1 | /* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */ |
2 | // vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4: |
3 | #ident "$Id$" |
4 | /*====== |
5 | This file is part of PerconaFT. |
6 | |
7 | |
8 | Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved. |
9 | |
10 | PerconaFT is free software: you can redistribute it and/or modify |
11 | it under the terms of the GNU General Public License, version 2, |
12 | as published by the Free Software Foundation. |
13 | |
14 | PerconaFT is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
17 | GNU General Public License for more details. |
18 | |
19 | You should have received a copy of the GNU General Public License |
20 | along with PerconaFT. If not, see <http://www.gnu.org/licenses/>. |
21 | |
22 | ---------------------------------------- |
23 | |
24 | PerconaFT is free software: you can redistribute it and/or modify |
25 | it under the terms of the GNU Affero General Public License, version 3, |
26 | as published by the Free Software Foundation. |
27 | |
28 | PerconaFT is distributed in the hope that it will be useful, |
29 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
30 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
31 | GNU Affero General Public License for more details. |
32 | |
33 | You should have received a copy of the GNU Affero General Public License |
34 | along with PerconaFT. If not, see <http://www.gnu.org/licenses/>. |
35 | ======= */ |
36 | |
37 | #ident "Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved." |
38 | |
39 | #include <db.h> |
40 | #include "ydb-internal.h" |
41 | #include "indexer.h" |
42 | #include <ft/log_header.h> |
43 | #include <ft/cachetable/checkpoint.h> |
44 | #include "ydb_row_lock.h" |
45 | #include "ydb_write.h" |
46 | #include "ydb_db.h" |
47 | #include <portability/toku_atomic.h> |
48 | #include <util/status.h> |
49 | |
50 | static YDB_WRITE_LAYER_STATUS_S ydb_write_layer_status; |
51 | #ifdef STATUS_VALUE |
52 | #undef STATUS_VALUE |
53 | #endif |
54 | #define STATUS_VALUE(x) ydb_write_layer_status.status[x].value.num |
55 | |
56 | #define STATUS_INIT(k,c,t,l,inc) TOKUFT_STATUS_INIT(ydb_write_layer_status, k, c, t, l, inc) |
57 | |
58 | static void |
59 | ydb_write_layer_status_init (void) { |
60 | // Note, this function initializes the keyname, type, and legend fields. |
61 | // Value fields are initialized to zero by compiler. |
62 | STATUS_INIT(YDB_LAYER_NUM_INSERTS, nullptr, UINT64, "dictionary inserts" , TOKU_ENGINE_STATUS); |
63 | STATUS_INIT(YDB_LAYER_NUM_INSERTS_FAIL, nullptr, UINT64, "dictionary inserts fail" , TOKU_ENGINE_STATUS); |
64 | STATUS_INIT(YDB_LAYER_NUM_DELETES, nullptr, UINT64, "dictionary deletes" , TOKU_ENGINE_STATUS); |
65 | STATUS_INIT(YDB_LAYER_NUM_DELETES_FAIL, nullptr, UINT64, "dictionary deletes fail" , TOKU_ENGINE_STATUS); |
66 | STATUS_INIT(YDB_LAYER_NUM_UPDATES, nullptr, UINT64, "dictionary updates" , TOKU_ENGINE_STATUS); |
67 | STATUS_INIT(YDB_LAYER_NUM_UPDATES_FAIL, nullptr, UINT64, "dictionary updates fail" , TOKU_ENGINE_STATUS); |
68 | STATUS_INIT(YDB_LAYER_NUM_UPDATES_BROADCAST, nullptr, UINT64, "dictionary broadcast updates" , TOKU_ENGINE_STATUS); |
69 | STATUS_INIT(YDB_LAYER_NUM_UPDATES_BROADCAST_FAIL, nullptr, UINT64, "dictionary broadcast updates fail" , TOKU_ENGINE_STATUS); |
70 | STATUS_INIT(YDB_LAYER_NUM_MULTI_INSERTS, nullptr, UINT64, "dictionary multi inserts" , TOKU_ENGINE_STATUS); |
71 | STATUS_INIT(YDB_LAYER_NUM_MULTI_INSERTS_FAIL, nullptr, UINT64, "dictionary multi inserts fail" , TOKU_ENGINE_STATUS); |
72 | STATUS_INIT(YDB_LAYER_NUM_MULTI_DELETES, nullptr, UINT64, "dictionary multi deletes" , TOKU_ENGINE_STATUS); |
73 | STATUS_INIT(YDB_LAYER_NUM_MULTI_DELETES_FAIL, nullptr, UINT64, "dictionary multi deletes fail" , TOKU_ENGINE_STATUS); |
74 | STATUS_INIT(YDB_LAYER_NUM_MULTI_UPDATES, nullptr, UINT64, "dictionary updates multi" , TOKU_ENGINE_STATUS); |
75 | STATUS_INIT(YDB_LAYER_NUM_MULTI_UPDATES_FAIL, nullptr, UINT64, "dictionary updates multi fail" , TOKU_ENGINE_STATUS); |
76 | ydb_write_layer_status.initialized = true; |
77 | } |
78 | #undef STATUS_INIT |
79 | |
80 | void |
81 | ydb_write_layer_get_status(YDB_WRITE_LAYER_STATUS statp) { |
82 | if (!ydb_write_layer_status.initialized) |
83 | ydb_write_layer_status_init(); |
84 | *statp = ydb_write_layer_status; |
85 | } |
86 | |
87 | |
88 | static inline uint32_t |
89 | get_prelocked_flags(uint32_t flags) { |
90 | uint32_t lock_flags = flags & (DB_PRELOCKED | DB_PRELOCKED_WRITE); |
91 | return lock_flags; |
92 | } |
93 | |
94 | // these next two static functions are defined |
95 | // both here and ydb.c. We should find a good |
96 | // place for them. |
97 | static int |
98 | ydb_getf_do_nothing(DBT const* UU(key), DBT const* UU(val), void* UU()) { |
99 | return 0; |
100 | } |
101 | |
102 | // Check if the available file system space is less than the reserve |
103 | // Returns ENOSPC if not enough space, othersize 0 |
104 | static inline int |
105 | env_check_avail_fs_space(DB_ENV *env) { |
106 | int r = env->i->fs_state == FS_RED ? ENOSPC : 0; |
107 | if (r) { |
108 | env->i->enospc_redzone_ctr++; |
109 | } |
110 | return r; |
111 | } |
112 | |
113 | // Return 0 if proposed pair do not violate size constraints of DB |
114 | // (insertion is legal) |
115 | // Return non zero otherwise. |
116 | static int |
117 | db_put_check_size_constraints(DB *db, const DBT *key, const DBT *val) { |
118 | int r = 0; |
119 | unsigned int klimit, vlimit; |
120 | |
121 | toku_ft_get_maximum_advised_key_value_lengths(&klimit, &vlimit); |
122 | if (key->size > klimit) { |
123 | r = toku_ydb_do_error(db->dbenv, EINVAL, |
124 | "The largest key allowed is %u bytes" , klimit); |
125 | } else if (val->size > vlimit) { |
126 | r = toku_ydb_do_error(db->dbenv, EINVAL, |
127 | "The largest value allowed is %u bytes" , vlimit); |
128 | } |
129 | return r; |
130 | } |
131 | |
132 | //Return 0 if insert is legal |
133 | static int |
134 | db_put_check_overwrite_constraint(DB *db, DB_TXN *txn, DBT *key, |
135 | uint32_t lock_flags, uint32_t overwrite_flag) { |
136 | int r; |
137 | |
138 | if (overwrite_flag == 0) { // 0 (yesoverwrite) does not impose constraints. |
139 | r = 0; |
140 | } else if (overwrite_flag == DB_NOOVERWRITE) { |
141 | // Check if (key,anything) exists in dictionary. |
142 | // If exists, fail. Otherwise, do insert. |
143 | // The DB_RMW flag causes the cursor to grab a write lock instead of a read lock on the key if it exists. |
144 | r = db_getf_set(db, txn, lock_flags|DB_SERIALIZABLE|DB_RMW, key, ydb_getf_do_nothing, NULL); |
145 | if (r == DB_NOTFOUND) |
146 | r = 0; |
147 | else if (r == 0) |
148 | r = DB_KEYEXIST; |
149 | //Any other error is passed through. |
150 | } else if (overwrite_flag == DB_NOOVERWRITE_NO_ERROR) { |
151 | r = 0; |
152 | } else { |
153 | //Other flags are not (yet) supported. |
154 | r = EINVAL; |
155 | } |
156 | return r; |
157 | } |
158 | |
159 | |
160 | int |
161 | toku_db_del(DB *db, DB_TXN *txn, DBT *key, uint32_t flags, bool holds_mo_lock) { |
162 | HANDLE_PANICKED_DB(db); |
163 | HANDLE_DB_ILLEGAL_WORKING_PARENT_TXN(db, txn); |
164 | HANDLE_READ_ONLY_TXN(txn); |
165 | |
166 | uint32_t unchecked_flags = flags; |
167 | //DB_DELETE_ANY means delete regardless of whether it exists in the db. |
168 | bool error_if_missing = (bool)(!(flags&DB_DELETE_ANY)); |
169 | unchecked_flags &= ~DB_DELETE_ANY; |
170 | uint32_t lock_flags = get_prelocked_flags(flags); |
171 | unchecked_flags &= ~lock_flags; |
172 | bool do_locking = (bool)(db->i->lt && !(lock_flags&DB_PRELOCKED_WRITE)); |
173 | |
174 | int r = 0; |
175 | if (unchecked_flags!=0) { |
176 | r = EINVAL; |
177 | } |
178 | |
179 | if (r == 0 && error_if_missing) { |
180 | //Check if the key exists in the db. |
181 | r = db_getf_set(db, txn, lock_flags|DB_SERIALIZABLE|DB_RMW, key, ydb_getf_do_nothing, NULL); |
182 | } |
183 | if (r == 0 && do_locking) { |
184 | //Do locking if necessary. |
185 | r = toku_db_get_point_write_lock(db, txn, key); |
186 | } |
187 | if (r == 0) { |
188 | //Do the actual deleting. |
189 | if (!holds_mo_lock) toku_multi_operation_client_lock(); |
190 | toku_ft_delete(db->i->ft_handle, key, txn ? db_txn_struct_i(txn)->tokutxn : 0); |
191 | if (!holds_mo_lock) toku_multi_operation_client_unlock(); |
192 | } |
193 | |
194 | if (r == 0) { |
195 | STATUS_VALUE(YDB_LAYER_NUM_DELETES)++; // accountability |
196 | } |
197 | else { |
198 | STATUS_VALUE(YDB_LAYER_NUM_DELETES_FAIL)++; // accountability |
199 | } |
200 | return r; |
201 | } |
202 | |
203 | static int |
204 | db_put(DB *db, DB_TXN *txn, DBT *key, DBT *val, int flags, bool do_log) { |
205 | int r = 0; |
206 | bool unique = false; |
207 | enum ft_msg_type type = FT_INSERT; |
208 | if (flags == DB_NOOVERWRITE) { |
209 | unique = true; |
210 | } else if (flags == DB_NOOVERWRITE_NO_ERROR) { |
211 | type = FT_INSERT_NO_OVERWRITE; |
212 | } else if (flags != 0) { |
213 | // All other non-zero flags are unsupported |
214 | r = EINVAL; |
215 | } |
216 | if (r == 0) { |
217 | TOKUTXN ttxn = txn ? db_txn_struct_i(txn)->tokutxn : nullptr; |
218 | if (unique) { |
219 | r = toku_ft_insert_unique(db->i->ft_handle, key, val, ttxn, do_log); |
220 | } else { |
221 | toku_ft_maybe_insert(db->i->ft_handle, key, val, ttxn, false, ZERO_LSN, do_log, type); |
222 | } |
223 | invariant(r == DB_KEYEXIST || r == 0); |
224 | } |
225 | return r; |
226 | } |
227 | |
228 | int |
229 | toku_db_put(DB *db, DB_TXN *txn, DBT *key, DBT *val, uint32_t flags, bool holds_mo_lock) { |
230 | HANDLE_PANICKED_DB(db); |
231 | HANDLE_DB_ILLEGAL_WORKING_PARENT_TXN(db, txn); |
232 | HANDLE_READ_ONLY_TXN(txn); |
233 | int r = 0; |
234 | |
235 | uint32_t lock_flags = get_prelocked_flags(flags); |
236 | flags &= ~lock_flags; |
237 | |
238 | r = db_put_check_size_constraints(db, key, val); |
239 | |
240 | //Do locking if necessary. |
241 | bool do_locking = (bool)(db->i->lt && !(lock_flags&DB_PRELOCKED_WRITE)); |
242 | if (r == 0 && do_locking) { |
243 | r = toku_db_get_point_write_lock(db, txn, key); |
244 | } |
245 | if (r == 0) { |
246 | //Insert into the ft. |
247 | if (!holds_mo_lock) toku_multi_operation_client_lock(); |
248 | r = db_put(db, txn, key, val, flags, true); |
249 | if (!holds_mo_lock) toku_multi_operation_client_unlock(); |
250 | } |
251 | |
252 | if (r == 0) { |
253 | // helgrind flags a race on this status update. we increment it atomically to satisfy helgrind. |
254 | // STATUS_VALUE(YDB_LAYER_NUM_INSERTS)++; // accountability |
255 | (void) toku_sync_fetch_and_add(&STATUS_VALUE(YDB_LAYER_NUM_INSERTS), 1); |
256 | } else { |
257 | // STATUS_VALUE(YDB_LAYER_NUM_INSERTS_FAIL)++; // accountability |
258 | (void) toku_sync_fetch_and_add(&STATUS_VALUE(YDB_LAYER_NUM_INSERTS_FAIL), 1); |
259 | } |
260 | |
261 | return r; |
262 | } |
263 | |
264 | static int |
265 | toku_db_update(DB *db, DB_TXN *txn, |
266 | const DBT *key, |
267 | const DBT *, |
268 | uint32_t flags) { |
269 | HANDLE_PANICKED_DB(db); |
270 | HANDLE_DB_ILLEGAL_WORKING_PARENT_TXN(db, txn); |
271 | HANDLE_READ_ONLY_TXN(txn); |
272 | int r = 0; |
273 | |
274 | uint32_t lock_flags = get_prelocked_flags(flags); |
275 | flags &= ~lock_flags; |
276 | |
277 | r = db_put_check_size_constraints(db, key, update_function_extra); |
278 | if (r != 0) { goto cleanup; } |
279 | |
280 | bool do_locking; |
281 | do_locking = (db->i->lt && !(lock_flags & DB_PRELOCKED_WRITE)); |
282 | if (do_locking) { |
283 | r = toku_db_get_point_write_lock(db, txn, key); |
284 | if (r != 0) { goto cleanup; } |
285 | } |
286 | |
287 | TOKUTXN ttxn; |
288 | ttxn = txn ? db_txn_struct_i(txn)->tokutxn : NULL; |
289 | toku_multi_operation_client_lock(); |
290 | toku_ft_maybe_update(db->i->ft_handle, key, update_function_extra, ttxn, |
291 | false, ZERO_LSN, true); |
292 | toku_multi_operation_client_unlock(); |
293 | |
294 | cleanup: |
295 | if (r == 0) |
296 | STATUS_VALUE(YDB_LAYER_NUM_UPDATES)++; // accountability |
297 | else |
298 | STATUS_VALUE(YDB_LAYER_NUM_UPDATES_FAIL)++; // accountability |
299 | return r; |
300 | } |
301 | |
302 | |
303 | // DB_IS_RESETTING_OP is true if the dictionary should be considered as if created by this transaction. |
304 | // For example, it will be true if toku_db_update_broadcast() is used to implement a schema change (such |
305 | // as adding a column), and will be false if used simply to update all the rows of a table (such as |
306 | // incrementing a field). |
307 | static int |
308 | toku_db_update_broadcast(DB *db, DB_TXN *txn, |
309 | const DBT *, |
310 | uint32_t flags) { |
311 | HANDLE_PANICKED_DB(db); |
312 | HANDLE_DB_ILLEGAL_WORKING_PARENT_TXN(db, txn); |
313 | HANDLE_READ_ONLY_TXN(txn); |
314 | int r = 0; |
315 | |
316 | uint32_t lock_flags = get_prelocked_flags(flags); |
317 | flags &= ~lock_flags; |
318 | uint32_t is_resetting_op_flag = flags & DB_IS_RESETTING_OP; |
319 | flags &= is_resetting_op_flag; |
320 | bool is_resetting_op = (is_resetting_op_flag != 0); |
321 | |
322 | |
323 | if (is_resetting_op) { |
324 | if (txn->parent != NULL) { |
325 | r = EINVAL; // cannot have a parent if you are a resetting op |
326 | goto cleanup; |
327 | } |
328 | r = toku_db_pre_acquire_fileops_lock(db, txn); |
329 | if (r != 0) { goto cleanup; } |
330 | } |
331 | { |
332 | DBT null_key; |
333 | toku_init_dbt(&null_key); |
334 | r = db_put_check_size_constraints(db, &null_key, update_function_extra); |
335 | if (r != 0) { goto cleanup; } |
336 | } |
337 | |
338 | bool do_locking; |
339 | do_locking = (db->i->lt && !(lock_flags & DB_PRELOCKED_WRITE)); |
340 | if (do_locking) { |
341 | r = toku_db_pre_acquire_table_lock(db, txn); |
342 | if (r != 0) { goto cleanup; } |
343 | } |
344 | |
345 | TOKUTXN ttxn; |
346 | ttxn = txn ? db_txn_struct_i(txn)->tokutxn : NULL; |
347 | toku_multi_operation_client_lock(); |
348 | toku_ft_maybe_update_broadcast(db->i->ft_handle, update_function_extra, ttxn, |
349 | false, ZERO_LSN, true, is_resetting_op); |
350 | toku_multi_operation_client_unlock(); |
351 | |
352 | cleanup: |
353 | if (r == 0) |
354 | STATUS_VALUE(YDB_LAYER_NUM_UPDATES_BROADCAST)++; // accountability |
355 | else |
356 | STATUS_VALUE(YDB_LAYER_NUM_UPDATES_BROADCAST_FAIL)++; // accountability |
357 | return r; |
358 | } |
359 | |
360 | static void |
361 | log_del_single(DB_TXN *txn, FT_HANDLE ft_handle, const DBT *key) { |
362 | TOKUTXN ttxn = db_txn_struct_i(txn)->tokutxn; |
363 | toku_ft_log_del(ttxn, ft_handle, key); |
364 | } |
365 | |
366 | static uint32_t |
367 | sum_size(uint32_t num_arrays, DBT_ARRAY keys[], uint32_t overhead) { |
368 | uint32_t sum = 0; |
369 | for (uint32_t i = 0; i < num_arrays; i++) { |
370 | for (uint32_t j = 0; j < keys[i].size; j++) { |
371 | sum += keys[i].dbts[j].size + overhead; |
372 | } |
373 | } |
374 | return sum; |
375 | } |
376 | |
377 | static void |
378 | log_del_multiple(DB_TXN *txn, DB *src_db, const DBT *key, const DBT *val, uint32_t num_dbs, FT_HANDLE fts[], DBT_ARRAY keys[]) { |
379 | if (num_dbs > 0) { |
380 | TOKUTXN ttxn = db_txn_struct_i(txn)->tokutxn; |
381 | FT_HANDLE src_ft = src_db ? src_db->i->ft_handle : NULL; |
382 | uint32_t del_multiple_size = key->size + val->size + num_dbs*sizeof (uint32_t) + toku_log_enq_delete_multiple_overhead; |
383 | uint32_t del_single_sizes = sum_size(num_dbs, keys, toku_log_enq_delete_any_overhead); |
384 | if (del_single_sizes < del_multiple_size) { |
385 | for (uint32_t i = 0; i < num_dbs; i++) { |
386 | for (uint32_t j = 0; j < keys[i].size; j++) { |
387 | log_del_single(txn, fts[i], &keys[i].dbts[j]); |
388 | } |
389 | } |
390 | } else { |
391 | toku_ft_log_del_multiple(ttxn, src_ft, fts, num_dbs, key, val); |
392 | } |
393 | } |
394 | } |
395 | |
396 | static uint32_t |
397 | lookup_src_db(uint32_t num_dbs, DB *db_array[], DB *src_db) { |
398 | uint32_t which_db; |
399 | for (which_db = 0; which_db < num_dbs; which_db++) |
400 | if (db_array[which_db] == src_db) |
401 | break; |
402 | return which_db; |
403 | } |
404 | |
405 | static int |
406 | do_del_multiple(DB_TXN *txn, uint32_t num_dbs, DB *db_array[], DBT_ARRAY keys[], DB *src_db, const DBT *src_key, bool indexer_shortcut) { |
407 | int r = 0; |
408 | TOKUTXN ttxn = db_txn_struct_i(txn)->tokutxn; |
409 | for (uint32_t which_db = 0; r == 0 && which_db < num_dbs; which_db++) { |
410 | DB *db = db_array[which_db]; |
411 | |
412 | paranoid_invariant(keys[which_db].size <= keys[which_db].capacity); |
413 | |
414 | // if db is being indexed by an indexer, then insert a delete message into the db if the src key is to the left or equal to the |
415 | // indexers cursor. we have to get the src_db from the indexer and find it in the db_array. |
416 | int do_delete = true; |
417 | DB_INDEXER *indexer = toku_db_get_indexer(db); |
418 | if (indexer && !indexer_shortcut) { // if this db is the index under construction |
419 | DB *indexer_src_db = toku_indexer_get_src_db(indexer); |
420 | invariant(indexer_src_db != NULL); |
421 | const DBT *indexer_src_key; |
422 | if (src_db == indexer_src_db) |
423 | indexer_src_key = src_key; |
424 | else { |
425 | uint32_t which_src_db = lookup_src_db(num_dbs, db_array, indexer_src_db); |
426 | invariant(which_src_db < num_dbs); |
427 | // The indexer src db must have exactly one item or we don't know how to continue. |
428 | invariant(keys[which_src_db].size == 1); |
429 | indexer_src_key = &keys[which_src_db].dbts[0]; |
430 | } |
431 | do_delete = toku_indexer_should_insert_key(indexer, indexer_src_key); |
432 | toku_indexer_update_estimate(indexer); |
433 | } |
434 | if (do_delete) { |
435 | for (uint32_t i = 0; i < keys[which_db].size; i++) { |
436 | toku_ft_maybe_delete(db->i->ft_handle, &keys[which_db].dbts[i], ttxn, false, ZERO_LSN, false); |
437 | } |
438 | } |
439 | } |
440 | return r; |
441 | } |
442 | |
443 | // |
444 | // if a hot index is in progress, gets the indexer |
445 | // also verifies that there is at most one hot index |
446 | // in progress. If it finds more than one, then returns EINVAL |
447 | // |
448 | static int |
449 | get_indexer_if_exists( |
450 | uint32_t num_dbs, |
451 | DB **db_array, |
452 | DB *src_db, |
453 | DB_INDEXER** indexerp, |
454 | bool *src_db_is_indexer_src |
455 | ) |
456 | { |
457 | int r = 0; |
458 | DB_INDEXER* first_indexer = NULL; |
459 | for (uint32_t i = 0; i < num_dbs; i++) { |
460 | DB_INDEXER* indexer = toku_db_get_indexer(db_array[i]); |
461 | if (indexer) { |
462 | if (!first_indexer) { |
463 | first_indexer = indexer; |
464 | } |
465 | else if (first_indexer != indexer) { |
466 | r = EINVAL; |
467 | } |
468 | } |
469 | } |
470 | if (r == 0) { |
471 | if (first_indexer) { |
472 | DB* indexer_src_db = toku_indexer_get_src_db(first_indexer); |
473 | // we should just make this an invariant |
474 | if (src_db == indexer_src_db) { |
475 | *src_db_is_indexer_src = true; |
476 | } |
477 | } |
478 | *indexerp = first_indexer; |
479 | } |
480 | return r; |
481 | } |
482 | |
483 | int |
484 | env_del_multiple( |
485 | DB_ENV *env, |
486 | DB *src_db, |
487 | DB_TXN *txn, |
488 | const DBT *src_key, |
489 | const DBT *src_val, |
490 | uint32_t num_dbs, |
491 | DB **db_array, |
492 | DBT_ARRAY *keys, |
493 | uint32_t *flags_array) |
494 | { |
495 | int r; |
496 | DBT_ARRAY del_keys[num_dbs]; |
497 | DB_INDEXER* indexer = NULL; |
498 | |
499 | HANDLE_PANICKED_ENV(env); |
500 | HANDLE_READ_ONLY_TXN(txn); |
501 | |
502 | uint32_t lock_flags[num_dbs]; |
503 | uint32_t remaining_flags[num_dbs]; |
504 | FT_HANDLE fts[num_dbs]; |
505 | bool indexer_lock_taken = false; |
506 | bool src_same = false; |
507 | bool indexer_shortcut = false; |
508 | if (!txn) { |
509 | r = EINVAL; |
510 | goto cleanup; |
511 | } |
512 | if (!env->i->generate_row_for_del) { |
513 | r = EINVAL; |
514 | goto cleanup; |
515 | } |
516 | |
517 | HANDLE_ILLEGAL_WORKING_PARENT_TXN(env, txn); |
518 | r = get_indexer_if_exists(num_dbs, db_array, src_db, &indexer, &src_same); |
519 | if (r) { |
520 | goto cleanup; |
521 | } |
522 | |
523 | for (uint32_t which_db = 0; which_db < num_dbs; which_db++) { |
524 | DB *db = db_array[which_db]; |
525 | lock_flags[which_db] = get_prelocked_flags(flags_array[which_db]); |
526 | remaining_flags[which_db] = flags_array[which_db] & ~lock_flags[which_db]; |
527 | |
528 | if (db == src_db) { |
529 | del_keys[which_db].size = 1; |
530 | del_keys[which_db].capacity = 1; |
531 | del_keys[which_db].dbts = const_cast<DBT*>(src_key); |
532 | } |
533 | else { |
534 | //Generate the key |
535 | r = env->i->generate_row_for_del(db, src_db, &keys[which_db], src_key, src_val); |
536 | if (r != 0) goto cleanup; |
537 | del_keys[which_db] = keys[which_db]; |
538 | paranoid_invariant(del_keys[which_db].size <= del_keys[which_db].capacity); |
539 | } |
540 | |
541 | if (remaining_flags[which_db] & ~DB_DELETE_ANY) { |
542 | r = EINVAL; |
543 | goto cleanup; |
544 | } |
545 | bool error_if_missing = (bool)(!(remaining_flags[which_db]&DB_DELETE_ANY)); |
546 | for (uint32_t which_key = 0; which_key < del_keys[which_db].size; which_key++) { |
547 | DBT *del_key = &del_keys[which_db].dbts[which_key]; |
548 | if (error_if_missing) { |
549 | //Check if the key exists in the db. |
550 | //Grabs a write lock |
551 | r = db_getf_set(db, txn, lock_flags[which_db]|DB_SERIALIZABLE|DB_RMW, del_key, ydb_getf_do_nothing, NULL); |
552 | if (r != 0) goto cleanup; |
553 | } else if (db->i->lt && !(lock_flags[which_db] & DB_PRELOCKED_WRITE)) { //Do locking if necessary. |
554 | //Needs locking |
555 | r = toku_db_get_point_write_lock(db, txn, del_key); |
556 | if (r != 0) goto cleanup; |
557 | } |
558 | } |
559 | fts[which_db] = db->i->ft_handle; |
560 | } |
561 | |
562 | if (indexer) { |
563 | // do a cheap check |
564 | if (src_same) { |
565 | bool may_insert = toku_indexer_may_insert(indexer, src_key); |
566 | if (!may_insert) { |
567 | toku_indexer_lock(indexer); |
568 | indexer_lock_taken = true; |
569 | } |
570 | else { |
571 | indexer_shortcut = true; |
572 | } |
573 | } |
574 | } |
575 | toku_multi_operation_client_lock(); |
576 | log_del_multiple(txn, src_db, src_key, src_val, num_dbs, fts, del_keys); |
577 | r = do_del_multiple(txn, num_dbs, db_array, del_keys, src_db, src_key, indexer_shortcut); |
578 | toku_multi_operation_client_unlock(); |
579 | if (indexer_lock_taken) { |
580 | toku_indexer_unlock(indexer); |
581 | } |
582 | |
583 | cleanup: |
584 | if (r == 0) |
585 | STATUS_VALUE(YDB_LAYER_NUM_MULTI_DELETES) += num_dbs; // accountability |
586 | else |
587 | STATUS_VALUE(YDB_LAYER_NUM_MULTI_DELETES_FAIL) += num_dbs; // accountability |
588 | return r; |
589 | } |
590 | |
591 | static void |
592 | log_put_multiple(DB_TXN *txn, DB *src_db, const DBT *src_key, const DBT *src_val, uint32_t num_dbs, FT_HANDLE fts[]) { |
593 | if (num_dbs > 0) { |
594 | TOKUTXN ttxn = db_txn_struct_i(txn)->tokutxn; |
595 | FT_HANDLE src_ft = src_db ? src_db->i->ft_handle : NULL; |
596 | toku_ft_log_put_multiple(ttxn, src_ft, fts, num_dbs, src_key, src_val); |
597 | } |
598 | } |
599 | |
600 | // Requires: If remaining_flags is non-null, this function performs any required uniqueness checks |
601 | // Otherwise, the caller is responsible. |
602 | static int |
603 | do_put_multiple(DB_TXN *txn, uint32_t num_dbs, DB *db_array[], DBT_ARRAY keys[], DBT_ARRAY vals[], uint32_t *remaining_flags, DB *src_db, const DBT *src_key, bool indexer_shortcut) { |
604 | int r = 0; |
605 | for (uint32_t which_db = 0; which_db < num_dbs; which_db++) { |
606 | DB *db = db_array[which_db]; |
607 | |
608 | invariant(keys[which_db].size == vals[which_db].size); |
609 | paranoid_invariant(keys[which_db].size <= keys[which_db].capacity); |
610 | paranoid_invariant(vals[which_db].size <= vals[which_db].capacity); |
611 | |
612 | if (keys[which_db].size > 0) { |
613 | bool do_put = true; |
614 | DB_INDEXER *indexer = toku_db_get_indexer(db); |
615 | if (indexer && !indexer_shortcut) { // if this db is the index under construction |
616 | DB *indexer_src_db = toku_indexer_get_src_db(indexer); |
617 | invariant(indexer_src_db != NULL); |
618 | const DBT *indexer_src_key; |
619 | if (src_db == indexer_src_db) |
620 | indexer_src_key = src_key; |
621 | else { |
622 | uint32_t which_src_db = lookup_src_db(num_dbs, db_array, indexer_src_db); |
623 | invariant(which_src_db < num_dbs); |
624 | // The indexer src db must have exactly one item or we don't know how to continue. |
625 | invariant(keys[which_src_db].size == 1); |
626 | indexer_src_key = &keys[which_src_db].dbts[0]; |
627 | } |
628 | do_put = toku_indexer_should_insert_key(indexer, indexer_src_key); |
629 | toku_indexer_update_estimate(indexer); |
630 | } |
631 | if (do_put) { |
632 | for (uint32_t i = 0; i < keys[which_db].size; i++) { |
633 | int flags = 0; |
634 | if (remaining_flags != nullptr) { |
635 | flags = remaining_flags[which_db]; |
636 | invariant(!(flags & DB_NOOVERWRITE_NO_ERROR)); |
637 | } |
638 | r = db_put(db, txn, &keys[which_db].dbts[i], &vals[which_db].dbts[i], flags, false); |
639 | if (r != 0) { |
640 | goto done; |
641 | } |
642 | } |
643 | } |
644 | } |
645 | } |
646 | done: |
647 | return r; |
648 | } |
649 | |
650 | static int |
651 | env_put_multiple_internal( |
652 | DB_ENV *env, |
653 | DB *src_db, |
654 | DB_TXN *txn, |
655 | const DBT *src_key, |
656 | const DBT *src_val, |
657 | uint32_t num_dbs, |
658 | DB **db_array, |
659 | DBT_ARRAY *keys, |
660 | DBT_ARRAY *vals, |
661 | uint32_t *flags_array) |
662 | { |
663 | int r; |
664 | DBT_ARRAY put_keys[num_dbs]; |
665 | DBT_ARRAY put_vals[num_dbs]; |
666 | DB_INDEXER* indexer = NULL; |
667 | |
668 | HANDLE_PANICKED_ENV(env); |
669 | HANDLE_READ_ONLY_TXN(txn); |
670 | |
671 | uint32_t lock_flags[num_dbs]; |
672 | uint32_t remaining_flags[num_dbs]; |
673 | FT_HANDLE fts[num_dbs]; |
674 | bool indexer_shortcut = false; |
675 | bool indexer_lock_taken = false; |
676 | bool src_same = false; |
677 | |
678 | if (!txn || !num_dbs) { |
679 | r = EINVAL; |
680 | goto cleanup; |
681 | } |
682 | if (!env->i->generate_row_for_put) { |
683 | r = EINVAL; |
684 | goto cleanup; |
685 | } |
686 | |
687 | HANDLE_ILLEGAL_WORKING_PARENT_TXN(env, txn); |
688 | r = get_indexer_if_exists(num_dbs, db_array, src_db, &indexer, &src_same); |
689 | if (r) { |
690 | goto cleanup; |
691 | } |
692 | |
693 | for (uint32_t which_db = 0; which_db < num_dbs; which_db++) { |
694 | DB *db = db_array[which_db]; |
695 | |
696 | lock_flags[which_db] = get_prelocked_flags(flags_array[which_db]); |
697 | remaining_flags[which_db] = flags_array[which_db] & ~lock_flags[which_db]; |
698 | |
699 | //Generate the row |
700 | if (db == src_db) { |
701 | put_keys[which_db].size = put_keys[which_db].capacity = 1; |
702 | put_keys[which_db].dbts = const_cast<DBT*>(src_key); |
703 | |
704 | put_vals[which_db].size = put_vals[which_db].capacity = 1; |
705 | put_vals[which_db].dbts = const_cast<DBT*>(src_val); |
706 | } |
707 | else { |
708 | r = env->i->generate_row_for_put(db, src_db, &keys[which_db], &vals[which_db], src_key, src_val); |
709 | if (r != 0) goto cleanup; |
710 | |
711 | paranoid_invariant(keys[which_db].size <= keys[which_db].capacity); |
712 | paranoid_invariant(vals[which_db].size <= vals[which_db].capacity); |
713 | paranoid_invariant(keys[which_db].size == vals[which_db].size); |
714 | |
715 | put_keys[which_db] = keys[which_db]; |
716 | put_vals[which_db] = vals[which_db]; |
717 | } |
718 | for (uint32_t i = 0; i < put_keys[which_db].size; i++) { |
719 | DBT &put_key = put_keys[which_db].dbts[i]; |
720 | DBT &put_val = put_vals[which_db].dbts[i]; |
721 | |
722 | // check size constraints |
723 | r = db_put_check_size_constraints(db, &put_key, &put_val); |
724 | if (r != 0) goto cleanup; |
725 | |
726 | if (remaining_flags[which_db] == DB_NOOVERWRITE_NO_ERROR) { |
727 | //put_multiple does not support delaying the no error, since we would |
728 | //have to log the flag in the put_multiple. |
729 | r = EINVAL; goto cleanup; |
730 | } |
731 | |
732 | //Do locking if necessary. |
733 | if (db->i->lt && !(lock_flags[which_db] & DB_PRELOCKED_WRITE)) { |
734 | //Needs locking |
735 | r = toku_db_get_point_write_lock(db, txn, &put_key); |
736 | if (r != 0) goto cleanup; |
737 | } |
738 | } |
739 | fts[which_db] = db->i->ft_handle; |
740 | } |
741 | |
742 | if (indexer) { |
743 | // do a cheap check |
744 | if (src_same) { |
745 | bool may_insert = toku_indexer_may_insert(indexer, src_key); |
746 | if (!may_insert) { |
747 | toku_indexer_lock(indexer); |
748 | indexer_lock_taken = true; |
749 | } |
750 | else { |
751 | indexer_shortcut = true; |
752 | } |
753 | } |
754 | } |
755 | toku_multi_operation_client_lock(); |
756 | r = do_put_multiple(txn, num_dbs, db_array, put_keys, put_vals, remaining_flags, src_db, src_key, indexer_shortcut); |
757 | if (r == 0) { |
758 | log_put_multiple(txn, src_db, src_key, src_val, num_dbs, fts); |
759 | } |
760 | toku_multi_operation_client_unlock(); |
761 | if (indexer_lock_taken) { |
762 | toku_indexer_unlock(indexer); |
763 | } |
764 | |
765 | cleanup: |
766 | if (r == 0) |
767 | STATUS_VALUE(YDB_LAYER_NUM_MULTI_INSERTS) += num_dbs; // accountability |
768 | else |
769 | STATUS_VALUE(YDB_LAYER_NUM_MULTI_INSERTS_FAIL) += num_dbs; // accountability |
770 | return r; |
771 | } |
772 | |
773 | static void swap_dbts(DBT *a, DBT *b) { |
774 | DBT c; |
775 | c = *a; |
776 | *a = *b; |
777 | *b = c; |
778 | } |
779 | |
780 | //TODO: 26 Add comment in API description about.. new val.size being generated as '0' REQUIRES old_val.size == 0 |
781 | // |
782 | int |
783 | env_update_multiple(DB_ENV *env, DB *src_db, DB_TXN *txn, |
784 | DBT *old_src_key, DBT *old_src_data, |
785 | DBT *new_src_key, DBT *new_src_data, |
786 | uint32_t num_dbs, DB **db_array, uint32_t* flags_array, |
787 | uint32_t num_keys, DBT_ARRAY keys[], |
788 | uint32_t num_vals, DBT_ARRAY vals[]) { |
789 | int r = 0; |
790 | |
791 | HANDLE_PANICKED_ENV(env); |
792 | DB_INDEXER* indexer = NULL; |
793 | bool indexer_shortcut = false; |
794 | bool indexer_lock_taken = false; |
795 | bool src_same = false; |
796 | HANDLE_READ_ONLY_TXN(txn); |
797 | DBT_ARRAY old_key_arrays[num_dbs]; |
798 | DBT_ARRAY new_key_arrays[num_dbs]; |
799 | DBT_ARRAY new_val_arrays[num_dbs]; |
800 | |
801 | if (!txn) { |
802 | r = EINVAL; |
803 | goto cleanup; |
804 | } |
805 | if (!env->i->generate_row_for_put) { |
806 | r = EINVAL; |
807 | goto cleanup; |
808 | } |
809 | |
810 | if (num_dbs + num_dbs > num_keys || num_dbs > num_vals) { |
811 | r = ENOMEM; goto cleanup; |
812 | } |
813 | |
814 | HANDLE_ILLEGAL_WORKING_PARENT_TXN(env, txn); |
815 | r = get_indexer_if_exists(num_dbs, db_array, src_db, &indexer, &src_same); |
816 | if (r) { |
817 | goto cleanup; |
818 | } |
819 | |
820 | { |
821 | uint32_t n_del_dbs = 0; |
822 | DB *del_dbs[num_dbs]; |
823 | FT_HANDLE del_fts[num_dbs]; |
824 | DBT_ARRAY del_key_arrays[num_dbs]; |
825 | |
826 | uint32_t n_put_dbs = 0; |
827 | DB *put_dbs[num_dbs]; |
828 | FT_HANDLE put_fts[num_dbs]; |
829 | DBT_ARRAY put_key_arrays[num_dbs]; |
830 | DBT_ARRAY put_val_arrays[num_dbs]; |
831 | |
832 | uint32_t lock_flags[num_dbs]; |
833 | uint32_t remaining_flags[num_dbs]; |
834 | |
835 | for (uint32_t which_db = 0; which_db < num_dbs; which_db++) { |
836 | DB *db = db_array[which_db]; |
837 | |
838 | lock_flags[which_db] = get_prelocked_flags(flags_array[which_db]); |
839 | remaining_flags[which_db] = flags_array[which_db] & ~lock_flags[which_db]; |
840 | |
841 | if (db == src_db) { |
842 | // Copy the old keys |
843 | old_key_arrays[which_db].size = old_key_arrays[which_db].capacity = 1; |
844 | old_key_arrays[which_db].dbts = old_src_key; |
845 | |
846 | // Copy the new keys and vals |
847 | new_key_arrays[which_db].size = new_key_arrays[which_db].capacity = 1; |
848 | new_key_arrays[which_db].dbts = new_src_key; |
849 | |
850 | new_val_arrays[which_db].size = new_val_arrays[which_db].capacity = 1; |
851 | new_val_arrays[which_db].dbts = new_src_data; |
852 | } else { |
853 | // keys[0..num_dbs-1] are the new keys |
854 | // keys[num_dbs..2*num_dbs-1] are the old keys |
855 | // vals[0..num_dbs-1] are the new vals |
856 | |
857 | // Generate the old keys |
858 | r = env->i->generate_row_for_put(db, src_db, &keys[which_db + num_dbs], NULL, old_src_key, old_src_data); |
859 | if (r != 0) goto cleanup; |
860 | |
861 | paranoid_invariant(keys[which_db+num_dbs].size <= keys[which_db+num_dbs].capacity); |
862 | old_key_arrays[which_db] = keys[which_db+num_dbs]; |
863 | |
864 | // Generate the new keys and vals |
865 | r = env->i->generate_row_for_put(db, src_db, &keys[which_db], &vals[which_db], new_src_key, new_src_data); |
866 | if (r != 0) goto cleanup; |
867 | |
868 | paranoid_invariant(keys[which_db].size <= keys[which_db].capacity); |
869 | paranoid_invariant(vals[which_db].size <= vals[which_db].capacity); |
870 | paranoid_invariant(keys[which_db].size == vals[which_db].size); |
871 | |
872 | new_key_arrays[which_db] = keys[which_db]; |
873 | new_val_arrays[which_db] = vals[which_db]; |
874 | } |
875 | DBT_ARRAY &old_keys = old_key_arrays[which_db]; |
876 | DBT_ARRAY &new_keys = new_key_arrays[which_db]; |
877 | DBT_ARRAY &new_vals = new_val_arrays[which_db]; |
878 | |
879 | uint32_t num_skip = 0; |
880 | uint32_t num_del = 0; |
881 | uint32_t num_put = 0; |
882 | // Next index in old_keys to look at |
883 | uint32_t idx_old = 0; |
884 | // Next index in new_keys/new_vals to look at |
885 | uint32_t idx_new = 0; |
886 | uint32_t idx_old_used = 0; |
887 | uint32_t idx_new_used = 0; |
888 | while (idx_old < old_keys.size || idx_new < new_keys.size) { |
889 | // Check for old key, both, new key |
890 | DBT *curr_old_key = &old_keys.dbts[idx_old]; |
891 | DBT *curr_new_key = &new_keys.dbts[idx_new]; |
892 | DBT *curr_new_val = &new_vals.dbts[idx_new]; |
893 | |
894 | bool locked_new_key = false; |
895 | int cmp; |
896 | if (idx_new == new_keys.size) { |
897 | cmp = -1; |
898 | } else if (idx_old == old_keys.size) { |
899 | cmp = +1; |
900 | } else { |
901 | const toku::comparator &cmpfn = toku_db_get_comparator(db); |
902 | cmp = cmpfn(curr_old_key, curr_new_key); |
903 | } |
904 | |
905 | bool do_del = false; |
906 | bool do_put = false; |
907 | bool do_skip = false; |
908 | if (cmp > 0) { // New key does not exist in old array |
909 | //Check overwrite constraints only in the case where the keys are not equal |
910 | //(new key is alone/not equal to old key) |
911 | // If the keys are equal, then we do not care of the flag is DB_NOOVERWRITE or 0 |
912 | r = db_put_check_overwrite_constraint(db, txn, |
913 | curr_new_key, |
914 | lock_flags[which_db], remaining_flags[which_db]); |
915 | if (r != 0) goto cleanup; |
916 | if (remaining_flags[which_db] == DB_NOOVERWRITE) { |
917 | locked_new_key = true; |
918 | } |
919 | |
920 | if (remaining_flags[which_db] == DB_NOOVERWRITE_NO_ERROR) { |
921 | //update_multiple does not support delaying the no error, since we would |
922 | //have to log the flag in the put_multiple. |
923 | r = EINVAL; goto cleanup; |
924 | } |
925 | do_put = true; |
926 | } else if (cmp < 0) { |
927 | // lock old key only when it does not exist in new array |
928 | // otherwise locking new key takes care of this |
929 | if (db->i->lt && !(lock_flags[which_db] & DB_PRELOCKED_WRITE)) { |
930 | r = toku_db_get_point_write_lock(db, txn, curr_old_key); |
931 | if (r != 0) goto cleanup; |
932 | } |
933 | do_del = true; |
934 | } else { |
935 | do_put = curr_new_val->size > 0 || |
936 | curr_old_key->size != curr_new_key->size || |
937 | memcmp(curr_old_key->data, curr_new_key->data, curr_old_key->size); |
938 | do_skip = !do_put; |
939 | } |
940 | // Check put size constraints and insert new key only if keys are unequal (byte for byte) or there is a val |
941 | // We assume any val.size > 0 as unequal (saves on generating old val) |
942 | // (allows us to avoid generating the old val) |
943 | // we assume that any new vals with size > 0 are different than the old val |
944 | // if (!key_eq || !(dbt_cmp(&vals[which_db], &vals[which_db + num_dbs]) == 0)) { /* ... */ } |
945 | if (do_put) { |
946 | r = db_put_check_size_constraints(db, curr_new_key, curr_new_val); |
947 | if (r != 0) goto cleanup; |
948 | |
949 | // lock new key unless already locked |
950 | if (db->i->lt && !(lock_flags[which_db] & DB_PRELOCKED_WRITE) && !locked_new_key) { |
951 | r = toku_db_get_point_write_lock(db, txn, curr_new_key); |
952 | if (r != 0) goto cleanup; |
953 | } |
954 | } |
955 | |
956 | // TODO: 26 Add comments explaining squish and why not just use another stack array |
957 | // Add more comments to explain this if elseif else well |
958 | if (do_skip) { |
959 | paranoid_invariant(cmp == 0); |
960 | paranoid_invariant(!do_put); |
961 | paranoid_invariant(!do_del); |
962 | |
963 | num_skip++; |
964 | idx_old++; |
965 | idx_new++; |
966 | } else if (do_put) { |
967 | paranoid_invariant(cmp >= 0); |
968 | paranoid_invariant(!do_skip); |
969 | paranoid_invariant(!do_del); |
970 | |
971 | num_put++; |
972 | if (idx_new != idx_new_used) { |
973 | swap_dbts(&new_keys.dbts[idx_new_used], &new_keys.dbts[idx_new]); |
974 | swap_dbts(&new_vals.dbts[idx_new_used], &new_vals.dbts[idx_new]); |
975 | } |
976 | idx_new++; |
977 | idx_new_used++; |
978 | if (cmp == 0) { |
979 | idx_old++; |
980 | } |
981 | } else { |
982 | invariant(do_del); |
983 | paranoid_invariant(cmp < 0); |
984 | paranoid_invariant(!do_skip); |
985 | paranoid_invariant(!do_put); |
986 | |
987 | num_del++; |
988 | if (idx_old != idx_old_used) { |
989 | swap_dbts(&old_keys.dbts[idx_old_used], &old_keys.dbts[idx_old]); |
990 | } |
991 | idx_old++; |
992 | idx_old_used++; |
993 | } |
994 | } |
995 | old_keys.size = idx_old_used; |
996 | new_keys.size = idx_new_used; |
997 | new_vals.size = idx_new_used; |
998 | |
999 | if (num_del > 0) { |
1000 | del_dbs[n_del_dbs] = db; |
1001 | del_fts[n_del_dbs] = db->i->ft_handle; |
1002 | del_key_arrays[n_del_dbs] = old_keys; |
1003 | n_del_dbs++; |
1004 | } |
1005 | // If we put none, but delete some, but not all, then we need the log_put_multiple to happen. |
1006 | // Include this db in the put_dbs so we do log_put_multiple. |
1007 | // do_put_multiple will be a no-op for this db. |
1008 | if (num_put > 0 || (num_del > 0 && num_skip > 0)) { |
1009 | put_dbs[n_put_dbs] = db; |
1010 | put_fts[n_put_dbs] = db->i->ft_handle; |
1011 | put_key_arrays[n_put_dbs] = new_keys; |
1012 | put_val_arrays[n_put_dbs] = new_vals; |
1013 | n_put_dbs++; |
1014 | } |
1015 | } |
1016 | if (indexer) { |
1017 | // do a cheap check |
1018 | if (src_same) { |
1019 | bool may_insert = |
1020 | toku_indexer_may_insert(indexer, old_src_key) && |
1021 | toku_indexer_may_insert(indexer, new_src_key); |
1022 | if (!may_insert) { |
1023 | toku_indexer_lock(indexer); |
1024 | indexer_lock_taken = true; |
1025 | } |
1026 | else { |
1027 | indexer_shortcut = true; |
1028 | } |
1029 | } |
1030 | } |
1031 | toku_multi_operation_client_lock(); |
1032 | if (r == 0 && n_del_dbs > 0) { |
1033 | log_del_multiple(txn, src_db, old_src_key, old_src_data, n_del_dbs, del_fts, del_key_arrays); |
1034 | r = do_del_multiple(txn, n_del_dbs, del_dbs, del_key_arrays, src_db, old_src_key, indexer_shortcut); |
1035 | } |
1036 | |
1037 | if (r == 0 && n_put_dbs > 0) { |
1038 | // We sometimes skip some keys for del/put during runtime, but during recovery |
1039 | // we (may) delete ALL the keys for a given DB. Therefore we must put ALL the keys during |
1040 | // recovery so we don't end up losing data. |
1041 | // So unlike env->put_multiple, we ONLY log a 'put_multiple' log entry. |
1042 | log_put_multiple(txn, src_db, new_src_key, new_src_data, n_put_dbs, put_fts); |
1043 | r = do_put_multiple(txn, n_put_dbs, put_dbs, put_key_arrays, put_val_arrays, nullptr, src_db, new_src_key, indexer_shortcut); |
1044 | } |
1045 | toku_multi_operation_client_unlock(); |
1046 | if (indexer_lock_taken) { |
1047 | toku_indexer_unlock(indexer); |
1048 | } |
1049 | } |
1050 | |
1051 | cleanup: |
1052 | if (r == 0) |
1053 | STATUS_VALUE(YDB_LAYER_NUM_MULTI_UPDATES) += num_dbs; // accountability |
1054 | else |
1055 | STATUS_VALUE(YDB_LAYER_NUM_MULTI_UPDATES_FAIL) += num_dbs; // accountability |
1056 | return r; |
1057 | } |
1058 | |
1059 | int |
1060 | autotxn_db_del(DB* db, DB_TXN* txn, DBT* key, uint32_t flags) { |
1061 | bool changed; int r; |
1062 | r = toku_db_construct_autotxn(db, &txn, &changed, false); |
1063 | if (r!=0) return r; |
1064 | r = toku_db_del(db, txn, key, flags, false); |
1065 | return toku_db_destruct_autotxn(txn, r, changed); |
1066 | } |
1067 | |
1068 | int |
1069 | autotxn_db_put(DB* db, DB_TXN* txn, DBT* key, DBT* data, uint32_t flags) { |
1070 | //{ unsigned i; printf("put %p keylen=%d key={", db, key->size); for(i=0; i<key->size; i++) printf("%d,", ((char*)key->data)[i]); printf("} datalen=%d data={", data->size); for(i=0; i<data->size; i++) printf("%d,", ((char*)data->data)[i]); printf("}\n"); } |
1071 | bool changed; int r; |
1072 | r = env_check_avail_fs_space(db->dbenv); |
1073 | if (r != 0) { goto cleanup; } |
1074 | r = toku_db_construct_autotxn(db, &txn, &changed, false); |
1075 | if (r!=0) { |
1076 | goto cleanup; |
1077 | } |
1078 | r = toku_db_put(db, txn, key, data, flags, false); |
1079 | r = toku_db_destruct_autotxn(txn, r, changed); |
1080 | cleanup: |
1081 | return r; |
1082 | } |
1083 | |
1084 | int |
1085 | autotxn_db_update(DB *db, DB_TXN *txn, |
1086 | const DBT *key, |
1087 | const DBT *, |
1088 | uint32_t flags) { |
1089 | bool changed; int r; |
1090 | r = env_check_avail_fs_space(db->dbenv); |
1091 | if (r != 0) { goto cleanup; } |
1092 | r = toku_db_construct_autotxn(db, &txn, &changed, false); |
1093 | if (r != 0) { return r; } |
1094 | r = toku_db_update(db, txn, key, update_function_extra, flags); |
1095 | r = toku_db_destruct_autotxn(txn, r, changed); |
1096 | cleanup: |
1097 | return r; |
1098 | } |
1099 | |
1100 | int |
1101 | autotxn_db_update_broadcast(DB *db, DB_TXN *txn, |
1102 | const DBT *, |
1103 | uint32_t flags) { |
1104 | bool changed; int r; |
1105 | r = env_check_avail_fs_space(db->dbenv); |
1106 | if (r != 0) { goto cleanup; } |
1107 | r = toku_db_construct_autotxn(db, &txn, &changed, false); |
1108 | if (r != 0) { return r; } |
1109 | r = toku_db_update_broadcast(db, txn, update_function_extra, flags); |
1110 | r = toku_db_destruct_autotxn(txn, r, changed); |
1111 | cleanup: |
1112 | return r; |
1113 | } |
1114 | |
1115 | int |
1116 | env_put_multiple(DB_ENV *env, DB *src_db, DB_TXN *txn, const DBT *src_key, const DBT *src_val, uint32_t num_dbs, DB **db_array, DBT_ARRAY *keys, DBT_ARRAY *vals, uint32_t *flags_array) { |
1117 | int r = env_check_avail_fs_space(env); |
1118 | if (r == 0) { |
1119 | r = env_put_multiple_internal(env, src_db, txn, src_key, src_val, num_dbs, db_array, keys, vals, flags_array); |
1120 | } |
1121 | return r; |
1122 | } |
1123 | |
1124 | int |
1125 | toku_ydb_check_avail_fs_space(DB_ENV *env) { |
1126 | int rval = env_check_avail_fs_space(env); |
1127 | return rval; |
1128 | } |
1129 | #undef STATUS_VALUE |
1130 | |
1131 | #include <toku_race_tools.h> |
1132 | void __attribute__((constructor)) toku_ydb_write_helgrind_ignore(void); |
1133 | void |
1134 | toku_ydb_write_helgrind_ignore(void) { |
1135 | TOKU_VALGRIND_HG_DISABLE_CHECKING(&ydb_write_layer_status, sizeof ydb_write_layer_status); |
1136 | } |
1137 | |