1 | /* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */ |
2 | // vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4: |
3 | #ident "$Id$" |
4 | /*====== |
5 | This file is part of PerconaFT. |
6 | |
7 | |
8 | Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved. |
9 | |
10 | PerconaFT is free software: you can redistribute it and/or modify |
11 | it under the terms of the GNU General Public License, version 2, |
12 | as published by the Free Software Foundation. |
13 | |
14 | PerconaFT is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
17 | GNU General Public License for more details. |
18 | |
19 | You should have received a copy of the GNU General Public License |
20 | along with PerconaFT. If not, see <http://www.gnu.org/licenses/>. |
21 | |
22 | ---------------------------------------- |
23 | |
24 | PerconaFT is free software: you can redistribute it and/or modify |
25 | it under the terms of the GNU Affero General Public License, version 3, |
26 | as published by the Free Software Foundation. |
27 | |
28 | PerconaFT is distributed in the hope that it will be useful, |
29 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
30 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
31 | GNU Affero General Public License for more details. |
32 | |
33 | You should have received a copy of the GNU Affero General Public License |
34 | along with PerconaFT. If not, see <http://www.gnu.org/licenses/>. |
35 | ======= */ |
36 | |
37 | #ident "Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved." |
38 | |
39 | #include <my_global.h> |
40 | #include <toku_portability.h> |
41 | |
42 | #include <arpa/inet.h> |
43 | |
44 | #include <stdio.h> |
45 | #include <memory.h> |
46 | #include <errno.h> |
47 | #include <toku_assert.h> |
48 | #include <string.h> |
49 | #include <fcntl.h> |
50 | |
51 | #include "ft/ft.h" |
52 | #include "ft/ft-internal.h" |
53 | #include "ft/leafentry.h" |
54 | #include "ft/loader/loader-internal.h" |
55 | #include "ft/loader/pqueue.h" |
56 | #include "ft/loader/dbufio.h" |
57 | #include "ft/logger/log-internal.h" |
58 | #include "ft/node.h" |
59 | #include "ft/serialize/block_table.h" |
60 | #include "ft/serialize/ft-serialize.h" |
61 | #include "ft/serialize/ft_node-serialize.h" |
62 | #include "ft/serialize/sub_block.h" |
63 | |
64 | #include "util/x1764.h" |
65 | |
66 | toku_instr_key *loader_bl_mutex_key; |
67 | toku_instr_key *loader_fi_lock_mutex_key; |
68 | toku_instr_key *loader_out_mutex_key; |
69 | |
70 | toku_instr_key *; |
71 | toku_instr_key *fractal_thread_key; |
72 | |
73 | toku_instr_key *tokudb_file_tmp_key; |
74 | toku_instr_key *tokudb_file_load_key; |
75 | |
76 | // 1024 is the right size_factor for production. |
77 | // Different values for these sizes may be used for testing. |
78 | static uint32_t size_factor = 1024; |
79 | static uint32_t default_loader_nodesize = FT_DEFAULT_NODE_SIZE; |
80 | static uint32_t default_loader_basementnodesize = FT_DEFAULT_BASEMENT_NODE_SIZE; |
81 | |
82 | void |
83 | toku_ft_loader_set_size_factor(uint32_t factor) { |
84 | // For test purposes only |
85 | size_factor = factor; |
86 | default_loader_nodesize = (size_factor==1) ? (1<<15) : FT_DEFAULT_NODE_SIZE; |
87 | } |
88 | |
89 | uint64_t |
90 | toku_ft_loader_get_rowset_budget_for_testing (void) |
91 | // For test purposes only. In production, the rowset size is determined by negotiation with the cachetable for some memory. (See #2613). |
92 | { |
93 | return 16ULL*size_factor*1024ULL; |
94 | } |
95 | |
96 | void ft_loader_lock_init(FTLOADER bl) { |
97 | invariant(!bl->mutex_init); |
98 | toku_mutex_init(*loader_bl_mutex_key, &bl->mutex, nullptr); |
99 | bl->mutex_init = true; |
100 | } |
101 | |
102 | void ft_loader_lock_destroy(FTLOADER bl) { |
103 | if (bl->mutex_init) { |
104 | toku_mutex_destroy(&bl->mutex); |
105 | bl->mutex_init = false; |
106 | } |
107 | } |
108 | |
109 | static void ft_loader_lock(FTLOADER bl) { |
110 | invariant(bl->mutex_init); |
111 | toku_mutex_lock(&bl->mutex); |
112 | } |
113 | |
114 | static void ft_loader_unlock(FTLOADER bl) { |
115 | invariant(bl->mutex_init); |
116 | toku_mutex_unlock(&bl->mutex); |
117 | } |
118 | |
119 | static int add_big_buffer(struct file_info *file) { |
120 | int result = 0; |
121 | bool newbuffer = false; |
122 | if (file->buffer == NULL) { |
123 | file->buffer = toku_malloc(file->buffer_size); |
124 | if (file->buffer == NULL) |
125 | result = get_error_errno(); |
126 | else |
127 | newbuffer = true; |
128 | } |
129 | if (result == 0) { |
130 | int r = setvbuf(file->file->file, |
131 | static_cast<char *>(file->buffer), |
132 | _IOFBF, |
133 | file->buffer_size); |
134 | if (r != 0) { |
135 | result = get_error_errno(); |
136 | if (newbuffer) { |
137 | toku_free(file->buffer); |
138 | file->buffer = NULL; |
139 | } |
140 | } |
141 | } |
142 | return result; |
143 | } |
144 | |
145 | static void cleanup_big_buffer(struct file_info *file) { |
146 | if (file->buffer) { |
147 | toku_free(file->buffer); |
148 | file->buffer = NULL; |
149 | } |
150 | } |
151 | |
152 | int ft_loader_init_file_infos(struct file_infos *fi) { |
153 | int result = 0; |
154 | toku_mutex_init(*loader_fi_lock_mutex_key, &fi->lock, nullptr); |
155 | fi->n_files = 0; |
156 | fi->n_files_limit = 1; |
157 | fi->n_files_open = 0; |
158 | fi->n_files_extant = 0; |
159 | MALLOC_N(fi->n_files_limit, fi->file_infos); |
160 | if (fi->file_infos == NULL) |
161 | result = get_error_errno(); |
162 | return result; |
163 | } |
164 | |
165 | void ft_loader_fi_destroy (struct file_infos *fi, bool is_error) |
166 | // Effect: Free the resources in the fi. |
167 | // If is_error then we close and unlink all the temp files. |
168 | // If !is_error then requires that all the temp files have been closed and destroyed |
169 | // No error codes are returned. If anything goes wrong with closing and unlinking then it's only in an is_error case, so we don't care. |
170 | { |
171 | if (fi->file_infos == NULL) { |
172 | // ft_loader_init_file_infos guarantees this isn't null, so if it is, we know it hasn't been inited yet and we don't need to destroy it. |
173 | return; |
174 | } |
175 | toku_mutex_destroy(&fi->lock); |
176 | if (!is_error) { |
177 | invariant(fi->n_files_open==0); |
178 | invariant(fi->n_files_extant==0); |
179 | } |
180 | for (int i=0; i<fi->n_files; i++) { |
181 | if (fi->file_infos[i].is_open) { |
182 | invariant(is_error); |
183 | toku_os_fclose(fi->file_infos[i].file); // don't check for errors, since we are in an error case. |
184 | } |
185 | if (fi->file_infos[i].is_extant) { |
186 | invariant(is_error); |
187 | unlink(fi->file_infos[i].fname); |
188 | toku_free(fi->file_infos[i].fname); |
189 | } |
190 | cleanup_big_buffer(&fi->file_infos[i]); |
191 | } |
192 | toku_free(fi->file_infos); |
193 | fi->n_files=0; |
194 | fi->n_files_limit=0; |
195 | fi->file_infos = NULL; |
196 | } |
197 | |
198 | static int open_file_add(struct file_infos *fi, |
199 | TOKU_FILE *file, |
200 | char *fname, |
201 | /* out */ FIDX *idx) { |
202 | int result = 0; |
203 | toku_mutex_lock(&fi->lock); |
204 | if (fi->n_files >= fi->n_files_limit) { |
205 | fi->n_files_limit *=2; |
206 | XREALLOC_N(fi->n_files_limit, fi->file_infos); |
207 | } |
208 | invariant(fi->n_files < fi->n_files_limit); |
209 | fi->file_infos[fi->n_files].is_open = true; |
210 | fi->file_infos[fi->n_files].is_extant = true; |
211 | fi->file_infos[fi->n_files].fname = fname; |
212 | fi->file_infos[fi->n_files].file = file; |
213 | fi->file_infos[fi->n_files].n_rows = 0; |
214 | fi->file_infos[fi->n_files].buffer_size = FILE_BUFFER_SIZE; |
215 | fi->file_infos[fi->n_files].buffer = NULL; |
216 | result = add_big_buffer(&fi->file_infos[fi->n_files]); |
217 | if (result == 0) { |
218 | idx->idx = fi->n_files; |
219 | fi->n_files++; |
220 | fi->n_files_extant++; |
221 | fi->n_files_open++; |
222 | } |
223 | toku_mutex_unlock(&fi->lock); |
224 | return result; |
225 | } |
226 | |
227 | int ft_loader_fi_reopen (struct file_infos *fi, FIDX idx, const char *mode) { |
228 | int result = 0; |
229 | toku_mutex_lock(&fi->lock); |
230 | int i = idx.idx; |
231 | invariant(i >= 0 && i < fi->n_files); |
232 | invariant(!fi->file_infos[i].is_open); |
233 | invariant(fi->file_infos[i].is_extant); |
234 | fi->file_infos[i].file = |
235 | toku_os_fopen(fi->file_infos[i].fname, mode, *tokudb_file_load_key); |
236 | if (fi->file_infos[i].file == NULL) { |
237 | result = get_error_errno(); |
238 | } else { |
239 | fi->file_infos[i].is_open = true; |
240 | // No longer need the big buffer for reopened files. Don't allocate the space, we need it elsewhere. |
241 | //add_big_buffer(&fi->file_infos[i]); |
242 | fi->n_files_open++; |
243 | } |
244 | toku_mutex_unlock(&fi->lock); |
245 | return result; |
246 | } |
247 | |
248 | int ft_loader_fi_close (struct file_infos *fi, FIDX idx, bool require_open) |
249 | { |
250 | int result = 0; |
251 | toku_mutex_lock(&fi->lock); |
252 | invariant(idx.idx >=0 && idx.idx < fi->n_files); |
253 | if (fi->file_infos[idx.idx].is_open) { |
254 | invariant(fi->n_files_open>0); // loader-cleanup-test failure |
255 | fi->n_files_open--; |
256 | fi->file_infos[idx.idx].is_open = false; |
257 | int r = toku_os_fclose(fi->file_infos[idx.idx].file); |
258 | if (r) |
259 | result = get_error_errno(); |
260 | cleanup_big_buffer(&fi->file_infos[idx.idx]); |
261 | } else if (require_open) |
262 | result = EINVAL; |
263 | toku_mutex_unlock(&fi->lock); |
264 | return result; |
265 | } |
266 | |
267 | int ft_loader_fi_unlink (struct file_infos *fi, FIDX idx) { |
268 | int result = 0; |
269 | toku_mutex_lock(&fi->lock); |
270 | int id = idx.idx; |
271 | invariant(id >=0 && id < fi->n_files); |
272 | if (fi->file_infos[id].is_extant) { // must still exist |
273 | invariant(fi->n_files_extant>0); |
274 | fi->n_files_extant--; |
275 | invariant(!fi->file_infos[id].is_open); // must be closed before we unlink |
276 | fi->file_infos[id].is_extant = false; |
277 | int r = unlink(fi->file_infos[id].fname); |
278 | if (r != 0) |
279 | result = get_error_errno(); |
280 | toku_free(fi->file_infos[id].fname); |
281 | fi->file_infos[id].fname = NULL; |
282 | } else |
283 | result = EINVAL; |
284 | toku_mutex_unlock(&fi->lock); |
285 | return result; |
286 | } |
287 | |
288 | int |
289 | ft_loader_fi_close_all(struct file_infos *fi) { |
290 | int rval = 0; |
291 | for (int i = 0; i < fi->n_files; i++) { |
292 | int r; |
293 | FIDX idx = { i }; |
294 | r = ft_loader_fi_close(fi, idx, false); // ignore files that are already closed |
295 | if (rval == 0 && r) |
296 | rval = r; // capture first error |
297 | } |
298 | return rval; |
299 | } |
300 | |
301 | int ft_loader_open_temp_file (FTLOADER bl, FIDX *file_idx) |
302 | /* Effect: Open a temporary file in read-write mode. Save enough information to close and delete the file later. |
303 | * Return value: 0 on success, an error number otherwise. |
304 | * On error, *file_idx and *fnamep will be unmodified. |
305 | * The open file will be saved in bl->file_infos so that even if errors happen we can free them all. |
306 | */ |
307 | { |
308 | int result = 0; |
309 | if (result) // debug hack |
310 | return result; |
311 | TOKU_FILE *f = NULL; |
312 | int fd = -1; |
313 | char *fname = toku_strdup(bl->temp_file_template); |
314 | if (fname == NULL) |
315 | result = get_error_errno(); |
316 | else { |
317 | fd = mkstemp(fname); |
318 | if (fd < 0) { |
319 | result = get_error_errno(); |
320 | } else { |
321 | f = toku_os_fdopen(fd, "r+" , fname, *tokudb_file_tmp_key); |
322 | if (f->file == nullptr) |
323 | result = get_error_errno(); |
324 | else |
325 | result = open_file_add(&bl->file_infos, f, fname, file_idx); |
326 | } |
327 | } |
328 | if (result != 0) { |
329 | if (fd >= 0) { |
330 | toku_os_close(fd); |
331 | unlink(fname); |
332 | } |
333 | if (f != NULL) |
334 | toku_os_fclose(f); // don't check for error because we're already in an error case |
335 | if (fname != NULL) |
336 | toku_free(fname); |
337 | } |
338 | return result; |
339 | } |
340 | |
341 | void toku_ft_loader_internal_destroy(FTLOADER bl, bool is_error) { |
342 | ft_loader_lock_destroy(bl); |
343 | |
344 | // These frees rely on the fact that if you free a NULL pointer then nothing bad happens. |
345 | toku_free(bl->dbs); |
346 | toku_free(bl->descriptors); |
347 | toku_free(bl->root_xids_that_created); |
348 | if (bl->new_fnames_in_env) { |
349 | for (int i = 0; i < bl->N; i++) |
350 | toku_free((char*)bl->new_fnames_in_env[i]); |
351 | toku_free(bl->new_fnames_in_env); |
352 | } |
353 | toku_free(bl->extracted_datasizes); |
354 | toku_free(bl->bt_compare_funs); |
355 | toku_free((char*)bl->temp_file_template); |
356 | ft_loader_fi_destroy(&bl->file_infos, is_error); |
357 | |
358 | for (int i = 0; i < bl->N; i++) |
359 | destroy_rowset(&bl->rows[i]); |
360 | toku_free(bl->rows); |
361 | |
362 | for (int i = 0; i < bl->N; i++) |
363 | destroy_merge_fileset(&bl->fs[i]); |
364 | toku_free(bl->fs); |
365 | |
366 | if (bl->last_key) { |
367 | for (int i=0; i < bl->N; i++) { |
368 | toku_free(bl->last_key[i].data); |
369 | } |
370 | toku_free(bl->last_key); |
371 | bl->last_key = NULL; |
372 | } |
373 | |
374 | destroy_rowset(&bl->primary_rowset); |
375 | if (bl->primary_rowset_queue) { |
376 | toku_queue_destroy(bl->primary_rowset_queue); |
377 | bl->primary_rowset_queue = nullptr; |
378 | } |
379 | |
380 | for (int i=0; i<bl->N; i++) { |
381 | if ( bl->fractal_queues ) { |
382 | invariant(bl->fractal_queues[i]==NULL); |
383 | } |
384 | } |
385 | toku_free(bl->fractal_threads); |
386 | toku_free(bl->fractal_queues); |
387 | toku_free(bl->fractal_threads_live); |
388 | |
389 | if (bl->did_reserve_memory) { |
390 | invariant(bl->cachetable); |
391 | toku_cachetable_release_reserved_memory(bl->cachetable, bl->reserved_memory); |
392 | } |
393 | |
394 | ft_loader_destroy_error_callback(&bl->error_callback); |
395 | ft_loader_destroy_poll_callback(&bl->poll_callback); |
396 | |
397 | //printf("Progress=%d/%d\n", bl->progress, PROGRESS_MAX); |
398 | |
399 | toku_free(bl); |
400 | } |
401 | |
402 | static void *extractor_thread (void*); |
403 | |
404 | #define MAX(a,b) (((a)<(b)) ? (b) : (a)) |
405 | |
406 | static uint64_t (FTLOADER bl) |
407 | // Return how much memory can be allocated for each rowset. |
408 | { |
409 | if (size_factor==1) { |
410 | return 16*1024; |
411 | } else { |
412 | // There is a primary rowset being maintained by the foreground thread. |
413 | // There could be two more in the queue. |
414 | // There is one rowset for each index (bl->N) being filled in. |
415 | // Later we may have sort_and_write operations spawning in parallel, and will need to account for that. |
416 | int n_copies = (1 // primary rowset |
417 | +EXTRACTOR_QUEUE_DEPTH // the number of primaries in the queue |
418 | +bl->N // the N rowsets being constructed by the extractor thread. |
419 | +bl->N // the N sort buffers |
420 | +1 // Give the extractor thread one more so that it can have temporary space for sorting. This is overkill. |
421 | ); |
422 | int64_t = bl->N * FILE_BUFFER_SIZE; // for each index we are writing to a file at any given time. |
423 | int64_t tentative_rowset_size = ((int64_t)(bl->reserved_memory - extra_reserved_memory))/(n_copies); |
424 | return MAX(tentative_rowset_size, (int64_t)MIN_ROWSET_MEMORY); |
425 | } |
426 | } |
427 | |
428 | static unsigned ft_loader_get_fractal_workers_count(FTLOADER bl) { |
429 | unsigned w = 0; |
430 | while (1) { |
431 | ft_loader_lock(bl); |
432 | w = bl->fractal_workers; |
433 | ft_loader_unlock(bl); |
434 | if (w != 0) |
435 | break; |
436 | toku_pthread_yield(); // maybe use a cond var instead |
437 | } |
438 | return w; |
439 | } |
440 | |
441 | static void ft_loader_set_fractal_workers_count(FTLOADER bl) { |
442 | ft_loader_lock(bl); |
443 | if (bl->fractal_workers == 0) |
444 | bl->fractal_workers = 1; |
445 | ft_loader_unlock(bl); |
446 | } |
447 | |
448 | // To compute a merge, we have a certain amount of memory to work with. |
449 | // We perform only one fanin at a time. |
450 | // If the fanout is F then we are using |
451 | // F merges. Each merge uses |
452 | // DBUFIO_DEPTH buffers for double buffering. Each buffer is of size at least MERGE_BUF_SIZE |
453 | // so the memory is |
454 | // F*MERGE_BUF_SIZE*DBUFIO_DEPTH storage. |
455 | // We use some additional space to buffer the outputs. |
456 | // That's FILE_BUFFER_SIZE for writing to a merge file if we are writing to a mergefile. |
457 | // And we have FRACTAL_WRITER_ROWSETS*MERGE_BUF_SIZE per queue |
458 | // And if we are doing a fractal, each worker could have have a fractal tree that it's working on. |
459 | // |
460 | // DBUFIO_DEPTH*F*MERGE_BUF_SIZE + FRACTAL_WRITER_ROWSETS*MERGE_BUF_SIZE + WORKERS*NODESIZE*2 <= RESERVED_MEMORY |
461 | |
462 | static int64_t memory_avail_during_merge(FTLOADER bl, bool is_fractal_node) { |
463 | // avail memory = reserved memory - WORKERS*NODESIZE*2 for the last merge stage only |
464 | int64_t avail_memory = bl->reserved_memory; |
465 | if (is_fractal_node) { |
466 | // reserve space for the fractal writer thread buffers |
467 | avail_memory -= (int64_t)ft_loader_get_fractal_workers_count(bl) * (int64_t)default_loader_nodesize * 2; // compressed and uncompressed buffers |
468 | } |
469 | return avail_memory; |
470 | } |
471 | |
472 | static int merge_fanin (FTLOADER bl, bool is_fractal_node) { |
473 | // return number of temp files to read in this pass |
474 | int64_t memory_avail = memory_avail_during_merge(bl, is_fractal_node); |
475 | int64_t nbuffers = memory_avail / (int64_t)TARGET_MERGE_BUF_SIZE; |
476 | if (is_fractal_node) |
477 | nbuffers -= FRACTAL_WRITER_ROWSETS; |
478 | return MAX(nbuffers / (int64_t)DBUFIO_DEPTH, (int)MIN_MERGE_FANIN); |
479 | } |
480 | |
481 | static uint64_t memory_per_rowset_during_merge (FTLOADER bl, int merge_factor, bool is_fractal_node // if it is being sent to a q |
482 | ) { |
483 | int64_t memory_avail = memory_avail_during_merge(bl, is_fractal_node); |
484 | int64_t nbuffers = DBUFIO_DEPTH * merge_factor; |
485 | if (is_fractal_node) |
486 | nbuffers += FRACTAL_WRITER_ROWSETS; |
487 | return MAX(memory_avail / nbuffers, (int64_t)MIN_MERGE_BUF_SIZE); |
488 | } |
489 | |
490 | int toku_ft_loader_internal_init (/* out */ FTLOADER *blp, |
491 | CACHETABLE cachetable, |
492 | generate_row_for_put_func g, |
493 | DB *src_db, |
494 | int N, FT_HANDLE fts[/*N*/], DB* dbs[/*N*/], |
495 | const char *new_fnames_in_env[/*N*/], |
496 | ft_compare_func bt_compare_functions[/*N*/], |
497 | const char *temp_file_template, |
498 | LSN load_lsn, |
499 | TOKUTXN txn, |
500 | bool reserve_memory, |
501 | uint64_t reserve_memory_size, |
502 | bool compress_intermediates, |
503 | bool allow_puts) |
504 | // Effect: Allocate and initialize a FTLOADER, but do not create the extractor thread. |
505 | { |
506 | FTLOADER CALLOC(bl); // initialized to all zeros (hence CALLOC) |
507 | if (!bl) return get_error_errno(); |
508 | |
509 | bl->generate_row_for_put = g; |
510 | bl->cachetable = cachetable; |
511 | if (reserve_memory && bl->cachetable) { |
512 | bl->did_reserve_memory = true; |
513 | bl->reserved_memory = toku_cachetable_reserve_memory(bl->cachetable, 2.0/3.0, reserve_memory_size); // allocate 2/3 of the unreserved part (which is 3/4 of the memory to start with). |
514 | } |
515 | else { |
516 | bl->did_reserve_memory = false; |
517 | bl->reserved_memory = 512*1024*1024; // if no cache table use 512MB. |
518 | } |
519 | bl->compress_intermediates = compress_intermediates; |
520 | bl->allow_puts = allow_puts; |
521 | bl->src_db = src_db; |
522 | bl->N = N; |
523 | bl->load_lsn = load_lsn; |
524 | if (txn) { |
525 | bl->load_root_xid = txn->txnid.parent_id64; |
526 | } |
527 | else { |
528 | bl->load_root_xid = TXNID_NONE; |
529 | } |
530 | |
531 | ft_loader_init_error_callback(&bl->error_callback); |
532 | ft_loader_init_poll_callback(&bl->poll_callback); |
533 | |
534 | #define MY_CALLOC_N(n,v) CALLOC_N(n,v); if (!v) { int r = get_error_errno(); toku_ft_loader_internal_destroy(bl, true); return r; } |
535 | #define SET_TO_MY_STRDUP(lval, s) do { char *v = toku_strdup(s); if (!v) { int r = get_error_errno(); toku_ft_loader_internal_destroy(bl, true); return r; } lval = v; } while (0) |
536 | |
537 | MY_CALLOC_N(N, bl->root_xids_that_created); |
538 | for (int i=0; i<N; i++) if (fts[i]) bl->root_xids_that_created[i]=fts[i]->ft->h->root_xid_that_created; |
539 | MY_CALLOC_N(N, bl->dbs); |
540 | for (int i=0; i<N; i++) if (fts[i]) bl->dbs[i]=dbs[i]; |
541 | MY_CALLOC_N(N, bl->descriptors); |
542 | for (int i=0; i<N; i++) if (fts[i]) bl->descriptors[i]=&fts[i]->ft->descriptor; |
543 | MY_CALLOC_N(N, bl->new_fnames_in_env); |
544 | for (int i=0; i<N; i++) SET_TO_MY_STRDUP(bl->new_fnames_in_env[i], new_fnames_in_env[i]); |
545 | MY_CALLOC_N(N, bl->extracted_datasizes); // the calloc_n zeroed everything, which is what we want |
546 | MY_CALLOC_N(N, bl->bt_compare_funs); |
547 | for (int i=0; i<N; i++) bl->bt_compare_funs[i] = bt_compare_functions[i]; |
548 | |
549 | MY_CALLOC_N(N, bl->fractal_queues); |
550 | for (int i=0; i<N; i++) bl->fractal_queues[i]=NULL; |
551 | MY_CALLOC_N(N, bl->fractal_threads); |
552 | MY_CALLOC_N(N, bl->fractal_threads_live); |
553 | for (int i=0; i<N; i++) bl->fractal_threads_live[i] = false; |
554 | |
555 | { |
556 | int r = ft_loader_init_file_infos(&bl->file_infos); |
557 | if (r!=0) { toku_ft_loader_internal_destroy(bl, true); return r; } |
558 | } |
559 | |
560 | SET_TO_MY_STRDUP(bl->temp_file_template, temp_file_template); |
561 | |
562 | bl->n_rows = 0; |
563 | bl->progress = 0; |
564 | bl->progress_callback_result = 0; |
565 | |
566 | MY_CALLOC_N(N, bl->rows); |
567 | MY_CALLOC_N(N, bl->fs); |
568 | MY_CALLOC_N(N, bl->last_key); |
569 | for(int i=0;i<N;i++) { |
570 | { |
571 | int r = init_rowset(&bl->rows[i], memory_per_rowset_during_extract(bl)); |
572 | if (r!=0) { toku_ft_loader_internal_destroy(bl, true); return r; } |
573 | } |
574 | init_merge_fileset(&bl->fs[i]); |
575 | bl->last_key[i].flags = DB_DBT_REALLOC; // don't really need this, but it's nice to maintain it. We use ulen to keep track of the realloced space. |
576 | } |
577 | |
578 | { |
579 | int r = init_rowset(&bl->primary_rowset, memory_per_rowset_during_extract(bl)); |
580 | if (r!=0) { toku_ft_loader_internal_destroy(bl, true); return r; } |
581 | } |
582 | { int r = toku_queue_create(&bl->primary_rowset_queue, EXTRACTOR_QUEUE_DEPTH); |
583 | if (r!=0) { toku_ft_loader_internal_destroy(bl, true); return r; } |
584 | } |
585 | { |
586 | ft_loader_lock_init(bl); |
587 | } |
588 | |
589 | *blp = bl; |
590 | |
591 | return 0; |
592 | } |
593 | |
594 | int toku_ft_loader_open (FTLOADER *blp, /* out */ |
595 | CACHETABLE cachetable, |
596 | generate_row_for_put_func g, |
597 | DB *src_db, |
598 | int N, FT_HANDLE fts[/*N*/], DB* dbs[/*N*/], |
599 | const char *new_fnames_in_env[/*N*/], |
600 | ft_compare_func bt_compare_functions[/*N*/], |
601 | const char *temp_file_template, |
602 | LSN load_lsn, |
603 | TOKUTXN txn, |
604 | bool reserve_memory, |
605 | uint64_t reserve_memory_size, |
606 | bool compress_intermediates, |
607 | bool allow_puts) { |
608 | // Effect: called by DB_ENV->create_loader to create an ft loader. |
609 | // Arguments: |
610 | // blp Return a ft loader ("bulk loader") here. |
611 | // g The function for generating a row |
612 | // src_db The source database. Needed by g. May be NULL if that's ok with g. |
613 | // N The number of dbs to create. |
614 | // dbs An array of open databases. Used by g. The data will be put in these database. |
615 | // new_fnames The file names (these strings are owned by the caller: we make a copy for our own purposes). |
616 | // temp_file_template A template suitable for mkstemp() |
617 | // reserve_memory Cause the loader to reserve memory for its use from the cache table. |
618 | // compress_intermediates Cause the loader to compress intermediate loader files. |
619 | // allow_puts Prepare the loader for rows to insert. When puts are disabled, the loader does not run the |
620 | // extractor or the fractal tree writer threads. |
621 | // Return value: 0 on success, an error number otherwise. |
622 | int result = 0; |
623 | { |
624 | int r = toku_ft_loader_internal_init(blp, cachetable, g, src_db, |
625 | N, fts, dbs, |
626 | new_fnames_in_env, |
627 | bt_compare_functions, |
628 | temp_file_template, |
629 | load_lsn, |
630 | txn, |
631 | reserve_memory, |
632 | reserve_memory_size, |
633 | compress_intermediates, |
634 | allow_puts); |
635 | if (r!=0) result = r; |
636 | } |
637 | if (result == 0 && allow_puts) { |
638 | FTLOADER bl = *blp; |
639 | int r = toku_pthread_create(*extractor_thread_key, |
640 | &bl->extractor_thread, |
641 | nullptr, |
642 | extractor_thread, |
643 | static_cast<void *>(bl)); |
644 | if (r == 0) { |
645 | bl->extractor_live = true; |
646 | } else { |
647 | result = r; |
648 | (void) toku_ft_loader_internal_destroy(bl, true); |
649 | } |
650 | } |
651 | return result; |
652 | } |
653 | |
654 | static void ft_loader_set_panic(FTLOADER bl, int error, bool callback, int which_db, DBT *key, DBT *val) { |
655 | DB *db = nullptr; |
656 | if (bl && bl->dbs && which_db >= 0 && which_db < bl->N) { |
657 | db = bl->dbs[which_db]; |
658 | } |
659 | int r = ft_loader_set_error(&bl->error_callback, error, db, which_db, key, val); |
660 | if (r == 0 && callback) |
661 | ft_loader_call_error_function(&bl->error_callback); |
662 | } |
663 | |
664 | // One of the tests uses this. |
665 | TOKU_FILE *toku_bl_fidx2file(FTLOADER bl, FIDX i) { |
666 | toku_mutex_lock(&bl->file_infos.lock); |
667 | invariant(i.idx >= 0 && i.idx < bl->file_infos.n_files); |
668 | invariant(bl->file_infos.file_infos[i.idx].is_open); |
669 | TOKU_FILE *result = bl->file_infos.file_infos[i.idx].file; |
670 | toku_mutex_unlock(&bl->file_infos.lock); |
671 | return result; |
672 | } |
673 | |
674 | static int bl_finish_compressed_write(TOKU_FILE *stream, struct wbuf *wb) { |
675 | int r = 0; |
676 | char *compressed_buf = NULL; |
677 | const size_t data_size = wb->ndone; |
678 | invariant(data_size > 0); |
679 | invariant(data_size <= MAX_UNCOMPRESSED_BUF); |
680 | |
681 | int n_sub_blocks = 0; |
682 | int sub_block_size = 0; |
683 | |
684 | r = choose_sub_block_size(wb->ndone, max_sub_blocks, &sub_block_size, &n_sub_blocks); |
685 | invariant(r==0); |
686 | invariant(0 < n_sub_blocks && n_sub_blocks <= max_sub_blocks); |
687 | invariant(sub_block_size > 0); |
688 | |
689 | struct sub_block sub_block[max_sub_blocks]; |
690 | // set the initial sub block size for all of the sub blocks |
691 | for (int i = 0; i < n_sub_blocks; i++) { |
692 | sub_block_init(&sub_block[i]); |
693 | } |
694 | set_all_sub_block_sizes(data_size, sub_block_size, n_sub_blocks, sub_block); |
695 | |
696 | size_t compressed_len = get_sum_compressed_size_bound(n_sub_blocks, sub_block, TOKU_DEFAULT_COMPRESSION_METHOD); |
697 | const size_t = sub_block_header_size(n_sub_blocks); |
698 | const size_t other_overhead = sizeof(uint32_t); //total_size |
699 | const size_t = sub_block_header_len + other_overhead; |
700 | MALLOC_N(header_len + compressed_len, compressed_buf); |
701 | if (compressed_buf == nullptr) { |
702 | return ENOMEM; |
703 | } |
704 | |
705 | // compress all of the sub blocks |
706 | char *uncompressed_ptr = (char*)wb->buf; |
707 | char *compressed_ptr = compressed_buf + header_len; |
708 | compressed_len = compress_all_sub_blocks(n_sub_blocks, sub_block, uncompressed_ptr, compressed_ptr, |
709 | get_num_cores(), get_ft_pool(), TOKU_DEFAULT_COMPRESSION_METHOD); |
710 | |
711 | //total_size does NOT include itself |
712 | uint32_t total_size = compressed_len + sub_block_header_len; |
713 | // serialize the sub block header |
714 | uint32_t *ptr = (uint32_t *)(compressed_buf); |
715 | *ptr++ = toku_htod32(total_size); |
716 | *ptr++ = toku_htod32(n_sub_blocks); |
717 | for (int i=0; i<n_sub_blocks; i++) { |
718 | ptr[0] = toku_htod32(sub_block[i].compressed_size); |
719 | ptr[1] = toku_htod32(sub_block[i].uncompressed_size); |
720 | ptr[2] = toku_htod32(sub_block[i].xsum); |
721 | ptr += 3; |
722 | } |
723 | // Mark as written |
724 | wb->ndone = 0; |
725 | |
726 | size_t size_to_write = total_size + 4; // Includes writing total_size |
727 | |
728 | r = toku_os_fwrite(compressed_buf, 1, size_to_write, stream); |
729 | |
730 | if (compressed_buf) { |
731 | toku_free(compressed_buf); |
732 | } |
733 | return r; |
734 | } |
735 | |
736 | static int bl_compressed_write(void *ptr, |
737 | size_t nbytes, |
738 | TOKU_FILE *stream, |
739 | struct wbuf *wb) { |
740 | invariant(wb->size <= MAX_UNCOMPRESSED_BUF); |
741 | size_t bytes_left = nbytes; |
742 | char *buf = (char *)ptr; |
743 | |
744 | while (bytes_left > 0) { |
745 | size_t bytes_to_copy = bytes_left; |
746 | if (wb->ndone + bytes_to_copy > wb->size) { |
747 | bytes_to_copy = wb->size - wb->ndone; |
748 | } |
749 | wbuf_nocrc_literal_bytes(wb, buf, bytes_to_copy); |
750 | if (wb->ndone == wb->size) { |
751 | //Compress, write to disk, and empty out wb |
752 | int r = bl_finish_compressed_write(stream, wb); |
753 | if (r != 0) { |
754 | errno = r; |
755 | return -1; |
756 | } |
757 | wb->ndone = 0; |
758 | } |
759 | bytes_left -= bytes_to_copy; |
760 | buf += bytes_to_copy; |
761 | } |
762 | return 0; |
763 | } |
764 | |
765 | static int bl_fwrite(void *ptr, |
766 | size_t size, |
767 | size_t nmemb, |
768 | TOKU_FILE *stream, |
769 | struct wbuf *wb, |
770 | FTLOADER bl) |
771 | /* Effect: this is a wrapper for fwrite that returns 0 on success, otherwise |
772 | * returns an error number. |
773 | * Arguments: |
774 | * ptr the data to be writen. |
775 | * size the amount of data to be written. |
776 | * nmemb the number of units of size to be written. |
777 | * stream write the data here. |
778 | * wb where to write uncompressed data (if we're compressing) or ignore if |
779 | * NULL |
780 | * bl passed so we can panic the ft_loader if something goes wrong |
781 | * (recording the error number). |
782 | * Return value: 0 on success, an error number otherwise. |
783 | */ |
784 | { |
785 | if (!bl->compress_intermediates || !wb) { |
786 | return toku_os_fwrite(ptr, size, nmemb, stream); |
787 | } else { |
788 | size_t num_bytes = size * nmemb; |
789 | int r = bl_compressed_write(ptr, num_bytes, stream, wb); |
790 | if (r != 0) { |
791 | return r; |
792 | } |
793 | } |
794 | return 0; |
795 | } |
796 | |
797 | static int bl_fread(void *ptr, size_t size, size_t nmemb, TOKU_FILE *stream) |
798 | /* Effect: this is a wrapper for fread that returns 0 on success, otherwise |
799 | * returns an error number. |
800 | * Arguments: |
801 | * ptr read data into here. |
802 | * size size of data element to be read. |
803 | * nmemb number of data elements to be read. |
804 | * stream where to read the data from. |
805 | * Return value: 0 on success, an error number otherwise. |
806 | */ |
807 | { |
808 | return toku_os_fread(ptr, size, nmemb, stream); |
809 | } |
810 | |
811 | static int bl_write_dbt(DBT *dbt, |
812 | TOKU_FILE *datafile, |
813 | uint64_t *dataoff, |
814 | struct wbuf *wb, |
815 | FTLOADER bl) { |
816 | int r; |
817 | int dlen = dbt->size; |
818 | if ((r=bl_fwrite(&dlen, sizeof(dlen), 1, datafile, wb, bl))) return r; |
819 | if ((r=bl_fwrite(dbt->data, 1, dlen, datafile, wb, bl))) return r; |
820 | if (dataoff) |
821 | *dataoff += dlen + sizeof(dlen); |
822 | return 0; |
823 | } |
824 | |
825 | static int bl_read_dbt(/*in*/ DBT *dbt, TOKU_FILE *stream) { |
826 | int len; |
827 | { |
828 | int r; |
829 | if ((r = bl_fread(&len, sizeof(len), 1, stream))) return r; |
830 | invariant(len>=0); |
831 | } |
832 | if ((int)dbt->ulen<len) { dbt->ulen=len; dbt->data=toku_xrealloc(dbt->data, len); } |
833 | { |
834 | int r; |
835 | if ((r = bl_fread(dbt->data, 1, len, stream))) return r; |
836 | } |
837 | dbt->size = len; |
838 | return 0; |
839 | } |
840 | |
841 | static int bl_read_dbt_from_dbufio (/*in*/DBT *dbt, DBUFIO_FILESET bfs, int filenum) |
842 | { |
843 | int result = 0; |
844 | uint32_t len; |
845 | { |
846 | size_t n_read; |
847 | int r = dbufio_fileset_read(bfs, filenum, &len, sizeof(len), &n_read); |
848 | if (r!=0) { |
849 | result = r; |
850 | } else if (n_read<sizeof(len)) { |
851 | result = TOKUDB_NO_DATA; // must have run out of data prematurely. This is not EOF, it's a real error. |
852 | } |
853 | } |
854 | if (result==0) { |
855 | if (dbt->ulen<len) { |
856 | void * data = toku_realloc(dbt->data, len); |
857 | if (data==NULL) { |
858 | result = get_error_errno(); |
859 | } else { |
860 | dbt->ulen=len; |
861 | dbt->data=data; |
862 | } |
863 | } |
864 | } |
865 | if (result==0) { |
866 | size_t n_read; |
867 | int r = dbufio_fileset_read(bfs, filenum, dbt->data, len, &n_read); |
868 | if (r!=0) { |
869 | result = r; |
870 | } else if (n_read<len) { |
871 | result = TOKUDB_NO_DATA; // must have run out of data prematurely. This is not EOF, it's a real error. |
872 | } else { |
873 | dbt->size = len; |
874 | } |
875 | } |
876 | return result; |
877 | } |
878 | |
879 | int loader_write_row(DBT *key, |
880 | DBT *val, |
881 | FIDX data, |
882 | TOKU_FILE *dataf, |
883 | uint64_t *dataoff, |
884 | struct wbuf *wb, |
885 | FTLOADER bl) |
886 | /* Effect: Given a key and a val (both DBTs), write them to a file. Increment |
887 | * *dataoff so that it's up to date. |
888 | * Arguments: |
889 | * key, val write these. |
890 | * data the file to write them to |
891 | * dataoff a pointer to a counter that keeps track of the amount of data |
892 | * written so far. |
893 | * wb a pointer (possibly NULL) to buffer uncompressed output |
894 | * bl the ft_loader (passed so we can panic if needed). |
895 | * Return value: 0 on success, an error number otherwise. |
896 | */ |
897 | { |
898 | //int klen = key->size; |
899 | //int vlen = val->size; |
900 | int r; |
901 | // we have a chance to handle the errors because when we close we can delete all the files. |
902 | if ((r=bl_write_dbt(key, dataf, dataoff, wb, bl))) return r; |
903 | if ((r=bl_write_dbt(val, dataf, dataoff, wb, bl))) return r; |
904 | toku_mutex_lock(&bl->file_infos.lock); |
905 | bl->file_infos.file_infos[data.idx].n_rows++; |
906 | toku_mutex_unlock(&bl->file_infos.lock); |
907 | return 0; |
908 | } |
909 | |
910 | int loader_read_row(TOKU_FILE *f, DBT *key, DBT *val) |
911 | /* Effect: Read a key value pair from a file. The DBTs must have DB_DBT_REALLOC |
912 | * set. |
913 | * Arguments: |
914 | * f where to read it from. |
915 | * key, val read it into these. |
916 | * bl passed so we can panic if needed. |
917 | * Return value: 0 on success, an error number otherwise. |
918 | * Requires: The DBTs must have DB_DBT_REALLOC |
919 | */ |
920 | { |
921 | { |
922 | int r = bl_read_dbt(key, f); |
923 | if (r!=0) return r; |
924 | } |
925 | { |
926 | int r = bl_read_dbt(val, f); |
927 | if (r!=0) return r; |
928 | } |
929 | return 0; |
930 | } |
931 | |
932 | static int loader_read_row_from_dbufio (DBUFIO_FILESET bfs, int filenum, DBT *key, DBT *val) |
933 | /* Effect: Read a key value pair from a file. The DBTs must have DB_DBT_REALLOC set. |
934 | * Arguments: |
935 | * f where to read it from. |
936 | * key, val read it into these. |
937 | * bl passed so we can panic if needed. |
938 | * Return value: 0 on success, an error number otherwise. |
939 | * Requires: The DBTs must have DB_DBT_REALLOC |
940 | */ |
941 | { |
942 | { |
943 | int r = bl_read_dbt_from_dbufio(key, bfs, filenum); |
944 | if (r!=0) return r; |
945 | } |
946 | { |
947 | int r = bl_read_dbt_from_dbufio(val, bfs, filenum); |
948 | if (r!=0) return r; |
949 | } |
950 | return 0; |
951 | } |
952 | |
953 | |
954 | int init_rowset (struct rowset *rows, uint64_t memory_budget) |
955 | /* Effect: Initialize a collection of rows to be empty. */ |
956 | { |
957 | int result = 0; |
958 | |
959 | rows->memory_budget = memory_budget; |
960 | |
961 | rows->rows = NULL; |
962 | rows->data = NULL; |
963 | |
964 | rows->n_rows = 0; |
965 | rows->n_rows_limit = 100; |
966 | MALLOC_N(rows->n_rows_limit, rows->rows); |
967 | if (rows->rows == NULL) |
968 | result = get_error_errno(); |
969 | rows->n_bytes = 0; |
970 | rows->n_bytes_limit = (size_factor==1) ? 1024*size_factor*16 : memory_budget; |
971 | //printf("%s:%d n_bytes_limit=%ld (size_factor based limit=%d)\n", __FILE__, __LINE__, rows->n_bytes_limit, 1024*size_factor*16); |
972 | rows->data = (char *) toku_malloc(rows->n_bytes_limit); |
973 | if (rows->rows==NULL || rows->data==NULL) { |
974 | if (result == 0) |
975 | result = get_error_errno(); |
976 | toku_free(rows->rows); |
977 | toku_free(rows->data); |
978 | rows->rows = NULL; |
979 | rows->data = NULL; |
980 | } |
981 | return result; |
982 | } |
983 | |
984 | static void zero_rowset (struct rowset *rows) { |
985 | memset(rows, 0, sizeof(*rows)); |
986 | } |
987 | |
988 | void destroy_rowset (struct rowset *rows) { |
989 | if ( rows ) { |
990 | toku_free(rows->data); |
991 | toku_free(rows->rows); |
992 | zero_rowset(rows); |
993 | } |
994 | } |
995 | |
996 | static int row_wont_fit (struct rowset *rows, size_t size) |
997 | /* Effect: Return nonzero if adding a row of size SIZE would be too big (bigger than the buffer limit) */ |
998 | { |
999 | // Account for the memory used by the data and also the row structures. |
1000 | size_t memory_in_use = (rows->n_rows*sizeof(struct row) |
1001 | + rows->n_bytes); |
1002 | return (rows->memory_budget < memory_in_use + size); |
1003 | } |
1004 | |
1005 | int add_row (struct rowset *rows, DBT *key, DBT *val) |
1006 | /* Effect: add a row to a collection. */ |
1007 | { |
1008 | int result = 0; |
1009 | if (rows->n_rows >= rows->n_rows_limit) { |
1010 | struct row *old_rows = rows->rows; |
1011 | size_t old_n_rows_limit = rows->n_rows_limit; |
1012 | rows->n_rows_limit *= 2; |
1013 | REALLOC_N(rows->n_rows_limit, rows->rows); |
1014 | if (rows->rows == NULL) { |
1015 | result = get_error_errno(); |
1016 | rows->rows = old_rows; |
1017 | rows->n_rows_limit = old_n_rows_limit; |
1018 | return result; |
1019 | } |
1020 | } |
1021 | size_t off = rows->n_bytes; |
1022 | size_t next_off = off + key->size + val->size; |
1023 | |
1024 | struct row newrow; |
1025 | memset(&newrow, 0, sizeof newrow); newrow.off = off; newrow.klen = key->size; newrow.vlen = val->size; |
1026 | |
1027 | rows->rows[rows->n_rows++] = newrow; |
1028 | if (next_off > rows->n_bytes_limit) { |
1029 | size_t old_n_bytes_limit = rows->n_bytes_limit; |
1030 | while (next_off > rows->n_bytes_limit) { |
1031 | rows->n_bytes_limit = rows->n_bytes_limit*2; |
1032 | } |
1033 | invariant(next_off <= rows->n_bytes_limit); |
1034 | char *old_data = rows->data; |
1035 | REALLOC_N(rows->n_bytes_limit, rows->data); |
1036 | if (rows->data == NULL) { |
1037 | result = get_error_errno(); |
1038 | rows->data = old_data; |
1039 | rows->n_bytes_limit = old_n_bytes_limit; |
1040 | return result; |
1041 | } |
1042 | } |
1043 | memcpy(rows->data+off, key->data, key->size); |
1044 | memcpy(rows->data+off+key->size, val->data, val->size); |
1045 | rows->n_bytes = next_off; |
1046 | return result; |
1047 | } |
1048 | |
1049 | static int process_primary_rows (FTLOADER bl, struct rowset *primary_rowset); |
1050 | |
1051 | static int finish_primary_rows_internal (FTLOADER bl) |
1052 | // now we have been asked to finish up. |
1053 | // Be sure to destroy the rowsets. |
1054 | { |
1055 | int *MALLOC_N(bl->N, ra); |
1056 | if (ra==NULL) return get_error_errno(); |
1057 | |
1058 | for (int i = 0; i < bl->N; i++) { |
1059 | //printf("%s:%d extractor finishing index %d with %ld rows\n", __FILE__, __LINE__, i, rows->n_rows); |
1060 | ra[i] = sort_and_write_rows(bl->rows[i], &(bl->fs[i]), bl, i, bl->dbs[i], bl->bt_compare_funs[i]); |
1061 | zero_rowset(&bl->rows[i]); |
1062 | } |
1063 | |
1064 | // accept any of the error codes (in this case, the last one). |
1065 | int r = 0; |
1066 | for (int i = 0; i < bl->N; i++) |
1067 | if (ra[i] != 0) |
1068 | r = ra[i]; |
1069 | |
1070 | toku_free(ra); |
1071 | return r; |
1072 | } |
1073 | |
1074 | static int finish_primary_rows (FTLOADER bl) { |
1075 | return finish_primary_rows_internal (bl); |
1076 | } |
1077 | |
1078 | static void* (void *blv) { |
1079 | FTLOADER bl = (FTLOADER)blv; |
1080 | int r = 0; |
1081 | while (1) { |
1082 | void *item = nullptr; |
1083 | { |
1084 | int rq = toku_queue_deq(bl->primary_rowset_queue, &item, NULL, NULL); |
1085 | if (rq==EOF) break; |
1086 | invariant(rq==0); // other errors are arbitrarily bad. |
1087 | } |
1088 | struct rowset *primary_rowset = (struct rowset *)item; |
1089 | |
1090 | //printf("%s:%d extractor got %ld rows\n", __FILE__, __LINE__, primary_rowset.n_rows); |
1091 | |
1092 | // Now we have some rows to output |
1093 | { |
1094 | r = process_primary_rows(bl, primary_rowset); |
1095 | if (r) |
1096 | ft_loader_set_panic(bl, r, false, 0, nullptr, nullptr); |
1097 | } |
1098 | } |
1099 | |
1100 | //printf("%s:%d extractor finishing\n", __FILE__, __LINE__); |
1101 | if (r == 0) { |
1102 | r = finish_primary_rows(bl); |
1103 | if (r) |
1104 | ft_loader_set_panic(bl, r, false, 0, nullptr, nullptr); |
1105 | } |
1106 | toku_instr_delete_current_thread(); |
1107 | return nullptr; |
1108 | } |
1109 | |
1110 | static void (FTLOADER bl) { |
1111 | //printf("%s:%d enqueing %ld items\n", __FILE__, __LINE__, bl->primary_rowset.n_rows); |
1112 | struct rowset *XMALLOC(enqueue_me); |
1113 | *enqueue_me = bl->primary_rowset; |
1114 | zero_rowset(&bl->primary_rowset); |
1115 | int r = toku_queue_enq(bl->primary_rowset_queue, (void*)enqueue_me, 1, NULL); |
1116 | resource_assert_zero(r); |
1117 | } |
1118 | |
1119 | static int loader_do_put(FTLOADER bl, |
1120 | DBT *pkey, |
1121 | DBT *pval) |
1122 | { |
1123 | int result; |
1124 | result = add_row(&bl->primary_rowset, pkey, pval); |
1125 | if (result == 0 && row_wont_fit(&bl->primary_rowset, 0)) { |
1126 | // queue the rows for further processing by the extractor thread. |
1127 | //printf("%s:%d please extract %ld\n", __FILE__, __LINE__, bl->primary_rowset.n_rows); |
1128 | enqueue_for_extraction(bl); |
1129 | { |
1130 | int r = init_rowset(&bl->primary_rowset, memory_per_rowset_during_extract(bl)); |
1131 | // bl->primary_rowset will get destroyed by toku_ft_loader_abort |
1132 | if (r != 0) |
1133 | result = r; |
1134 | } |
1135 | } |
1136 | return result; |
1137 | } |
1138 | |
1139 | static int |
1140 | (FTLOADER bl) { |
1141 | //printf("%s:%d now finishing extraction\n", __FILE__, __LINE__); |
1142 | |
1143 | int rval; |
1144 | |
1145 | if (bl->primary_rowset.n_rows>0) { |
1146 | enqueue_for_extraction(bl); |
1147 | } else { |
1148 | destroy_rowset(&bl->primary_rowset); |
1149 | } |
1150 | //printf("%s:%d please finish extraction\n", __FILE__, __LINE__); |
1151 | { |
1152 | int r = toku_queue_eof(bl->primary_rowset_queue); |
1153 | invariant(r==0); |
1154 | } |
1155 | //printf("%s:%d joining\n", __FILE__, __LINE__); |
1156 | { |
1157 | void *toku_pthread_retval; |
1158 | int r = toku_pthread_join(bl->extractor_thread, &toku_pthread_retval); |
1159 | resource_assert_zero(r); |
1160 | invariant(toku_pthread_retval == NULL); |
1161 | bl->extractor_live = false; |
1162 | } |
1163 | { |
1164 | int r = toku_queue_destroy(bl->primary_rowset_queue); |
1165 | invariant(r==0); |
1166 | bl->primary_rowset_queue = nullptr; |
1167 | } |
1168 | |
1169 | rval = ft_loader_fi_close_all(&bl->file_infos); |
1170 | |
1171 | //printf("%s:%d joined\n", __FILE__, __LINE__); |
1172 | return rval; |
1173 | } |
1174 | |
1175 | static const DBT zero_dbt = {0,0,0,0}; |
1176 | |
1177 | static DBT make_dbt (void *data, uint32_t size) { |
1178 | DBT result = zero_dbt; |
1179 | result.data = data; |
1180 | result.size = size; |
1181 | return result; |
1182 | } |
1183 | |
1184 | #define inc_error_count() error_count++ |
1185 | |
1186 | static TXNID leafentry_xid(FTLOADER bl, int which_db) { |
1187 | TXNID le_xid = TXNID_NONE; |
1188 | if (bl->root_xids_that_created && bl->load_root_xid != bl->root_xids_that_created[which_db]) |
1189 | le_xid = bl->load_root_xid; |
1190 | return le_xid; |
1191 | } |
1192 | |
1193 | size_t ft_loader_leafentry_size(size_t key_size, size_t val_size, TXNID xid) { |
1194 | size_t s = 0; |
1195 | if (xid == TXNID_NONE) |
1196 | s = LE_CLEAN_MEMSIZE(val_size) + key_size + sizeof(uint32_t); |
1197 | else |
1198 | s = LE_MVCC_COMMITTED_MEMSIZE(val_size) + key_size + sizeof(uint32_t); |
1199 | return s; |
1200 | } |
1201 | |
1202 | static int process_primary_rows_internal (FTLOADER bl, struct rowset *primary_rowset) |
1203 | // process the rows in primary_rowset, and then destroy the rowset. |
1204 | // if FLUSH is true then write all the buffered rows out. |
1205 | // if primary_rowset is NULL then treat it as empty. |
1206 | { |
1207 | int error_count = 0; |
1208 | int *XMALLOC_N(bl->N, error_codes); |
1209 | |
1210 | // If we parallelize the first for loop, dest_keys/dest_vals init&cleanup need to move inside |
1211 | DBT_ARRAY dest_keys; |
1212 | DBT_ARRAY dest_vals; |
1213 | toku_dbt_array_init(&dest_keys, 1); |
1214 | toku_dbt_array_init(&dest_vals, 1); |
1215 | |
1216 | for (int i = 0; i < bl->N; i++) { |
1217 | unsigned int klimit,vlimit; // maximum row sizes. |
1218 | toku_ft_get_maximum_advised_key_value_lengths(&klimit, &vlimit); |
1219 | |
1220 | error_codes[i] = 0; |
1221 | struct rowset *rows = &(bl->rows[i]); |
1222 | struct merge_fileset *fs = &(bl->fs[i]); |
1223 | ft_compare_func compare = bl->bt_compare_funs[i]; |
1224 | |
1225 | // Don't parallelize this loop, or we have to lock access to add_row() which would be a lot of overehad. |
1226 | // Also this way we can reuse the DB_DBT_REALLOC'd values inside dest_keys/dest_vals without a race. |
1227 | for (size_t prownum=0; prownum<primary_rowset->n_rows; prownum++) { |
1228 | if (error_count) break; |
1229 | |
1230 | struct row *prow = &primary_rowset->rows[prownum]; |
1231 | DBT pkey = zero_dbt; |
1232 | DBT pval = zero_dbt; |
1233 | pkey.data = primary_rowset->data + prow->off; |
1234 | pkey.size = prow->klen; |
1235 | pval.data = primary_rowset->data + prow->off + prow->klen; |
1236 | pval.size = prow->vlen; |
1237 | |
1238 | |
1239 | DBT_ARRAY key_array; |
1240 | DBT_ARRAY val_array; |
1241 | if (bl->dbs[i] != bl->src_db) { |
1242 | int r = bl->generate_row_for_put(bl->dbs[i], bl->src_db, &dest_keys, &dest_vals, &pkey, &pval); |
1243 | if (r != 0) { |
1244 | error_codes[i] = r; |
1245 | inc_error_count(); |
1246 | break; |
1247 | } |
1248 | paranoid_invariant(dest_keys.size <= dest_keys.capacity); |
1249 | paranoid_invariant(dest_vals.size <= dest_vals.capacity); |
1250 | paranoid_invariant(dest_keys.size == dest_vals.size); |
1251 | |
1252 | key_array = dest_keys; |
1253 | val_array = dest_vals; |
1254 | } else { |
1255 | key_array.size = key_array.capacity = 1; |
1256 | key_array.dbts = &pkey; |
1257 | |
1258 | val_array.size = val_array.capacity = 1; |
1259 | val_array.dbts = &pval; |
1260 | } |
1261 | for (uint32_t row = 0; row < key_array.size; row++) { |
1262 | DBT *dest_key = &key_array.dbts[row]; |
1263 | DBT *dest_val = &val_array.dbts[row]; |
1264 | if (dest_key->size > klimit) { |
1265 | error_codes[i] = EINVAL; |
1266 | fprintf(stderr, "Key too big (keysize=%d bytes, limit=%d bytes)\n" , dest_key->size, klimit); |
1267 | inc_error_count(); |
1268 | break; |
1269 | } |
1270 | if (dest_val->size > vlimit) { |
1271 | error_codes[i] = EINVAL; |
1272 | fprintf(stderr, "Row too big (rowsize=%d bytes, limit=%d bytes)\n" , dest_val->size, vlimit); |
1273 | inc_error_count(); |
1274 | break; |
1275 | } |
1276 | |
1277 | bl->extracted_datasizes[i] += ft_loader_leafentry_size(dest_key->size, dest_val->size, leafentry_xid(bl, i)); |
1278 | |
1279 | if (row_wont_fit(rows, dest_key->size + dest_val->size)) { |
1280 | //printf("%s:%d rows.n_rows=%ld rows.n_bytes=%ld\n", __FILE__, __LINE__, rows->n_rows, rows->n_bytes); |
1281 | int r = sort_and_write_rows(*rows, fs, bl, i, bl->dbs[i], compare); // cannot spawn this because of the race on rows. If we were to create a new rows, and if sort_and_write_rows were to destroy the rows it is passed, we could spawn it, however. |
1282 | // If we do spawn this, then we must account for the additional storage in the memory_per_rowset() function. |
1283 | init_rowset(rows, memory_per_rowset_during_extract(bl)); // we passed the contents of rows to sort_and_write_rows. |
1284 | if (r != 0) { |
1285 | error_codes[i] = r; |
1286 | inc_error_count(); |
1287 | break; |
1288 | } |
1289 | } |
1290 | int r = add_row(rows, dest_key, dest_val); |
1291 | if (r != 0) { |
1292 | error_codes[i] = r; |
1293 | inc_error_count(); |
1294 | break; |
1295 | } |
1296 | } |
1297 | } |
1298 | } |
1299 | toku_dbt_array_destroy(&dest_keys); |
1300 | toku_dbt_array_destroy(&dest_vals); |
1301 | |
1302 | destroy_rowset(primary_rowset); |
1303 | toku_free(primary_rowset); |
1304 | int r = 0; |
1305 | if (error_count > 0) { |
1306 | for (int i=0; i<bl->N; i++) { |
1307 | if (error_codes[i]) { |
1308 | r = error_codes[i]; |
1309 | ft_loader_set_panic(bl, r, false, i, nullptr, nullptr); |
1310 | } |
1311 | } |
1312 | invariant(r); // found the error |
1313 | } |
1314 | toku_free(error_codes); |
1315 | return r; |
1316 | } |
1317 | |
1318 | static int process_primary_rows (FTLOADER bl, struct rowset *primary_rowset) { |
1319 | int r = process_primary_rows_internal (bl, primary_rowset); |
1320 | return r; |
1321 | } |
1322 | |
1323 | int toku_ft_loader_put (FTLOADER bl, DBT *key, DBT *val) |
1324 | /* Effect: Put a key-value pair into the ft loader. Called by DB_LOADER->put(). |
1325 | * Return value: 0 on success, an error number otherwise. |
1326 | */ |
1327 | { |
1328 | if (!bl->allow_puts || ft_loader_get_error(&bl->error_callback)) |
1329 | return EINVAL; // previous panic |
1330 | bl->n_rows++; |
1331 | return loader_do_put(bl, key, val); |
1332 | } |
1333 | |
1334 | void toku_ft_loader_set_n_rows(FTLOADER bl, uint64_t n_rows) { |
1335 | bl->n_rows = n_rows; |
1336 | } |
1337 | |
1338 | uint64_t toku_ft_loader_get_n_rows(FTLOADER bl) { |
1339 | return bl->n_rows; |
1340 | } |
1341 | |
1342 | int merge_row_arrays_base (struct row dest[/*an+bn*/], struct row a[/*an*/], int an, struct row b[/*bn*/], int bn, |
1343 | int which_db, DB *dest_db, ft_compare_func compare, |
1344 | |
1345 | FTLOADER bl, |
1346 | struct rowset *rowset) |
1347 | /* Effect: Given two arrays of rows, a and b, merge them using the comparison function, and write them into dest. |
1348 | * This function is suitable for use in a mergesort. |
1349 | * If a pair of duplicate keys is ever noticed, then call the error_callback function (if it exists), and return DB_KEYEXIST. |
1350 | * Arguments: |
1351 | * dest write the rows here |
1352 | * a,b the rows being merged |
1353 | * an,bn the lenth of a and b respectively. |
1354 | * dest_db We need the dest_db to run the comparison function. |
1355 | * compare We need the compare function for the dest_db. |
1356 | */ |
1357 | { |
1358 | while (an>0 && bn>0) { |
1359 | DBT akey; memset(&akey, 0, sizeof akey); akey.data=rowset->data+a->off; akey.size=a->klen; |
1360 | DBT bkey; memset(&bkey, 0, sizeof bkey); bkey.data=rowset->data+b->off; bkey.size=b->klen; |
1361 | |
1362 | int compare_result = compare(dest_db, &akey, &bkey); |
1363 | if (compare_result==0) { |
1364 | if (bl->error_callback.error_callback) { |
1365 | DBT aval; memset(&aval, 0, sizeof aval); aval.data=rowset->data + a->off + a->klen; aval.size = a->vlen; |
1366 | ft_loader_set_error(&bl->error_callback, DB_KEYEXIST, dest_db, which_db, &akey, &aval); |
1367 | } |
1368 | return DB_KEYEXIST; |
1369 | } else if (compare_result<0) { |
1370 | // a is smaller |
1371 | *dest = *a; |
1372 | dest++; a++; an--; |
1373 | } else { |
1374 | *dest = *b; |
1375 | dest++; b++; bn--; |
1376 | } |
1377 | } |
1378 | while (an>0) { |
1379 | *dest = *a; |
1380 | dest++; a++; an--; |
1381 | } |
1382 | while (bn>0) { |
1383 | *dest = *b; |
1384 | dest++; b++; bn--; |
1385 | } |
1386 | return 0; |
1387 | } |
1388 | |
1389 | static int binary_search (int *location, |
1390 | const DBT *key, |
1391 | struct row a[/*an*/], int an, |
1392 | int abefore, |
1393 | int which_db, DB *dest_db, ft_compare_func compare, |
1394 | FTLOADER bl, |
1395 | struct rowset *rowset) |
1396 | // Given a sorted array of rows a, and a dbt key, find the first row in a that is > key. |
1397 | // If no such row exists, then consider the result to be equal to an. |
1398 | // On success store abefore+the index into *location |
1399 | // Return 0 on success. |
1400 | // Return DB_KEYEXIST if we find a row that is equal to key. |
1401 | { |
1402 | if (an==0) { |
1403 | *location = abefore; |
1404 | return 0; |
1405 | } else { |
1406 | int a2 = an/2; |
1407 | DBT akey = make_dbt(rowset->data+a[a2].off, a[a2].klen); |
1408 | int compare_result = compare(dest_db, key, &akey); |
1409 | if (compare_result==0) { |
1410 | if (bl->error_callback.error_callback) { |
1411 | DBT aval = make_dbt(rowset->data + a[a2].off + a[a2].klen, a[a2].vlen); |
1412 | ft_loader_set_error(&bl->error_callback, DB_KEYEXIST, dest_db, which_db, &akey, &aval); |
1413 | } |
1414 | return DB_KEYEXIST; |
1415 | } else if (compare_result<0) { |
1416 | // key is before a2 |
1417 | if (an==1) { |
1418 | *location = abefore; |
1419 | return 0; |
1420 | } else { |
1421 | return binary_search(location, key, |
1422 | a, a2, |
1423 | abefore, |
1424 | which_db, dest_db, compare, bl, rowset); |
1425 | } |
1426 | } else { |
1427 | // key is after a2 |
1428 | if (an==1) { |
1429 | *location = abefore + 1; |
1430 | return 0; |
1431 | } else { |
1432 | return binary_search(location, key, |
1433 | a+a2, an-a2, |
1434 | abefore+a2, |
1435 | which_db, dest_db, compare, bl, rowset); |
1436 | } |
1437 | } |
1438 | } |
1439 | } |
1440 | |
1441 | |
1442 | #define SWAP(typ,x,y) { typ tmp = x; x=y; y=tmp; } |
1443 | |
1444 | static int merge_row_arrays (struct row dest[/*an+bn*/], struct row a[/*an*/], int an, struct row b[/*bn*/], int bn, |
1445 | int which_db, DB *dest_db, ft_compare_func compare, |
1446 | FTLOADER bl, |
1447 | struct rowset *rowset) |
1448 | /* Effect: Given two sorted arrays of rows, a and b, merge them using the comparison function, and write them into dest. |
1449 | * Arguments: |
1450 | * dest write the rows here |
1451 | * a,b the rows being merged |
1452 | * an,bn the lenth of a and b respectively. |
1453 | * dest_db We need the dest_db to run the comparison function. |
1454 | * compare We need the compare function for the dest_db. |
1455 | */ |
1456 | { |
1457 | if (an + bn < 10000) { |
1458 | return merge_row_arrays_base(dest, a, an, b, bn, which_db, dest_db, compare, bl, rowset); |
1459 | } |
1460 | if (an < bn) { |
1461 | SWAP(struct row *,a, b) |
1462 | SWAP(int ,an,bn) |
1463 | } |
1464 | // an >= bn |
1465 | int a2 = an/2; |
1466 | DBT akey = make_dbt(rowset->data+a[a2].off, a[a2].klen); |
1467 | int b2 = 0; // initialize to zero so we can add the answer in. |
1468 | { |
1469 | int r = binary_search(&b2, &akey, b, bn, 0, which_db, dest_db, compare, bl, rowset); |
1470 | if (r!=0) return r; // for example if we found a duplicate, called the error_callback, and now we return an error code. |
1471 | } |
1472 | int ra, rb; |
1473 | ra = merge_row_arrays(dest, a, a2, b, b2, which_db, dest_db, compare, bl, rowset); |
1474 | rb = merge_row_arrays(dest+a2+b2, a+a2, an-a2, b+b2, bn-b2, which_db, dest_db, compare, bl, rowset); |
1475 | if (ra!=0) return ra; |
1476 | else return rb; |
1477 | } |
1478 | |
1479 | int mergesort_row_array (struct row rows[/*n*/], int n, int which_db, DB *dest_db, ft_compare_func compare, FTLOADER bl, struct rowset *rowset) |
1480 | /* Sort an array of rows (using mergesort). |
1481 | * Arguments: |
1482 | * rows sort this array of rows. |
1483 | * n the length of the array. |
1484 | * dest_db used by the comparison function. |
1485 | * compare the compare function |
1486 | */ |
1487 | { |
1488 | if (n<=1) return 0; // base case is sorted |
1489 | int mid = n/2; |
1490 | int r1, r2; |
1491 | r1 = mergesort_row_array (rows, mid, which_db, dest_db, compare, bl, rowset); |
1492 | |
1493 | // Don't spawn this one explicitly |
1494 | r2 = mergesort_row_array (rows+mid, n-mid, which_db, dest_db, compare, bl, rowset); |
1495 | |
1496 | if (r1!=0) return r1; |
1497 | if (r2!=0) return r2; |
1498 | |
1499 | struct row *MALLOC_N(n, tmp); |
1500 | if (tmp == NULL) return get_error_errno(); |
1501 | { |
1502 | int r = merge_row_arrays(tmp, rows, mid, rows+mid, n-mid, which_db, dest_db, compare, bl, rowset); |
1503 | if (r!=0) { |
1504 | toku_free(tmp); |
1505 | return r; |
1506 | } |
1507 | } |
1508 | memcpy(rows, tmp, sizeof(*tmp)*n); |
1509 | toku_free(tmp); |
1510 | return 0; |
1511 | } |
1512 | |
1513 | // C function for testing mergesort_row_array |
1514 | int ft_loader_mergesort_row_array (struct row rows[/*n*/], int n, int which_db, DB *dest_db, ft_compare_func compare, FTLOADER bl, struct rowset *rowset) { |
1515 | return mergesort_row_array (rows, n, which_db, dest_db, compare, bl, rowset); |
1516 | } |
1517 | |
1518 | static int sort_rows (struct rowset *rows, int which_db, DB *dest_db, ft_compare_func compare, |
1519 | FTLOADER bl) |
1520 | /* Effect: Sort a collection of rows. |
1521 | * If any duplicates are found, then call the error_callback function and return non zero. |
1522 | * Otherwise return 0. |
1523 | * Arguments: |
1524 | * rowset the */ |
1525 | { |
1526 | return mergesort_row_array(rows->rows, rows->n_rows, which_db, dest_db, compare, bl, rows); |
1527 | } |
1528 | |
1529 | /* filesets Maintain a collection of files. Typically these files are each individually sorted, and we will merge them. |
1530 | * These files have two parts, one is for the data rows, and the other is a collection of offsets so we an more easily parallelize the manipulation (e.g., by allowing us to find the offset of the ith row quickly). */ |
1531 | |
1532 | void init_merge_fileset (struct merge_fileset *fs) |
1533 | /* Effect: Initialize a fileset */ |
1534 | { |
1535 | fs->have_sorted_output = false; |
1536 | fs->sorted_output = FIDX_NULL; |
1537 | fs->prev_key = zero_dbt; |
1538 | fs->prev_key.flags = DB_DBT_REALLOC; |
1539 | |
1540 | fs->n_temp_files = 0; |
1541 | fs->n_temp_files_limit = 0; |
1542 | fs->data_fidxs = NULL; |
1543 | } |
1544 | |
1545 | void destroy_merge_fileset (struct merge_fileset *fs) |
1546 | /* Effect: Destroy a fileset. */ |
1547 | { |
1548 | if ( fs ) { |
1549 | toku_destroy_dbt(&fs->prev_key); |
1550 | fs->n_temp_files = 0; |
1551 | fs->n_temp_files_limit = 0; |
1552 | toku_free(fs->data_fidxs); |
1553 | fs->data_fidxs = NULL; |
1554 | } |
1555 | } |
1556 | |
1557 | |
1558 | static int extend_fileset (FTLOADER bl, struct merge_fileset *fs, FIDX*ffile) |
1559 | /* Effect: Add two files (one for data and one for idx) to the fileset. |
1560 | * Arguments: |
1561 | * bl the ft_loader (needed to panic if anything goes wrong, and also to get the temp_file_template. |
1562 | * fs the fileset |
1563 | * ffile the data file (which will be open) |
1564 | * fidx the index file (which will be open) |
1565 | */ |
1566 | { |
1567 | FIDX sfile; |
1568 | int r; |
1569 | r = ft_loader_open_temp_file(bl, &sfile); if (r!=0) return r; |
1570 | |
1571 | if (fs->n_temp_files+1 > fs->n_temp_files_limit) { |
1572 | fs->n_temp_files_limit = (fs->n_temp_files+1)*2; |
1573 | XREALLOC_N(fs->n_temp_files_limit, fs->data_fidxs); |
1574 | } |
1575 | fs->data_fidxs[fs->n_temp_files] = sfile; |
1576 | fs->n_temp_files++; |
1577 | |
1578 | *ffile = sfile; |
1579 | return 0; |
1580 | } |
1581 | |
1582 | // RFP maybe this should be buried in the ft_loader struct |
1583 | static toku_mutex_t update_progress_lock = TOKU_MUTEX_INITIALIZER; |
1584 | |
1585 | static int update_progress (int N, |
1586 | FTLOADER bl, |
1587 | const char *UU(message)) |
1588 | { |
1589 | // Must protect the increment and the call to the poll_function. |
1590 | toku_mutex_lock(&update_progress_lock); |
1591 | bl->progress+=N; |
1592 | |
1593 | int result; |
1594 | if (bl->progress_callback_result == 0) { |
1595 | //printf(" %20s: %d ", message, bl->progress); |
1596 | result = ft_loader_call_poll_function(&bl->poll_callback, (float)bl->progress/(float)PROGRESS_MAX); |
1597 | if (result!=0) { |
1598 | bl->progress_callback_result = result; |
1599 | } |
1600 | } else { |
1601 | result = bl->progress_callback_result; |
1602 | } |
1603 | toku_mutex_unlock(&update_progress_lock); |
1604 | return result; |
1605 | } |
1606 | |
1607 | |
1608 | static int write_rowset_to_file (FTLOADER bl, FIDX sfile, const struct rowset rows) { |
1609 | int r = 0; |
1610 | // Allocate a buffer if we're compressing intermediates. |
1611 | char *uncompressed_buffer = nullptr; |
1612 | if (bl->compress_intermediates) { |
1613 | MALLOC_N(MAX_UNCOMPRESSED_BUF, uncompressed_buffer); |
1614 | if (uncompressed_buffer == nullptr) { |
1615 | return ENOMEM; |
1616 | } |
1617 | } |
1618 | struct wbuf wb; |
1619 | wbuf_init(&wb, uncompressed_buffer, MAX_UNCOMPRESSED_BUF); |
1620 | |
1621 | TOKU_FILE *sstream = toku_bl_fidx2file(bl, sfile); |
1622 | for (size_t i = 0; i < rows.n_rows; i++) { |
1623 | DBT skey = make_dbt(rows.data + rows.rows[i].off, rows.rows[i].klen); |
1624 | DBT sval = make_dbt(rows.data + rows.rows[i].off + rows.rows[i].klen, |
1625 | rows.rows[i].vlen); |
1626 | |
1627 | uint64_t soffset=0; // don't really need this. |
1628 | r = loader_write_row(&skey, &sval, sfile, sstream, &soffset, &wb, bl); |
1629 | if (r != 0) { |
1630 | goto exit; |
1631 | } |
1632 | } |
1633 | |
1634 | if (bl->compress_intermediates && wb.ndone > 0) { |
1635 | r = bl_finish_compressed_write(sstream, &wb); |
1636 | if (r != 0) { |
1637 | goto exit; |
1638 | } |
1639 | } |
1640 | r = 0; |
1641 | exit: |
1642 | if (uncompressed_buffer) { |
1643 | toku_free(uncompressed_buffer); |
1644 | } |
1645 | return r; |
1646 | } |
1647 | |
1648 | |
1649 | int sort_and_write_rows (struct rowset rows, struct merge_fileset *fs, FTLOADER bl, int which_db, DB *dest_db, ft_compare_func compare) |
1650 | /* Effect: Given a rowset, sort it and write it to a temporary file. |
1651 | * Note: The loader maintains for each index the most recently written-to file, as well as the DBT for the last key written into that file. |
1652 | * If this rowset is sorted and all greater than that dbt, then we append to the file (skipping the sort, and reducing the number of temporary files). |
1653 | * Arguments: |
1654 | * rows the rowset |
1655 | * fs the fileset into which the sorted data will be added |
1656 | * bl the ft_loader |
1657 | * dest_db the DB, needed for the comparison function. |
1658 | * compare The comparison function. |
1659 | * Returns 0 on success, otherwise an error number. |
1660 | * Destroy the rowset after finishing it. |
1661 | * Note: There is no sense in trying to calculate progress by this function since it's done concurrently with the loader->put operation. |
1662 | * Note first time called: invariant: fs->have_sorted_output == false |
1663 | */ |
1664 | { |
1665 | //printf(" sort_and_write use %d progress=%d fin at %d\n", progress_allocation, bl->progress, bl->progress+progress_allocation); |
1666 | |
1667 | // TODO: erase the files, and deal with all the cleanup on error paths |
1668 | //printf("%s:%d sort_rows n_rows=%ld\n", __FILE__, __LINE__, rows->n_rows); |
1669 | //bl_time_t before_sort = bl_time_now(); |
1670 | |
1671 | int result; |
1672 | if (rows.n_rows == 0) { |
1673 | result = 0; |
1674 | } else { |
1675 | result = sort_rows(&rows, which_db, dest_db, compare, bl); |
1676 | |
1677 | //bl_time_t after_sort = bl_time_now(); |
1678 | |
1679 | if (result == 0) { |
1680 | DBT min_rowset_key = make_dbt(rows.data+rows.rows[0].off, rows.rows[0].klen); |
1681 | if (fs->have_sorted_output && compare(dest_db, &fs->prev_key, &min_rowset_key) < 0) { |
1682 | // write everything to the same output if the max key in the temp file (prev_key) is < min of the sorted rowset |
1683 | result = write_rowset_to_file(bl, fs->sorted_output, rows); |
1684 | if (result == 0) { |
1685 | // set the max key in the temp file to the max key in the sorted rowset |
1686 | result = toku_dbt_set(rows.rows[rows.n_rows-1].klen, rows.data + rows.rows[rows.n_rows-1].off, &fs->prev_key, NULL); |
1687 | } |
1688 | } else { |
1689 | // write the sorted rowset into a new temp file |
1690 | if (fs->have_sorted_output) { |
1691 | fs->have_sorted_output = false; |
1692 | result = ft_loader_fi_close(&bl->file_infos, fs->sorted_output, true); |
1693 | } |
1694 | if (result == 0) { |
1695 | FIDX sfile = FIDX_NULL; |
1696 | result = extend_fileset(bl, fs, &sfile); |
1697 | if (result == 0) { |
1698 | result = write_rowset_to_file(bl, sfile, rows); |
1699 | if (result == 0) { |
1700 | fs->have_sorted_output = true; fs->sorted_output = sfile; |
1701 | // set the max key in the temp file to the max key in the sorted rowset |
1702 | result = toku_dbt_set(rows.rows[rows.n_rows-1].klen, rows.data + rows.rows[rows.n_rows-1].off, &fs->prev_key, NULL); |
1703 | } |
1704 | } |
1705 | } |
1706 | // Note: if result == 0 then invariant fs->have_sorted_output == true |
1707 | } |
1708 | } |
1709 | } |
1710 | |
1711 | destroy_rowset(&rows); |
1712 | |
1713 | //bl_time_t after_write = bl_time_now(); |
1714 | |
1715 | return result; |
1716 | } |
1717 | |
1718 | // C function for testing sort_and_write_rows |
1719 | int ft_loader_sort_and_write_rows (struct rowset *rows, struct merge_fileset *fs, FTLOADER bl, int which_db, DB *dest_db, ft_compare_func compare) { |
1720 | return sort_and_write_rows (*rows, fs, bl, which_db, dest_db, compare); |
1721 | } |
1722 | |
1723 | int toku_merge_some_files_using_dbufio(const bool to_q, |
1724 | FIDX dest_data, |
1725 | QUEUE q, |
1726 | int n_sources, |
1727 | DBUFIO_FILESET bfs, |
1728 | FIDX srcs_fidxs[/*n_sources*/], |
1729 | FTLOADER bl, |
1730 | int which_db, |
1731 | DB *dest_db, |
1732 | ft_compare_func compare, |
1733 | int progress_allocation) |
1734 | /* Effect: Given an array of FILE*'s each containing sorted, merge the data and |
1735 | * write it to an output. All the files remain open after the merge. |
1736 | * This merge is performed in one pass, so don't pass too many files in. If |
1737 | * you need a tree of merges do it elsewhere. |
1738 | * If TO_Q is true then we write rowsets into queue Q. Otherwise we write |
1739 | * into dest_data. |
1740 | * Modifies: May modify the arrays of files (but if modified, it must be a |
1741 | * permutation so the caller can use that array to close everything.) |
1742 | * Requires: The number of sources is at least one, and each of the input files |
1743 | * must have at least one row in it. |
1744 | * Arguments: |
1745 | * to_q boolean indicating that output is queue (true) or a file |
1746 | * (false) |
1747 | * dest_data where to write the sorted data |
1748 | * q where to write the sorted data |
1749 | * n_sources how many source files. |
1750 | * srcs_data the array of source data files. |
1751 | * bl the ft_loader. |
1752 | * dest_db the destination DB (used in the comparison function). |
1753 | * Return value: 0 on success, otherwise an error number. |
1754 | * The fidxs are not closed by this function. |
1755 | */ |
1756 | { |
1757 | int result = 0; |
1758 | |
1759 | TOKU_FILE *dest_stream = to_q ? nullptr : toku_bl_fidx2file(bl, dest_data); |
1760 | |
1761 | // printf(" merge_some_files progress=%d fin at %d\n", bl->progress, |
1762 | // bl->progress+progress_allocation); |
1763 | DBT keys[n_sources]; |
1764 | DBT vals[n_sources]; |
1765 | uint64_t dataoff[n_sources]; |
1766 | DBT zero = zero_dbt; zero.flags=DB_DBT_REALLOC; |
1767 | |
1768 | for (int i=0; i<n_sources; i++) { |
1769 | keys[i] = vals[i] = zero; // fill these all in with zero so we can delete stuff more reliably. |
1770 | } |
1771 | |
1772 | pqueue_t *pq = NULL; |
1773 | pqueue_node_t *MALLOC_N(n_sources, pq_nodes); // freed in cleanup |
1774 | if (pq_nodes == NULL) { result = get_error_errno(); } |
1775 | |
1776 | if (result==0) { |
1777 | int r = pqueue_init(&pq, n_sources, which_db, dest_db, compare, &bl->error_callback); |
1778 | if (r!=0) result = r; |
1779 | } |
1780 | |
1781 | uint64_t n_rows = 0; |
1782 | if (result==0) { |
1783 | // load pqueue with first value from each source |
1784 | for (int i=0; i<n_sources; i++) { |
1785 | int r = loader_read_row_from_dbufio(bfs, i, &keys[i], &vals[i]); |
1786 | if (r==EOF) continue; // if the file is empty, don't initialize the pqueue. |
1787 | if (r!=0) { |
1788 | result = r; |
1789 | break; |
1790 | } |
1791 | |
1792 | pq_nodes[i].key = &keys[i]; |
1793 | pq_nodes[i].val = &vals[i]; |
1794 | pq_nodes[i].i = i; |
1795 | r = pqueue_insert(pq, &pq_nodes[i]); |
1796 | if (r!=0) { |
1797 | result = r; |
1798 | // path tested by loader-dup-test5.tdbrun |
1799 | // printf("%s:%d returning\n", __FILE__, __LINE__); |
1800 | break; |
1801 | } |
1802 | |
1803 | dataoff[i] = 0; |
1804 | toku_mutex_lock(&bl->file_infos.lock); |
1805 | n_rows += bl->file_infos.file_infos[srcs_fidxs[i].idx].n_rows; |
1806 | toku_mutex_unlock(&bl->file_infos.lock); |
1807 | } |
1808 | } |
1809 | uint64_t n_rows_done = 0; |
1810 | |
1811 | struct rowset *output_rowset = NULL; |
1812 | if (result==0 && to_q) { |
1813 | XMALLOC(output_rowset); // freed in cleanup |
1814 | int r = init_rowset(output_rowset, memory_per_rowset_during_merge(bl, n_sources, to_q)); |
1815 | if (r!=0) result = r; |
1816 | } |
1817 | |
1818 | // Allocate a buffer if we're compressing intermediates. |
1819 | char *uncompressed_buffer = nullptr; |
1820 | struct wbuf wb; |
1821 | if (bl->compress_intermediates && !to_q) { |
1822 | MALLOC_N(MAX_UNCOMPRESSED_BUF, uncompressed_buffer); |
1823 | if (uncompressed_buffer == nullptr) { |
1824 | result = ENOMEM; |
1825 | } |
1826 | } |
1827 | wbuf_init(&wb, uncompressed_buffer, MAX_UNCOMPRESSED_BUF); |
1828 | |
1829 | //printf(" n_rows=%ld\n", n_rows); |
1830 | while (result==0 && pqueue_size(pq)>0) { |
1831 | int mini; |
1832 | { |
1833 | // get the minimum |
1834 | pqueue_node_t *node; |
1835 | int r = pqueue_pop(pq, &node); |
1836 | if (r!=0) { |
1837 | result = r; |
1838 | invariant(0); |
1839 | break; |
1840 | } |
1841 | mini = node->i; |
1842 | } |
1843 | if (to_q) { |
1844 | if (row_wont_fit(output_rowset, keys[mini].size + vals[mini].size)) { |
1845 | { |
1846 | int r = toku_queue_enq(q, (void*)output_rowset, 1, NULL); |
1847 | if (r!=0) { |
1848 | result = r; |
1849 | break; |
1850 | } |
1851 | } |
1852 | XMALLOC(output_rowset); // freed in cleanup |
1853 | { |
1854 | int r = init_rowset(output_rowset, memory_per_rowset_during_merge(bl, n_sources, to_q)); |
1855 | if (r!=0) { |
1856 | result = r; |
1857 | break; |
1858 | } |
1859 | } |
1860 | } |
1861 | { |
1862 | int r = add_row(output_rowset, &keys[mini], &vals[mini]); |
1863 | if (r!=0) { |
1864 | result = r; |
1865 | break; |
1866 | } |
1867 | } |
1868 | } else { |
1869 | // write it to the dest file |
1870 | int r = loader_write_row(&keys[mini], &vals[mini], dest_data, dest_stream, &dataoff[mini], &wb, bl); |
1871 | if (r!=0) { |
1872 | result = r; |
1873 | break; |
1874 | } |
1875 | } |
1876 | |
1877 | { |
1878 | // read next row from file that just sourced min value |
1879 | int r = loader_read_row_from_dbufio(bfs, mini, &keys[mini], &vals[mini]); |
1880 | if (r!=0) { |
1881 | if (r==EOF) { |
1882 | // on feof, queue size permanently smaller |
1883 | toku_free(keys[mini].data); keys[mini].data = NULL; |
1884 | toku_free(vals[mini].data); vals[mini].data = NULL; |
1885 | } else { |
1886 | fprintf(stderr, "%s:%d r=%d errno=%d bfs=%p mini=%d\n" , __FILE__, __LINE__, r, get_maybe_error_errno(), bfs, mini); |
1887 | dbufio_print(bfs); |
1888 | result = r; |
1889 | break; |
1890 | } |
1891 | } else { |
1892 | // insert value into queue (re-populate queue) |
1893 | pq_nodes[mini].key = &keys[mini]; |
1894 | r = pqueue_insert(pq, &pq_nodes[mini]); |
1895 | if (r!=0) { |
1896 | // Note: This error path tested by loader-dup-test1.tdbrun (and by loader-dup-test4) |
1897 | result = r; |
1898 | // printf("%s:%d returning\n", __FILE__, __LINE__); |
1899 | break; |
1900 | } |
1901 | } |
1902 | } |
1903 | |
1904 | n_rows_done++; |
1905 | const uint64_t rows_per_report = size_factor*1024; |
1906 | if (n_rows_done%rows_per_report==0) { |
1907 | // need to update the progress. |
1908 | double fraction_of_remaining_we_just_did = (double)rows_per_report / (double)(n_rows - n_rows_done + rows_per_report); |
1909 | invariant(0<= fraction_of_remaining_we_just_did && fraction_of_remaining_we_just_did<=1); |
1910 | int progress_just_done = fraction_of_remaining_we_just_did * progress_allocation; |
1911 | progress_allocation -= progress_just_done; |
1912 | // ignore the result from update_progress here, we'll call update_progress again below, which will give us the nonzero result. |
1913 | int r = update_progress(progress_just_done, bl, "in file merge" ); |
1914 | if (0) printf("%s:%d Progress=%d\n" , __FILE__, __LINE__, r); |
1915 | } |
1916 | } |
1917 | if (result == 0 && uncompressed_buffer != nullptr && wb.ndone > 0) { |
1918 | result = bl_finish_compressed_write(dest_stream, &wb); |
1919 | } |
1920 | |
1921 | if (result==0 && to_q) { |
1922 | int r = toku_queue_enq(q, (void*)output_rowset, 1, NULL); |
1923 | if (r!=0) |
1924 | result = r; |
1925 | else |
1926 | output_rowset = NULL; |
1927 | } |
1928 | |
1929 | // cleanup |
1930 | if (uncompressed_buffer) { |
1931 | toku_free(uncompressed_buffer); |
1932 | } |
1933 | for (int i=0; i<n_sources; i++) { |
1934 | toku_free(keys[i].data); keys[i].data = NULL; |
1935 | toku_free(vals[i].data); vals[i].data = NULL; |
1936 | } |
1937 | if (output_rowset) { |
1938 | destroy_rowset(output_rowset); |
1939 | toku_free(output_rowset); |
1940 | } |
1941 | if (pq) { pqueue_free(pq); pq=NULL; } |
1942 | toku_free(pq_nodes); |
1943 | { |
1944 | int r = update_progress(progress_allocation, bl, "end of merge_some_files" ); |
1945 | //printf("%s:%d Progress=%d\n", __FILE__, __LINE__, r); |
1946 | if (r!=0 && result==0) result = r; |
1947 | } |
1948 | return result; |
1949 | } |
1950 | |
1951 | static int merge_some_files (const bool to_q, FIDX dest_data, QUEUE q, int n_sources, FIDX srcs_fidxs[/*n_sources*/], FTLOADER bl, int which_db, DB *dest_db, ft_compare_func compare, int progress_allocation) |
1952 | { |
1953 | int result = 0; |
1954 | DBUFIO_FILESET bfs = NULL; |
1955 | int *MALLOC_N(n_sources, fds); |
1956 | if (fds == NULL) |
1957 | result = get_error_errno(); |
1958 | if (result == 0) { |
1959 | for (int i = 0; i < n_sources; i++) { |
1960 | int r = fileno( |
1961 | toku_bl_fidx2file(bl, srcs_fidxs[i])->file); // we rely on the |
1962 | // fact that when |
1963 | // the files are |
1964 | // closed, the fd |
1965 | // is also closed. |
1966 | if (r == -1) { |
1967 | result = get_error_errno(); |
1968 | break; |
1969 | } |
1970 | fds[i] = r; |
1971 | } |
1972 | } |
1973 | if (result==0) { |
1974 | int r = create_dbufio_fileset(&bfs, n_sources, fds, |
1975 | memory_per_rowset_during_merge(bl, n_sources, to_q), bl->compress_intermediates); |
1976 | if (r!=0) { result = r; } |
1977 | } |
1978 | |
1979 | if (result==0) { |
1980 | int r = toku_merge_some_files_using_dbufio (to_q, dest_data, q, n_sources, bfs, srcs_fidxs, bl, which_db, dest_db, compare, progress_allocation); |
1981 | if (r!=0) { result = r; } |
1982 | } |
1983 | |
1984 | if (bfs!=NULL) { |
1985 | if (result != 0) |
1986 | (void) panic_dbufio_fileset(bfs, result); |
1987 | int r = destroy_dbufio_fileset(bfs); |
1988 | if (r!=0 && result==0) result=r; |
1989 | bfs = NULL; |
1990 | } |
1991 | if (fds!=NULL) { |
1992 | toku_free(fds); |
1993 | fds = NULL; |
1994 | } |
1995 | return result; |
1996 | } |
1997 | |
1998 | static int int_min (int a, int b) |
1999 | { |
2000 | if (a<b) return a; |
2001 | else return b; |
2002 | } |
2003 | |
2004 | static int n_passes (int N, int B) { |
2005 | int result = 0; |
2006 | while (N>1) { |
2007 | N = (N+B-1)/B; |
2008 | result++; |
2009 | } |
2010 | return result; |
2011 | } |
2012 | |
2013 | int merge_files (struct merge_fileset *fs, |
2014 | FTLOADER bl, |
2015 | // These are needed for the comparison function and error callback. |
2016 | int which_db, DB *dest_db, ft_compare_func compare, |
2017 | int progress_allocation, |
2018 | // Write rowsets into this queue. |
2019 | QUEUE output_q |
2020 | ) |
2021 | /* Effect: Given a fileset, merge all the files writing all the answers into a queue. |
2022 | * All the files in fs, and any temporary files will be closed and unlinked (and the fileset will be empty) |
2023 | * Return value: 0 on success, otherwise an error number. |
2024 | * On error *fs will contain no open files. All the files (including any temporary files) will be closed and unlinked. |
2025 | * (however the fs will still need to be deallocated.) |
2026 | */ |
2027 | { |
2028 | //printf(" merge_files %d files\n", fs->n_temp_files); |
2029 | //printf(" merge_files use %d progress=%d fin at %d\n", progress_allocation, bl->progress, bl->progress+progress_allocation); |
2030 | const int final_mergelimit = (size_factor == 1) ? 4 : merge_fanin(bl, true); // try for a merge to the leaf level |
2031 | const int earlier_mergelimit = (size_factor == 1) ? 4 : merge_fanin(bl, false); // try for a merge at nonleaf. |
2032 | int n_passes_left = (fs->n_temp_files<=final_mergelimit) |
2033 | ? 1 |
2034 | : 1+n_passes((fs->n_temp_files+final_mergelimit-1)/final_mergelimit, earlier_mergelimit); |
2035 | // printf("%d files, %d on last pass, %d on earlier passes, %d passes\n", fs->n_temp_files, final_mergelimit, earlier_mergelimit, n_passes_left); |
2036 | int result = 0; |
2037 | while (fs->n_temp_files > 0) { |
2038 | int progress_allocation_for_this_pass = progress_allocation/n_passes_left; |
2039 | progress_allocation -= progress_allocation_for_this_pass; |
2040 | //printf("%s:%d n_passes_left=%d progress_allocation_for_this_pass=%d\n", __FILE__, __LINE__, n_passes_left, progress_allocation_for_this_pass); |
2041 | |
2042 | invariant(fs->n_temp_files>0); |
2043 | struct merge_fileset next_file_set; |
2044 | bool to_queue = (bool)(fs->n_temp_files <= final_mergelimit); |
2045 | init_merge_fileset(&next_file_set); |
2046 | while (fs->n_temp_files>0) { |
2047 | // grab some files and merge them. |
2048 | int n_to_merge = int_min(to_queue?final_mergelimit:earlier_mergelimit, fs->n_temp_files); |
2049 | |
2050 | // We are about to do n_to_merge/n_temp_files of the remaining for this pass. |
2051 | int progress_allocation_for_this_subpass = progress_allocation_for_this_pass * (double)n_to_merge / (double)fs->n_temp_files; |
2052 | // printf("%s:%d progress_allocation_for_this_subpass=%d n_temp_files=%d b=%llu\n", __FILE__, __LINE__, progress_allocation_for_this_subpass, fs->n_temp_files, (long long unsigned) memory_per_rowset_during_merge(bl, n_to_merge, to_queue)); |
2053 | progress_allocation_for_this_pass -= progress_allocation_for_this_subpass; |
2054 | |
2055 | //printf("%s:%d merging\n", __FILE__, __LINE__); |
2056 | FIDX merged_data = FIDX_NULL; |
2057 | |
2058 | FIDX *XMALLOC_N(n_to_merge, data_fidxs); |
2059 | for (int i=0; i<n_to_merge; i++) { |
2060 | data_fidxs[i] = FIDX_NULL; |
2061 | } |
2062 | for (int i=0; i<n_to_merge; i++) { |
2063 | int idx = fs->n_temp_files -1 -i; |
2064 | FIDX fidx = fs->data_fidxs[idx]; |
2065 | result = ft_loader_fi_reopen(&bl->file_infos, fidx, "r" ); |
2066 | if (result) break; |
2067 | data_fidxs[i] = fidx; |
2068 | } |
2069 | if (result==0 && !to_queue) { |
2070 | result = extend_fileset(bl, &next_file_set, &merged_data); |
2071 | } |
2072 | |
2073 | if (result==0) { |
2074 | result = merge_some_files(to_queue, merged_data, output_q, n_to_merge, data_fidxs, bl, which_db, dest_db, compare, progress_allocation_for_this_subpass); |
2075 | // if result!=0, fall through |
2076 | if (result==0) { |
2077 | /*nothing*/;// this is gratuitous, but we need something to give code coverage tools to help us know that it's important to distinguish between result==0 and result!=0 |
2078 | } |
2079 | } |
2080 | |
2081 | //printf("%s:%d merged\n", __FILE__, __LINE__); |
2082 | for (int i=0; i<n_to_merge; i++) { |
2083 | if (!fidx_is_null(data_fidxs[i])) { |
2084 | { |
2085 | int r = ft_loader_fi_close(&bl->file_infos, data_fidxs[i], true); |
2086 | if (r!=0 && result==0) result = r; |
2087 | } |
2088 | { |
2089 | int r = ft_loader_fi_unlink(&bl->file_infos, data_fidxs[i]); |
2090 | if (r!=0 && result==0) result = r; |
2091 | } |
2092 | data_fidxs[i] = FIDX_NULL; |
2093 | } |
2094 | } |
2095 | |
2096 | fs->n_temp_files -= n_to_merge; |
2097 | if (!to_queue && !fidx_is_null(merged_data)) { |
2098 | int r = ft_loader_fi_close(&bl->file_infos, merged_data, true); |
2099 | if (r!=0 && result==0) result = r; |
2100 | } |
2101 | toku_free(data_fidxs); |
2102 | |
2103 | if (result!=0) break; |
2104 | } |
2105 | |
2106 | destroy_merge_fileset(fs); |
2107 | *fs = next_file_set; |
2108 | |
2109 | // Update the progress |
2110 | n_passes_left--; |
2111 | |
2112 | if (result==0) { invariant(progress_allocation_for_this_pass==0); } |
2113 | |
2114 | if (result!=0) break; |
2115 | } |
2116 | if (result) ft_loader_set_panic(bl, result, true, which_db, nullptr, nullptr); |
2117 | |
2118 | { |
2119 | int r = toku_queue_eof(output_q); |
2120 | if (r!=0 && result==0) result = r; |
2121 | } |
2122 | // It's conceivable that the progress_allocation could be nonzero (for example if bl->N==0) |
2123 | { |
2124 | int r = update_progress(progress_allocation, bl, "did merge_files" ); |
2125 | if (r!=0 && result==0) result = r; |
2126 | } |
2127 | return result; |
2128 | } |
2129 | |
2130 | struct subtree_info { |
2131 | int64_t block; |
2132 | }; |
2133 | |
2134 | struct subtrees_info { |
2135 | int64_t next_free_block; |
2136 | int64_t n_subtrees; // was n_blocks |
2137 | int64_t n_subtrees_limit; |
2138 | struct subtree_info *subtrees; |
2139 | }; |
2140 | |
2141 | static void subtrees_info_init(struct subtrees_info *p) { |
2142 | p->next_free_block = p->n_subtrees = p->n_subtrees_limit = 0; |
2143 | p->subtrees = NULL; |
2144 | } |
2145 | |
2146 | static void subtrees_info_destroy(struct subtrees_info *p) { |
2147 | toku_free(p->subtrees); |
2148 | p->subtrees = NULL; |
2149 | } |
2150 | |
2151 | static void allocate_node (struct subtrees_info *sts, int64_t b) { |
2152 | if (sts->n_subtrees >= sts->n_subtrees_limit) { |
2153 | sts->n_subtrees_limit *= 2; |
2154 | XREALLOC_N(sts->n_subtrees_limit, sts->subtrees); |
2155 | } |
2156 | sts->subtrees[sts->n_subtrees].block = b; |
2157 | sts->n_subtrees++; |
2158 | } |
2159 | |
2160 | // dbuf will always contained 512-byte aligned buffer, but the length might not be a multiple of 512 bytes. If that's what you want, then pad it. |
2161 | struct dbuf { |
2162 | unsigned char *buf; |
2163 | int buflen; |
2164 | int off; |
2165 | int error; |
2166 | }; |
2167 | |
2168 | struct leaf_buf { |
2169 | BLOCKNUM blocknum; |
2170 | TXNID xid; |
2171 | uint64_t nkeys, ndata, dsize; |
2172 | FTNODE node; |
2173 | XIDS xids; |
2174 | uint64_t off; |
2175 | }; |
2176 | |
2177 | struct translation { |
2178 | int64_t off, size; |
2179 | }; |
2180 | |
2181 | struct dbout { |
2182 | int fd; |
2183 | toku_off_t current_off; |
2184 | |
2185 | int64_t n_translations; |
2186 | int64_t n_translations_limit; |
2187 | struct translation *translation; |
2188 | toku_mutex_t mutex; |
2189 | FT ft; |
2190 | }; |
2191 | |
2192 | static inline void dbout_init(struct dbout *out, FT ft) { |
2193 | out->fd = -1; |
2194 | out->current_off = 0; |
2195 | out->n_translations = out->n_translations_limit = 0; |
2196 | out->translation = NULL; |
2197 | toku_mutex_init(*loader_out_mutex_key, &out->mutex, nullptr); |
2198 | out->ft = ft; |
2199 | } |
2200 | |
2201 | static inline void dbout_destroy(struct dbout *out) { |
2202 | if (out->fd >= 0) { |
2203 | toku_os_close(out->fd); |
2204 | out->fd = -1; |
2205 | } |
2206 | toku_free(out->translation); |
2207 | out->translation = NULL; |
2208 | toku_mutex_destroy(&out->mutex); |
2209 | } |
2210 | |
2211 | static inline void dbout_lock(struct dbout *out) { |
2212 | toku_mutex_lock(&out->mutex); |
2213 | } |
2214 | |
2215 | static inline void dbout_unlock(struct dbout *out) { |
2216 | toku_mutex_unlock(&out->mutex); |
2217 | } |
2218 | |
2219 | static void seek_align_locked(struct dbout *out) { |
2220 | toku_off_t old_current_off = out->current_off; |
2221 | int alignment = 4096; |
2222 | out->current_off += alignment-1; |
2223 | out->current_off &= ~(alignment-1); |
2224 | toku_off_t r = lseek(out->fd, out->current_off, SEEK_SET); |
2225 | invariant(r==out->current_off); |
2226 | invariant(out->current_off >= old_current_off); |
2227 | invariant(out->current_off < old_current_off+alignment); |
2228 | invariant(out->current_off % alignment == 0); |
2229 | } |
2230 | |
2231 | static void seek_align(struct dbout *out) { |
2232 | dbout_lock(out); |
2233 | seek_align_locked(out); |
2234 | dbout_unlock(out); |
2235 | } |
2236 | |
2237 | static void dbuf_init (struct dbuf *dbuf) { |
2238 | dbuf->buf = 0; |
2239 | dbuf->buflen = 0; |
2240 | dbuf->off = 0; |
2241 | dbuf->error = 0; |
2242 | } |
2243 | |
2244 | static void dbuf_destroy (struct dbuf *dbuf) { |
2245 | toku_free(dbuf->buf); dbuf->buf = NULL; |
2246 | } |
2247 | |
2248 | static int allocate_block (struct dbout *out, int64_t *ret_block_number) |
2249 | // Return the new block number |
2250 | { |
2251 | int result = 0; |
2252 | dbout_lock(out); |
2253 | int64_t block_number = out->n_translations; |
2254 | if (block_number >= out->n_translations_limit) { |
2255 | int64_t old_n_translations_limit = out->n_translations_limit; |
2256 | struct translation *old_translation = out->translation; |
2257 | if (out->n_translations_limit==0) { |
2258 | out->n_translations_limit = 1; |
2259 | } else { |
2260 | out->n_translations_limit *= 2; |
2261 | } |
2262 | REALLOC_N(out->n_translations_limit, out->translation); |
2263 | if (out->translation == NULL) { |
2264 | result = get_error_errno(); |
2265 | invariant(result); |
2266 | out->n_translations_limit = old_n_translations_limit; |
2267 | out->translation = old_translation; |
2268 | goto cleanup; |
2269 | } |
2270 | } |
2271 | out->n_translations++; |
2272 | *ret_block_number = block_number; |
2273 | cleanup: |
2274 | dbout_unlock(out); |
2275 | return result; |
2276 | } |
2277 | |
2278 | static void putbuf_bytes (struct dbuf *dbuf, const void *bytes, int nbytes) { |
2279 | if (!dbuf->error && dbuf->off + nbytes > dbuf->buflen) { |
2280 | unsigned char *oldbuf = dbuf->buf; |
2281 | int oldbuflen = dbuf->buflen; |
2282 | dbuf->buflen += dbuf->off + nbytes; |
2283 | dbuf->buflen *= 2; |
2284 | REALLOC_N_ALIGNED(512, dbuf->buflen, dbuf->buf); |
2285 | if (dbuf->buf == NULL) { |
2286 | dbuf->error = get_error_errno(); |
2287 | dbuf->buf = oldbuf; |
2288 | dbuf->buflen = oldbuflen; |
2289 | } |
2290 | } |
2291 | if (!dbuf->error) { |
2292 | memcpy(dbuf->buf + dbuf->off, bytes, nbytes); |
2293 | dbuf->off += nbytes; |
2294 | } |
2295 | } |
2296 | |
2297 | static void putbuf_int32 (struct dbuf *dbuf, int v) { |
2298 | putbuf_bytes(dbuf, &v, 4); |
2299 | } |
2300 | |
2301 | static void putbuf_int64 (struct dbuf *dbuf, long long v) { |
2302 | putbuf_int32(dbuf, v>>32); |
2303 | putbuf_int32(dbuf, v&0xFFFFFFFF); |
2304 | } |
2305 | |
2306 | static struct leaf_buf *start_leaf (struct dbout *out, const DESCRIPTOR UU(desc), int64_t lblocknum, TXNID xid, uint32_t UU(target_nodesize)) { |
2307 | invariant(lblocknum < out->n_translations_limit); |
2308 | |
2309 | struct leaf_buf *XMALLOC(lbuf); |
2310 | lbuf->blocknum.b = lblocknum; |
2311 | lbuf->xid = xid; |
2312 | lbuf->nkeys = lbuf->ndata = lbuf->dsize = 0; |
2313 | lbuf->off = 0; |
2314 | |
2315 | lbuf->xids = toku_xids_get_root_xids(); |
2316 | if (xid != TXNID_NONE) { |
2317 | XIDS new_xids = NULL; |
2318 | int r = toku_xids_create_child(lbuf->xids, &new_xids, xid); |
2319 | assert(r == 0 && new_xids); |
2320 | toku_xids_destroy(&lbuf->xids); |
2321 | lbuf->xids = new_xids; |
2322 | } |
2323 | |
2324 | FTNODE XMALLOC(node); |
2325 | toku_initialize_empty_ftnode(node, lbuf->blocknum, 0 /*height*/, 1 /*basement nodes*/, FT_LAYOUT_VERSION, 0); |
2326 | BP_STATE(node, 0) = PT_AVAIL; |
2327 | lbuf->node = node; |
2328 | |
2329 | return lbuf; |
2330 | } |
2331 | |
2332 | static void finish_leafnode( |
2333 | struct dbout* out, |
2334 | struct leaf_buf* lbuf, |
2335 | int progress_allocation, |
2336 | FTLOADER bl, |
2337 | uint32_t target_basementnodesize, |
2338 | enum toku_compression_method target_compression_method); |
2339 | |
2340 | static int write_nonleaves( |
2341 | FTLOADER bl, |
2342 | FIDX pivots_fidx, |
2343 | struct dbout* out, |
2344 | struct subtrees_info* sts, |
2345 | const DESCRIPTOR descriptor, |
2346 | uint32_t target_nodesize, |
2347 | uint32_t target_basementnodesize, |
2348 | enum toku_compression_method target_compression_method); |
2349 | |
2350 | static void add_pair_to_leafnode( |
2351 | struct leaf_buf* lbuf, |
2352 | unsigned char* key, |
2353 | int keylen, |
2354 | unsigned char* val, |
2355 | int vallen, |
2356 | int this_leafentry_size, |
2357 | STAT64INFO stats_to_update, |
2358 | int64_t* logical_rows_delta); |
2359 | |
2360 | static int write_translation_table( |
2361 | struct dbout* out, |
2362 | long long* off_of_translation_p); |
2363 | |
2364 | static int write_header( |
2365 | struct dbout* out, |
2366 | long long translation_location_on_disk, |
2367 | long long translation_size_on_disk); |
2368 | |
2369 | static void drain_writer_q(QUEUE q) { |
2370 | void *item; |
2371 | while (1) { |
2372 | int r = toku_queue_deq(q, &item, NULL, NULL); |
2373 | if (r == EOF) |
2374 | break; |
2375 | invariant(r == 0); |
2376 | struct rowset *rowset = (struct rowset *) item; |
2377 | destroy_rowset(rowset); |
2378 | toku_free(rowset); |
2379 | } |
2380 | } |
2381 | |
2382 | static void cleanup_maxkey(DBT *maxkey) { |
2383 | if (maxkey->flags == DB_DBT_REALLOC) { |
2384 | toku_free(maxkey->data); |
2385 | maxkey->data = NULL; |
2386 | maxkey->flags = 0; |
2387 | } |
2388 | } |
2389 | |
2390 | static void update_maxkey(DBT *maxkey, DBT *key) { |
2391 | cleanup_maxkey(maxkey); |
2392 | *maxkey = *key; |
2393 | } |
2394 | |
2395 | static int copy_maxkey(DBT *maxkey) { |
2396 | DBT newkey; |
2397 | toku_init_dbt_flags(&newkey, DB_DBT_REALLOC); |
2398 | int r = toku_dbt_set(maxkey->size, maxkey->data, &newkey, NULL); |
2399 | if (r == 0) |
2400 | update_maxkey(maxkey, &newkey); |
2401 | return r; |
2402 | } |
2403 | |
2404 | static int toku_loader_write_ft_from_q (FTLOADER bl, |
2405 | const DESCRIPTOR descriptor, |
2406 | int fd, // write to here |
2407 | int progress_allocation, |
2408 | QUEUE q, |
2409 | uint64_t total_disksize_estimate, |
2410 | int which_db, |
2411 | uint32_t target_nodesize, |
2412 | uint32_t target_basementnodesize, |
2413 | enum toku_compression_method target_compression_method, |
2414 | uint32_t target_fanout) |
2415 | // Effect: Consume a sequence of rowsets work from a queue, creating a fractal tree. Closes fd. |
2416 | { |
2417 | // set the number of fractal tree writer threads so that we can partition memory in the merger |
2418 | ft_loader_set_fractal_workers_count(bl); |
2419 | |
2420 | int result = 0; |
2421 | int r; |
2422 | |
2423 | // The pivots file will contain all the pivot strings (in the form <size(32bits)> <data>) |
2424 | // The pivots_fname is the name of the pivots file. |
2425 | // Note that the pivots file will have one extra pivot in it (the last key in the dictionary) which will not appear in the tree. |
2426 | int64_t n_pivots=0; // number of pivots in pivots_file |
2427 | FIDX pivots_file; // the file |
2428 | |
2429 | r = ft_loader_open_temp_file (bl, &pivots_file); |
2430 | if (r) { |
2431 | result = r; |
2432 | drain_writer_q(q); |
2433 | r = toku_os_close(fd); |
2434 | assert_zero(r); |
2435 | return result; |
2436 | } |
2437 | TOKU_FILE *pivots_stream = toku_bl_fidx2file(bl, pivots_file); |
2438 | |
2439 | TXNID root_xid_that_created = TXNID_NONE; |
2440 | if (bl->root_xids_that_created) |
2441 | root_xid_that_created = bl->root_xids_that_created[which_db]; |
2442 | |
2443 | // TODO: (Zardosht/Yoni/Leif), do this code properly |
2444 | struct ft ft; |
2445 | toku_ft_init(&ft, (BLOCKNUM){0}, bl->load_lsn, root_xid_that_created, target_nodesize, target_basementnodesize, target_compression_method, target_fanout); |
2446 | |
2447 | struct dbout out; |
2448 | ZERO_STRUCT(out); |
2449 | dbout_init(&out, &ft); |
2450 | out.fd = fd; |
2451 | out.current_off = 8192; // leave 8K reserved at beginning |
2452 | out.n_translations = 3; // 3 translations reserved at the beginning |
2453 | out.n_translations_limit = 4; |
2454 | MALLOC_N(out.n_translations_limit, out.translation); |
2455 | if (out.translation == NULL) { |
2456 | result = get_error_errno(); |
2457 | dbout_destroy(&out); |
2458 | drain_writer_q(q); |
2459 | toku_free(ft.h); |
2460 | return result; |
2461 | } |
2462 | |
2463 | // The blocks_array will contain all the block numbers that correspond to the pivots. Generally there should be one more block than pivot. |
2464 | struct subtrees_info sts; |
2465 | subtrees_info_init(&sts); |
2466 | sts.next_free_block = 3; |
2467 | sts.n_subtrees = 0; |
2468 | sts.n_subtrees_limit = 1; |
2469 | MALLOC_N(sts.n_subtrees_limit, sts.subtrees); |
2470 | if (sts.subtrees == NULL) { |
2471 | result = get_error_errno(); |
2472 | subtrees_info_destroy(&sts); |
2473 | dbout_destroy(&out); |
2474 | drain_writer_q(q); |
2475 | toku_free(ft.h); |
2476 | return result; |
2477 | } |
2478 | |
2479 | out.translation[0].off = -2LL; out.translation[0].size = 0; // block 0 is NULL |
2480 | invariant(1==RESERVED_BLOCKNUM_TRANSLATION); |
2481 | invariant(2==RESERVED_BLOCKNUM_DESCRIPTOR); |
2482 | out.translation[1].off = -1; // block 1 is the block translation, filled in later |
2483 | out.translation[2].off = -1; // block 2 is the descriptor |
2484 | seek_align(&out); |
2485 | int64_t lblock = 0; // make gcc --happy |
2486 | result = allocate_block(&out, &lblock); |
2487 | invariant(result == 0); // can not fail since translations reserved above |
2488 | |
2489 | TXNID le_xid = leafentry_xid(bl, which_db); |
2490 | struct leaf_buf *lbuf = start_leaf(&out, descriptor, lblock, le_xid, target_nodesize); |
2491 | uint64_t n_rows_remaining = bl->n_rows; |
2492 | uint64_t old_n_rows_remaining = bl->n_rows; |
2493 | |
2494 | uint64_t used_estimate = 0; // how much diskspace have we used up? |
2495 | |
2496 | DBT maxkey = make_dbt(0, 0); // keep track of the max key of the current node |
2497 | |
2498 | STAT64INFO_S deltas = ZEROSTATS; |
2499 | // This is just a placeholder and not used in the loader, the real/accurate |
2500 | // stats will come out of 'deltas' because this loader is not pushing |
2501 | // messages down into the top of a fractal tree where the logical row count |
2502 | // is done, it is directly creating leaf entries so it must also take on |
2503 | // performing the logical row counting on its own |
2504 | int64_t logical_rows_delta = 0; |
2505 | while (result == 0) { |
2506 | void *item; |
2507 | { |
2508 | int rr = toku_queue_deq(q, &item, NULL, NULL); |
2509 | if (rr == EOF) break; |
2510 | if (rr != 0) { |
2511 | ft_loader_set_panic(bl, rr, true, which_db, nullptr, nullptr); |
2512 | break; |
2513 | } |
2514 | } |
2515 | struct rowset *output_rowset = (struct rowset *)item; |
2516 | |
2517 | for (unsigned int i = 0; i < output_rowset->n_rows; i++) { |
2518 | DBT key = make_dbt(output_rowset->data+output_rowset->rows[i].off, output_rowset->rows[i].klen); |
2519 | DBT val = make_dbt(output_rowset->data+output_rowset->rows[i].off + output_rowset->rows[i].klen, output_rowset->rows[i].vlen); |
2520 | |
2521 | size_t this_leafentry_size = ft_loader_leafentry_size(key.size, val.size, le_xid); |
2522 | |
2523 | used_estimate += this_leafentry_size; |
2524 | |
2525 | // Spawn off a node if |
2526 | // a) there is at least one row in it, and |
2527 | // b) this item would make the nodesize too big, or |
2528 | // c) the remaining amount won't fit in the current node and the current node's data is more than the remaining amount |
2529 | uint64_t remaining_amount = total_disksize_estimate - used_estimate; |
2530 | uint64_t used_here = lbuf->off + 1000; // leave 1000 for various overheads. |
2531 | uint64_t target_size = (target_nodesize*7L)/8; // use only 7/8 of the node. |
2532 | uint64_t used_here_with_next_key = used_here + this_leafentry_size; |
2533 | if (lbuf->nkeys > 0 && |
2534 | ((used_here_with_next_key >= target_size) || (used_here + remaining_amount >= target_size && lbuf->off > remaining_amount))) { |
2535 | |
2536 | int progress_this_node = progress_allocation * (double)(old_n_rows_remaining - n_rows_remaining)/(double)old_n_rows_remaining; |
2537 | progress_allocation -= progress_this_node; |
2538 | old_n_rows_remaining = n_rows_remaining; |
2539 | |
2540 | allocate_node(&sts, lblock); |
2541 | |
2542 | n_pivots++; |
2543 | |
2544 | invariant(maxkey.data != NULL); |
2545 | if ((r = bl_write_dbt(&maxkey, pivots_stream, NULL, nullptr, bl))) { |
2546 | ft_loader_set_panic(bl, r, true, which_db, nullptr, nullptr); |
2547 | if (result == 0) result = r; |
2548 | break; |
2549 | } |
2550 | |
2551 | finish_leafnode(&out, lbuf, progress_this_node, bl, target_basementnodesize, target_compression_method); |
2552 | lbuf = NULL; |
2553 | |
2554 | r = allocate_block(&out, &lblock); |
2555 | if (r != 0) { |
2556 | ft_loader_set_panic(bl, r, true, which_db, nullptr, nullptr); |
2557 | if (result == 0) result = r; |
2558 | break; |
2559 | } |
2560 | lbuf = start_leaf(&out, descriptor, lblock, le_xid, target_nodesize); |
2561 | } |
2562 | |
2563 | add_pair_to_leafnode( |
2564 | lbuf, |
2565 | (unsigned char*)key.data, |
2566 | key.size, |
2567 | (unsigned char*)val.data, |
2568 | val.size, |
2569 | this_leafentry_size, |
2570 | &deltas, |
2571 | &logical_rows_delta); |
2572 | n_rows_remaining--; |
2573 | |
2574 | update_maxkey(&maxkey, &key); // set the new maxkey to the current key |
2575 | } |
2576 | |
2577 | r = copy_maxkey(&maxkey); // make a copy of maxkey before the rowset is destroyed |
2578 | if (result == 0) |
2579 | result = r; |
2580 | destroy_rowset(output_rowset); |
2581 | toku_free(output_rowset); |
2582 | |
2583 | if (result == 0) |
2584 | result = ft_loader_get_error(&bl->error_callback); // check if an error was posted and terminate this quickly |
2585 | } |
2586 | |
2587 | if (deltas.numrows || deltas.numbytes) { |
2588 | toku_ft_update_stats(&ft.in_memory_stats, deltas); |
2589 | } |
2590 | |
2591 | // As noted above, the loader directly creates a tree structure without |
2592 | // going through the higher level ft API and tus bypasses the logical row |
2593 | // counting performed at that level. So, we must manually update the logical |
2594 | // row count with the info we have from the physical delta that comes out of |
2595 | // add_pair_to_leafnode. |
2596 | toku_ft_adjust_logical_row_count(&ft, deltas.numrows); |
2597 | |
2598 | cleanup_maxkey(&maxkey); |
2599 | |
2600 | if (lbuf) { |
2601 | allocate_node(&sts, lblock); |
2602 | { |
2603 | int p = progress_allocation/2; |
2604 | finish_leafnode(&out, lbuf, p, bl, target_basementnodesize, target_compression_method); |
2605 | progress_allocation -= p; |
2606 | } |
2607 | } |
2608 | |
2609 | |
2610 | if (result == 0) { |
2611 | result = ft_loader_get_error(&bl->error_callback); // if there were any prior errors then exit |
2612 | } |
2613 | |
2614 | if (result != 0) goto error; |
2615 | |
2616 | // We haven't paniced, so the sum should add up. |
2617 | invariant(used_estimate == total_disksize_estimate); |
2618 | |
2619 | n_pivots++; |
2620 | |
2621 | { |
2622 | DBT key = make_dbt(0,0); // must write an extra DBT into the pivots file. |
2623 | r = bl_write_dbt(&key, pivots_stream, NULL, nullptr, bl); |
2624 | if (r) { |
2625 | result = r; goto error; |
2626 | } |
2627 | } |
2628 | |
2629 | r = write_nonleaves(bl, pivots_file, &out, &sts, descriptor, target_nodesize, target_basementnodesize, target_compression_method); |
2630 | if (r) { |
2631 | result = r; goto error; |
2632 | } |
2633 | |
2634 | { |
2635 | invariant(sts.n_subtrees==1); |
2636 | out.ft->h->root_blocknum = make_blocknum(sts.subtrees[0].block); |
2637 | toku_free(sts.subtrees); sts.subtrees = NULL; |
2638 | |
2639 | // write the descriptor |
2640 | { |
2641 | seek_align(&out); |
2642 | invariant(out.n_translations >= RESERVED_BLOCKNUM_DESCRIPTOR); |
2643 | invariant(out.translation[RESERVED_BLOCKNUM_DESCRIPTOR].off == -1); |
2644 | out.translation[RESERVED_BLOCKNUM_DESCRIPTOR].off = out.current_off; |
2645 | size_t desc_size = 4+toku_serialize_descriptor_size(descriptor); |
2646 | invariant(desc_size>0); |
2647 | out.translation[RESERVED_BLOCKNUM_DESCRIPTOR].size = desc_size; |
2648 | struct wbuf wbuf; |
2649 | char *XMALLOC_N(desc_size, buf); |
2650 | wbuf_init(&wbuf, buf, desc_size); |
2651 | toku_serialize_descriptor_contents_to_wbuf(&wbuf, descriptor); |
2652 | uint32_t checksum = toku_x1764_finish(&wbuf.checksum); |
2653 | wbuf_int(&wbuf, checksum); |
2654 | invariant(wbuf.ndone==desc_size); |
2655 | r = toku_os_write(out.fd, wbuf.buf, wbuf.ndone); |
2656 | out.current_off += desc_size; |
2657 | toku_free(buf); // wbuf_destroy |
2658 | if (r) { |
2659 | result = r; goto error; |
2660 | } |
2661 | } |
2662 | |
2663 | long long off_of_translation; |
2664 | r = write_translation_table(&out, &off_of_translation); |
2665 | if (r) { |
2666 | result = r; goto error; |
2667 | } |
2668 | |
2669 | r = write_header(&out, off_of_translation, (out.n_translations+1)*16+4); |
2670 | if (r) { |
2671 | result = r; goto error; |
2672 | } |
2673 | |
2674 | r = update_progress(progress_allocation, bl, "wrote tdb file" ); |
2675 | if (r) { |
2676 | result = r; goto error; |
2677 | } |
2678 | } |
2679 | |
2680 | r = fsync(out.fd); |
2681 | if (r) { |
2682 | result = get_error_errno(); goto error; |
2683 | } |
2684 | |
2685 | // Do we need to pay attention to user_said_stop? Or should the guy at the other end of the queue pay attention and send in an EOF. |
2686 | |
2687 | error: |
2688 | { |
2689 | int rr = toku_os_close(fd); |
2690 | if (rr) |
2691 | result = get_error_errno(); |
2692 | } |
2693 | out.fd = -1; |
2694 | |
2695 | subtrees_info_destroy(&sts); |
2696 | dbout_destroy(&out); |
2697 | drain_writer_q(q); |
2698 | toku_free(ft.h); |
2699 | |
2700 | return result; |
2701 | } |
2702 | |
2703 | int toku_loader_write_ft_from_q_in_C (FTLOADER bl, |
2704 | const DESCRIPTOR descriptor, |
2705 | int fd, // write to here |
2706 | int progress_allocation, |
2707 | QUEUE q, |
2708 | uint64_t total_disksize_estimate, |
2709 | int which_db, |
2710 | uint32_t target_nodesize, |
2711 | uint32_t target_basementnodesize, |
2712 | enum toku_compression_method target_compression_method, |
2713 | uint32_t target_fanout) |
2714 | // This is probably only for testing. |
2715 | { |
2716 | target_nodesize = target_nodesize == 0 ? default_loader_nodesize : target_nodesize; |
2717 | target_basementnodesize = target_basementnodesize == 0 ? default_loader_basementnodesize : target_basementnodesize; |
2718 | return toku_loader_write_ft_from_q (bl, descriptor, fd, progress_allocation, q, total_disksize_estimate, which_db, target_nodesize, target_basementnodesize, target_compression_method, target_fanout); |
2719 | } |
2720 | |
2721 | |
2722 | static void* fractal_thread (void *ftav) { |
2723 | struct fractal_thread_args *fta = (struct fractal_thread_args *)ftav; |
2724 | int r = toku_loader_write_ft_from_q(fta->bl, |
2725 | fta->descriptor, |
2726 | fta->fd, |
2727 | fta->progress_allocation, |
2728 | fta->q, |
2729 | fta->total_disksize_estimate, |
2730 | fta->which_db, |
2731 | fta->target_nodesize, |
2732 | fta->target_basementnodesize, |
2733 | fta->target_compression_method, |
2734 | fta->target_fanout); |
2735 | fta->errno_result = r; |
2736 | toku_instr_delete_current_thread(); |
2737 | return toku_pthread_done(nullptr); |
2738 | } |
2739 | |
2740 | static int loader_do_i(FTLOADER bl, |
2741 | int which_db, |
2742 | DB *dest_db, |
2743 | ft_compare_func compare, |
2744 | const DESCRIPTOR descriptor, |
2745 | const char *new_fname, |
2746 | int progress_allocation // how much progress do I need |
2747 | // to add into bl->progress by |
2748 | // the end.. |
2749 | ) |
2750 | /* Effect: Handle the file creating for one particular DB in the bulk loader. */ |
2751 | /* Requires: The data is fully extracted, so we can do merges out of files and |
2752 | write the ft file. */ |
2753 | { |
2754 | //printf("doing i use %d progress=%d fin at %d\n", progress_allocation, bl->progress, bl->progress+progress_allocation); |
2755 | struct merge_fileset *fs = &(bl->fs[which_db]); |
2756 | struct rowset *rows = &(bl->rows[which_db]); |
2757 | invariant(rows->data==NULL); // the rows should be all cleaned up already |
2758 | |
2759 | int r = toku_queue_create(&bl->fractal_queues[which_db], FRACTAL_WRITER_QUEUE_DEPTH); |
2760 | if (r) goto error; |
2761 | |
2762 | { |
2763 | mode_t mode = S_IRUSR + S_IWUSR + S_IRGRP + S_IWGRP; |
2764 | int fd = toku_os_open(new_fname, |
2765 | O_RDWR | O_CREAT | O_BINARY, |
2766 | mode, |
2767 | *tokudb_file_load_key); // #2621 |
2768 | if (fd < 0) { |
2769 | r = get_error_errno(); |
2770 | goto error; |
2771 | } |
2772 | |
2773 | uint32_t target_nodesize, target_basementnodesize, target_fanout; |
2774 | enum toku_compression_method target_compression_method; |
2775 | r = dest_db->get_pagesize(dest_db, &target_nodesize); |
2776 | invariant_zero(r); |
2777 | r = dest_db->get_readpagesize(dest_db, &target_basementnodesize); |
2778 | invariant_zero(r); |
2779 | r = dest_db->get_compression_method(dest_db, &target_compression_method); |
2780 | invariant_zero(r); |
2781 | r = dest_db->get_fanout(dest_db, &target_fanout); |
2782 | invariant_zero(r); |
2783 | |
2784 | if (bl->allow_puts) { |
2785 | // a better allocation would be to figure out roughly how many merge passes we'll need. |
2786 | int allocation_for_merge = (2*progress_allocation)/3; |
2787 | progress_allocation -= allocation_for_merge; |
2788 | |
2789 | // This structure must stay live until the join below. |
2790 | struct fractal_thread_args fta = {bl, |
2791 | descriptor, |
2792 | fd, |
2793 | progress_allocation, |
2794 | bl->fractal_queues[which_db], |
2795 | bl->extracted_datasizes[which_db], |
2796 | 0, |
2797 | which_db, |
2798 | target_nodesize, |
2799 | target_basementnodesize, |
2800 | target_compression_method, |
2801 | target_fanout}; |
2802 | |
2803 | r = toku_pthread_create(*fractal_thread_key, |
2804 | bl->fractal_threads + which_db, |
2805 | nullptr, |
2806 | fractal_thread, |
2807 | static_cast<void *>(&fta)); |
2808 | if (r) { |
2809 | int r2 __attribute__((__unused__)) = |
2810 | toku_queue_destroy(bl->fractal_queues[which_db]); |
2811 | // ignore r2, since we already have an error |
2812 | bl->fractal_queues[which_db] = nullptr; |
2813 | goto error; |
2814 | } |
2815 | invariant(bl->fractal_threads_live[which_db]==false); |
2816 | bl->fractal_threads_live[which_db] = true; |
2817 | |
2818 | r = merge_files(fs, bl, which_db, dest_db, compare, allocation_for_merge, bl->fractal_queues[which_db]); |
2819 | |
2820 | { |
2821 | void *toku_pthread_retval; |
2822 | int r2 = toku_pthread_join(bl->fractal_threads[which_db], &toku_pthread_retval); |
2823 | invariant(fta.bl==bl); // this is a gratuitous assertion to make sure that the fta struct is still live here. A previous bug put that struct into a C block statement. |
2824 | resource_assert_zero(r2); |
2825 | invariant(toku_pthread_retval==NULL); |
2826 | invariant(bl->fractal_threads_live[which_db]); |
2827 | bl->fractal_threads_live[which_db] = false; |
2828 | if (r == 0) r = fta.errno_result; |
2829 | } |
2830 | } else { |
2831 | toku_queue_eof(bl->fractal_queues[which_db]); |
2832 | r = toku_loader_write_ft_from_q(bl, descriptor, fd, progress_allocation, |
2833 | bl->fractal_queues[which_db], bl->extracted_datasizes[which_db], which_db, |
2834 | target_nodesize, target_basementnodesize, target_compression_method, target_fanout); |
2835 | } |
2836 | } |
2837 | |
2838 | error: // this is the cleanup code. Even if r==0 (no error) we fall through to here. |
2839 | if (bl->fractal_queues[which_db]) { |
2840 | int r2 = toku_queue_destroy(bl->fractal_queues[which_db]); |
2841 | invariant(r2==0); |
2842 | bl->fractal_queues[which_db] = nullptr; |
2843 | } |
2844 | |
2845 | // if we get here we need to free up the merge_fileset and the rowset, as well as the keys |
2846 | toku_free(rows->data); rows->data = NULL; |
2847 | toku_free(rows->rows); rows->rows = NULL; |
2848 | toku_free(fs->data_fidxs); fs->data_fidxs = NULL; |
2849 | return r; |
2850 | } |
2851 | |
2852 | static int toku_ft_loader_close_internal (FTLOADER bl) |
2853 | /* Effect: Close the bulk loader. |
2854 | * Return all the file descriptors in the array fds. */ |
2855 | { |
2856 | int result = 0; |
2857 | if (bl->N == 0) |
2858 | result = update_progress(PROGRESS_MAX, bl, "done" ); |
2859 | else { |
2860 | int remaining_progress = PROGRESS_MAX; |
2861 | for (int i = 0; i < bl->N; i++) { |
2862 | // Take the unallocated progress and divide it among the unfinished jobs. |
2863 | // This calculation allocates all of the PROGRESS_MAX bits of progress to some job. |
2864 | int allocate_here = remaining_progress/(bl->N - i); |
2865 | remaining_progress -= allocate_here; |
2866 | char *fname_in_cwd = toku_cachetable_get_fname_in_cwd(bl->cachetable, bl->new_fnames_in_env[i]); |
2867 | result = loader_do_i(bl, i, bl->dbs[i], bl->bt_compare_funs[i], bl->descriptors[i], fname_in_cwd, allocate_here); |
2868 | toku_free(fname_in_cwd); |
2869 | if (result != 0) |
2870 | goto error; |
2871 | invariant(0 <= bl->progress && bl->progress <= PROGRESS_MAX); |
2872 | } |
2873 | if (result==0) invariant(remaining_progress==0); |
2874 | |
2875 | // fsync the directory containing the new tokudb files. |
2876 | char *fname0 = toku_cachetable_get_fname_in_cwd(bl->cachetable, bl->new_fnames_in_env[0]); |
2877 | int r = toku_fsync_directory(fname0); |
2878 | toku_free(fname0); |
2879 | if (r != 0) { |
2880 | result = r; goto error; |
2881 | } |
2882 | } |
2883 | invariant(bl->file_infos.n_files_open == 0); |
2884 | invariant(bl->file_infos.n_files_extant == 0); |
2885 | invariant(bl->progress == PROGRESS_MAX); |
2886 | error: |
2887 | toku_ft_loader_internal_destroy(bl, (bool)(result!=0)); |
2888 | return result; |
2889 | } |
2890 | |
2891 | int toku_ft_loader_close (FTLOADER bl, |
2892 | ft_loader_error_func error_function, void *, |
2893 | ft_loader_poll_func poll_function, void * |
2894 | ) |
2895 | { |
2896 | int result = 0; |
2897 | |
2898 | int r; |
2899 | |
2900 | //printf("Closing\n"); |
2901 | |
2902 | ft_loader_set_error_function(&bl->error_callback, error_function, error_extra); |
2903 | |
2904 | ft_loader_set_poll_function(&bl->poll_callback, poll_function, poll_extra); |
2905 | |
2906 | if (bl->extractor_live) { |
2907 | r = finish_extractor(bl); |
2908 | if (r) |
2909 | result = r; |
2910 | invariant(!bl->extractor_live); |
2911 | } else { |
2912 | r = finish_primary_rows(bl); |
2913 | if (r) |
2914 | result = r; |
2915 | } |
2916 | |
2917 | // check for an error during extraction |
2918 | if (result == 0) { |
2919 | r = ft_loader_call_error_function(&bl->error_callback); |
2920 | if (r) |
2921 | result = r; |
2922 | } |
2923 | |
2924 | if (result == 0) { |
2925 | r = toku_ft_loader_close_internal(bl); |
2926 | if (r && result == 0) |
2927 | result = r; |
2928 | } else |
2929 | toku_ft_loader_internal_destroy(bl, true); |
2930 | |
2931 | return result; |
2932 | } |
2933 | |
2934 | int (FTLOADER bl) { |
2935 | int result = 0; |
2936 | if (bl->extractor_live) { |
2937 | int r = finish_extractor(bl); |
2938 | if (r) |
2939 | result = r; |
2940 | invariant(!bl->extractor_live); |
2941 | } else |
2942 | result = EINVAL; |
2943 | return result; |
2944 | } |
2945 | |
2946 | int toku_ft_loader_abort(FTLOADER bl, bool is_error) |
2947 | /* Effect : Abort the bulk loader, free ft_loader resources */ |
2948 | { |
2949 | int result = 0; |
2950 | |
2951 | // cleanup the extractor thread |
2952 | if (bl->extractor_live) { |
2953 | int r = finish_extractor(bl); |
2954 | if (r) |
2955 | result = r; |
2956 | invariant(!bl->extractor_live); |
2957 | } |
2958 | |
2959 | for (int i = 0; i < bl->N; i++) |
2960 | invariant(!bl->fractal_threads_live[i]); |
2961 | |
2962 | toku_ft_loader_internal_destroy(bl, is_error); |
2963 | return result; |
2964 | } |
2965 | |
2966 | int toku_ft_loader_get_error(FTLOADER bl, int *error) { |
2967 | *error = ft_loader_get_error(&bl->error_callback); |
2968 | return 0; |
2969 | } |
2970 | |
2971 | static void add_pair_to_leafnode( |
2972 | struct leaf_buf* lbuf, |
2973 | unsigned char* key, |
2974 | int keylen, |
2975 | unsigned char* val, |
2976 | int vallen, |
2977 | int this_leafentry_size, |
2978 | STAT64INFO stats_to_update, |
2979 | int64_t* logical_rows_delta) { |
2980 | |
2981 | lbuf->nkeys++; |
2982 | lbuf->ndata++; |
2983 | lbuf->dsize += keylen + vallen; |
2984 | lbuf->off += this_leafentry_size; |
2985 | |
2986 | // append this key val pair to the leafnode |
2987 | // #3588 TODO just make a clean ule and append it to the omt |
2988 | // #3588 TODO can do the rebalancing here and avoid a lot of work later |
2989 | FTNODE leafnode = lbuf->node; |
2990 | uint32_t idx = BLB_DATA(leafnode, 0)->num_klpairs(); |
2991 | DBT kdbt, vdbt; |
2992 | ft_msg msg( |
2993 | toku_fill_dbt(&kdbt, key, keylen), |
2994 | toku_fill_dbt(&vdbt, val, vallen), |
2995 | FT_INSERT, |
2996 | ZERO_MSN, |
2997 | lbuf->xids); |
2998 | uint64_t workdone = 0; |
2999 | // there's no mvcc garbage in a bulk-loaded FT, so there's no need to pass useful gc info |
3000 | txn_gc_info gc_info(nullptr, TXNID_NONE, TXNID_NONE, true); |
3001 | toku_ft_bn_apply_msg_once( |
3002 | BLB(leafnode, 0), |
3003 | msg, |
3004 | idx, |
3005 | keylen, |
3006 | NULL, |
3007 | &gc_info, |
3008 | &workdone, |
3009 | stats_to_update, |
3010 | logical_rows_delta); |
3011 | } |
3012 | |
3013 | static int write_literal(struct dbout *out, void*data, size_t len) { |
3014 | invariant(out->current_off%4096==0); |
3015 | int result = toku_os_write(out->fd, data, len); |
3016 | if (result == 0) |
3017 | out->current_off+=len; |
3018 | return result; |
3019 | } |
3020 | |
3021 | static void finish_leafnode( |
3022 | struct dbout* out, |
3023 | struct leaf_buf* lbuf, |
3024 | int progress_allocation, |
3025 | FTLOADER bl, |
3026 | uint32_t target_basementnodesize, |
3027 | enum toku_compression_method target_compression_method) { |
3028 | |
3029 | int result = 0; |
3030 | |
3031 | // serialize leaf to buffer |
3032 | size_t serialized_leaf_size = 0; |
3033 | size_t uncompressed_serialized_leaf_size = 0; |
3034 | char *serialized_leaf = NULL; |
3035 | FTNODE_DISK_DATA ndd = NULL; |
3036 | result = toku_serialize_ftnode_to_memory( |
3037 | lbuf->node, |
3038 | &ndd, |
3039 | target_basementnodesize, |
3040 | target_compression_method, |
3041 | true, |
3042 | true, |
3043 | &serialized_leaf_size, |
3044 | &uncompressed_serialized_leaf_size, |
3045 | &serialized_leaf); |
3046 | |
3047 | // write it out |
3048 | if (result == 0) { |
3049 | dbout_lock(out); |
3050 | long long off_of_leaf = out->current_off; |
3051 | result = write_literal(out, serialized_leaf, serialized_leaf_size); |
3052 | if (result == 0) { |
3053 | out->translation[lbuf->blocknum.b].off = off_of_leaf; |
3054 | out->translation[lbuf->blocknum.b].size = serialized_leaf_size; |
3055 | seek_align_locked(out); |
3056 | } |
3057 | dbout_unlock(out); |
3058 | } |
3059 | |
3060 | // free the node |
3061 | if (serialized_leaf) { |
3062 | toku_free(ndd); |
3063 | toku_free(serialized_leaf); |
3064 | } |
3065 | toku_ftnode_free(&lbuf->node); |
3066 | toku_xids_destroy(&lbuf->xids); |
3067 | toku_free(lbuf); |
3068 | |
3069 | //printf("Nodewrite %d (%.1f%%):", progress_allocation, 100.0*progress_allocation/PROGRESS_MAX); |
3070 | if (result == 0) |
3071 | result = update_progress(progress_allocation, bl, "wrote node" ); |
3072 | |
3073 | if (result) |
3074 | ft_loader_set_panic(bl, result, true, 0, nullptr, nullptr); |
3075 | } |
3076 | |
3077 | static int write_translation_table (struct dbout *out, long long *off_of_translation_p) { |
3078 | seek_align(out); |
3079 | struct dbuf ttable; |
3080 | dbuf_init(&ttable); |
3081 | long long off_of_translation = out->current_off; |
3082 | long long bt_size_on_disk = out->n_translations * 16 + 20; |
3083 | putbuf_int64(&ttable, out->n_translations); // number of records |
3084 | putbuf_int64(&ttable, -1LL); // the linked list |
3085 | out->translation[1].off = off_of_translation; |
3086 | out->translation[1].size = bt_size_on_disk; |
3087 | for (int i=0; i<out->n_translations; i++) { |
3088 | putbuf_int64(&ttable, out->translation[i].off); |
3089 | putbuf_int64(&ttable, out->translation[i].size); |
3090 | } |
3091 | unsigned int checksum = toku_x1764_memory(ttable.buf, ttable.off); |
3092 | putbuf_int32(&ttable, checksum); |
3093 | // pad it to 512 zeros |
3094 | long long encoded_length = ttable.off; |
3095 | { |
3096 | int nbytes_to_add = roundup_to_multiple(512, ttable.off) - encoded_length; |
3097 | char zeros[nbytes_to_add]; |
3098 | for (int i=0; i<nbytes_to_add; i++) zeros[i]=0; |
3099 | putbuf_bytes(&ttable, zeros, nbytes_to_add); |
3100 | } |
3101 | int result = ttable.error; |
3102 | if (result == 0) { |
3103 | invariant(bt_size_on_disk==encoded_length); |
3104 | result = toku_os_pwrite(out->fd, ttable.buf, ttable.off, off_of_translation); |
3105 | } |
3106 | dbuf_destroy(&ttable); |
3107 | *off_of_translation_p = off_of_translation; |
3108 | return result; |
3109 | } |
3110 | |
3111 | static int ( |
3112 | struct dbout* out, |
3113 | long long translation_location_on_disk, |
3114 | long long translation_size_on_disk) { |
3115 | |
3116 | int result = 0; |
3117 | size_t size = toku_serialize_ft_size(out->ft->h); |
3118 | size_t alloced_size = roundup_to_multiple(512, size); |
3119 | struct wbuf wbuf; |
3120 | char *MALLOC_N_ALIGNED(512, alloced_size, buf); |
3121 | if (buf == NULL) { |
3122 | result = get_error_errno(); |
3123 | } else { |
3124 | wbuf_init(&wbuf, buf, size); |
3125 | out->ft->h->on_disk_stats = out->ft->in_memory_stats; |
3126 | out->ft->h->on_disk_logical_rows = out->ft->in_memory_logical_rows; |
3127 | toku_serialize_ft_to_wbuf(&wbuf, out->ft->h, translation_location_on_disk, translation_size_on_disk); |
3128 | for (size_t i=size; i<alloced_size; i++) buf[i]=0; // initialize all those unused spots to zero |
3129 | if (wbuf.ndone != size) |
3130 | result = EINVAL; |
3131 | else { |
3132 | assert(wbuf.ndone <= alloced_size); |
3133 | result = toku_os_pwrite(out->fd, wbuf.buf, alloced_size, 0); |
3134 | } |
3135 | toku_free(buf); |
3136 | } |
3137 | return result; |
3138 | } |
3139 | |
3140 | static int read_some_pivots (FIDX pivots_file, int n_to_read, FTLOADER bl, |
3141 | /*out*/ DBT pivots[/*n_to_read*/]) |
3142 | // pivots is an array to be filled in. The pivots array is uninitialized. |
3143 | { |
3144 | for (int i = 0; i < n_to_read; i++) |
3145 | pivots[i] = zero_dbt; |
3146 | |
3147 | TOKU_FILE *pivots_stream = toku_bl_fidx2file(bl, pivots_file); |
3148 | |
3149 | int result = 0; |
3150 | for (int i = 0; i < n_to_read; i++) { |
3151 | int r = bl_read_dbt(&pivots[i], pivots_stream); |
3152 | if (r != 0) { |
3153 | result = r; |
3154 | break; |
3155 | } |
3156 | } |
3157 | return result; |
3158 | } |
3159 | |
3160 | static void delete_pivots(DBT pivots[], int n) { |
3161 | for (int i = 0; i < n; i++) |
3162 | toku_free(pivots[i].data); |
3163 | toku_free(pivots); |
3164 | } |
3165 | |
3166 | static int setup_nonleaf_block (int n_children, |
3167 | struct subtrees_info *subtrees, FIDX pivots_file, int64_t first_child_offset_in_subtrees, |
3168 | struct subtrees_info *next_subtrees, FIDX next_pivots_file, |
3169 | struct dbout *out, FTLOADER bl, |
3170 | /*out*/int64_t *blocknum, |
3171 | /*out*/struct subtree_info **subtrees_info_p, |
3172 | /*out*/DBT **pivots_p) |
3173 | // Do the serial part of setting up a non leaf block. |
3174 | // Read the pivots out of the file, and store them in a newly allocated array of DBTs (returned in *pivots_p) There are (n_blocks_to_use-1) of these. |
3175 | // Copy the final pivot into the next_pivots file instead of returning it. |
3176 | // Copy the subtree_info from the subtrees structure, and store them in a newly allocated array of subtree_infos (return in *subtrees_info_p). There are n_blocks_to_use of these. |
3177 | // Allocate a block number and return it in *blocknum. |
3178 | // Store the blocknum in the next_blocks structure, so it can be combined with the pivots at the next level of the tree. |
3179 | // Update n_blocks_used and n_translations. |
3180 | // This code cannot be called in parallel because of all the race conditions. |
3181 | // The actual creation of the node can be called in parallel after this work is done. |
3182 | { |
3183 | //printf("Nonleaf has children :"); for(int i=0; i<n_children; i++) printf(" %ld", subtrees->subtrees[i].block); printf("\n"); |
3184 | |
3185 | int result = 0; |
3186 | |
3187 | DBT *MALLOC_N(n_children, pivots); |
3188 | if (pivots == NULL) { |
3189 | result = get_error_errno(); |
3190 | } |
3191 | |
3192 | if (result == 0) { |
3193 | int r = read_some_pivots(pivots_file, n_children, bl, pivots); |
3194 | if (r) |
3195 | result = r; |
3196 | } |
3197 | |
3198 | if (result == 0) { |
3199 | TOKU_FILE *next_pivots_stream = toku_bl_fidx2file(bl, next_pivots_file); |
3200 | int r = bl_write_dbt( |
3201 | &pivots[n_children - 1], next_pivots_stream, NULL, nullptr, bl); |
3202 | if (r) |
3203 | result = r; |
3204 | } |
3205 | |
3206 | if (result == 0) { |
3207 | // The last pivot was written to the next_pivots file, so we free it now instead of returning it. |
3208 | toku_free(pivots[n_children-1].data); |
3209 | pivots[n_children-1] = zero_dbt; |
3210 | |
3211 | struct subtree_info *XMALLOC_N(n_children, subtrees_array); |
3212 | for (int i = 0; i < n_children; i++) { |
3213 | int64_t from_blocknum = first_child_offset_in_subtrees + i; |
3214 | subtrees_array[i] = subtrees->subtrees[from_blocknum]; |
3215 | } |
3216 | |
3217 | int r = allocate_block(out, blocknum); |
3218 | if (r) { |
3219 | toku_free(subtrees_array); |
3220 | result = r; |
3221 | } else { |
3222 | allocate_node(next_subtrees, *blocknum); |
3223 | |
3224 | *pivots_p = pivots; |
3225 | *subtrees_info_p = subtrees_array; |
3226 | } |
3227 | } |
3228 | |
3229 | if (result != 0) { |
3230 | if (pivots) { |
3231 | delete_pivots(pivots, n_children); pivots = NULL; |
3232 | } |
3233 | } |
3234 | |
3235 | return result; |
3236 | } |
3237 | |
3238 | static void write_nonleaf_node (FTLOADER bl, struct dbout *out, int64_t blocknum_of_new_node, int n_children, |
3239 | DBT *pivots, /* must free this array, as well as the things it points t */ |
3240 | struct subtree_info *subtree_info, int height, const DESCRIPTOR UU(desc), uint32_t UU(target_nodesize), uint32_t target_basementnodesize, enum toku_compression_method target_compression_method) |
3241 | { |
3242 | //Nodes do not currently touch descriptors |
3243 | invariant(height > 0); |
3244 | |
3245 | int result = 0; |
3246 | |
3247 | FTNODE XMALLOC(node); |
3248 | toku_initialize_empty_ftnode(node, make_blocknum(blocknum_of_new_node), height, n_children, |
3249 | FT_LAYOUT_VERSION, 0); |
3250 | node->pivotkeys.create_from_dbts(pivots, n_children - 1); |
3251 | assert(node->bp); |
3252 | for (int i=0; i<n_children; i++) { |
3253 | BP_BLOCKNUM(node,i) = make_blocknum(subtree_info[i].block); |
3254 | BP_STATE(node,i) = PT_AVAIL; |
3255 | } |
3256 | |
3257 | FTNODE_DISK_DATA ndd = NULL; |
3258 | if (result == 0) { |
3259 | size_t n_bytes; |
3260 | size_t n_uncompressed_bytes; |
3261 | char *bytes; |
3262 | int r; |
3263 | r = toku_serialize_ftnode_to_memory(node, &ndd, target_basementnodesize, target_compression_method, true, true, &n_bytes, &n_uncompressed_bytes, &bytes); |
3264 | if (r) { |
3265 | result = r; |
3266 | } else { |
3267 | dbout_lock(out); |
3268 | out->translation[blocknum_of_new_node].off = out->current_off; |
3269 | out->translation[blocknum_of_new_node].size = n_bytes; |
3270 | //fprintf(stderr, "Wrote internal node at %ld (%ld bytes)\n", out->current_off, n_bytes); |
3271 | //for (uint32_t i=0; i<n_bytes; i++) { unsigned char b = bytes[i]; printf("%d:%02x (%d) ('%c')\n", i, b, b, (b>=' ' && b<128) ? b : '*'); } |
3272 | r = write_literal(out, bytes, n_bytes); |
3273 | if (r) |
3274 | result = r; |
3275 | else |
3276 | seek_align_locked(out); |
3277 | dbout_unlock(out); |
3278 | toku_free(bytes); |
3279 | } |
3280 | } |
3281 | |
3282 | for (int i=0; i<n_children-1; i++) { |
3283 | toku_free(pivots[i].data); |
3284 | } |
3285 | for (int i=0; i<n_children; i++) { |
3286 | destroy_nonleaf_childinfo(BNC(node,i)); |
3287 | } |
3288 | toku_free(pivots); |
3289 | // TODO: Should be using toku_destroy_ftnode_internals, which should be renamed to toku_ftnode_destroy |
3290 | toku_free(node->bp); |
3291 | node->pivotkeys.destroy(); |
3292 | toku_free(node); |
3293 | toku_free(ndd); |
3294 | toku_free(subtree_info); |
3295 | |
3296 | if (result != 0) |
3297 | ft_loader_set_panic(bl, result, true, 0, nullptr, nullptr); |
3298 | } |
3299 | |
3300 | static int write_nonleaves (FTLOADER bl, FIDX pivots_fidx, struct dbout *out, struct subtrees_info *sts, const DESCRIPTOR descriptor, uint32_t target_nodesize, uint32_t target_basementnodesize, enum toku_compression_method target_compression_method) { |
3301 | int result = 0; |
3302 | int height = 1; |
3303 | |
3304 | // Watch out for the case where we saved the last pivot but didn't write any more nodes out. |
3305 | // The trick is not to look at n_pivots, but to look at blocks.n_blocks |
3306 | while (sts->n_subtrees > 1) { |
3307 | // If there is more than one block in blocks, then we must build another level of the tree. |
3308 | |
3309 | // we need to create a pivots file for the pivots of the next level. |
3310 | // and a blocks_array |
3311 | // So for example. |
3312 | // 1) we grab 16 pivots and 16 blocks. |
3313 | // 2) We put the 15 pivots and 16 blocks into an non-leaf node. |
3314 | // 3) We put the 16th pivot into the next pivots file. |
3315 | { |
3316 | int r = |
3317 | fseek(toku_bl_fidx2file(bl, pivots_fidx)->file, 0, SEEK_SET); |
3318 | if (r != 0) { |
3319 | return get_error_errno(); |
3320 | } |
3321 | } |
3322 | |
3323 | FIDX next_pivots_file; |
3324 | { |
3325 | int r = ft_loader_open_temp_file (bl, &next_pivots_file); |
3326 | if (r != 0) { result = r; break; } |
3327 | } |
3328 | |
3329 | struct subtrees_info next_sts; |
3330 | subtrees_info_init(&next_sts); |
3331 | next_sts.n_subtrees = 0; |
3332 | next_sts.n_subtrees_limit = 1; |
3333 | XMALLOC_N(next_sts.n_subtrees_limit, next_sts.subtrees); |
3334 | |
3335 | const int n_per_block = 15; |
3336 | int64_t n_subtrees_used = 0; |
3337 | while (sts->n_subtrees - n_subtrees_used >= n_per_block*2) { |
3338 | // grab the first N_PER_BLOCK and build a node. |
3339 | DBT *pivots; |
3340 | int64_t blocknum_of_new_node = 0; |
3341 | struct subtree_info *subtree_info; |
3342 | int r = setup_nonleaf_block (n_per_block, |
3343 | sts, pivots_fidx, n_subtrees_used, |
3344 | &next_sts, next_pivots_file, |
3345 | out, bl, |
3346 | &blocknum_of_new_node, &subtree_info, &pivots); |
3347 | if (r) { |
3348 | result = r; |
3349 | break; |
3350 | } else { |
3351 | write_nonleaf_node(bl, out, blocknum_of_new_node, n_per_block, pivots, subtree_info, height, descriptor, target_nodesize, target_basementnodesize, target_compression_method); // frees all the data structures that go into making the node. |
3352 | n_subtrees_used += n_per_block; |
3353 | } |
3354 | } |
3355 | |
3356 | int64_t n_blocks_left = sts->n_subtrees - n_subtrees_used; |
3357 | if (result == 0) { |
3358 | // Now we have a one or two blocks at the end to handle. |
3359 | invariant(n_blocks_left>=2); |
3360 | if (n_blocks_left > n_per_block) { |
3361 | // Write half the remaining blocks |
3362 | int64_t n_first = n_blocks_left/2; |
3363 | DBT *pivots; |
3364 | int64_t blocknum_of_new_node; |
3365 | struct subtree_info *subtree_info; |
3366 | int r = setup_nonleaf_block(n_first, |
3367 | sts, pivots_fidx, n_subtrees_used, |
3368 | &next_sts, next_pivots_file, |
3369 | out, bl, |
3370 | &blocknum_of_new_node, &subtree_info, &pivots); |
3371 | if (r) { |
3372 | result = r; |
3373 | } else { |
3374 | write_nonleaf_node(bl, out, blocknum_of_new_node, n_first, pivots, subtree_info, height, descriptor, target_nodesize, target_basementnodesize, target_compression_method); |
3375 | n_blocks_left -= n_first; |
3376 | n_subtrees_used += n_first; |
3377 | } |
3378 | } |
3379 | } |
3380 | if (result == 0) { |
3381 | // Write the last block. |
3382 | DBT *pivots; |
3383 | int64_t blocknum_of_new_node; |
3384 | struct subtree_info *subtree_info; |
3385 | int r = setup_nonleaf_block(n_blocks_left, |
3386 | sts, pivots_fidx, n_subtrees_used, |
3387 | &next_sts, next_pivots_file, |
3388 | out, bl, |
3389 | &blocknum_of_new_node, &subtree_info, &pivots); |
3390 | if (r) { |
3391 | result = r; |
3392 | } else { |
3393 | write_nonleaf_node(bl, out, blocknum_of_new_node, n_blocks_left, pivots, subtree_info, height, descriptor, target_nodesize, target_basementnodesize, target_compression_method); |
3394 | n_subtrees_used += n_blocks_left; |
3395 | } |
3396 | } |
3397 | if (result == 0) |
3398 | invariant(n_subtrees_used == sts->n_subtrees); |
3399 | |
3400 | |
3401 | if (result == 0) // pick up write_nonleaf_node errors |
3402 | result = ft_loader_get_error(&bl->error_callback); |
3403 | |
3404 | // Now set things up for the next iteration. |
3405 | int r = ft_loader_fi_close(&bl->file_infos, pivots_fidx, true); if (r != 0 && result == 0) result = r; |
3406 | r = ft_loader_fi_unlink(&bl->file_infos, pivots_fidx); if (r != 0 && result == 0) result = r; |
3407 | pivots_fidx = next_pivots_file; |
3408 | toku_free(sts->subtrees); sts->subtrees = NULL; |
3409 | *sts = next_sts; |
3410 | height++; |
3411 | |
3412 | if (result) |
3413 | break; |
3414 | } |
3415 | { int r = ft_loader_fi_close (&bl->file_infos, pivots_fidx, true); if (r != 0 && result == 0) result = r; } |
3416 | { int r = ft_loader_fi_unlink(&bl->file_infos, pivots_fidx); if (r != 0 && result == 0) result = r; } |
3417 | return result; |
3418 | } |
3419 | |
3420 | void ft_loader_set_fractal_workers_count_from_c(FTLOADER bl) { |
3421 | ft_loader_set_fractal_workers_count (bl); |
3422 | } |
3423 | |
3424 | |
3425 | |