| 1 | /* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */ |
| 2 | // vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4: |
| 3 | #ident "$Id$" |
| 4 | /*====== |
| 5 | This file is part of PerconaFT. |
| 6 | |
| 7 | |
| 8 | Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved. |
| 9 | |
| 10 | PerconaFT is free software: you can redistribute it and/or modify |
| 11 | it under the terms of the GNU General Public License, version 2, |
| 12 | as published by the Free Software Foundation. |
| 13 | |
| 14 | PerconaFT is distributed in the hope that it will be useful, |
| 15 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 17 | GNU General Public License for more details. |
| 18 | |
| 19 | You should have received a copy of the GNU General Public License |
| 20 | along with PerconaFT. If not, see <http://www.gnu.org/licenses/>. |
| 21 | |
| 22 | ---------------------------------------- |
| 23 | |
| 24 | PerconaFT is free software: you can redistribute it and/or modify |
| 25 | it under the terms of the GNU Affero General Public License, version 3, |
| 26 | as published by the Free Software Foundation. |
| 27 | |
| 28 | PerconaFT is distributed in the hope that it will be useful, |
| 29 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 30 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 31 | GNU Affero General Public License for more details. |
| 32 | |
| 33 | You should have received a copy of the GNU Affero General Public License |
| 34 | along with PerconaFT. If not, see <http://www.gnu.org/licenses/>. |
| 35 | ======= */ |
| 36 | |
| 37 | #ident "Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved." |
| 38 | |
| 39 | #include <my_global.h> |
| 40 | #include "portability/memory.h" |
| 41 | #include "portability/toku_assert.h" |
| 42 | #include "portability/toku_portability.h" |
| 43 | #include "portability/toku_pthread.h" |
| 44 | |
| 45 | // ugly but pragmatic, need access to dirty bits while holding translation lock |
| 46 | // TODO: Refactor this (possibly with FT-301) |
| 47 | #include "ft/ft-internal.h" |
| 48 | |
| 49 | // TODO: reorganize this dependency (FT-303) |
| 50 | #include "ft/ft-ops.h" // for toku_maybe_truncate_file |
| 51 | #include "ft/serialize/block_table.h" |
| 52 | #include "ft/serialize/rbuf.h" |
| 53 | #include "ft/serialize/wbuf.h" |
| 54 | #include "ft/serialize/block_allocator.h" |
| 55 | #include "util/nb_mutex.h" |
| 56 | #include "util/scoped_malloc.h" |
| 57 | |
| 58 | |
| 59 | toku_instr_key *block_table_mutex_key; |
| 60 | toku_instr_key *safe_file_size_lock_mutex_key; |
| 61 | toku_instr_key *safe_file_size_lock_rwlock_key; |
| 62 | |
| 63 | // indicates the end of a freelist |
| 64 | static const BLOCKNUM freelist_null = {-1}; |
| 65 | |
| 66 | // value of block_translation_pair.size if blocknum is unused |
| 67 | static const DISKOFF size_is_free = (DISKOFF)-1; |
| 68 | |
| 69 | // value of block_translation_pair.u.diskoff if blocknum is used but does not |
| 70 | // yet have a diskblock |
| 71 | static const DISKOFF diskoff_unused = (DISKOFF)-2; |
| 72 | |
| 73 | void block_table::_mutex_lock() { toku_mutex_lock(&_mutex); } |
| 74 | |
| 75 | void block_table::_mutex_unlock() { toku_mutex_unlock(&_mutex); } |
| 76 | |
| 77 | // TODO: Move lock to FT |
| 78 | void toku_ft_lock(FT ft) { |
| 79 | block_table *bt = &ft->blocktable; |
| 80 | bt->_mutex_lock(); |
| 81 | } |
| 82 | |
| 83 | // TODO: Move lock to FT |
| 84 | void toku_ft_unlock(FT ft) { |
| 85 | block_table *bt = &ft->blocktable; |
| 86 | toku_mutex_assert_locked(&bt->_mutex); |
| 87 | bt->_mutex_unlock(); |
| 88 | } |
| 89 | |
| 90 | // There are two headers: the reserve must fit them both and be suitably |
| 91 | // aligned. |
| 92 | static_assert(BlockAllocator::BLOCK_ALLOCATOR_HEADER_RESERVE % |
| 93 | BlockAllocator::BLOCK_ALLOCATOR_ALIGNMENT == |
| 94 | 0, |
| 95 | "Block allocator's header reserve must be suitibly aligned" ); |
| 96 | static_assert( |
| 97 | BlockAllocator::BLOCK_ALLOCATOR_HEADER_RESERVE * 2 == |
| 98 | BlockAllocator::BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE, |
| 99 | "Block allocator's total header reserve must exactly fit two headers" ); |
| 100 | |
| 101 | // does NOT initialize the block allocator: the caller is responsible |
| 102 | void block_table::_create_internal() { |
| 103 | memset(&_current, 0, sizeof(struct translation)); |
| 104 | memset(&_inprogress, 0, sizeof(struct translation)); |
| 105 | memset(&_checkpointed, 0, sizeof(struct translation)); |
| 106 | memset(&_mutex, 0, sizeof(_mutex)); |
| 107 | _bt_block_allocator = new BlockAllocator(); |
| 108 | toku_mutex_init(*block_table_mutex_key, &_mutex, nullptr); |
| 109 | nb_mutex_init(*safe_file_size_lock_mutex_key, |
| 110 | *safe_file_size_lock_rwlock_key, |
| 111 | &_safe_file_size_lock); |
| 112 | } |
| 113 | |
| 114 | // Fill in the checkpointed translation from buffer, and copy checkpointed to |
| 115 | // current. |
| 116 | // The one read from disk is the last known checkpointed one, so we are keeping |
| 117 | // it in |
| 118 | // place and then setting current (which is never stored on disk) for current |
| 119 | // use. |
| 120 | // The translation_buffer has translation only, we create the rest of the |
| 121 | // block_table. |
| 122 | int block_table::create_from_buffer( |
| 123 | int fd, |
| 124 | DISKOFF location_on_disk, // Location of translation_buffer |
| 125 | DISKOFF size_on_disk, |
| 126 | unsigned char *translation_buffer) { |
| 127 | // Does not initialize the block allocator |
| 128 | _create_internal(); |
| 129 | |
| 130 | // Deserialize the translation and copy it to current |
| 131 | int r = _translation_deserialize_from_buffer( |
| 132 | &_checkpointed, location_on_disk, size_on_disk, translation_buffer); |
| 133 | if (r != 0) { |
| 134 | return r; |
| 135 | } |
| 136 | _copy_translation(&_current, &_checkpointed, TRANSLATION_CURRENT); |
| 137 | |
| 138 | // Determine the file size |
| 139 | int64_t file_size = 0; |
| 140 | r = toku_os_get_file_size(fd, &file_size); |
| 141 | lazy_assert_zero(r); |
| 142 | invariant(file_size >= 0); |
| 143 | _safe_file_size = file_size; |
| 144 | |
| 145 | // Gather the non-empty translations and use them to create the block |
| 146 | // allocator |
| 147 | toku::scoped_malloc pairs_buf(_checkpointed.smallest_never_used_blocknum.b * |
| 148 | sizeof(struct BlockAllocator::BlockPair)); |
| 149 | struct BlockAllocator::BlockPair *CAST_FROM_VOIDP(pairs, pairs_buf.get()); |
| 150 | uint64_t n_pairs = 0; |
| 151 | for (int64_t i = 0; i < _checkpointed.smallest_never_used_blocknum.b; i++) { |
| 152 | struct block_translation_pair pair = _checkpointed.block_translation[i]; |
| 153 | if (pair.size > 0) { |
| 154 | invariant(pair.u.diskoff != diskoff_unused); |
| 155 | pairs[n_pairs++] = |
| 156 | BlockAllocator::BlockPair(pair.u.diskoff, pair.size); |
| 157 | } |
| 158 | } |
| 159 | |
| 160 | _bt_block_allocator->CreateFromBlockPairs( |
| 161 | BlockAllocator::BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE, |
| 162 | BlockAllocator::BLOCK_ALLOCATOR_ALIGNMENT, |
| 163 | pairs, |
| 164 | n_pairs); |
| 165 | |
| 166 | return 0; |
| 167 | } |
| 168 | |
| 169 | void block_table::create() { |
| 170 | // Does not initialize the block allocator |
| 171 | _create_internal(); |
| 172 | |
| 173 | _checkpointed.type = TRANSLATION_CHECKPOINTED; |
| 174 | _checkpointed.smallest_never_used_blocknum = |
| 175 | make_blocknum(RESERVED_BLOCKNUMS); |
| 176 | _checkpointed.length_of_array = |
| 177 | _checkpointed.smallest_never_used_blocknum.b; |
| 178 | _checkpointed.blocknum_freelist_head = freelist_null; |
| 179 | XMALLOC_N(_checkpointed.length_of_array, _checkpointed.block_translation); |
| 180 | for (int64_t i = 0; i < _checkpointed.length_of_array; i++) { |
| 181 | _checkpointed.block_translation[i].size = 0; |
| 182 | _checkpointed.block_translation[i].u.diskoff = diskoff_unused; |
| 183 | } |
| 184 | |
| 185 | // we just created a default checkpointed, now copy it to current. |
| 186 | _copy_translation(&_current, &_checkpointed, TRANSLATION_CURRENT); |
| 187 | |
| 188 | // Create an empty block allocator. |
| 189 | _bt_block_allocator->Create( |
| 190 | BlockAllocator::BLOCK_ALLOCATOR_TOTAL_HEADER_RESERVE, |
| 191 | BlockAllocator::BLOCK_ALLOCATOR_ALIGNMENT); |
| 192 | } |
| 193 | |
| 194 | // TODO: Refactor with FT-303 |
| 195 | static void ft_set_dirty(FT ft, bool for_checkpoint) { |
| 196 | invariant(ft->h->type == FT_CURRENT); |
| 197 | if (for_checkpoint) { |
| 198 | invariant(ft->checkpoint_header->type == FT_CHECKPOINT_INPROGRESS); |
| 199 | ft->checkpoint_header->dirty = 1; |
| 200 | } else { |
| 201 | ft->h->dirty = 1; |
| 202 | } |
| 203 | } |
| 204 | |
| 205 | void block_table::_maybe_truncate_file(int fd, uint64_t size_needed_before) { |
| 206 | toku_mutex_assert_locked(&_mutex); |
| 207 | uint64_t new_size_needed = _bt_block_allocator->AllocatedLimit(); |
| 208 | // Save a call to toku_os_get_file_size (kernel call) if unlikely to be |
| 209 | // useful. |
| 210 | if (new_size_needed < size_needed_before && |
| 211 | new_size_needed < _safe_file_size) { |
| 212 | nb_mutex_lock(&_safe_file_size_lock, &_mutex); |
| 213 | |
| 214 | // Must hold _safe_file_size_lock to change _safe_file_size. |
| 215 | if (new_size_needed < _safe_file_size) { |
| 216 | int64_t safe_file_size_before = _safe_file_size; |
| 217 | // Not safe to use the 'to-be-truncated' portion until truncate is |
| 218 | // done. |
| 219 | _safe_file_size = new_size_needed; |
| 220 | _mutex_unlock(); |
| 221 | |
| 222 | uint64_t size_after; |
| 223 | toku_maybe_truncate_file( |
| 224 | fd, new_size_needed, safe_file_size_before, &size_after); |
| 225 | _mutex_lock(); |
| 226 | |
| 227 | _safe_file_size = size_after; |
| 228 | } |
| 229 | nb_mutex_unlock(&_safe_file_size_lock); |
| 230 | } |
| 231 | } |
| 232 | |
| 233 | void block_table::maybe_truncate_file_on_open(int fd) { |
| 234 | _mutex_lock(); |
| 235 | _maybe_truncate_file(fd, _safe_file_size); |
| 236 | _mutex_unlock(); |
| 237 | } |
| 238 | |
| 239 | void block_table::_copy_translation(struct translation *dst, |
| 240 | struct translation *src, |
| 241 | enum translation_type newtype) { |
| 242 | // We intend to malloc a fresh block, so the incoming translation should be |
| 243 | // empty |
| 244 | invariant_null(dst->block_translation); |
| 245 | |
| 246 | invariant(src->length_of_array >= src->smallest_never_used_blocknum.b); |
| 247 | invariant(newtype == TRANSLATION_DEBUG || |
| 248 | (src->type == TRANSLATION_CURRENT && |
| 249 | newtype == TRANSLATION_INPROGRESS) || |
| 250 | (src->type == TRANSLATION_CHECKPOINTED && |
| 251 | newtype == TRANSLATION_CURRENT)); |
| 252 | dst->type = newtype; |
| 253 | dst->smallest_never_used_blocknum = src->smallest_never_used_blocknum; |
| 254 | dst->blocknum_freelist_head = src->blocknum_freelist_head; |
| 255 | |
| 256 | // destination btt is of fixed size. Allocate + memcpy the exact length |
| 257 | // necessary. |
| 258 | dst->length_of_array = dst->smallest_never_used_blocknum.b; |
| 259 | XMALLOC_N(dst->length_of_array, dst->block_translation); |
| 260 | memcpy(dst->block_translation, |
| 261 | src->block_translation, |
| 262 | dst->length_of_array * sizeof(*dst->block_translation)); |
| 263 | |
| 264 | // New version of btt is not yet stored on disk. |
| 265 | dst->block_translation[RESERVED_BLOCKNUM_TRANSLATION].size = 0; |
| 266 | dst->block_translation[RESERVED_BLOCKNUM_TRANSLATION].u.diskoff = |
| 267 | diskoff_unused; |
| 268 | } |
| 269 | |
| 270 | int64_t block_table::get_blocks_in_use_unlocked() { |
| 271 | BLOCKNUM b; |
| 272 | struct translation *t = &_current; |
| 273 | int64_t num_blocks = 0; |
| 274 | { |
| 275 | // Reserved blocknums do not get upgraded; They are part of the header. |
| 276 | for (b.b = RESERVED_BLOCKNUMS; b.b < t->smallest_never_used_blocknum.b; |
| 277 | b.b++) { |
| 278 | if (t->block_translation[b.b].size != size_is_free) { |
| 279 | num_blocks++; |
| 280 | } |
| 281 | } |
| 282 | } |
| 283 | return num_blocks; |
| 284 | } |
| 285 | |
| 286 | void block_table::_maybe_optimize_translation(struct translation *t) { |
| 287 | // Reduce 'smallest_never_used_blocknum.b' (completely free blocknums |
| 288 | // instead of just |
| 289 | // on a free list. Doing so requires us to regenerate the free list. |
| 290 | // This is O(n) work, so do it only if you're already doing that. |
| 291 | |
| 292 | BLOCKNUM b; |
| 293 | paranoid_invariant(t->smallest_never_used_blocknum.b >= RESERVED_BLOCKNUMS); |
| 294 | // Calculate how large the free suffix is. |
| 295 | int64_t freed; |
| 296 | { |
| 297 | for (b.b = t->smallest_never_used_blocknum.b; b.b > RESERVED_BLOCKNUMS; |
| 298 | b.b--) { |
| 299 | if (t->block_translation[b.b - 1].size != size_is_free) { |
| 300 | break; |
| 301 | } |
| 302 | } |
| 303 | freed = t->smallest_never_used_blocknum.b - b.b; |
| 304 | } |
| 305 | if (freed > 0) { |
| 306 | t->smallest_never_used_blocknum.b = b.b; |
| 307 | if (t->length_of_array / 4 > t->smallest_never_used_blocknum.b) { |
| 308 | // We're using more memory than necessary to represent this now. |
| 309 | // Reduce. |
| 310 | uint64_t new_length = t->smallest_never_used_blocknum.b * 2; |
| 311 | XREALLOC_N(new_length, t->block_translation); |
| 312 | t->length_of_array = new_length; |
| 313 | // No need to zero anything out. |
| 314 | } |
| 315 | |
| 316 | // Regenerate free list. |
| 317 | t->blocknum_freelist_head.b = freelist_null.b; |
| 318 | for (b.b = RESERVED_BLOCKNUMS; b.b < t->smallest_never_used_blocknum.b; |
| 319 | b.b++) { |
| 320 | if (t->block_translation[b.b].size == size_is_free) { |
| 321 | t->block_translation[b.b].u.next_free_blocknum = |
| 322 | t->blocknum_freelist_head; |
| 323 | t->blocknum_freelist_head = b; |
| 324 | } |
| 325 | } |
| 326 | } |
| 327 | } |
| 328 | |
| 329 | // block table must be locked by caller of this function |
| 330 | void block_table::note_start_checkpoint_unlocked() { |
| 331 | toku_mutex_assert_locked(&_mutex); |
| 332 | |
| 333 | // We're going to do O(n) work to copy the translation, so we |
| 334 | // can afford to do O(n) work by optimizing the translation |
| 335 | _maybe_optimize_translation(&_current); |
| 336 | |
| 337 | // Copy current translation to inprogress translation. |
| 338 | _copy_translation(&_inprogress, &_current, TRANSLATION_INPROGRESS); |
| 339 | |
| 340 | _checkpoint_skipped = false; |
| 341 | } |
| 342 | |
| 343 | void block_table::note_skipped_checkpoint() { |
| 344 | // Purpose, alert block translation that the checkpoint was skipped, e.x. |
| 345 | // for a non-dirty header |
| 346 | _mutex_lock(); |
| 347 | paranoid_invariant_notnull(_inprogress.block_translation); |
| 348 | _checkpoint_skipped = true; |
| 349 | _mutex_unlock(); |
| 350 | } |
| 351 | |
| 352 | // Purpose: free any disk space used by previous checkpoint that isn't in use by |
| 353 | // either |
| 354 | // - current state |
| 355 | // - in-progress checkpoint |
| 356 | // capture inprogress as new checkpointed. |
| 357 | // For each entry in checkpointBTT |
| 358 | // if offset does not match offset in inprogress |
| 359 | // assert offset does not match offset in current |
| 360 | // free (offset,len) from checkpoint |
| 361 | // move inprogress to checkpoint (resetting type) |
| 362 | // inprogress = NULL |
| 363 | void block_table::note_end_checkpoint(int fd) { |
| 364 | // Free unused blocks |
| 365 | _mutex_lock(); |
| 366 | uint64_t allocated_limit_at_start = _bt_block_allocator->AllocatedLimit(); |
| 367 | paranoid_invariant_notnull(_inprogress.block_translation); |
| 368 | if (_checkpoint_skipped) { |
| 369 | toku_free(_inprogress.block_translation); |
| 370 | memset(&_inprogress, 0, sizeof(_inprogress)); |
| 371 | goto end; |
| 372 | } |
| 373 | |
| 374 | // Make certain inprogress was allocated space on disk |
| 375 | invariant( |
| 376 | _inprogress.block_translation[RESERVED_BLOCKNUM_TRANSLATION].size > 0); |
| 377 | invariant( |
| 378 | _inprogress.block_translation[RESERVED_BLOCKNUM_TRANSLATION].u.diskoff > |
| 379 | 0); |
| 380 | |
| 381 | { |
| 382 | struct translation *t = &_checkpointed; |
| 383 | for (int64_t i = 0; i < t->length_of_array; i++) { |
| 384 | struct block_translation_pair *pair = &t->block_translation[i]; |
| 385 | if (pair->size > 0 && |
| 386 | !_translation_prevents_freeing( |
| 387 | &_inprogress, make_blocknum(i), pair)) { |
| 388 | invariant(!_translation_prevents_freeing( |
| 389 | &_current, make_blocknum(i), pair)); |
| 390 | _bt_block_allocator->FreeBlock(pair->u.diskoff, pair->size); |
| 391 | } |
| 392 | } |
| 393 | toku_free(_checkpointed.block_translation); |
| 394 | _checkpointed = _inprogress; |
| 395 | _checkpointed.type = TRANSLATION_CHECKPOINTED; |
| 396 | memset(&_inprogress, 0, sizeof(_inprogress)); |
| 397 | _maybe_truncate_file(fd, allocated_limit_at_start); |
| 398 | } |
| 399 | end: |
| 400 | _mutex_unlock(); |
| 401 | } |
| 402 | |
| 403 | bool block_table::_is_valid_blocknum(struct translation *t, BLOCKNUM b) { |
| 404 | invariant(t->length_of_array >= t->smallest_never_used_blocknum.b); |
| 405 | return b.b >= 0 && b.b < t->smallest_never_used_blocknum.b; |
| 406 | } |
| 407 | |
| 408 | void block_table::_verify_valid_blocknum(struct translation *UU(t), |
| 409 | BLOCKNUM UU(b)) { |
| 410 | invariant(_is_valid_blocknum(t, b)); |
| 411 | } |
| 412 | |
| 413 | bool block_table::_is_valid_freeable_blocknum(struct translation *t, |
| 414 | BLOCKNUM b) { |
| 415 | invariant(t->length_of_array >= t->smallest_never_used_blocknum.b); |
| 416 | return b.b >= RESERVED_BLOCKNUMS && b.b < t->smallest_never_used_blocknum.b; |
| 417 | } |
| 418 | |
| 419 | // should be freeable |
| 420 | void block_table::_verify_valid_freeable_blocknum(struct translation *UU(t), |
| 421 | BLOCKNUM UU(b)) { |
| 422 | invariant(_is_valid_freeable_blocknum(t, b)); |
| 423 | } |
| 424 | |
| 425 | // Also used only in ft-serialize-test. |
| 426 | void block_table::block_free(uint64_t offset, uint64_t size) { |
| 427 | _mutex_lock(); |
| 428 | _bt_block_allocator->FreeBlock(offset, size); |
| 429 | _mutex_unlock(); |
| 430 | } |
| 431 | |
| 432 | int64_t block_table::_calculate_size_on_disk(struct translation *t) { |
| 433 | return 8 + // smallest_never_used_blocknum |
| 434 | 8 + // blocknum_freelist_head |
| 435 | t->smallest_never_used_blocknum.b * 16 + // Array |
| 436 | 4; // 4 for checksum |
| 437 | } |
| 438 | |
| 439 | // We cannot free the disk space allocated to this blocknum if it is still in |
| 440 | // use by the given translation table. |
| 441 | bool block_table::_translation_prevents_freeing( |
| 442 | struct translation *t, |
| 443 | BLOCKNUM b, |
| 444 | struct block_translation_pair *old_pair) { |
| 445 | return t->block_translation && b.b < t->smallest_never_used_blocknum.b && |
| 446 | old_pair->u.diskoff == t->block_translation[b.b].u.diskoff; |
| 447 | } |
| 448 | |
| 449 | void block_table::_realloc_on_disk_internal(BLOCKNUM b, |
| 450 | DISKOFF size, |
| 451 | DISKOFF *offset, |
| 452 | FT ft, |
| 453 | bool for_checkpoint) { |
| 454 | toku_mutex_assert_locked(&_mutex); |
| 455 | ft_set_dirty(ft, for_checkpoint); |
| 456 | |
| 457 | struct translation *t = &_current; |
| 458 | struct block_translation_pair old_pair = t->block_translation[b.b]; |
| 459 | // Free the old block if it is not still in use by the checkpoint in |
| 460 | // progress or the previous checkpoint |
| 461 | bool cannot_free = |
| 462 | (!for_checkpoint && |
| 463 | _translation_prevents_freeing(&_inprogress, b, &old_pair)) || |
| 464 | _translation_prevents_freeing(&_checkpointed, b, &old_pair); |
| 465 | if (!cannot_free && old_pair.u.diskoff != diskoff_unused) { |
| 466 | _bt_block_allocator->FreeBlock(old_pair.u.diskoff, old_pair.size); |
| 467 | } |
| 468 | |
| 469 | uint64_t allocator_offset = diskoff_unused; |
| 470 | t->block_translation[b.b].size = size; |
| 471 | if (size > 0) { |
| 472 | // Allocate a new block if the size is greater than 0, |
| 473 | // if the size is just 0, offset will be set to diskoff_unused |
| 474 | _bt_block_allocator->AllocBlock(size, &allocator_offset); |
| 475 | } |
| 476 | t->block_translation[b.b].u.diskoff = allocator_offset; |
| 477 | *offset = allocator_offset; |
| 478 | |
| 479 | // Update inprogress btt if appropriate (if called because Pending bit is |
| 480 | // set). |
| 481 | if (for_checkpoint) { |
| 482 | paranoid_invariant(b.b < _inprogress.length_of_array); |
| 483 | _inprogress.block_translation[b.b] = t->block_translation[b.b]; |
| 484 | } |
| 485 | } |
| 486 | |
| 487 | void block_table::_ensure_safe_write_unlocked(int fd, |
| 488 | DISKOFF block_size, |
| 489 | DISKOFF block_offset) { |
| 490 | // Requires: holding _mutex |
| 491 | uint64_t size_needed = block_size + block_offset; |
| 492 | if (size_needed > _safe_file_size) { |
| 493 | // Must hold _safe_file_size_lock to change _safe_file_size. |
| 494 | nb_mutex_lock(&_safe_file_size_lock, &_mutex); |
| 495 | if (size_needed > _safe_file_size) { |
| 496 | _mutex_unlock(); |
| 497 | |
| 498 | int64_t size_after; |
| 499 | toku_maybe_preallocate_in_file( |
| 500 | fd, size_needed, _safe_file_size, &size_after); |
| 501 | |
| 502 | _mutex_lock(); |
| 503 | _safe_file_size = size_after; |
| 504 | } |
| 505 | nb_mutex_unlock(&_safe_file_size_lock); |
| 506 | } |
| 507 | } |
| 508 | |
| 509 | void block_table::realloc_on_disk(BLOCKNUM b, |
| 510 | DISKOFF size, |
| 511 | DISKOFF *offset, |
| 512 | FT ft, |
| 513 | int fd, |
| 514 | bool for_checkpoint) { |
| 515 | _mutex_lock(); |
| 516 | struct translation *t = &_current; |
| 517 | _verify_valid_freeable_blocknum(t, b); |
| 518 | _realloc_on_disk_internal(b, size, offset, ft, for_checkpoint); |
| 519 | |
| 520 | _ensure_safe_write_unlocked(fd, size, *offset); |
| 521 | _mutex_unlock(); |
| 522 | } |
| 523 | |
| 524 | bool block_table::_pair_is_unallocated(struct block_translation_pair *pair) { |
| 525 | return pair->size == 0 && pair->u.diskoff == diskoff_unused; |
| 526 | } |
| 527 | |
| 528 | // Effect: figure out where to put the inprogress btt on disk, allocate space |
| 529 | // for it there. |
| 530 | // The space must be 512-byte aligned (both the starting address and the |
| 531 | // size). |
| 532 | // As a result, the allcoated space may be a little bit bigger (up to the next |
| 533 | // 512-byte boundary) than the actual btt. |
| 534 | void block_table::_alloc_inprogress_translation_on_disk_unlocked() { |
| 535 | toku_mutex_assert_locked(&_mutex); |
| 536 | |
| 537 | struct translation *t = &_inprogress; |
| 538 | paranoid_invariant_notnull(t->block_translation); |
| 539 | BLOCKNUM b = make_blocknum(RESERVED_BLOCKNUM_TRANSLATION); |
| 540 | // Each inprogress is allocated only once |
| 541 | paranoid_invariant(_pair_is_unallocated(&t->block_translation[b.b])); |
| 542 | |
| 543 | // Allocate a new block |
| 544 | int64_t size = _calculate_size_on_disk(t); |
| 545 | uint64_t offset; |
| 546 | _bt_block_allocator->AllocBlock(size, &offset); |
| 547 | t->block_translation[b.b].u.diskoff = offset; |
| 548 | t->block_translation[b.b].size = size; |
| 549 | } |
| 550 | |
| 551 | // Effect: Serializes the blocktable to a wbuf (which starts uninitialized) |
| 552 | // A clean shutdown runs checkpoint start so that current and inprogress are |
| 553 | // copies. |
| 554 | // The resulting wbuf buffer is guaranteed to be be 512-byte aligned and the |
| 555 | // total length is a multiple of 512 (so we pad with zeros at the end if |
| 556 | // needd) |
| 557 | // The address is guaranteed to be 512-byte aligned, but the size is not |
| 558 | // guaranteed. |
| 559 | // It *is* guaranteed that we can read up to the next 512-byte boundary, |
| 560 | // however |
| 561 | void block_table::serialize_translation_to_wbuf(int fd, |
| 562 | struct wbuf *w, |
| 563 | int64_t *address, |
| 564 | int64_t *size) { |
| 565 | _mutex_lock(); |
| 566 | struct translation *t = &_inprogress; |
| 567 | |
| 568 | BLOCKNUM b = make_blocknum(RESERVED_BLOCKNUM_TRANSLATION); |
| 569 | _alloc_inprogress_translation_on_disk_unlocked(); // The allocated block |
| 570 | // must be 512-byte |
| 571 | // aligned to make |
| 572 | // O_DIRECT happy. |
| 573 | uint64_t size_translation = _calculate_size_on_disk(t); |
| 574 | uint64_t size_aligned = roundup_to_multiple(512, size_translation); |
| 575 | invariant((int64_t)size_translation == t->block_translation[b.b].size); |
| 576 | { |
| 577 | // Init wbuf |
| 578 | if (0) |
| 579 | printf( |
| 580 | "%s:%d writing translation table of size_translation %" PRIu64 |
| 581 | " at %" PRId64 "\n" , |
| 582 | __FILE__, |
| 583 | __LINE__, |
| 584 | size_translation, |
| 585 | t->block_translation[b.b].u.diskoff); |
| 586 | char *XMALLOC_N_ALIGNED(512, size_aligned, buf); |
| 587 | for (uint64_t i = size_translation; i < size_aligned; i++) |
| 588 | buf[i] = 0; // fill in the end of the buffer with zeros. |
| 589 | wbuf_init(w, buf, size_aligned); |
| 590 | } |
| 591 | wbuf_BLOCKNUM(w, t->smallest_never_used_blocknum); |
| 592 | wbuf_BLOCKNUM(w, t->blocknum_freelist_head); |
| 593 | int64_t i; |
| 594 | for (i = 0; i < t->smallest_never_used_blocknum.b; i++) { |
| 595 | if (0) |
| 596 | printf("%s:%d %" PRId64 ",%" PRId64 "\n" , |
| 597 | __FILE__, |
| 598 | __LINE__, |
| 599 | t->block_translation[i].u.diskoff, |
| 600 | t->block_translation[i].size); |
| 601 | wbuf_DISKOFF(w, t->block_translation[i].u.diskoff); |
| 602 | wbuf_DISKOFF(w, t->block_translation[i].size); |
| 603 | } |
| 604 | uint32_t checksum = toku_x1764_finish(&w->checksum); |
| 605 | wbuf_int(w, checksum); |
| 606 | *address = t->block_translation[b.b].u.diskoff; |
| 607 | *size = size_translation; |
| 608 | invariant((*address) % 512 == 0); |
| 609 | |
| 610 | _ensure_safe_write_unlocked(fd, size_aligned, *address); |
| 611 | _mutex_unlock(); |
| 612 | } |
| 613 | |
| 614 | // Perhaps rename: purpose is get disk address of a block, given its blocknum |
| 615 | // (blockid?) |
| 616 | void block_table::_translate_blocknum_to_offset_size_unlocked(BLOCKNUM b, |
| 617 | DISKOFF *offset, |
| 618 | DISKOFF *size) { |
| 619 | struct translation *t = &_current; |
| 620 | _verify_valid_blocknum(t, b); |
| 621 | if (offset) { |
| 622 | *offset = t->block_translation[b.b].u.diskoff; |
| 623 | } |
| 624 | if (size) { |
| 625 | *size = t->block_translation[b.b].size; |
| 626 | } |
| 627 | } |
| 628 | |
| 629 | // Perhaps rename: purpose is get disk address of a block, given its blocknum |
| 630 | // (blockid?) |
| 631 | void block_table::translate_blocknum_to_offset_size(BLOCKNUM b, |
| 632 | DISKOFF *offset, |
| 633 | DISKOFF *size) { |
| 634 | _mutex_lock(); |
| 635 | _translate_blocknum_to_offset_size_unlocked(b, offset, size); |
| 636 | _mutex_unlock(); |
| 637 | } |
| 638 | |
| 639 | // Only called by toku_allocate_blocknum |
| 640 | // Effect: expand the array to maintain size invariant |
| 641 | // given that one more never-used blocknum will soon be used. |
| 642 | void block_table::_maybe_expand_translation(struct translation *t) { |
| 643 | if (t->length_of_array <= t->smallest_never_used_blocknum.b) { |
| 644 | // expansion is necessary |
| 645 | uint64_t new_length = t->smallest_never_used_blocknum.b * 2; |
| 646 | XREALLOC_N(new_length, t->block_translation); |
| 647 | uint64_t i; |
| 648 | for (i = t->length_of_array; i < new_length; i++) { |
| 649 | t->block_translation[i].u.next_free_blocknum = freelist_null; |
| 650 | t->block_translation[i].size = size_is_free; |
| 651 | } |
| 652 | t->length_of_array = new_length; |
| 653 | } |
| 654 | } |
| 655 | |
| 656 | void block_table::_allocate_blocknum_unlocked(BLOCKNUM *res, FT ft) { |
| 657 | toku_mutex_assert_locked(&_mutex); |
| 658 | BLOCKNUM result; |
| 659 | struct translation *t = &_current; |
| 660 | if (t->blocknum_freelist_head.b == freelist_null.b) { |
| 661 | // no previously used blocknums are available |
| 662 | // use a never used blocknum |
| 663 | _maybe_expand_translation( |
| 664 | t); // Ensure a never used blocknums is available |
| 665 | result = t->smallest_never_used_blocknum; |
| 666 | t->smallest_never_used_blocknum.b++; |
| 667 | } else { // reuse a previously used blocknum |
| 668 | result = t->blocknum_freelist_head; |
| 669 | BLOCKNUM next = t->block_translation[result.b].u.next_free_blocknum; |
| 670 | t->blocknum_freelist_head = next; |
| 671 | } |
| 672 | // Verify the blocknum is free |
| 673 | paranoid_invariant(t->block_translation[result.b].size == size_is_free); |
| 674 | // blocknum is not free anymore |
| 675 | t->block_translation[result.b].u.diskoff = diskoff_unused; |
| 676 | t->block_translation[result.b].size = 0; |
| 677 | _verify_valid_freeable_blocknum(t, result); |
| 678 | *res = result; |
| 679 | ft_set_dirty(ft, false); |
| 680 | } |
| 681 | |
| 682 | void block_table::allocate_blocknum(BLOCKNUM *res, FT ft) { |
| 683 | _mutex_lock(); |
| 684 | _allocate_blocknum_unlocked(res, ft); |
| 685 | _mutex_unlock(); |
| 686 | } |
| 687 | |
| 688 | void block_table::_free_blocknum_in_translation(struct translation *t, |
| 689 | BLOCKNUM b) { |
| 690 | _verify_valid_freeable_blocknum(t, b); |
| 691 | paranoid_invariant(t->block_translation[b.b].size != size_is_free); |
| 692 | |
| 693 | t->block_translation[b.b].size = size_is_free; |
| 694 | t->block_translation[b.b].u.next_free_blocknum = t->blocknum_freelist_head; |
| 695 | t->blocknum_freelist_head = b; |
| 696 | } |
| 697 | |
| 698 | // Effect: Free a blocknum. |
| 699 | // If the blocknum holds the only reference to a block on disk, free that block |
| 700 | void block_table::_free_blocknum_unlocked(BLOCKNUM *bp, |
| 701 | FT ft, |
| 702 | bool for_checkpoint) { |
| 703 | toku_mutex_assert_locked(&_mutex); |
| 704 | BLOCKNUM b = *bp; |
| 705 | bp->b = 0; // Remove caller's reference. |
| 706 | |
| 707 | struct block_translation_pair old_pair = _current.block_translation[b.b]; |
| 708 | |
| 709 | _free_blocknum_in_translation(&_current, b); |
| 710 | if (for_checkpoint) { |
| 711 | paranoid_invariant(ft->checkpoint_header->type == |
| 712 | FT_CHECKPOINT_INPROGRESS); |
| 713 | _free_blocknum_in_translation(&_inprogress, b); |
| 714 | } |
| 715 | |
| 716 | // If the size is 0, no disk block has ever been assigned to this blocknum. |
| 717 | if (old_pair.size > 0) { |
| 718 | // Free the old block if it is not still in use by the checkpoint in |
| 719 | // progress or the previous checkpoint |
| 720 | bool cannot_free = |
| 721 | _translation_prevents_freeing(&_inprogress, b, &old_pair) || |
| 722 | _translation_prevents_freeing(&_checkpointed, b, &old_pair); |
| 723 | if (!cannot_free) { |
| 724 | _bt_block_allocator->FreeBlock(old_pair.u.diskoff, old_pair.size); |
| 725 | } |
| 726 | } else { |
| 727 | paranoid_invariant(old_pair.size == 0); |
| 728 | paranoid_invariant(old_pair.u.diskoff == diskoff_unused); |
| 729 | } |
| 730 | ft_set_dirty(ft, for_checkpoint); |
| 731 | } |
| 732 | |
| 733 | void block_table::free_blocknum(BLOCKNUM *bp, FT ft, bool for_checkpoint) { |
| 734 | _mutex_lock(); |
| 735 | _free_blocknum_unlocked(bp, ft, for_checkpoint); |
| 736 | _mutex_unlock(); |
| 737 | } |
| 738 | |
| 739 | // Verify there are no free blocks. |
| 740 | void block_table::verify_no_free_blocknums() { |
| 741 | invariant(_current.blocknum_freelist_head.b == freelist_null.b); |
| 742 | } |
| 743 | |
| 744 | // Frees blocknums that have a size of 0 and unused diskoff |
| 745 | // Currently used for eliminating unused cached rollback log nodes |
| 746 | void block_table::free_unused_blocknums(BLOCKNUM root) { |
| 747 | _mutex_lock(); |
| 748 | int64_t smallest = _current.smallest_never_used_blocknum.b; |
| 749 | for (int64_t i = RESERVED_BLOCKNUMS; i < smallest; i++) { |
| 750 | if (i == root.b) { |
| 751 | continue; |
| 752 | } |
| 753 | BLOCKNUM b = make_blocknum(i); |
| 754 | if (_current.block_translation[b.b].size == 0) { |
| 755 | invariant(_current.block_translation[b.b].u.diskoff == |
| 756 | diskoff_unused); |
| 757 | _free_blocknum_in_translation(&_current, b); |
| 758 | } |
| 759 | } |
| 760 | _mutex_unlock(); |
| 761 | } |
| 762 | |
| 763 | bool block_table::_no_data_blocks_except_root(BLOCKNUM root) { |
| 764 | bool ok = true; |
| 765 | _mutex_lock(); |
| 766 | int64_t smallest = _current.smallest_never_used_blocknum.b; |
| 767 | if (root.b < RESERVED_BLOCKNUMS) { |
| 768 | ok = false; |
| 769 | goto cleanup; |
| 770 | } |
| 771 | for (int64_t i = RESERVED_BLOCKNUMS; i < smallest; i++) { |
| 772 | if (i == root.b) { |
| 773 | continue; |
| 774 | } |
| 775 | BLOCKNUM b = make_blocknum(i); |
| 776 | if (_current.block_translation[b.b].size != size_is_free) { |
| 777 | ok = false; |
| 778 | goto cleanup; |
| 779 | } |
| 780 | } |
| 781 | cleanup: |
| 782 | _mutex_unlock(); |
| 783 | return ok; |
| 784 | } |
| 785 | |
| 786 | // Verify there are no data blocks except root. |
| 787 | // TODO(leif): This actually takes a lock, but I don't want to fix all the |
| 788 | // callers right now. |
| 789 | void block_table::verify_no_data_blocks_except_root(BLOCKNUM UU(root)) { |
| 790 | paranoid_invariant(_no_data_blocks_except_root(root)); |
| 791 | } |
| 792 | |
| 793 | bool block_table::_blocknum_allocated(BLOCKNUM b) { |
| 794 | _mutex_lock(); |
| 795 | struct translation *t = &_current; |
| 796 | _verify_valid_blocknum(t, b); |
| 797 | bool ok = t->block_translation[b.b].size != size_is_free; |
| 798 | _mutex_unlock(); |
| 799 | return ok; |
| 800 | } |
| 801 | |
| 802 | // Verify a blocknum is currently allocated. |
| 803 | void block_table::verify_blocknum_allocated(BLOCKNUM UU(b)) { |
| 804 | paranoid_invariant(_blocknum_allocated(b)); |
| 805 | } |
| 806 | |
| 807 | // Only used by toku_dump_translation table (debug info) |
| 808 | void block_table::_dump_translation_internal(FILE *f, struct translation *t) { |
| 809 | if (t->block_translation) { |
| 810 | BLOCKNUM b = make_blocknum(RESERVED_BLOCKNUM_TRANSLATION); |
| 811 | fprintf(f, " length_of_array[%" PRId64 "]" , t->length_of_array); |
| 812 | fprintf(f, |
| 813 | " smallest_never_used_blocknum[%" PRId64 "]" , |
| 814 | t->smallest_never_used_blocknum.b); |
| 815 | fprintf(f, |
| 816 | " blocknum_free_list_head[%" PRId64 "]" , |
| 817 | t->blocknum_freelist_head.b); |
| 818 | fprintf( |
| 819 | f, " size_on_disk[%" PRId64 "]" , t->block_translation[b.b].size); |
| 820 | fprintf(f, |
| 821 | " location_on_disk[%" PRId64 "]\n" , |
| 822 | t->block_translation[b.b].u.diskoff); |
| 823 | int64_t i; |
| 824 | for (i = 0; i < t->length_of_array; i++) { |
| 825 | fprintf(f, |
| 826 | " %" PRId64 ": %" PRId64 " %" PRId64 "\n" , |
| 827 | i, |
| 828 | t->block_translation[i].u.diskoff, |
| 829 | t->block_translation[i].size); |
| 830 | } |
| 831 | fprintf(f, "\n" ); |
| 832 | } else { |
| 833 | fprintf(f, " does not exist\n" ); |
| 834 | } |
| 835 | } |
| 836 | |
| 837 | // Only used by toku_ft_dump which is only for debugging purposes |
| 838 | // "pretty" just means we use tabs so we can parse output easier later |
| 839 | void block_table::dump_translation_table_pretty(FILE *f) { |
| 840 | _mutex_lock(); |
| 841 | struct translation *t = &_checkpointed; |
| 842 | invariant(t->block_translation != nullptr); |
| 843 | for (int64_t i = 0; i < t->length_of_array; ++i) { |
| 844 | fprintf(f, |
| 845 | "%" PRId64 "\t%" PRId64 "\t%" PRId64 "\n" , |
| 846 | i, |
| 847 | t->block_translation[i].u.diskoff, |
| 848 | t->block_translation[i].size); |
| 849 | } |
| 850 | _mutex_unlock(); |
| 851 | } |
| 852 | |
| 853 | // Only used by toku_ft_dump which is only for debugging purposes |
| 854 | void block_table::dump_translation_table(FILE *f) { |
| 855 | _mutex_lock(); |
| 856 | fprintf(f, "Current block translation:" ); |
| 857 | _dump_translation_internal(f, &_current); |
| 858 | fprintf(f, "Checkpoint in progress block translation:" ); |
| 859 | _dump_translation_internal(f, &_inprogress); |
| 860 | fprintf(f, "Checkpointed block translation:" ); |
| 861 | _dump_translation_internal(f, &_checkpointed); |
| 862 | _mutex_unlock(); |
| 863 | } |
| 864 | |
| 865 | // Only used by ftdump |
| 866 | void block_table::blocknum_dump_translation(BLOCKNUM b) { |
| 867 | _mutex_lock(); |
| 868 | |
| 869 | struct translation *t = &_current; |
| 870 | if (b.b < t->length_of_array) { |
| 871 | struct block_translation_pair *bx = &t->block_translation[b.b]; |
| 872 | printf("%" PRId64 ": %" PRId64 " %" PRId64 "\n" , |
| 873 | b.b, |
| 874 | bx->u.diskoff, |
| 875 | bx->size); |
| 876 | } |
| 877 | _mutex_unlock(); |
| 878 | } |
| 879 | |
| 880 | // Must not call this function when anything else is using the blocktable. |
| 881 | // No one may use the blocktable afterwards. |
| 882 | void block_table::destroy(void) { |
| 883 | // TODO: translation.destroy(); |
| 884 | toku_free(_current.block_translation); |
| 885 | toku_free(_inprogress.block_translation); |
| 886 | toku_free(_checkpointed.block_translation); |
| 887 | |
| 888 | _bt_block_allocator->Destroy(); |
| 889 | delete _bt_block_allocator; |
| 890 | toku_mutex_destroy(&_mutex); |
| 891 | nb_mutex_destroy(&_safe_file_size_lock); |
| 892 | } |
| 893 | |
| 894 | int block_table::_translation_deserialize_from_buffer( |
| 895 | struct translation *t, |
| 896 | DISKOFF location_on_disk, |
| 897 | uint64_t size_on_disk, |
| 898 | // out: buffer with serialized translation |
| 899 | unsigned char *translation_buffer) { |
| 900 | int r = 0; |
| 901 | invariant(location_on_disk != 0); |
| 902 | t->type = TRANSLATION_CHECKPOINTED; |
| 903 | |
| 904 | // check the checksum |
| 905 | uint32_t x1764 = toku_x1764_memory(translation_buffer, size_on_disk - 4); |
| 906 | uint64_t offset = size_on_disk - 4; |
| 907 | uint32_t stored_x1764 = toku_dtoh32(*(int *)(translation_buffer + offset)); |
| 908 | if (x1764 != stored_x1764) { |
| 909 | fprintf(stderr, |
| 910 | "Translation table checksum failure: calc=0x%08x read=0x%08x\n" , |
| 911 | x1764, |
| 912 | stored_x1764); |
| 913 | r = TOKUDB_BAD_CHECKSUM; |
| 914 | goto exit; |
| 915 | } |
| 916 | |
| 917 | struct rbuf rb; |
| 918 | rb.buf = translation_buffer; |
| 919 | rb.ndone = 0; |
| 920 | rb.size = size_on_disk - 4; // 4==checksum |
| 921 | |
| 922 | t->smallest_never_used_blocknum = rbuf_blocknum(&rb); |
| 923 | t->length_of_array = t->smallest_never_used_blocknum.b; |
| 924 | invariant(t->smallest_never_used_blocknum.b >= RESERVED_BLOCKNUMS); |
| 925 | t->blocknum_freelist_head = rbuf_blocknum(&rb); |
| 926 | XMALLOC_N(t->length_of_array, t->block_translation); |
| 927 | for (int64_t i = 0; i < t->length_of_array; i++) { |
| 928 | t->block_translation[i].u.diskoff = rbuf_DISKOFF(&rb); |
| 929 | t->block_translation[i].size = rbuf_DISKOFF(&rb); |
| 930 | } |
| 931 | invariant(_calculate_size_on_disk(t) == (int64_t)size_on_disk); |
| 932 | invariant(t->block_translation[RESERVED_BLOCKNUM_TRANSLATION].size == |
| 933 | (int64_t)size_on_disk); |
| 934 | invariant(t->block_translation[RESERVED_BLOCKNUM_TRANSLATION].u.diskoff == |
| 935 | location_on_disk); |
| 936 | |
| 937 | exit: |
| 938 | return r; |
| 939 | } |
| 940 | |
| 941 | int block_table::iterate(enum translation_type type, |
| 942 | BLOCKTABLE_CALLBACK f, |
| 943 | void *, |
| 944 | bool data_only, |
| 945 | bool used_only) { |
| 946 | struct translation *src; |
| 947 | |
| 948 | int r = 0; |
| 949 | switch (type) { |
| 950 | case TRANSLATION_CURRENT: |
| 951 | src = &_current; |
| 952 | break; |
| 953 | case TRANSLATION_INPROGRESS: |
| 954 | src = &_inprogress; |
| 955 | break; |
| 956 | case TRANSLATION_CHECKPOINTED: |
| 957 | src = &_checkpointed; |
| 958 | break; |
| 959 | default: |
| 960 | r = EINVAL; |
| 961 | } |
| 962 | |
| 963 | struct translation fakecurrent; |
| 964 | memset(&fakecurrent, 0, sizeof(struct translation)); |
| 965 | |
| 966 | struct translation *t = &fakecurrent; |
| 967 | if (r == 0) { |
| 968 | _mutex_lock(); |
| 969 | _copy_translation(t, src, TRANSLATION_DEBUG); |
| 970 | t->block_translation[RESERVED_BLOCKNUM_TRANSLATION] = |
| 971 | src->block_translation[RESERVED_BLOCKNUM_TRANSLATION]; |
| 972 | _mutex_unlock(); |
| 973 | int64_t i; |
| 974 | for (i = 0; i < t->smallest_never_used_blocknum.b; i++) { |
| 975 | struct block_translation_pair pair = t->block_translation[i]; |
| 976 | if (data_only && i < RESERVED_BLOCKNUMS) |
| 977 | continue; |
| 978 | if (used_only && pair.size <= 0) |
| 979 | continue; |
| 980 | r = f(make_blocknum(i), pair.size, pair.u.diskoff, extra); |
| 981 | if (r != 0) |
| 982 | break; |
| 983 | } |
| 984 | toku_free(t->block_translation); |
| 985 | } |
| 986 | return r; |
| 987 | } |
| 988 | |
| 989 | typedef struct { |
| 990 | int64_t used_space; |
| 991 | int64_t total_space; |
| 992 | } ; |
| 993 | |
| 994 | static int frag_helper(BLOCKNUM UU(b), |
| 995 | int64_t size, |
| 996 | int64_t address, |
| 997 | void *) { |
| 998 | frag_extra *info = (frag_extra *)extra; |
| 999 | |
| 1000 | if (size + address > info->total_space) |
| 1001 | info->total_space = size + address; |
| 1002 | info->used_space += size; |
| 1003 | return 0; |
| 1004 | } |
| 1005 | |
| 1006 | void block_table::internal_fragmentation(int64_t *total_sizep, |
| 1007 | int64_t *used_sizep) { |
| 1008 | frag_extra info = {0, 0}; |
| 1009 | int r = iterate(TRANSLATION_CHECKPOINTED, frag_helper, &info, false, true); |
| 1010 | invariant_zero(r); |
| 1011 | |
| 1012 | if (total_sizep) |
| 1013 | *total_sizep = info.total_space; |
| 1014 | if (used_sizep) |
| 1015 | *used_sizep = info.used_space; |
| 1016 | } |
| 1017 | |
| 1018 | void block_table::_realloc_descriptor_on_disk_unlocked(DISKOFF size, |
| 1019 | DISKOFF *offset, |
| 1020 | FT ft) { |
| 1021 | toku_mutex_assert_locked(&_mutex); |
| 1022 | BLOCKNUM b = make_blocknum(RESERVED_BLOCKNUM_DESCRIPTOR); |
| 1023 | _realloc_on_disk_internal(b, size, offset, ft, false); |
| 1024 | } |
| 1025 | |
| 1026 | void block_table::realloc_descriptor_on_disk(DISKOFF size, |
| 1027 | DISKOFF *offset, |
| 1028 | FT ft, |
| 1029 | int fd) { |
| 1030 | _mutex_lock(); |
| 1031 | _realloc_descriptor_on_disk_unlocked(size, offset, ft); |
| 1032 | _ensure_safe_write_unlocked(fd, size, *offset); |
| 1033 | _mutex_unlock(); |
| 1034 | } |
| 1035 | |
| 1036 | void block_table::get_descriptor_offset_size(DISKOFF *offset, DISKOFF *size) { |
| 1037 | _mutex_lock(); |
| 1038 | BLOCKNUM b = make_blocknum(RESERVED_BLOCKNUM_DESCRIPTOR); |
| 1039 | _translate_blocknum_to_offset_size_unlocked(b, offset, size); |
| 1040 | _mutex_unlock(); |
| 1041 | } |
| 1042 | |
| 1043 | void block_table::get_fragmentation_unlocked(TOKU_DB_FRAGMENTATION report) { |
| 1044 | // Requires: blocktable lock is held. |
| 1045 | // Requires: report->file_size_bytes is already filled in. |
| 1046 | |
| 1047 | // Count the headers. |
| 1048 | report->data_bytes = BlockAllocator::BLOCK_ALLOCATOR_HEADER_RESERVE; |
| 1049 | report->data_blocks = 1; |
| 1050 | report->checkpoint_bytes_additional = |
| 1051 | BlockAllocator::BLOCK_ALLOCATOR_HEADER_RESERVE; |
| 1052 | report->checkpoint_blocks_additional = 1; |
| 1053 | |
| 1054 | struct translation *current = &_current; |
| 1055 | for (int64_t i = 0; i < current->length_of_array; i++) { |
| 1056 | struct block_translation_pair *pair = ¤t->block_translation[i]; |
| 1057 | if (pair->size > 0) { |
| 1058 | report->data_bytes += pair->size; |
| 1059 | report->data_blocks++; |
| 1060 | } |
| 1061 | } |
| 1062 | |
| 1063 | struct translation *checkpointed = &_checkpointed; |
| 1064 | for (int64_t i = 0; i < checkpointed->length_of_array; i++) { |
| 1065 | struct block_translation_pair *pair = |
| 1066 | &checkpointed->block_translation[i]; |
| 1067 | if (pair->size > 0 && |
| 1068 | !(i < current->length_of_array && |
| 1069 | current->block_translation[i].size > 0 && |
| 1070 | current->block_translation[i].u.diskoff == pair->u.diskoff)) { |
| 1071 | report->checkpoint_bytes_additional += pair->size; |
| 1072 | report->checkpoint_blocks_additional++; |
| 1073 | } |
| 1074 | } |
| 1075 | |
| 1076 | struct translation *inprogress = &_inprogress; |
| 1077 | for (int64_t i = 0; i < inprogress->length_of_array; i++) { |
| 1078 | struct block_translation_pair *pair = &inprogress->block_translation[i]; |
| 1079 | if (pair->size > 0 && |
| 1080 | !(i < current->length_of_array && |
| 1081 | current->block_translation[i].size > 0 && |
| 1082 | current->block_translation[i].u.diskoff == pair->u.diskoff) && |
| 1083 | !(i < checkpointed->length_of_array && |
| 1084 | checkpointed->block_translation[i].size > 0 && |
| 1085 | checkpointed->block_translation[i].u.diskoff == |
| 1086 | pair->u.diskoff)) { |
| 1087 | report->checkpoint_bytes_additional += pair->size; |
| 1088 | report->checkpoint_blocks_additional++; |
| 1089 | } |
| 1090 | } |
| 1091 | |
| 1092 | _bt_block_allocator->UnusedStatistics(report); |
| 1093 | } |
| 1094 | |
| 1095 | void block_table::get_info64(struct ftinfo64 *s) { |
| 1096 | _mutex_lock(); |
| 1097 | |
| 1098 | struct translation *current = &_current; |
| 1099 | s->num_blocks_allocated = current->length_of_array; |
| 1100 | s->num_blocks_in_use = 0; |
| 1101 | s->size_allocated = 0; |
| 1102 | s->size_in_use = 0; |
| 1103 | |
| 1104 | for (int64_t i = 0; i < current->length_of_array; ++i) { |
| 1105 | struct block_translation_pair *block = ¤t->block_translation[i]; |
| 1106 | if (block->size != size_is_free) { |
| 1107 | ++s->num_blocks_in_use; |
| 1108 | s->size_in_use += block->size; |
| 1109 | if (block->u.diskoff != diskoff_unused) { |
| 1110 | uint64_t limit = block->u.diskoff + block->size; |
| 1111 | if (limit > s->size_allocated) { |
| 1112 | s->size_allocated = limit; |
| 1113 | } |
| 1114 | } |
| 1115 | } |
| 1116 | } |
| 1117 | |
| 1118 | _mutex_unlock(); |
| 1119 | } |
| 1120 | |
| 1121 | int block_table::iterate_translation_tables( |
| 1122 | uint64_t checkpoint_count, |
| 1123 | int (*iter)(uint64_t checkpoint_count, |
| 1124 | int64_t total_num_rows, |
| 1125 | int64_t blocknum, |
| 1126 | int64_t diskoff, |
| 1127 | int64_t size, |
| 1128 | void *), |
| 1129 | void *) { |
| 1130 | int error = 0; |
| 1131 | _mutex_lock(); |
| 1132 | |
| 1133 | int64_t total_num_rows = |
| 1134 | _current.length_of_array + _checkpointed.length_of_array; |
| 1135 | for (int64_t i = 0; error == 0 && i < _current.length_of_array; ++i) { |
| 1136 | struct block_translation_pair *block = &_current.block_translation[i]; |
| 1137 | error = iter(checkpoint_count, |
| 1138 | total_num_rows, |
| 1139 | i, |
| 1140 | block->u.diskoff, |
| 1141 | block->size, |
| 1142 | iter_extra); |
| 1143 | } |
| 1144 | for (int64_t i = 0; error == 0 && i < _checkpointed.length_of_array; ++i) { |
| 1145 | struct block_translation_pair *block = |
| 1146 | &_checkpointed.block_translation[i]; |
| 1147 | error = iter(checkpoint_count - 1, |
| 1148 | total_num_rows, |
| 1149 | i, |
| 1150 | block->u.diskoff, |
| 1151 | block->size, |
| 1152 | iter_extra); |
| 1153 | } |
| 1154 | |
| 1155 | _mutex_unlock(); |
| 1156 | return error; |
| 1157 | } |
| 1158 | |