| 1 | /* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */ |
| 2 | // vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4: |
| 3 | #ident "$Id$" |
| 4 | /*====== |
| 5 | This file is part of PerconaFT. |
| 6 | |
| 7 | |
| 8 | Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved. |
| 9 | |
| 10 | PerconaFT is free software: you can redistribute it and/or modify |
| 11 | it under the terms of the GNU General Public License, version 2, |
| 12 | as published by the Free Software Foundation. |
| 13 | |
| 14 | PerconaFT is distributed in the hope that it will be useful, |
| 15 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 17 | GNU General Public License for more details. |
| 18 | |
| 19 | You should have received a copy of the GNU General Public License |
| 20 | along with PerconaFT. If not, see <http://www.gnu.org/licenses/>. |
| 21 | |
| 22 | ---------------------------------------- |
| 23 | |
| 24 | PerconaFT is free software: you can redistribute it and/or modify |
| 25 | it under the terms of the GNU Affero General Public License, version 3, |
| 26 | as published by the Free Software Foundation. |
| 27 | |
| 28 | PerconaFT is distributed in the hope that it will be useful, |
| 29 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 30 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 31 | GNU Affero General Public License for more details. |
| 32 | |
| 33 | You should have received a copy of the GNU Affero General Public License |
| 34 | along with PerconaFT. If not, see <http://www.gnu.org/licenses/>. |
| 35 | ======= */ |
| 36 | |
| 37 | #ident "Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved." |
| 38 | |
| 39 | #include <my_global.h> |
| 40 | #include "ft/ft.h" |
| 41 | #include "ft/ft-cachetable-wrappers.h" |
| 42 | #include "ft/ft-flusher.h" |
| 43 | #include "ft/ft-flusher-internal.h" |
| 44 | #include "ft/ft-internal.h" |
| 45 | #include "ft/node.h" |
| 46 | #include "portability/toku_atomic.h" |
| 47 | #include "util/context.h" |
| 48 | #include "util/status.h" |
| 49 | |
| 50 | // Member Descirption: |
| 51 | // 1. highest_pivot_key - this is the key that corresponds to the |
| 52 | // most recently flushed leaf entry. |
| 53 | // 2. max_current_key - this is the pivot/key that we inherit as |
| 54 | // we descend down the tree. We use this to set the highest_pivot_key. |
| 55 | // 3. sub_tree_size - this is the percentage of the entire tree that our |
| 56 | // current position (in a sub-tree) encompasses. |
| 57 | // 4. percentage_done - this is the percentage of leaf nodes that have |
| 58 | // been flushed into. |
| 59 | // 5. rightmost_leaf_seen - this is a boolean we use to determine if |
| 60 | // if we have flushed to every leaf node. |
| 61 | struct { |
| 62 | DBT ; |
| 63 | DBT ; |
| 64 | float ; |
| 65 | float ; |
| 66 | bool ; |
| 67 | }; |
| 68 | |
| 69 | void |
| 70 | toku_ft_hot_get_status(FT_HOT_STATUS s) { |
| 71 | hot_status.init(); |
| 72 | *s = hot_status; |
| 73 | } |
| 74 | |
| 75 | // Copies the max current key to the highest pivot key seen. |
| 76 | static void |
| 77 | (struct hot_flusher_extra *flusher) |
| 78 | { |
| 79 | // The max current key will be NULL if we are traversing in the |
| 80 | // rightmost subtree of a given parent. As such, we don't want to |
| 81 | // allocate memory for this case. |
| 82 | toku_destroy_dbt(&flusher->highest_pivot_key); |
| 83 | if (flusher->max_current_key.data != NULL) { |
| 84 | // Otherwise, let's copy all the contents from one key to the other. |
| 85 | toku_clone_dbt(&flusher->highest_pivot_key, flusher->max_current_key); |
| 86 | } |
| 87 | } |
| 88 | |
| 89 | static void |
| 90 | (struct hot_flusher_extra *flusher, const DBT* start) |
| 91 | { |
| 92 | toku_destroy_dbt(&flusher->highest_pivot_key); |
| 93 | if (start != NULL) { |
| 94 | // Otherwise, let's copy all the contents from one key to the other. |
| 95 | toku_clone_dbt(&flusher->highest_pivot_key, *start); |
| 96 | } |
| 97 | } |
| 98 | |
| 99 | static int |
| 100 | (FT ft, |
| 101 | FTNODE parent, |
| 102 | struct hot_flusher_extra *flusher) |
| 103 | { |
| 104 | int childnum = 0; |
| 105 | |
| 106 | // Search through Parents pivots, see which one is greater than |
| 107 | // the highest_pivot_key seen so far. |
| 108 | if (flusher->highest_pivot_key.data == NULL) |
| 109 | { |
| 110 | // Special case of the first child of the root node. |
| 111 | // Also known as, NEGATIVE INFINITY.... |
| 112 | childnum = 0; |
| 113 | } else { |
| 114 | // Find the pivot boundary. |
| 115 | childnum = toku_ftnode_hot_next_child(parent, &flusher->highest_pivot_key, ft->cmp); |
| 116 | } |
| 117 | |
| 118 | return childnum; |
| 119 | } |
| 120 | |
| 121 | static void |
| 122 | (FTNODE parent, |
| 123 | int childnum, |
| 124 | struct hot_flusher_extra *flusher) |
| 125 | { |
| 126 | // Update maximum current key if the child is NOT the rightmost |
| 127 | // child node. |
| 128 | if (childnum < (parent->n_children - 1)) { |
| 129 | toku_destroy_dbt(&flusher->max_current_key); |
| 130 | toku_clone_dbt(&flusher->max_current_key, parent->pivotkeys.get_pivot(childnum)); |
| 131 | } |
| 132 | } |
| 133 | |
| 134 | // Picks which child toku_ft_flush_some_child will use for flushing and |
| 135 | // recursion. |
| 136 | static int |
| 137 | hot_pick_child(FT ft, |
| 138 | FTNODE parent, |
| 139 | void *) |
| 140 | { |
| 141 | struct hot_flusher_extra *flusher = (struct hot_flusher_extra *) extra; |
| 142 | int childnum = hot_just_pick_child(ft, parent, flusher); |
| 143 | |
| 144 | // Now we determine the percentage of the tree flushed so far. |
| 145 | |
| 146 | // Whichever subtree we choose to recurse into, it is a fraction |
| 147 | // of the current parent. |
| 148 | flusher->sub_tree_size /= parent->n_children; |
| 149 | |
| 150 | // Update the precentage complete, using our new sub tree size AND |
| 151 | // the number of children we have already flushed. |
| 152 | flusher->percentage_done += (flusher->sub_tree_size * childnum); |
| 153 | |
| 154 | hot_update_flusher_keys(parent, childnum, flusher); |
| 155 | |
| 156 | return childnum; |
| 157 | } |
| 158 | |
| 159 | // Does nothing for now. |
| 160 | static void |
| 161 | hot_update_status(FTNODE UU(child), |
| 162 | int UU(dirtied), |
| 163 | void *UU()) |
| 164 | { |
| 165 | return; |
| 166 | } |
| 167 | |
| 168 | // If we've just split a node, HOT needs another chance to decide which |
| 169 | // one to flush into. This gives it a chance to do that, and update the |
| 170 | // keys it maintains. |
| 171 | static int |
| 172 | hot_pick_child_after_split(FT ft, |
| 173 | FTNODE parent, |
| 174 | int childnuma, |
| 175 | int childnumb, |
| 176 | void *) |
| 177 | { |
| 178 | struct hot_flusher_extra *flusher = (struct hot_flusher_extra *) extra; |
| 179 | int childnum = hot_just_pick_child(ft, parent, flusher); |
| 180 | assert(childnum == childnuma || childnum == childnumb); |
| 181 | hot_update_flusher_keys(parent, childnum, flusher); |
| 182 | if (parent->height == 1) { |
| 183 | // We don't want to recurse into a leaf node, but if we return |
| 184 | // anything valid, ft_split_child will try to go there, so we |
| 185 | // return -1 to allow ft_split_child to have its default |
| 186 | // behavior, which will be to stop recursing. |
| 187 | childnum = -1; |
| 188 | } |
| 189 | return childnum; |
| 190 | } |
| 191 | |
| 192 | // Basic constructor/initializer for the hot flusher struct. |
| 193 | static void |
| 194 | (struct flusher_advice *advice, |
| 195 | struct hot_flusher_extra *flusher) |
| 196 | { |
| 197 | // Initialize the highest pivot key seen to NULL. This represents |
| 198 | // NEGATIVE INFINITY and is used to cover the special case of our |
| 199 | // first traversal of the tree. |
| 200 | toku_init_dbt(&(flusher->highest_pivot_key)); |
| 201 | toku_init_dbt(&(flusher->max_current_key)); |
| 202 | flusher->rightmost_leaf_seen = 0; |
| 203 | flusher->sub_tree_size = 1.0; |
| 204 | flusher->percentage_done = 0.0; |
| 205 | flusher_advice_init(advice, |
| 206 | hot_pick_child, |
| 207 | dont_destroy_basement_nodes, |
| 208 | always_recursively_flush, |
| 209 | default_merge_child, |
| 210 | hot_update_status, |
| 211 | hot_pick_child_after_split, |
| 212 | flusher |
| 213 | ); |
| 214 | } |
| 215 | |
| 216 | // Erases any DBT keys we have copied from a traversal. |
| 217 | static void |
| 218 | (struct hot_flusher_extra *flusher) |
| 219 | { |
| 220 | toku_destroy_dbt(&flusher->highest_pivot_key); |
| 221 | toku_destroy_dbt(&flusher->max_current_key); |
| 222 | } |
| 223 | |
| 224 | // Entry point for Hot Optimize Table (HOT). Note, this function is |
| 225 | // not recursive. It iterates over root-to-leaf paths. |
| 226 | int |
| 227 | toku_ft_hot_optimize(FT_HANDLE ft_handle, DBT* left, DBT* right, |
| 228 | int (*progress_callback)(void *, float progress), |
| 229 | void *, uint64_t* loops_run) |
| 230 | { |
| 231 | toku::context flush_ctx(CTX_FLUSH); |
| 232 | |
| 233 | int r = 0; |
| 234 | struct hot_flusher_extra flusher; |
| 235 | struct flusher_advice advice; |
| 236 | |
| 237 | hot_flusher_init(&advice, &flusher); |
| 238 | hot_set_start_key(&flusher, left); |
| 239 | |
| 240 | uint64_t loop_count = 0; |
| 241 | MSN msn_at_start_of_hot = ZERO_MSN; // capture msn from root at |
| 242 | // start of HOT operation |
| 243 | (void) toku_sync_fetch_and_add(&HOT_STATUS_VAL(FT_HOT_NUM_STARTED), 1); |
| 244 | |
| 245 | toku_ft_note_hot_begin(ft_handle); |
| 246 | |
| 247 | // Higher level logic prevents a dictionary from being deleted or |
| 248 | // truncated during a hot optimize operation. Doing so would violate |
| 249 | // the hot optimize contract. |
| 250 | do { |
| 251 | FTNODE root; |
| 252 | CACHEKEY root_key; |
| 253 | uint32_t fullhash; |
| 254 | |
| 255 | { |
| 256 | // Get root node (the first parent of each successive HOT |
| 257 | // call.) |
| 258 | toku_calculate_root_offset_pointer(ft_handle->ft, &root_key, &fullhash); |
| 259 | ftnode_fetch_extra bfe; |
| 260 | bfe.create_for_full_read(ft_handle->ft); |
| 261 | toku_pin_ftnode(ft_handle->ft, |
| 262 | (BLOCKNUM) root_key, |
| 263 | fullhash, |
| 264 | &bfe, |
| 265 | PL_WRITE_EXPENSIVE, |
| 266 | &root, |
| 267 | true); |
| 268 | toku_ftnode_assert_fully_in_memory(root); |
| 269 | } |
| 270 | |
| 271 | // Prepare HOT diagnostics. |
| 272 | if (loop_count == 0) { |
| 273 | // The first time through, capture msn from root |
| 274 | msn_at_start_of_hot = root->max_msn_applied_to_node_on_disk; |
| 275 | } |
| 276 | |
| 277 | loop_count++; |
| 278 | |
| 279 | if (loop_count > HOT_STATUS_VAL(FT_HOT_MAX_ROOT_FLUSH_COUNT)) { |
| 280 | HOT_STATUS_VAL(FT_HOT_MAX_ROOT_FLUSH_COUNT) = loop_count; |
| 281 | } |
| 282 | |
| 283 | // Initialize the maximum current key. We need to do this for |
| 284 | // every traversal. |
| 285 | toku_destroy_dbt(&flusher.max_current_key); |
| 286 | |
| 287 | flusher.sub_tree_size = 1.0; |
| 288 | flusher.percentage_done = 0.0; |
| 289 | |
| 290 | // This should recurse to the bottom of the tree and then |
| 291 | // return. |
| 292 | if (root->height > 0) { |
| 293 | toku_ft_flush_some_child(ft_handle->ft, root, &advice); |
| 294 | } else { |
| 295 | // Since there are no children to flush, we should abort |
| 296 | // the HOT call. |
| 297 | flusher.rightmost_leaf_seen = 1; |
| 298 | toku_unpin_ftnode(ft_handle->ft, root); |
| 299 | } |
| 300 | |
| 301 | // Set the highest pivot key seen here, since the parent may |
| 302 | // be unlocked and NULL'd later in our caller: |
| 303 | // toku_ft_flush_some_child(). |
| 304 | hot_set_highest_key(&flusher); |
| 305 | |
| 306 | // This is where we determine if the traversal is finished or |
| 307 | // not. |
| 308 | if (flusher.max_current_key.data == NULL) { |
| 309 | flusher.rightmost_leaf_seen = 1; |
| 310 | } |
| 311 | else if (right) { |
| 312 | // if we have flushed past the bounds set for us, |
| 313 | // set rightmost_leaf_seen so we exit |
| 314 | int cmp = ft_handle->ft->cmp(&flusher.max_current_key, right); |
| 315 | if (cmp > 0) { |
| 316 | flusher.rightmost_leaf_seen = 1; |
| 317 | } |
| 318 | } |
| 319 | |
| 320 | // Update HOT's progress. |
| 321 | if (progress_callback != NULL) { |
| 322 | r = progress_callback(progress_extra, flusher.percentage_done); |
| 323 | |
| 324 | // Check if the callback wants us to stop running HOT. |
| 325 | if (r != 0) { |
| 326 | flusher.rightmost_leaf_seen = 1; |
| 327 | } |
| 328 | } |
| 329 | |
| 330 | // Loop until the max key has been updated to positive |
| 331 | // infinity. |
| 332 | } while (!flusher.rightmost_leaf_seen); |
| 333 | *loops_run = loop_count; |
| 334 | |
| 335 | // Cleanup. |
| 336 | hot_flusher_destroy(&flusher); |
| 337 | |
| 338 | // More diagnostics. |
| 339 | { |
| 340 | bool success = false; |
| 341 | if (r == 0) { success = true; } |
| 342 | |
| 343 | { |
| 344 | toku_ft_note_hot_complete(ft_handle, success, msn_at_start_of_hot); |
| 345 | } |
| 346 | |
| 347 | if (success) { |
| 348 | (void) toku_sync_fetch_and_add(&HOT_STATUS_VAL(FT_HOT_NUM_COMPLETED), 1); |
| 349 | } else { |
| 350 | (void) toku_sync_fetch_and_add(&HOT_STATUS_VAL(FT_HOT_NUM_ABORTED), 1); |
| 351 | } |
| 352 | } |
| 353 | return r; |
| 354 | } |
| 355 | |
| 356 | #include <toku_race_tools.h> |
| 357 | void __attribute__((__constructor__)) toku_hot_helgrind_ignore(void); |
| 358 | void |
| 359 | toku_hot_helgrind_ignore(void) { |
| 360 | // incremented only while lock is held, but read by engine status asynchronously. |
| 361 | TOKU_VALGRIND_HG_DISABLE_CHECKING(&hot_status, sizeof hot_status); |
| 362 | } |
| 363 | |