| 1 | /* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */ |
| 2 | // vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4: |
| 3 | #ident "$Id$" |
| 4 | /*====== |
| 5 | This file is part of PerconaFT. |
| 6 | |
| 7 | |
| 8 | Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved. |
| 9 | |
| 10 | PerconaFT is free software: you can redistribute it and/or modify |
| 11 | it under the terms of the GNU General Public License, version 2, |
| 12 | as published by the Free Software Foundation. |
| 13 | |
| 14 | PerconaFT is distributed in the hope that it will be useful, |
| 15 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 17 | GNU General Public License for more details. |
| 18 | |
| 19 | You should have received a copy of the GNU General Public License |
| 20 | along with PerconaFT. If not, see <http://www.gnu.org/licenses/>. |
| 21 | |
| 22 | ---------------------------------------- |
| 23 | |
| 24 | PerconaFT is free software: you can redistribute it and/or modify |
| 25 | it under the terms of the GNU Affero General Public License, version 3, |
| 26 | as published by the Free Software Foundation. |
| 27 | |
| 28 | PerconaFT is distributed in the hope that it will be useful, |
| 29 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 30 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 31 | GNU Affero General Public License for more details. |
| 32 | |
| 33 | You should have received a copy of the GNU Affero General Public License |
| 34 | along with PerconaFT. If not, see <http://www.gnu.org/licenses/>. |
| 35 | ======= */ |
| 36 | |
| 37 | #ident "Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved." |
| 38 | |
| 39 | #include <toku_race_tools.h> |
| 40 | |
| 41 | // TODO: source location info might have to be pulled up one caller |
| 42 | // to be useful |
| 43 | void treenode::mutex_lock(void) { toku_mutex_lock(&m_mutex); } |
| 44 | |
| 45 | void treenode::mutex_unlock(void) { |
| 46 | toku_mutex_unlock(&m_mutex); |
| 47 | } |
| 48 | |
| 49 | void treenode::init(const comparator *cmp) { |
| 50 | m_txnid = TXNID_NONE; |
| 51 | m_is_root = false; |
| 52 | m_is_empty = true; |
| 53 | m_cmp = cmp; |
| 54 | // use an adaptive mutex at each node since we expect the time the |
| 55 | // lock is held to be relatively short compared to a context switch. |
| 56 | // indeed, this improves performance at high thread counts considerably. |
| 57 | memset(&m_mutex, 0, sizeof(toku_mutex_t)); |
| 58 | toku_pthread_mutexattr_t attr; |
| 59 | toku_mutexattr_init(&attr); |
| 60 | toku_mutexattr_settype(&attr, TOKU_MUTEX_ADAPTIVE); |
| 61 | toku_mutex_init(*treenode_mutex_key, &m_mutex, &attr); |
| 62 | toku_mutexattr_destroy(&attr); |
| 63 | m_left_child.set(nullptr); |
| 64 | m_right_child.set(nullptr); |
| 65 | } |
| 66 | |
| 67 | void treenode::create_root(const comparator *cmp) { |
| 68 | init(cmp); |
| 69 | m_is_root = true; |
| 70 | } |
| 71 | |
| 72 | void treenode::destroy_root(void) { |
| 73 | invariant(is_root()); |
| 74 | invariant(is_empty()); |
| 75 | toku_mutex_destroy(&m_mutex); |
| 76 | m_cmp = nullptr; |
| 77 | } |
| 78 | |
| 79 | void treenode::set_range_and_txnid(const keyrange &range, TXNID txnid) { |
| 80 | // allocates a new copy of the range for this node |
| 81 | m_range.create_copy(range); |
| 82 | m_txnid = txnid; |
| 83 | m_is_empty = false; |
| 84 | } |
| 85 | |
| 86 | bool treenode::is_root(void) { |
| 87 | return m_is_root; |
| 88 | } |
| 89 | |
| 90 | bool treenode::is_empty(void) { |
| 91 | return m_is_empty; |
| 92 | } |
| 93 | |
| 94 | bool treenode::range_overlaps(const keyrange &range) { |
| 95 | return m_range.overlaps(*m_cmp, range); |
| 96 | } |
| 97 | |
| 98 | treenode *treenode::alloc(const comparator *cmp, const keyrange &range, TXNID txnid) { |
| 99 | treenode *XCALLOC(node); |
| 100 | node->init(cmp); |
| 101 | node->set_range_and_txnid(range, txnid); |
| 102 | return node; |
| 103 | } |
| 104 | |
| 105 | void treenode::swap_in_place(treenode *node1, treenode *node2) { |
| 106 | keyrange tmp_range = node1->m_range; |
| 107 | TXNID tmp_txnid = node1->m_txnid; |
| 108 | node1->m_range = node2->m_range; |
| 109 | node1->m_txnid = node2->m_txnid; |
| 110 | node2->m_range = tmp_range; |
| 111 | node2->m_txnid = tmp_txnid; |
| 112 | } |
| 113 | |
| 114 | void treenode::free(treenode *node) { |
| 115 | // destroy the range, freeing any copied keys |
| 116 | node->m_range.destroy(); |
| 117 | |
| 118 | // the root is simply marked as empty. |
| 119 | if (node->is_root()) { |
| 120 | toku_mutex_assert_locked(&node->m_mutex); |
| 121 | node->m_is_empty = true; |
| 122 | } else { |
| 123 | toku_mutex_assert_unlocked(&node->m_mutex); |
| 124 | toku_mutex_destroy(&node->m_mutex); |
| 125 | toku_free(node); |
| 126 | } |
| 127 | } |
| 128 | |
| 129 | uint32_t treenode::get_depth_estimate(void) const { |
| 130 | const uint32_t left_est = m_left_child.depth_est; |
| 131 | const uint32_t right_est = m_right_child.depth_est; |
| 132 | return (left_est > right_est ? left_est : right_est) + 1; |
| 133 | } |
| 134 | |
| 135 | treenode *treenode::find_node_with_overlapping_child(const keyrange &range, |
| 136 | const keyrange::comparison *cmp_hint) { |
| 137 | |
| 138 | // determine which child to look at based on a comparison. if we were |
| 139 | // given a comparison hint, use that. otherwise, compare them now. |
| 140 | keyrange::comparison c = cmp_hint ? *cmp_hint : range.compare(*m_cmp, m_range); |
| 141 | |
| 142 | treenode *child; |
| 143 | if (c == keyrange::comparison::LESS_THAN) { |
| 144 | child = lock_and_rebalance_left(); |
| 145 | } else { |
| 146 | // The caller (locked_keyrange::acquire) handles the case where |
| 147 | // the root of the locked_keyrange is the node that overlaps. |
| 148 | // range is guaranteed not to overlap this node. |
| 149 | invariant(c == keyrange::comparison::GREATER_THAN); |
| 150 | child = lock_and_rebalance_right(); |
| 151 | } |
| 152 | |
| 153 | // if the search would lead us to an empty subtree (child == nullptr), |
| 154 | // or the child overlaps, then we know this node is the parent we want. |
| 155 | // otherwise we need to recur into that child. |
| 156 | if (child == nullptr) { |
| 157 | return this; |
| 158 | } else { |
| 159 | c = range.compare(*m_cmp, child->m_range); |
| 160 | if (c == keyrange::comparison::EQUALS || c == keyrange::comparison::OVERLAPS) { |
| 161 | child->mutex_unlock(); |
| 162 | return this; |
| 163 | } else { |
| 164 | // unlock this node before recurring into the locked child, |
| 165 | // passing in a comparison hint since we just comapred range |
| 166 | // to the child's range. |
| 167 | mutex_unlock(); |
| 168 | return child->find_node_with_overlapping_child(range, &c); |
| 169 | } |
| 170 | } |
| 171 | } |
| 172 | |
| 173 | template <class F> |
| 174 | void treenode::traverse_overlaps(const keyrange &range, F *function) { |
| 175 | keyrange::comparison c = range.compare(*m_cmp, m_range); |
| 176 | if (c == keyrange::comparison::EQUALS) { |
| 177 | // Doesn't matter if fn wants to keep going, there |
| 178 | // is nothing left, so return. |
| 179 | function->fn(m_range, m_txnid); |
| 180 | return; |
| 181 | } |
| 182 | |
| 183 | treenode *left = m_left_child.get_locked(); |
| 184 | if (left) { |
| 185 | if (c != keyrange::comparison::GREATER_THAN) { |
| 186 | // Target range is less than this node, or it overlaps this |
| 187 | // node. There may be something on the left. |
| 188 | left->traverse_overlaps(range, function); |
| 189 | } |
| 190 | left->mutex_unlock(); |
| 191 | } |
| 192 | |
| 193 | if (c == keyrange::comparison::OVERLAPS) { |
| 194 | bool keep_going = function->fn(m_range, m_txnid); |
| 195 | if (!keep_going) { |
| 196 | return; |
| 197 | } |
| 198 | } |
| 199 | |
| 200 | treenode *right = m_right_child.get_locked(); |
| 201 | if (right) { |
| 202 | if (c != keyrange::comparison::LESS_THAN) { |
| 203 | // Target range is greater than this node, or it overlaps this |
| 204 | // node. There may be something on the right. |
| 205 | right->traverse_overlaps(range, function); |
| 206 | } |
| 207 | right->mutex_unlock(); |
| 208 | } |
| 209 | } |
| 210 | |
| 211 | void treenode::insert(const keyrange &range, TXNID txnid) { |
| 212 | // choose a child to check. if that child is null, then insert the new node there. |
| 213 | // otherwise recur down that child's subtree |
| 214 | keyrange::comparison c = range.compare(*m_cmp, m_range); |
| 215 | if (c == keyrange::comparison::LESS_THAN) { |
| 216 | treenode *left_child = lock_and_rebalance_left(); |
| 217 | if (left_child == nullptr) { |
| 218 | left_child = treenode::alloc(m_cmp, range, txnid); |
| 219 | m_left_child.set(left_child); |
| 220 | } else { |
| 221 | left_child->insert(range, txnid); |
| 222 | left_child->mutex_unlock(); |
| 223 | } |
| 224 | } else { |
| 225 | invariant(c == keyrange::comparison::GREATER_THAN); |
| 226 | treenode *right_child = lock_and_rebalance_right(); |
| 227 | if (right_child == nullptr) { |
| 228 | right_child = treenode::alloc(m_cmp, range, txnid); |
| 229 | m_right_child.set(right_child); |
| 230 | } else { |
| 231 | right_child->insert(range, txnid); |
| 232 | right_child->mutex_unlock(); |
| 233 | } |
| 234 | } |
| 235 | } |
| 236 | |
| 237 | treenode *treenode::find_child_at_extreme(int direction, treenode **parent) { |
| 238 | treenode *child = direction > 0 ? |
| 239 | m_right_child.get_locked() : m_left_child.get_locked(); |
| 240 | |
| 241 | if (child) { |
| 242 | *parent = this; |
| 243 | treenode *child_extreme = child->find_child_at_extreme(direction, parent); |
| 244 | child->mutex_unlock(); |
| 245 | return child_extreme; |
| 246 | } else { |
| 247 | return this; |
| 248 | } |
| 249 | } |
| 250 | |
| 251 | treenode *treenode::find_leftmost_child(treenode **parent) { |
| 252 | return find_child_at_extreme(-1, parent); |
| 253 | } |
| 254 | |
| 255 | treenode *treenode::find_rightmost_child(treenode **parent) { |
| 256 | return find_child_at_extreme(1, parent); |
| 257 | } |
| 258 | |
| 259 | treenode *treenode::remove_root_of_subtree() { |
| 260 | // if this node has no children, just free it and return null |
| 261 | if (m_left_child.ptr == nullptr && m_right_child.ptr == nullptr) { |
| 262 | // treenode::free requires that non-root nodes are unlocked |
| 263 | if (!is_root()) { |
| 264 | mutex_unlock(); |
| 265 | } |
| 266 | treenode::free(this); |
| 267 | return nullptr; |
| 268 | } |
| 269 | |
| 270 | // we have a child, so get either the in-order successor or |
| 271 | // predecessor of this node to be our replacement. |
| 272 | // replacement_parent is updated by the find functions as |
| 273 | // they recur down the tree, so initialize it to this. |
| 274 | treenode *child, *replacement; |
| 275 | treenode *replacement_parent = this; |
| 276 | if (m_left_child.ptr != nullptr) { |
| 277 | child = m_left_child.get_locked(); |
| 278 | replacement = child->find_rightmost_child(&replacement_parent); |
| 279 | invariant(replacement == child || replacement_parent != this); |
| 280 | |
| 281 | // detach the replacement from its parent |
| 282 | if (replacement_parent == this) { |
| 283 | m_left_child = replacement->m_left_child; |
| 284 | } else { |
| 285 | replacement_parent->m_right_child = replacement->m_left_child; |
| 286 | } |
| 287 | } else { |
| 288 | child = m_right_child.get_locked(); |
| 289 | replacement = child->find_leftmost_child(&replacement_parent); |
| 290 | invariant(replacement == child || replacement_parent != this); |
| 291 | |
| 292 | // detach the replacement from its parent |
| 293 | if (replacement_parent == this) { |
| 294 | m_right_child = replacement->m_right_child; |
| 295 | } else { |
| 296 | replacement_parent->m_left_child = replacement->m_right_child; |
| 297 | } |
| 298 | } |
| 299 | child->mutex_unlock(); |
| 300 | |
| 301 | // swap in place with the detached replacement, then destroy it |
| 302 | treenode::swap_in_place(replacement, this); |
| 303 | treenode::free(replacement); |
| 304 | |
| 305 | return this; |
| 306 | } |
| 307 | |
| 308 | void treenode::recursive_remove(void) { |
| 309 | treenode *left = m_left_child.ptr; |
| 310 | if (left) { |
| 311 | left->recursive_remove(); |
| 312 | } |
| 313 | m_left_child.set(nullptr); |
| 314 | |
| 315 | treenode *right = m_right_child.ptr; |
| 316 | if (right) { |
| 317 | right->recursive_remove(); |
| 318 | } |
| 319 | m_right_child.set(nullptr); |
| 320 | |
| 321 | // we do not take locks on the way down, so we know non-root nodes |
| 322 | // are unlocked here and the caller is required to pass a locked |
| 323 | // root, so this free is correct. |
| 324 | treenode::free(this); |
| 325 | } |
| 326 | |
| 327 | treenode *treenode::remove(const keyrange &range) { |
| 328 | treenode *child; |
| 329 | // if the range is equal to this node's range, then just remove |
| 330 | // the root of this subtree. otherwise search down the tree |
| 331 | // in either the left or right children. |
| 332 | keyrange::comparison c = range.compare(*m_cmp, m_range); |
| 333 | switch (c) { |
| 334 | case keyrange::comparison::EQUALS: |
| 335 | return remove_root_of_subtree(); |
| 336 | case keyrange::comparison::LESS_THAN: |
| 337 | child = m_left_child.get_locked(); |
| 338 | invariant_notnull(child); |
| 339 | child = child->remove(range); |
| 340 | |
| 341 | // unlock the child if there still is one. |
| 342 | // regardless, set the right child pointer |
| 343 | if (child) { |
| 344 | child->mutex_unlock(); |
| 345 | } |
| 346 | m_left_child.set(child); |
| 347 | break; |
| 348 | case keyrange::comparison::GREATER_THAN: |
| 349 | child = m_right_child.get_locked(); |
| 350 | invariant_notnull(child); |
| 351 | child = child->remove(range); |
| 352 | |
| 353 | // unlock the child if there still is one. |
| 354 | // regardless, set the right child pointer |
| 355 | if (child) { |
| 356 | child->mutex_unlock(); |
| 357 | } |
| 358 | m_right_child.set(child); |
| 359 | break; |
| 360 | case keyrange::comparison::OVERLAPS: |
| 361 | // shouldn't be overlapping, since the tree is |
| 362 | // non-overlapping and this range must exist |
| 363 | abort(); |
| 364 | } |
| 365 | |
| 366 | return this; |
| 367 | } |
| 368 | |
| 369 | bool treenode::left_imbalanced(int threshold) const { |
| 370 | uint32_t left_depth = m_left_child.depth_est; |
| 371 | uint32_t right_depth = m_right_child.depth_est; |
| 372 | return m_left_child.ptr != nullptr && left_depth > threshold + right_depth; |
| 373 | } |
| 374 | |
| 375 | bool treenode::right_imbalanced(int threshold) const { |
| 376 | uint32_t left_depth = m_left_child.depth_est; |
| 377 | uint32_t right_depth = m_right_child.depth_est; |
| 378 | return m_right_child.ptr != nullptr && right_depth > threshold + left_depth; |
| 379 | } |
| 380 | |
| 381 | // effect: rebalances the subtree rooted at this node |
| 382 | // using AVL style O(1) rotations. unlocks this |
| 383 | // node if it is not the new root of the subtree. |
| 384 | // requires: node is locked by this thread, children are not |
| 385 | // returns: locked root node of the rebalanced tree |
| 386 | treenode *treenode::maybe_rebalance(void) { |
| 387 | // if we end up not rotating at all, the new root is this |
| 388 | treenode *new_root = this; |
| 389 | treenode *child = nullptr; |
| 390 | |
| 391 | if (left_imbalanced(IMBALANCE_THRESHOLD)) { |
| 392 | child = m_left_child.get_locked(); |
| 393 | if (child->right_imbalanced(0)) { |
| 394 | treenode *grandchild = child->m_right_child.get_locked(); |
| 395 | |
| 396 | child->m_right_child = grandchild->m_left_child; |
| 397 | grandchild->m_left_child.set(child); |
| 398 | |
| 399 | m_left_child = grandchild->m_right_child; |
| 400 | grandchild->m_right_child.set(this); |
| 401 | |
| 402 | new_root = grandchild; |
| 403 | } else { |
| 404 | m_left_child = child->m_right_child; |
| 405 | child->m_right_child.set(this); |
| 406 | new_root = child; |
| 407 | } |
| 408 | } else if (right_imbalanced(IMBALANCE_THRESHOLD)) { |
| 409 | child = m_right_child.get_locked(); |
| 410 | if (child->left_imbalanced(0)) { |
| 411 | treenode *grandchild = child->m_left_child.get_locked(); |
| 412 | |
| 413 | child->m_left_child = grandchild->m_right_child; |
| 414 | grandchild->m_right_child.set(child); |
| 415 | |
| 416 | m_right_child = grandchild->m_left_child; |
| 417 | grandchild->m_left_child.set(this); |
| 418 | |
| 419 | new_root = grandchild; |
| 420 | } else { |
| 421 | m_right_child = child->m_left_child; |
| 422 | child->m_left_child.set(this); |
| 423 | new_root = child; |
| 424 | } |
| 425 | } |
| 426 | |
| 427 | // up to three nodes may be locked. |
| 428 | // - this |
| 429 | // - child |
| 430 | // - grandchild (but if it is locked, its the new root) |
| 431 | // |
| 432 | // one of them is the new root. we unlock everything except the new root. |
| 433 | if (child && child != new_root) { |
| 434 | TOKU_VALGRIND_RESET_MUTEX_ORDERING_INFO(&child->m_mutex); |
| 435 | child->mutex_unlock(); |
| 436 | } |
| 437 | if (this != new_root) { |
| 438 | TOKU_VALGRIND_RESET_MUTEX_ORDERING_INFO(&m_mutex); |
| 439 | mutex_unlock(); |
| 440 | } |
| 441 | TOKU_VALGRIND_RESET_MUTEX_ORDERING_INFO(&new_root->m_mutex); |
| 442 | return new_root; |
| 443 | } |
| 444 | |
| 445 | |
| 446 | treenode *treenode::lock_and_rebalance_left(void) { |
| 447 | treenode *child = m_left_child.get_locked(); |
| 448 | if (child) { |
| 449 | treenode *new_root = child->maybe_rebalance(); |
| 450 | m_left_child.set(new_root); |
| 451 | child = new_root; |
| 452 | } |
| 453 | return child; |
| 454 | } |
| 455 | |
| 456 | treenode *treenode::lock_and_rebalance_right(void) { |
| 457 | treenode *child = m_right_child.get_locked(); |
| 458 | if (child) { |
| 459 | treenode *new_root = child->maybe_rebalance(); |
| 460 | m_right_child.set(new_root); |
| 461 | child = new_root; |
| 462 | } |
| 463 | return child; |
| 464 | } |
| 465 | |
| 466 | void treenode::child_ptr::set(treenode *node) { |
| 467 | ptr = node; |
| 468 | depth_est = ptr ? ptr->get_depth_estimate() : 0; |
| 469 | } |
| 470 | |
| 471 | treenode *treenode::child_ptr::get_locked(void) { |
| 472 | if (ptr) { |
| 473 | ptr->mutex_lock(); |
| 474 | depth_est = ptr->get_depth_estimate(); |
| 475 | } |
| 476 | return ptr; |
| 477 | } |
| 478 | |