| 1 | /* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */ |
| 2 | // vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4: |
| 3 | #ident "$Id$" |
| 4 | /*====== |
| 5 | This file is part of PerconaFT. |
| 6 | |
| 7 | |
| 8 | Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved. |
| 9 | |
| 10 | PerconaFT is free software: you can redistribute it and/or modify |
| 11 | it under the terms of the GNU General Public License, version 2, |
| 12 | as published by the Free Software Foundation. |
| 13 | |
| 14 | PerconaFT is distributed in the hope that it will be useful, |
| 15 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 17 | GNU General Public License for more details. |
| 18 | |
| 19 | You should have received a copy of the GNU General Public License |
| 20 | along with PerconaFT. If not, see <http://www.gnu.org/licenses/>. |
| 21 | |
| 22 | ---------------------------------------- |
| 23 | |
| 24 | PerconaFT is free software: you can redistribute it and/or modify |
| 25 | it under the terms of the GNU Affero General Public License, version 3, |
| 26 | as published by the Free Software Foundation. |
| 27 | |
| 28 | PerconaFT is distributed in the hope that it will be useful, |
| 29 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 30 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 31 | GNU Affero General Public License for more details. |
| 32 | |
| 33 | You should have received a copy of the GNU Affero General Public License |
| 34 | along with PerconaFT. If not, see <http://www.gnu.org/licenses/>. |
| 35 | ======= */ |
| 36 | |
| 37 | #ident "Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved." |
| 38 | |
| 39 | #include <errno.h> |
| 40 | #include <stdio.h> |
| 41 | #include <string.h> |
| 42 | #include <zlib.h> |
| 43 | |
| 44 | #include "portability/memory.h" |
| 45 | #include "portability/toku_assert.h" |
| 46 | #include "portability/toku_portability.h" |
| 47 | |
| 48 | #include "ft/serialize/compress.h" |
| 49 | #include "ft/serialize/sub_block.h" |
| 50 | #include "ft/serialize/quicklz.h" |
| 51 | #include "util/threadpool.h" |
| 52 | #include "util/x1764.h" |
| 53 | |
| 54 | toku_instr_key *workset_lock_mutex_key; |
| 55 | toku_instr_key *ws_worker_wait_key; |
| 56 | |
| 57 | SUB_BLOCK sub_block_creat(void) { |
| 58 | SUB_BLOCK XMALLOC(sb); |
| 59 | sub_block_init(sb); |
| 60 | return sb; |
| 61 | } |
| 62 | void sub_block_init(SUB_BLOCK sub_block) { |
| 63 | sub_block->uncompressed_ptr = 0; |
| 64 | sub_block->uncompressed_size = 0; |
| 65 | |
| 66 | sub_block->compressed_ptr = 0; |
| 67 | sub_block->compressed_size_bound = 0; |
| 68 | sub_block->compressed_size = 0; |
| 69 | |
| 70 | sub_block->xsum = 0; |
| 71 | } |
| 72 | |
| 73 | // get the size of the compression header |
| 74 | size_t |
| 75 | (int n_sub_blocks) { |
| 76 | return sizeof (uint32_t) + n_sub_blocks * sizeof (struct stored_sub_block); |
| 77 | } |
| 78 | |
| 79 | void |
| 80 | set_compressed_size_bound(struct sub_block *se, enum toku_compression_method method) { |
| 81 | se->compressed_size_bound = toku_compress_bound(method, se->uncompressed_size); |
| 82 | } |
| 83 | |
| 84 | // get the sum of the sub block compressed sizes |
| 85 | size_t |
| 86 | get_sum_compressed_size_bound(int n_sub_blocks, struct sub_block sub_block[], enum toku_compression_method method) { |
| 87 | size_t compressed_size_bound = 0; |
| 88 | for (int i = 0; i < n_sub_blocks; i++) { |
| 89 | sub_block[i].compressed_size_bound = toku_compress_bound(method, sub_block[i].uncompressed_size); |
| 90 | compressed_size_bound += sub_block[i].compressed_size_bound; |
| 91 | } |
| 92 | return compressed_size_bound; |
| 93 | } |
| 94 | |
| 95 | // get the sum of the sub block uncompressed sizes |
| 96 | size_t |
| 97 | get_sum_uncompressed_size(int n_sub_blocks, struct sub_block sub_block[]) { |
| 98 | size_t uncompressed_size = 0; |
| 99 | for (int i = 0; i < n_sub_blocks; i++) |
| 100 | uncompressed_size += sub_block[i].uncompressed_size; |
| 101 | return uncompressed_size; |
| 102 | } |
| 103 | |
| 104 | // round up n |
| 105 | static inline int |
| 106 | alignup32(int a, int b) { |
| 107 | return ((a+b-1) / b) * b; |
| 108 | } |
| 109 | |
| 110 | // Choose n_sub_blocks and sub_block_size such that the product is >= total_size and the sub_block_size is at |
| 111 | // least >= the target_sub_block_size. |
| 112 | int |
| 113 | choose_sub_block_size(int total_size, int n_sub_blocks_limit, int *sub_block_size_ret, int *n_sub_blocks_ret) { |
| 114 | if (total_size < 0 || n_sub_blocks_limit < 1) |
| 115 | return EINVAL; |
| 116 | |
| 117 | const int alignment = 32; |
| 118 | |
| 119 | int n_sub_blocks, sub_block_size; |
| 120 | n_sub_blocks = total_size / target_sub_block_size; |
| 121 | if (n_sub_blocks <= 1) { |
| 122 | if (total_size > 0 && n_sub_blocks_limit > 0) |
| 123 | n_sub_blocks = 1; |
| 124 | sub_block_size = total_size; |
| 125 | } else { |
| 126 | if (n_sub_blocks > n_sub_blocks_limit) // limit the number of sub-blocks |
| 127 | n_sub_blocks = n_sub_blocks_limit; |
| 128 | sub_block_size = alignup32(total_size / n_sub_blocks, alignment); |
| 129 | while (sub_block_size * n_sub_blocks < total_size) // round up the sub-block size until big enough |
| 130 | sub_block_size += alignment; |
| 131 | } |
| 132 | |
| 133 | *sub_block_size_ret = sub_block_size; |
| 134 | *n_sub_blocks_ret = n_sub_blocks; |
| 135 | |
| 136 | return 0; |
| 137 | } |
| 138 | |
| 139 | // Choose the right size of basement nodes. For now, just align up to |
| 140 | // 256k blocks and hope it compresses well enough. |
| 141 | int |
| 142 | choose_basement_node_size(int total_size, int *sub_block_size_ret, int *n_sub_blocks_ret) { |
| 143 | if (total_size < 0) |
| 144 | return EINVAL; |
| 145 | |
| 146 | *n_sub_blocks_ret = (total_size + max_basement_node_uncompressed_size - 1) / max_basement_node_uncompressed_size; |
| 147 | *sub_block_size_ret = max_basement_node_uncompressed_size; |
| 148 | |
| 149 | return 0; |
| 150 | } |
| 151 | |
| 152 | void |
| 153 | set_all_sub_block_sizes(int total_size, int sub_block_size, int n_sub_blocks, struct sub_block sub_block[]) { |
| 154 | int size_left = total_size; |
| 155 | int i; |
| 156 | for (i = 0; i < n_sub_blocks-1; i++) { |
| 157 | sub_block[i].uncompressed_size = sub_block_size; |
| 158 | size_left -= sub_block_size; |
| 159 | } |
| 160 | if (i == 0 || size_left > 0) |
| 161 | sub_block[i].uncompressed_size = size_left; |
| 162 | } |
| 163 | |
| 164 | // find the index of the first sub block that contains offset |
| 165 | // Returns the sub block index, else returns -1 |
| 166 | int |
| 167 | get_sub_block_index(int n_sub_blocks, struct sub_block sub_block[], size_t offset) { |
| 168 | size_t start_offset = 0; |
| 169 | for (int i = 0; i < n_sub_blocks; i++) { |
| 170 | size_t size = sub_block[i].uncompressed_size; |
| 171 | if (offset < start_offset + size) |
| 172 | return i; |
| 173 | start_offset += size; |
| 174 | } |
| 175 | return -1; |
| 176 | } |
| 177 | |
| 178 | #include "workset.h" |
| 179 | |
| 180 | void |
| 181 | compress_work_init(struct compress_work *w, enum toku_compression_method method, struct sub_block *sub_block) { |
| 182 | w->method = method; |
| 183 | w->sub_block = sub_block; |
| 184 | } |
| 185 | |
| 186 | // |
| 187 | // takes the uncompressed contents of sub_block |
| 188 | // and compresses them into sb_compressed_ptr |
| 189 | // cs_bound is the compressed size bound |
| 190 | // Returns the size of the compressed data |
| 191 | // |
| 192 | uint32_t |
| 193 | compress_nocrc_sub_block( |
| 194 | struct sub_block *sub_block, |
| 195 | void* sb_compressed_ptr, |
| 196 | uint32_t cs_bound, |
| 197 | enum toku_compression_method method |
| 198 | ) |
| 199 | { |
| 200 | // compress it |
| 201 | Bytef *uncompressed_ptr = (Bytef *) sub_block->uncompressed_ptr; |
| 202 | Bytef *compressed_ptr = (Bytef *) sb_compressed_ptr; |
| 203 | uLongf uncompressed_len = sub_block->uncompressed_size; |
| 204 | uLongf real_compressed_len = cs_bound; |
| 205 | toku_compress(method, |
| 206 | compressed_ptr, &real_compressed_len, |
| 207 | uncompressed_ptr, uncompressed_len); |
| 208 | return real_compressed_len; |
| 209 | } |
| 210 | |
| 211 | void |
| 212 | compress_sub_block(struct sub_block *sub_block, enum toku_compression_method method) { |
| 213 | sub_block->compressed_size = compress_nocrc_sub_block( |
| 214 | sub_block, |
| 215 | sub_block->compressed_ptr, |
| 216 | sub_block->compressed_size_bound, |
| 217 | method |
| 218 | ); |
| 219 | // checksum it |
| 220 | sub_block->xsum = toku_x1764_memory(sub_block->compressed_ptr, sub_block->compressed_size); |
| 221 | } |
| 222 | |
| 223 | void * |
| 224 | compress_worker(void *arg) { |
| 225 | struct workset *ws = (struct workset *) arg; |
| 226 | while (1) { |
| 227 | struct compress_work *w = (struct compress_work *) workset_get(ws); |
| 228 | if (w == NULL) |
| 229 | break; |
| 230 | compress_sub_block(w->sub_block, w->method); |
| 231 | } |
| 232 | workset_release_ref(ws); |
| 233 | return arg; |
| 234 | } |
| 235 | |
| 236 | size_t |
| 237 | compress_all_sub_blocks(int n_sub_blocks, struct sub_block sub_block[], char *uncompressed_ptr, char *compressed_ptr, int num_cores, struct toku_thread_pool *pool, enum toku_compression_method method) { |
| 238 | char *compressed_base_ptr = compressed_ptr; |
| 239 | size_t compressed_len; |
| 240 | |
| 241 | // This is a complex way to write a parallel loop. Cilk would be better. |
| 242 | |
| 243 | if (n_sub_blocks == 1) { |
| 244 | // single sub-block |
| 245 | sub_block[0].uncompressed_ptr = uncompressed_ptr; |
| 246 | sub_block[0].compressed_ptr = compressed_ptr; |
| 247 | compress_sub_block(&sub_block[0], method); |
| 248 | compressed_len = sub_block[0].compressed_size; |
| 249 | } else { |
| 250 | // multiple sub-blocks |
| 251 | int T = num_cores; // T = min(num_cores, n_sub_blocks) - 1 |
| 252 | if (T > n_sub_blocks) |
| 253 | T = n_sub_blocks; |
| 254 | if (T > 0) |
| 255 | T = T - 1; // threads in addition to the running thread |
| 256 | |
| 257 | struct workset ws; |
| 258 | ZERO_STRUCT(ws); |
| 259 | workset_init(&ws); |
| 260 | |
| 261 | struct compress_work work[n_sub_blocks]; |
| 262 | workset_lock(&ws); |
| 263 | for (int i = 0; i < n_sub_blocks; i++) { |
| 264 | sub_block[i].uncompressed_ptr = uncompressed_ptr; |
| 265 | sub_block[i].compressed_ptr = compressed_ptr; |
| 266 | compress_work_init(&work[i], method, &sub_block[i]); |
| 267 | workset_put_locked(&ws, &work[i].base); |
| 268 | uncompressed_ptr += sub_block[i].uncompressed_size; |
| 269 | compressed_ptr += sub_block[i].compressed_size_bound; |
| 270 | } |
| 271 | workset_unlock(&ws); |
| 272 | |
| 273 | // compress the sub-blocks |
| 274 | if (0) printf("%s:%d T=%d N=%d\n" , __FUNCTION__, __LINE__, T, n_sub_blocks); |
| 275 | toku_thread_pool_run(pool, 0, &T, compress_worker, &ws); |
| 276 | workset_add_ref(&ws, T); |
| 277 | compress_worker(&ws); |
| 278 | |
| 279 | // wait for all of the work to complete |
| 280 | workset_join(&ws); |
| 281 | workset_destroy(&ws); |
| 282 | |
| 283 | // squeeze out the holes not used by the compress bound |
| 284 | compressed_ptr = compressed_base_ptr + sub_block[0].compressed_size; |
| 285 | for (int i = 1; i < n_sub_blocks; i++) { |
| 286 | memmove(compressed_ptr, sub_block[i].compressed_ptr, sub_block[i].compressed_size); |
| 287 | compressed_ptr += sub_block[i].compressed_size; |
| 288 | } |
| 289 | |
| 290 | compressed_len = compressed_ptr - compressed_base_ptr; |
| 291 | } |
| 292 | return compressed_len; |
| 293 | } |
| 294 | |
| 295 | // initialize the decompression work |
| 296 | void |
| 297 | decompress_work_init(struct decompress_work *dw, |
| 298 | void *compress_ptr, uint32_t compress_size, |
| 299 | void *uncompress_ptr, uint32_t uncompress_size, |
| 300 | uint32_t xsum) { |
| 301 | dw->compress_ptr = compress_ptr; |
| 302 | dw->compress_size = compress_size; |
| 303 | dw->uncompress_ptr = uncompress_ptr; |
| 304 | dw->uncompress_size = uncompress_size; |
| 305 | dw->xsum = xsum; |
| 306 | dw->error = 0; |
| 307 | } |
| 308 | |
| 309 | int verbose_decompress_sub_block = 1; |
| 310 | |
| 311 | // decompress one block |
| 312 | int |
| 313 | decompress_sub_block(void *compress_ptr, uint32_t compress_size, void *uncompress_ptr, uint32_t uncompress_size, uint32_t expected_xsum) { |
| 314 | int result = 0; |
| 315 | |
| 316 | // verify checksum |
| 317 | uint32_t xsum = toku_x1764_memory(compress_ptr, compress_size); |
| 318 | if (xsum != expected_xsum) { |
| 319 | if (verbose_decompress_sub_block) fprintf(stderr, "%s:%d xsum %u expected %u\n" , __FUNCTION__, __LINE__, xsum, expected_xsum); |
| 320 | result = EINVAL; |
| 321 | } else { |
| 322 | // decompress |
| 323 | toku_decompress((Bytef *) uncompress_ptr, uncompress_size, (Bytef *) compress_ptr, compress_size); |
| 324 | } |
| 325 | return result; |
| 326 | } |
| 327 | |
| 328 | // decompress blocks until there is no more work to do |
| 329 | void * |
| 330 | decompress_worker(void *arg) { |
| 331 | struct workset *ws = (struct workset *) arg; |
| 332 | while (1) { |
| 333 | struct decompress_work *dw = (struct decompress_work *) workset_get(ws); |
| 334 | if (dw == NULL) |
| 335 | break; |
| 336 | dw->error = decompress_sub_block(dw->compress_ptr, dw->compress_size, dw->uncompress_ptr, dw->uncompress_size, dw->xsum); |
| 337 | } |
| 338 | workset_release_ref(ws); |
| 339 | return arg; |
| 340 | } |
| 341 | |
| 342 | int |
| 343 | decompress_all_sub_blocks(int n_sub_blocks, struct sub_block sub_block[], unsigned char *compressed_data, unsigned char *uncompressed_data, int num_cores, struct toku_thread_pool *pool) { |
| 344 | int r; |
| 345 | |
| 346 | if (n_sub_blocks == 1) { |
| 347 | r = decompress_sub_block(compressed_data, sub_block[0].compressed_size, uncompressed_data, sub_block[0].uncompressed_size, sub_block[0].xsum); |
| 348 | } else { |
| 349 | // compute the number of additional threads needed for decompressing this node |
| 350 | int T = num_cores; // T = min(#cores, #blocks) - 1 |
| 351 | if (T > n_sub_blocks) |
| 352 | T = n_sub_blocks; |
| 353 | if (T > 0) |
| 354 | T = T - 1; // threads in addition to the running thread |
| 355 | |
| 356 | // init the decompression work set |
| 357 | struct workset ws; |
| 358 | ZERO_STRUCT(ws); |
| 359 | workset_init(&ws); |
| 360 | |
| 361 | // initialize the decompression work and add to the work set |
| 362 | struct decompress_work decompress_work[n_sub_blocks]; |
| 363 | workset_lock(&ws); |
| 364 | for (int i = 0; i < n_sub_blocks; i++) { |
| 365 | decompress_work_init(&decompress_work[i], compressed_data, sub_block[i].compressed_size, uncompressed_data, sub_block[i].uncompressed_size, sub_block[i].xsum); |
| 366 | workset_put_locked(&ws, &decompress_work[i].base); |
| 367 | |
| 368 | uncompressed_data += sub_block[i].uncompressed_size; |
| 369 | compressed_data += sub_block[i].compressed_size; |
| 370 | } |
| 371 | workset_unlock(&ws); |
| 372 | |
| 373 | // decompress the sub-blocks |
| 374 | if (0) printf("%s:%d Cores=%d Blocks=%d T=%d\n" , __FUNCTION__, __LINE__, num_cores, n_sub_blocks, T); |
| 375 | toku_thread_pool_run(pool, 0, &T, decompress_worker, &ws); |
| 376 | workset_add_ref(&ws, T); |
| 377 | decompress_worker(&ws); |
| 378 | |
| 379 | // cleanup |
| 380 | workset_join(&ws); |
| 381 | workset_destroy(&ws); |
| 382 | |
| 383 | r = 0; |
| 384 | for (int i = 0; i < n_sub_blocks; i++) { |
| 385 | r = decompress_work[i].error; |
| 386 | if (r != 0) |
| 387 | break; |
| 388 | } |
| 389 | } |
| 390 | |
| 391 | return r; |
| 392 | } |
| 393 | |