bp, 0, b->n_children * sizeof(b->bp[0])); |
| 1164 | |
| 1165 | a->pivotkeys.insert_at(parent_splitk, old_n_children - 1); |
| 1166 | a->pivotkeys.append(b->pivotkeys); |
| 1167 | a->n_children = new_n_children; |
| 1168 | b->n_children = 0; |
| 1169 | |
| 1170 | a->dirty = 1; |
| 1171 | b->dirty = 1; |
| 1172 | |
| 1173 | *did_merge = true; |
| 1174 | *did_rebalance = false; |
| 1175 | toku_init_dbt(splitk); |
| 1176 | |
| 1177 | FL_STATUS_VAL(FT_FLUSHER_MERGE_NONLEAF)++; |
| 1178 | } |
| 1179 | |
| 1180 | static void |
| 1181 | maybe_merge_pinned_nodes( |
| 1182 | FTNODE parent, |
| 1183 | const DBT *parent_splitk, |
| 1184 | FTNODE a, |
| 1185 | FTNODE b, |
| 1186 | bool *did_merge, |
| 1187 | bool *did_rebalance, |
| 1188 | DBT *splitk, |
| 1189 | uint32_t nodesize |
| 1190 | ) |
| 1191 | // Effect: either merge a and b into one node (merge them into a) and set *did_merge = true. |
| 1192 | // (We do this if the resulting node is not fissible) |
| 1193 | // or distribute a and b evenly and set *did_merge = false and *did_rebalance = true |
| 1194 | // (If a and be are already evenly distributed, we may do nothing.) |
| 1195 | // If we distribute: |
| 1196 | // For leaf nodes, we distribute the leafentries evenly. |
| 1197 | // For nonleaf nodes, we distribute the children evenly. That may leave one or both of the nodes overfull, but that's OK. |
| 1198 | // If we distribute, we set *splitk to a malloced pivot key. |
| 1199 | // Parameters: |
| 1200 | // t The FT. |
| 1201 | // parent The parent of the two nodes to be split. |
| 1202 | // parent_splitk The pivot key between a and b. This is either free()'d or returned in *splitk. |
| 1203 | // a The first node to merge. |
| 1204 | // b The second node to merge. |
| 1205 | // logger The logger. |
| 1206 | // did_merge (OUT): Did the two nodes actually get merged? |
| 1207 | // splitk (OUT): If the two nodes did not get merged, the new pivot key between the two nodes. |
| 1208 | { |
| 1209 | MSN msn_max; |
| 1210 | paranoid_invariant(a->height == b->height); |
| 1211 | toku_ftnode_assert_fully_in_memory(parent); |
| 1212 | toku_ftnode_assert_fully_in_memory(a); |
| 1213 | toku_ftnode_assert_fully_in_memory(b); |
| 1214 | parent->dirty = 1; // just to make sure |
| 1215 | { |
| 1216 | MSN msna = a->max_msn_applied_to_node_on_disk; |
| 1217 | MSN msnb = b->max_msn_applied_to_node_on_disk; |
| 1218 | msn_max = (msna.msn > msnb.msn) ? msna : msnb; |
| 1219 | } |
| 1220 | if (a->height == 0) { |
| 1221 | maybe_merge_pinned_leaf_nodes(a, b, parent_splitk, did_merge, did_rebalance, splitk, nodesize); |
| 1222 | } else { |
| 1223 | maybe_merge_pinned_nonleaf_nodes(parent_splitk, a, b, did_merge, did_rebalance, splitk); |
| 1224 | } |
| 1225 | if (*did_merge || *did_rebalance) { |
| 1226 | // accurate for leaf nodes because all msgs above have been |
| 1227 | // applied, accurate for non-leaf nodes because buffer immediately |
| 1228 | // above each node has been flushed |
| 1229 | a->max_msn_applied_to_node_on_disk = msn_max; |
| 1230 | b->max_msn_applied_to_node_on_disk = msn_max; |
| 1231 | } |
| 1232 | } |
| 1233 | |
| 1234 | static void merge_remove_key_callback(BLOCKNUM *bp, bool for_checkpoint, void *) { |
| 1235 | FT ft = (FT) extra; |
| 1236 | ft->blocktable.free_blocknum(bp, ft, for_checkpoint); |
| 1237 | } |
| 1238 | |
| 1239 | // |
| 1240 | // Takes as input a locked node and a childnum_to_merge |
| 1241 | // As output, two of node's children are merged or rebalanced, and node is unlocked |
| 1242 | // |
| 1243 | static void |
| 1244 | ft_merge_child( |
| 1245 | FT ft, |
| 1246 | FTNODE node, |
| 1247 | int childnum_to_merge, |
| 1248 | bool *did_react, |
| 1249 | struct flusher_advice *fa) |
| 1250 | { |
| 1251 | // this function should not be called |
| 1252 | // if the child is not mergable |
| 1253 | paranoid_invariant(node->n_children > 1); |
| 1254 | toku_ftnode_assert_fully_in_memory(node); |
| 1255 | |
| 1256 | int childnuma,childnumb; |
| 1257 | if (childnum_to_merge > 0) { |
| 1258 | childnuma = childnum_to_merge-1; |
| 1259 | childnumb = childnum_to_merge; |
| 1260 | } else { |
| 1261 | childnuma = childnum_to_merge; |
| 1262 | childnumb = childnum_to_merge+1; |
| 1263 | } |
| 1264 | paranoid_invariant(0 <= childnuma); |
| 1265 | paranoid_invariant(childnuma+1 == childnumb); |
| 1266 | paranoid_invariant(childnumb < node->n_children); |
| 1267 | |
| 1268 | paranoid_invariant(node->height>0); |
| 1269 | |
| 1270 | // We suspect that at least one of the children is fusible, but they might not be. |
| 1271 | // for test |
| 1272 | call_flusher_thread_callback(flt_flush_before_merge); |
| 1273 | |
| 1274 | FTNODE childa, childb; |
| 1275 | { |
| 1276 | uint32_t childfullhash = compute_child_fullhash(ft->cf, node, childnuma); |
| 1277 | ftnode_fetch_extra bfe; |
| 1278 | bfe.create_for_full_read(ft); |
| 1279 | toku_pin_ftnode_with_dep_nodes(ft, BP_BLOCKNUM(node, childnuma), childfullhash, &bfe, PL_WRITE_EXPENSIVE, 1, &node, &childa, true); |
| 1280 | } |
| 1281 | // for test |
| 1282 | call_flusher_thread_callback(flt_flush_before_pin_second_node_for_merge); |
| 1283 | { |
| 1284 | FTNODE dep_nodes[2]; |
| 1285 | dep_nodes[0] = node; |
| 1286 | dep_nodes[1] = childa; |
| 1287 | uint32_t childfullhash = compute_child_fullhash(ft->cf, node, childnumb); |
| 1288 | ftnode_fetch_extra bfe; |
| 1289 | bfe.create_for_full_read(ft); |
| 1290 | toku_pin_ftnode_with_dep_nodes(ft, BP_BLOCKNUM(node, childnumb), childfullhash, &bfe, PL_WRITE_EXPENSIVE, 2, dep_nodes, &childb, true); |
| 1291 | } |
| 1292 | |
| 1293 | if (toku_bnc_n_entries(BNC(node,childnuma))>0) { |
| 1294 | flush_this_child(ft, node, childa, childnuma, fa); |
| 1295 | } |
| 1296 | if (toku_bnc_n_entries(BNC(node,childnumb))>0) { |
| 1297 | flush_this_child(ft, node, childb, childnumb, fa); |
| 1298 | } |
| 1299 | |
| 1300 | // now we have both children pinned in main memory, and cachetable locked, |
| 1301 | // so no checkpoints will occur. |
| 1302 | |
| 1303 | bool did_merge, did_rebalance; |
| 1304 | { |
| 1305 | DBT splitk; |
| 1306 | toku_init_dbt(&splitk); |
| 1307 | const DBT old_split_key = node->pivotkeys.get_pivot(childnuma); |
| 1308 | maybe_merge_pinned_nodes(node, &old_split_key, childa, childb, &did_merge, &did_rebalance, &splitk, ft->h->nodesize); |
| 1309 | //toku_verify_estimates(t,childa); |
| 1310 | // the tree did react if a merge (did_merge) or rebalance (new spkit key) occurred |
| 1311 | *did_react = (bool)(did_merge || did_rebalance); |
| 1312 | |
| 1313 | if (did_merge) { |
| 1314 | invariant_null(splitk.data); |
| 1315 | NONLEAF_CHILDINFO remaining_bnc = BNC(node, childnuma); |
| 1316 | NONLEAF_CHILDINFO merged_bnc = BNC(node, childnumb); |
| 1317 | for (unsigned int i = 0; i < (sizeof remaining_bnc->flow) / (sizeof remaining_bnc->flow[0]); ++i) { |
| 1318 | remaining_bnc->flow[i] += merged_bnc->flow[i]; |
| 1319 | } |
| 1320 | destroy_nonleaf_childinfo(merged_bnc); |
| 1321 | set_BNULL(node, childnumb); |
| 1322 | node->n_children--; |
| 1323 | memmove(&node->bp[childnumb], |
| 1324 | &node->bp[childnumb+1], |
| 1325 | (node->n_children-childnumb)*sizeof(node->bp[0])); |
| 1326 | REALLOC_N(node->n_children, node->bp); |
| 1327 | node->pivotkeys.delete_at(childnuma); |
| 1328 | |
| 1329 | // Handle a merge of the rightmost leaf node. |
| 1330 | BLOCKNUM rightmost_blocknum = toku_unsafe_fetch(&ft->rightmost_blocknum); |
| 1331 | if (did_merge && childb->blocknum.b == rightmost_blocknum.b) { |
| 1332 | invariant(childb->blocknum.b != ft->h->root_blocknum.b); |
| 1333 | toku_ftnode_swap_pair_values(childa, childb); |
| 1334 | BP_BLOCKNUM(node, childnuma) = childa->blocknum; |
| 1335 | } |
| 1336 | |
| 1337 | paranoid_invariant(BP_BLOCKNUM(node, childnuma).b == childa->blocknum.b); |
| 1338 | childa->dirty = 1; // just to make sure |
| 1339 | childb->dirty = 1; // just to make sure |
| 1340 | } else { |
| 1341 | // flow will be inaccurate for a while, oh well. the children |
| 1342 | // are leaves in this case so it's not a huge deal (we're |
| 1343 | // pretty far down the tree) |
| 1344 | |
| 1345 | // If we didn't merge the nodes, then we need the correct pivot. |
| 1346 | invariant_notnull(splitk.data); |
| 1347 | node->pivotkeys.replace_at(&splitk, childnuma); |
| 1348 | node->dirty = 1; |
| 1349 | } |
| 1350 | toku_destroy_dbt(&splitk); |
| 1351 | } |
| 1352 | // |
| 1353 | // now we possibly flush the children |
| 1354 | // |
| 1355 | if (did_merge) { |
| 1356 | // for test |
| 1357 | call_flusher_thread_callback(flt_flush_before_unpin_remove); |
| 1358 | |
| 1359 | // merge_remove_key_callback will free the blocknum |
| 1360 | int rrb = toku_cachetable_unpin_and_remove( |
| 1361 | ft->cf, |
| 1362 | childb->ct_pair, |
| 1363 | merge_remove_key_callback, |
| 1364 | ft |
| 1365 | ); |
| 1366 | assert_zero(rrb); |
| 1367 | |
| 1368 | // for test |
| 1369 | call_flusher_thread_callback(ft_flush_aflter_merge); |
| 1370 | |
| 1371 | // unlock the parent |
| 1372 | paranoid_invariant(node->dirty); |
| 1373 | toku_unpin_ftnode(ft, node); |
| 1374 | } |
| 1375 | else { |
| 1376 | // for test |
| 1377 | call_flusher_thread_callback(ft_flush_aflter_rebalance); |
| 1378 | |
| 1379 | // unlock the parent |
| 1380 | paranoid_invariant(node->dirty); |
| 1381 | toku_unpin_ftnode(ft, node); |
| 1382 | toku_unpin_ftnode(ft, childb); |
| 1383 | } |
| 1384 | if (childa->height > 0 && fa->should_recursively_flush(childa, fa->extra)) { |
| 1385 | toku_ft_flush_some_child(ft, childa, fa); |
| 1386 | } |
| 1387 | else { |
| 1388 | toku_unpin_ftnode(ft, childa); |
| 1389 | } |
| 1390 | } |
| 1391 | |
| 1392 | void toku_ft_flush_some_child(FT ft, FTNODE parent, struct flusher_advice *fa) |
| 1393 | // Effect: This function does the following: |
| 1394 | // - Pick a child of parent (the heaviest child), |
| 1395 | // - flush from parent to child, |
| 1396 | // - possibly split/merge child. |
| 1397 | // - if child is gorged, recursively proceed with child |
| 1398 | // Note that parent is already locked |
| 1399 | // Upon exit of this function, parent is unlocked and no new |
| 1400 | // new nodes (such as a child) remain locked |
| 1401 | { |
| 1402 | int dirtied = 0; |
| 1403 | NONLEAF_CHILDINFO bnc = NULL; |
| 1404 | paranoid_invariant(parent->height>0); |
| 1405 | toku_ftnode_assert_fully_in_memory(parent); |
| 1406 | TXNID parent_oldest_referenced_xid_known = parent->oldest_referenced_xid_known; |
| 1407 | |
| 1408 | // pick the child we want to flush to |
| 1409 | int childnum = fa->pick_child(ft, parent, fa->extra); |
| 1410 | |
| 1411 | // for test |
| 1412 | call_flusher_thread_callback(flt_flush_before_child_pin); |
| 1413 | |
| 1414 | // get the child into memory |
| 1415 | BLOCKNUM targetchild = BP_BLOCKNUM(parent, childnum); |
| 1416 | ft->blocktable.verify_blocknum_allocated(targetchild); |
| 1417 | uint32_t childfullhash = compute_child_fullhash(ft->cf, parent, childnum); |
| 1418 | FTNODE child; |
| 1419 | ftnode_fetch_extra bfe; |
| 1420 | // Note that we don't read the entire node into memory yet. |
| 1421 | // The idea is let's try to do the minimum work before releasing the parent lock |
| 1422 | bfe.create_for_min_read(ft); |
| 1423 | toku_pin_ftnode_with_dep_nodes(ft, targetchild, childfullhash, &bfe, PL_WRITE_EXPENSIVE, 1, &parent, &child, true); |
| 1424 | |
| 1425 | // for test |
| 1426 | call_flusher_thread_callback(ft_flush_aflter_child_pin); |
| 1427 | |
| 1428 | if (fa->should_destroy_basement_nodes(fa)) { |
| 1429 | maybe_destroy_child_blbs(parent, child, ft); |
| 1430 | } |
| 1431 | |
| 1432 | //Note that at this point, we don't have the entire child in. |
| 1433 | // Let's do a quick check to see if the child may be reactive |
| 1434 | // If the child cannot be reactive, then we can safely unlock |
| 1435 | // the parent before finishing reading in the entire child node. |
| 1436 | bool may_child_be_reactive = ft_ftnode_may_be_reactive(ft, child); |
| 1437 | |
| 1438 | paranoid_invariant(child->blocknum.b!=0); |
| 1439 | |
| 1440 | // only do the following work if there is a flush to perform |
| 1441 | if (toku_bnc_n_entries(BNC(parent, childnum)) > 0 || parent->height == 1) { |
| 1442 | if (!parent->dirty) { |
| 1443 | dirtied++; |
| 1444 | parent->dirty = 1; |
| 1445 | } |
| 1446 | // detach buffer |
| 1447 | BP_WORKDONE(parent, childnum) = 0; // this buffer is drained, no work has been done by its contents |
| 1448 | bnc = BNC(parent, childnum); |
| 1449 | NONLEAF_CHILDINFO new_bnc = toku_create_empty_nl(); |
| 1450 | memcpy(new_bnc->flow, bnc->flow, sizeof bnc->flow); |
| 1451 | set_BNC(parent, childnum, new_bnc); |
| 1452 | } |
| 1453 | |
| 1454 | // |
| 1455 | // at this point, the buffer has been detached from the parent |
| 1456 | // and a new empty buffer has been placed in its stead |
| 1457 | // so, if we are absolutely sure that the child is not |
| 1458 | // reactive, we can unpin the parent |
| 1459 | // |
| 1460 | if (!may_child_be_reactive) { |
| 1461 | toku_unpin_ftnode(ft, parent); |
| 1462 | parent = NULL; |
| 1463 | } |
| 1464 | |
| 1465 | // |
| 1466 | // now, if necessary, read/decompress the rest of child into memory, |
| 1467 | // so that we can proceed and apply the flush |
| 1468 | // |
| 1469 | bring_node_fully_into_memory(child, ft); |
| 1470 | |
| 1471 | // It is possible after reading in the entire child, |
| 1472 | // that we now know that the child is not reactive |
| 1473 | // if so, we can unpin parent right now |
| 1474 | // we won't be splitting/merging child |
| 1475 | // and we have already replaced the bnc |
| 1476 | // for the root with a fresh one |
| 1477 | enum reactivity child_re = toku_ftnode_get_reactivity(ft, child); |
| 1478 | if (parent && child_re == RE_STABLE) { |
| 1479 | toku_unpin_ftnode(ft, parent); |
| 1480 | parent = NULL; |
| 1481 | } |
| 1482 | |
| 1483 | // from above, we know at this point that either the bnc |
| 1484 | // is detached from the parent (which may be unpinned), |
| 1485 | // and we have to apply the flush, or there was no data |
| 1486 | // in the buffer to flush, and as a result, flushing is not necessary |
| 1487 | // and bnc is NULL |
| 1488 | if (bnc != NULL) { |
| 1489 | if (!child->dirty) { |
| 1490 | dirtied++; |
| 1491 | child->dirty = 1; |
| 1492 | } |
| 1493 | // do the actual flush |
| 1494 | toku_bnc_flush_to_child( |
| 1495 | ft, |
| 1496 | bnc, |
| 1497 | child, |
| 1498 | parent_oldest_referenced_xid_known |
| 1499 | ); |
| 1500 | destroy_nonleaf_childinfo(bnc); |
| 1501 | } |
| 1502 | |
| 1503 | fa->update_status(child, dirtied, fa->extra); |
| 1504 | // let's get the reactivity of the child again, |
| 1505 | // it is possible that the flush got rid of some values |
| 1506 | // and now the parent is no longer reactive |
| 1507 | child_re = toku_ftnode_get_reactivity(ft, child); |
| 1508 | // if the parent has been unpinned above, then |
| 1509 | // this is our only option, even if the child is not stable |
| 1510 | // if the child is not stable, we'll handle it the next |
| 1511 | // time we need to flush to the child |
| 1512 | if (!parent || |
| 1513 | child_re == RE_STABLE || |
| 1514 | (child_re == RE_FUSIBLE && parent->n_children == 1) |
| 1515 | ) |
| 1516 | { |
| 1517 | if (parent) { |
| 1518 | toku_unpin_ftnode(ft, parent); |
| 1519 | parent = NULL; |
| 1520 | } |
| 1521 | // |
| 1522 | // it is the responsibility of toku_ft_flush_some_child to unpin child |
| 1523 | // |
| 1524 | if (child->height > 0 && fa->should_recursively_flush(child, fa->extra)) { |
| 1525 | toku_ft_flush_some_child(ft, child, fa); |
| 1526 | } |
| 1527 | else { |
| 1528 | toku_unpin_ftnode(ft, child); |
| 1529 | } |
| 1530 | } |
| 1531 | else if (child_re == RE_FISSIBLE) { |
| 1532 | // |
| 1533 | // it is responsibility of `ft_split_child` to unlock nodes of |
| 1534 | // parent and child as it sees fit |
| 1535 | // |
| 1536 | paranoid_invariant(parent); // just make sure we have not accidentally unpinned parent |
| 1537 | ft_split_child(ft, parent, childnum, child, SPLIT_EVENLY, fa); |
| 1538 | } |
| 1539 | else if (child_re == RE_FUSIBLE) { |
| 1540 | // |
| 1541 | // it is responsibility of `maybe_merge_child to unlock nodes of |
| 1542 | // parent and child as it sees fit |
| 1543 | // |
| 1544 | paranoid_invariant(parent); // just make sure we have not accidentally unpinned parent |
| 1545 | fa->maybe_merge_child(fa, ft, parent, childnum, child, fa->extra); |
| 1546 | } |
| 1547 | else { |
| 1548 | abort(); |
| 1549 | } |
| 1550 | } |
| 1551 | |
| 1552 | void toku_bnc_flush_to_child(FT ft, NONLEAF_CHILDINFO bnc, FTNODE child, TXNID parent_oldest_referenced_xid_known) { |
| 1553 | paranoid_invariant(bnc); |
| 1554 | |
| 1555 | TOKULOGGER logger = toku_cachefile_logger(ft->cf); |
| 1556 | TXN_MANAGER txn_manager = logger != nullptr ? toku_logger_get_txn_manager(logger) : nullptr; |
| 1557 | TXNID oldest_referenced_xid_for_simple_gc = TXNID_NONE; |
| 1558 | |
| 1559 | txn_manager_state txn_state_for_gc(txn_manager); |
| 1560 | bool do_garbage_collection = child->height == 0 && txn_manager != nullptr; |
| 1561 | if (do_garbage_collection) { |
| 1562 | txn_state_for_gc.init(); |
| 1563 | oldest_referenced_xid_for_simple_gc = toku_txn_manager_get_oldest_referenced_xid_estimate(txn_manager); |
| 1564 | } |
| 1565 | txn_gc_info gc_info(&txn_state_for_gc, |
| 1566 | oldest_referenced_xid_for_simple_gc, |
| 1567 | child->oldest_referenced_xid_known, |
| 1568 | true); |
| 1569 | struct flush_msg_fn { |
| 1570 | FT ft; |
| 1571 | FTNODE child; |
| 1572 | NONLEAF_CHILDINFO bnc; |
| 1573 | txn_gc_info *gc_info; |
| 1574 | |
| 1575 | STAT64INFO_S stats_delta; |
| 1576 | int64_t logical_rows_delta = 0; |
| 1577 | size_t remaining_memsize = bnc->msg_buffer.buffer_size_in_use(); |
| 1578 | |
| 1579 | flush_msg_fn(FT t, FTNODE n, NONLEAF_CHILDINFO nl, txn_gc_info *g) : |
| 1580 | ft(t), child(n), bnc(nl), gc_info(g), remaining_memsize(bnc->msg_buffer.buffer_size_in_use()) { |
| 1581 | stats_delta = { 0, 0 }; |
| 1582 | } |
| 1583 | int operator()(const ft_msg &msg, bool is_fresh) { |
| 1584 | size_t flow_deltas[] = { 0, 0 }; |
| 1585 | size_t memsize_in_buffer = message_buffer::msg_memsize_in_buffer(msg); |
| 1586 | if (remaining_memsize <= bnc->flow[0]) { |
| 1587 | // this message is in the current checkpoint's worth of |
| 1588 | // the end of the message buffer |
| 1589 | flow_deltas[0] = memsize_in_buffer; |
| 1590 | } else if (remaining_memsize <= bnc->flow[0] + bnc->flow[1]) { |
| 1591 | // this message is in the last checkpoint's worth of the |
| 1592 | // end of the message buffer |
| 1593 | flow_deltas[1] = memsize_in_buffer; |
| 1594 | } |
| 1595 | toku_ftnode_put_msg( |
| 1596 | ft->cmp, |
| 1597 | ft->update_fun, |
| 1598 | child, |
| 1599 | -1, |
| 1600 | msg, |
| 1601 | is_fresh, |
| 1602 | gc_info, |
| 1603 | flow_deltas, |
| 1604 | &stats_delta, |
| 1605 | &logical_rows_delta); |
| 1606 | remaining_memsize -= memsize_in_buffer; |
| 1607 | return 0; |
| 1608 | } |
| 1609 | } flush_fn(ft, child, bnc, &gc_info); |
| 1610 | bnc->msg_buffer.iterate(flush_fn); |
| 1611 | |
| 1612 | child->oldest_referenced_xid_known = parent_oldest_referenced_xid_known; |
| 1613 | |
| 1614 | invariant(flush_fn.remaining_memsize == 0); |
| 1615 | if (flush_fn.stats_delta.numbytes || flush_fn.stats_delta.numrows) { |
| 1616 | toku_ft_update_stats(&ft->in_memory_stats, flush_fn.stats_delta); |
| 1617 | } |
| 1618 | toku_ft_adjust_logical_row_count(ft, flush_fn.logical_rows_delta); |
| 1619 | if (do_garbage_collection) { |
| 1620 | size_t buffsize = bnc->msg_buffer.buffer_size_in_use(); |
| 1621 | // may be misleading if there's a broadcast message in there |
| 1622 | toku_ft_status_note_msg_bytes_out(buffsize); |
| 1623 | } |
| 1624 | } |
| 1625 | |
| 1626 | static void |
| 1627 | update_cleaner_status( |
| 1628 | FTNODE node, |
| 1629 | int childnum) |
| 1630 | { |
| 1631 | FL_STATUS_VAL(FT_FLUSHER_CLEANER_TOTAL_NODES)++; |
| 1632 | if (node->height == 1) { |
| 1633 | FL_STATUS_VAL(FT_FLUSHER_CLEANER_H1_NODES)++; |
| 1634 | } else { |
| 1635 | FL_STATUS_VAL(FT_FLUSHER_CLEANER_HGT1_NODES)++; |
| 1636 | } |
| 1637 | |
| 1638 | unsigned int nbytesinbuf = toku_bnc_nbytesinbuf(BNC(node, childnum)); |
| 1639 | if (nbytesinbuf == 0) { |
| 1640 | FL_STATUS_VAL(FT_FLUSHER_CLEANER_EMPTY_NODES)++; |
| 1641 | } else { |
| 1642 | if (nbytesinbuf > FL_STATUS_VAL(FT_FLUSHER_CLEANER_MAX_BUFFER_SIZE)) { |
| 1643 | FL_STATUS_VAL(FT_FLUSHER_CLEANER_MAX_BUFFER_SIZE) = nbytesinbuf; |
| 1644 | } |
| 1645 | if (nbytesinbuf < FL_STATUS_VAL(FT_FLUSHER_CLEANER_MIN_BUFFER_SIZE)) { |
| 1646 | FL_STATUS_VAL(FT_FLUSHER_CLEANER_MIN_BUFFER_SIZE) = nbytesinbuf; |
| 1647 | } |
| 1648 | FL_STATUS_VAL(FT_FLUSHER_CLEANER_TOTAL_BUFFER_SIZE) += nbytesinbuf; |
| 1649 | |
| 1650 | uint64_t workdone = BP_WORKDONE(node, childnum); |
| 1651 | if (workdone > FL_STATUS_VAL(FT_FLUSHER_CLEANER_MAX_BUFFER_WORKDONE)) { |
| 1652 | FL_STATUS_VAL(FT_FLUSHER_CLEANER_MAX_BUFFER_WORKDONE) = workdone; |
| 1653 | } |
| 1654 | if (workdone < FL_STATUS_VAL(FT_FLUSHER_CLEANER_MIN_BUFFER_WORKDONE)) { |
| 1655 | FL_STATUS_VAL(FT_FLUSHER_CLEANER_MIN_BUFFER_WORKDONE) = workdone; |
| 1656 | } |
| 1657 | FL_STATUS_VAL(FT_FLUSHER_CLEANER_TOTAL_BUFFER_WORKDONE) += workdone; |
| 1658 | } |
| 1659 | } |
| 1660 | |
| 1661 | static void |
| 1662 | dummy_update_status( |
| 1663 | FTNODE UU(child), |
| 1664 | int UU(dirtied), |
| 1665 | void* UU() |
| 1666 | ) |
| 1667 | { |
| 1668 | } |
| 1669 | |
| 1670 | static int |
| 1671 | dummy_pick_heaviest_child(FT UU(h), |
| 1672 | FTNODE UU(parent), |
| 1673 | void* UU()) |
| 1674 | { |
| 1675 | abort(); |
| 1676 | return -1; |
| 1677 | } |
| 1678 | |
| 1679 | void toku_ft_split_child( |
| 1680 | FT ft, |
| 1681 | FTNODE node, |
| 1682 | int childnum, |
| 1683 | FTNODE child, |
| 1684 | enum split_mode split_mode |
| 1685 | ) |
| 1686 | { |
| 1687 | struct flusher_advice fa; |
| 1688 | flusher_advice_init( |
| 1689 | &fa, |
| 1690 | dummy_pick_heaviest_child, |
| 1691 | dont_destroy_basement_nodes, |
| 1692 | never_recursively_flush, |
| 1693 | default_merge_child, |
| 1694 | dummy_update_status, |
| 1695 | default_pick_child_after_split, |
| 1696 | NULL |
| 1697 | ); |
| 1698 | ft_split_child( |
| 1699 | ft, |
| 1700 | node, |
| 1701 | childnum, // childnum to split |
| 1702 | child, |
| 1703 | split_mode, |
| 1704 | &fa |
| 1705 | ); |
| 1706 | } |
| 1707 | |
| 1708 | void toku_ft_merge_child( |
| 1709 | FT ft, |
| 1710 | FTNODE node, |
| 1711 | int childnum |
| 1712 | ) |
| 1713 | { |
| 1714 | struct flusher_advice fa; |
| 1715 | flusher_advice_init( |
| 1716 | &fa, |
| 1717 | dummy_pick_heaviest_child, |
| 1718 | dont_destroy_basement_nodes, |
| 1719 | never_recursively_flush, |
| 1720 | default_merge_child, |
| 1721 | dummy_update_status, |
| 1722 | default_pick_child_after_split, |
| 1723 | NULL |
| 1724 | ); |
| 1725 | bool did_react; |
| 1726 | ft_merge_child( |
| 1727 | ft, |
| 1728 | node, |
| 1729 | childnum, // childnum to merge |
| 1730 | &did_react, |
| 1731 | &fa |
| 1732 | ); |
| 1733 | } |
| 1734 | |
| 1735 | int |
| 1736 | toku_ftnode_cleaner_callback( |
| 1737 | void *ftnode_pv, |
| 1738 | BLOCKNUM blocknum, |
| 1739 | uint32_t fullhash, |
| 1740 | void *) |
| 1741 | { |
| 1742 | FTNODE node = (FTNODE) ftnode_pv; |
| 1743 | invariant(node->blocknum.b == blocknum.b); |
| 1744 | invariant(node->fullhash == fullhash); |
| 1745 | invariant(node->height > 0); // we should never pick a leaf node (for now at least) |
| 1746 | FT ft = (FT) extraargs; |
| 1747 | bring_node_fully_into_memory(node, ft); |
| 1748 | int childnum = find_heaviest_child(node); |
| 1749 | update_cleaner_status(node, childnum); |
| 1750 | |
| 1751 | // Either toku_ft_flush_some_child will unlock the node, or we do it here. |
| 1752 | if (toku_bnc_nbytesinbuf(BNC(node, childnum)) > 0) { |
| 1753 | struct flusher_advice fa; |
| 1754 | struct flush_status_update_extra fste; |
| 1755 | ct_flusher_advice_init(&fa, &fste, ft->h->nodesize); |
| 1756 | toku_ft_flush_some_child(ft, node, &fa); |
| 1757 | } else { |
| 1758 | toku_unpin_ftnode(ft, node); |
| 1759 | } |
| 1760 | return 0; |
| 1761 | } |
| 1762 | |
| 1763 | struct { |
| 1764 | FT ; |
| 1765 | FTNODE ; |
| 1766 | NONLEAF_CHILDINFO ; |
| 1767 | TXNID ; |
| 1768 | }; |
| 1769 | |
| 1770 | // |
| 1771 | // This is the function that gets called by a |
| 1772 | // background thread. Its purpose is to complete |
| 1773 | // a flush, and possibly do a split/merge. |
| 1774 | // |
| 1775 | static void flush_node_fun(void *fe_v) |
| 1776 | { |
| 1777 | toku::context flush_ctx(CTX_FLUSH); |
| 1778 | struct flusher_extra* fe = (struct flusher_extra *) fe_v; |
| 1779 | // The node that has been placed on the background |
| 1780 | // thread may not be fully in memory. Some message |
| 1781 | // buffers may be compressed. Before performing |
| 1782 | // any operations, we must first make sure |
| 1783 | // the node is fully in memory |
| 1784 | // |
| 1785 | // If we have a bnc, that means fe->node is a child, and we've already |
| 1786 | // destroyed its basement nodes if necessary, so we now need to either |
| 1787 | // read them back in, or just do the regular partial fetch. If we |
| 1788 | // don't, that means fe->node is a parent, so we need to do this anyway. |
| 1789 | bring_node_fully_into_memory(fe->node,fe->ft); |
| 1790 | fe->node->dirty = 1; |
| 1791 | |
| 1792 | struct flusher_advice fa; |
| 1793 | struct flush_status_update_extra fste; |
| 1794 | flt_flusher_advice_init(&fa, &fste, fe->ft->h->nodesize); |
| 1795 | |
| 1796 | if (fe->bnc) { |
| 1797 | // In this case, we have a bnc to flush to a node |
| 1798 | |
| 1799 | // for test purposes |
| 1800 | call_flusher_thread_callback(flt_flush_before_applying_inbox); |
| 1801 | |
| 1802 | toku_bnc_flush_to_child( |
| 1803 | fe->ft, |
| 1804 | fe->bnc, |
| 1805 | fe->node, |
| 1806 | fe->parent_oldest_referenced_xid_known |
| 1807 | ); |
| 1808 | destroy_nonleaf_childinfo(fe->bnc); |
| 1809 | |
| 1810 | // after the flush has completed, now check to see if the node needs flushing |
| 1811 | // If so, call toku_ft_flush_some_child on the node (because this flush intends to |
| 1812 | // pass a meaningful oldest referenced xid for simple garbage collection), and it is the |
| 1813 | // responsibility of the flush to unlock the node. otherwise, we unlock it here. |
| 1814 | if (fe->node->height > 0 && toku_ftnode_nonleaf_is_gorged(fe->node, fe->ft->h->nodesize)) { |
| 1815 | toku_ft_flush_some_child(fe->ft, fe->node, &fa); |
| 1816 | } |
| 1817 | else { |
| 1818 | toku_unpin_ftnode(fe->ft,fe->node); |
| 1819 | } |
| 1820 | } |
| 1821 | else { |
| 1822 | // In this case, we were just passed a node with no |
| 1823 | // bnc, which means we are tasked with flushing some |
| 1824 | // buffer in the node. |
| 1825 | // It is the responsibility of flush some child to unlock the node |
| 1826 | toku_ft_flush_some_child(fe->ft, fe->node, &fa); |
| 1827 | } |
| 1828 | remove_background_job_from_cf(fe->ft->cf); |
| 1829 | toku_free(fe); |
| 1830 | } |
| 1831 | |
| 1832 | static void |
| 1833 | place_node_and_bnc_on_background_thread( |
| 1834 | FT ft, |
| 1835 | FTNODE node, |
| 1836 | NONLEAF_CHILDINFO bnc, |
| 1837 | TXNID parent_oldest_referenced_xid_known) |
| 1838 | { |
| 1839 | struct flusher_extra *XMALLOC(fe); |
| 1840 | fe->ft = ft; |
| 1841 | fe->node = node; |
| 1842 | fe->bnc = bnc; |
| 1843 | fe->parent_oldest_referenced_xid_known = parent_oldest_referenced_xid_known; |
| 1844 | cachefile_kibbutz_enq(ft->cf, flush_node_fun, fe); |
| 1845 | } |
| 1846 | |
| 1847 | // |
| 1848 | // This takes as input a gorged, locked, non-leaf node named parent |
| 1849 | // and sets up a flush to be done in the background. |
| 1850 | // The flush is setup like this: |
| 1851 | // - We call maybe_get_and_pin_clean on the child we want to flush to in order to try to lock the child |
| 1852 | // - if we successfully pin the child, and the child does not need to be split or merged |
| 1853 | // then we detach the buffer, place the child and buffer onto a background thread, and |
| 1854 | // have the flush complete in the background, and unlock the parent. The child will be |
| 1855 | // unlocked on the background thread |
| 1856 | // - if any of the above does not happen (child cannot be locked, |
| 1857 | // child needs to be split/merged), then we place the parent on the background thread. |
| 1858 | // The parent will be unlocked on the background thread |
| 1859 | // |
| 1860 | void toku_ft_flush_node_on_background_thread(FT ft, FTNODE parent) |
| 1861 | { |
| 1862 | toku::context flush_ctx(CTX_FLUSH); |
| 1863 | TXNID parent_oldest_referenced_xid_known = parent->oldest_referenced_xid_known; |
| 1864 | // |
| 1865 | // first let's see if we can detach buffer on client thread |
| 1866 | // and pick the child we want to flush to |
| 1867 | // |
| 1868 | int childnum = find_heaviest_child(parent); |
| 1869 | paranoid_invariant(toku_bnc_n_entries(BNC(parent, childnum))>0); |
| 1870 | // |
| 1871 | // see if we can pin the child |
| 1872 | // |
| 1873 | FTNODE child; |
| 1874 | uint32_t childfullhash = compute_child_fullhash(ft->cf, parent, childnum); |
| 1875 | int r = toku_maybe_pin_ftnode_clean(ft, BP_BLOCKNUM(parent, childnum), childfullhash, PL_WRITE_EXPENSIVE, &child); |
| 1876 | if (r != 0) { |
| 1877 | // In this case, we could not lock the child, so just place the parent on the background thread |
| 1878 | // In the callback, we will use toku_ft_flush_some_child, which checks to |
| 1879 | // see if we should blow away the old basement nodes. |
| 1880 | place_node_and_bnc_on_background_thread(ft, parent, NULL, parent_oldest_referenced_xid_known); |
| 1881 | } |
| 1882 | else { |
| 1883 | // |
| 1884 | // successfully locked child |
| 1885 | // |
| 1886 | bool may_child_be_reactive = ft_ftnode_may_be_reactive(ft, child); |
| 1887 | if (!may_child_be_reactive) { |
| 1888 | // We're going to unpin the parent, so before we do, we must |
| 1889 | // check to see if we need to blow away the basement nodes to |
| 1890 | // keep the MSN invariants intact. |
| 1891 | maybe_destroy_child_blbs(parent, child, ft); |
| 1892 | |
| 1893 | // |
| 1894 | // can detach buffer and unpin root here |
| 1895 | // |
| 1896 | parent->dirty = 1; |
| 1897 | BP_WORKDONE(parent, childnum) = 0; // this buffer is drained, no work has been done by its contents |
| 1898 | NONLEAF_CHILDINFO bnc = BNC(parent, childnum); |
| 1899 | NONLEAF_CHILDINFO new_bnc = toku_create_empty_nl(); |
| 1900 | memcpy(new_bnc->flow, bnc->flow, sizeof bnc->flow); |
| 1901 | set_BNC(parent, childnum, new_bnc); |
| 1902 | |
| 1903 | // |
| 1904 | // at this point, the buffer has been detached from the parent |
| 1905 | // and a new empty buffer has been placed in its stead |
| 1906 | // so, because we know for sure the child is not |
| 1907 | // reactive, we can unpin the parent |
| 1908 | // |
| 1909 | place_node_and_bnc_on_background_thread(ft, child, bnc, parent_oldest_referenced_xid_known); |
| 1910 | toku_unpin_ftnode(ft, parent); |
| 1911 | } |
| 1912 | else { |
| 1913 | // because the child may be reactive, we need to |
| 1914 | // put parent on background thread. |
| 1915 | // As a result, we unlock the child here. |
| 1916 | toku_unpin_ftnode(ft, child); |
| 1917 | // Again, we'll have the parent on the background thread, so |
| 1918 | // we don't need to destroy the basement nodes yet. |
| 1919 | place_node_and_bnc_on_background_thread(ft, parent, NULL, parent_oldest_referenced_xid_known); |
| 1920 | } |
| 1921 | } |
| 1922 | } |
| 1923 | |
| 1924 | #include <toku_race_tools.h> |
| 1925 | void __attribute__((__constructor__)) toku_ft_flusher_helgrind_ignore(void); |
| 1926 | void |
| 1927 | toku_ft_flusher_helgrind_ignore(void) { |
| 1928 | TOKU_VALGRIND_HG_DISABLE_CHECKING(&fl_status, sizeof fl_status); |
| 1929 | } |
| 1930 | |