| 1 | /* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */ |
| 2 | // vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4: |
| 3 | #ident "$Id$" |
| 4 | /*====== |
| 5 | This file is part of PerconaFT. |
| 6 | |
| 7 | |
| 8 | Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved. |
| 9 | |
| 10 | PerconaFT is free software: you can redistribute it and/or modify |
| 11 | it under the terms of the GNU General Public License, version 2, |
| 12 | as published by the Free Software Foundation. |
| 13 | |
| 14 | PerconaFT is distributed in the hope that it will be useful, |
| 15 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 17 | GNU General Public License for more details. |
| 18 | |
| 19 | You should have received a copy of the GNU General Public License |
| 20 | along with PerconaFT. If not, see <http://www.gnu.org/licenses/>. |
| 21 | |
| 22 | ---------------------------------------- |
| 23 | |
| 24 | PerconaFT is free software: you can redistribute it and/or modify |
| 25 | it under the terms of the GNU Affero General Public License, version 3, |
| 26 | as published by the Free Software Foundation. |
| 27 | |
| 28 | PerconaFT is distributed in the hope that it will be useful, |
| 29 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 30 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 31 | GNU Affero General Public License for more details. |
| 32 | |
| 33 | You should have received a copy of the GNU Affero General Public License |
| 34 | along with PerconaFT. If not, see <http://www.gnu.org/licenses/>. |
| 35 | ======= */ |
| 36 | |
| 37 | #ident "Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved." |
| 38 | |
| 39 | #include <my_global.h> |
| 40 | #include <toku_portability.h> |
| 41 | |
| 42 | #include <arpa/inet.h> |
| 43 | |
| 44 | #include <stdio.h> |
| 45 | #include <memory.h> |
| 46 | #include <errno.h> |
| 47 | #include <toku_assert.h> |
| 48 | #include <string.h> |
| 49 | #include <fcntl.h> |
| 50 | |
| 51 | #include "ft/ft.h" |
| 52 | #include "ft/ft-internal.h" |
| 53 | #include "ft/leafentry.h" |
| 54 | #include "ft/loader/loader-internal.h" |
| 55 | #include "ft/loader/pqueue.h" |
| 56 | #include "ft/loader/dbufio.h" |
| 57 | #include "ft/logger/log-internal.h" |
| 58 | #include "ft/node.h" |
| 59 | #include "ft/serialize/block_table.h" |
| 60 | #include "ft/serialize/ft-serialize.h" |
| 61 | #include "ft/serialize/ft_node-serialize.h" |
| 62 | #include "ft/serialize/sub_block.h" |
| 63 | |
| 64 | #include "util/x1764.h" |
| 65 | |
| 66 | toku_instr_key *loader_bl_mutex_key; |
| 67 | toku_instr_key *loader_fi_lock_mutex_key; |
| 68 | toku_instr_key *loader_out_mutex_key; |
| 69 | |
| 70 | toku_instr_key *; |
| 71 | toku_instr_key *fractal_thread_key; |
| 72 | |
| 73 | toku_instr_key *tokudb_file_tmp_key; |
| 74 | toku_instr_key *tokudb_file_load_key; |
| 75 | |
| 76 | // 1024 is the right size_factor for production. |
| 77 | // Different values for these sizes may be used for testing. |
| 78 | static uint32_t size_factor = 1024; |
| 79 | static uint32_t default_loader_nodesize = FT_DEFAULT_NODE_SIZE; |
| 80 | static uint32_t default_loader_basementnodesize = FT_DEFAULT_BASEMENT_NODE_SIZE; |
| 81 | |
| 82 | void |
| 83 | toku_ft_loader_set_size_factor(uint32_t factor) { |
| 84 | // For test purposes only |
| 85 | size_factor = factor; |
| 86 | default_loader_nodesize = (size_factor==1) ? (1<<15) : FT_DEFAULT_NODE_SIZE; |
| 87 | } |
| 88 | |
| 89 | uint64_t |
| 90 | toku_ft_loader_get_rowset_budget_for_testing (void) |
| 91 | // For test purposes only. In production, the rowset size is determined by negotiation with the cachetable for some memory. (See #2613). |
| 92 | { |
| 93 | return 16ULL*size_factor*1024ULL; |
| 94 | } |
| 95 | |
| 96 | void ft_loader_lock_init(FTLOADER bl) { |
| 97 | invariant(!bl->mutex_init); |
| 98 | toku_mutex_init(*loader_bl_mutex_key, &bl->mutex, nullptr); |
| 99 | bl->mutex_init = true; |
| 100 | } |
| 101 | |
| 102 | void ft_loader_lock_destroy(FTLOADER bl) { |
| 103 | if (bl->mutex_init) { |
| 104 | toku_mutex_destroy(&bl->mutex); |
| 105 | bl->mutex_init = false; |
| 106 | } |
| 107 | } |
| 108 | |
| 109 | static void ft_loader_lock(FTLOADER bl) { |
| 110 | invariant(bl->mutex_init); |
| 111 | toku_mutex_lock(&bl->mutex); |
| 112 | } |
| 113 | |
| 114 | static void ft_loader_unlock(FTLOADER bl) { |
| 115 | invariant(bl->mutex_init); |
| 116 | toku_mutex_unlock(&bl->mutex); |
| 117 | } |
| 118 | |
| 119 | static int add_big_buffer(struct file_info *file) { |
| 120 | int result = 0; |
| 121 | bool newbuffer = false; |
| 122 | if (file->buffer == NULL) { |
| 123 | file->buffer = toku_malloc(file->buffer_size); |
| 124 | if (file->buffer == NULL) |
| 125 | result = get_error_errno(); |
| 126 | else |
| 127 | newbuffer = true; |
| 128 | } |
| 129 | if (result == 0) { |
| 130 | int r = setvbuf(file->file->file, |
| 131 | static_cast<char *>(file->buffer), |
| 132 | _IOFBF, |
| 133 | file->buffer_size); |
| 134 | if (r != 0) { |
| 135 | result = get_error_errno(); |
| 136 | if (newbuffer) { |
| 137 | toku_free(file->buffer); |
| 138 | file->buffer = NULL; |
| 139 | } |
| 140 | } |
| 141 | } |
| 142 | return result; |
| 143 | } |
| 144 | |
| 145 | static void cleanup_big_buffer(struct file_info *file) { |
| 146 | if (file->buffer) { |
| 147 | toku_free(file->buffer); |
| 148 | file->buffer = NULL; |
| 149 | } |
| 150 | } |
| 151 | |
| 152 | int ft_loader_init_file_infos(struct file_infos *fi) { |
| 153 | int result = 0; |
| 154 | toku_mutex_init(*loader_fi_lock_mutex_key, &fi->lock, nullptr); |
| 155 | fi->n_files = 0; |
| 156 | fi->n_files_limit = 1; |
| 157 | fi->n_files_open = 0; |
| 158 | fi->n_files_extant = 0; |
| 159 | MALLOC_N(fi->n_files_limit, fi->file_infos); |
| 160 | if (fi->file_infos == NULL) |
| 161 | result = get_error_errno(); |
| 162 | return result; |
| 163 | } |
| 164 | |
| 165 | void ft_loader_fi_destroy (struct file_infos *fi, bool is_error) |
| 166 | // Effect: Free the resources in the fi. |
| 167 | // If is_error then we close and unlink all the temp files. |
| 168 | // If !is_error then requires that all the temp files have been closed and destroyed |
| 169 | // No error codes are returned. If anything goes wrong with closing and unlinking then it's only in an is_error case, so we don't care. |
| 170 | { |
| 171 | if (fi->file_infos == NULL) { |
| 172 | // ft_loader_init_file_infos guarantees this isn't null, so if it is, we know it hasn't been inited yet and we don't need to destroy it. |
| 173 | return; |
| 174 | } |
| 175 | toku_mutex_destroy(&fi->lock); |
| 176 | if (!is_error) { |
| 177 | invariant(fi->n_files_open==0); |
| 178 | invariant(fi->n_files_extant==0); |
| 179 | } |
| 180 | for (int i=0; i<fi->n_files; i++) { |
| 181 | if (fi->file_infos[i].is_open) { |
| 182 | invariant(is_error); |
| 183 | toku_os_fclose(fi->file_infos[i].file); // don't check for errors, since we are in an error case. |
| 184 | } |
| 185 | if (fi->file_infos[i].is_extant) { |
| 186 | invariant(is_error); |
| 187 | unlink(fi->file_infos[i].fname); |
| 188 | toku_free(fi->file_infos[i].fname); |
| 189 | } |
| 190 | cleanup_big_buffer(&fi->file_infos[i]); |
| 191 | } |
| 192 | toku_free(fi->file_infos); |
| 193 | fi->n_files=0; |
| 194 | fi->n_files_limit=0; |
| 195 | fi->file_infos = NULL; |
| 196 | } |
| 197 | |
| 198 | static int open_file_add(struct file_infos *fi, |
| 199 | TOKU_FILE *file, |
| 200 | char *fname, |
| 201 | /* out */ FIDX *idx) { |
| 202 | int result = 0; |
| 203 | toku_mutex_lock(&fi->lock); |
| 204 | if (fi->n_files >= fi->n_files_limit) { |
| 205 | fi->n_files_limit *=2; |
| 206 | XREALLOC_N(fi->n_files_limit, fi->file_infos); |
| 207 | } |
| 208 | invariant(fi->n_files < fi->n_files_limit); |
| 209 | fi->file_infos[fi->n_files].is_open = true; |
| 210 | fi->file_infos[fi->n_files].is_extant = true; |
| 211 | fi->file_infos[fi->n_files].fname = fname; |
| 212 | fi->file_infos[fi->n_files].file = file; |
| 213 | fi->file_infos[fi->n_files].n_rows = 0; |
| 214 | fi->file_infos[fi->n_files].buffer_size = FILE_BUFFER_SIZE; |
| 215 | fi->file_infos[fi->n_files].buffer = NULL; |
| 216 | result = add_big_buffer(&fi->file_infos[fi->n_files]); |
| 217 | if (result == 0) { |
| 218 | idx->idx = fi->n_files; |
| 219 | fi->n_files++; |
| 220 | fi->n_files_extant++; |
| 221 | fi->n_files_open++; |
| 222 | } |
| 223 | toku_mutex_unlock(&fi->lock); |
| 224 | return result; |
| 225 | } |
| 226 | |
| 227 | int ft_loader_fi_reopen (struct file_infos *fi, FIDX idx, const char *mode) { |
| 228 | int result = 0; |
| 229 | toku_mutex_lock(&fi->lock); |
| 230 | int i = idx.idx; |
| 231 | invariant(i >= 0 && i < fi->n_files); |
| 232 | invariant(!fi->file_infos[i].is_open); |
| 233 | invariant(fi->file_infos[i].is_extant); |
| 234 | fi->file_infos[i].file = |
| 235 | toku_os_fopen(fi->file_infos[i].fname, mode, *tokudb_file_load_key); |
| 236 | if (fi->file_infos[i].file == NULL) { |
| 237 | result = get_error_errno(); |
| 238 | } else { |
| 239 | fi->file_infos[i].is_open = true; |
| 240 | // No longer need the big buffer for reopened files. Don't allocate the space, we need it elsewhere. |
| 241 | //add_big_buffer(&fi->file_infos[i]); |
| 242 | fi->n_files_open++; |
| 243 | } |
| 244 | toku_mutex_unlock(&fi->lock); |
| 245 | return result; |
| 246 | } |
| 247 | |
| 248 | int ft_loader_fi_close (struct file_infos *fi, FIDX idx, bool require_open) |
| 249 | { |
| 250 | int result = 0; |
| 251 | toku_mutex_lock(&fi->lock); |
| 252 | invariant(idx.idx >=0 && idx.idx < fi->n_files); |
| 253 | if (fi->file_infos[idx.idx].is_open) { |
| 254 | invariant(fi->n_files_open>0); // loader-cleanup-test failure |
| 255 | fi->n_files_open--; |
| 256 | fi->file_infos[idx.idx].is_open = false; |
| 257 | int r = toku_os_fclose(fi->file_infos[idx.idx].file); |
| 258 | if (r) |
| 259 | result = get_error_errno(); |
| 260 | cleanup_big_buffer(&fi->file_infos[idx.idx]); |
| 261 | } else if (require_open) |
| 262 | result = EINVAL; |
| 263 | toku_mutex_unlock(&fi->lock); |
| 264 | return result; |
| 265 | } |
| 266 | |
| 267 | int ft_loader_fi_unlink (struct file_infos *fi, FIDX idx) { |
| 268 | int result = 0; |
| 269 | toku_mutex_lock(&fi->lock); |
| 270 | int id = idx.idx; |
| 271 | invariant(id >=0 && id < fi->n_files); |
| 272 | if (fi->file_infos[id].is_extant) { // must still exist |
| 273 | invariant(fi->n_files_extant>0); |
| 274 | fi->n_files_extant--; |
| 275 | invariant(!fi->file_infos[id].is_open); // must be closed before we unlink |
| 276 | fi->file_infos[id].is_extant = false; |
| 277 | int r = unlink(fi->file_infos[id].fname); |
| 278 | if (r != 0) |
| 279 | result = get_error_errno(); |
| 280 | toku_free(fi->file_infos[id].fname); |
| 281 | fi->file_infos[id].fname = NULL; |
| 282 | } else |
| 283 | result = EINVAL; |
| 284 | toku_mutex_unlock(&fi->lock); |
| 285 | return result; |
| 286 | } |
| 287 | |
| 288 | int |
| 289 | ft_loader_fi_close_all(struct file_infos *fi) { |
| 290 | int rval = 0; |
| 291 | for (int i = 0; i < fi->n_files; i++) { |
| 292 | int r; |
| 293 | FIDX idx = { i }; |
| 294 | r = ft_loader_fi_close(fi, idx, false); // ignore files that are already closed |
| 295 | if (rval == 0 && r) |
| 296 | rval = r; // capture first error |
| 297 | } |
| 298 | return rval; |
| 299 | } |
| 300 | |
| 301 | int ft_loader_open_temp_file (FTLOADER bl, FIDX *file_idx) |
| 302 | /* Effect: Open a temporary file in read-write mode. Save enough information to close and delete the file later. |
| 303 | * Return value: 0 on success, an error number otherwise. |
| 304 | * On error, *file_idx and *fnamep will be unmodified. |
| 305 | * The open file will be saved in bl->file_infos so that even if errors happen we can free them all. |
| 306 | */ |
| 307 | { |
| 308 | int result = 0; |
| 309 | if (result) // debug hack |
| 310 | return result; |
| 311 | TOKU_FILE *f = NULL; |
| 312 | int fd = -1; |
| 313 | char *fname = toku_strdup(bl->temp_file_template); |
| 314 | if (fname == NULL) |
| 315 | result = get_error_errno(); |
| 316 | else { |
| 317 | fd = mkstemp(fname); |
| 318 | if (fd < 0) { |
| 319 | result = get_error_errno(); |
| 320 | } else { |
| 321 | f = toku_os_fdopen(fd, "r+" , fname, *tokudb_file_tmp_key); |
| 322 | if (f->file == nullptr) |
| 323 | result = get_error_errno(); |
| 324 | else |
| 325 | result = open_file_add(&bl->file_infos, f, fname, file_idx); |
| 326 | } |
| 327 | } |
| 328 | if (result != 0) { |
| 329 | if (fd >= 0) { |
| 330 | toku_os_close(fd); |
| 331 | unlink(fname); |
| 332 | } |
| 333 | if (f != NULL) |
| 334 | toku_os_fclose(f); // don't check for error because we're already in an error case |
| 335 | if (fname != NULL) |
| 336 | toku_free(fname); |
| 337 | } |
| 338 | return result; |
| 339 | } |
| 340 | |
| 341 | void toku_ft_loader_internal_destroy(FTLOADER bl, bool is_error) { |
| 342 | ft_loader_lock_destroy(bl); |
| 343 | |
| 344 | // These frees rely on the fact that if you free a NULL pointer then nothing bad happens. |
| 345 | toku_free(bl->dbs); |
| 346 | toku_free(bl->descriptors); |
| 347 | toku_free(bl->root_xids_that_created); |
| 348 | if (bl->new_fnames_in_env) { |
| 349 | for (int i = 0; i < bl->N; i++) |
| 350 | toku_free((char*)bl->new_fnames_in_env[i]); |
| 351 | toku_free(bl->new_fnames_in_env); |
| 352 | } |
| 353 | toku_free(bl->extracted_datasizes); |
| 354 | toku_free(bl->bt_compare_funs); |
| 355 | toku_free((char*)bl->temp_file_template); |
| 356 | ft_loader_fi_destroy(&bl->file_infos, is_error); |
| 357 | |
| 358 | for (int i = 0; i < bl->N; i++) |
| 359 | destroy_rowset(&bl->rows[i]); |
| 360 | toku_free(bl->rows); |
| 361 | |
| 362 | for (int i = 0; i < bl->N; i++) |
| 363 | destroy_merge_fileset(&bl->fs[i]); |
| 364 | toku_free(bl->fs); |
| 365 | |
| 366 | if (bl->last_key) { |
| 367 | for (int i=0; i < bl->N; i++) { |
| 368 | toku_free(bl->last_key[i].data); |
| 369 | } |
| 370 | toku_free(bl->last_key); |
| 371 | bl->last_key = NULL; |
| 372 | } |
| 373 | |
| 374 | destroy_rowset(&bl->primary_rowset); |
| 375 | if (bl->primary_rowset_queue) { |
| 376 | toku_queue_destroy(bl->primary_rowset_queue); |
| 377 | bl->primary_rowset_queue = nullptr; |
| 378 | } |
| 379 | |
| 380 | for (int i=0; i<bl->N; i++) { |
| 381 | if ( bl->fractal_queues ) { |
| 382 | invariant(bl->fractal_queues[i]==NULL); |
| 383 | } |
| 384 | } |
| 385 | toku_free(bl->fractal_threads); |
| 386 | toku_free(bl->fractal_queues); |
| 387 | toku_free(bl->fractal_threads_live); |
| 388 | |
| 389 | if (bl->did_reserve_memory) { |
| 390 | invariant(bl->cachetable); |
| 391 | toku_cachetable_release_reserved_memory(bl->cachetable, bl->reserved_memory); |
| 392 | } |
| 393 | |
| 394 | ft_loader_destroy_error_callback(&bl->error_callback); |
| 395 | ft_loader_destroy_poll_callback(&bl->poll_callback); |
| 396 | |
| 397 | //printf("Progress=%d/%d\n", bl->progress, PROGRESS_MAX); |
| 398 | |
| 399 | toku_free(bl); |
| 400 | } |
| 401 | |
| 402 | static void *extractor_thread (void*); |
| 403 | |
| 404 | #define MAX(a,b) (((a)<(b)) ? (b) : (a)) |
| 405 | |
| 406 | static uint64_t (FTLOADER bl) |
| 407 | // Return how much memory can be allocated for each rowset. |
| 408 | { |
| 409 | if (size_factor==1) { |
| 410 | return 16*1024; |
| 411 | } else { |
| 412 | // There is a primary rowset being maintained by the foreground thread. |
| 413 | // There could be two more in the queue. |
| 414 | // There is one rowset for each index (bl->N) being filled in. |
| 415 | // Later we may have sort_and_write operations spawning in parallel, and will need to account for that. |
| 416 | int n_copies = (1 // primary rowset |
| 417 | +EXTRACTOR_QUEUE_DEPTH // the number of primaries in the queue |
| 418 | +bl->N // the N rowsets being constructed by the extractor thread. |
| 419 | +bl->N // the N sort buffers |
| 420 | +1 // Give the extractor thread one more so that it can have temporary space for sorting. This is overkill. |
| 421 | ); |
| 422 | int64_t = bl->N * FILE_BUFFER_SIZE; // for each index we are writing to a file at any given time. |
| 423 | int64_t tentative_rowset_size = ((int64_t)(bl->reserved_memory - extra_reserved_memory))/(n_copies); |
| 424 | return MAX(tentative_rowset_size, (int64_t)MIN_ROWSET_MEMORY); |
| 425 | } |
| 426 | } |
| 427 | |
| 428 | static unsigned ft_loader_get_fractal_workers_count(FTLOADER bl) { |
| 429 | unsigned w = 0; |
| 430 | while (1) { |
| 431 | ft_loader_lock(bl); |
| 432 | w = bl->fractal_workers; |
| 433 | ft_loader_unlock(bl); |
| 434 | if (w != 0) |
| 435 | break; |
| 436 | toku_pthread_yield(); // maybe use a cond var instead |
| 437 | } |
| 438 | return w; |
| 439 | } |
| 440 | |
| 441 | static void ft_loader_set_fractal_workers_count(FTLOADER bl) { |
| 442 | ft_loader_lock(bl); |
| 443 | if (bl->fractal_workers == 0) |
| 444 | bl->fractal_workers = 1; |
| 445 | ft_loader_unlock(bl); |
| 446 | } |
| 447 | |
| 448 | // To compute a merge, we have a certain amount of memory to work with. |
| 449 | // We perform only one fanin at a time. |
| 450 | // If the fanout is F then we are using |
| 451 | // F merges. Each merge uses |
| 452 | // DBUFIO_DEPTH buffers for double buffering. Each buffer is of size at least MERGE_BUF_SIZE |
| 453 | // so the memory is |
| 454 | // F*MERGE_BUF_SIZE*DBUFIO_DEPTH storage. |
| 455 | // We use some additional space to buffer the outputs. |
| 456 | // That's FILE_BUFFER_SIZE for writing to a merge file if we are writing to a mergefile. |
| 457 | // And we have FRACTAL_WRITER_ROWSETS*MERGE_BUF_SIZE per queue |
| 458 | // And if we are doing a fractal, each worker could have have a fractal tree that it's working on. |
| 459 | // |
| 460 | // DBUFIO_DEPTH*F*MERGE_BUF_SIZE + FRACTAL_WRITER_ROWSETS*MERGE_BUF_SIZE + WORKERS*NODESIZE*2 <= RESERVED_MEMORY |
| 461 | |
| 462 | static int64_t memory_avail_during_merge(FTLOADER bl, bool is_fractal_node) { |
| 463 | // avail memory = reserved memory - WORKERS*NODESIZE*2 for the last merge stage only |
| 464 | int64_t avail_memory = bl->reserved_memory; |
| 465 | if (is_fractal_node) { |
| 466 | // reserve space for the fractal writer thread buffers |
| 467 | avail_memory -= (int64_t)ft_loader_get_fractal_workers_count(bl) * (int64_t)default_loader_nodesize * 2; // compressed and uncompressed buffers |
| 468 | } |
| 469 | return avail_memory; |
| 470 | } |
| 471 | |
| 472 | static int merge_fanin (FTLOADER bl, bool is_fractal_node) { |
| 473 | // return number of temp files to read in this pass |
| 474 | int64_t memory_avail = memory_avail_during_merge(bl, is_fractal_node); |
| 475 | int64_t nbuffers = memory_avail / (int64_t)TARGET_MERGE_BUF_SIZE; |
| 476 | if (is_fractal_node) |
| 477 | nbuffers -= FRACTAL_WRITER_ROWSETS; |
| 478 | return MAX(nbuffers / (int64_t)DBUFIO_DEPTH, (int)MIN_MERGE_FANIN); |
| 479 | } |
| 480 | |
| 481 | static uint64_t memory_per_rowset_during_merge (FTLOADER bl, int merge_factor, bool is_fractal_node // if it is being sent to a q |
| 482 | ) { |
| 483 | int64_t memory_avail = memory_avail_during_merge(bl, is_fractal_node); |
| 484 | int64_t nbuffers = DBUFIO_DEPTH * merge_factor; |
| 485 | if (is_fractal_node) |
| 486 | nbuffers += FRACTAL_WRITER_ROWSETS; |
| 487 | return MAX(memory_avail / nbuffers, (int64_t)MIN_MERGE_BUF_SIZE); |
| 488 | } |
| 489 | |
| 490 | int toku_ft_loader_internal_init (/* out */ FTLOADER *blp, |
| 491 | CACHETABLE cachetable, |
| 492 | generate_row_for_put_func g, |
| 493 | DB *src_db, |
| 494 | int N, FT_HANDLE fts[/*N*/], DB* dbs[/*N*/], |
| 495 | const char *new_fnames_in_env[/*N*/], |
| 496 | ft_compare_func bt_compare_functions[/*N*/], |
| 497 | const char *temp_file_template, |
| 498 | LSN load_lsn, |
| 499 | TOKUTXN txn, |
| 500 | bool reserve_memory, |
| 501 | uint64_t reserve_memory_size, |
| 502 | bool compress_intermediates, |
| 503 | bool allow_puts) |
| 504 | // Effect: Allocate and initialize a FTLOADER, but do not create the extractor thread. |
| 505 | { |
| 506 | FTLOADER CALLOC(bl); // initialized to all zeros (hence CALLOC) |
| 507 | if (!bl) return get_error_errno(); |
| 508 | |
| 509 | bl->generate_row_for_put = g; |
| 510 | bl->cachetable = cachetable; |
| 511 | if (reserve_memory && bl->cachetable) { |
| 512 | bl->did_reserve_memory = true; |
| 513 | bl->reserved_memory = toku_cachetable_reserve_memory(bl->cachetable, 2.0/3.0, reserve_memory_size); // allocate 2/3 of the unreserved part (which is 3/4 of the memory to start with). |
| 514 | } |
| 515 | else { |
| 516 | bl->did_reserve_memory = false; |
| 517 | bl->reserved_memory = 512*1024*1024; // if no cache table use 512MB. |
| 518 | } |
| 519 | bl->compress_intermediates = compress_intermediates; |
| 520 | bl->allow_puts = allow_puts; |
| 521 | bl->src_db = src_db; |
| 522 | bl->N = N; |
| 523 | bl->load_lsn = load_lsn; |
| 524 | if (txn) { |
| 525 | bl->load_root_xid = txn->txnid.parent_id64; |
| 526 | } |
| 527 | else { |
| 528 | bl->load_root_xid = TXNID_NONE; |
| 529 | } |
| 530 | |
| 531 | ft_loader_init_error_callback(&bl->error_callback); |
| 532 | ft_loader_init_poll_callback(&bl->poll_callback); |
| 533 | |
| 534 | #define MY_CALLOC_N(n,v) CALLOC_N(n,v); if (!v) { int r = get_error_errno(); toku_ft_loader_internal_destroy(bl, true); return r; } |
| 535 | #define SET_TO_MY_STRDUP(lval, s) do { char *v = toku_strdup(s); if (!v) { int r = get_error_errno(); toku_ft_loader_internal_destroy(bl, true); return r; } lval = v; } while (0) |
| 536 | |
| 537 | MY_CALLOC_N(N, bl->root_xids_that_created); |
| 538 | for (int i=0; i<N; i++) if (fts[i]) bl->root_xids_that_created[i]=fts[i]->ft->h->root_xid_that_created; |
| 539 | MY_CALLOC_N(N, bl->dbs); |
| 540 | for (int i=0; i<N; i++) if (fts[i]) bl->dbs[i]=dbs[i]; |
| 541 | MY_CALLOC_N(N, bl->descriptors); |
| 542 | for (int i=0; i<N; i++) if (fts[i]) bl->descriptors[i]=&fts[i]->ft->descriptor; |
| 543 | MY_CALLOC_N(N, bl->new_fnames_in_env); |
| 544 | for (int i=0; i<N; i++) SET_TO_MY_STRDUP(bl->new_fnames_in_env[i], new_fnames_in_env[i]); |
| 545 | MY_CALLOC_N(N, bl->extracted_datasizes); // the calloc_n zeroed everything, which is what we want |
| 546 | MY_CALLOC_N(N, bl->bt_compare_funs); |
| 547 | for (int i=0; i<N; i++) bl->bt_compare_funs[i] = bt_compare_functions[i]; |
| 548 | |
| 549 | MY_CALLOC_N(N, bl->fractal_queues); |
| 550 | for (int i=0; i<N; i++) bl->fractal_queues[i]=NULL; |
| 551 | MY_CALLOC_N(N, bl->fractal_threads); |
| 552 | MY_CALLOC_N(N, bl->fractal_threads_live); |
| 553 | for (int i=0; i<N; i++) bl->fractal_threads_live[i] = false; |
| 554 | |
| 555 | { |
| 556 | int r = ft_loader_init_file_infos(&bl->file_infos); |
| 557 | if (r!=0) { toku_ft_loader_internal_destroy(bl, true); return r; } |
| 558 | } |
| 559 | |
| 560 | SET_TO_MY_STRDUP(bl->temp_file_template, temp_file_template); |
| 561 | |
| 562 | bl->n_rows = 0; |
| 563 | bl->progress = 0; |
| 564 | bl->progress_callback_result = 0; |
| 565 | |
| 566 | MY_CALLOC_N(N, bl->rows); |
| 567 | MY_CALLOC_N(N, bl->fs); |
| 568 | MY_CALLOC_N(N, bl->last_key); |
| 569 | for(int i=0;i<N;i++) { |
| 570 | { |
| 571 | int r = init_rowset(&bl->rows[i], memory_per_rowset_during_extract(bl)); |
| 572 | if (r!=0) { toku_ft_loader_internal_destroy(bl, true); return r; } |
| 573 | } |
| 574 | init_merge_fileset(&bl->fs[i]); |
| 575 | bl->last_key[i].flags = DB_DBT_REALLOC; // don't really need this, but it's nice to maintain it. We use ulen to keep track of the realloced space. |
| 576 | } |
| 577 | |
| 578 | { |
| 579 | int r = init_rowset(&bl->primary_rowset, memory_per_rowset_during_extract(bl)); |
| 580 | if (r!=0) { toku_ft_loader_internal_destroy(bl, true); return r; } |
| 581 | } |
| 582 | { int r = toku_queue_create(&bl->primary_rowset_queue, EXTRACTOR_QUEUE_DEPTH); |
| 583 | if (r!=0) { toku_ft_loader_internal_destroy(bl, true); return r; } |
| 584 | } |
| 585 | { |
| 586 | ft_loader_lock_init(bl); |
| 587 | } |
| 588 | |
| 589 | *blp = bl; |
| 590 | |
| 591 | return 0; |
| 592 | } |
| 593 | |
| 594 | int toku_ft_loader_open (FTLOADER *blp, /* out */ |
| 595 | CACHETABLE cachetable, |
| 596 | generate_row_for_put_func g, |
| 597 | DB *src_db, |
| 598 | int N, FT_HANDLE fts[/*N*/], DB* dbs[/*N*/], |
| 599 | const char *new_fnames_in_env[/*N*/], |
| 600 | ft_compare_func bt_compare_functions[/*N*/], |
| 601 | const char *temp_file_template, |
| 602 | LSN load_lsn, |
| 603 | TOKUTXN txn, |
| 604 | bool reserve_memory, |
| 605 | uint64_t reserve_memory_size, |
| 606 | bool compress_intermediates, |
| 607 | bool allow_puts) { |
| 608 | // Effect: called by DB_ENV->create_loader to create an ft loader. |
| 609 | // Arguments: |
| 610 | // blp Return a ft loader ("bulk loader") here. |
| 611 | // g The function for generating a row |
| 612 | // src_db The source database. Needed by g. May be NULL if that's ok with g. |
| 613 | // N The number of dbs to create. |
| 614 | // dbs An array of open databases. Used by g. The data will be put in these database. |
| 615 | // new_fnames The file names (these strings are owned by the caller: we make a copy for our own purposes). |
| 616 | // temp_file_template A template suitable for mkstemp() |
| 617 | // reserve_memory Cause the loader to reserve memory for its use from the cache table. |
| 618 | // compress_intermediates Cause the loader to compress intermediate loader files. |
| 619 | // allow_puts Prepare the loader for rows to insert. When puts are disabled, the loader does not run the |
| 620 | // extractor or the fractal tree writer threads. |
| 621 | // Return value: 0 on success, an error number otherwise. |
| 622 | int result = 0; |
| 623 | { |
| 624 | int r = toku_ft_loader_internal_init(blp, cachetable, g, src_db, |
| 625 | N, fts, dbs, |
| 626 | new_fnames_in_env, |
| 627 | bt_compare_functions, |
| 628 | temp_file_template, |
| 629 | load_lsn, |
| 630 | txn, |
| 631 | reserve_memory, |
| 632 | reserve_memory_size, |
| 633 | compress_intermediates, |
| 634 | allow_puts); |
| 635 | if (r!=0) result = r; |
| 636 | } |
| 637 | if (result == 0 && allow_puts) { |
| 638 | FTLOADER bl = *blp; |
| 639 | int r = toku_pthread_create(*extractor_thread_key, |
| 640 | &bl->extractor_thread, |
| 641 | nullptr, |
| 642 | extractor_thread, |
| 643 | static_cast<void *>(bl)); |
| 644 | if (r == 0) { |
| 645 | bl->extractor_live = true; |
| 646 | } else { |
| 647 | result = r; |
| 648 | (void) toku_ft_loader_internal_destroy(bl, true); |
| 649 | } |
| 650 | } |
| 651 | return result; |
| 652 | } |
| 653 | |
| 654 | static void ft_loader_set_panic(FTLOADER bl, int error, bool callback, int which_db, DBT *key, DBT *val) { |
| 655 | DB *db = nullptr; |
| 656 | if (bl && bl->dbs && which_db >= 0 && which_db < bl->N) { |
| 657 | db = bl->dbs[which_db]; |
| 658 | } |
| 659 | int r = ft_loader_set_error(&bl->error_callback, error, db, which_db, key, val); |
| 660 | if (r == 0 && callback) |
| 661 | ft_loader_call_error_function(&bl->error_callback); |
| 662 | } |
| 663 | |
| 664 | // One of the tests uses this. |
| 665 | TOKU_FILE *toku_bl_fidx2file(FTLOADER bl, FIDX i) { |
| 666 | toku_mutex_lock(&bl->file_infos.lock); |
| 667 | invariant(i.idx >= 0 && i.idx < bl->file_infos.n_files); |
| 668 | invariant(bl->file_infos.file_infos[i.idx].is_open); |
| 669 | TOKU_FILE *result = bl->file_infos.file_infos[i.idx].file; |
| 670 | toku_mutex_unlock(&bl->file_infos.lock); |
| 671 | return result; |
| 672 | } |
| 673 | |
| 674 | static int bl_finish_compressed_write(TOKU_FILE *stream, struct wbuf *wb) { |
| 675 | int r = 0; |
| 676 | char *compressed_buf = NULL; |
| 677 | const size_t data_size = wb->ndone; |
| 678 | invariant(data_size > 0); |
| 679 | invariant(data_size <= MAX_UNCOMPRESSED_BUF); |
| 680 | |
| 681 | int n_sub_blocks = 0; |
| 682 | int sub_block_size = 0; |
| 683 | |
| 684 | r = choose_sub_block_size(wb->ndone, max_sub_blocks, &sub_block_size, &n_sub_blocks); |
| 685 | invariant(r==0); |
| 686 | invariant(0 < n_sub_blocks && n_sub_blocks <= max_sub_blocks); |
| 687 | invariant(sub_block_size > 0); |
| 688 | |
| 689 | struct sub_block sub_block[max_sub_blocks]; |
| 690 | // set the initial sub block size for all of the sub blocks |
| 691 | for (int i = 0; i < n_sub_blocks; i++) { |
| 692 | sub_block_init(&sub_block[i]); |
| 693 | } |
| 694 | set_all_sub_block_sizes(data_size, sub_block_size, n_sub_blocks, sub_block); |
| 695 | |
| 696 | size_t compressed_len = get_sum_compressed_size_bound(n_sub_blocks, sub_block, TOKU_DEFAULT_COMPRESSION_METHOD); |
| 697 | const size_t = sub_block_header_size(n_sub_blocks); |
| 698 | const size_t other_overhead = sizeof(uint32_t); //total_size |
| 699 | const size_t = sub_block_header_len + other_overhead; |
| 700 | MALLOC_N(header_len + compressed_len, compressed_buf); |
| 701 | if (compressed_buf == nullptr) { |
| 702 | return ENOMEM; |
| 703 | } |
| 704 | |
| 705 | // compress all of the sub blocks |
| 706 | char *uncompressed_ptr = (char*)wb->buf; |
| 707 | char *compressed_ptr = compressed_buf + header_len; |
| 708 | compressed_len = compress_all_sub_blocks(n_sub_blocks, sub_block, uncompressed_ptr, compressed_ptr, |
| 709 | get_num_cores(), get_ft_pool(), TOKU_DEFAULT_COMPRESSION_METHOD); |
| 710 | |
| 711 | //total_size does NOT include itself |
| 712 | uint32_t total_size = compressed_len + sub_block_header_len; |
| 713 | // serialize the sub block header |
| 714 | uint32_t *ptr = (uint32_t *)(compressed_buf); |
| 715 | *ptr++ = toku_htod32(total_size); |
| 716 | *ptr++ = toku_htod32(n_sub_blocks); |
| 717 | for (int i=0; i<n_sub_blocks; i++) { |
| 718 | ptr[0] = toku_htod32(sub_block[i].compressed_size); |
| 719 | ptr[1] = toku_htod32(sub_block[i].uncompressed_size); |
| 720 | ptr[2] = toku_htod32(sub_block[i].xsum); |
| 721 | ptr += 3; |
| 722 | } |
| 723 | // Mark as written |
| 724 | wb->ndone = 0; |
| 725 | |
| 726 | size_t size_to_write = total_size + 4; // Includes writing total_size |
| 727 | |
| 728 | r = toku_os_fwrite(compressed_buf, 1, size_to_write, stream); |
| 729 | |
| 730 | if (compressed_buf) { |
| 731 | toku_free(compressed_buf); |
| 732 | } |
| 733 | return r; |
| 734 | } |
| 735 | |
| 736 | static int bl_compressed_write(void *ptr, |
| 737 | size_t nbytes, |
| 738 | TOKU_FILE *stream, |
| 739 | struct wbuf *wb) { |
| 740 | invariant(wb->size <= MAX_UNCOMPRESSED_BUF); |
| 741 | size_t bytes_left = nbytes; |
| 742 | char *buf = (char *)ptr; |
| 743 | |
| 744 | while (bytes_left > 0) { |
| 745 | size_t bytes_to_copy = bytes_left; |
| 746 | if (wb->ndone + bytes_to_copy > wb->size) { |
| 747 | bytes_to_copy = wb->size - wb->ndone; |
| 748 | } |
| 749 | wbuf_nocrc_literal_bytes(wb, buf, bytes_to_copy); |
| 750 | if (wb->ndone == wb->size) { |
| 751 | //Compress, write to disk, and empty out wb |
| 752 | int r = bl_finish_compressed_write(stream, wb); |
| 753 | if (r != 0) { |
| 754 | errno = r; |
| 755 | return -1; |
| 756 | } |
| 757 | wb->ndone = 0; |
| 758 | } |
| 759 | bytes_left -= bytes_to_copy; |
| 760 | buf += bytes_to_copy; |
| 761 | } |
| 762 | return 0; |
| 763 | } |
| 764 | |
| 765 | static int bl_fwrite(void *ptr, |
| 766 | size_t size, |
| 767 | size_t nmemb, |
| 768 | TOKU_FILE *stream, |
| 769 | struct wbuf *wb, |
| 770 | FTLOADER bl) |
| 771 | /* Effect: this is a wrapper for fwrite that returns 0 on success, otherwise |
| 772 | * returns an error number. |
| 773 | * Arguments: |
| 774 | * ptr the data to be writen. |
| 775 | * size the amount of data to be written. |
| 776 | * nmemb the number of units of size to be written. |
| 777 | * stream write the data here. |
| 778 | * wb where to write uncompressed data (if we're compressing) or ignore if |
| 779 | * NULL |
| 780 | * bl passed so we can panic the ft_loader if something goes wrong |
| 781 | * (recording the error number). |
| 782 | * Return value: 0 on success, an error number otherwise. |
| 783 | */ |
| 784 | { |
| 785 | if (!bl->compress_intermediates || !wb) { |
| 786 | return toku_os_fwrite(ptr, size, nmemb, stream); |
| 787 | } else { |
| 788 | size_t num_bytes = size * nmemb; |
| 789 | int r = bl_compressed_write(ptr, num_bytes, stream, wb); |
| 790 | if (r != 0) { |
| 791 | return r; |
| 792 | } |
| 793 | } |
| 794 | return 0; |
| 795 | } |
| 796 | |
| 797 | static int bl_fread(void *ptr, size_t size, size_t nmemb, TOKU_FILE *stream) |
| 798 | /* Effect: this is a wrapper for fread that returns 0 on success, otherwise |
| 799 | * returns an error number. |
| 800 | * Arguments: |
| 801 | * ptr read data into here. |
| 802 | * size size of data element to be read. |
| 803 | * nmemb number of data elements to be read. |
| 804 | * stream where to read the data from. |
| 805 | * Return value: 0 on success, an error number otherwise. |
| 806 | */ |
| 807 | { |
| 808 | return toku_os_fread(ptr, size, nmemb, stream); |
| 809 | } |
| 810 | |
| 811 | static int bl_write_dbt(DBT *dbt, |
| 812 | TOKU_FILE *datafile, |
| 813 | uint64_t *dataoff, |
| 814 | struct wbuf *wb, |
| 815 | FTLOADER bl) { |
| 816 | int r; |
| 817 | int dlen = dbt->size; |
| 818 | if ((r=bl_fwrite(&dlen, sizeof(dlen), 1, datafile, wb, bl))) return r; |
| 819 | if ((r=bl_fwrite(dbt->data, 1, dlen, datafile, wb, bl))) return r; |
| 820 | if (dataoff) |
| 821 | *dataoff += dlen + sizeof(dlen); |
| 822 | return 0; |
| 823 | } |
| 824 | |
| 825 | static int bl_read_dbt(/*in*/ DBT *dbt, TOKU_FILE *stream) { |
| 826 | int len; |
| 827 | { |
| 828 | int r; |
| 829 | if ((r = bl_fread(&len, sizeof(len), 1, stream))) return r; |
| 830 | invariant(len>=0); |
| 831 | } |
| 832 | if ((int)dbt->ulen<len) { dbt->ulen=len; dbt->data=toku_xrealloc(dbt->data, len); } |
| 833 | { |
| 834 | int r; |
| 835 | if ((r = bl_fread(dbt->data, 1, len, stream))) return r; |
| 836 | } |
| 837 | dbt->size = len; |
| 838 | return 0; |
| 839 | } |
| 840 | |
| 841 | static int bl_read_dbt_from_dbufio (/*in*/DBT *dbt, DBUFIO_FILESET bfs, int filenum) |
| 842 | { |
| 843 | int result = 0; |
| 844 | uint32_t len; |
| 845 | { |
| 846 | size_t n_read; |
| 847 | int r = dbufio_fileset_read(bfs, filenum, &len, sizeof(len), &n_read); |
| 848 | if (r!=0) { |
| 849 | result = r; |
| 850 | } else if (n_read<sizeof(len)) { |
| 851 | result = TOKUDB_NO_DATA; // must have run out of data prematurely. This is not EOF, it's a real error. |
| 852 | } |
| 853 | } |
| 854 | if (result==0) { |
| 855 | if (dbt->ulen<len) { |
| 856 | void * data = toku_realloc(dbt->data, len); |
| 857 | if (data==NULL) { |
| 858 | result = get_error_errno(); |
| 859 | } else { |
| 860 | dbt->ulen=len; |
| 861 | dbt->data=data; |
| 862 | } |
| 863 | } |
| 864 | } |
| 865 | if (result==0) { |
| 866 | size_t n_read; |
| 867 | int r = dbufio_fileset_read(bfs, filenum, dbt->data, len, &n_read); |
| 868 | if (r!=0) { |
| 869 | result = r; |
| 870 | } else if (n_read<len) { |
| 871 | result = TOKUDB_NO_DATA; // must have run out of data prematurely. This is not EOF, it's a real error. |
| 872 | } else { |
| 873 | dbt->size = len; |
| 874 | } |
| 875 | } |
| 876 | return result; |
| 877 | } |
| 878 | |
| 879 | int loader_write_row(DBT *key, |
| 880 | DBT *val, |
| 881 | FIDX data, |
| 882 | TOKU_FILE *dataf, |
| 883 | uint64_t *dataoff, |
| 884 | struct wbuf *wb, |
| 885 | FTLOADER bl) |
| 886 | /* Effect: Given a key and a val (both DBTs), write them to a file. Increment |
| 887 | * *dataoff so that it's up to date. |
| 888 | * Arguments: |
| 889 | * key, val write these. |
| 890 | * data the file to write them to |
| 891 | * dataoff a pointer to a counter that keeps track of the amount of data |
| 892 | * written so far. |
| 893 | * wb a pointer (possibly NULL) to buffer uncompressed output |
| 894 | * bl the ft_loader (passed so we can panic if needed). |
| 895 | * Return value: 0 on success, an error number otherwise. |
| 896 | */ |
| 897 | { |
| 898 | //int klen = key->size; |
| 899 | //int vlen = val->size; |
| 900 | int r; |
| 901 | // we have a chance to handle the errors because when we close we can delete all the files. |
| 902 | if ((r=bl_write_dbt(key, dataf, dataoff, wb, bl))) return r; |
| 903 | if ((r=bl_write_dbt(val, dataf, dataoff, wb, bl))) return r; |
| 904 | toku_mutex_lock(&bl->file_infos.lock); |
| 905 | bl->file_infos.file_infos[data.idx].n_rows++; |
| 906 | toku_mutex_unlock(&bl->file_infos.lock); |
| 907 | return 0; |
| 908 | } |
| 909 | |
| 910 | int loader_read_row(TOKU_FILE *f, DBT *key, DBT *val) |
| 911 | /* Effect: Read a key value pair from a file. The DBTs must have DB_DBT_REALLOC |
| 912 | * set. |
| 913 | * Arguments: |
| 914 | * f where to read it from. |
| 915 | * key, val read it into these. |
| 916 | * bl passed so we can panic if needed. |
| 917 | * Return value: 0 on success, an error number otherwise. |
| 918 | * Requires: The DBTs must have DB_DBT_REALLOC |
| 919 | */ |
| 920 | { |
| 921 | { |
| 922 | int r = bl_read_dbt(key, f); |
| 923 | if (r!=0) return r; |
| 924 | } |
| 925 | { |
| 926 | int r = bl_read_dbt(val, f); |
| 927 | if (r!=0) return r; |
| 928 | } |
| 929 | return 0; |
| 930 | } |
| 931 | |
| 932 | static int loader_read_row_from_dbufio (DBUFIO_FILESET bfs, int filenum, DBT *key, DBT *val) |
| 933 | /* Effect: Read a key value pair from a file. The DBTs must have DB_DBT_REALLOC set. |
| 934 | * Arguments: |
| 935 | * f where to read it from. |
| 936 | * key, val read it into these. |
| 937 | * bl passed so we can panic if needed. |
| 938 | * Return value: 0 on success, an error number otherwise. |
| 939 | * Requires: The DBTs must have DB_DBT_REALLOC |
| 940 | */ |
| 941 | { |
| 942 | { |
| 943 | int r = bl_read_dbt_from_dbufio(key, bfs, filenum); |
| 944 | if (r!=0) return r; |
| 945 | } |
| 946 | { |
| 947 | int r = bl_read_dbt_from_dbufio(val, bfs, filenum); |
| 948 | if (r!=0) return r; |
| 949 | } |
| 950 | return 0; |
| 951 | } |
| 952 | |
| 953 | |
| 954 | int init_rowset (struct rowset *rows, uint64_t memory_budget) |
| 955 | /* Effect: Initialize a collection of rows to be empty. */ |
| 956 | { |
| 957 | int result = 0; |
| 958 | |
| 959 | rows->memory_budget = memory_budget; |
| 960 | |
| 961 | rows->rows = NULL; |
| 962 | rows->data = NULL; |
| 963 | |
| 964 | rows->n_rows = 0; |
| 965 | rows->n_rows_limit = 100; |
| 966 | MALLOC_N(rows->n_rows_limit, rows->rows); |
| 967 | if (rows->rows == NULL) |
| 968 | result = get_error_errno(); |
| 969 | rows->n_bytes = 0; |
| 970 | rows->n_bytes_limit = (size_factor==1) ? 1024*size_factor*16 : memory_budget; |
| 971 | //printf("%s:%d n_bytes_limit=%ld (size_factor based limit=%d)\n", __FILE__, __LINE__, rows->n_bytes_limit, 1024*size_factor*16); |
| 972 | rows->data = (char *) toku_malloc(rows->n_bytes_limit); |
| 973 | if (rows->rows==NULL || rows->data==NULL) { |
| 974 | if (result == 0) |
| 975 | result = get_error_errno(); |
| 976 | toku_free(rows->rows); |
| 977 | toku_free(rows->data); |
| 978 | rows->rows = NULL; |
| 979 | rows->data = NULL; |
| 980 | } |
| 981 | return result; |
| 982 | } |
| 983 | |
| 984 | static void zero_rowset (struct rowset *rows) { |
| 985 | memset(rows, 0, sizeof(*rows)); |
| 986 | } |
| 987 | |
| 988 | void destroy_rowset (struct rowset *rows) { |
| 989 | if ( rows ) { |
| 990 | toku_free(rows->data); |
| 991 | toku_free(rows->rows); |
| 992 | zero_rowset(rows); |
| 993 | } |
| 994 | } |
| 995 | |
| 996 | static int row_wont_fit (struct rowset *rows, size_t size) |
| 997 | /* Effect: Return nonzero if adding a row of size SIZE would be too big (bigger than the buffer limit) */ |
| 998 | { |
| 999 | // Account for the memory used by the data and also the row structures. |
| 1000 | size_t memory_in_use = (rows->n_rows*sizeof(struct row) |
| 1001 | + rows->n_bytes); |
| 1002 | return (rows->memory_budget < memory_in_use + size); |
| 1003 | } |
| 1004 | |
| 1005 | int add_row (struct rowset *rows, DBT *key, DBT *val) |
| 1006 | /* Effect: add a row to a collection. */ |
| 1007 | { |
| 1008 | int result = 0; |
| 1009 | if (rows->n_rows >= rows->n_rows_limit) { |
| 1010 | struct row *old_rows = rows->rows; |
| 1011 | size_t old_n_rows_limit = rows->n_rows_limit; |
| 1012 | rows->n_rows_limit *= 2; |
| 1013 | REALLOC_N(rows->n_rows_limit, rows->rows); |
| 1014 | if (rows->rows == NULL) { |
| 1015 | result = get_error_errno(); |
| 1016 | rows->rows = old_rows; |
| 1017 | rows->n_rows_limit = old_n_rows_limit; |
| 1018 | return result; |
| 1019 | } |
| 1020 | } |
| 1021 | size_t off = rows->n_bytes; |
| 1022 | size_t next_off = off + key->size + val->size; |
| 1023 | |
| 1024 | struct row newrow; |
| 1025 | memset(&newrow, 0, sizeof newrow); newrow.off = off; newrow.klen = key->size; newrow.vlen = val->size; |
| 1026 | |
| 1027 | rows->rows[rows->n_rows++] = newrow; |
| 1028 | if (next_off > rows->n_bytes_limit) { |
| 1029 | size_t old_n_bytes_limit = rows->n_bytes_limit; |
| 1030 | while (next_off > rows->n_bytes_limit) { |
| 1031 | rows->n_bytes_limit = rows->n_bytes_limit*2; |
| 1032 | } |
| 1033 | invariant(next_off <= rows->n_bytes_limit); |
| 1034 | char *old_data = rows->data; |
| 1035 | REALLOC_N(rows->n_bytes_limit, rows->data); |
| 1036 | if (rows->data == NULL) { |
| 1037 | result = get_error_errno(); |
| 1038 | rows->data = old_data; |
| 1039 | rows->n_bytes_limit = old_n_bytes_limit; |
| 1040 | return result; |
| 1041 | } |
| 1042 | } |
| 1043 | memcpy(rows->data+off, key->data, key->size); |
| 1044 | memcpy(rows->data+off+key->size, val->data, val->size); |
| 1045 | rows->n_bytes = next_off; |
| 1046 | return result; |
| 1047 | } |
| 1048 | |
| 1049 | static int process_primary_rows (FTLOADER bl, struct rowset *primary_rowset); |
| 1050 | |
| 1051 | static int finish_primary_rows_internal (FTLOADER bl) |
| 1052 | // now we have been asked to finish up. |
| 1053 | // Be sure to destroy the rowsets. |
| 1054 | { |
| 1055 | int *MALLOC_N(bl->N, ra); |
| 1056 | if (ra==NULL) return get_error_errno(); |
| 1057 | |
| 1058 | for (int i = 0; i < bl->N; i++) { |
| 1059 | //printf("%s:%d extractor finishing index %d with %ld rows\n", __FILE__, __LINE__, i, rows->n_rows); |
| 1060 | ra[i] = sort_and_write_rows(bl->rows[i], &(bl->fs[i]), bl, i, bl->dbs[i], bl->bt_compare_funs[i]); |
| 1061 | zero_rowset(&bl->rows[i]); |
| 1062 | } |
| 1063 | |
| 1064 | // accept any of the error codes (in this case, the last one). |
| 1065 | int r = 0; |
| 1066 | for (int i = 0; i < bl->N; i++) |
| 1067 | if (ra[i] != 0) |
| 1068 | r = ra[i]; |
| 1069 | |
| 1070 | toku_free(ra); |
| 1071 | return r; |
| 1072 | } |
| 1073 | |
| 1074 | static int finish_primary_rows (FTLOADER bl) { |
| 1075 | return finish_primary_rows_internal (bl); |
| 1076 | } |
| 1077 | |
| 1078 | static void* (void *blv) { |
| 1079 | FTLOADER bl = (FTLOADER)blv; |
| 1080 | int r = 0; |
| 1081 | while (1) { |
| 1082 | void *item = nullptr; |
| 1083 | { |
| 1084 | int rq = toku_queue_deq(bl->primary_rowset_queue, &item, NULL, NULL); |
| 1085 | if (rq==EOF) break; |
| 1086 | invariant(rq==0); // other errors are arbitrarily bad. |
| 1087 | } |
| 1088 | struct rowset *primary_rowset = (struct rowset *)item; |
| 1089 | |
| 1090 | //printf("%s:%d extractor got %ld rows\n", __FILE__, __LINE__, primary_rowset.n_rows); |
| 1091 | |
| 1092 | // Now we have some rows to output |
| 1093 | { |
| 1094 | r = process_primary_rows(bl, primary_rowset); |
| 1095 | if (r) |
| 1096 | ft_loader_set_panic(bl, r, false, 0, nullptr, nullptr); |
| 1097 | } |
| 1098 | } |
| 1099 | |
| 1100 | //printf("%s:%d extractor finishing\n", __FILE__, __LINE__); |
| 1101 | if (r == 0) { |
| 1102 | r = finish_primary_rows(bl); |
| 1103 | if (r) |
| 1104 | ft_loader_set_panic(bl, r, false, 0, nullptr, nullptr); |
| 1105 | } |
| 1106 | toku_instr_delete_current_thread(); |
| 1107 | return nullptr; |
| 1108 | } |
| 1109 | |
| 1110 | static void (FTLOADER bl) { |
| 1111 | //printf("%s:%d enqueing %ld items\n", __FILE__, __LINE__, bl->primary_rowset.n_rows); |
| 1112 | struct rowset *XMALLOC(enqueue_me); |
| 1113 | *enqueue_me = bl->primary_rowset; |
| 1114 | zero_rowset(&bl->primary_rowset); |
| 1115 | int r = toku_queue_enq(bl->primary_rowset_queue, (void*)enqueue_me, 1, NULL); |
| 1116 | resource_assert_zero(r); |
| 1117 | } |
| 1118 | |
| 1119 | static int loader_do_put(FTLOADER bl, |
| 1120 | DBT *pkey, |
| 1121 | DBT *pval) |
| 1122 | { |
| 1123 | int result; |
| 1124 | result = add_row(&bl->primary_rowset, pkey, pval); |
| 1125 | if (result == 0 && row_wont_fit(&bl->primary_rowset, 0)) { |
| 1126 | // queue the rows for further processing by the extractor thread. |
| 1127 | //printf("%s:%d please extract %ld\n", __FILE__, __LINE__, bl->primary_rowset.n_rows); |
| 1128 | enqueue_for_extraction(bl); |
| 1129 | { |
| 1130 | int r = init_rowset(&bl->primary_rowset, memory_per_rowset_during_extract(bl)); |
| 1131 | // bl->primary_rowset will get destroyed by toku_ft_loader_abort |
| 1132 | if (r != 0) |
| 1133 | result = r; |
| 1134 | } |
| 1135 | } |
| 1136 | return result; |
| 1137 | } |
| 1138 | |
| 1139 | static int |
| 1140 | (FTLOADER bl) { |
| 1141 | //printf("%s:%d now finishing extraction\n", __FILE__, __LINE__); |
| 1142 | |
| 1143 | int rval; |
| 1144 | |
| 1145 | if (bl->primary_rowset.n_rows>0) { |
| 1146 | enqueue_for_extraction(bl); |
| 1147 | } else { |
| 1148 | destroy_rowset(&bl->primary_rowset); |
| 1149 | } |
| 1150 | //printf("%s:%d please finish extraction\n", __FILE__, __LINE__); |
| 1151 | { |
| 1152 | int r = toku_queue_eof(bl->primary_rowset_queue); |
| 1153 | invariant(r==0); |
| 1154 | } |
| 1155 | //printf("%s:%d joining\n", __FILE__, __LINE__); |
| 1156 | { |
| 1157 | void *toku_pthread_retval; |
| 1158 | int r = toku_pthread_join(bl->extractor_thread, &toku_pthread_retval); |
| 1159 | resource_assert_zero(r); |
| 1160 | invariant(toku_pthread_retval == NULL); |
| 1161 | bl->extractor_live = false; |
| 1162 | } |
| 1163 | { |
| 1164 | int r = toku_queue_destroy(bl->primary_rowset_queue); |
| 1165 | invariant(r==0); |
| 1166 | bl->primary_rowset_queue = nullptr; |
| 1167 | } |
| 1168 | |
| 1169 | rval = ft_loader_fi_close_all(&bl->file_infos); |
| 1170 | |
| 1171 | //printf("%s:%d joined\n", __FILE__, __LINE__); |
| 1172 | return rval; |
| 1173 | } |
| 1174 | |
| 1175 | static const DBT zero_dbt = {0,0,0,0}; |
| 1176 | |
| 1177 | static DBT make_dbt (void *data, uint32_t size) { |
| 1178 | DBT result = zero_dbt; |
| 1179 | result.data = data; |
| 1180 | result.size = size; |
| 1181 | return result; |
| 1182 | } |
| 1183 | |
| 1184 | #define inc_error_count() error_count++ |
| 1185 | |
| 1186 | static TXNID leafentry_xid(FTLOADER bl, int which_db) { |
| 1187 | TXNID le_xid = TXNID_NONE; |
| 1188 | if (bl->root_xids_that_created && bl->load_root_xid != bl->root_xids_that_created[which_db]) |
| 1189 | le_xid = bl->load_root_xid; |
| 1190 | return le_xid; |
| 1191 | } |
| 1192 | |
| 1193 | size_t ft_loader_leafentry_size(size_t key_size, size_t val_size, TXNID xid) { |
| 1194 | size_t s = 0; |
| 1195 | if (xid == TXNID_NONE) |
| 1196 | s = LE_CLEAN_MEMSIZE(val_size) + key_size + sizeof(uint32_t); |
| 1197 | else |
| 1198 | s = LE_MVCC_COMMITTED_MEMSIZE(val_size) + key_size + sizeof(uint32_t); |
| 1199 | return s; |
| 1200 | } |
| 1201 | |
| 1202 | static int process_primary_rows_internal (FTLOADER bl, struct rowset *primary_rowset) |
| 1203 | // process the rows in primary_rowset, and then destroy the rowset. |
| 1204 | // if FLUSH is true then write all the buffered rows out. |
| 1205 | // if primary_rowset is NULL then treat it as empty. |
| 1206 | { |
| 1207 | int error_count = 0; |
| 1208 | int *XMALLOC_N(bl->N, error_codes); |
| 1209 | |
| 1210 | // If we parallelize the first for loop, dest_keys/dest_vals init&cleanup need to move inside |
| 1211 | DBT_ARRAY dest_keys; |
| 1212 | DBT_ARRAY dest_vals; |
| 1213 | toku_dbt_array_init(&dest_keys, 1); |
| 1214 | toku_dbt_array_init(&dest_vals, 1); |
| 1215 | |
| 1216 | for (int i = 0; i < bl->N; i++) { |
| 1217 | unsigned int klimit,vlimit; // maximum row sizes. |
| 1218 | toku_ft_get_maximum_advised_key_value_lengths(&klimit, &vlimit); |
| 1219 | |
| 1220 | error_codes[i] = 0; |
| 1221 | struct rowset *rows = &(bl->rows[i]); |
| 1222 | struct merge_fileset *fs = &(bl->fs[i]); |
| 1223 | ft_compare_func compare = bl->bt_compare_funs[i]; |
| 1224 | |
| 1225 | // Don't parallelize this loop, or we have to lock access to add_row() which would be a lot of overehad. |
| 1226 | // Also this way we can reuse the DB_DBT_REALLOC'd values inside dest_keys/dest_vals without a race. |
| 1227 | for (size_t prownum=0; prownum<primary_rowset->n_rows; prownum++) { |
| 1228 | if (error_count) break; |
| 1229 | |
| 1230 | struct row *prow = &primary_rowset->rows[prownum]; |
| 1231 | DBT pkey = zero_dbt; |
| 1232 | DBT pval = zero_dbt; |
| 1233 | pkey.data = primary_rowset->data + prow->off; |
| 1234 | pkey.size = prow->klen; |
| 1235 | pval.data = primary_rowset->data + prow->off + prow->klen; |
| 1236 | pval.size = prow->vlen; |
| 1237 | |
| 1238 | |
| 1239 | DBT_ARRAY key_array; |
| 1240 | DBT_ARRAY val_array; |
| 1241 | if (bl->dbs[i] != bl->src_db) { |
| 1242 | int r = bl->generate_row_for_put(bl->dbs[i], bl->src_db, &dest_keys, &dest_vals, &pkey, &pval); |
| 1243 | if (r != 0) { |
| 1244 | error_codes[i] = r; |
| 1245 | inc_error_count(); |
| 1246 | break; |
| 1247 | } |
| 1248 | paranoid_invariant(dest_keys.size <= dest_keys.capacity); |
| 1249 | paranoid_invariant(dest_vals.size <= dest_vals.capacity); |
| 1250 | paranoid_invariant(dest_keys.size == dest_vals.size); |
| 1251 | |
| 1252 | key_array = dest_keys; |
| 1253 | val_array = dest_vals; |
| 1254 | } else { |
| 1255 | key_array.size = key_array.capacity = 1; |
| 1256 | key_array.dbts = &pkey; |
| 1257 | |
| 1258 | val_array.size = val_array.capacity = 1; |
| 1259 | val_array.dbts = &pval; |
| 1260 | } |
| 1261 | for (uint32_t row = 0; row < key_array.size; row++) { |
| 1262 | DBT *dest_key = &key_array.dbts[row]; |
| 1263 | DBT *dest_val = &val_array.dbts[row]; |
| 1264 | if (dest_key->size > klimit) { |
| 1265 | error_codes[i] = EINVAL; |
| 1266 | fprintf(stderr, "Key too big (keysize=%d bytes, limit=%d bytes)\n" , dest_key->size, klimit); |
| 1267 | inc_error_count(); |
| 1268 | break; |
| 1269 | } |
| 1270 | if (dest_val->size > vlimit) { |
| 1271 | error_codes[i] = EINVAL; |
| 1272 | fprintf(stderr, "Row too big (rowsize=%d bytes, limit=%d bytes)\n" , dest_val->size, vlimit); |
| 1273 | inc_error_count(); |
| 1274 | break; |
| 1275 | } |
| 1276 | |
| 1277 | bl->extracted_datasizes[i] += ft_loader_leafentry_size(dest_key->size, dest_val->size, leafentry_xid(bl, i)); |
| 1278 | |
| 1279 | if (row_wont_fit(rows, dest_key->size + dest_val->size)) { |
| 1280 | //printf("%s:%d rows.n_rows=%ld rows.n_bytes=%ld\n", __FILE__, __LINE__, rows->n_rows, rows->n_bytes); |
| 1281 | int r = sort_and_write_rows(*rows, fs, bl, i, bl->dbs[i], compare); // cannot spawn this because of the race on rows. If we were to create a new rows, and if sort_and_write_rows were to destroy the rows it is passed, we could spawn it, however. |
| 1282 | // If we do spawn this, then we must account for the additional storage in the memory_per_rowset() function. |
| 1283 | init_rowset(rows, memory_per_rowset_during_extract(bl)); // we passed the contents of rows to sort_and_write_rows. |
| 1284 | if (r != 0) { |
| 1285 | error_codes[i] = r; |
| 1286 | inc_error_count(); |
| 1287 | break; |
| 1288 | } |
| 1289 | } |
| 1290 | int r = add_row(rows, dest_key, dest_val); |
| 1291 | if (r != 0) { |
| 1292 | error_codes[i] = r; |
| 1293 | inc_error_count(); |
| 1294 | break; |
| 1295 | } |
| 1296 | } |
| 1297 | } |
| 1298 | } |
| 1299 | toku_dbt_array_destroy(&dest_keys); |
| 1300 | toku_dbt_array_destroy(&dest_vals); |
| 1301 | |
| 1302 | destroy_rowset(primary_rowset); |
| 1303 | toku_free(primary_rowset); |
| 1304 | int r = 0; |
| 1305 | if (error_count > 0) { |
| 1306 | for (int i=0; i<bl->N; i++) { |
| 1307 | if (error_codes[i]) { |
| 1308 | r = error_codes[i]; |
| 1309 | ft_loader_set_panic(bl, r, false, i, nullptr, nullptr); |
| 1310 | } |
| 1311 | } |
| 1312 | invariant(r); // found the error |
| 1313 | } |
| 1314 | toku_free(error_codes); |
| 1315 | return r; |
| 1316 | } |
| 1317 | |
| 1318 | static int process_primary_rows (FTLOADER bl, struct rowset *primary_rowset) { |
| 1319 | int r = process_primary_rows_internal (bl, primary_rowset); |
| 1320 | return r; |
| 1321 | } |
| 1322 | |
| 1323 | int toku_ft_loader_put (FTLOADER bl, DBT *key, DBT *val) |
| 1324 | /* Effect: Put a key-value pair into the ft loader. Called by DB_LOADER->put(). |
| 1325 | * Return value: 0 on success, an error number otherwise. |
| 1326 | */ |
| 1327 | { |
| 1328 | if (!bl->allow_puts || ft_loader_get_error(&bl->error_callback)) |
| 1329 | return EINVAL; // previous panic |
| 1330 | bl->n_rows++; |
| 1331 | return loader_do_put(bl, key, val); |
| 1332 | } |
| 1333 | |
| 1334 | void toku_ft_loader_set_n_rows(FTLOADER bl, uint64_t n_rows) { |
| 1335 | bl->n_rows = n_rows; |
| 1336 | } |
| 1337 | |
| 1338 | uint64_t toku_ft_loader_get_n_rows(FTLOADER bl) { |
| 1339 | return bl->n_rows; |
| 1340 | } |
| 1341 | |
| 1342 | int merge_row_arrays_base (struct row dest[/*an+bn*/], struct row a[/*an*/], int an, struct row b[/*bn*/], int bn, |
| 1343 | int which_db, DB *dest_db, ft_compare_func compare, |
| 1344 | |
| 1345 | FTLOADER bl, |
| 1346 | struct rowset *rowset) |
| 1347 | /* Effect: Given two arrays of rows, a and b, merge them using the comparison function, and write them into dest. |
| 1348 | * This function is suitable for use in a mergesort. |
| 1349 | * If a pair of duplicate keys is ever noticed, then call the error_callback function (if it exists), and return DB_KEYEXIST. |
| 1350 | * Arguments: |
| 1351 | * dest write the rows here |
| 1352 | * a,b the rows being merged |
| 1353 | * an,bn the lenth of a and b respectively. |
| 1354 | * dest_db We need the dest_db to run the comparison function. |
| 1355 | * compare We need the compare function for the dest_db. |
| 1356 | */ |
| 1357 | { |
| 1358 | while (an>0 && bn>0) { |
| 1359 | DBT akey; memset(&akey, 0, sizeof akey); akey.data=rowset->data+a->off; akey.size=a->klen; |
| 1360 | DBT bkey; memset(&bkey, 0, sizeof bkey); bkey.data=rowset->data+b->off; bkey.size=b->klen; |
| 1361 | |
| 1362 | int compare_result = compare(dest_db, &akey, &bkey); |
| 1363 | if (compare_result==0) { |
| 1364 | if (bl->error_callback.error_callback) { |
| 1365 | DBT aval; memset(&aval, 0, sizeof aval); aval.data=rowset->data + a->off + a->klen; aval.size = a->vlen; |
| 1366 | ft_loader_set_error(&bl->error_callback, DB_KEYEXIST, dest_db, which_db, &akey, &aval); |
| 1367 | } |
| 1368 | return DB_KEYEXIST; |
| 1369 | } else if (compare_result<0) { |
| 1370 | // a is smaller |
| 1371 | *dest = *a; |
| 1372 | dest++; a++; an--; |
| 1373 | } else { |
| 1374 | *dest = *b; |
| 1375 | dest++; b++; bn--; |
| 1376 | } |
| 1377 | } |
| 1378 | while (an>0) { |
| 1379 | *dest = *a; |
| 1380 | dest++; a++; an--; |
| 1381 | } |
| 1382 | while (bn>0) { |
| 1383 | *dest = *b; |
| 1384 | dest++; b++; bn--; |
| 1385 | } |
| 1386 | return 0; |
| 1387 | } |
| 1388 | |
| 1389 | static int binary_search (int *location, |
| 1390 | const DBT *key, |
| 1391 | struct row a[/*an*/], int an, |
| 1392 | int abefore, |
| 1393 | int which_db, DB *dest_db, ft_compare_func compare, |
| 1394 | FTLOADER bl, |
| 1395 | struct rowset *rowset) |
| 1396 | // Given a sorted array of rows a, and a dbt key, find the first row in a that is > key. |
| 1397 | // If no such row exists, then consider the result to be equal to an. |
| 1398 | // On success store abefore+the index into *location |
| 1399 | // Return 0 on success. |
| 1400 | // Return DB_KEYEXIST if we find a row that is equal to key. |
| 1401 | { |
| 1402 | if (an==0) { |
| 1403 | *location = abefore; |
| 1404 | return 0; |
| 1405 | } else { |
| 1406 | int a2 = an/2; |
| 1407 | DBT akey = make_dbt(rowset->data+a[a2].off, a[a2].klen); |
| 1408 | int compare_result = compare(dest_db, key, &akey); |
| 1409 | if (compare_result==0) { |
| 1410 | if (bl->error_callback.error_callback) { |
| 1411 | DBT aval = make_dbt(rowset->data + a[a2].off + a[a2].klen, a[a2].vlen); |
| 1412 | ft_loader_set_error(&bl->error_callback, DB_KEYEXIST, dest_db, which_db, &akey, &aval); |
| 1413 | } |
| 1414 | return DB_KEYEXIST; |
| 1415 | } else if (compare_result<0) { |
| 1416 | // key is before a2 |
| 1417 | if (an==1) { |
| 1418 | *location = abefore; |
| 1419 | return 0; |
| 1420 | } else { |
| 1421 | return binary_search(location, key, |
| 1422 | a, a2, |
| 1423 | abefore, |
| 1424 | which_db, dest_db, compare, bl, rowset); |
| 1425 | } |
| 1426 | } else { |
| 1427 | // key is after a2 |
| 1428 | if (an==1) { |
| 1429 | *location = abefore + 1; |
| 1430 | return 0; |
| 1431 | } else { |
| 1432 | return binary_search(location, key, |
| 1433 | a+a2, an-a2, |
| 1434 | abefore+a2, |
| 1435 | which_db, dest_db, compare, bl, rowset); |
| 1436 | } |
| 1437 | } |
| 1438 | } |
| 1439 | } |
| 1440 | |
| 1441 | |
| 1442 | #define SWAP(typ,x,y) { typ tmp = x; x=y; y=tmp; } |
| 1443 | |
| 1444 | static int merge_row_arrays (struct row dest[/*an+bn*/], struct row a[/*an*/], int an, struct row b[/*bn*/], int bn, |
| 1445 | int which_db, DB *dest_db, ft_compare_func compare, |
| 1446 | FTLOADER bl, |
| 1447 | struct rowset *rowset) |
| 1448 | /* Effect: Given two sorted arrays of rows, a and b, merge them using the comparison function, and write them into dest. |
| 1449 | * Arguments: |
| 1450 | * dest write the rows here |
| 1451 | * a,b the rows being merged |
| 1452 | * an,bn the lenth of a and b respectively. |
| 1453 | * dest_db We need the dest_db to run the comparison function. |
| 1454 | * compare We need the compare function for the dest_db. |
| 1455 | */ |
| 1456 | { |
| 1457 | if (an + bn < 10000) { |
| 1458 | return merge_row_arrays_base(dest, a, an, b, bn, which_db, dest_db, compare, bl, rowset); |
| 1459 | } |
| 1460 | if (an < bn) { |
| 1461 | SWAP(struct row *,a, b) |
| 1462 | SWAP(int ,an,bn) |
| 1463 | } |
| 1464 | // an >= bn |
| 1465 | int a2 = an/2; |
| 1466 | DBT akey = make_dbt(rowset->data+a[a2].off, a[a2].klen); |
| 1467 | int b2 = 0; // initialize to zero so we can add the answer in. |
| 1468 | { |
| 1469 | int r = binary_search(&b2, &akey, b, bn, 0, which_db, dest_db, compare, bl, rowset); |
| 1470 | if (r!=0) return r; // for example if we found a duplicate, called the error_callback, and now we return an error code. |
| 1471 | } |
| 1472 | int ra, rb; |
| 1473 | ra = merge_row_arrays(dest, a, a2, b, b2, which_db, dest_db, compare, bl, rowset); |
| 1474 | rb = merge_row_arrays(dest+a2+b2, a+a2, an-a2, b+b2, bn-b2, which_db, dest_db, compare, bl, rowset); |
| 1475 | if (ra!=0) return ra; |
| 1476 | else return rb; |
| 1477 | } |
| 1478 | |
| 1479 | int mergesort_row_array (struct row rows[/*n*/], int n, int which_db, DB *dest_db, ft_compare_func compare, FTLOADER bl, struct rowset *rowset) |
| 1480 | /* Sort an array of rows (using mergesort). |
| 1481 | * Arguments: |
| 1482 | * rows sort this array of rows. |
| 1483 | * n the length of the array. |
| 1484 | * dest_db used by the comparison function. |
| 1485 | * compare the compare function |
| 1486 | */ |
| 1487 | { |
| 1488 | if (n<=1) return 0; // base case is sorted |
| 1489 | int mid = n/2; |
| 1490 | int r1, r2; |
| 1491 | r1 = mergesort_row_array (rows, mid, which_db, dest_db, compare, bl, rowset); |
| 1492 | |
| 1493 | // Don't spawn this one explicitly |
| 1494 | r2 = mergesort_row_array (rows+mid, n-mid, which_db, dest_db, compare, bl, rowset); |
| 1495 | |
| 1496 | if (r1!=0) return r1; |
| 1497 | if (r2!=0) return r2; |
| 1498 | |
| 1499 | struct row *MALLOC_N(n, tmp); |
| 1500 | if (tmp == NULL) return get_error_errno(); |
| 1501 | { |
| 1502 | int r = merge_row_arrays(tmp, rows, mid, rows+mid, n-mid, which_db, dest_db, compare, bl, rowset); |
| 1503 | if (r!=0) { |
| 1504 | toku_free(tmp); |
| 1505 | return r; |
| 1506 | } |
| 1507 | } |
| 1508 | memcpy(rows, tmp, sizeof(*tmp)*n); |
| 1509 | toku_free(tmp); |
| 1510 | return 0; |
| 1511 | } |
| 1512 | |
| 1513 | // C function for testing mergesort_row_array |
| 1514 | int ft_loader_mergesort_row_array (struct row rows[/*n*/], int n, int which_db, DB *dest_db, ft_compare_func compare, FTLOADER bl, struct rowset *rowset) { |
| 1515 | return mergesort_row_array (rows, n, which_db, dest_db, compare, bl, rowset); |
| 1516 | } |
| 1517 | |
| 1518 | static int sort_rows (struct rowset *rows, int which_db, DB *dest_db, ft_compare_func compare, |
| 1519 | FTLOADER bl) |
| 1520 | /* Effect: Sort a collection of rows. |
| 1521 | * If any duplicates are found, then call the error_callback function and return non zero. |
| 1522 | * Otherwise return 0. |
| 1523 | * Arguments: |
| 1524 | * rowset the */ |
| 1525 | { |
| 1526 | return mergesort_row_array(rows->rows, rows->n_rows, which_db, dest_db, compare, bl, rows); |
| 1527 | } |
| 1528 | |
| 1529 | /* filesets Maintain a collection of files. Typically these files are each individually sorted, and we will merge them. |
| 1530 | * These files have two parts, one is for the data rows, and the other is a collection of offsets so we an more easily parallelize the manipulation (e.g., by allowing us to find the offset of the ith row quickly). */ |
| 1531 | |
| 1532 | void init_merge_fileset (struct merge_fileset *fs) |
| 1533 | /* Effect: Initialize a fileset */ |
| 1534 | { |
| 1535 | fs->have_sorted_output = false; |
| 1536 | fs->sorted_output = FIDX_NULL; |
| 1537 | fs->prev_key = zero_dbt; |
| 1538 | fs->prev_key.flags = DB_DBT_REALLOC; |
| 1539 | |
| 1540 | fs->n_temp_files = 0; |
| 1541 | fs->n_temp_files_limit = 0; |
| 1542 | fs->data_fidxs = NULL; |
| 1543 | } |
| 1544 | |
| 1545 | void destroy_merge_fileset (struct merge_fileset *fs) |
| 1546 | /* Effect: Destroy a fileset. */ |
| 1547 | { |
| 1548 | if ( fs ) { |
| 1549 | toku_destroy_dbt(&fs->prev_key); |
| 1550 | fs->n_temp_files = 0; |
| 1551 | fs->n_temp_files_limit = 0; |
| 1552 | toku_free(fs->data_fidxs); |
| 1553 | fs->data_fidxs = NULL; |
| 1554 | } |
| 1555 | } |
| 1556 | |
| 1557 | |
| 1558 | static int extend_fileset (FTLOADER bl, struct merge_fileset *fs, FIDX*ffile) |
| 1559 | /* Effect: Add two files (one for data and one for idx) to the fileset. |
| 1560 | * Arguments: |
| 1561 | * bl the ft_loader (needed to panic if anything goes wrong, and also to get the temp_file_template. |
| 1562 | * fs the fileset |
| 1563 | * ffile the data file (which will be open) |
| 1564 | * fidx the index file (which will be open) |
| 1565 | */ |
| 1566 | { |
| 1567 | FIDX sfile; |
| 1568 | int r; |
| 1569 | r = ft_loader_open_temp_file(bl, &sfile); if (r!=0) return r; |
| 1570 | |
| 1571 | if (fs->n_temp_files+1 > fs->n_temp_files_limit) { |
| 1572 | fs->n_temp_files_limit = (fs->n_temp_files+1)*2; |
| 1573 | XREALLOC_N(fs->n_temp_files_limit, fs->data_fidxs); |
| 1574 | } |
| 1575 | fs->data_fidxs[fs->n_temp_files] = sfile; |
| 1576 | fs->n_temp_files++; |
| 1577 | |
| 1578 | *ffile = sfile; |
| 1579 | return 0; |
| 1580 | } |
| 1581 | |
| 1582 | // RFP maybe this should be buried in the ft_loader struct |
| 1583 | static toku_mutex_t update_progress_lock = TOKU_MUTEX_INITIALIZER; |
| 1584 | |
| 1585 | static int update_progress (int N, |
| 1586 | FTLOADER bl, |
| 1587 | const char *UU(message)) |
| 1588 | { |
| 1589 | // Must protect the increment and the call to the poll_function. |
| 1590 | toku_mutex_lock(&update_progress_lock); |
| 1591 | bl->progress+=N; |
| 1592 | |
| 1593 | int result; |
| 1594 | if (bl->progress_callback_result == 0) { |
| 1595 | //printf(" %20s: %d ", message, bl->progress); |
| 1596 | result = ft_loader_call_poll_function(&bl->poll_callback, (float)bl->progress/(float)PROGRESS_MAX); |
| 1597 | if (result!=0) { |
| 1598 | bl->progress_callback_result = result; |
| 1599 | } |
| 1600 | } else { |
| 1601 | result = bl->progress_callback_result; |
| 1602 | } |
| 1603 | toku_mutex_unlock(&update_progress_lock); |
| 1604 | return result; |
| 1605 | } |
| 1606 | |
| 1607 | |
| 1608 | static int write_rowset_to_file (FTLOADER bl, FIDX sfile, const struct rowset rows) { |
| 1609 | int r = 0; |
| 1610 | // Allocate a buffer if we're compressing intermediates. |
| 1611 | char *uncompressed_buffer = nullptr; |
| 1612 | if (bl->compress_intermediates) { |
| 1613 | MALLOC_N(MAX_UNCOMPRESSED_BUF, uncompressed_buffer); |
| 1614 | if (uncompressed_buffer == nullptr) { |
| 1615 | return ENOMEM; |
| 1616 | } |
| 1617 | } |
| 1618 | struct wbuf wb; |
| 1619 | wbuf_init(&wb, uncompressed_buffer, MAX_UNCOMPRESSED_BUF); |
| 1620 | |
| 1621 | TOKU_FILE *sstream = toku_bl_fidx2file(bl, sfile); |
| 1622 | for (size_t i = 0; i < rows.n_rows; i++) { |
| 1623 | DBT skey = make_dbt(rows.data + rows.rows[i].off, rows.rows[i].klen); |
| 1624 | DBT sval = make_dbt(rows.data + rows.rows[i].off + rows.rows[i].klen, |
| 1625 | rows.rows[i].vlen); |
| 1626 | |
| 1627 | uint64_t soffset=0; // don't really need this. |
| 1628 | r = loader_write_row(&skey, &sval, sfile, sstream, &soffset, &wb, bl); |
| 1629 | if (r != 0) { |
| 1630 | goto exit; |
| 1631 | } |
| 1632 | } |
| 1633 | |
| 1634 | if (bl->compress_intermediates && wb.ndone > 0) { |
| 1635 | r = bl_finish_compressed_write(sstream, &wb); |
| 1636 | if (r != 0) { |
| 1637 | goto exit; |
| 1638 | } |
| 1639 | } |
| 1640 | r = 0; |
| 1641 | exit: |
| 1642 | if (uncompressed_buffer) { |
| 1643 | toku_free(uncompressed_buffer); |
| 1644 | } |
| 1645 | return r; |
| 1646 | } |
| 1647 | |
| 1648 | |
| 1649 | int sort_and_write_rows (struct rowset rows, struct merge_fileset *fs, FTLOADER bl, int which_db, DB *dest_db, ft_compare_func compare) |
| 1650 | /* Effect: Given a rowset, sort it and write it to a temporary file. |
| 1651 | * Note: The loader maintains for each index the most recently written-to file, as well as the DBT for the last key written into that file. |
| 1652 | * If this rowset is sorted and all greater than that dbt, then we append to the file (skipping the sort, and reducing the number of temporary files). |
| 1653 | * Arguments: |
| 1654 | * rows the rowset |
| 1655 | * fs the fileset into which the sorted data will be added |
| 1656 | * bl the ft_loader |
| 1657 | * dest_db the DB, needed for the comparison function. |
| 1658 | * compare The comparison function. |
| 1659 | * Returns 0 on success, otherwise an error number. |
| 1660 | * Destroy the rowset after finishing it. |
| 1661 | * Note: There is no sense in trying to calculate progress by this function since it's done concurrently with the loader->put operation. |
| 1662 | * Note first time called: invariant: fs->have_sorted_output == false |
| 1663 | */ |
| 1664 | { |
| 1665 | //printf(" sort_and_write use %d progress=%d fin at %d\n", progress_allocation, bl->progress, bl->progress+progress_allocation); |
| 1666 | |
| 1667 | // TODO: erase the files, and deal with all the cleanup on error paths |
| 1668 | //printf("%s:%d sort_rows n_rows=%ld\n", __FILE__, __LINE__, rows->n_rows); |
| 1669 | //bl_time_t before_sort = bl_time_now(); |
| 1670 | |
| 1671 | int result; |
| 1672 | if (rows.n_rows == 0) { |
| 1673 | result = 0; |
| 1674 | } else { |
| 1675 | result = sort_rows(&rows, which_db, dest_db, compare, bl); |
| 1676 | |
| 1677 | //bl_time_t after_sort = bl_time_now(); |
| 1678 | |
| 1679 | if (result == 0) { |
| 1680 | DBT min_rowset_key = make_dbt(rows.data+rows.rows[0].off, rows.rows[0].klen); |
| 1681 | if (fs->have_sorted_output && compare(dest_db, &fs->prev_key, &min_rowset_key) < 0) { |
| 1682 | // write everything to the same output if the max key in the temp file (prev_key) is < min of the sorted rowset |
| 1683 | result = write_rowset_to_file(bl, fs->sorted_output, rows); |
| 1684 | if (result == 0) { |
| 1685 | // set the max key in the temp file to the max key in the sorted rowset |
| 1686 | result = toku_dbt_set(rows.rows[rows.n_rows-1].klen, rows.data + rows.rows[rows.n_rows-1].off, &fs->prev_key, NULL); |
| 1687 | } |
| 1688 | } else { |
| 1689 | // write the sorted rowset into a new temp file |
| 1690 | if (fs->have_sorted_output) { |
| 1691 | fs->have_sorted_output = false; |
| 1692 | result = ft_loader_fi_close(&bl->file_infos, fs->sorted_output, true); |
| 1693 | } |
| 1694 | if (result == 0) { |
| 1695 | FIDX sfile = FIDX_NULL; |
| 1696 | result = extend_fileset(bl, fs, &sfile); |
| 1697 | if (result == 0) { |
| 1698 | result = write_rowset_to_file(bl, sfile, rows); |
| 1699 | if (result == 0) { |
| 1700 | fs->have_sorted_output = true; fs->sorted_output = sfile; |
| 1701 | // set the max key in the temp file to the max key in the sorted rowset |
| 1702 | result = toku_dbt_set(rows.rows[rows.n_rows-1].klen, rows.data + rows.rows[rows.n_rows-1].off, &fs->prev_key, NULL); |
| 1703 | } |
| 1704 | } |
| 1705 | } |
| 1706 | // Note: if result == 0 then invariant fs->have_sorted_output == true |
| 1707 | } |
| 1708 | } |
| 1709 | } |
| 1710 | |
| 1711 | destroy_rowset(&rows); |
| 1712 | |
| 1713 | //bl_time_t after_write = bl_time_now(); |
| 1714 | |
| 1715 | return result; |
| 1716 | } |
| 1717 | |
| 1718 | // C function for testing sort_and_write_rows |
| 1719 | int ft_loader_sort_and_write_rows (struct rowset *rows, struct merge_fileset *fs, FTLOADER bl, int which_db, DB *dest_db, ft_compare_func compare) { |
| 1720 | return sort_and_write_rows (*rows, fs, bl, which_db, dest_db, compare); |
| 1721 | } |
| 1722 | |
| 1723 | int toku_merge_some_files_using_dbufio(const bool to_q, |
| 1724 | FIDX dest_data, |
| 1725 | QUEUE q, |
| 1726 | int n_sources, |
| 1727 | DBUFIO_FILESET bfs, |
| 1728 | FIDX srcs_fidxs[/*n_sources*/], |
| 1729 | FTLOADER bl, |
| 1730 | int which_db, |
| 1731 | DB *dest_db, |
| 1732 | ft_compare_func compare, |
| 1733 | int progress_allocation) |
| 1734 | /* Effect: Given an array of FILE*'s each containing sorted, merge the data and |
| 1735 | * write it to an output. All the files remain open after the merge. |
| 1736 | * This merge is performed in one pass, so don't pass too many files in. If |
| 1737 | * you need a tree of merges do it elsewhere. |
| 1738 | * If TO_Q is true then we write rowsets into queue Q. Otherwise we write |
| 1739 | * into dest_data. |
| 1740 | * Modifies: May modify the arrays of files (but if modified, it must be a |
| 1741 | * permutation so the caller can use that array to close everything.) |
| 1742 | * Requires: The number of sources is at least one, and each of the input files |
| 1743 | * must have at least one row in it. |
| 1744 | * Arguments: |
| 1745 | * to_q boolean indicating that output is queue (true) or a file |
| 1746 | * (false) |
| 1747 | * dest_data where to write the sorted data |
| 1748 | * q where to write the sorted data |
| 1749 | * n_sources how many source files. |
| 1750 | * srcs_data the array of source data files. |
| 1751 | * bl the ft_loader. |
| 1752 | * dest_db the destination DB (used in the comparison function). |
| 1753 | * Return value: 0 on success, otherwise an error number. |
| 1754 | * The fidxs are not closed by this function. |
| 1755 | */ |
| 1756 | { |
| 1757 | int result = 0; |
| 1758 | |
| 1759 | TOKU_FILE *dest_stream = to_q ? nullptr : toku_bl_fidx2file(bl, dest_data); |
| 1760 | |
| 1761 | // printf(" merge_some_files progress=%d fin at %d\n", bl->progress, |
| 1762 | // bl->progress+progress_allocation); |
| 1763 | DBT keys[n_sources]; |
| 1764 | DBT vals[n_sources]; |
| 1765 | uint64_t dataoff[n_sources]; |
| 1766 | DBT zero = zero_dbt; zero.flags=DB_DBT_REALLOC; |
| 1767 | |
| 1768 | for (int i=0; i<n_sources; i++) { |
| 1769 | keys[i] = vals[i] = zero; // fill these all in with zero so we can delete stuff more reliably. |
| 1770 | } |
| 1771 | |
| 1772 | pqueue_t *pq = NULL; |
| 1773 | pqueue_node_t *MALLOC_N(n_sources, pq_nodes); // freed in cleanup |
| 1774 | if (pq_nodes == NULL) { result = get_error_errno(); } |
| 1775 | |
| 1776 | if (result==0) { |
| 1777 | int r = pqueue_init(&pq, n_sources, which_db, dest_db, compare, &bl->error_callback); |
| 1778 | if (r!=0) result = r; |
| 1779 | } |
| 1780 | |
| 1781 | uint64_t n_rows = 0; |
| 1782 | if (result==0) { |
| 1783 | // load pqueue with first value from each source |
| 1784 | for (int i=0; i<n_sources; i++) { |
| 1785 | int r = loader_read_row_from_dbufio(bfs, i, &keys[i], &vals[i]); |
| 1786 | if (r==EOF) continue; // if the file is empty, don't initialize the pqueue. |
| 1787 | if (r!=0) { |
| 1788 | result = r; |
| 1789 | break; |
| 1790 | } |
| 1791 | |
| 1792 | pq_nodes[i].key = &keys[i]; |
| 1793 | pq_nodes[i].val = &vals[i]; |
| 1794 | pq_nodes[i].i = i; |
| 1795 | r = pqueue_insert(pq, &pq_nodes[i]); |
| 1796 | if (r!=0) { |
| 1797 | result = r; |
| 1798 | // path tested by loader-dup-test5.tdbrun |
| 1799 | // printf("%s:%d returning\n", __FILE__, __LINE__); |
| 1800 | break; |
| 1801 | } |
| 1802 | |
| 1803 | dataoff[i] = 0; |
| 1804 | toku_mutex_lock(&bl->file_infos.lock); |
| 1805 | n_rows += bl->file_infos.file_infos[srcs_fidxs[i].idx].n_rows; |
| 1806 | toku_mutex_unlock(&bl->file_infos.lock); |
| 1807 | } |
| 1808 | } |
| 1809 | uint64_t n_rows_done = 0; |
| 1810 | |
| 1811 | struct rowset *output_rowset = NULL; |
| 1812 | if (result==0 && to_q) { |
| 1813 | XMALLOC(output_rowset); // freed in cleanup |
| 1814 | int r = init_rowset(output_rowset, memory_per_rowset_during_merge(bl, n_sources, to_q)); |
| 1815 | if (r!=0) result = r; |
| 1816 | } |
| 1817 | |
| 1818 | // Allocate a buffer if we're compressing intermediates. |
| 1819 | char *uncompressed_buffer = nullptr; |
| 1820 | struct wbuf wb; |
| 1821 | if (bl->compress_intermediates && !to_q) { |
| 1822 | MALLOC_N(MAX_UNCOMPRESSED_BUF, uncompressed_buffer); |
| 1823 | if (uncompressed_buffer == nullptr) { |
| 1824 | result = ENOMEM; |
| 1825 | } |
| 1826 | } |
| 1827 | wbuf_init(&wb, uncompressed_buffer, MAX_UNCOMPRESSED_BUF); |
| 1828 | |
| 1829 | //printf(" n_rows=%ld\n", n_rows); |
| 1830 | while (result==0 && pqueue_size(pq)>0) { |
| 1831 | int mini; |
| 1832 | { |
| 1833 | // get the minimum |
| 1834 | pqueue_node_t *node; |
| 1835 | int r = pqueue_pop(pq, &node); |
| 1836 | if (r!=0) { |
| 1837 | result = r; |
| 1838 | invariant(0); |
| 1839 | break; |
| 1840 | } |
| 1841 | mini = node->i; |
| 1842 | } |
| 1843 | if (to_q) { |
| 1844 | if (row_wont_fit(output_rowset, keys[mini].size + vals[mini].size)) { |
| 1845 | { |
| 1846 | int r = toku_queue_enq(q, (void*)output_rowset, 1, NULL); |
| 1847 | if (r!=0) { |
| 1848 | result = r; |
| 1849 | break; |
| 1850 | } |
| 1851 | } |
| 1852 | XMALLOC(output_rowset); // freed in cleanup |
| 1853 | { |
| 1854 | int r = init_rowset(output_rowset, memory_per_rowset_during_merge(bl, n_sources, to_q)); |
| 1855 | if (r!=0) { |
| 1856 | result = r; |
| 1857 | break; |
| 1858 | } |
| 1859 | } |
| 1860 | } |
| 1861 | { |
| 1862 | int r = add_row(output_rowset, &keys[mini], &vals[mini]); |
| 1863 | if (r!=0) { |
| 1864 | result = r; |
| 1865 | break; |
| 1866 | } |
| 1867 | } |
| 1868 | } else { |
| 1869 | // write it to the dest file |
| 1870 | int r = loader_write_row(&keys[mini], &vals[mini], dest_data, dest_stream, &dataoff[mini], &wb, bl); |
| 1871 | if (r!=0) { |
| 1872 | result = r; |
| 1873 | break; |
| 1874 | } |
| 1875 | } |
| 1876 | |
| 1877 | { |
| 1878 | // read next row from file that just sourced min value |
| 1879 | int r = loader_read_row_from_dbufio(bfs, mini, &keys[mini], &vals[mini]); |
| 1880 | if (r!=0) { |
| 1881 | if (r==EOF) { |
| 1882 | // on feof, queue size permanently smaller |
| 1883 | toku_free(keys[mini].data); keys[mini].data = NULL; |
| 1884 | toku_free(vals[mini].data); vals[mini].data = NULL; |
| 1885 | } else { |
| 1886 | fprintf(stderr, "%s:%d r=%d errno=%d bfs=%p mini=%d\n" , __FILE__, __LINE__, r, get_maybe_error_errno(), bfs, mini); |
| 1887 | dbufio_print(bfs); |
| 1888 | result = r; |
| 1889 | break; |
| 1890 | } |
| 1891 | } else { |
| 1892 | // insert value into queue (re-populate queue) |
| 1893 | pq_nodes[mini].key = &keys[mini]; |
| 1894 | r = pqueue_insert(pq, &pq_nodes[mini]); |
| 1895 | if (r!=0) { |
| 1896 | // Note: This error path tested by loader-dup-test1.tdbrun (and by loader-dup-test4) |
| 1897 | result = r; |
| 1898 | // printf("%s:%d returning\n", __FILE__, __LINE__); |
| 1899 | break; |
| 1900 | } |
| 1901 | } |
| 1902 | } |
| 1903 | |
| 1904 | n_rows_done++; |
| 1905 | const uint64_t rows_per_report = size_factor*1024; |
| 1906 | if (n_rows_done%rows_per_report==0) { |
| 1907 | // need to update the progress. |
| 1908 | double fraction_of_remaining_we_just_did = (double)rows_per_report / (double)(n_rows - n_rows_done + rows_per_report); |
| 1909 | invariant(0<= fraction_of_remaining_we_just_did && fraction_of_remaining_we_just_did<=1); |
| 1910 | int progress_just_done = fraction_of_remaining_we_just_did * progress_allocation; |
| 1911 | progress_allocation -= progress_just_done; |
| 1912 | // ignore the result from update_progress here, we'll call update_progress again below, which will give us the nonzero result. |
| 1913 | int r = update_progress(progress_just_done, bl, "in file merge" ); |
| 1914 | if (0) printf("%s:%d Progress=%d\n" , __FILE__, __LINE__, r); |
| 1915 | } |
| 1916 | } |
| 1917 | if (result == 0 && uncompressed_buffer != nullptr && wb.ndone > 0) { |
| 1918 | result = bl_finish_compressed_write(dest_stream, &wb); |
| 1919 | } |
| 1920 | |
| 1921 | if (result==0 && to_q) { |
| 1922 | int r = toku_queue_enq(q, (void*)output_rowset, 1, NULL); |
| 1923 | if (r!=0) |
| 1924 | result = r; |
| 1925 | else |
| 1926 | output_rowset = NULL; |
| 1927 | } |
| 1928 | |
| 1929 | // cleanup |
| 1930 | if (uncompressed_buffer) { |
| 1931 | toku_free(uncompressed_buffer); |
| 1932 | } |
| 1933 | for (int i=0; i<n_sources; i++) { |
| 1934 | toku_free(keys[i].data); keys[i].data = NULL; |
| 1935 | toku_free(vals[i].data); vals[i].data = NULL; |
| 1936 | } |
| 1937 | if (output_rowset) { |
| 1938 | destroy_rowset(output_rowset); |
| 1939 | toku_free(output_rowset); |
| 1940 | } |
| 1941 | if (pq) { pqueue_free(pq); pq=NULL; } |
| 1942 | toku_free(pq_nodes); |
| 1943 | { |
| 1944 | int r = update_progress(progress_allocation, bl, "end of merge_some_files" ); |
| 1945 | //printf("%s:%d Progress=%d\n", __FILE__, __LINE__, r); |
| 1946 | if (r!=0 && result==0) result = r; |
| 1947 | } |
| 1948 | return result; |
| 1949 | } |
| 1950 | |
| 1951 | static int merge_some_files (const bool to_q, FIDX dest_data, QUEUE q, int n_sources, FIDX srcs_fidxs[/*n_sources*/], FTLOADER bl, int which_db, DB *dest_db, ft_compare_func compare, int progress_allocation) |
| 1952 | { |
| 1953 | int result = 0; |
| 1954 | DBUFIO_FILESET bfs = NULL; |
| 1955 | int *MALLOC_N(n_sources, fds); |
| 1956 | if (fds == NULL) |
| 1957 | result = get_error_errno(); |
| 1958 | if (result == 0) { |
| 1959 | for (int i = 0; i < n_sources; i++) { |
| 1960 | int r = fileno( |
| 1961 | toku_bl_fidx2file(bl, srcs_fidxs[i])->file); // we rely on the |
| 1962 | // fact that when |
| 1963 | // the files are |
| 1964 | // closed, the fd |
| 1965 | // is also closed. |
| 1966 | if (r == -1) { |
| 1967 | result = get_error_errno(); |
| 1968 | break; |
| 1969 | } |
| 1970 | fds[i] = r; |
| 1971 | } |
| 1972 | } |
| 1973 | if (result==0) { |
| 1974 | int r = create_dbufio_fileset(&bfs, n_sources, fds, |
| 1975 | memory_per_rowset_during_merge(bl, n_sources, to_q), bl->compress_intermediates); |
| 1976 | if (r!=0) { result = r; } |
| 1977 | } |
| 1978 | |
| 1979 | if (result==0) { |
| 1980 | int r = toku_merge_some_files_using_dbufio (to_q, dest_data, q, n_sources, bfs, srcs_fidxs, bl, which_db, dest_db, compare, progress_allocation); |
| 1981 | if (r!=0) { result = r; } |
| 1982 | } |
| 1983 | |
| 1984 | if (bfs!=NULL) { |
| 1985 | if (result != 0) |
| 1986 | (void) panic_dbufio_fileset(bfs, result); |
| 1987 | int r = destroy_dbufio_fileset(bfs); |
| 1988 | if (r!=0 && result==0) result=r; |
| 1989 | bfs = NULL; |
| 1990 | } |
| 1991 | if (fds!=NULL) { |
| 1992 | toku_free(fds); |
| 1993 | fds = NULL; |
| 1994 | } |
| 1995 | return result; |
| 1996 | } |
| 1997 | |
| 1998 | static int int_min (int a, int b) |
| 1999 | { |
| 2000 | if (a<b) return a; |
| 2001 | else return b; |
| 2002 | } |
| 2003 | |
| 2004 | static int n_passes (int N, int B) { |
| 2005 | int result = 0; |
| 2006 | while (N>1) { |
| 2007 | N = (N+B-1)/B; |
| 2008 | result++; |
| 2009 | } |
| 2010 | return result; |
| 2011 | } |
| 2012 | |
| 2013 | int merge_files (struct merge_fileset *fs, |
| 2014 | FTLOADER bl, |
| 2015 | // These are needed for the comparison function and error callback. |
| 2016 | int which_db, DB *dest_db, ft_compare_func compare, |
| 2017 | int progress_allocation, |
| 2018 | // Write rowsets into this queue. |
| 2019 | QUEUE output_q |
| 2020 | ) |
| 2021 | /* Effect: Given a fileset, merge all the files writing all the answers into a queue. |
| 2022 | * All the files in fs, and any temporary files will be closed and unlinked (and the fileset will be empty) |
| 2023 | * Return value: 0 on success, otherwise an error number. |
| 2024 | * On error *fs will contain no open files. All the files (including any temporary files) will be closed and unlinked. |
| 2025 | * (however the fs will still need to be deallocated.) |
| 2026 | */ |
| 2027 | { |
| 2028 | //printf(" merge_files %d files\n", fs->n_temp_files); |
| 2029 | //printf(" merge_files use %d progress=%d fin at %d\n", progress_allocation, bl->progress, bl->progress+progress_allocation); |
| 2030 | const int final_mergelimit = (size_factor == 1) ? 4 : merge_fanin(bl, true); // try for a merge to the leaf level |
| 2031 | const int earlier_mergelimit = (size_factor == 1) ? 4 : merge_fanin(bl, false); // try for a merge at nonleaf. |
| 2032 | int n_passes_left = (fs->n_temp_files<=final_mergelimit) |
| 2033 | ? 1 |
| 2034 | : 1+n_passes((fs->n_temp_files+final_mergelimit-1)/final_mergelimit, earlier_mergelimit); |
| 2035 | // printf("%d files, %d on last pass, %d on earlier passes, %d passes\n", fs->n_temp_files, final_mergelimit, earlier_mergelimit, n_passes_left); |
| 2036 | int result = 0; |
| 2037 | while (fs->n_temp_files > 0) { |
| 2038 | int progress_allocation_for_this_pass = progress_allocation/n_passes_left; |
| 2039 | progress_allocation -= progress_allocation_for_this_pass; |
| 2040 | //printf("%s:%d n_passes_left=%d progress_allocation_for_this_pass=%d\n", __FILE__, __LINE__, n_passes_left, progress_allocation_for_this_pass); |
| 2041 | |
| 2042 | invariant(fs->n_temp_files>0); |
| 2043 | struct merge_fileset next_file_set; |
| 2044 | bool to_queue = (bool)(fs->n_temp_files <= final_mergelimit); |
| 2045 | init_merge_fileset(&next_file_set); |
| 2046 | while (fs->n_temp_files>0) { |
| 2047 | // grab some files and merge them. |
| 2048 | int n_to_merge = int_min(to_queue?final_mergelimit:earlier_mergelimit, fs->n_temp_files); |
| 2049 | |
| 2050 | // We are about to do n_to_merge/n_temp_files of the remaining for this pass. |
| 2051 | int progress_allocation_for_this_subpass = progress_allocation_for_this_pass * (double)n_to_merge / (double)fs->n_temp_files; |
| 2052 | // printf("%s:%d progress_allocation_for_this_subpass=%d n_temp_files=%d b=%llu\n", __FILE__, __LINE__, progress_allocation_for_this_subpass, fs->n_temp_files, (long long unsigned) memory_per_rowset_during_merge(bl, n_to_merge, to_queue)); |
| 2053 | progress_allocation_for_this_pass -= progress_allocation_for_this_subpass; |
| 2054 | |
| 2055 | //printf("%s:%d merging\n", __FILE__, __LINE__); |
| 2056 | FIDX merged_data = FIDX_NULL; |
| 2057 | |
| 2058 | FIDX *XMALLOC_N(n_to_merge, data_fidxs); |
| 2059 | for (int i=0; i<n_to_merge; i++) { |
| 2060 | data_fidxs[i] = FIDX_NULL; |
| 2061 | } |
| 2062 | for (int i=0; i<n_to_merge; i++) { |
| 2063 | int idx = fs->n_temp_files -1 -i; |
| 2064 | FIDX fidx = fs->data_fidxs[idx]; |
| 2065 | result = ft_loader_fi_reopen(&bl->file_infos, fidx, "r" ); |
| 2066 | if (result) break; |
| 2067 | data_fidxs[i] = fidx; |
| 2068 | } |
| 2069 | if (result==0 && !to_queue) { |
| 2070 | result = extend_fileset(bl, &next_file_set, &merged_data); |
| 2071 | } |
| 2072 | |
| 2073 | if (result==0) { |
| 2074 | result = merge_some_files(to_queue, merged_data, output_q, n_to_merge, data_fidxs, bl, which_db, dest_db, compare, progress_allocation_for_this_subpass); |
| 2075 | // if result!=0, fall through |
| 2076 | if (result==0) { |
| 2077 | /*nothing*/;// this is gratuitous, but we need something to give code coverage tools to help us know that it's important to distinguish between result==0 and result!=0 |
| 2078 | } |
| 2079 | } |
| 2080 | |
| 2081 | //printf("%s:%d merged\n", __FILE__, __LINE__); |
| 2082 | for (int i=0; i<n_to_merge; i++) { |
| 2083 | if (!fidx_is_null(data_fidxs[i])) { |
| 2084 | { |
| 2085 | int r = ft_loader_fi_close(&bl->file_infos, data_fidxs[i], true); |
| 2086 | if (r!=0 && result==0) result = r; |
| 2087 | } |
| 2088 | { |
| 2089 | int r = ft_loader_fi_unlink(&bl->file_infos, data_fidxs[i]); |
| 2090 | if (r!=0 && result==0) result = r; |
| 2091 | } |
| 2092 | data_fidxs[i] = FIDX_NULL; |
| 2093 | } |
| 2094 | } |
| 2095 | |
| 2096 | fs->n_temp_files -= n_to_merge; |
| 2097 | if (!to_queue && !fidx_is_null(merged_data)) { |
| 2098 | int r = ft_loader_fi_close(&bl->file_infos, merged_data, true); |
| 2099 | if (r!=0 && result==0) result = r; |
| 2100 | } |
| 2101 | toku_free(data_fidxs); |
| 2102 | |
| 2103 | if (result!=0) break; |
| 2104 | } |
| 2105 | |
| 2106 | destroy_merge_fileset(fs); |
| 2107 | *fs = next_file_set; |
| 2108 | |
| 2109 | // Update the progress |
| 2110 | n_passes_left--; |
| 2111 | |
| 2112 | if (result==0) { invariant(progress_allocation_for_this_pass==0); } |
| 2113 | |
| 2114 | if (result!=0) break; |
| 2115 | } |
| 2116 | if (result) ft_loader_set_panic(bl, result, true, which_db, nullptr, nullptr); |
| 2117 | |
| 2118 | { |
| 2119 | int r = toku_queue_eof(output_q); |
| 2120 | if (r!=0 && result==0) result = r; |
| 2121 | } |
| 2122 | // It's conceivable that the progress_allocation could be nonzero (for example if bl->N==0) |
| 2123 | { |
| 2124 | int r = update_progress(progress_allocation, bl, "did merge_files" ); |
| 2125 | if (r!=0 && result==0) result = r; |
| 2126 | } |
| 2127 | return result; |
| 2128 | } |
| 2129 | |
| 2130 | struct subtree_info { |
| 2131 | int64_t block; |
| 2132 | }; |
| 2133 | |
| 2134 | struct subtrees_info { |
| 2135 | int64_t next_free_block; |
| 2136 | int64_t n_subtrees; // was n_blocks |
| 2137 | int64_t n_subtrees_limit; |
| 2138 | struct subtree_info *subtrees; |
| 2139 | }; |
| 2140 | |
| 2141 | static void subtrees_info_init(struct subtrees_info *p) { |
| 2142 | p->next_free_block = p->n_subtrees = p->n_subtrees_limit = 0; |
| 2143 | p->subtrees = NULL; |
| 2144 | } |
| 2145 | |
| 2146 | static void subtrees_info_destroy(struct subtrees_info *p) { |
| 2147 | toku_free(p->subtrees); |
| 2148 | p->subtrees = NULL; |
| 2149 | } |
| 2150 | |
| 2151 | static void allocate_node (struct subtrees_info *sts, int64_t b) { |
| 2152 | if (sts->n_subtrees >= sts->n_subtrees_limit) { |
| 2153 | sts->n_subtrees_limit *= 2; |
| 2154 | XREALLOC_N(sts->n_subtrees_limit, sts->subtrees); |
| 2155 | } |
| 2156 | sts->subtrees[sts->n_subtrees].block = b; |
| 2157 | sts->n_subtrees++; |
| 2158 | } |
| 2159 | |
| 2160 | // dbuf will always contained 512-byte aligned buffer, but the length might not be a multiple of 512 bytes. If that's what you want, then pad it. |
| 2161 | struct dbuf { |
| 2162 | unsigned char *buf; |
| 2163 | int buflen; |
| 2164 | int off; |
| 2165 | int error; |
| 2166 | }; |
| 2167 | |
| 2168 | struct leaf_buf { |
| 2169 | BLOCKNUM blocknum; |
| 2170 | TXNID xid; |
| 2171 | uint64_t nkeys, ndata, dsize; |
| 2172 | FTNODE node; |
| 2173 | XIDS xids; |
| 2174 | uint64_t off; |
| 2175 | }; |
| 2176 | |
| 2177 | struct translation { |
| 2178 | int64_t off, size; |
| 2179 | }; |
| 2180 | |
| 2181 | struct dbout { |
| 2182 | int fd; |
| 2183 | toku_off_t current_off; |
| 2184 | |
| 2185 | int64_t n_translations; |
| 2186 | int64_t n_translations_limit; |
| 2187 | struct translation *translation; |
| 2188 | toku_mutex_t mutex; |
| 2189 | FT ft; |
| 2190 | }; |
| 2191 | |
| 2192 | static inline void dbout_init(struct dbout *out, FT ft) { |
| 2193 | out->fd = -1; |
| 2194 | out->current_off = 0; |
| 2195 | out->n_translations = out->n_translations_limit = 0; |
| 2196 | out->translation = NULL; |
| 2197 | toku_mutex_init(*loader_out_mutex_key, &out->mutex, nullptr); |
| 2198 | out->ft = ft; |
| 2199 | } |
| 2200 | |
| 2201 | static inline void dbout_destroy(struct dbout *out) { |
| 2202 | if (out->fd >= 0) { |
| 2203 | toku_os_close(out->fd); |
| 2204 | out->fd = -1; |
| 2205 | } |
| 2206 | toku_free(out->translation); |
| 2207 | out->translation = NULL; |
| 2208 | toku_mutex_destroy(&out->mutex); |
| 2209 | } |
| 2210 | |
| 2211 | static inline void dbout_lock(struct dbout *out) { |
| 2212 | toku_mutex_lock(&out->mutex); |
| 2213 | } |
| 2214 | |
| 2215 | static inline void dbout_unlock(struct dbout *out) { |
| 2216 | toku_mutex_unlock(&out->mutex); |
| 2217 | } |
| 2218 | |
| 2219 | static void seek_align_locked(struct dbout *out) { |
| 2220 | toku_off_t old_current_off = out->current_off; |
| 2221 | int alignment = 4096; |
| 2222 | out->current_off += alignment-1; |
| 2223 | out->current_off &= ~(alignment-1); |
| 2224 | toku_off_t r = lseek(out->fd, out->current_off, SEEK_SET); |
| 2225 | invariant(r==out->current_off); |
| 2226 | invariant(out->current_off >= old_current_off); |
| 2227 | invariant(out->current_off < old_current_off+alignment); |
| 2228 | invariant(out->current_off % alignment == 0); |
| 2229 | } |
| 2230 | |
| 2231 | static void seek_align(struct dbout *out) { |
| 2232 | dbout_lock(out); |
| 2233 | seek_align_locked(out); |
| 2234 | dbout_unlock(out); |
| 2235 | } |
| 2236 | |
| 2237 | static void dbuf_init (struct dbuf *dbuf) { |
| 2238 | dbuf->buf = 0; |
| 2239 | dbuf->buflen = 0; |
| 2240 | dbuf->off = 0; |
| 2241 | dbuf->error = 0; |
| 2242 | } |
| 2243 | |
| 2244 | static void dbuf_destroy (struct dbuf *dbuf) { |
| 2245 | toku_free(dbuf->buf); dbuf->buf = NULL; |
| 2246 | } |
| 2247 | |
| 2248 | static int allocate_block (struct dbout *out, int64_t *ret_block_number) |
| 2249 | // Return the new block number |
| 2250 | { |
| 2251 | int result = 0; |
| 2252 | dbout_lock(out); |
| 2253 | int64_t block_number = out->n_translations; |
| 2254 | if (block_number >= out->n_translations_limit) { |
| 2255 | int64_t old_n_translations_limit = out->n_translations_limit; |
| 2256 | struct translation *old_translation = out->translation; |
| 2257 | if (out->n_translations_limit==0) { |
| 2258 | out->n_translations_limit = 1; |
| 2259 | } else { |
| 2260 | out->n_translations_limit *= 2; |
| 2261 | } |
| 2262 | REALLOC_N(out->n_translations_limit, out->translation); |
| 2263 | if (out->translation == NULL) { |
| 2264 | result = get_error_errno(); |
| 2265 | invariant(result); |
| 2266 | out->n_translations_limit = old_n_translations_limit; |
| 2267 | out->translation = old_translation; |
| 2268 | goto cleanup; |
| 2269 | } |
| 2270 | } |
| 2271 | out->n_translations++; |
| 2272 | *ret_block_number = block_number; |
| 2273 | cleanup: |
| 2274 | dbout_unlock(out); |
| 2275 | return result; |
| 2276 | } |
| 2277 | |
| 2278 | static void putbuf_bytes (struct dbuf *dbuf, const void *bytes, int nbytes) { |
| 2279 | if (!dbuf->error && dbuf->off + nbytes > dbuf->buflen) { |
| 2280 | unsigned char *oldbuf = dbuf->buf; |
| 2281 | int oldbuflen = dbuf->buflen; |
| 2282 | dbuf->buflen += dbuf->off + nbytes; |
| 2283 | dbuf->buflen *= 2; |
| 2284 | REALLOC_N_ALIGNED(512, dbuf->buflen, dbuf->buf); |
| 2285 | if (dbuf->buf == NULL) { |
| 2286 | dbuf->error = get_error_errno(); |
| 2287 | dbuf->buf = oldbuf; |
| 2288 | dbuf->buflen = oldbuflen; |
| 2289 | } |
| 2290 | } |
| 2291 | if (!dbuf->error) { |
| 2292 | memcpy(dbuf->buf + dbuf->off, bytes, nbytes); |
| 2293 | dbuf->off += nbytes; |
| 2294 | } |
| 2295 | } |
| 2296 | |
| 2297 | static void putbuf_int32 (struct dbuf *dbuf, int v) { |
| 2298 | putbuf_bytes(dbuf, &v, 4); |
| 2299 | } |
| 2300 | |
| 2301 | static void putbuf_int64 (struct dbuf *dbuf, long long v) { |
| 2302 | putbuf_int32(dbuf, v>>32); |
| 2303 | putbuf_int32(dbuf, v&0xFFFFFFFF); |
| 2304 | } |
| 2305 | |
| 2306 | static struct leaf_buf *start_leaf (struct dbout *out, const DESCRIPTOR UU(desc), int64_t lblocknum, TXNID xid, uint32_t UU(target_nodesize)) { |
| 2307 | invariant(lblocknum < out->n_translations_limit); |
| 2308 | |
| 2309 | struct leaf_buf *XMALLOC(lbuf); |
| 2310 | lbuf->blocknum.b = lblocknum; |
| 2311 | lbuf->xid = xid; |
| 2312 | lbuf->nkeys = lbuf->ndata = lbuf->dsize = 0; |
| 2313 | lbuf->off = 0; |
| 2314 | |
| 2315 | lbuf->xids = toku_xids_get_root_xids(); |
| 2316 | if (xid != TXNID_NONE) { |
| 2317 | XIDS new_xids = NULL; |
| 2318 | int r = toku_xids_create_child(lbuf->xids, &new_xids, xid); |
| 2319 | assert(r == 0 && new_xids); |
| 2320 | toku_xids_destroy(&lbuf->xids); |
| 2321 | lbuf->xids = new_xids; |
| 2322 | } |
| 2323 | |
| 2324 | FTNODE XMALLOC(node); |
| 2325 | toku_initialize_empty_ftnode(node, lbuf->blocknum, 0 /*height*/, 1 /*basement nodes*/, FT_LAYOUT_VERSION, 0); |
| 2326 | BP_STATE(node, 0) = PT_AVAIL; |
| 2327 | lbuf->node = node; |
| 2328 | |
| 2329 | return lbuf; |
| 2330 | } |
| 2331 | |
| 2332 | static void finish_leafnode( |
| 2333 | struct dbout* out, |
| 2334 | struct leaf_buf* lbuf, |
| 2335 | int progress_allocation, |
| 2336 | FTLOADER bl, |
| 2337 | uint32_t target_basementnodesize, |
| 2338 | enum toku_compression_method target_compression_method); |
| 2339 | |
| 2340 | static int write_nonleaves( |
| 2341 | FTLOADER bl, |
| 2342 | FIDX pivots_fidx, |
| 2343 | struct dbout* out, |
| 2344 | struct subtrees_info* sts, |
| 2345 | const DESCRIPTOR descriptor, |
| 2346 | uint32_t target_nodesize, |
| 2347 | uint32_t target_basementnodesize, |
| 2348 | enum toku_compression_method target_compression_method); |
| 2349 | |
| 2350 | static void add_pair_to_leafnode( |
| 2351 | struct leaf_buf* lbuf, |
| 2352 | unsigned char* key, |
| 2353 | int keylen, |
| 2354 | unsigned char* val, |
| 2355 | int vallen, |
| 2356 | int this_leafentry_size, |
| 2357 | STAT64INFO stats_to_update, |
| 2358 | int64_t* logical_rows_delta); |
| 2359 | |
| 2360 | static int write_translation_table( |
| 2361 | struct dbout* out, |
| 2362 | long long* off_of_translation_p); |
| 2363 | |
| 2364 | static int write_header( |
| 2365 | struct dbout* out, |
| 2366 | long long translation_location_on_disk, |
| 2367 | long long translation_size_on_disk); |
| 2368 | |
| 2369 | static void drain_writer_q(QUEUE q) { |
| 2370 | void *item; |
| 2371 | while (1) { |
| 2372 | int r = toku_queue_deq(q, &item, NULL, NULL); |
| 2373 | if (r == EOF) |
| 2374 | break; |
| 2375 | invariant(r == 0); |
| 2376 | struct rowset *rowset = (struct rowset *) item; |
| 2377 | destroy_rowset(rowset); |
| 2378 | toku_free(rowset); |
| 2379 | } |
| 2380 | } |
| 2381 | |
| 2382 | static void cleanup_maxkey(DBT *maxkey) { |
| 2383 | if (maxkey->flags == DB_DBT_REALLOC) { |
| 2384 | toku_free(maxkey->data); |
| 2385 | maxkey->data = NULL; |
| 2386 | maxkey->flags = 0; |
| 2387 | } |
| 2388 | } |
| 2389 | |
| 2390 | static void update_maxkey(DBT *maxkey, DBT *key) { |
| 2391 | cleanup_maxkey(maxkey); |
| 2392 | *maxkey = *key; |
| 2393 | } |
| 2394 | |
| 2395 | static int copy_maxkey(DBT *maxkey) { |
| 2396 | DBT newkey; |
| 2397 | toku_init_dbt_flags(&newkey, DB_DBT_REALLOC); |
| 2398 | int r = toku_dbt_set(maxkey->size, maxkey->data, &newkey, NULL); |
| 2399 | if (r == 0) |
| 2400 | update_maxkey(maxkey, &newkey); |
| 2401 | return r; |
| 2402 | } |
| 2403 | |
| 2404 | static int toku_loader_write_ft_from_q (FTLOADER bl, |
| 2405 | const DESCRIPTOR descriptor, |
| 2406 | int fd, // write to here |
| 2407 | int progress_allocation, |
| 2408 | QUEUE q, |
| 2409 | uint64_t total_disksize_estimate, |
| 2410 | int which_db, |
| 2411 | uint32_t target_nodesize, |
| 2412 | uint32_t target_basementnodesize, |
| 2413 | enum toku_compression_method target_compression_method, |
| 2414 | uint32_t target_fanout) |
| 2415 | // Effect: Consume a sequence of rowsets work from a queue, creating a fractal tree. Closes fd. |
| 2416 | { |
| 2417 | // set the number of fractal tree writer threads so that we can partition memory in the merger |
| 2418 | ft_loader_set_fractal_workers_count(bl); |
| 2419 | |
| 2420 | int result = 0; |
| 2421 | int r; |
| 2422 | |
| 2423 | // The pivots file will contain all the pivot strings (in the form <size(32bits)> <data>) |
| 2424 | // The pivots_fname is the name of the pivots file. |
| 2425 | // Note that the pivots file will have one extra pivot in it (the last key in the dictionary) which will not appear in the tree. |
| 2426 | int64_t n_pivots=0; // number of pivots in pivots_file |
| 2427 | FIDX pivots_file; // the file |
| 2428 | |
| 2429 | r = ft_loader_open_temp_file (bl, &pivots_file); |
| 2430 | if (r) { |
| 2431 | result = r; |
| 2432 | drain_writer_q(q); |
| 2433 | r = toku_os_close(fd); |
| 2434 | assert_zero(r); |
| 2435 | return result; |
| 2436 | } |
| 2437 | TOKU_FILE *pivots_stream = toku_bl_fidx2file(bl, pivots_file); |
| 2438 | |
| 2439 | TXNID root_xid_that_created = TXNID_NONE; |
| 2440 | if (bl->root_xids_that_created) |
| 2441 | root_xid_that_created = bl->root_xids_that_created[which_db]; |
| 2442 | |
| 2443 | // TODO: (Zardosht/Yoni/Leif), do this code properly |
| 2444 | struct ft ft; |
| 2445 | toku_ft_init(&ft, (BLOCKNUM){0}, bl->load_lsn, root_xid_that_created, target_nodesize, target_basementnodesize, target_compression_method, target_fanout); |
| 2446 | |
| 2447 | struct dbout out; |
| 2448 | ZERO_STRUCT(out); |
| 2449 | dbout_init(&out, &ft); |
| 2450 | out.fd = fd; |
| 2451 | out.current_off = 8192; // leave 8K reserved at beginning |
| 2452 | out.n_translations = 3; // 3 translations reserved at the beginning |
| 2453 | out.n_translations_limit = 4; |
| 2454 | MALLOC_N(out.n_translations_limit, out.translation); |
| 2455 | if (out.translation == NULL) { |
| 2456 | result = get_error_errno(); |
| 2457 | dbout_destroy(&out); |
| 2458 | drain_writer_q(q); |
| 2459 | toku_free(ft.h); |
| 2460 | return result; |
| 2461 | } |
| 2462 | |
| 2463 | // The blocks_array will contain all the block numbers that correspond to the pivots. Generally there should be one more block than pivot. |
| 2464 | struct subtrees_info sts; |
| 2465 | subtrees_info_init(&sts); |
| 2466 | sts.next_free_block = 3; |
| 2467 | sts.n_subtrees = 0; |
| 2468 | sts.n_subtrees_limit = 1; |
| 2469 | MALLOC_N(sts.n_subtrees_limit, sts.subtrees); |
| 2470 | if (sts.subtrees == NULL) { |
| 2471 | result = get_error_errno(); |
| 2472 | subtrees_info_destroy(&sts); |
| 2473 | dbout_destroy(&out); |
| 2474 | drain_writer_q(q); |
| 2475 | toku_free(ft.h); |
| 2476 | return result; |
| 2477 | } |
| 2478 | |
| 2479 | out.translation[0].off = -2LL; out.translation[0].size = 0; // block 0 is NULL |
| 2480 | invariant(1==RESERVED_BLOCKNUM_TRANSLATION); |
| 2481 | invariant(2==RESERVED_BLOCKNUM_DESCRIPTOR); |
| 2482 | out.translation[1].off = -1; // block 1 is the block translation, filled in later |
| 2483 | out.translation[2].off = -1; // block 2 is the descriptor |
| 2484 | seek_align(&out); |
| 2485 | int64_t lblock = 0; // make gcc --happy |
| 2486 | result = allocate_block(&out, &lblock); |
| 2487 | invariant(result == 0); // can not fail since translations reserved above |
| 2488 | |
| 2489 | TXNID le_xid = leafentry_xid(bl, which_db); |
| 2490 | struct leaf_buf *lbuf = start_leaf(&out, descriptor, lblock, le_xid, target_nodesize); |
| 2491 | uint64_t n_rows_remaining = bl->n_rows; |
| 2492 | uint64_t old_n_rows_remaining = bl->n_rows; |
| 2493 | |
| 2494 | uint64_t used_estimate = 0; // how much diskspace have we used up? |
| 2495 | |
| 2496 | DBT maxkey = make_dbt(0, 0); // keep track of the max key of the current node |
| 2497 | |
| 2498 | STAT64INFO_S deltas = ZEROSTATS; |
| 2499 | // This is just a placeholder and not used in the loader, the real/accurate |
| 2500 | // stats will come out of 'deltas' because this loader is not pushing |
| 2501 | // messages down into the top of a fractal tree where the logical row count |
| 2502 | // is done, it is directly creating leaf entries so it must also take on |
| 2503 | // performing the logical row counting on its own |
| 2504 | int64_t logical_rows_delta = 0; |
| 2505 | while (result == 0) { |
| 2506 | void *item; |
| 2507 | { |
| 2508 | int rr = toku_queue_deq(q, &item, NULL, NULL); |
| 2509 | if (rr == EOF) break; |
| 2510 | if (rr != 0) { |
| 2511 | ft_loader_set_panic(bl, rr, true, which_db, nullptr, nullptr); |
| 2512 | break; |
| 2513 | } |
| 2514 | } |
| 2515 | struct rowset *output_rowset = (struct rowset *)item; |
| 2516 | |
| 2517 | for (unsigned int i = 0; i < output_rowset->n_rows; i++) { |
| 2518 | DBT key = make_dbt(output_rowset->data+output_rowset->rows[i].off, output_rowset->rows[i].klen); |
| 2519 | DBT val = make_dbt(output_rowset->data+output_rowset->rows[i].off + output_rowset->rows[i].klen, output_rowset->rows[i].vlen); |
| 2520 | |
| 2521 | size_t this_leafentry_size = ft_loader_leafentry_size(key.size, val.size, le_xid); |
| 2522 | |
| 2523 | used_estimate += this_leafentry_size; |
| 2524 | |
| 2525 | // Spawn off a node if |
| 2526 | // a) there is at least one row in it, and |
| 2527 | // b) this item would make the nodesize too big, or |
| 2528 | // c) the remaining amount won't fit in the current node and the current node's data is more than the remaining amount |
| 2529 | uint64_t remaining_amount = total_disksize_estimate - used_estimate; |
| 2530 | uint64_t used_here = lbuf->off + 1000; // leave 1000 for various overheads. |
| 2531 | uint64_t target_size = (target_nodesize*7L)/8; // use only 7/8 of the node. |
| 2532 | uint64_t used_here_with_next_key = used_here + this_leafentry_size; |
| 2533 | if (lbuf->nkeys > 0 && |
| 2534 | ((used_here_with_next_key >= target_size) || (used_here + remaining_amount >= target_size && lbuf->off > remaining_amount))) { |
| 2535 | |
| 2536 | int progress_this_node = progress_allocation * (double)(old_n_rows_remaining - n_rows_remaining)/(double)old_n_rows_remaining; |
| 2537 | progress_allocation -= progress_this_node; |
| 2538 | old_n_rows_remaining = n_rows_remaining; |
| 2539 | |
| 2540 | allocate_node(&sts, lblock); |
| 2541 | |
| 2542 | n_pivots++; |
| 2543 | |
| 2544 | invariant(maxkey.data != NULL); |
| 2545 | if ((r = bl_write_dbt(&maxkey, pivots_stream, NULL, nullptr, bl))) { |
| 2546 | ft_loader_set_panic(bl, r, true, which_db, nullptr, nullptr); |
| 2547 | if (result == 0) result = r; |
| 2548 | break; |
| 2549 | } |
| 2550 | |
| 2551 | finish_leafnode(&out, lbuf, progress_this_node, bl, target_basementnodesize, target_compression_method); |
| 2552 | lbuf = NULL; |
| 2553 | |
| 2554 | r = allocate_block(&out, &lblock); |
| 2555 | if (r != 0) { |
| 2556 | ft_loader_set_panic(bl, r, true, which_db, nullptr, nullptr); |
| 2557 | if (result == 0) result = r; |
| 2558 | break; |
| 2559 | } |
| 2560 | lbuf = start_leaf(&out, descriptor, lblock, le_xid, target_nodesize); |
| 2561 | } |
| 2562 | |
| 2563 | add_pair_to_leafnode( |
| 2564 | lbuf, |
| 2565 | (unsigned char*)key.data, |
| 2566 | key.size, |
| 2567 | (unsigned char*)val.data, |
| 2568 | val.size, |
| 2569 | this_leafentry_size, |
| 2570 | &deltas, |
| 2571 | &logical_rows_delta); |
| 2572 | n_rows_remaining--; |
| 2573 | |
| 2574 | update_maxkey(&maxkey, &key); // set the new maxkey to the current key |
| 2575 | } |
| 2576 | |
| 2577 | r = copy_maxkey(&maxkey); // make a copy of maxkey before the rowset is destroyed |
| 2578 | if (result == 0) |
| 2579 | result = r; |
| 2580 | destroy_rowset(output_rowset); |
| 2581 | toku_free(output_rowset); |
| 2582 | |
| 2583 | if (result == 0) |
| 2584 | result = ft_loader_get_error(&bl->error_callback); // check if an error was posted and terminate this quickly |
| 2585 | } |
| 2586 | |
| 2587 | if (deltas.numrows || deltas.numbytes) { |
| 2588 | toku_ft_update_stats(&ft.in_memory_stats, deltas); |
| 2589 | } |
| 2590 | |
| 2591 | // As noted above, the loader directly creates a tree structure without |
| 2592 | // going through the higher level ft API and tus bypasses the logical row |
| 2593 | // counting performed at that level. So, we must manually update the logical |
| 2594 | // row count with the info we have from the physical delta that comes out of |
| 2595 | // add_pair_to_leafnode. |
| 2596 | toku_ft_adjust_logical_row_count(&ft, deltas.numrows); |
| 2597 | |
| 2598 | cleanup_maxkey(&maxkey); |
| 2599 | |
| 2600 | if (lbuf) { |
| 2601 | allocate_node(&sts, lblock); |
| 2602 | { |
| 2603 | int p = progress_allocation/2; |
| 2604 | finish_leafnode(&out, lbuf, p, bl, target_basementnodesize, target_compression_method); |
| 2605 | progress_allocation -= p; |
| 2606 | } |
| 2607 | } |
| 2608 | |
| 2609 | |
| 2610 | if (result == 0) { |
| 2611 | result = ft_loader_get_error(&bl->error_callback); // if there were any prior errors then exit |
| 2612 | } |
| 2613 | |
| 2614 | if (result != 0) goto error; |
| 2615 | |
| 2616 | // We haven't paniced, so the sum should add up. |
| 2617 | invariant(used_estimate == total_disksize_estimate); |
| 2618 | |
| 2619 | n_pivots++; |
| 2620 | |
| 2621 | { |
| 2622 | DBT key = make_dbt(0,0); // must write an extra DBT into the pivots file. |
| 2623 | r = bl_write_dbt(&key, pivots_stream, NULL, nullptr, bl); |
| 2624 | if (r) { |
| 2625 | result = r; goto error; |
| 2626 | } |
| 2627 | } |
| 2628 | |
| 2629 | r = write_nonleaves(bl, pivots_file, &out, &sts, descriptor, target_nodesize, target_basementnodesize, target_compression_method); |
| 2630 | if (r) { |
| 2631 | result = r; goto error; |
| 2632 | } |
| 2633 | |
| 2634 | { |
| 2635 | invariant(sts.n_subtrees==1); |
| 2636 | out.ft->h->root_blocknum = make_blocknum(sts.subtrees[0].block); |
| 2637 | toku_free(sts.subtrees); sts.subtrees = NULL; |
| 2638 | |
| 2639 | // write the descriptor |
| 2640 | { |
| 2641 | seek_align(&out); |
| 2642 | invariant(out.n_translations >= RESERVED_BLOCKNUM_DESCRIPTOR); |
| 2643 | invariant(out.translation[RESERVED_BLOCKNUM_DESCRIPTOR].off == -1); |
| 2644 | out.translation[RESERVED_BLOCKNUM_DESCRIPTOR].off = out.current_off; |
| 2645 | size_t desc_size = 4+toku_serialize_descriptor_size(descriptor); |
| 2646 | invariant(desc_size>0); |
| 2647 | out.translation[RESERVED_BLOCKNUM_DESCRIPTOR].size = desc_size; |
| 2648 | struct wbuf wbuf; |
| 2649 | char *XMALLOC_N(desc_size, buf); |
| 2650 | wbuf_init(&wbuf, buf, desc_size); |
| 2651 | toku_serialize_descriptor_contents_to_wbuf(&wbuf, descriptor); |
| 2652 | uint32_t checksum = toku_x1764_finish(&wbuf.checksum); |
| 2653 | wbuf_int(&wbuf, checksum); |
| 2654 | invariant(wbuf.ndone==desc_size); |
| 2655 | r = toku_os_write(out.fd, wbuf.buf, wbuf.ndone); |
| 2656 | out.current_off += desc_size; |
| 2657 | toku_free(buf); // wbuf_destroy |
| 2658 | if (r) { |
| 2659 | result = r; goto error; |
| 2660 | } |
| 2661 | } |
| 2662 | |
| 2663 | long long off_of_translation; |
| 2664 | r = write_translation_table(&out, &off_of_translation); |
| 2665 | if (r) { |
| 2666 | result = r; goto error; |
| 2667 | } |
| 2668 | |
| 2669 | r = write_header(&out, off_of_translation, (out.n_translations+1)*16+4); |
| 2670 | if (r) { |
| 2671 | result = r; goto error; |
| 2672 | } |
| 2673 | |
| 2674 | r = update_progress(progress_allocation, bl, "wrote tdb file" ); |
| 2675 | if (r) { |
| 2676 | result = r; goto error; |
| 2677 | } |
| 2678 | } |
| 2679 | |
| 2680 | r = fsync(out.fd); |
| 2681 | if (r) { |
| 2682 | result = get_error_errno(); goto error; |
| 2683 | } |
| 2684 | |
| 2685 | // Do we need to pay attention to user_said_stop? Or should the guy at the other end of the queue pay attention and send in an EOF. |
| 2686 | |
| 2687 | error: |
| 2688 | { |
| 2689 | int rr = toku_os_close(fd); |
| 2690 | if (rr) |
| 2691 | result = get_error_errno(); |
| 2692 | } |
| 2693 | out.fd = -1; |
| 2694 | |
| 2695 | subtrees_info_destroy(&sts); |
| 2696 | dbout_destroy(&out); |
| 2697 | drain_writer_q(q); |
| 2698 | toku_free(ft.h); |
| 2699 | |
| 2700 | return result; |
| 2701 | } |
| 2702 | |
| 2703 | int toku_loader_write_ft_from_q_in_C (FTLOADER bl, |
| 2704 | const DESCRIPTOR descriptor, |
| 2705 | int fd, // write to here |
| 2706 | int progress_allocation, |
| 2707 | QUEUE q, |
| 2708 | uint64_t total_disksize_estimate, |
| 2709 | int which_db, |
| 2710 | uint32_t target_nodesize, |
| 2711 | uint32_t target_basementnodesize, |
| 2712 | enum toku_compression_method target_compression_method, |
| 2713 | uint32_t target_fanout) |
| 2714 | // This is probably only for testing. |
| 2715 | { |
| 2716 | target_nodesize = target_nodesize == 0 ? default_loader_nodesize : target_nodesize; |
| 2717 | target_basementnodesize = target_basementnodesize == 0 ? default_loader_basementnodesize : target_basementnodesize; |
| 2718 | return toku_loader_write_ft_from_q (bl, descriptor, fd, progress_allocation, q, total_disksize_estimate, which_db, target_nodesize, target_basementnodesize, target_compression_method, target_fanout); |
| 2719 | } |
| 2720 | |
| 2721 | |
| 2722 | static void* fractal_thread (void *ftav) { |
| 2723 | struct fractal_thread_args *fta = (struct fractal_thread_args *)ftav; |
| 2724 | int r = toku_loader_write_ft_from_q(fta->bl, |
| 2725 | fta->descriptor, |
| 2726 | fta->fd, |
| 2727 | fta->progress_allocation, |
| 2728 | fta->q, |
| 2729 | fta->total_disksize_estimate, |
| 2730 | fta->which_db, |
| 2731 | fta->target_nodesize, |
| 2732 | fta->target_basementnodesize, |
| 2733 | fta->target_compression_method, |
| 2734 | fta->target_fanout); |
| 2735 | fta->errno_result = r; |
| 2736 | toku_instr_delete_current_thread(); |
| 2737 | return toku_pthread_done(nullptr); |
| 2738 | } |
| 2739 | |
| 2740 | static int loader_do_i(FTLOADER bl, |
| 2741 | int which_db, |
| 2742 | DB *dest_db, |
| 2743 | ft_compare_func compare, |
| 2744 | const DESCRIPTOR descriptor, |
| 2745 | const char *new_fname, |
| 2746 | int progress_allocation // how much progress do I need |
| 2747 | // to add into bl->progress by |
| 2748 | // the end.. |
| 2749 | ) |
| 2750 | /* Effect: Handle the file creating for one particular DB in the bulk loader. */ |
| 2751 | /* Requires: The data is fully extracted, so we can do merges out of files and |
| 2752 | write the ft file. */ |
| 2753 | { |
| 2754 | //printf("doing i use %d progress=%d fin at %d\n", progress_allocation, bl->progress, bl->progress+progress_allocation); |
| 2755 | struct merge_fileset *fs = &(bl->fs[which_db]); |
| 2756 | struct rowset *rows = &(bl->rows[which_db]); |
| 2757 | invariant(rows->data==NULL); // the rows should be all cleaned up already |
| 2758 | |
| 2759 | int r = toku_queue_create(&bl->fractal_queues[which_db], FRACTAL_WRITER_QUEUE_DEPTH); |
| 2760 | if (r) goto error; |
| 2761 | |
| 2762 | { |
| 2763 | mode_t mode = S_IRUSR + S_IWUSR + S_IRGRP + S_IWGRP; |
| 2764 | int fd = toku_os_open(new_fname, |
| 2765 | O_RDWR | O_CREAT | O_BINARY, |
| 2766 | mode, |
| 2767 | *tokudb_file_load_key); // #2621 |
| 2768 | if (fd < 0) { |
| 2769 | r = get_error_errno(); |
| 2770 | goto error; |
| 2771 | } |
| 2772 | |
| 2773 | uint32_t target_nodesize, target_basementnodesize, target_fanout; |
| 2774 | enum toku_compression_method target_compression_method; |
| 2775 | r = dest_db->get_pagesize(dest_db, &target_nodesize); |
| 2776 | invariant_zero(r); |
| 2777 | r = dest_db->get_readpagesize(dest_db, &target_basementnodesize); |
| 2778 | invariant_zero(r); |
| 2779 | r = dest_db->get_compression_method(dest_db, &target_compression_method); |
| 2780 | invariant_zero(r); |
| 2781 | r = dest_db->get_fanout(dest_db, &target_fanout); |
| 2782 | invariant_zero(r); |
| 2783 | |
| 2784 | if (bl->allow_puts) { |
| 2785 | // a better allocation would be to figure out roughly how many merge passes we'll need. |
| 2786 | int allocation_for_merge = (2*progress_allocation)/3; |
| 2787 | progress_allocation -= allocation_for_merge; |
| 2788 | |
| 2789 | // This structure must stay live until the join below. |
| 2790 | struct fractal_thread_args fta = {bl, |
| 2791 | descriptor, |
| 2792 | fd, |
| 2793 | progress_allocation, |
| 2794 | bl->fractal_queues[which_db], |
| 2795 | bl->extracted_datasizes[which_db], |
| 2796 | 0, |
| 2797 | which_db, |
| 2798 | target_nodesize, |
| 2799 | target_basementnodesize, |
| 2800 | target_compression_method, |
| 2801 | target_fanout}; |
| 2802 | |
| 2803 | r = toku_pthread_create(*fractal_thread_key, |
| 2804 | bl->fractal_threads + which_db, |
| 2805 | nullptr, |
| 2806 | fractal_thread, |
| 2807 | static_cast<void *>(&fta)); |
| 2808 | if (r) { |
| 2809 | int r2 __attribute__((__unused__)) = |
| 2810 | toku_queue_destroy(bl->fractal_queues[which_db]); |
| 2811 | // ignore r2, since we already have an error |
| 2812 | bl->fractal_queues[which_db] = nullptr; |
| 2813 | goto error; |
| 2814 | } |
| 2815 | invariant(bl->fractal_threads_live[which_db]==false); |
| 2816 | bl->fractal_threads_live[which_db] = true; |
| 2817 | |
| 2818 | r = merge_files(fs, bl, which_db, dest_db, compare, allocation_for_merge, bl->fractal_queues[which_db]); |
| 2819 | |
| 2820 | { |
| 2821 | void *toku_pthread_retval; |
| 2822 | int r2 = toku_pthread_join(bl->fractal_threads[which_db], &toku_pthread_retval); |
| 2823 | invariant(fta.bl==bl); // this is a gratuitous assertion to make sure that the fta struct is still live here. A previous bug put that struct into a C block statement. |
| 2824 | resource_assert_zero(r2); |
| 2825 | invariant(toku_pthread_retval==NULL); |
| 2826 | invariant(bl->fractal_threads_live[which_db]); |
| 2827 | bl->fractal_threads_live[which_db] = false; |
| 2828 | if (r == 0) r = fta.errno_result; |
| 2829 | } |
| 2830 | } else { |
| 2831 | toku_queue_eof(bl->fractal_queues[which_db]); |
| 2832 | r = toku_loader_write_ft_from_q(bl, descriptor, fd, progress_allocation, |
| 2833 | bl->fractal_queues[which_db], bl->extracted_datasizes[which_db], which_db, |
| 2834 | target_nodesize, target_basementnodesize, target_compression_method, target_fanout); |
| 2835 | } |
| 2836 | } |
| 2837 | |
| 2838 | error: // this is the cleanup code. Even if r==0 (no error) we fall through to here. |
| 2839 | if (bl->fractal_queues[which_db]) { |
| 2840 | int r2 = toku_queue_destroy(bl->fractal_queues[which_db]); |
| 2841 | invariant(r2==0); |
| 2842 | bl->fractal_queues[which_db] = nullptr; |
| 2843 | } |
| 2844 | |
| 2845 | // if we get here we need to free up the merge_fileset and the rowset, as well as the keys |
| 2846 | toku_free(rows->data); rows->data = NULL; |
| 2847 | toku_free(rows->rows); rows->rows = NULL; |
| 2848 | toku_free(fs->data_fidxs); fs->data_fidxs = NULL; |
| 2849 | return r; |
| 2850 | } |
| 2851 | |
| 2852 | static int toku_ft_loader_close_internal (FTLOADER bl) |
| 2853 | /* Effect: Close the bulk loader. |
| 2854 | * Return all the file descriptors in the array fds. */ |
| 2855 | { |
| 2856 | int result = 0; |
| 2857 | if (bl->N == 0) |
| 2858 | result = update_progress(PROGRESS_MAX, bl, "done" ); |
| 2859 | else { |
| 2860 | int remaining_progress = PROGRESS_MAX; |
| 2861 | for (int i = 0; i < bl->N; i++) { |
| 2862 | // Take the unallocated progress and divide it among the unfinished jobs. |
| 2863 | // This calculation allocates all of the PROGRESS_MAX bits of progress to some job. |
| 2864 | int allocate_here = remaining_progress/(bl->N - i); |
| 2865 | remaining_progress -= allocate_here; |
| 2866 | char *fname_in_cwd = toku_cachetable_get_fname_in_cwd(bl->cachetable, bl->new_fnames_in_env[i]); |
| 2867 | result = loader_do_i(bl, i, bl->dbs[i], bl->bt_compare_funs[i], bl->descriptors[i], fname_in_cwd, allocate_here); |
| 2868 | toku_free(fname_in_cwd); |
| 2869 | if (result != 0) |
| 2870 | goto error; |
| 2871 | invariant(0 <= bl->progress && bl->progress <= PROGRESS_MAX); |
| 2872 | } |
| 2873 | if (result==0) invariant(remaining_progress==0); |
| 2874 | |
| 2875 | // fsync the directory containing the new tokudb files. |
| 2876 | char *fname0 = toku_cachetable_get_fname_in_cwd(bl->cachetable, bl->new_fnames_in_env[0]); |
| 2877 | int r = toku_fsync_directory(fname0); |
| 2878 | toku_free(fname0); |
| 2879 | if (r != 0) { |
| 2880 | result = r; goto error; |
| 2881 | } |
| 2882 | } |
| 2883 | invariant(bl->file_infos.n_files_open == 0); |
| 2884 | invariant(bl->file_infos.n_files_extant == 0); |
| 2885 | invariant(bl->progress == PROGRESS_MAX); |
| 2886 | error: |
| 2887 | toku_ft_loader_internal_destroy(bl, (bool)(result!=0)); |
| 2888 | return result; |
| 2889 | } |
| 2890 | |
| 2891 | int toku_ft_loader_close (FTLOADER bl, |
| 2892 | ft_loader_error_func error_function, void *, |
| 2893 | ft_loader_poll_func poll_function, void * |
| 2894 | ) |
| 2895 | { |
| 2896 | int result = 0; |
| 2897 | |
| 2898 | int r; |
| 2899 | |
| 2900 | //printf("Closing\n"); |
| 2901 | |
| 2902 | ft_loader_set_error_function(&bl->error_callback, error_function, error_extra); |
| 2903 | |
| 2904 | ft_loader_set_poll_function(&bl->poll_callback, poll_function, poll_extra); |
| 2905 | |
| 2906 | if (bl->extractor_live) { |
| 2907 | r = finish_extractor(bl); |
| 2908 | if (r) |
| 2909 | result = r; |
| 2910 | invariant(!bl->extractor_live); |
| 2911 | } else { |
| 2912 | r = finish_primary_rows(bl); |
| 2913 | if (r) |
| 2914 | result = r; |
| 2915 | } |
| 2916 | |
| 2917 | // check for an error during extraction |
| 2918 | if (result == 0) { |
| 2919 | r = ft_loader_call_error_function(&bl->error_callback); |
| 2920 | if (r) |
| 2921 | result = r; |
| 2922 | } |
| 2923 | |
| 2924 | if (result == 0) { |
| 2925 | r = toku_ft_loader_close_internal(bl); |
| 2926 | if (r && result == 0) |
| 2927 | result = r; |
| 2928 | } else |
| 2929 | toku_ft_loader_internal_destroy(bl, true); |
| 2930 | |
| 2931 | return result; |
| 2932 | } |
| 2933 | |
| 2934 | int (FTLOADER bl) { |
| 2935 | int result = 0; |
| 2936 | if (bl->extractor_live) { |
| 2937 | int r = finish_extractor(bl); |
| 2938 | if (r) |
| 2939 | result = r; |
| 2940 | invariant(!bl->extractor_live); |
| 2941 | } else |
| 2942 | result = EINVAL; |
| 2943 | return result; |
| 2944 | } |
| 2945 | |
| 2946 | int toku_ft_loader_abort(FTLOADER bl, bool is_error) |
| 2947 | /* Effect : Abort the bulk loader, free ft_loader resources */ |
| 2948 | { |
| 2949 | int result = 0; |
| 2950 | |
| 2951 | // cleanup the extractor thread |
| 2952 | if (bl->extractor_live) { |
| 2953 | int r = finish_extractor(bl); |
| 2954 | if (r) |
| 2955 | result = r; |
| 2956 | invariant(!bl->extractor_live); |
| 2957 | } |
| 2958 | |
| 2959 | for (int i = 0; i < bl->N; i++) |
| 2960 | invariant(!bl->fractal_threads_live[i]); |
| 2961 | |
| 2962 | toku_ft_loader_internal_destroy(bl, is_error); |
| 2963 | return result; |
| 2964 | } |
| 2965 | |
| 2966 | int toku_ft_loader_get_error(FTLOADER bl, int *error) { |
| 2967 | *error = ft_loader_get_error(&bl->error_callback); |
| 2968 | return 0; |
| 2969 | } |
| 2970 | |
| 2971 | static void add_pair_to_leafnode( |
| 2972 | struct leaf_buf* lbuf, |
| 2973 | unsigned char* key, |
| 2974 | int keylen, |
| 2975 | unsigned char* val, |
| 2976 | int vallen, |
| 2977 | int this_leafentry_size, |
| 2978 | STAT64INFO stats_to_update, |
| 2979 | int64_t* logical_rows_delta) { |
| 2980 | |
| 2981 | lbuf->nkeys++; |
| 2982 | lbuf->ndata++; |
| 2983 | lbuf->dsize += keylen + vallen; |
| 2984 | lbuf->off += this_leafentry_size; |
| 2985 | |
| 2986 | // append this key val pair to the leafnode |
| 2987 | // #3588 TODO just make a clean ule and append it to the omt |
| 2988 | // #3588 TODO can do the rebalancing here and avoid a lot of work later |
| 2989 | FTNODE leafnode = lbuf->node; |
| 2990 | uint32_t idx = BLB_DATA(leafnode, 0)->num_klpairs(); |
| 2991 | DBT kdbt, vdbt; |
| 2992 | ft_msg msg( |
| 2993 | toku_fill_dbt(&kdbt, key, keylen), |
| 2994 | toku_fill_dbt(&vdbt, val, vallen), |
| 2995 | FT_INSERT, |
| 2996 | ZERO_MSN, |
| 2997 | lbuf->xids); |
| 2998 | uint64_t workdone = 0; |
| 2999 | // there's no mvcc garbage in a bulk-loaded FT, so there's no need to pass useful gc info |
| 3000 | txn_gc_info gc_info(nullptr, TXNID_NONE, TXNID_NONE, true); |
| 3001 | toku_ft_bn_apply_msg_once( |
| 3002 | BLB(leafnode, 0), |
| 3003 | msg, |
| 3004 | idx, |
| 3005 | keylen, |
| 3006 | NULL, |
| 3007 | &gc_info, |
| 3008 | &workdone, |
| 3009 | stats_to_update, |
| 3010 | logical_rows_delta); |
| 3011 | } |
| 3012 | |
| 3013 | static int write_literal(struct dbout *out, void*data, size_t len) { |
| 3014 | invariant(out->current_off%4096==0); |
| 3015 | int result = toku_os_write(out->fd, data, len); |
| 3016 | if (result == 0) |
| 3017 | out->current_off+=len; |
| 3018 | return result; |
| 3019 | } |
| 3020 | |
| 3021 | static void finish_leafnode( |
| 3022 | struct dbout* out, |
| 3023 | struct leaf_buf* lbuf, |
| 3024 | int progress_allocation, |
| 3025 | FTLOADER bl, |
| 3026 | uint32_t target_basementnodesize, |
| 3027 | enum toku_compression_method target_compression_method) { |
| 3028 | |
| 3029 | int result = 0; |
| 3030 | |
| 3031 | // serialize leaf to buffer |
| 3032 | size_t serialized_leaf_size = 0; |
| 3033 | size_t uncompressed_serialized_leaf_size = 0; |
| 3034 | char *serialized_leaf = NULL; |
| 3035 | FTNODE_DISK_DATA ndd = NULL; |
| 3036 | result = toku_serialize_ftnode_to_memory( |
| 3037 | lbuf->node, |
| 3038 | &ndd, |
| 3039 | target_basementnodesize, |
| 3040 | target_compression_method, |
| 3041 | true, |
| 3042 | true, |
| 3043 | &serialized_leaf_size, |
| 3044 | &uncompressed_serialized_leaf_size, |
| 3045 | &serialized_leaf); |
| 3046 | |
| 3047 | // write it out |
| 3048 | if (result == 0) { |
| 3049 | dbout_lock(out); |
| 3050 | long long off_of_leaf = out->current_off; |
| 3051 | result = write_literal(out, serialized_leaf, serialized_leaf_size); |
| 3052 | if (result == 0) { |
| 3053 | out->translation[lbuf->blocknum.b].off = off_of_leaf; |
| 3054 | out->translation[lbuf->blocknum.b].size = serialized_leaf_size; |
| 3055 | seek_align_locked(out); |
| 3056 | } |
| 3057 | dbout_unlock(out); |
| 3058 | } |
| 3059 | |
| 3060 | // free the node |
| 3061 | if (serialized_leaf) { |
| 3062 | toku_free(ndd); |
| 3063 | toku_free(serialized_leaf); |
| 3064 | } |
| 3065 | toku_ftnode_free(&lbuf->node); |
| 3066 | toku_xids_destroy(&lbuf->xids); |
| 3067 | toku_free(lbuf); |
| 3068 | |
| 3069 | //printf("Nodewrite %d (%.1f%%):", progress_allocation, 100.0*progress_allocation/PROGRESS_MAX); |
| 3070 | if (result == 0) |
| 3071 | result = update_progress(progress_allocation, bl, "wrote node" ); |
| 3072 | |
| 3073 | if (result) |
| 3074 | ft_loader_set_panic(bl, result, true, 0, nullptr, nullptr); |
| 3075 | } |
| 3076 | |
| 3077 | static int write_translation_table (struct dbout *out, long long *off_of_translation_p) { |
| 3078 | seek_align(out); |
| 3079 | struct dbuf ttable; |
| 3080 | dbuf_init(&ttable); |
| 3081 | long long off_of_translation = out->current_off; |
| 3082 | long long bt_size_on_disk = out->n_translations * 16 + 20; |
| 3083 | putbuf_int64(&ttable, out->n_translations); // number of records |
| 3084 | putbuf_int64(&ttable, -1LL); // the linked list |
| 3085 | out->translation[1].off = off_of_translation; |
| 3086 | out->translation[1].size = bt_size_on_disk; |
| 3087 | for (int i=0; i<out->n_translations; i++) { |
| 3088 | putbuf_int64(&ttable, out->translation[i].off); |
| 3089 | putbuf_int64(&ttable, out->translation[i].size); |
| 3090 | } |
| 3091 | unsigned int checksum = toku_x1764_memory(ttable.buf, ttable.off); |
| 3092 | putbuf_int32(&ttable, checksum); |
| 3093 | // pad it to 512 zeros |
| 3094 | long long encoded_length = ttable.off; |
| 3095 | { |
| 3096 | int nbytes_to_add = roundup_to_multiple(512, ttable.off) - encoded_length; |
| 3097 | char zeros[nbytes_to_add]; |
| 3098 | for (int i=0; i<nbytes_to_add; i++) zeros[i]=0; |
| 3099 | putbuf_bytes(&ttable, zeros, nbytes_to_add); |
| 3100 | } |
| 3101 | int result = ttable.error; |
| 3102 | if (result == 0) { |
| 3103 | invariant(bt_size_on_disk==encoded_length); |
| 3104 | result = toku_os_pwrite(out->fd, ttable.buf, ttable.off, off_of_translation); |
| 3105 | } |
| 3106 | dbuf_destroy(&ttable); |
| 3107 | *off_of_translation_p = off_of_translation; |
| 3108 | return result; |
| 3109 | } |
| 3110 | |
| 3111 | static int ( |
| 3112 | struct dbout* out, |
| 3113 | long long translation_location_on_disk, |
| 3114 | long long translation_size_on_disk) { |
| 3115 | |
| 3116 | int result = 0; |
| 3117 | size_t size = toku_serialize_ft_size(out->ft->h); |
| 3118 | size_t alloced_size = roundup_to_multiple(512, size); |
| 3119 | struct wbuf wbuf; |
| 3120 | char *MALLOC_N_ALIGNED(512, alloced_size, buf); |
| 3121 | if (buf == NULL) { |
| 3122 | result = get_error_errno(); |
| 3123 | } else { |
| 3124 | wbuf_init(&wbuf, buf, size); |
| 3125 | out->ft->h->on_disk_stats = out->ft->in_memory_stats; |
| 3126 | out->ft->h->on_disk_logical_rows = out->ft->in_memory_logical_rows; |
| 3127 | toku_serialize_ft_to_wbuf(&wbuf, out->ft->h, translation_location_on_disk, translation_size_on_disk); |
| 3128 | for (size_t i=size; i<alloced_size; i++) buf[i]=0; // initialize all those unused spots to zero |
| 3129 | if (wbuf.ndone != size) |
| 3130 | result = EINVAL; |
| 3131 | else { |
| 3132 | assert(wbuf.ndone <= alloced_size); |
| 3133 | result = toku_os_pwrite(out->fd, wbuf.buf, alloced_size, 0); |
| 3134 | } |
| 3135 | toku_free(buf); |
| 3136 | } |
| 3137 | return result; |
| 3138 | } |
| 3139 | |
| 3140 | static int read_some_pivots (FIDX pivots_file, int n_to_read, FTLOADER bl, |
| 3141 | /*out*/ DBT pivots[/*n_to_read*/]) |
| 3142 | // pivots is an array to be filled in. The pivots array is uninitialized. |
| 3143 | { |
| 3144 | for (int i = 0; i < n_to_read; i++) |
| 3145 | pivots[i] = zero_dbt; |
| 3146 | |
| 3147 | TOKU_FILE *pivots_stream = toku_bl_fidx2file(bl, pivots_file); |
| 3148 | |
| 3149 | int result = 0; |
| 3150 | for (int i = 0; i < n_to_read; i++) { |
| 3151 | int r = bl_read_dbt(&pivots[i], pivots_stream); |
| 3152 | if (r != 0) { |
| 3153 | result = r; |
| 3154 | break; |
| 3155 | } |
| 3156 | } |
| 3157 | return result; |
| 3158 | } |
| 3159 | |
| 3160 | static void delete_pivots(DBT pivots[], int n) { |
| 3161 | for (int i = 0; i < n; i++) |
| 3162 | toku_free(pivots[i].data); |
| 3163 | toku_free(pivots); |
| 3164 | } |
| 3165 | |
| 3166 | static int setup_nonleaf_block (int n_children, |
| 3167 | struct subtrees_info *subtrees, FIDX pivots_file, int64_t first_child_offset_in_subtrees, |
| 3168 | struct subtrees_info *next_subtrees, FIDX next_pivots_file, |
| 3169 | struct dbout *out, FTLOADER bl, |
| 3170 | /*out*/int64_t *blocknum, |
| 3171 | /*out*/struct subtree_info **subtrees_info_p, |
| 3172 | /*out*/DBT **pivots_p) |
| 3173 | // Do the serial part of setting up a non leaf block. |
| 3174 | // Read the pivots out of the file, and store them in a newly allocated array of DBTs (returned in *pivots_p) There are (n_blocks_to_use-1) of these. |
| 3175 | // Copy the final pivot into the next_pivots file instead of returning it. |
| 3176 | // Copy the subtree_info from the subtrees structure, and store them in a newly allocated array of subtree_infos (return in *subtrees_info_p). There are n_blocks_to_use of these. |
| 3177 | // Allocate a block number and return it in *blocknum. |
| 3178 | // Store the blocknum in the next_blocks structure, so it can be combined with the pivots at the next level of the tree. |
| 3179 | // Update n_blocks_used and n_translations. |
| 3180 | // This code cannot be called in parallel because of all the race conditions. |
| 3181 | // The actual creation of the node can be called in parallel after this work is done. |
| 3182 | { |
| 3183 | //printf("Nonleaf has children :"); for(int i=0; i<n_children; i++) printf(" %ld", subtrees->subtrees[i].block); printf("\n"); |
| 3184 | |
| 3185 | int result = 0; |
| 3186 | |
| 3187 | DBT *MALLOC_N(n_children, pivots); |
| 3188 | if (pivots == NULL) { |
| 3189 | result = get_error_errno(); |
| 3190 | } |
| 3191 | |
| 3192 | if (result == 0) { |
| 3193 | int r = read_some_pivots(pivots_file, n_children, bl, pivots); |
| 3194 | if (r) |
| 3195 | result = r; |
| 3196 | } |
| 3197 | |
| 3198 | if (result == 0) { |
| 3199 | TOKU_FILE *next_pivots_stream = toku_bl_fidx2file(bl, next_pivots_file); |
| 3200 | int r = bl_write_dbt( |
| 3201 | &pivots[n_children - 1], next_pivots_stream, NULL, nullptr, bl); |
| 3202 | if (r) |
| 3203 | result = r; |
| 3204 | } |
| 3205 | |
| 3206 | if (result == 0) { |
| 3207 | // The last pivot was written to the next_pivots file, so we free it now instead of returning it. |
| 3208 | toku_free(pivots[n_children-1].data); |
| 3209 | pivots[n_children-1] = zero_dbt; |
| 3210 | |
| 3211 | struct subtree_info *XMALLOC_N(n_children, subtrees_array); |
| 3212 | for (int i = 0; i < n_children; i++) { |
| 3213 | int64_t from_blocknum = first_child_offset_in_subtrees + i; |
| 3214 | subtrees_array[i] = subtrees->subtrees[from_blocknum]; |
| 3215 | } |
| 3216 | |
| 3217 | int r = allocate_block(out, blocknum); |
| 3218 | if (r) { |
| 3219 | toku_free(subtrees_array); |
| 3220 | result = r; |
| 3221 | } else { |
| 3222 | allocate_node(next_subtrees, *blocknum); |
| 3223 | |
| 3224 | *pivots_p = pivots; |
| 3225 | *subtrees_info_p = subtrees_array; |
| 3226 | } |
| 3227 | } |
| 3228 | |
| 3229 | if (result != 0) { |
| 3230 | if (pivots) { |
| 3231 | delete_pivots(pivots, n_children); pivots = NULL; |
| 3232 | } |
| 3233 | } |
| 3234 | |
| 3235 | return result; |
| 3236 | } |
| 3237 | |
| 3238 | static void write_nonleaf_node (FTLOADER bl, struct dbout *out, int64_t blocknum_of_new_node, int n_children, |
| 3239 | DBT *pivots, /* must free this array, as well as the things it points t */ |
| 3240 | struct subtree_info *subtree_info, int height, const DESCRIPTOR UU(desc), uint32_t UU(target_nodesize), uint32_t target_basementnodesize, enum toku_compression_method target_compression_method) |
| 3241 | { |
| 3242 | //Nodes do not currently touch descriptors |
| 3243 | invariant(height > 0); |
| 3244 | |
| 3245 | int result = 0; |
| 3246 | |
| 3247 | FTNODE XMALLOC(node); |
| 3248 | toku_initialize_empty_ftnode(node, make_blocknum(blocknum_of_new_node), height, n_children, |
| 3249 | FT_LAYOUT_VERSION, 0); |
| 3250 | node->pivotkeys.create_from_dbts(pivots, n_children - 1); |
| 3251 | assert(node->bp); |
| 3252 | for (int i=0; i<n_children; i++) { |
| 3253 | BP_BLOCKNUM(node,i) = make_blocknum(subtree_info[i].block); |
| 3254 | BP_STATE(node,i) = PT_AVAIL; |
| 3255 | } |
| 3256 | |
| 3257 | FTNODE_DISK_DATA ndd = NULL; |
| 3258 | if (result == 0) { |
| 3259 | size_t n_bytes; |
| 3260 | size_t n_uncompressed_bytes; |
| 3261 | char *bytes; |
| 3262 | int r; |
| 3263 | r = toku_serialize_ftnode_to_memory(node, &ndd, target_basementnodesize, target_compression_method, true, true, &n_bytes, &n_uncompressed_bytes, &bytes); |
| 3264 | if (r) { |
| 3265 | result = r; |
| 3266 | } else { |
| 3267 | dbout_lock(out); |
| 3268 | out->translation[blocknum_of_new_node].off = out->current_off; |
| 3269 | out->translation[blocknum_of_new_node].size = n_bytes; |
| 3270 | //fprintf(stderr, "Wrote internal node at %ld (%ld bytes)\n", out->current_off, n_bytes); |
| 3271 | //for (uint32_t i=0; i<n_bytes; i++) { unsigned char b = bytes[i]; printf("%d:%02x (%d) ('%c')\n", i, b, b, (b>=' ' && b<128) ? b : '*'); } |
| 3272 | r = write_literal(out, bytes, n_bytes); |
| 3273 | if (r) |
| 3274 | result = r; |
| 3275 | else |
| 3276 | seek_align_locked(out); |
| 3277 | dbout_unlock(out); |
| 3278 | toku_free(bytes); |
| 3279 | } |
| 3280 | } |
| 3281 | |
| 3282 | for (int i=0; i<n_children-1; i++) { |
| 3283 | toku_free(pivots[i].data); |
| 3284 | } |
| 3285 | for (int i=0; i<n_children; i++) { |
| 3286 | destroy_nonleaf_childinfo(BNC(node,i)); |
| 3287 | } |
| 3288 | toku_free(pivots); |
| 3289 | // TODO: Should be using toku_destroy_ftnode_internals, which should be renamed to toku_ftnode_destroy |
| 3290 | toku_free(node->bp); |
| 3291 | node->pivotkeys.destroy(); |
| 3292 | toku_free(node); |
| 3293 | toku_free(ndd); |
| 3294 | toku_free(subtree_info); |
| 3295 | |
| 3296 | if (result != 0) |
| 3297 | ft_loader_set_panic(bl, result, true, 0, nullptr, nullptr); |
| 3298 | } |
| 3299 | |
| 3300 | static int write_nonleaves (FTLOADER bl, FIDX pivots_fidx, struct dbout *out, struct subtrees_info *sts, const DESCRIPTOR descriptor, uint32_t target_nodesize, uint32_t target_basementnodesize, enum toku_compression_method target_compression_method) { |
| 3301 | int result = 0; |
| 3302 | int height = 1; |
| 3303 | |
| 3304 | // Watch out for the case where we saved the last pivot but didn't write any more nodes out. |
| 3305 | // The trick is not to look at n_pivots, but to look at blocks.n_blocks |
| 3306 | while (sts->n_subtrees > 1) { |
| 3307 | // If there is more than one block in blocks, then we must build another level of the tree. |
| 3308 | |
| 3309 | // we need to create a pivots file for the pivots of the next level. |
| 3310 | // and a blocks_array |
| 3311 | // So for example. |
| 3312 | // 1) we grab 16 pivots and 16 blocks. |
| 3313 | // 2) We put the 15 pivots and 16 blocks into an non-leaf node. |
| 3314 | // 3) We put the 16th pivot into the next pivots file. |
| 3315 | { |
| 3316 | int r = |
| 3317 | fseek(toku_bl_fidx2file(bl, pivots_fidx)->file, 0, SEEK_SET); |
| 3318 | if (r != 0) { |
| 3319 | return get_error_errno(); |
| 3320 | } |
| 3321 | } |
| 3322 | |
| 3323 | FIDX next_pivots_file; |
| 3324 | { |
| 3325 | int r = ft_loader_open_temp_file (bl, &next_pivots_file); |
| 3326 | if (r != 0) { result = r; break; } |
| 3327 | } |
| 3328 | |
| 3329 | struct subtrees_info next_sts; |
| 3330 | subtrees_info_init(&next_sts); |
| 3331 | next_sts.n_subtrees = 0; |
| 3332 | next_sts.n_subtrees_limit = 1; |
| 3333 | XMALLOC_N(next_sts.n_subtrees_limit, next_sts.subtrees); |
| 3334 | |
| 3335 | const int n_per_block = 15; |
| 3336 | int64_t n_subtrees_used = 0; |
| 3337 | while (sts->n_subtrees - n_subtrees_used >= n_per_block*2) { |
| 3338 | // grab the first N_PER_BLOCK and build a node. |
| 3339 | DBT *pivots; |
| 3340 | int64_t blocknum_of_new_node = 0; |
| 3341 | struct subtree_info *subtree_info; |
| 3342 | int r = setup_nonleaf_block (n_per_block, |
| 3343 | sts, pivots_fidx, n_subtrees_used, |
| 3344 | &next_sts, next_pivots_file, |
| 3345 | out, bl, |
| 3346 | &blocknum_of_new_node, &subtree_info, &pivots); |
| 3347 | if (r) { |
| 3348 | result = r; |
| 3349 | break; |
| 3350 | } else { |
| 3351 | write_nonleaf_node(bl, out, blocknum_of_new_node, n_per_block, pivots, subtree_info, height, descriptor, target_nodesize, target_basementnodesize, target_compression_method); // frees all the data structures that go into making the node. |
| 3352 | n_subtrees_used += n_per_block; |
| 3353 | } |
| 3354 | } |
| 3355 | |
| 3356 | int64_t n_blocks_left = sts->n_subtrees - n_subtrees_used; |
| 3357 | if (result == 0) { |
| 3358 | // Now we have a one or two blocks at the end to handle. |
| 3359 | invariant(n_blocks_left>=2); |
| 3360 | if (n_blocks_left > n_per_block) { |
| 3361 | // Write half the remaining blocks |
| 3362 | int64_t n_first = n_blocks_left/2; |
| 3363 | DBT *pivots; |
| 3364 | int64_t blocknum_of_new_node; |
| 3365 | struct subtree_info *subtree_info; |
| 3366 | int r = setup_nonleaf_block(n_first, |
| 3367 | sts, pivots_fidx, n_subtrees_used, |
| 3368 | &next_sts, next_pivots_file, |
| 3369 | out, bl, |
| 3370 | &blocknum_of_new_node, &subtree_info, &pivots); |
| 3371 | if (r) { |
| 3372 | result = r; |
| 3373 | } else { |
| 3374 | write_nonleaf_node(bl, out, blocknum_of_new_node, n_first, pivots, subtree_info, height, descriptor, target_nodesize, target_basementnodesize, target_compression_method); |
| 3375 | n_blocks_left -= n_first; |
| 3376 | n_subtrees_used += n_first; |
| 3377 | } |
| 3378 | } |
| 3379 | } |
| 3380 | if (result == 0) { |
| 3381 | // Write the last block. |
| 3382 | DBT *pivots; |
| 3383 | int64_t blocknum_of_new_node; |
| 3384 | struct subtree_info *subtree_info; |
| 3385 | int r = setup_nonleaf_block(n_blocks_left, |
| 3386 | sts, pivots_fidx, n_subtrees_used, |
| 3387 | &next_sts, next_pivots_file, |
| 3388 | out, bl, |
| 3389 | &blocknum_of_new_node, &subtree_info, &pivots); |
| 3390 | if (r) { |
| 3391 | result = r; |
| 3392 | } else { |
| 3393 | write_nonleaf_node(bl, out, blocknum_of_new_node, n_blocks_left, pivots, subtree_info, height, descriptor, target_nodesize, target_basementnodesize, target_compression_method); |
| 3394 | n_subtrees_used += n_blocks_left; |
| 3395 | } |
| 3396 | } |
| 3397 | if (result == 0) |
| 3398 | invariant(n_subtrees_used == sts->n_subtrees); |
| 3399 | |
| 3400 | |
| 3401 | if (result == 0) // pick up write_nonleaf_node errors |
| 3402 | result = ft_loader_get_error(&bl->error_callback); |
| 3403 | |
| 3404 | // Now set things up for the next iteration. |
| 3405 | int r = ft_loader_fi_close(&bl->file_infos, pivots_fidx, true); if (r != 0 && result == 0) result = r; |
| 3406 | r = ft_loader_fi_unlink(&bl->file_infos, pivots_fidx); if (r != 0 && result == 0) result = r; |
| 3407 | pivots_fidx = next_pivots_file; |
| 3408 | toku_free(sts->subtrees); sts->subtrees = NULL; |
| 3409 | *sts = next_sts; |
| 3410 | height++; |
| 3411 | |
| 3412 | if (result) |
| 3413 | break; |
| 3414 | } |
| 3415 | { int r = ft_loader_fi_close (&bl->file_infos, pivots_fidx, true); if (r != 0 && result == 0) result = r; } |
| 3416 | { int r = ft_loader_fi_unlink(&bl->file_infos, pivots_fidx); if (r != 0 && result == 0) result = r; } |
| 3417 | return result; |
| 3418 | } |
| 3419 | |
| 3420 | void ft_loader_set_fractal_workers_count_from_c(FTLOADER bl) { |
| 3421 | ft_loader_set_fractal_workers_count (bl); |
| 3422 | } |
| 3423 | |
| 3424 | |
| 3425 | |