1 | /* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */ |
2 | // vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4: |
3 | #ident "$Id$" |
4 | /*====== |
5 | This file is part of PerconaFT. |
6 | |
7 | |
8 | Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved. |
9 | |
10 | PerconaFT is free software: you can redistribute it and/or modify |
11 | it under the terms of the GNU General Public License, version 2, |
12 | as published by the Free Software Foundation. |
13 | |
14 | PerconaFT is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
17 | GNU General Public License for more details. |
18 | |
19 | You should have received a copy of the GNU General Public License |
20 | along with PerconaFT. If not, see <http://www.gnu.org/licenses/>. |
21 | |
22 | ---------------------------------------- |
23 | |
24 | PerconaFT is free software: you can redistribute it and/or modify |
25 | it under the terms of the GNU Affero General Public License, version 3, |
26 | as published by the Free Software Foundation. |
27 | |
28 | PerconaFT is distributed in the hope that it will be useful, |
29 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
30 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
31 | GNU Affero General Public License for more details. |
32 | |
33 | You should have received a copy of the GNU Affero General Public License |
34 | along with PerconaFT. If not, see <http://www.gnu.org/licenses/>. |
35 | ======= */ |
36 | |
37 | #ident "Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved." |
38 | |
39 | #include <errno.h> |
40 | #include <stdio.h> |
41 | #include <string.h> |
42 | #include <zlib.h> |
43 | |
44 | #include "portability/memory.h" |
45 | #include "portability/toku_assert.h" |
46 | #include "portability/toku_portability.h" |
47 | |
48 | #include "ft/serialize/compress.h" |
49 | #include "ft/serialize/sub_block.h" |
50 | #include "ft/serialize/quicklz.h" |
51 | #include "util/threadpool.h" |
52 | #include "util/x1764.h" |
53 | |
54 | toku_instr_key *workset_lock_mutex_key; |
55 | toku_instr_key *ws_worker_wait_key; |
56 | |
57 | SUB_BLOCK sub_block_creat(void) { |
58 | SUB_BLOCK XMALLOC(sb); |
59 | sub_block_init(sb); |
60 | return sb; |
61 | } |
62 | void sub_block_init(SUB_BLOCK sub_block) { |
63 | sub_block->uncompressed_ptr = 0; |
64 | sub_block->uncompressed_size = 0; |
65 | |
66 | sub_block->compressed_ptr = 0; |
67 | sub_block->compressed_size_bound = 0; |
68 | sub_block->compressed_size = 0; |
69 | |
70 | sub_block->xsum = 0; |
71 | } |
72 | |
73 | // get the size of the compression header |
74 | size_t |
75 | (int n_sub_blocks) { |
76 | return sizeof (uint32_t) + n_sub_blocks * sizeof (struct stored_sub_block); |
77 | } |
78 | |
79 | void |
80 | set_compressed_size_bound(struct sub_block *se, enum toku_compression_method method) { |
81 | se->compressed_size_bound = toku_compress_bound(method, se->uncompressed_size); |
82 | } |
83 | |
84 | // get the sum of the sub block compressed sizes |
85 | size_t |
86 | get_sum_compressed_size_bound(int n_sub_blocks, struct sub_block sub_block[], enum toku_compression_method method) { |
87 | size_t compressed_size_bound = 0; |
88 | for (int i = 0; i < n_sub_blocks; i++) { |
89 | sub_block[i].compressed_size_bound = toku_compress_bound(method, sub_block[i].uncompressed_size); |
90 | compressed_size_bound += sub_block[i].compressed_size_bound; |
91 | } |
92 | return compressed_size_bound; |
93 | } |
94 | |
95 | // get the sum of the sub block uncompressed sizes |
96 | size_t |
97 | get_sum_uncompressed_size(int n_sub_blocks, struct sub_block sub_block[]) { |
98 | size_t uncompressed_size = 0; |
99 | for (int i = 0; i < n_sub_blocks; i++) |
100 | uncompressed_size += sub_block[i].uncompressed_size; |
101 | return uncompressed_size; |
102 | } |
103 | |
104 | // round up n |
105 | static inline int |
106 | alignup32(int a, int b) { |
107 | return ((a+b-1) / b) * b; |
108 | } |
109 | |
110 | // Choose n_sub_blocks and sub_block_size such that the product is >= total_size and the sub_block_size is at |
111 | // least >= the target_sub_block_size. |
112 | int |
113 | choose_sub_block_size(int total_size, int n_sub_blocks_limit, int *sub_block_size_ret, int *n_sub_blocks_ret) { |
114 | if (total_size < 0 || n_sub_blocks_limit < 1) |
115 | return EINVAL; |
116 | |
117 | const int alignment = 32; |
118 | |
119 | int n_sub_blocks, sub_block_size; |
120 | n_sub_blocks = total_size / target_sub_block_size; |
121 | if (n_sub_blocks <= 1) { |
122 | if (total_size > 0 && n_sub_blocks_limit > 0) |
123 | n_sub_blocks = 1; |
124 | sub_block_size = total_size; |
125 | } else { |
126 | if (n_sub_blocks > n_sub_blocks_limit) // limit the number of sub-blocks |
127 | n_sub_blocks = n_sub_blocks_limit; |
128 | sub_block_size = alignup32(total_size / n_sub_blocks, alignment); |
129 | while (sub_block_size * n_sub_blocks < total_size) // round up the sub-block size until big enough |
130 | sub_block_size += alignment; |
131 | } |
132 | |
133 | *sub_block_size_ret = sub_block_size; |
134 | *n_sub_blocks_ret = n_sub_blocks; |
135 | |
136 | return 0; |
137 | } |
138 | |
139 | // Choose the right size of basement nodes. For now, just align up to |
140 | // 256k blocks and hope it compresses well enough. |
141 | int |
142 | choose_basement_node_size(int total_size, int *sub_block_size_ret, int *n_sub_blocks_ret) { |
143 | if (total_size < 0) |
144 | return EINVAL; |
145 | |
146 | *n_sub_blocks_ret = (total_size + max_basement_node_uncompressed_size - 1) / max_basement_node_uncompressed_size; |
147 | *sub_block_size_ret = max_basement_node_uncompressed_size; |
148 | |
149 | return 0; |
150 | } |
151 | |
152 | void |
153 | set_all_sub_block_sizes(int total_size, int sub_block_size, int n_sub_blocks, struct sub_block sub_block[]) { |
154 | int size_left = total_size; |
155 | int i; |
156 | for (i = 0; i < n_sub_blocks-1; i++) { |
157 | sub_block[i].uncompressed_size = sub_block_size; |
158 | size_left -= sub_block_size; |
159 | } |
160 | if (i == 0 || size_left > 0) |
161 | sub_block[i].uncompressed_size = size_left; |
162 | } |
163 | |
164 | // find the index of the first sub block that contains offset |
165 | // Returns the sub block index, else returns -1 |
166 | int |
167 | get_sub_block_index(int n_sub_blocks, struct sub_block sub_block[], size_t offset) { |
168 | size_t start_offset = 0; |
169 | for (int i = 0; i < n_sub_blocks; i++) { |
170 | size_t size = sub_block[i].uncompressed_size; |
171 | if (offset < start_offset + size) |
172 | return i; |
173 | start_offset += size; |
174 | } |
175 | return -1; |
176 | } |
177 | |
178 | #include "workset.h" |
179 | |
180 | void |
181 | compress_work_init(struct compress_work *w, enum toku_compression_method method, struct sub_block *sub_block) { |
182 | w->method = method; |
183 | w->sub_block = sub_block; |
184 | } |
185 | |
186 | // |
187 | // takes the uncompressed contents of sub_block |
188 | // and compresses them into sb_compressed_ptr |
189 | // cs_bound is the compressed size bound |
190 | // Returns the size of the compressed data |
191 | // |
192 | uint32_t |
193 | compress_nocrc_sub_block( |
194 | struct sub_block *sub_block, |
195 | void* sb_compressed_ptr, |
196 | uint32_t cs_bound, |
197 | enum toku_compression_method method |
198 | ) |
199 | { |
200 | // compress it |
201 | Bytef *uncompressed_ptr = (Bytef *) sub_block->uncompressed_ptr; |
202 | Bytef *compressed_ptr = (Bytef *) sb_compressed_ptr; |
203 | uLongf uncompressed_len = sub_block->uncompressed_size; |
204 | uLongf real_compressed_len = cs_bound; |
205 | toku_compress(method, |
206 | compressed_ptr, &real_compressed_len, |
207 | uncompressed_ptr, uncompressed_len); |
208 | return real_compressed_len; |
209 | } |
210 | |
211 | void |
212 | compress_sub_block(struct sub_block *sub_block, enum toku_compression_method method) { |
213 | sub_block->compressed_size = compress_nocrc_sub_block( |
214 | sub_block, |
215 | sub_block->compressed_ptr, |
216 | sub_block->compressed_size_bound, |
217 | method |
218 | ); |
219 | // checksum it |
220 | sub_block->xsum = toku_x1764_memory(sub_block->compressed_ptr, sub_block->compressed_size); |
221 | } |
222 | |
223 | void * |
224 | compress_worker(void *arg) { |
225 | struct workset *ws = (struct workset *) arg; |
226 | while (1) { |
227 | struct compress_work *w = (struct compress_work *) workset_get(ws); |
228 | if (w == NULL) |
229 | break; |
230 | compress_sub_block(w->sub_block, w->method); |
231 | } |
232 | workset_release_ref(ws); |
233 | return arg; |
234 | } |
235 | |
236 | size_t |
237 | compress_all_sub_blocks(int n_sub_blocks, struct sub_block sub_block[], char *uncompressed_ptr, char *compressed_ptr, int num_cores, struct toku_thread_pool *pool, enum toku_compression_method method) { |
238 | char *compressed_base_ptr = compressed_ptr; |
239 | size_t compressed_len; |
240 | |
241 | // This is a complex way to write a parallel loop. Cilk would be better. |
242 | |
243 | if (n_sub_blocks == 1) { |
244 | // single sub-block |
245 | sub_block[0].uncompressed_ptr = uncompressed_ptr; |
246 | sub_block[0].compressed_ptr = compressed_ptr; |
247 | compress_sub_block(&sub_block[0], method); |
248 | compressed_len = sub_block[0].compressed_size; |
249 | } else { |
250 | // multiple sub-blocks |
251 | int T = num_cores; // T = min(num_cores, n_sub_blocks) - 1 |
252 | if (T > n_sub_blocks) |
253 | T = n_sub_blocks; |
254 | if (T > 0) |
255 | T = T - 1; // threads in addition to the running thread |
256 | |
257 | struct workset ws; |
258 | ZERO_STRUCT(ws); |
259 | workset_init(&ws); |
260 | |
261 | struct compress_work work[n_sub_blocks]; |
262 | workset_lock(&ws); |
263 | for (int i = 0; i < n_sub_blocks; i++) { |
264 | sub_block[i].uncompressed_ptr = uncompressed_ptr; |
265 | sub_block[i].compressed_ptr = compressed_ptr; |
266 | compress_work_init(&work[i], method, &sub_block[i]); |
267 | workset_put_locked(&ws, &work[i].base); |
268 | uncompressed_ptr += sub_block[i].uncompressed_size; |
269 | compressed_ptr += sub_block[i].compressed_size_bound; |
270 | } |
271 | workset_unlock(&ws); |
272 | |
273 | // compress the sub-blocks |
274 | if (0) printf("%s:%d T=%d N=%d\n" , __FUNCTION__, __LINE__, T, n_sub_blocks); |
275 | toku_thread_pool_run(pool, 0, &T, compress_worker, &ws); |
276 | workset_add_ref(&ws, T); |
277 | compress_worker(&ws); |
278 | |
279 | // wait for all of the work to complete |
280 | workset_join(&ws); |
281 | workset_destroy(&ws); |
282 | |
283 | // squeeze out the holes not used by the compress bound |
284 | compressed_ptr = compressed_base_ptr + sub_block[0].compressed_size; |
285 | for (int i = 1; i < n_sub_blocks; i++) { |
286 | memmove(compressed_ptr, sub_block[i].compressed_ptr, sub_block[i].compressed_size); |
287 | compressed_ptr += sub_block[i].compressed_size; |
288 | } |
289 | |
290 | compressed_len = compressed_ptr - compressed_base_ptr; |
291 | } |
292 | return compressed_len; |
293 | } |
294 | |
295 | // initialize the decompression work |
296 | void |
297 | decompress_work_init(struct decompress_work *dw, |
298 | void *compress_ptr, uint32_t compress_size, |
299 | void *uncompress_ptr, uint32_t uncompress_size, |
300 | uint32_t xsum) { |
301 | dw->compress_ptr = compress_ptr; |
302 | dw->compress_size = compress_size; |
303 | dw->uncompress_ptr = uncompress_ptr; |
304 | dw->uncompress_size = uncompress_size; |
305 | dw->xsum = xsum; |
306 | dw->error = 0; |
307 | } |
308 | |
309 | int verbose_decompress_sub_block = 1; |
310 | |
311 | // decompress one block |
312 | int |
313 | decompress_sub_block(void *compress_ptr, uint32_t compress_size, void *uncompress_ptr, uint32_t uncompress_size, uint32_t expected_xsum) { |
314 | int result = 0; |
315 | |
316 | // verify checksum |
317 | uint32_t xsum = toku_x1764_memory(compress_ptr, compress_size); |
318 | if (xsum != expected_xsum) { |
319 | if (verbose_decompress_sub_block) fprintf(stderr, "%s:%d xsum %u expected %u\n" , __FUNCTION__, __LINE__, xsum, expected_xsum); |
320 | result = EINVAL; |
321 | } else { |
322 | // decompress |
323 | toku_decompress((Bytef *) uncompress_ptr, uncompress_size, (Bytef *) compress_ptr, compress_size); |
324 | } |
325 | return result; |
326 | } |
327 | |
328 | // decompress blocks until there is no more work to do |
329 | void * |
330 | decompress_worker(void *arg) { |
331 | struct workset *ws = (struct workset *) arg; |
332 | while (1) { |
333 | struct decompress_work *dw = (struct decompress_work *) workset_get(ws); |
334 | if (dw == NULL) |
335 | break; |
336 | dw->error = decompress_sub_block(dw->compress_ptr, dw->compress_size, dw->uncompress_ptr, dw->uncompress_size, dw->xsum); |
337 | } |
338 | workset_release_ref(ws); |
339 | return arg; |
340 | } |
341 | |
342 | int |
343 | decompress_all_sub_blocks(int n_sub_blocks, struct sub_block sub_block[], unsigned char *compressed_data, unsigned char *uncompressed_data, int num_cores, struct toku_thread_pool *pool) { |
344 | int r; |
345 | |
346 | if (n_sub_blocks == 1) { |
347 | r = decompress_sub_block(compressed_data, sub_block[0].compressed_size, uncompressed_data, sub_block[0].uncompressed_size, sub_block[0].xsum); |
348 | } else { |
349 | // compute the number of additional threads needed for decompressing this node |
350 | int T = num_cores; // T = min(#cores, #blocks) - 1 |
351 | if (T > n_sub_blocks) |
352 | T = n_sub_blocks; |
353 | if (T > 0) |
354 | T = T - 1; // threads in addition to the running thread |
355 | |
356 | // init the decompression work set |
357 | struct workset ws; |
358 | ZERO_STRUCT(ws); |
359 | workset_init(&ws); |
360 | |
361 | // initialize the decompression work and add to the work set |
362 | struct decompress_work decompress_work[n_sub_blocks]; |
363 | workset_lock(&ws); |
364 | for (int i = 0; i < n_sub_blocks; i++) { |
365 | decompress_work_init(&decompress_work[i], compressed_data, sub_block[i].compressed_size, uncompressed_data, sub_block[i].uncompressed_size, sub_block[i].xsum); |
366 | workset_put_locked(&ws, &decompress_work[i].base); |
367 | |
368 | uncompressed_data += sub_block[i].uncompressed_size; |
369 | compressed_data += sub_block[i].compressed_size; |
370 | } |
371 | workset_unlock(&ws); |
372 | |
373 | // decompress the sub-blocks |
374 | if (0) printf("%s:%d Cores=%d Blocks=%d T=%d\n" , __FUNCTION__, __LINE__, num_cores, n_sub_blocks, T); |
375 | toku_thread_pool_run(pool, 0, &T, decompress_worker, &ws); |
376 | workset_add_ref(&ws, T); |
377 | decompress_worker(&ws); |
378 | |
379 | // cleanup |
380 | workset_join(&ws); |
381 | workset_destroy(&ws); |
382 | |
383 | r = 0; |
384 | for (int i = 0; i < n_sub_blocks; i++) { |
385 | r = decompress_work[i].error; |
386 | if (r != 0) |
387 | break; |
388 | } |
389 | } |
390 | |
391 | return r; |
392 | } |
393 | |