| 1 | /* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */ |
| 2 | // vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4: |
| 3 | #ident "$Id$" |
| 4 | /*====== |
| 5 | This file is part of PerconaFT. |
| 6 | |
| 7 | |
| 8 | Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved. |
| 9 | |
| 10 | PerconaFT is free software: you can redistribute it and/or modify |
| 11 | it under the terms of the GNU General Public License, version 2, |
| 12 | as published by the Free Software Foundation. |
| 13 | |
| 14 | PerconaFT is distributed in the hope that it will be useful, |
| 15 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 17 | GNU General Public License for more details. |
| 18 | |
| 19 | You should have received a copy of the GNU General Public License |
| 20 | along with PerconaFT. If not, see <http://www.gnu.org/licenses/>. |
| 21 | |
| 22 | ---------------------------------------- |
| 23 | |
| 24 | PerconaFT is free software: you can redistribute it and/or modify |
| 25 | it under the terms of the GNU Affero General Public License, version 3, |
| 26 | as published by the Free Software Foundation. |
| 27 | |
| 28 | PerconaFT is distributed in the hope that it will be useful, |
| 29 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 30 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 31 | GNU Affero General Public License for more details. |
| 32 | |
| 33 | You should have received a copy of the GNU Affero General Public License |
| 34 | along with PerconaFT. If not, see <http://www.gnu.org/licenses/>. |
| 35 | ======= */ |
| 36 | |
| 37 | #ident "Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved." |
| 38 | |
| 39 | #pragma once |
| 40 | |
| 41 | #include <atomic> |
| 42 | |
| 43 | #include <db.h> |
| 44 | #include <toku_pthread.h> |
| 45 | #include <toku_time.h> |
| 46 | |
| 47 | #include <ft/comparator.h> |
| 48 | #include <ft/ft-ops.h> // just for DICTIONARY_ID.. |
| 49 | |
| 50 | #include <util/omt.h> |
| 51 | |
| 52 | #include "txnid_set.h" |
| 53 | #include "wfg.h" |
| 54 | #include "range_buffer.h" |
| 55 | |
| 56 | |
| 57 | namespace toku { |
| 58 | |
| 59 | class locktree; |
| 60 | class locktree_manager; |
| 61 | class lock_request; |
| 62 | class concurrent_tree; |
| 63 | |
| 64 | typedef int (*lt_create_cb)(locktree *lt, void *); |
| 65 | typedef void (*lt_destroy_cb)(locktree *lt); |
| 66 | typedef void (*lt_escalate_cb)(TXNID txnid, const locktree *lt, const range_buffer &buffer, void *); |
| 67 | |
| 68 | struct lt_counters { |
| 69 | uint64_t wait_count, wait_time; |
| 70 | uint64_t long_wait_count, long_wait_time; |
| 71 | uint64_t timeout_count; |
| 72 | |
| 73 | void add(const lt_counters &rhs) { |
| 74 | wait_count += rhs.wait_count; |
| 75 | wait_time += rhs.wait_time; |
| 76 | long_wait_count += rhs.long_wait_count; |
| 77 | long_wait_time += rhs.long_wait_time; |
| 78 | timeout_count += rhs.timeout_count; |
| 79 | } |
| 80 | }; |
| 81 | |
| 82 | // Lock request state for some locktree |
| 83 | struct lt_lock_request_info { |
| 84 | omt<lock_request *> pending_lock_requests; |
| 85 | std::atomic_bool pending_is_empty; |
| 86 | toku_mutex_t mutex; |
| 87 | bool should_retry_lock_requests; |
| 88 | lt_counters counters; |
| 89 | std::atomic_ullong retry_want; |
| 90 | unsigned long long retry_done; |
| 91 | toku_mutex_t retry_mutex; |
| 92 | toku_cond_t retry_cv; |
| 93 | bool running_retry; |
| 94 | |
| 95 | void init(void); |
| 96 | void destroy(void); |
| 97 | }; |
| 98 | |
| 99 | // The locktree manager manages a set of locktrees, one for each open |
| 100 | // dictionary. Locktrees are retrieved from the manager. When they are no |
| 101 | // longer needed, they are be released by the user. |
| 102 | class locktree_manager { |
| 103 | public: |
| 104 | // param: create_cb, called just after a locktree is first created. |
| 105 | // destroy_cb, called just before a locktree is destroyed. |
| 106 | // escalate_cb, called after a locktree is escalated (with extra |
| 107 | // param) |
| 108 | void create(lt_create_cb create_cb, |
| 109 | lt_destroy_cb destroy_cb, |
| 110 | lt_escalate_cb escalate_cb, |
| 111 | void *); |
| 112 | |
| 113 | void destroy(void); |
| 114 | |
| 115 | size_t get_max_lock_memory(void); |
| 116 | |
| 117 | int set_max_lock_memory(size_t max_lock_memory); |
| 118 | |
| 119 | // effect: Get a locktree from the manager. If a locktree exists with the given |
| 120 | // dict_id, it is referenced and then returned. If one did not exist, it |
| 121 | // is created. It will use the comparator for comparing keys. The on_create |
| 122 | // callback (passed to locktree_manager::create()) will be called with the |
| 123 | // given extra parameter. |
| 124 | locktree *get_lt(DICTIONARY_ID dict_id, const comparator &cmp, void *); |
| 125 | |
| 126 | void reference_lt(locktree *lt); |
| 127 | |
| 128 | // effect: Releases one reference on a locktree. If the reference count transitions |
| 129 | // to zero, the on_destroy callback is called before it gets destroyed. |
| 130 | void release_lt(locktree *lt); |
| 131 | |
| 132 | void get_status(LTM_STATUS status); |
| 133 | |
| 134 | // effect: calls the iterate function on each pending lock request |
| 135 | // note: holds the manager's mutex |
| 136 | typedef int (*lock_request_iterate_callback)(DICTIONARY_ID dict_id, |
| 137 | TXNID txnid, |
| 138 | const DBT *left_key, |
| 139 | const DBT *right_key, |
| 140 | TXNID blocking_txnid, |
| 141 | uint64_t start_time, |
| 142 | void *); |
| 143 | int iterate_pending_lock_requests(lock_request_iterate_callback cb, void *); |
| 144 | |
| 145 | // effect: Determines if too many locks or too much memory is being used, |
| 146 | // Runs escalation on the manager if so. |
| 147 | // param: big_txn, if the current transaction is 'big' (has spilled rollback logs) |
| 148 | // returns: 0 if there enough resources to create a new lock, or TOKUDB_OUT_OF_LOCKS |
| 149 | // if there are not enough resources and lock escalation failed to free up |
| 150 | // enough resources for a new lock. |
| 151 | int check_current_lock_constraints(bool big_txn); |
| 152 | |
| 153 | bool over_big_threshold(void); |
| 154 | |
| 155 | void note_mem_used(uint64_t mem_used); |
| 156 | |
| 157 | void note_mem_released(uint64_t mem_freed); |
| 158 | |
| 159 | bool out_of_locks(void) const; |
| 160 | |
| 161 | // Escalate all locktrees |
| 162 | void escalate_all_locktrees(void); |
| 163 | |
| 164 | // Escalate a set of locktrees |
| 165 | void escalate_locktrees(locktree **locktrees, int num_locktrees); |
| 166 | |
| 167 | // effect: calls the private function run_escalation(), only ok to |
| 168 | // do for tests. |
| 169 | // rationale: to get better stress test coverage, we want a way to |
| 170 | // deterministicly trigger lock escalation. |
| 171 | void run_escalation_for_test(void); |
| 172 | void run_escalation(void); |
| 173 | |
| 174 | // Add time t to the escalator's wait time statistics |
| 175 | void add_escalator_wait_time(uint64_t t); |
| 176 | |
| 177 | void kill_waiter(void *); |
| 178 | |
| 179 | private: |
| 180 | static const uint64_t DEFAULT_MAX_LOCK_MEMORY = 64L * 1024 * 1024; |
| 181 | |
| 182 | // tracks the current number of locks and lock memory |
| 183 | uint64_t m_max_lock_memory; |
| 184 | uint64_t m_current_lock_memory; |
| 185 | |
| 186 | struct lt_counters m_lt_counters; |
| 187 | |
| 188 | // the create and destroy callbacks for the locktrees |
| 189 | lt_create_cb m_lt_create_callback; |
| 190 | lt_destroy_cb m_lt_destroy_callback; |
| 191 | lt_escalate_cb m_lt_escalate_callback; |
| 192 | void *; |
| 193 | |
| 194 | omt<locktree *> m_locktree_map; |
| 195 | |
| 196 | // the manager's mutex protects the locktree map |
| 197 | toku_mutex_t m_mutex; |
| 198 | |
| 199 | void mutex_lock(void); |
| 200 | |
| 201 | void mutex_unlock(void); |
| 202 | |
| 203 | // Manage the set of open locktrees |
| 204 | locktree *locktree_map_find(const DICTIONARY_ID &dict_id); |
| 205 | void locktree_map_put(locktree *lt); |
| 206 | void locktree_map_remove(locktree *lt); |
| 207 | |
| 208 | static int find_by_dict_id(locktree *const <, const DICTIONARY_ID &dict_id); |
| 209 | |
| 210 | void escalator_init(void); |
| 211 | void escalator_destroy(void); |
| 212 | |
| 213 | // statistics about lock escalation. |
| 214 | toku_mutex_t m_escalation_mutex; |
| 215 | uint64_t m_escalation_count; |
| 216 | tokutime_t m_escalation_time; |
| 217 | uint64_t m_escalation_latest_result; |
| 218 | uint64_t m_wait_escalation_count; |
| 219 | uint64_t m_wait_escalation_time; |
| 220 | uint64_t m_long_wait_escalation_count; |
| 221 | uint64_t m_long_wait_escalation_time; |
| 222 | |
| 223 | // the escalator coordinates escalation on a set of locktrees for a bunch of threads |
| 224 | class locktree_escalator { |
| 225 | public: |
| 226 | void create(void); |
| 227 | void destroy(void); |
| 228 | void run(locktree_manager *mgr, void (*escalate_locktrees_fun)(void *), void *); |
| 229 | |
| 230 | private: |
| 231 | toku_mutex_t m_escalator_mutex; |
| 232 | toku_cond_t m_escalator_done; |
| 233 | bool m_escalator_running; |
| 234 | }; |
| 235 | |
| 236 | locktree_escalator m_escalator; |
| 237 | |
| 238 | friend class manager_unit_test; |
| 239 | }; |
| 240 | |
| 241 | // A locktree represents the set of row locks owned by all transactions |
| 242 | // over an open dictionary. Read and write ranges are represented as |
| 243 | // a left and right key which are compared with the given comparator |
| 244 | // |
| 245 | // Locktrees are not created and destroyed by the user. Instead, they are |
| 246 | // referenced and released using the locktree manager. |
| 247 | // |
| 248 | // A sample workflow looks like this: |
| 249 | // - Create a manager. |
| 250 | // - Get a locktree by dictionaroy id from the manager. |
| 251 | // - Perform read/write lock acquision on the locktree, add references to |
| 252 | // the locktree using the manager, release locks, release references, etc. |
| 253 | // - ... |
| 254 | // - Release the final reference to the locktree. It will be destroyed. |
| 255 | // - Destroy the manager. |
| 256 | class locktree { |
| 257 | public: |
| 258 | // effect: Creates a locktree |
| 259 | void create(locktree_manager *mgr, DICTIONARY_ID dict_id, const comparator &cmp); |
| 260 | |
| 261 | void destroy(void); |
| 262 | |
| 263 | // For thread-safe, external reference counting |
| 264 | void add_reference(void); |
| 265 | |
| 266 | // requires: the reference count is > 0 |
| 267 | // returns: the reference count, after decrementing it by one |
| 268 | uint32_t release_reference(void); |
| 269 | |
| 270 | // returns: the current reference count |
| 271 | uint32_t get_reference_count(void); |
| 272 | |
| 273 | // effect: Attempts to grant a read lock for the range of keys between [left_key, right_key]. |
| 274 | // returns: If the lock cannot be granted, return DB_LOCK_NOTGRANTED, and populate the |
| 275 | // given conflicts set with the txnids that hold conflicting locks in the range. |
| 276 | // If the locktree cannot create more locks, return TOKUDB_OUT_OF_LOCKS. |
| 277 | // note: Read locks cannot be shared between txnids, as one would expect. |
| 278 | // This is for simplicity since read locks are rare in MySQL. |
| 279 | int acquire_read_lock(TXNID txnid, const DBT *left_key, const DBT *right_key, txnid_set *conflicts, bool big_txn); |
| 280 | |
| 281 | // effect: Attempts to grant a write lock for the range of keys between [left_key, right_key]. |
| 282 | // returns: If the lock cannot be granted, return DB_LOCK_NOTGRANTED, and populate the |
| 283 | // given conflicts set with the txnids that hold conflicting locks in the range. |
| 284 | // If the locktree cannot create more locks, return TOKUDB_OUT_OF_LOCKS. |
| 285 | int acquire_write_lock(TXNID txnid, const DBT *left_key, const DBT *right_key, txnid_set *conflicts, bool big_txn); |
| 286 | |
| 287 | // effect: populate the conflicts set with the txnids that would preventing |
| 288 | // the given txnid from getting a lock on [left_key, right_key] |
| 289 | void get_conflicts(bool is_write_request, TXNID txnid, |
| 290 | const DBT *left_key, const DBT *right_key, txnid_set *conflicts); |
| 291 | |
| 292 | // effect: Release all of the lock ranges represented by the range buffer for a txnid. |
| 293 | void release_locks(TXNID txnid, const range_buffer *ranges); |
| 294 | |
| 295 | // effect: Runs escalation on this locktree |
| 296 | void escalate(lt_escalate_cb after_escalate_callback, void *); |
| 297 | |
| 298 | // returns: The userdata associated with this locktree, or null if it has not been set. |
| 299 | void *get_userdata(void) const; |
| 300 | |
| 301 | void set_userdata(void *userdata); |
| 302 | |
| 303 | locktree_manager *get_manager(void) const; |
| 304 | |
| 305 | void set_comparator(const comparator &cmp); |
| 306 | |
| 307 | int compare(const locktree *lt) const; |
| 308 | |
| 309 | DICTIONARY_ID get_dict_id() const; |
| 310 | |
| 311 | // Private info struct for storing pending lock request state. |
| 312 | // Only to be used by lock requests. We store it here as |
| 313 | // something less opaque than usual to strike a tradeoff between |
| 314 | // abstraction and code complexity. It is still fairly abstract |
| 315 | // since the lock_request object is opaque |
| 316 | struct lt_lock_request_info *get_lock_request_info(void); |
| 317 | |
| 318 | private: |
| 319 | locktree_manager *m_mgr; |
| 320 | DICTIONARY_ID m_dict_id; |
| 321 | uint32_t m_reference_count; |
| 322 | |
| 323 | // Since the memory referenced by this comparator is not owned by the |
| 324 | // locktree, the user must guarantee it will outlive the locktree. |
| 325 | // |
| 326 | // The ydb API accomplishes this by opening an ft_handle in the on_create |
| 327 | // callback, which will keep the underlying FT (and its descriptor) in memory |
| 328 | // for as long as the handle is open. The ft_handle is stored opaquely in the |
| 329 | // userdata pointer below. see locktree_manager::get_lt w/ on_create_extra |
| 330 | comparator m_cmp; |
| 331 | |
| 332 | concurrent_tree *m_rangetree; |
| 333 | |
| 334 | void *m_userdata; |
| 335 | struct lt_lock_request_info m_lock_request_info; |
| 336 | |
| 337 | // The following fields and members prefixed with "sto_" are for |
| 338 | // the single txnid optimization, intended to speed up the case |
| 339 | // when only one transaction is using the locktree. If we know |
| 340 | // the locktree has only one transaction, then acquiring locks |
| 341 | // takes O(1) work and releasing all locks takes O(1) work. |
| 342 | // |
| 343 | // How do we know that the locktree only has a single txnid? |
| 344 | // What do we do if it does? |
| 345 | // |
| 346 | // When a txn with txnid T requests a lock: |
| 347 | // - If the tree is empty, the optimization is possible. Set the single |
| 348 | // txnid to T, and insert the lock range into the buffer. |
| 349 | // - If the tree is not empty, check if the single txnid is T. If so, |
| 350 | // append the lock range to the buffer. Otherwise, migrate all of |
| 351 | // the locks in the buffer into the rangetree on behalf of txnid T, |
| 352 | // and invalid the single txnid. |
| 353 | // |
| 354 | // When a txn with txnid T releases its locks: |
| 355 | // - If the single txnid is valid, it must be for T. Destroy the buffer. |
| 356 | // - If it's not valid, release locks the normal way in the rangetree. |
| 357 | // |
| 358 | // To carry out the optimization we need to record a single txnid |
| 359 | // and a range buffer for each locktree, each protected by the root |
| 360 | // lock of the locktree's rangetree. The root lock for a rangetree |
| 361 | // is grabbed by preparing a locked keyrange on the rangetree. |
| 362 | TXNID m_sto_txnid; |
| 363 | range_buffer m_sto_buffer; |
| 364 | |
| 365 | // The single txnid optimization speeds up the case when only one |
| 366 | // transaction is using the locktree. But it has the potential to |
| 367 | // hurt the case when more than one txnid exists. |
| 368 | // |
| 369 | // There are two things we need to do to make the optimization only |
| 370 | // optimize the case we care about, and not hurt the general case. |
| 371 | // |
| 372 | // Bound the worst-case latency for lock migration when the |
| 373 | // optimization stops working: |
| 374 | // - Idea: Stop the optimization and migrate immediate if we notice |
| 375 | // the single txnid has takes many locks in the range buffer. |
| 376 | // - Implementation: Enforce a max size on the single txnid range buffer. |
| 377 | // - Analysis: Choosing the perfect max value, M, is difficult to do |
| 378 | // without some feedback from the field. Intuition tells us that M should |
| 379 | // not be so small that the optimization is worthless, and it should not |
| 380 | // be so big that it's unreasonable to have to wait behind a thread doing |
| 381 | // the work of converting M buffer locks into rangetree locks. |
| 382 | // |
| 383 | // Prevent concurrent-transaction workloads from trying the optimization |
| 384 | // in vain: |
| 385 | // - Idea: Don't even bother trying the optimization if we think the |
| 386 | // system is in a concurrent-transaction state. |
| 387 | // - Implementation: Do something even simpler than detecting whether the |
| 388 | // system is in a concurent-transaction state. Just keep a "score" value |
| 389 | // and some threshold. If at any time the locktree is eligible for the |
| 390 | // optimization, only do it if the score is at this threshold. When you |
| 391 | // actually do the optimization but someone has to migrate locks in the buffer |
| 392 | // (expensive), then reset the score back to zero. Each time a txn |
| 393 | // releases locks, the score is incremented by 1. |
| 394 | // - Analysis: If you let the threshold be "C", then at most 1 / C txns will |
| 395 | // do the optimization in a concurrent-transaction system. Similarly, it |
| 396 | // takes at most C txns to start using the single txnid optimzation, which |
| 397 | // is good when the system transitions from multithreaded to single threaded. |
| 398 | // |
| 399 | // STO_BUFFER_MAX_SIZE: |
| 400 | // |
| 401 | // We choose the max value to be 1 million since most transactions are smaller |
| 402 | // than 1 million and we can create a rangetree of 1 million elements in |
| 403 | // less than a second. So we can be pretty confident that this threshold |
| 404 | // enables the optimization almost always, and prevents super pathological |
| 405 | // latency issues for the first lock taken by a second thread. |
| 406 | // |
| 407 | // STO_SCORE_THRESHOLD: |
| 408 | // |
| 409 | // A simple first guess at a good value for the score threshold is 100. |
| 410 | // By our analysis, we'd end up doing the optimization in vain for |
| 411 | // around 1% of all transactions, which seems reasonable. Further, |
| 412 | // if the system goes single threaded, it ought to be pretty quick |
| 413 | // for 100 transactions to go by, so we won't have to wait long before |
| 414 | // we start doing the single txind optimzation again. |
| 415 | static const int STO_BUFFER_MAX_SIZE = 50 * 1024; |
| 416 | static const int STO_SCORE_THRESHOLD = 100; |
| 417 | int m_sto_score; |
| 418 | |
| 419 | // statistics about time spent ending the STO early |
| 420 | uint64_t m_sto_end_early_count; |
| 421 | tokutime_t m_sto_end_early_time; |
| 422 | |
| 423 | // effect: begins the single txnid optimizaiton, setting m_sto_txnid |
| 424 | // to the given txnid. |
| 425 | // requires: m_sto_txnid is invalid |
| 426 | void sto_begin(TXNID txnid); |
| 427 | |
| 428 | // effect: append a range to the sto buffer |
| 429 | // requires: m_sto_txnid is valid |
| 430 | void sto_append(const DBT *left_key, const DBT *right_key); |
| 431 | |
| 432 | // effect: ends the single txnid optimization, releaseing any memory |
| 433 | // stored in the sto buffer, notifying the tracker, and |
| 434 | // invalidating m_sto_txnid. |
| 435 | // requires: m_sto_txnid is valid |
| 436 | void sto_end(void); |
| 437 | |
| 438 | // params: prepared_lkr is a void * to a prepared locked keyrange. see below. |
| 439 | // effect: ends the single txnid optimization early, migrating buffer locks |
| 440 | // into the rangetree, calling sto_end(), and then setting the |
| 441 | // sto_score back to zero. |
| 442 | // requires: m_sto_txnid is valid |
| 443 | void sto_end_early(void *prepared_lkr); |
| 444 | void sto_end_early_no_accounting(void *prepared_lkr); |
| 445 | |
| 446 | // params: prepared_lkr is a void * to a prepared locked keyrange. we can't use |
| 447 | // the real type because the compiler won't allow us to forward declare |
| 448 | // concurrent_tree::locked_keyrange without including concurrent_tree.h, |
| 449 | // which we cannot do here because it is a template implementation. |
| 450 | // requires: the prepared locked keyrange is for the locktree's rangetree |
| 451 | // requires: m_sto_txnid is valid |
| 452 | // effect: migrates each lock in the single txnid buffer into the locktree's |
| 453 | // rangetree, notifying the memory tracker as necessary. |
| 454 | void sto_migrate_buffer_ranges_to_tree(void *prepared_lkr); |
| 455 | |
| 456 | // effect: If m_sto_txnid is valid, then release the txnid's locks |
| 457 | // by ending the optimization. |
| 458 | // requires: If m_sto_txnid is valid, it is equal to the given txnid |
| 459 | // returns: True if locks were released for this txnid |
| 460 | bool sto_try_release(TXNID txnid); |
| 461 | |
| 462 | // params: prepared_lkr is a void * to a prepared locked keyrange. see above. |
| 463 | // requires: the prepared locked keyrange is for the locktree's rangetree |
| 464 | // effect: If m_sto_txnid is valid and equal to the given txnid, then |
| 465 | // append a range onto the buffer. Otherwise, if m_sto_txnid is valid |
| 466 | // but not equal to this txnid, then migrate the buffer's locks |
| 467 | // into the rangetree and end the optimization, setting the score |
| 468 | // back to zero. |
| 469 | // returns: true if the lock was acquired for this txnid |
| 470 | bool sto_try_acquire(void *prepared_lkr, TXNID txnid, |
| 471 | const DBT *left_key, const DBT *right_key); |
| 472 | |
| 473 | // Effect: |
| 474 | // Provides a hook for a helgrind suppression. |
| 475 | // Returns: |
| 476 | // true if m_sto_txnid is not TXNID_NONE |
| 477 | bool sto_txnid_is_valid_unsafe(void) const; |
| 478 | |
| 479 | // Effect: |
| 480 | // Provides a hook for a helgrind suppression. |
| 481 | // Returns: |
| 482 | // m_sto_score |
| 483 | int sto_get_score_unsafe(void )const; |
| 484 | |
| 485 | void remove_overlapping_locks_for_txnid(TXNID txnid, |
| 486 | const DBT *left_key, const DBT *right_key); |
| 487 | |
| 488 | int acquire_lock_consolidated(void *prepared_lkr, TXNID txnid, |
| 489 | const DBT *left_key, const DBT *right_key, |
| 490 | txnid_set *conflicts); |
| 491 | |
| 492 | int acquire_lock(bool is_write_request, TXNID txnid, |
| 493 | const DBT *left_key, const DBT *right_key, |
| 494 | txnid_set *conflicts); |
| 495 | |
| 496 | int try_acquire_lock(bool is_write_request, TXNID txnid, |
| 497 | const DBT *left_key, const DBT *right_key, |
| 498 | txnid_set *conflicts, bool big_txn); |
| 499 | |
| 500 | |
| 501 | friend class locktree_unit_test; |
| 502 | friend class manager_unit_test; |
| 503 | friend class lock_request_unit_test; |
| 504 | |
| 505 | // engine status reaches into the locktree to read some stats |
| 506 | friend void locktree_manager::get_status(LTM_STATUS status); |
| 507 | }; |
| 508 | |
| 509 | } /* namespace toku */ |
| 510 | |