| 1 | /* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */ |
| 2 | // vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4: |
| 3 | /*====== |
| 4 | This file is part of PerconaFT. |
| 5 | |
| 6 | |
| 7 | Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved. |
| 8 | |
| 9 | PerconaFT is free software: you can redistribute it and/or modify |
| 10 | it under the terms of the GNU General Public License, version 2, |
| 11 | as published by the Free Software Foundation. |
| 12 | |
| 13 | PerconaFT is distributed in the hope that it will be useful, |
| 14 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 16 | GNU General Public License for more details. |
| 17 | |
| 18 | You should have received a copy of the GNU General Public License |
| 19 | along with PerconaFT. If not, see <http://www.gnu.org/licenses/>. |
| 20 | |
| 21 | ---------------------------------------- |
| 22 | |
| 23 | PerconaFT is free software: you can redistribute it and/or modify |
| 24 | it under the terms of the GNU Affero General Public License, version 3, |
| 25 | as published by the Free Software Foundation. |
| 26 | |
| 27 | PerconaFT is distributed in the hope that it will be useful, |
| 28 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 29 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 30 | GNU Affero General Public License for more details. |
| 31 | |
| 32 | You should have received a copy of the GNU Affero General Public License |
| 33 | along with PerconaFT. If not, see <http://www.gnu.org/licenses/>. |
| 34 | ======= */ |
| 35 | |
| 36 | #ident "Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved." |
| 37 | |
| 38 | #include "ft/msg_buffer.h" |
| 39 | #include "util/dbt.h" |
| 40 | |
| 41 | void message_buffer::create() { |
| 42 | _num_entries = 0; |
| 43 | _memory = nullptr; |
| 44 | _memory_usable = 0; |
| 45 | _memory_size = 0; |
| 46 | _memory_used = 0; |
| 47 | } |
| 48 | |
| 49 | void message_buffer::clone(message_buffer *src) { |
| 50 | _num_entries = src->_num_entries; |
| 51 | _memory_used = src->_memory_used; |
| 52 | _memory_size = src->_memory_size; |
| 53 | XMALLOC_N(_memory_size, _memory); |
| 54 | memcpy(_memory, src->_memory, _memory_size); |
| 55 | _memory_usable = toku_malloc_usable_size(_memory); |
| 56 | } |
| 57 | |
| 58 | void message_buffer::destroy() { |
| 59 | if (_memory != nullptr) { |
| 60 | toku_free(_memory); |
| 61 | _memory_usable = 0; |
| 62 | } |
| 63 | } |
| 64 | |
| 65 | void message_buffer::deserialize_from_rbuf(struct rbuf *rb, |
| 66 | int32_t **fresh_offsets, int32_t *nfresh, |
| 67 | int32_t **stale_offsets, int32_t *nstale, |
| 68 | int32_t **broadcast_offsets, int32_t *nbroadcast) { |
| 69 | // read the number of messages in this buffer |
| 70 | int n_in_this_buffer = rbuf_int(rb); |
| 71 | if (fresh_offsets != nullptr) { |
| 72 | XMALLOC_N(n_in_this_buffer, *fresh_offsets); |
| 73 | } |
| 74 | if (stale_offsets != nullptr) { |
| 75 | XMALLOC_N(n_in_this_buffer, *stale_offsets); |
| 76 | } |
| 77 | if (broadcast_offsets != nullptr) { |
| 78 | XMALLOC_N(n_in_this_buffer, *broadcast_offsets); |
| 79 | } |
| 80 | |
| 81 | _resize(rb->size + 64); // rb->size is a good hint for how big the buffer will be |
| 82 | |
| 83 | // deserialize each message individually, noting whether it was fresh |
| 84 | // and putting its buffer offset in the appropriate offsets array |
| 85 | for (int i = 0; i < n_in_this_buffer; i++) { |
| 86 | XIDS xids; |
| 87 | bool is_fresh; |
| 88 | const ft_msg msg = ft_msg::deserialize_from_rbuf(rb, &xids, &is_fresh); |
| 89 | |
| 90 | int32_t *dest; |
| 91 | if (ft_msg_type_applies_once(msg.type())) { |
| 92 | if (is_fresh) { |
| 93 | dest = fresh_offsets ? *fresh_offsets + (*nfresh)++ : nullptr; |
| 94 | } else { |
| 95 | dest = stale_offsets ? *stale_offsets + (*nstale)++ : nullptr; |
| 96 | } |
| 97 | } else { |
| 98 | invariant(ft_msg_type_applies_all(msg.type()) || ft_msg_type_does_nothing(msg.type())); |
| 99 | dest = broadcast_offsets ? *broadcast_offsets + (*nbroadcast)++ : nullptr; |
| 100 | } |
| 101 | |
| 102 | enqueue(msg, is_fresh, dest); |
| 103 | toku_xids_destroy(&xids); |
| 104 | } |
| 105 | |
| 106 | invariant(_num_entries == n_in_this_buffer); |
| 107 | } |
| 108 | |
| 109 | MSN message_buffer::deserialize_from_rbuf_v13(struct rbuf *rb, |
| 110 | MSN *highest_unused_msn_for_upgrade, |
| 111 | int32_t **fresh_offsets, int32_t *nfresh, |
| 112 | int32_t **broadcast_offsets, int32_t *nbroadcast) { |
| 113 | // read the number of messages in this buffer |
| 114 | int n_in_this_buffer = rbuf_int(rb); |
| 115 | if (fresh_offsets != nullptr) { |
| 116 | XMALLOC_N(n_in_this_buffer, *fresh_offsets); |
| 117 | } |
| 118 | if (broadcast_offsets != nullptr) { |
| 119 | XMALLOC_N(n_in_this_buffer, *broadcast_offsets); |
| 120 | } |
| 121 | |
| 122 | // Atomically decrement the header's MSN count by the number |
| 123 | // of messages in the buffer. |
| 124 | MSN highest_msn_in_this_buffer = { |
| 125 | .msn = toku_sync_sub_and_fetch(&highest_unused_msn_for_upgrade->msn, n_in_this_buffer) |
| 126 | }; |
| 127 | |
| 128 | // Create the message buffers from the deserialized buffer. |
| 129 | for (int i = 0; i < n_in_this_buffer; i++) { |
| 130 | XIDS xids; |
| 131 | // There were no stale messages at this version, so call it fresh. |
| 132 | const bool is_fresh = true; |
| 133 | |
| 134 | // Increment our MSN, the last message should have the |
| 135 | // newest/highest MSN. See above for a full explanation. |
| 136 | highest_msn_in_this_buffer.msn++; |
| 137 | const ft_msg msg = ft_msg::deserialize_from_rbuf_v13(rb, highest_msn_in_this_buffer, &xids); |
| 138 | |
| 139 | int32_t *dest; |
| 140 | if (ft_msg_type_applies_once(msg.type())) { |
| 141 | dest = fresh_offsets ? *fresh_offsets + (*nfresh)++ : nullptr; |
| 142 | } else { |
| 143 | invariant(ft_msg_type_applies_all(msg.type()) || ft_msg_type_does_nothing(msg.type())); |
| 144 | dest = broadcast_offsets ? *broadcast_offsets + (*nbroadcast)++ : nullptr; |
| 145 | } |
| 146 | |
| 147 | enqueue(msg, is_fresh, dest); |
| 148 | toku_xids_destroy(&xids); |
| 149 | } |
| 150 | |
| 151 | return highest_msn_in_this_buffer; |
| 152 | } |
| 153 | |
| 154 | void message_buffer::_resize(size_t new_size) { |
| 155 | XREALLOC_N(new_size, _memory); |
| 156 | _memory_size = new_size; |
| 157 | _memory_usable = toku_malloc_usable_size(_memory); |
| 158 | } |
| 159 | |
| 160 | static int next_power_of_two (int n) { |
| 161 | int r = 4096; |
| 162 | while (r < n) { |
| 163 | r*=2; |
| 164 | assert(r>0); |
| 165 | } |
| 166 | return r; |
| 167 | } |
| 168 | |
| 169 | struct message_buffer::buffer_entry *message_buffer::get_buffer_entry(int32_t offset) const { |
| 170 | return (struct buffer_entry *) (_memory + offset); |
| 171 | } |
| 172 | |
| 173 | void message_buffer::enqueue(const ft_msg &msg, bool is_fresh, int32_t *offset) { |
| 174 | int need_space_here = msg_memsize_in_buffer(msg); |
| 175 | int need_space_total = _memory_used + need_space_here; |
| 176 | if (_memory == nullptr || need_space_total > _memory_size) { |
| 177 | // resize the buffer to the next power of 2 greater than the needed space |
| 178 | int next_2 = next_power_of_two(need_space_total); |
| 179 | _resize(next_2); |
| 180 | } |
| 181 | uint32_t keylen = msg.kdbt()->size; |
| 182 | uint32_t datalen = msg.vdbt()->size; |
| 183 | struct buffer_entry *entry = get_buffer_entry(_memory_used); |
| 184 | entry->type = (unsigned char) msg.type(); |
| 185 | entry->msn = msg.msn(); |
| 186 | toku_xids_cpy(&entry->xids_s, msg.xids()); |
| 187 | entry->is_fresh = is_fresh; |
| 188 | unsigned char *e_key = toku_xids_get_end_of_array(&entry->xids_s); |
| 189 | entry->keylen = keylen; |
| 190 | memcpy(e_key, msg.kdbt()->data, keylen); |
| 191 | entry->vallen = datalen; |
| 192 | memcpy(e_key + keylen, msg.vdbt()->data, datalen); |
| 193 | if (offset) { |
| 194 | *offset = _memory_used; |
| 195 | } |
| 196 | _num_entries++; |
| 197 | _memory_used += need_space_here; |
| 198 | } |
| 199 | |
| 200 | void message_buffer::set_freshness(int32_t offset, bool is_fresh) { |
| 201 | struct buffer_entry *entry = get_buffer_entry(offset); |
| 202 | entry->is_fresh = is_fresh; |
| 203 | } |
| 204 | |
| 205 | bool message_buffer::get_freshness(int32_t offset) const { |
| 206 | struct buffer_entry *entry = get_buffer_entry(offset); |
| 207 | return entry->is_fresh; |
| 208 | } |
| 209 | |
| 210 | ft_msg message_buffer::get_message(int32_t offset, DBT *keydbt, DBT *valdbt) const { |
| 211 | struct buffer_entry *entry = get_buffer_entry(offset); |
| 212 | uint32_t keylen = entry->keylen; |
| 213 | uint32_t vallen = entry->vallen; |
| 214 | enum ft_msg_type type = (enum ft_msg_type) entry->type; |
| 215 | MSN msn = entry->msn; |
| 216 | const XIDS xids = (XIDS) &entry->xids_s; |
| 217 | const void *key = toku_xids_get_end_of_array(xids); |
| 218 | const void *val = (uint8_t *) key + entry->keylen; |
| 219 | return ft_msg(toku_fill_dbt(keydbt, key, keylen), toku_fill_dbt(valdbt, val, vallen), type, msn, xids); |
| 220 | } |
| 221 | |
| 222 | void message_buffer::get_message_key_msn(int32_t offset, DBT *key, MSN *msn) const { |
| 223 | struct buffer_entry *entry = get_buffer_entry(offset); |
| 224 | if (key != nullptr) { |
| 225 | toku_fill_dbt(key, toku_xids_get_end_of_array((XIDS) &entry->xids_s), entry->keylen); |
| 226 | } |
| 227 | if (msn != nullptr) { |
| 228 | *msn = entry->msn; |
| 229 | } |
| 230 | } |
| 231 | |
| 232 | int message_buffer::num_entries() const { |
| 233 | return _num_entries; |
| 234 | } |
| 235 | |
| 236 | size_t message_buffer::buffer_size_in_use() const { |
| 237 | return _memory_used; |
| 238 | } |
| 239 | |
| 240 | size_t message_buffer::memory_size_in_use() const { |
| 241 | return sizeof(*this) + _memory_used; |
| 242 | } |
| 243 | |
| 244 | size_t message_buffer::() const { |
| 245 | #ifdef TOKU_DEBUG_PARANOID |
| 246 | // Enable this code if you want to verify that the new way of computing |
| 247 | // the memory footprint is the same as the old. |
| 248 | // It slows the code down by perhaps 10%. |
| 249 | assert(_memory_usable == toku_malloc_usable_size(_memory)); |
| 250 | size_t fp = toku_memory_footprint(_memory, _memory_used); |
| 251 | size_t fpg = toku_memory_footprint_given_usable_size(_memory_used, _memory_usable); |
| 252 | if (fp != fpg) printf("ptr=%p mu=%ld fp=%ld fpg=%ld\n" , _memory, _memory_usable, fp, fpg); |
| 253 | assert(fp == fpg); |
| 254 | #endif // TOKU_DEBUG_PARANOID |
| 255 | return sizeof(*this) + toku_memory_footprint_given_usable_size(_memory_used, _memory_usable); |
| 256 | } |
| 257 | |
| 258 | bool message_buffer::equals(message_buffer *other) const { |
| 259 | return (_memory_used == other->_memory_used && |
| 260 | memcmp(_memory, other->_memory, _memory_used) == 0); |
| 261 | } |
| 262 | |
| 263 | void message_buffer::serialize_to_wbuf(struct wbuf *wb) const { |
| 264 | wbuf_nocrc_int(wb, _num_entries); |
| 265 | struct msg_serialize_fn { |
| 266 | struct wbuf *wb; |
| 267 | msg_serialize_fn(struct wbuf *w) : wb(w) { } |
| 268 | int operator()(const ft_msg &msg, bool is_fresh) { |
| 269 | msg.serialize_to_wbuf(wb, is_fresh); |
| 270 | return 0; |
| 271 | } |
| 272 | } serialize_fn(wb); |
| 273 | iterate(serialize_fn); |
| 274 | } |
| 275 | //void static stats(struct wbuf *wb) const { |
| 276 | // wbuf_nocrc_int(wb, _num_entries); |
| 277 | // struct msg_serialize_fn { |
| 278 | // struct wbuf *wb; |
| 279 | // msg_serialize_fn(struct wbuf *w) : wb(w) { } |
| 280 | // int operator()(const ft_msg &msg, bool is_fresh) { |
| 281 | // msg.serialize_to_wbuf(wb, is_fresh); |
| 282 | // return 0; |
| 283 | // } |
| 284 | // } serialize_fn(wb); |
| 285 | // iterate(serialize_fn); |
| 286 | //} |
| 287 | size_t message_buffer::msg_memsize_in_buffer(const ft_msg &msg) { |
| 288 | const uint32_t keylen = msg.kdbt()->size; |
| 289 | const uint32_t datalen = msg.vdbt()->size; |
| 290 | const size_t xidslen = toku_xids_get_size(msg.xids()); |
| 291 | return sizeof(struct buffer_entry) + keylen + datalen + xidslen - sizeof(XIDS_S); |
| 292 | } |
| 293 | |