1 | /* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */ |
2 | // vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4: |
3 | #ident "$Id$" |
4 | /*====== |
5 | This file is part of PerconaFT. |
6 | |
7 | |
8 | Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved. |
9 | |
10 | PerconaFT is free software: you can redistribute it and/or modify |
11 | it under the terms of the GNU General Public License, version 2, |
12 | as published by the Free Software Foundation. |
13 | |
14 | PerconaFT is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
17 | GNU General Public License for more details. |
18 | |
19 | You should have received a copy of the GNU General Public License |
20 | along with PerconaFT. If not, see <http://www.gnu.org/licenses/>. |
21 | |
22 | ---------------------------------------- |
23 | |
24 | PerconaFT is free software: you can redistribute it and/or modify |
25 | it under the terms of the GNU Affero General Public License, version 3, |
26 | as published by the Free Software Foundation. |
27 | |
28 | PerconaFT is distributed in the hope that it will be useful, |
29 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
30 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
31 | GNU Affero General Public License for more details. |
32 | |
33 | You should have received a copy of the GNU Affero General Public License |
34 | along with PerconaFT. If not, see <http://www.gnu.org/licenses/>. |
35 | ======= */ |
36 | |
37 | #ident "Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved." |
38 | |
39 | #include "keyrange.h" |
40 | |
41 | #include <util/dbt.h> |
42 | |
43 | namespace toku { |
44 | |
45 | // create a keyrange by borrowing the left and right dbt |
46 | // pointers. no memory is copied. no checks for infinity needed. |
47 | void keyrange::create(const DBT *left, const DBT *right) { |
48 | init_empty(); |
49 | m_left_key = left; |
50 | m_right_key = right; |
51 | } |
52 | |
53 | // destroy the key copies. if they were never set, then destroy does nothing. |
54 | void keyrange::destroy(void) { |
55 | toku_destroy_dbt(&m_left_key_copy); |
56 | toku_destroy_dbt(&m_right_key_copy); |
57 | } |
58 | |
59 | // create a keyrange by copying the keys from the given range. |
60 | void keyrange::create_copy(const keyrange &range) { |
61 | // start with an initialized, empty range |
62 | init_empty(); |
63 | |
64 | // optimize the case where the left and right keys are the same. |
65 | // we'd like to only have one copy of the data. |
66 | if (toku_dbt_equals(range.get_left_key(), range.get_right_key())) { |
67 | set_both_keys(range.get_left_key()); |
68 | } else { |
69 | // replace our empty left and right keys with |
70 | // copies of the range's left and right keys |
71 | replace_left_key(range.get_left_key()); |
72 | replace_right_key(range.get_right_key()); |
73 | } |
74 | } |
75 | |
76 | // extend this keyrange by choosing the leftmost and rightmost |
77 | // endpoints between this range and the given. replaced keys |
78 | // in this range are freed and inherited keys are copied. |
79 | void keyrange::extend(const comparator &cmp, const keyrange &range) { |
80 | const DBT *range_left = range.get_left_key(); |
81 | const DBT *range_right = range.get_right_key(); |
82 | if (cmp(range_left, get_left_key()) < 0) { |
83 | replace_left_key(range_left); |
84 | } |
85 | if (cmp(range_right, get_right_key()) > 0) { |
86 | replace_right_key(range_right); |
87 | } |
88 | } |
89 | |
90 | // how much memory does this keyrange take? |
91 | // - the size of the left and right keys |
92 | // --- ignore the fact that we may have optimized the point case. |
93 | // it complicates things for little gain. |
94 | // - the size of the keyrange class itself |
95 | uint64_t keyrange::get_memory_size(void) const { |
96 | const DBT *left_key = get_left_key(); |
97 | const DBT *right_key = get_right_key(); |
98 | return left_key->size + right_key->size + sizeof(keyrange); |
99 | } |
100 | |
101 | // compare ranges. |
102 | keyrange::comparison keyrange::compare(const comparator &cmp, const keyrange &range) const { |
103 | if (cmp(get_right_key(), range.get_left_key()) < 0) { |
104 | return comparison::LESS_THAN; |
105 | } else if (cmp(get_left_key(), range.get_right_key()) > 0) { |
106 | return comparison::GREATER_THAN; |
107 | } else if (cmp(get_left_key(), range.get_left_key()) == 0 && |
108 | cmp(get_right_key(), range.get_right_key()) == 0) { |
109 | return comparison::EQUALS; |
110 | } else { |
111 | return comparison::OVERLAPS; |
112 | } |
113 | } |
114 | |
115 | bool keyrange::overlaps(const comparator &cmp, const keyrange &range) const { |
116 | // equality is a stronger form of overlapping. |
117 | // so two ranges "overlap" if they're either equal or just overlapping. |
118 | comparison c = compare(cmp, range); |
119 | return c == comparison::EQUALS || c == comparison::OVERLAPS; |
120 | } |
121 | |
122 | keyrange keyrange::get_infinite_range(void) { |
123 | keyrange range; |
124 | range.create(toku_dbt_negative_infinity(), toku_dbt_positive_infinity()); |
125 | return range; |
126 | } |
127 | |
128 | void keyrange::init_empty(void) { |
129 | m_left_key = nullptr; |
130 | m_right_key = nullptr; |
131 | toku_init_dbt(&m_left_key_copy); |
132 | toku_init_dbt(&m_right_key_copy); |
133 | m_point_range = false; |
134 | } |
135 | |
136 | const DBT *keyrange::get_left_key(void) const { |
137 | if (m_left_key) { |
138 | return m_left_key; |
139 | } else { |
140 | return &m_left_key_copy; |
141 | } |
142 | } |
143 | |
144 | const DBT *keyrange::get_right_key(void) const { |
145 | if (m_right_key) { |
146 | return m_right_key; |
147 | } else { |
148 | return &m_right_key_copy; |
149 | } |
150 | } |
151 | |
152 | // copy the given once and set both the left and right pointers. |
153 | // optimization for point ranges, so the left and right ranges |
154 | // are not copied twice. |
155 | void keyrange::set_both_keys(const DBT *key) { |
156 | if (toku_dbt_is_infinite(key)) { |
157 | m_left_key = key; |
158 | m_right_key = key; |
159 | } else { |
160 | toku_clone_dbt(&m_left_key_copy, *key); |
161 | toku_copyref_dbt(&m_right_key_copy, m_left_key_copy); |
162 | } |
163 | m_point_range = true; |
164 | } |
165 | |
166 | // destroy the current left key. set and possibly copy the new one |
167 | void keyrange::replace_left_key(const DBT *key) { |
168 | // a little magic: |
169 | // |
170 | // if this is a point range, then the left and right keys share |
171 | // one copy of the data, and it lives in the left key copy. so |
172 | // if we're replacing the left key, move the real data to the |
173 | // right key copy instead of destroying it. now, the memory is |
174 | // owned by the right key and the left key may be replaced. |
175 | if (m_point_range) { |
176 | m_right_key_copy = m_left_key_copy; |
177 | } else { |
178 | toku_destroy_dbt(&m_left_key_copy); |
179 | } |
180 | |
181 | if (toku_dbt_is_infinite(key)) { |
182 | m_left_key = key; |
183 | } else { |
184 | toku_clone_dbt(&m_left_key_copy, *key); |
185 | m_left_key = nullptr; |
186 | } |
187 | m_point_range = false; |
188 | } |
189 | |
190 | // destroy the current right key. set and possibly copy the new one |
191 | void keyrange::replace_right_key(const DBT *key) { |
192 | toku_destroy_dbt(&m_right_key_copy); |
193 | if (toku_dbt_is_infinite(key)) { |
194 | m_right_key = key; |
195 | } else { |
196 | toku_clone_dbt(&m_right_key_copy, *key); |
197 | m_right_key = nullptr; |
198 | } |
199 | m_point_range = false; |
200 | } |
201 | |
202 | } /* namespace toku */ |
203 | |