| 1 | /* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */ |
| 2 | // vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4: |
| 3 | #ident "$Id$" |
| 4 | /*====== |
| 5 | This file is part of PerconaFT. |
| 6 | |
| 7 | |
| 8 | Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved. |
| 9 | |
| 10 | PerconaFT is free software: you can redistribute it and/or modify |
| 11 | it under the terms of the GNU General Public License, version 2, |
| 12 | as published by the Free Software Foundation. |
| 13 | |
| 14 | PerconaFT is distributed in the hope that it will be useful, |
| 15 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 17 | GNU General Public License for more details. |
| 18 | |
| 19 | You should have received a copy of the GNU General Public License |
| 20 | along with PerconaFT. If not, see <http://www.gnu.org/licenses/>. |
| 21 | |
| 22 | ---------------------------------------- |
| 23 | |
| 24 | PerconaFT is free software: you can redistribute it and/or modify |
| 25 | it under the terms of the GNU Affero General Public License, version 3, |
| 26 | as published by the Free Software Foundation. |
| 27 | |
| 28 | PerconaFT is distributed in the hope that it will be useful, |
| 29 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 30 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 31 | GNU Affero General Public License for more details. |
| 32 | |
| 33 | You should have received a copy of the GNU Affero General Public License |
| 34 | along with PerconaFT. If not, see <http://www.gnu.org/licenses/>. |
| 35 | ======= */ |
| 36 | |
| 37 | #ident "Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved." |
| 38 | |
| 39 | #include <db.h> |
| 40 | #include <string.h> |
| 41 | |
| 42 | #include "portability/memory.h" |
| 43 | |
| 44 | #include "util/dbt.h" |
| 45 | |
| 46 | DBT *toku_init_dbt(DBT *dbt) { |
| 47 | memset(dbt, 0, sizeof(*dbt)); |
| 48 | return dbt; |
| 49 | } |
| 50 | |
| 51 | DBT toku_empty_dbt(void) { |
| 52 | static const DBT empty_dbt = { .data = 0, .size = 0, .ulen = 0, .flags = 0 }; |
| 53 | return empty_dbt; |
| 54 | } |
| 55 | |
| 56 | DBT *toku_init_dbt_flags(DBT *dbt, uint32_t flags) { |
| 57 | toku_init_dbt(dbt); |
| 58 | dbt->flags = flags; |
| 59 | return dbt; |
| 60 | } |
| 61 | |
| 62 | DBT_ARRAY *toku_dbt_array_init(DBT_ARRAY *dbts, uint32_t size) { |
| 63 | uint32_t capacity = 1; |
| 64 | while (capacity < size) { capacity *= 2; } |
| 65 | |
| 66 | XMALLOC_N(capacity, dbts->dbts); |
| 67 | for (uint32_t i = 0; i < capacity; i++) { |
| 68 | toku_init_dbt_flags(&dbts->dbts[i], DB_DBT_REALLOC); |
| 69 | } |
| 70 | dbts->size = size; |
| 71 | dbts->capacity = capacity; |
| 72 | return dbts; |
| 73 | } |
| 74 | |
| 75 | void toku_dbt_array_resize(DBT_ARRAY *dbts, uint32_t size) { |
| 76 | if (size != dbts->size) { |
| 77 | if (size > dbts->capacity) { |
| 78 | const uint32_t old_capacity = dbts->capacity; |
| 79 | uint32_t new_capacity = dbts->capacity; |
| 80 | while (new_capacity < size) { |
| 81 | new_capacity *= 2; |
| 82 | } |
| 83 | dbts->capacity = new_capacity; |
| 84 | XREALLOC_N(new_capacity, dbts->dbts); |
| 85 | for (uint32_t i = old_capacity; i < new_capacity; i++) { |
| 86 | toku_init_dbt_flags(&dbts->dbts[i], DB_DBT_REALLOC); |
| 87 | } |
| 88 | } else if (size < dbts->size) { |
| 89 | if (dbts->capacity >= 8 && size < dbts->capacity / 4) { |
| 90 | const int old_capacity = dbts->capacity; |
| 91 | const int new_capacity = dbts->capacity / 2; |
| 92 | for (int i = new_capacity; i < old_capacity; i++) { |
| 93 | toku_destroy_dbt(&dbts->dbts[i]); |
| 94 | } |
| 95 | XREALLOC_N(new_capacity, dbts->dbts); |
| 96 | dbts->capacity = new_capacity; |
| 97 | } |
| 98 | } |
| 99 | dbts->size = size; |
| 100 | } |
| 101 | } |
| 102 | |
| 103 | void toku_dbt_array_destroy_shallow(DBT_ARRAY *dbts) { |
| 104 | toku_free(dbts->dbts); |
| 105 | ZERO_STRUCT(*dbts); |
| 106 | } |
| 107 | |
| 108 | void toku_dbt_array_destroy(DBT_ARRAY *dbts) { |
| 109 | for (uint32_t i = 0; i < dbts->capacity; i++) { |
| 110 | toku_destroy_dbt(&dbts->dbts[i]); |
| 111 | } |
| 112 | toku_dbt_array_destroy_shallow(dbts); |
| 113 | } |
| 114 | |
| 115 | |
| 116 | |
| 117 | void toku_destroy_dbt(DBT *dbt) { |
| 118 | switch (dbt->flags) { |
| 119 | case DB_DBT_MALLOC: |
| 120 | case DB_DBT_REALLOC: |
| 121 | toku_free(dbt->data); |
| 122 | toku_init_dbt(dbt); |
| 123 | break; |
| 124 | } |
| 125 | } |
| 126 | |
| 127 | DBT *toku_fill_dbt(DBT *dbt, const void *k, uint32_t len) { |
| 128 | toku_init_dbt(dbt); |
| 129 | dbt->size=len; |
| 130 | dbt->data=(char*)k; |
| 131 | return dbt; |
| 132 | } |
| 133 | |
| 134 | DBT *toku_memdup_dbt(DBT *dbt, const void *k, size_t len) { |
| 135 | toku_init_dbt_flags(dbt, DB_DBT_MALLOC); |
| 136 | dbt->size = len; |
| 137 | dbt->data = toku_xmemdup(k, len); |
| 138 | return dbt; |
| 139 | } |
| 140 | |
| 141 | DBT *toku_copyref_dbt(DBT *dst, const DBT src) { |
| 142 | dst->flags = 0; |
| 143 | dst->ulen = 0; |
| 144 | dst->size = src.size; |
| 145 | dst->data = src.data; |
| 146 | return dst; |
| 147 | } |
| 148 | |
| 149 | DBT *toku_clone_dbt(DBT *dst, const DBT &src) { |
| 150 | return toku_memdup_dbt(dst, src.data, src.size); |
| 151 | } |
| 152 | |
| 153 | void |
| 154 | toku_sdbt_cleanup(struct simple_dbt *sdbt) { |
| 155 | if (sdbt->data) toku_free(sdbt->data); |
| 156 | memset(sdbt, 0, sizeof(*sdbt)); |
| 157 | } |
| 158 | |
| 159 | static inline int sdbt_realloc(struct simple_dbt *sdbt) { |
| 160 | void *new_data = toku_realloc(sdbt->data, sdbt->len); |
| 161 | int r; |
| 162 | if (new_data == NULL) { |
| 163 | r = get_error_errno(); |
| 164 | } else { |
| 165 | sdbt->data = new_data; |
| 166 | r = 0; |
| 167 | } |
| 168 | return r; |
| 169 | } |
| 170 | |
| 171 | static inline int dbt_realloc(DBT *dbt) { |
| 172 | void *new_data = toku_realloc(dbt->data, dbt->ulen); |
| 173 | int r; |
| 174 | if (new_data == NULL) { |
| 175 | r = get_error_errno(); |
| 176 | } else { |
| 177 | dbt->data = new_data; |
| 178 | r = 0; |
| 179 | } |
| 180 | return r; |
| 181 | } |
| 182 | |
| 183 | // sdbt is the static value used when flags==0 |
| 184 | // Otherwise malloc or use the user-supplied memory, as according to the flags in d->flags. |
| 185 | int toku_dbt_set(uint32_t len, const void *val, DBT *d, struct simple_dbt *sdbt) { |
| 186 | int r; |
| 187 | if (d == nullptr) { |
| 188 | r = 0; |
| 189 | } else { |
| 190 | switch (d->flags) { |
| 191 | case (DB_DBT_USERMEM): |
| 192 | d->size = len; |
| 193 | if (d->ulen<len) r = DB_BUFFER_SMALL; |
| 194 | else { |
| 195 | memcpy(d->data, val, len); |
| 196 | r = 0; |
| 197 | } |
| 198 | break; |
| 199 | case (DB_DBT_MALLOC): |
| 200 | d->data = NULL; |
| 201 | d->ulen = 0; |
| 202 | // fallthrough |
| 203 | // to DB_DBT_REALLOC |
| 204 | case (DB_DBT_REALLOC): |
| 205 | if (d->ulen < len) { |
| 206 | d->ulen = len*2; |
| 207 | r = dbt_realloc(d); |
| 208 | } |
| 209 | else if (d->ulen > 16 && d->ulen > len*4) { |
| 210 | d->ulen = len*2 < 16 ? 16 : len*2; |
| 211 | r = dbt_realloc(d); |
| 212 | } |
| 213 | else if (d->data==NULL) { |
| 214 | d->ulen = len; |
| 215 | r = dbt_realloc(d); |
| 216 | } |
| 217 | else r=0; |
| 218 | |
| 219 | if (r==0) { |
| 220 | memcpy(d->data, val, len); |
| 221 | d->size = len; |
| 222 | } |
| 223 | break; |
| 224 | case (0): |
| 225 | if (sdbt->len < len) { |
| 226 | sdbt->len = len*2; |
| 227 | r = sdbt_realloc(sdbt); |
| 228 | } |
| 229 | else if (sdbt->len > 16 && sdbt->len > len*4) { |
| 230 | sdbt->len = len*2 < 16 ? 16 : len*2; |
| 231 | r = sdbt_realloc(sdbt); |
| 232 | } |
| 233 | else r=0; |
| 234 | |
| 235 | if (r==0) { |
| 236 | memcpy(sdbt->data, val, len); |
| 237 | d->data = sdbt->data; |
| 238 | d->size = len; |
| 239 | } |
| 240 | break; |
| 241 | default: |
| 242 | r = EINVAL; |
| 243 | break; |
| 244 | } |
| 245 | } |
| 246 | return r; |
| 247 | } |
| 248 | |
| 249 | const DBT *toku_dbt_positive_infinity(void) { |
| 250 | static DBT positive_infinity_dbt = {}; |
| 251 | return &positive_infinity_dbt; |
| 252 | } |
| 253 | |
| 254 | const DBT *toku_dbt_negative_infinity(void) { |
| 255 | static DBT negative_infinity_dbt = {}; |
| 256 | return &negative_infinity_dbt; |
| 257 | } |
| 258 | |
| 259 | bool toku_dbt_is_infinite(const DBT *dbt) { |
| 260 | return dbt == toku_dbt_positive_infinity() || dbt == toku_dbt_negative_infinity(); |
| 261 | } |
| 262 | |
| 263 | bool toku_dbt_is_empty(const DBT *dbt) { |
| 264 | // can't have a null data field with a non-zero size |
| 265 | paranoid_invariant(dbt->data != nullptr || dbt->size == 0); |
| 266 | return dbt->data == nullptr; |
| 267 | } |
| 268 | |
| 269 | int toku_dbt_infinite_compare(const DBT *a, const DBT *b) { |
| 270 | if (a == b) { |
| 271 | return 0; |
| 272 | } else if (a == toku_dbt_positive_infinity()) { |
| 273 | return 1; |
| 274 | } else if (b == toku_dbt_positive_infinity()) { |
| 275 | return -1; |
| 276 | } else if (a == toku_dbt_negative_infinity()) { |
| 277 | return -1; |
| 278 | } else { |
| 279 | invariant(b == toku_dbt_negative_infinity()); |
| 280 | return 1; |
| 281 | } |
| 282 | } |
| 283 | |
| 284 | bool toku_dbt_equals(const DBT *a, const DBT *b) { |
| 285 | if (!toku_dbt_is_infinite(a) && !toku_dbt_is_infinite(b)) { |
| 286 | return a->data == b->data && a->size == b->size; |
| 287 | } else { |
| 288 | // a or b is infinite, so they're equal if they are the same infinite |
| 289 | return a == b ? true : false; |
| 290 | } |
| 291 | } |
| 292 | |