| 1 | /* Copyright (c) 2004, 2014, Oracle and/or its affiliates. |
| 2 | Copyright (c) 2009, 2014, Monty Program Ab. |
| 3 | |
| 4 | This program is free software; you can redistribute it and/or modify |
| 5 | it under the terms of the GNU General Public License as published by |
| 6 | the Free Software Foundation; version 2 of the License. |
| 7 | |
| 8 | This program is distributed in the hope that it will be useful, |
| 9 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 10 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 11 | GNU General Public License for more details. |
| 12 | |
| 13 | You should have received a copy of the GNU General Public License |
| 14 | along with this program; if not, write to the Free Software |
| 15 | Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ |
| 16 | |
| 17 | /* |
| 18 | ======================================================================= |
| 19 | NOTE: this library implements SQL standard "exact numeric" type |
| 20 | and is not at all generic, but rather intentinally crippled to |
| 21 | follow the standard :) |
| 22 | ======================================================================= |
| 23 | Quoting the standard |
| 24 | (SQL:2003, Part 2 Foundations, aka ISO/IEC 9075-2:2003) |
| 25 | |
| 26 | 4.4.2 Characteristics of numbers, page 27: |
| 27 | |
| 28 | An exact numeric type has a precision P and a scale S. P is a positive |
| 29 | integer that determines the number of significant digits in a |
| 30 | particular radix R, where R is either 2 or 10. S is a non-negative |
| 31 | integer. Every value of an exact numeric type of scale S is of the |
| 32 | form n*10^{-S}, where n is an integer such that -R^P <= n <= R^P. |
| 33 | |
| 34 | [...] |
| 35 | |
| 36 | If an assignment of some number would result in a loss of its most |
| 37 | significant digit, an exception condition is raised. If least |
| 38 | significant digits are lost, implementation-defined rounding or |
| 39 | truncating occurs, with no exception condition being raised. |
| 40 | |
| 41 | [...] |
| 42 | |
| 43 | Whenever an exact or approximate numeric value is assigned to an exact |
| 44 | numeric value site, an approximation of its value that preserves |
| 45 | leading significant digits after rounding or truncating is represented |
| 46 | in the declared type of the target. The value is converted to have the |
| 47 | precision and scale of the target. The choice of whether to truncate |
| 48 | or round is implementation-defined. |
| 49 | |
| 50 | [...] |
| 51 | |
| 52 | All numeric values between the smallest and the largest value, |
| 53 | inclusive, in a given exact numeric type have an approximation |
| 54 | obtained by rounding or truncation for that type; it is |
| 55 | implementation-defined which other numeric values have such |
| 56 | approximations. |
| 57 | |
| 58 | 5.3 <literal>, page 143 |
| 59 | |
| 60 | <exact numeric literal> ::= |
| 61 | <unsigned integer> [ <period> [ <unsigned integer> ] ] |
| 62 | | <period> <unsigned integer> |
| 63 | |
| 64 | 6.1 <data type>, page 165: |
| 65 | |
| 66 | 19) The <scale> of an <exact numeric type> shall not be greater than |
| 67 | the <precision> of the <exact numeric type>. |
| 68 | |
| 69 | 20) For the <exact numeric type>s DECIMAL and NUMERIC: |
| 70 | |
| 71 | a) The maximum value of <precision> is implementation-defined. |
| 72 | <precision> shall not be greater than this value. |
| 73 | b) The maximum value of <scale> is implementation-defined. <scale> |
| 74 | shall not be greater than this maximum value. |
| 75 | |
| 76 | 21) NUMERIC specifies the data type exact numeric, with the decimal |
| 77 | precision and scale specified by the <precision> and <scale>. |
| 78 | |
| 79 | 22) DECIMAL specifies the data type exact numeric, with the decimal |
| 80 | scale specified by the <scale> and the implementation-defined |
| 81 | decimal precision equal to or greater than the value of the |
| 82 | specified <precision>. |
| 83 | |
| 84 | 6.26 <numeric value expression>, page 241: |
| 85 | |
| 86 | 1) If the declared type of both operands of a dyadic arithmetic |
| 87 | operator is exact numeric, then the declared type of the result is |
| 88 | an implementation-defined exact numeric type, with precision and |
| 89 | scale determined as follows: |
| 90 | |
| 91 | a) Let S1 and S2 be the scale of the first and second operands |
| 92 | respectively. |
| 93 | b) The precision of the result of addition and subtraction is |
| 94 | implementation-defined, and the scale is the maximum of S1 and S2. |
| 95 | c) The precision of the result of multiplication is |
| 96 | implementation-defined, and the scale is S1 + S2. |
| 97 | d) The precision and scale of the result of division are |
| 98 | implementation-defined. |
| 99 | */ |
| 100 | |
| 101 | #include "strings_def.h" |
| 102 | #include <m_ctype.h> |
| 103 | #include <myisampack.h> |
| 104 | #include <my_sys.h> /* for my_alloca */ |
| 105 | #include <decimal.h> |
| 106 | |
| 107 | /* |
| 108 | Internally decimal numbers are stored base 10^9 (see DIG_BASE below) |
| 109 | So one variable of type decimal_digit_t is limited: |
| 110 | |
| 111 | 0 < decimal_digit <= DIG_MAX < DIG_BASE |
| 112 | |
| 113 | in the struct st_decimal_t: |
| 114 | |
| 115 | intg is the number of *decimal* digits (NOT number of decimal_digit_t's !) |
| 116 | before the point |
| 117 | frac - number of decimal digits after the point |
| 118 | buf is an array of decimal_digit_t's |
| 119 | len is the length of buf (length of allocated space) in decimal_digit_t's, |
| 120 | not in bytes |
| 121 | */ |
| 122 | typedef decimal_digit_t dec1; |
| 123 | typedef longlong dec2; |
| 124 | |
| 125 | #define DIG_PER_DEC1 9 |
| 126 | #define DIG_MASK 100000000 |
| 127 | #define DIG_BASE 1000000000 |
| 128 | #define DIG_MAX (DIG_BASE-1) |
| 129 | #define DIG_BASE2 ((dec2)DIG_BASE * (dec2)DIG_BASE) |
| 130 | static const dec1 powers10[DIG_PER_DEC1+1]={ |
| 131 | 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000}; |
| 132 | static const int dig2bytes[DIG_PER_DEC1+1]={0, 1, 1, 2, 2, 3, 3, 4, 4, 4}; |
| 133 | static const dec1 frac_max[DIG_PER_DEC1-1]={ |
| 134 | 900000000, 990000000, 999000000, |
| 135 | 999900000, 999990000, 999999000, |
| 136 | 999999900, 999999990 }; |
| 137 | |
| 138 | static inline int ROUND_UP(int x) |
| 139 | { |
| 140 | return (x + (x > 0 ? DIG_PER_DEC1 - 1 : 0)) / DIG_PER_DEC1; |
| 141 | } |
| 142 | |
| 143 | #ifdef HAVE_valgrind |
| 144 | #define sanity(d) DBUG_ASSERT((d)->len > 0) |
| 145 | #else |
| 146 | #define sanity(d) DBUG_ASSERT((d)->len >0 && ((d)->buf[0] | \ |
| 147 | (d)->buf[(d)->len-1] | 1)) |
| 148 | #endif |
| 149 | |
| 150 | #define FIX_INTG_FRAC_ERROR(len, intg1, frac1, error) \ |
| 151 | do \ |
| 152 | { \ |
| 153 | if (unlikely(intg1+frac1 > (len))) \ |
| 154 | { \ |
| 155 | if (unlikely(intg1 > (len))) \ |
| 156 | { \ |
| 157 | intg1=(len); \ |
| 158 | frac1=0; \ |
| 159 | error=E_DEC_OVERFLOW; \ |
| 160 | } \ |
| 161 | else \ |
| 162 | { \ |
| 163 | frac1=(len)-intg1; \ |
| 164 | error=E_DEC_TRUNCATED; \ |
| 165 | } \ |
| 166 | } \ |
| 167 | else \ |
| 168 | error=E_DEC_OK; \ |
| 169 | } while(0) |
| 170 | |
| 171 | #define ADD(to, from1, from2, carry) /* assume carry <= 1 */ \ |
| 172 | do \ |
| 173 | { \ |
| 174 | dec1 a=(from1)+(from2)+(carry); \ |
| 175 | DBUG_ASSERT((carry) <= 1); \ |
| 176 | if (((carry)= a >= DIG_BASE)) /* no division here! */ \ |
| 177 | a-=DIG_BASE; \ |
| 178 | (to)=a; \ |
| 179 | } while(0) |
| 180 | |
| 181 | #define ADD2(to, from1, from2, carry) \ |
| 182 | do \ |
| 183 | { \ |
| 184 | dec2 a=((dec2)(from1))+(from2)+(carry); \ |
| 185 | if (((carry)= a >= DIG_BASE)) \ |
| 186 | a-=DIG_BASE; \ |
| 187 | if (unlikely(a >= DIG_BASE)) \ |
| 188 | { \ |
| 189 | a-=DIG_BASE; \ |
| 190 | carry++; \ |
| 191 | } \ |
| 192 | (to)=(dec1) a; \ |
| 193 | } while(0) |
| 194 | |
| 195 | #define SUB(to, from1, from2, carry) /* to=from1-from2 */ \ |
| 196 | do \ |
| 197 | { \ |
| 198 | dec1 a=(from1)-(from2)-(carry); \ |
| 199 | if (((carry)= a < 0)) \ |
| 200 | a+=DIG_BASE; \ |
| 201 | (to)=a; \ |
| 202 | } while(0) |
| 203 | |
| 204 | #define SUB2(to, from1, from2, carry) /* to=from1-from2 */ \ |
| 205 | do \ |
| 206 | { \ |
| 207 | dec1 a=(from1)-(from2)-(carry); \ |
| 208 | if (((carry)= a < 0)) \ |
| 209 | a+=DIG_BASE; \ |
| 210 | if (unlikely(a < 0)) \ |
| 211 | { \ |
| 212 | a+=DIG_BASE; \ |
| 213 | carry++; \ |
| 214 | } \ |
| 215 | (to)=a; \ |
| 216 | } while(0) |
| 217 | |
| 218 | /* |
| 219 | Get maximum value for given precision and scale |
| 220 | |
| 221 | SYNOPSIS |
| 222 | max_decimal() |
| 223 | precision/scale - see decimal_bin_size() below |
| 224 | to - decimal where where the result will be stored |
| 225 | to->buf and to->len must be set. |
| 226 | */ |
| 227 | |
| 228 | void max_decimal(int precision, int frac, decimal_t *to) |
| 229 | { |
| 230 | int intpart; |
| 231 | dec1 *buf= to->buf; |
| 232 | DBUG_ASSERT(precision && precision >= frac); |
| 233 | |
| 234 | to->sign= 0; |
| 235 | if ((intpart= to->intg= (precision - frac))) |
| 236 | { |
| 237 | int firstdigits= intpart % DIG_PER_DEC1; |
| 238 | if (firstdigits) |
| 239 | *buf++= powers10[firstdigits] - 1; /* get 9 99 999 ... */ |
| 240 | for(intpart/= DIG_PER_DEC1; intpart; intpart--) |
| 241 | *buf++= DIG_MAX; |
| 242 | } |
| 243 | |
| 244 | if ((to->frac= frac)) |
| 245 | { |
| 246 | int lastdigits= frac % DIG_PER_DEC1; |
| 247 | for(frac/= DIG_PER_DEC1; frac; frac--) |
| 248 | *buf++= DIG_MAX; |
| 249 | if (lastdigits) |
| 250 | *buf= frac_max[lastdigits - 1]; |
| 251 | } |
| 252 | } |
| 253 | |
| 254 | |
| 255 | static dec1 *remove_leading_zeroes(const decimal_t *from, int *intg_result) |
| 256 | { |
| 257 | int intg= from->intg, i; |
| 258 | dec1 *buf0= from->buf; |
| 259 | i= ((intg - 1) % DIG_PER_DEC1) + 1; |
| 260 | while (intg > 0 && *buf0 == 0) |
| 261 | { |
| 262 | intg-= i; |
| 263 | i= DIG_PER_DEC1; |
| 264 | buf0++; |
| 265 | } |
| 266 | if (intg > 0) |
| 267 | { |
| 268 | for (i= (intg - 1) % DIG_PER_DEC1; *buf0 < powers10[i--]; intg--) ; |
| 269 | DBUG_ASSERT(intg > 0); |
| 270 | } |
| 271 | else |
| 272 | intg=0; |
| 273 | *intg_result= intg; |
| 274 | return buf0; |
| 275 | } |
| 276 | |
| 277 | |
| 278 | /* |
| 279 | Count actual length of fraction part (without ending zeroes) |
| 280 | |
| 281 | SYNOPSIS |
| 282 | decimal_actual_fraction() |
| 283 | from number for processing |
| 284 | */ |
| 285 | |
| 286 | int decimal_actual_fraction(const decimal_t *from) |
| 287 | { |
| 288 | int frac= from->frac, i; |
| 289 | dec1 *buf0= from->buf + ROUND_UP(from->intg) + ROUND_UP(frac) - 1; |
| 290 | |
| 291 | if (frac == 0) |
| 292 | return 0; |
| 293 | |
| 294 | i= ((frac - 1) % DIG_PER_DEC1 + 1); |
| 295 | while (frac > 0 && *buf0 == 0) |
| 296 | { |
| 297 | frac-= i; |
| 298 | i= DIG_PER_DEC1; |
| 299 | buf0--; |
| 300 | } |
| 301 | if (frac > 0) |
| 302 | { |
| 303 | for (i= DIG_PER_DEC1 - ((frac - 1) % DIG_PER_DEC1); |
| 304 | *buf0 % powers10[i++] == 0; |
| 305 | frac--) {} |
| 306 | } |
| 307 | return frac; |
| 308 | } |
| 309 | |
| 310 | |
| 311 | /* |
| 312 | Convert decimal to its printable string representation |
| 313 | |
| 314 | SYNOPSIS |
| 315 | decimal2string() |
| 316 | from - value to convert |
| 317 | to - points to buffer where string representation |
| 318 | should be stored |
| 319 | *to_len - in: size of to buffer (incl. terminating '\0') |
| 320 | out: length of the actually written string (excl. '\0') |
| 321 | fixed_precision - 0 if representation can be variable length and |
| 322 | fixed_decimals will not be checked in this case. |
| 323 | Put number as with fixed point position with this |
| 324 | number of digits (sign counted and decimal point is |
| 325 | counted) |
| 326 | fixed_decimals - number digits after point. |
| 327 | filler - character to fill gaps in case of fixed_precision > 0 |
| 328 | |
| 329 | RETURN VALUE |
| 330 | E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW |
| 331 | */ |
| 332 | |
| 333 | int decimal2string(const decimal_t *from, char *to, int *to_len, |
| 334 | int fixed_precision, int fixed_decimals, |
| 335 | char filler) |
| 336 | { |
| 337 | /* {intg_len, frac_len} output widths; {intg, frac} places in input */ |
| 338 | int len, intg, frac= from->frac, i, intg_len, frac_len, fill; |
| 339 | /* number digits before decimal point */ |
| 340 | int fixed_intg= (fixed_precision ? |
| 341 | (fixed_precision - fixed_decimals) : 0); |
| 342 | int error=E_DEC_OK; |
| 343 | char *s=to; |
| 344 | dec1 *buf, *buf0=from->buf, tmp; |
| 345 | |
| 346 | DBUG_ASSERT(*to_len >= 2+ (int) from->sign); |
| 347 | |
| 348 | /* removing leading zeroes */ |
| 349 | buf0= remove_leading_zeroes(from, &intg); |
| 350 | if (unlikely(intg+frac==0)) |
| 351 | { |
| 352 | intg=1; |
| 353 | tmp=0; |
| 354 | buf0=&tmp; |
| 355 | } |
| 356 | |
| 357 | if (!(intg_len= fixed_precision ? fixed_intg : intg)) |
| 358 | intg_len= 1; |
| 359 | frac_len= fixed_precision ? fixed_decimals : frac; |
| 360 | len= from->sign + intg_len + MY_TEST(frac) + frac_len; |
| 361 | if (fixed_precision) |
| 362 | { |
| 363 | if (frac > fixed_decimals) |
| 364 | { |
| 365 | error= E_DEC_TRUNCATED; |
| 366 | frac= fixed_decimals; |
| 367 | } |
| 368 | if (intg > fixed_intg) |
| 369 | { |
| 370 | error= E_DEC_OVERFLOW; |
| 371 | intg= fixed_intg; |
| 372 | } |
| 373 | } |
| 374 | else if (unlikely(len > --*to_len)) /* reserve one byte for \0 */ |
| 375 | { |
| 376 | int j= len-*to_len; |
| 377 | error= (frac && j <= frac + 1) ? E_DEC_TRUNCATED : E_DEC_OVERFLOW; |
| 378 | if (frac && j >= frac + 1) j--; |
| 379 | if (j > frac) |
| 380 | { |
| 381 | intg-= j-frac; |
| 382 | frac= 0; |
| 383 | } |
| 384 | else |
| 385 | frac-=j; |
| 386 | frac_len= frac; |
| 387 | len= from->sign + intg_len + MY_TEST(frac) + frac_len; |
| 388 | } |
| 389 | *to_len=len; |
| 390 | s[len]=0; |
| 391 | |
| 392 | if (from->sign) |
| 393 | *s++='-'; |
| 394 | |
| 395 | if (frac) |
| 396 | { |
| 397 | char *s1= s + intg_len; |
| 398 | fill= frac_len - frac; |
| 399 | buf=buf0+ROUND_UP(intg); |
| 400 | *s1++='.'; |
| 401 | for (; frac>0; frac-=DIG_PER_DEC1) |
| 402 | { |
| 403 | dec1 x=*buf++; |
| 404 | for (i=MY_MIN(frac, DIG_PER_DEC1); i; i--) |
| 405 | { |
| 406 | dec1 y=x/DIG_MASK; |
| 407 | *s1++='0'+(uchar)y; |
| 408 | x-=y*DIG_MASK; |
| 409 | x*=10; |
| 410 | } |
| 411 | } |
| 412 | for(; fill; fill--) |
| 413 | *s1++=filler; |
| 414 | } |
| 415 | |
| 416 | fill= intg_len - intg; |
| 417 | if (intg == 0) |
| 418 | fill--; /* symbol 0 before digital point */ |
| 419 | for(; fill; fill--) |
| 420 | *s++=filler; |
| 421 | if (intg) |
| 422 | { |
| 423 | s+=intg; |
| 424 | for (buf=buf0+ROUND_UP(intg); intg>0; intg-=DIG_PER_DEC1) |
| 425 | { |
| 426 | dec1 x=*--buf; |
| 427 | for (i=MY_MIN(intg, DIG_PER_DEC1); i; i--) |
| 428 | { |
| 429 | dec1 y=x/10; |
| 430 | *--s='0'+(uchar)(x-y*10); |
| 431 | x=y; |
| 432 | } |
| 433 | } |
| 434 | } |
| 435 | else |
| 436 | *s= '0'; |
| 437 | return error; |
| 438 | } |
| 439 | |
| 440 | |
| 441 | /* |
| 442 | Return bounds of decimal digits in the number |
| 443 | |
| 444 | SYNOPSIS |
| 445 | digits_bounds() |
| 446 | from - decimal number for processing |
| 447 | start_result - index (from 0 ) of first decimal digits will |
| 448 | be written by this address |
| 449 | end_result - index of position just after last decimal digit |
| 450 | be written by this address |
| 451 | */ |
| 452 | |
| 453 | static void digits_bounds(decimal_t *from, int *start_result, int *end_result) |
| 454 | { |
| 455 | int start, stop, i; |
| 456 | dec1 *buf_beg= from->buf; |
| 457 | dec1 *end= from->buf + ROUND_UP(from->intg) + ROUND_UP(from->frac); |
| 458 | dec1 *buf_end= end - 1; |
| 459 | |
| 460 | /* find non-zero digit from number beginning */ |
| 461 | while (buf_beg < end && *buf_beg == 0) |
| 462 | buf_beg++; |
| 463 | |
| 464 | if (buf_beg >= end) |
| 465 | { |
| 466 | /* it is zero */ |
| 467 | *start_result= *end_result= 0; |
| 468 | return; |
| 469 | } |
| 470 | |
| 471 | /* find non-zero decimal digit from number beginning */ |
| 472 | if (buf_beg == from->buf && from->intg) |
| 473 | { |
| 474 | start= DIG_PER_DEC1 - (i= ((from->intg-1) % DIG_PER_DEC1 + 1)); |
| 475 | i--; |
| 476 | } |
| 477 | else |
| 478 | { |
| 479 | i= DIG_PER_DEC1 - 1; |
| 480 | start= (int) ((buf_beg - from->buf) * DIG_PER_DEC1); |
| 481 | } |
| 482 | if (buf_beg < end) |
| 483 | for (; *buf_beg < powers10[i--]; start++) ; |
| 484 | *start_result= start; /* index of first decimal digit (from 0) */ |
| 485 | |
| 486 | /* find non-zero digit at the end */ |
| 487 | while (buf_end > buf_beg && *buf_end == 0) |
| 488 | buf_end--; |
| 489 | /* find non-zero decimal digit from the end */ |
| 490 | if (buf_end == end - 1 && from->frac) |
| 491 | { |
| 492 | stop= (int) (((buf_end - from->buf) * DIG_PER_DEC1 + |
| 493 | (i= ((from->frac - 1) % DIG_PER_DEC1 + 1)))); |
| 494 | i= DIG_PER_DEC1 - i + 1; |
| 495 | } |
| 496 | else |
| 497 | { |
| 498 | stop= (int) ((buf_end - from->buf + 1) * DIG_PER_DEC1); |
| 499 | i= 1; |
| 500 | } |
| 501 | for (; *buf_end % powers10[i++] == 0; stop--) {} |
| 502 | *end_result= stop; /* index of position after last decimal digit (from 0) */ |
| 503 | } |
| 504 | |
| 505 | |
| 506 | /* |
| 507 | Left shift for alignment of data in buffer |
| 508 | |
| 509 | SYNOPSIS |
| 510 | do_mini_left_shift() |
| 511 | dec pointer to decimal number which have to be shifted |
| 512 | shift number of decimal digits on which it should be shifted |
| 513 | beg/end bounds of decimal digits (see digits_bounds()) |
| 514 | |
| 515 | NOTE |
| 516 | Result fitting in the buffer should be garanted. |
| 517 | 'shift' have to be from 1 to DIG_PER_DEC1-1 (inclusive) |
| 518 | */ |
| 519 | |
| 520 | void do_mini_left_shift(decimal_t *dec, int shift, int beg, int last) |
| 521 | { |
| 522 | dec1 *from= dec->buf + ROUND_UP(beg + 1) - 1; |
| 523 | dec1 *end= dec->buf + ROUND_UP(last) - 1; |
| 524 | int c_shift= DIG_PER_DEC1 - shift; |
| 525 | DBUG_ASSERT(from >= dec->buf); |
| 526 | DBUG_ASSERT(end < dec->buf + dec->len); |
| 527 | if (beg % DIG_PER_DEC1 < shift) |
| 528 | *(from - 1)= (*from) / powers10[c_shift]; |
| 529 | for(; from < end; from++) |
| 530 | *from= ((*from % powers10[c_shift]) * powers10[shift] + |
| 531 | (*(from + 1)) / powers10[c_shift]); |
| 532 | *from= (*from % powers10[c_shift]) * powers10[shift]; |
| 533 | } |
| 534 | |
| 535 | |
| 536 | /* |
| 537 | Right shift for alignment of data in buffer |
| 538 | |
| 539 | SYNOPSIS |
| 540 | do_mini_left_shift() |
| 541 | dec pointer to decimal number which have to be shifted |
| 542 | shift number of decimal digits on which it should be shifted |
| 543 | beg/end bounds of decimal digits (see digits_bounds()) |
| 544 | |
| 545 | NOTE |
| 546 | Result fitting in the buffer should be garanted. |
| 547 | 'shift' have to be from 1 to DIG_PER_DEC1-1 (inclusive) |
| 548 | */ |
| 549 | |
| 550 | void do_mini_right_shift(decimal_t *dec, int shift, int beg, int last) |
| 551 | { |
| 552 | dec1 *from= dec->buf + ROUND_UP(last) - 1; |
| 553 | dec1 *end= dec->buf + ROUND_UP(beg + 1) - 1; |
| 554 | int c_shift= DIG_PER_DEC1 - shift; |
| 555 | DBUG_ASSERT(from < dec->buf + dec->len); |
| 556 | DBUG_ASSERT(end >= dec->buf); |
| 557 | if (DIG_PER_DEC1 - ((last - 1) % DIG_PER_DEC1 + 1) < shift) |
| 558 | *(from + 1)= (*from % powers10[shift]) * powers10[c_shift]; |
| 559 | for(; from > end; from--) |
| 560 | *from= (*from / powers10[shift] + |
| 561 | (*(from - 1) % powers10[shift]) * powers10[c_shift]); |
| 562 | *from= *from / powers10[shift]; |
| 563 | } |
| 564 | |
| 565 | |
| 566 | /* |
| 567 | Shift of decimal digits in given number (with rounding if it need) |
| 568 | |
| 569 | SYNOPSIS |
| 570 | decimal_shift() |
| 571 | dec number to be shifted |
| 572 | shift number of decimal positions |
| 573 | shift > 0 means shift to left shift |
| 574 | shift < 0 meand right shift |
| 575 | NOTE |
| 576 | In fact it is multipling on 10^shift. |
| 577 | RETURN |
| 578 | E_DEC_OK OK |
| 579 | E_DEC_OVERFLOW operation lead to overflow, number is untoched |
| 580 | E_DEC_TRUNCATED number was rounded to fit into buffer |
| 581 | */ |
| 582 | |
| 583 | int decimal_shift(decimal_t *dec, int shift) |
| 584 | { |
| 585 | /* index of first non zero digit (all indexes from 0) */ |
| 586 | int beg; |
| 587 | /* index of position after last decimal digit */ |
| 588 | int end; |
| 589 | /* index of digit position just after point */ |
| 590 | int point= ROUND_UP(dec->intg) * DIG_PER_DEC1; |
| 591 | /* new point position */ |
| 592 | int new_point= point + shift; |
| 593 | /* number of digits in result */ |
| 594 | int digits_int, digits_frac; |
| 595 | /* length of result and new fraction in big digits*/ |
| 596 | int new_len, new_frac_len; |
| 597 | /* return code */ |
| 598 | int err= E_DEC_OK; |
| 599 | int new_front; |
| 600 | |
| 601 | if (shift == 0) |
| 602 | return E_DEC_OK; |
| 603 | |
| 604 | digits_bounds(dec, &beg, &end); |
| 605 | |
| 606 | if (beg == end) |
| 607 | { |
| 608 | decimal_make_zero(dec); |
| 609 | return E_DEC_OK; |
| 610 | } |
| 611 | |
| 612 | digits_int= new_point - beg; |
| 613 | set_if_bigger(digits_int, 0); |
| 614 | digits_frac= end - new_point; |
| 615 | set_if_bigger(digits_frac, 0); |
| 616 | |
| 617 | if ((new_len= ROUND_UP(digits_int) + (new_frac_len= ROUND_UP(digits_frac))) > |
| 618 | dec->len) |
| 619 | { |
| 620 | int lack= new_len - dec->len; |
| 621 | int diff; |
| 622 | |
| 623 | if (new_frac_len < lack) |
| 624 | return E_DEC_OVERFLOW; /* lack more then we have in fraction */ |
| 625 | |
| 626 | /* cat off fraction part to allow new number to fit in our buffer */ |
| 627 | err= E_DEC_TRUNCATED; |
| 628 | new_frac_len-= lack; |
| 629 | diff= digits_frac - (new_frac_len * DIG_PER_DEC1); |
| 630 | /* Make rounding method as parameter? */ |
| 631 | decimal_round(dec, dec, end - point - diff, HALF_UP); |
| 632 | end-= diff; |
| 633 | digits_frac= new_frac_len * DIG_PER_DEC1; |
| 634 | |
| 635 | if (end <= beg) |
| 636 | { |
| 637 | /* |
| 638 | we lost all digits (they will be shifted out of buffer), so we can |
| 639 | just return 0 |
| 640 | */ |
| 641 | decimal_make_zero(dec); |
| 642 | return E_DEC_TRUNCATED; |
| 643 | } |
| 644 | } |
| 645 | |
| 646 | if (shift % DIG_PER_DEC1) |
| 647 | { |
| 648 | int l_mini_shift, r_mini_shift, mini_shift; |
| 649 | int do_left; |
| 650 | /* |
| 651 | Calculate left/right shift to align decimal digits inside our bug |
| 652 | digits correctly |
| 653 | */ |
| 654 | if (shift > 0) |
| 655 | { |
| 656 | l_mini_shift= shift % DIG_PER_DEC1; |
| 657 | r_mini_shift= DIG_PER_DEC1 - l_mini_shift; |
| 658 | /* |
| 659 | It is left shift so prefer left shift, but if we have not place from |
| 660 | left, we have to have it from right, because we checked length of |
| 661 | result |
| 662 | */ |
| 663 | do_left= l_mini_shift <= beg; |
| 664 | DBUG_ASSERT(do_left || (dec->len * DIG_PER_DEC1 - end) >= r_mini_shift); |
| 665 | } |
| 666 | else |
| 667 | { |
| 668 | r_mini_shift= (-shift) % DIG_PER_DEC1; |
| 669 | l_mini_shift= DIG_PER_DEC1 - r_mini_shift; |
| 670 | /* see comment above */ |
| 671 | do_left= !((dec->len * DIG_PER_DEC1 - end) >= r_mini_shift); |
| 672 | DBUG_ASSERT(!do_left || l_mini_shift <= beg); |
| 673 | } |
| 674 | if (do_left) |
| 675 | { |
| 676 | do_mini_left_shift(dec, l_mini_shift, beg, end); |
| 677 | mini_shift= -l_mini_shift; |
| 678 | } |
| 679 | else |
| 680 | { |
| 681 | do_mini_right_shift(dec, r_mini_shift, beg, end); |
| 682 | mini_shift= r_mini_shift; |
| 683 | } |
| 684 | new_point+= mini_shift; |
| 685 | /* |
| 686 | If number is shifted and correctly aligned in buffer we can |
| 687 | finish |
| 688 | */ |
| 689 | if (!(shift+= mini_shift) && (new_point - digits_int) < DIG_PER_DEC1) |
| 690 | { |
| 691 | dec->intg= digits_int; |
| 692 | dec->frac= digits_frac; |
| 693 | return err; /* already shifted as it should be */ |
| 694 | } |
| 695 | beg+= mini_shift; |
| 696 | end+= mini_shift; |
| 697 | } |
| 698 | |
| 699 | /* if new 'decimal front' is in first digit, we do not need move digits */ |
| 700 | if ((new_front= (new_point - digits_int)) >= DIG_PER_DEC1 || |
| 701 | new_front < 0) |
| 702 | { |
| 703 | /* need to move digits */ |
| 704 | int d_shift; |
| 705 | dec1 *to, *barier; |
| 706 | if (new_front > 0) |
| 707 | { |
| 708 | /* move left */ |
| 709 | d_shift= new_front / DIG_PER_DEC1; |
| 710 | to= dec->buf + (ROUND_UP(beg + 1) - 1 - d_shift); |
| 711 | barier= dec->buf + (ROUND_UP(end) - 1 - d_shift); |
| 712 | DBUG_ASSERT(to >= dec->buf); |
| 713 | DBUG_ASSERT(barier + d_shift < dec->buf + dec->len); |
| 714 | for(; to <= barier; to++) |
| 715 | *to= *(to + d_shift); |
| 716 | for(barier+= d_shift; to <= barier; to++) |
| 717 | *to= 0; |
| 718 | d_shift= -d_shift; |
| 719 | } |
| 720 | else |
| 721 | { |
| 722 | /* move right */ |
| 723 | d_shift= (1 - new_front) / DIG_PER_DEC1; |
| 724 | to= dec->buf + ROUND_UP(end) - 1 + d_shift; |
| 725 | barier= dec->buf + ROUND_UP(beg + 1) - 1 + d_shift; |
| 726 | DBUG_ASSERT(to < dec->buf + dec->len); |
| 727 | DBUG_ASSERT(barier - d_shift >= dec->buf); |
| 728 | for(; to >= barier; to--) |
| 729 | *to= *(to - d_shift); |
| 730 | for(barier-= d_shift; to >= barier; to--) |
| 731 | *to= 0; |
| 732 | } |
| 733 | d_shift*= DIG_PER_DEC1; |
| 734 | beg+= d_shift; |
| 735 | end+= d_shift; |
| 736 | new_point+= d_shift; |
| 737 | } |
| 738 | |
| 739 | /* |
| 740 | If there are gaps then fill ren with 0. |
| 741 | |
| 742 | Only one of following 'for' loops will work because beg <= end |
| 743 | */ |
| 744 | beg= ROUND_UP(beg + 1) - 1; |
| 745 | end= ROUND_UP(end) - 1; |
| 746 | DBUG_ASSERT(new_point >= 0); |
| 747 | |
| 748 | /* We don't want negative new_point below */ |
| 749 | if (new_point != 0) |
| 750 | new_point= ROUND_UP(new_point) - 1; |
| 751 | |
| 752 | if (new_point > end) |
| 753 | { |
| 754 | do |
| 755 | { |
| 756 | dec->buf[new_point]=0; |
| 757 | } while (--new_point > end); |
| 758 | } |
| 759 | else |
| 760 | { |
| 761 | for (; new_point < beg; new_point++) |
| 762 | dec->buf[new_point]= 0; |
| 763 | } |
| 764 | dec->intg= digits_int; |
| 765 | dec->frac= digits_frac; |
| 766 | return err; |
| 767 | } |
| 768 | |
| 769 | |
| 770 | /* |
| 771 | Convert string to decimal |
| 772 | |
| 773 | SYNOPSIS |
| 774 | internal_str2decl() |
| 775 | from - value to convert. Doesn't have to be \0 terminated! |
| 776 | to - decimal where where the result will be stored |
| 777 | to->buf and to->len must be set. |
| 778 | end - Pointer to pointer to end of string. Will on return be |
| 779 | set to the char after the last used character |
| 780 | fixed - use to->intg, to->frac as limits for input number |
| 781 | |
| 782 | NOTE |
| 783 | to->intg and to->frac can be modified even when fixed=1 |
| 784 | (but only decreased, in this case) |
| 785 | |
| 786 | RETURN VALUE |
| 787 | E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW/E_DEC_BAD_NUM/E_DEC_OOM |
| 788 | In case of E_DEC_FATAL_ERROR *to is set to decimal zero |
| 789 | (to make error handling easier) |
| 790 | */ |
| 791 | |
| 792 | int |
| 793 | internal_str2dec(const char *from, decimal_t *to, char **end, my_bool fixed) |
| 794 | { |
| 795 | const char *s= from, *s1, *endp, *end_of_string= *end; |
| 796 | int i, intg, frac, error, intg1, frac1; |
| 797 | dec1 x,*buf; |
| 798 | sanity(to); |
| 799 | |
| 800 | error= E_DEC_BAD_NUM; /* In case of bad number */ |
| 801 | while (s < end_of_string && my_isspace(&my_charset_latin1, *s)) |
| 802 | s++; |
| 803 | if (s == end_of_string) |
| 804 | goto fatal_error; |
| 805 | |
| 806 | if ((to->sign= (*s == '-'))) |
| 807 | s++; |
| 808 | else if (*s == '+') |
| 809 | s++; |
| 810 | |
| 811 | s1=s; |
| 812 | while (s < end_of_string && my_isdigit(&my_charset_latin1, *s)) |
| 813 | s++; |
| 814 | intg= (int) (s-s1); |
| 815 | if (s < end_of_string && *s=='.') |
| 816 | { |
| 817 | endp= s+1; |
| 818 | while (endp < end_of_string && my_isdigit(&my_charset_latin1, *endp)) |
| 819 | endp++; |
| 820 | frac= (int) (endp - s - 1); |
| 821 | } |
| 822 | else |
| 823 | { |
| 824 | frac= 0; |
| 825 | endp= s; |
| 826 | } |
| 827 | |
| 828 | *end= (char*) endp; |
| 829 | |
| 830 | if (frac+intg == 0) |
| 831 | goto fatal_error; |
| 832 | |
| 833 | error= 0; |
| 834 | if (fixed) |
| 835 | { |
| 836 | if (frac > to->frac) |
| 837 | { |
| 838 | error=E_DEC_TRUNCATED; |
| 839 | frac=to->frac; |
| 840 | } |
| 841 | if (intg > to->intg) |
| 842 | { |
| 843 | error=E_DEC_OVERFLOW; |
| 844 | intg=to->intg; |
| 845 | } |
| 846 | intg1=ROUND_UP(intg); |
| 847 | frac1=ROUND_UP(frac); |
| 848 | if (intg1+frac1 > to->len) |
| 849 | { |
| 850 | error= E_DEC_OOM; |
| 851 | goto fatal_error; |
| 852 | } |
| 853 | } |
| 854 | else |
| 855 | { |
| 856 | intg1=ROUND_UP(intg); |
| 857 | frac1=ROUND_UP(frac); |
| 858 | FIX_INTG_FRAC_ERROR(to->len, intg1, frac1, error); |
| 859 | if (unlikely(error)) |
| 860 | { |
| 861 | frac=frac1*DIG_PER_DEC1; |
| 862 | if (error == E_DEC_OVERFLOW) |
| 863 | intg=intg1*DIG_PER_DEC1; |
| 864 | } |
| 865 | } |
| 866 | /* Error is guaranteed to be set here */ |
| 867 | to->intg=intg; |
| 868 | to->frac=frac; |
| 869 | |
| 870 | buf=to->buf+intg1; |
| 871 | s1=s; |
| 872 | |
| 873 | for (x=0, i=0; intg; intg--) |
| 874 | { |
| 875 | x+= (*--s - '0')*powers10[i]; |
| 876 | |
| 877 | if (unlikely(++i == DIG_PER_DEC1)) |
| 878 | { |
| 879 | *--buf=x; |
| 880 | x=0; |
| 881 | i=0; |
| 882 | } |
| 883 | } |
| 884 | if (i) |
| 885 | *--buf=x; |
| 886 | |
| 887 | buf=to->buf+intg1; |
| 888 | for (x=0, i=0; frac; frac--) |
| 889 | { |
| 890 | x= (*++s1 - '0') + x*10; |
| 891 | |
| 892 | if (unlikely(++i == DIG_PER_DEC1)) |
| 893 | { |
| 894 | *buf++=x; |
| 895 | x=0; |
| 896 | i=0; |
| 897 | } |
| 898 | } |
| 899 | if (i) |
| 900 | *buf=x*powers10[DIG_PER_DEC1-i]; |
| 901 | |
| 902 | /* Handle exponent */ |
| 903 | if (endp+1 < end_of_string && (*endp == 'e' || *endp == 'E')) |
| 904 | { |
| 905 | int str_error; |
| 906 | longlong exponent= my_strtoll10(endp+1, (char**) &end_of_string, |
| 907 | &str_error); |
| 908 | |
| 909 | if (end_of_string != endp +1) /* If at least one digit */ |
| 910 | { |
| 911 | *end= (char*) end_of_string; |
| 912 | if (str_error > 0) |
| 913 | { |
| 914 | error= E_DEC_BAD_NUM; |
| 915 | goto fatal_error; |
| 916 | } |
| 917 | if (exponent > INT_MAX/2 || (str_error == 0 && exponent < 0)) |
| 918 | { |
| 919 | error= E_DEC_OVERFLOW; |
| 920 | goto fatal_error; |
| 921 | } |
| 922 | if (exponent < INT_MIN/2 && error != E_DEC_OVERFLOW) |
| 923 | { |
| 924 | error= E_DEC_TRUNCATED; |
| 925 | goto fatal_error; |
| 926 | } |
| 927 | if (error != E_DEC_OVERFLOW) |
| 928 | error= decimal_shift(to, (int) exponent); |
| 929 | } |
| 930 | } |
| 931 | if (to->sign && decimal_is_zero(to)) |
| 932 | to->sign= 0; |
| 933 | return error; |
| 934 | |
| 935 | fatal_error: |
| 936 | decimal_make_zero(to); |
| 937 | return error; |
| 938 | } |
| 939 | |
| 940 | |
| 941 | /* |
| 942 | Convert decimal to double |
| 943 | |
| 944 | SYNOPSIS |
| 945 | decimal2double() |
| 946 | from - value to convert |
| 947 | to - result will be stored there |
| 948 | |
| 949 | RETURN VALUE |
| 950 | E_DEC_OK/E_DEC_OVERFLOW/E_DEC_TRUNCATED |
| 951 | */ |
| 952 | |
| 953 | int decimal2double(const decimal_t *from, double *to) |
| 954 | { |
| 955 | char strbuf[FLOATING_POINT_BUFFER], *end; |
| 956 | int len= sizeof(strbuf); |
| 957 | int rc, error; |
| 958 | |
| 959 | rc = decimal2string(from, strbuf, &len, 0, 0, 0); |
| 960 | end= strbuf + len; |
| 961 | |
| 962 | DBUG_PRINT("info" , ("interm.: %s" , strbuf)); |
| 963 | |
| 964 | *to= my_strtod(strbuf, &end, &error); |
| 965 | |
| 966 | DBUG_PRINT("info" , ("result: %f" , *to)); |
| 967 | |
| 968 | return (rc != E_DEC_OK) ? rc : (error ? E_DEC_OVERFLOW : E_DEC_OK); |
| 969 | } |
| 970 | |
| 971 | /* |
| 972 | Convert double to decimal |
| 973 | |
| 974 | SYNOPSIS |
| 975 | double2decimal() |
| 976 | from - value to convert |
| 977 | to - result will be stored there |
| 978 | |
| 979 | RETURN VALUE |
| 980 | E_DEC_OK/E_DEC_OVERFLOW/E_DEC_TRUNCATED |
| 981 | */ |
| 982 | |
| 983 | int double2decimal(double from, decimal_t *to) |
| 984 | { |
| 985 | char buff[FLOATING_POINT_BUFFER], *end; |
| 986 | int res; |
| 987 | DBUG_ENTER("double2decimal" ); |
| 988 | end= buff + my_gcvt(from, MY_GCVT_ARG_DOUBLE, sizeof(buff) - 1, buff, NULL); |
| 989 | res= string2decimal(buff, to, &end); |
| 990 | DBUG_PRINT("exit" , ("res: %d" , res)); |
| 991 | DBUG_RETURN(res); |
| 992 | } |
| 993 | |
| 994 | |
| 995 | static int ull2dec(ulonglong from, decimal_t *to) |
| 996 | { |
| 997 | int intg1, error=E_DEC_OK; |
| 998 | ulonglong x=from; |
| 999 | dec1 *buf; |
| 1000 | |
| 1001 | sanity(to); |
| 1002 | |
| 1003 | if (!from) |
| 1004 | { |
| 1005 | decimal_make_zero(to); |
| 1006 | return E_DEC_OK; |
| 1007 | } |
| 1008 | |
| 1009 | for (intg1=1; from >= DIG_BASE; intg1++, from/=DIG_BASE) {} |
| 1010 | if (unlikely(intg1 > to->len)) |
| 1011 | { |
| 1012 | intg1=to->len; |
| 1013 | error=E_DEC_OVERFLOW; |
| 1014 | } |
| 1015 | to->frac=0; |
| 1016 | for(to->intg= (intg1-1)*DIG_PER_DEC1; from; to->intg++, from/=10) {} |
| 1017 | |
| 1018 | for (buf=to->buf+intg1; intg1; intg1--) |
| 1019 | { |
| 1020 | ulonglong y=x/DIG_BASE; |
| 1021 | *--buf=(dec1)(x-y*DIG_BASE); |
| 1022 | x=y; |
| 1023 | } |
| 1024 | return error; |
| 1025 | } |
| 1026 | |
| 1027 | int ulonglong2decimal(ulonglong from, decimal_t *to) |
| 1028 | { |
| 1029 | to->sign=0; |
| 1030 | return ull2dec(from, to); |
| 1031 | } |
| 1032 | |
| 1033 | int longlong2decimal(longlong from, decimal_t *to) |
| 1034 | { |
| 1035 | if ((to->sign= from < 0)) |
| 1036 | { |
| 1037 | if (from == LONGLONG_MIN) // avoid undefined behavior |
| 1038 | return ull2dec((ulonglong)LONGLONG_MIN, to); |
| 1039 | return ull2dec(-from, to); |
| 1040 | } |
| 1041 | return ull2dec(from, to); |
| 1042 | } |
| 1043 | |
| 1044 | int decimal2ulonglong(const decimal_t *from, ulonglong *to) |
| 1045 | { |
| 1046 | dec1 *buf=from->buf; |
| 1047 | ulonglong x=0; |
| 1048 | int intg, frac; |
| 1049 | |
| 1050 | if (from->sign) |
| 1051 | { |
| 1052 | *to= 0; |
| 1053 | return E_DEC_OVERFLOW; |
| 1054 | } |
| 1055 | |
| 1056 | for (intg=from->intg; intg > 0; intg-=DIG_PER_DEC1) |
| 1057 | { |
| 1058 | ulonglong y=x; |
| 1059 | x=x*DIG_BASE + *buf++; |
| 1060 | if (unlikely(y > ((ulonglong) ULONGLONG_MAX/DIG_BASE) || x < y)) |
| 1061 | { |
| 1062 | *to=ULONGLONG_MAX; |
| 1063 | return E_DEC_OVERFLOW; |
| 1064 | } |
| 1065 | } |
| 1066 | *to=x; |
| 1067 | for (frac=from->frac; unlikely(frac > 0); frac-=DIG_PER_DEC1) |
| 1068 | if (*buf++) |
| 1069 | return E_DEC_TRUNCATED; |
| 1070 | return E_DEC_OK; |
| 1071 | } |
| 1072 | |
| 1073 | int decimal2longlong(const decimal_t *from, longlong *to) |
| 1074 | { |
| 1075 | dec1 *buf=from->buf; |
| 1076 | longlong x=0; |
| 1077 | int intg, frac; |
| 1078 | |
| 1079 | for (intg=from->intg; intg > 0; intg-=DIG_PER_DEC1) |
| 1080 | { |
| 1081 | longlong y=x; |
| 1082 | /* |
| 1083 | Attention: trick! |
| 1084 | we're calculating -|from| instead of |from| here |
| 1085 | because |LONGLONG_MIN| > LONGLONG_MAX |
| 1086 | so we can convert -9223372036854775808 correctly |
| 1087 | */ |
| 1088 | x=x*DIG_BASE - *buf++; |
| 1089 | if (unlikely(y < (LONGLONG_MIN/DIG_BASE) || x > y)) |
| 1090 | { |
| 1091 | /* |
| 1092 | the decimal is bigger than any possible integer |
| 1093 | return border integer depending on the sign |
| 1094 | */ |
| 1095 | *to= from->sign ? LONGLONG_MIN : LONGLONG_MAX; |
| 1096 | return E_DEC_OVERFLOW; |
| 1097 | } |
| 1098 | } |
| 1099 | /* boundary case: 9223372036854775808 */ |
| 1100 | if (unlikely(from->sign==0 && x == LONGLONG_MIN)) |
| 1101 | { |
| 1102 | *to= LONGLONG_MAX; |
| 1103 | return E_DEC_OVERFLOW; |
| 1104 | } |
| 1105 | |
| 1106 | *to=from->sign ? x : -x; |
| 1107 | for (frac=from->frac; unlikely(frac > 0); frac-=DIG_PER_DEC1) |
| 1108 | if (*buf++) |
| 1109 | return E_DEC_TRUNCATED; |
| 1110 | return E_DEC_OK; |
| 1111 | } |
| 1112 | |
| 1113 | /* |
| 1114 | Convert decimal to its binary fixed-length representation |
| 1115 | two representations of the same length can be compared with memcmp |
| 1116 | with the correct -1/0/+1 result |
| 1117 | |
| 1118 | SYNOPSIS |
| 1119 | decimal2bin() |
| 1120 | from - value to convert |
| 1121 | to - points to buffer where string representation should be stored |
| 1122 | precision/scale - see decimal_bin_size() below |
| 1123 | |
| 1124 | NOTE |
| 1125 | the buffer is assumed to be of the size decimal_bin_size(precision, scale) |
| 1126 | |
| 1127 | RETURN VALUE |
| 1128 | E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW |
| 1129 | |
| 1130 | DESCRIPTION |
| 1131 | for storage decimal numbers are converted to the "binary" format. |
| 1132 | |
| 1133 | This format has the following properties: |
| 1134 | 1. length of the binary representation depends on the {precision, scale} |
| 1135 | as provided by the caller and NOT on the intg/frac of the decimal to |
| 1136 | convert. |
| 1137 | 2. binary representations of the same {precision, scale} can be compared |
| 1138 | with memcmp - with the same result as decimal_cmp() of the original |
| 1139 | decimals (not taking into account possible precision loss during |
| 1140 | conversion). |
| 1141 | |
| 1142 | This binary format is as follows: |
| 1143 | 1. First the number is converted to have a requested precision and scale. |
| 1144 | 2. Every full DIG_PER_DEC1 digits of intg part are stored in 4 bytes |
| 1145 | as is |
| 1146 | 3. The first intg % DIG_PER_DEC1 digits are stored in the reduced |
| 1147 | number of bytes (enough bytes to store this number of digits - |
| 1148 | see dig2bytes) |
| 1149 | 4. same for frac - full decimal_digit_t's are stored as is, |
| 1150 | the last frac % DIG_PER_DEC1 digits - in the reduced number of bytes. |
| 1151 | 5. If the number is negative - every byte is inversed. |
| 1152 | 5. The very first bit of the resulting byte array is inverted (because |
| 1153 | memcmp compares unsigned bytes, see property 2 above) |
| 1154 | |
| 1155 | Example: |
| 1156 | |
| 1157 | 1234567890.1234 |
| 1158 | |
| 1159 | internally is represented as 3 decimal_digit_t's |
| 1160 | |
| 1161 | 1 234567890 123400000 |
| 1162 | |
| 1163 | (assuming we want a binary representation with precision=14, scale=4) |
| 1164 | in hex it's |
| 1165 | |
| 1166 | 00-00-00-01 0D-FB-38-D2 07-5A-EF-40 |
| 1167 | |
| 1168 | now, middle decimal_digit_t is full - it stores 9 decimal digits. It goes |
| 1169 | into binary representation as is: |
| 1170 | |
| 1171 | |
| 1172 | ........... 0D-FB-38-D2 ............ |
| 1173 | |
| 1174 | First decimal_digit_t has only one decimal digit. We can store one digit in |
| 1175 | one byte, no need to waste four: |
| 1176 | |
| 1177 | 01 0D-FB-38-D2 ............ |
| 1178 | |
| 1179 | now, last digit. It's 123400000. We can store 1234 in two bytes: |
| 1180 | |
| 1181 | 01 0D-FB-38-D2 04-D2 |
| 1182 | |
| 1183 | So, we've packed 12 bytes number in 7 bytes. |
| 1184 | And now we invert the highest bit to get the final result: |
| 1185 | |
| 1186 | 81 0D FB 38 D2 04 D2 |
| 1187 | |
| 1188 | And for -1234567890.1234 it would be |
| 1189 | |
| 1190 | 7E F2 04 C7 2D FB 2D |
| 1191 | */ |
| 1192 | int decimal2bin(const decimal_t *from, uchar *to, int precision, int frac) |
| 1193 | { |
| 1194 | dec1 mask=from->sign ? -1 : 0, *buf1=from->buf, *stop1; |
| 1195 | int error=E_DEC_OK, intg=precision-frac, |
| 1196 | isize1, intg1, intg1x, from_intg, |
| 1197 | intg0=intg/DIG_PER_DEC1, |
| 1198 | frac0=frac/DIG_PER_DEC1, |
| 1199 | intg0x=intg-intg0*DIG_PER_DEC1, |
| 1200 | frac0x=frac-frac0*DIG_PER_DEC1, |
| 1201 | frac1=from->frac/DIG_PER_DEC1, |
| 1202 | frac1x=from->frac-frac1*DIG_PER_DEC1, |
| 1203 | isize0=intg0*sizeof(dec1)+dig2bytes[intg0x], |
| 1204 | fsize0=frac0*sizeof(dec1)+dig2bytes[frac0x], |
| 1205 | fsize1=frac1*sizeof(dec1)+dig2bytes[frac1x]; |
| 1206 | const int orig_isize0= isize0; |
| 1207 | const int orig_fsize0= fsize0; |
| 1208 | uchar *orig_to= to; |
| 1209 | |
| 1210 | buf1= remove_leading_zeroes(from, &from_intg); |
| 1211 | |
| 1212 | if (unlikely(from_intg+fsize1==0)) |
| 1213 | { |
| 1214 | mask=0; /* just in case */ |
| 1215 | intg=1; |
| 1216 | buf1=&mask; |
| 1217 | } |
| 1218 | |
| 1219 | intg1=from_intg/DIG_PER_DEC1; |
| 1220 | intg1x=from_intg-intg1*DIG_PER_DEC1; |
| 1221 | isize1=intg1*sizeof(dec1)+dig2bytes[intg1x]; |
| 1222 | |
| 1223 | if (intg < from_intg) |
| 1224 | { |
| 1225 | buf1+=intg1-intg0+(intg1x>0)-(intg0x>0); |
| 1226 | intg1=intg0; intg1x=intg0x; |
| 1227 | error=E_DEC_OVERFLOW; |
| 1228 | } |
| 1229 | else if (isize0 > isize1) |
| 1230 | { |
| 1231 | while (isize0-- > isize1) |
| 1232 | *to++= (char)mask; |
| 1233 | } |
| 1234 | if (fsize0 < fsize1) |
| 1235 | { |
| 1236 | frac1=frac0; frac1x=frac0x; |
| 1237 | error=E_DEC_TRUNCATED; |
| 1238 | } |
| 1239 | else if (fsize0 > fsize1 && frac1x) |
| 1240 | { |
| 1241 | if (frac0 == frac1) |
| 1242 | { |
| 1243 | frac1x=frac0x; |
| 1244 | fsize0= fsize1; |
| 1245 | } |
| 1246 | else |
| 1247 | { |
| 1248 | frac1++; |
| 1249 | frac1x=0; |
| 1250 | } |
| 1251 | } |
| 1252 | |
| 1253 | /* intg1x part */ |
| 1254 | if (intg1x) |
| 1255 | { |
| 1256 | int i=dig2bytes[intg1x]; |
| 1257 | dec1 x=(*buf1++ % powers10[intg1x]) ^ mask; |
| 1258 | switch (i) |
| 1259 | { |
| 1260 | case 1: mi_int1store(to, x); break; |
| 1261 | case 2: mi_int2store(to, x); break; |
| 1262 | case 3: mi_int3store(to, x); break; |
| 1263 | case 4: mi_int4store(to, x); break; |
| 1264 | default: DBUG_ASSERT(0); |
| 1265 | } |
| 1266 | to+=i; |
| 1267 | } |
| 1268 | |
| 1269 | /* intg1+frac1 part */ |
| 1270 | for (stop1=buf1+intg1+frac1; buf1 < stop1; to+=sizeof(dec1)) |
| 1271 | { |
| 1272 | dec1 x=*buf1++ ^ mask; |
| 1273 | DBUG_ASSERT(sizeof(dec1) == 4); |
| 1274 | mi_int4store(to, x); |
| 1275 | } |
| 1276 | |
| 1277 | /* frac1x part */ |
| 1278 | if (frac1x) |
| 1279 | { |
| 1280 | dec1 x; |
| 1281 | int i=dig2bytes[frac1x], |
| 1282 | lim=(frac1 < frac0 ? DIG_PER_DEC1 : frac0x); |
| 1283 | while (frac1x < lim && dig2bytes[frac1x] == i) |
| 1284 | frac1x++; |
| 1285 | x=(*buf1 / powers10[DIG_PER_DEC1 - frac1x]) ^ mask; |
| 1286 | switch (i) |
| 1287 | { |
| 1288 | case 1: mi_int1store(to, x); break; |
| 1289 | case 2: mi_int2store(to, x); break; |
| 1290 | case 3: mi_int3store(to, x); break; |
| 1291 | case 4: mi_int4store(to, x); break; |
| 1292 | default: DBUG_ASSERT(0); |
| 1293 | } |
| 1294 | to+=i; |
| 1295 | } |
| 1296 | if (fsize0 > fsize1) |
| 1297 | { |
| 1298 | uchar *to_end= orig_to + orig_fsize0 + orig_isize0; |
| 1299 | |
| 1300 | while (fsize0-- > fsize1 && to < to_end) |
| 1301 | *to++= (uchar)mask; |
| 1302 | } |
| 1303 | orig_to[0]^= 0x80; |
| 1304 | |
| 1305 | /* Check that we have written the whole decimal and nothing more */ |
| 1306 | DBUG_ASSERT(to == orig_to + orig_fsize0 + orig_isize0); |
| 1307 | return error; |
| 1308 | } |
| 1309 | |
| 1310 | /* |
| 1311 | Restores decimal from its binary fixed-length representation |
| 1312 | |
| 1313 | SYNOPSIS |
| 1314 | bin2decimal() |
| 1315 | from - value to convert |
| 1316 | to - result |
| 1317 | precision/scale - see decimal_bin_size() below |
| 1318 | |
| 1319 | NOTE |
| 1320 | see decimal2bin() |
| 1321 | the buffer is assumed to be of the size decimal_bin_size(precision, scale) |
| 1322 | |
| 1323 | RETURN VALUE |
| 1324 | E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW |
| 1325 | */ |
| 1326 | |
| 1327 | int bin2decimal(const uchar *from, decimal_t *to, int precision, int scale) |
| 1328 | { |
| 1329 | int error=E_DEC_OK, intg=precision-scale, |
| 1330 | intg0=intg/DIG_PER_DEC1, frac0=scale/DIG_PER_DEC1, |
| 1331 | intg0x=intg-intg0*DIG_PER_DEC1, frac0x=scale-frac0*DIG_PER_DEC1, |
| 1332 | intg1=intg0+(intg0x>0), frac1=frac0+(frac0x>0); |
| 1333 | dec1 *buf=to->buf, mask=(*from & 0x80) ? 0 : -1; |
| 1334 | const uchar *stop; |
| 1335 | uchar *d_copy; |
| 1336 | int bin_size= decimal_bin_size(precision, scale); |
| 1337 | |
| 1338 | sanity(to); |
| 1339 | d_copy= (uchar*) my_alloca(bin_size); |
| 1340 | memcpy(d_copy, from, bin_size); |
| 1341 | d_copy[0]^= 0x80; |
| 1342 | from= d_copy; |
| 1343 | |
| 1344 | FIX_INTG_FRAC_ERROR(to->len, intg1, frac1, error); |
| 1345 | if (unlikely(error)) |
| 1346 | { |
| 1347 | if (intg1 < intg0+(intg0x>0)) |
| 1348 | { |
| 1349 | from+=dig2bytes[intg0x]+sizeof(dec1)*(intg0-intg1); |
| 1350 | frac0=frac0x=intg0x=0; |
| 1351 | intg0=intg1; |
| 1352 | } |
| 1353 | else |
| 1354 | { |
| 1355 | frac0x=0; |
| 1356 | frac0=frac1; |
| 1357 | } |
| 1358 | } |
| 1359 | |
| 1360 | to->sign=(mask != 0); |
| 1361 | to->intg=intg0*DIG_PER_DEC1+intg0x; |
| 1362 | to->frac=frac0*DIG_PER_DEC1+frac0x; |
| 1363 | |
| 1364 | if (intg0x) |
| 1365 | { |
| 1366 | int i=dig2bytes[intg0x]; |
| 1367 | dec1 UNINIT_VAR(x); |
| 1368 | switch (i) |
| 1369 | { |
| 1370 | case 1: x=mi_sint1korr(from); break; |
| 1371 | case 2: x=mi_sint2korr(from); break; |
| 1372 | case 3: x=mi_sint3korr(from); break; |
| 1373 | case 4: x=mi_sint4korr(from); break; |
| 1374 | default: abort(); |
| 1375 | } |
| 1376 | from+=i; |
| 1377 | *buf=x ^ mask; |
| 1378 | if (((ulonglong)*buf) >= (ulonglong) powers10[intg0x+1]) |
| 1379 | goto err; |
| 1380 | if (buf > to->buf || *buf != 0) |
| 1381 | buf++; |
| 1382 | else |
| 1383 | to->intg-=intg0x; |
| 1384 | } |
| 1385 | for (stop=from+intg0*sizeof(dec1); from < stop; from+=sizeof(dec1)) |
| 1386 | { |
| 1387 | DBUG_ASSERT(sizeof(dec1) == 4); |
| 1388 | *buf=mi_sint4korr(from) ^ mask; |
| 1389 | if (((uint32)*buf) > DIG_MAX) |
| 1390 | goto err; |
| 1391 | if (buf > to->buf || *buf != 0) |
| 1392 | buf++; |
| 1393 | else |
| 1394 | to->intg-=DIG_PER_DEC1; |
| 1395 | } |
| 1396 | DBUG_ASSERT(to->intg >=0); |
| 1397 | for (stop=from+frac0*sizeof(dec1); from < stop; from+=sizeof(dec1)) |
| 1398 | { |
| 1399 | DBUG_ASSERT(sizeof(dec1) == 4); |
| 1400 | *buf=mi_sint4korr(from) ^ mask; |
| 1401 | if (((uint32)*buf) > DIG_MAX) |
| 1402 | goto err; |
| 1403 | buf++; |
| 1404 | } |
| 1405 | if (frac0x) |
| 1406 | { |
| 1407 | int i=dig2bytes[frac0x]; |
| 1408 | dec1 UNINIT_VAR(x); |
| 1409 | switch (i) |
| 1410 | { |
| 1411 | case 1: x=mi_sint1korr(from); break; |
| 1412 | case 2: x=mi_sint2korr(from); break; |
| 1413 | case 3: x=mi_sint3korr(from); break; |
| 1414 | case 4: x=mi_sint4korr(from); break; |
| 1415 | default: abort(); |
| 1416 | } |
| 1417 | *buf=(x ^ mask) * powers10[DIG_PER_DEC1 - frac0x]; |
| 1418 | if (((uint32)*buf) > DIG_MAX) |
| 1419 | goto err; |
| 1420 | buf++; |
| 1421 | } |
| 1422 | my_afree(d_copy); |
| 1423 | |
| 1424 | /* |
| 1425 | No digits? We have read the number zero, of unspecified precision. |
| 1426 | Make it a proper zero, with non-zero precision. |
| 1427 | */ |
| 1428 | if (to->intg == 0 && to->frac == 0) |
| 1429 | decimal_make_zero(to); |
| 1430 | return error; |
| 1431 | |
| 1432 | err: |
| 1433 | my_afree(d_copy); |
| 1434 | decimal_make_zero(to); |
| 1435 | return(E_DEC_BAD_NUM); |
| 1436 | } |
| 1437 | |
| 1438 | /* |
| 1439 | Returns the size of array to hold a decimal with given precision and scale |
| 1440 | |
| 1441 | RETURN VALUE |
| 1442 | size in dec1 |
| 1443 | (multiply by sizeof(dec1) to get the size if bytes) |
| 1444 | */ |
| 1445 | |
| 1446 | int decimal_size(int precision, int scale) |
| 1447 | { |
| 1448 | DBUG_ASSERT(scale >= 0 && precision > 0 && scale <= precision); |
| 1449 | return ROUND_UP(precision-scale)+ROUND_UP(scale); |
| 1450 | } |
| 1451 | |
| 1452 | /* |
| 1453 | Returns the size of array to hold a binary representation of a decimal |
| 1454 | |
| 1455 | RETURN VALUE |
| 1456 | size in bytes |
| 1457 | */ |
| 1458 | |
| 1459 | int decimal_bin_size(int precision, int scale) |
| 1460 | { |
| 1461 | int intg=precision-scale, |
| 1462 | intg0=intg/DIG_PER_DEC1, frac0=scale/DIG_PER_DEC1, |
| 1463 | intg0x=intg-intg0*DIG_PER_DEC1, frac0x=scale-frac0*DIG_PER_DEC1; |
| 1464 | |
| 1465 | DBUG_ASSERT(scale >= 0); |
| 1466 | DBUG_ASSERT(precision > 0); |
| 1467 | DBUG_ASSERT(scale <= precision); |
| 1468 | return intg0*sizeof(dec1)+dig2bytes[intg0x]+ |
| 1469 | frac0*sizeof(dec1)+dig2bytes[frac0x]; |
| 1470 | } |
| 1471 | |
| 1472 | /* |
| 1473 | Rounds the decimal to "scale" digits |
| 1474 | |
| 1475 | SYNOPSIS |
| 1476 | decimal_round() |
| 1477 | from - decimal to round, |
| 1478 | to - result buffer. from==to is allowed |
| 1479 | scale - to what position to round. can be negative! |
| 1480 | mode - round to nearest even or truncate |
| 1481 | |
| 1482 | NOTES |
| 1483 | scale can be negative ! |
| 1484 | one TRUNCATED error (line XXX below) isn't treated very logical :( |
| 1485 | |
| 1486 | RETURN VALUE |
| 1487 | E_DEC_OK/E_DEC_TRUNCATED |
| 1488 | */ |
| 1489 | |
| 1490 | int |
| 1491 | decimal_round(const decimal_t *from, decimal_t *to, int scale, |
| 1492 | decimal_round_mode mode) |
| 1493 | { |
| 1494 | int frac0=scale>0 ? ROUND_UP(scale) : scale/DIG_PER_DEC1, |
| 1495 | frac1=ROUND_UP(from->frac), UNINIT_VAR(round_digit), |
| 1496 | intg0=ROUND_UP(from->intg), error=E_DEC_OK, len=to->len; |
| 1497 | |
| 1498 | dec1 *buf0=from->buf, *buf1=to->buf, x, y, carry=0; |
| 1499 | int first_dig; |
| 1500 | |
| 1501 | sanity(to); |
| 1502 | |
| 1503 | switch (mode) { |
| 1504 | case HALF_UP: |
| 1505 | case HALF_EVEN: round_digit=5; break; |
| 1506 | case CEILING: round_digit= from->sign ? 10 : 0; break; |
| 1507 | case FLOOR: round_digit= from->sign ? 0 : 10; break; |
| 1508 | case TRUNCATE: round_digit=10; break; |
| 1509 | default: DBUG_ASSERT(0); |
| 1510 | } |
| 1511 | |
| 1512 | /* |
| 1513 | For my_decimal we always use len == DECIMAL_BUFF_LENGTH == 9 |
| 1514 | For internal testing here (ifdef MAIN) we always use len == 100/4 |
| 1515 | */ |
| 1516 | DBUG_ASSERT(from->len == to->len); |
| 1517 | |
| 1518 | if (unlikely(frac0+intg0 > len)) |
| 1519 | { |
| 1520 | frac0=len-intg0; |
| 1521 | scale=frac0*DIG_PER_DEC1; |
| 1522 | error=E_DEC_TRUNCATED; |
| 1523 | } |
| 1524 | |
| 1525 | if (scale+from->intg < 0) |
| 1526 | { |
| 1527 | decimal_make_zero(to); |
| 1528 | return E_DEC_OK; |
| 1529 | } |
| 1530 | |
| 1531 | if (to != from) |
| 1532 | { |
| 1533 | dec1 *p0= buf0+intg0+MY_MAX(frac1, frac0); |
| 1534 | dec1 *p1= buf1+intg0+MY_MAX(frac1, frac0); |
| 1535 | |
| 1536 | DBUG_ASSERT(p0 - buf0 <= len); |
| 1537 | DBUG_ASSERT(p1 - buf1 <= len); |
| 1538 | |
| 1539 | while (buf0 < p0) |
| 1540 | *(--p1) = *(--p0); |
| 1541 | |
| 1542 | buf0=to->buf; |
| 1543 | buf1=to->buf; |
| 1544 | to->sign=from->sign; |
| 1545 | to->intg=MY_MIN(intg0, len)*DIG_PER_DEC1; |
| 1546 | } |
| 1547 | |
| 1548 | if (frac0 > frac1) |
| 1549 | { |
| 1550 | buf1+=intg0+frac1; |
| 1551 | while (frac0-- > frac1) |
| 1552 | *buf1++=0; |
| 1553 | goto done; |
| 1554 | } |
| 1555 | |
| 1556 | if (scale >= from->frac) |
| 1557 | goto done; /* nothing to do */ |
| 1558 | |
| 1559 | buf0+=intg0+frac0-1; |
| 1560 | buf1+=intg0+frac0-1; |
| 1561 | if (scale == frac0*DIG_PER_DEC1) |
| 1562 | { |
| 1563 | int do_inc= FALSE; |
| 1564 | DBUG_ASSERT(frac0+intg0 >= 0); |
| 1565 | switch (round_digit) { |
| 1566 | case 0: |
| 1567 | { |
| 1568 | dec1 *p0= buf0 + (frac1-frac0); |
| 1569 | for (; p0 > buf0; p0--) |
| 1570 | { |
| 1571 | if (*p0) |
| 1572 | { |
| 1573 | do_inc= TRUE; |
| 1574 | break; |
| 1575 | } |
| 1576 | } |
| 1577 | break; |
| 1578 | } |
| 1579 | case 5: |
| 1580 | { |
| 1581 | x= buf0[1]/DIG_MASK; |
| 1582 | do_inc= (x>5) || ((x == 5) && |
| 1583 | (mode == HALF_UP || (frac0+intg0 > 0 && *buf0 & 1))); |
| 1584 | break; |
| 1585 | } |
| 1586 | default: |
| 1587 | break; |
| 1588 | } |
| 1589 | if (do_inc) |
| 1590 | { |
| 1591 | if (frac0+intg0>0) |
| 1592 | (*buf1)++; |
| 1593 | else |
| 1594 | *(++buf1)=DIG_BASE; |
| 1595 | } |
| 1596 | else if (frac0+intg0==0) |
| 1597 | { |
| 1598 | decimal_make_zero(to); |
| 1599 | return E_DEC_OK; |
| 1600 | } |
| 1601 | } |
| 1602 | else |
| 1603 | { |
| 1604 | /* TODO - fix this code as it won't work for CEILING mode */ |
| 1605 | int pos=frac0*DIG_PER_DEC1-scale-1; |
| 1606 | DBUG_ASSERT(frac0+intg0 > 0); |
| 1607 | x=*buf1 / powers10[pos]; |
| 1608 | y=x % 10; |
| 1609 | if (y > round_digit || |
| 1610 | (round_digit == 5 && y == 5 && (mode == HALF_UP || (x/10) & 1))) |
| 1611 | x+=10; |
| 1612 | *buf1=powers10[pos]*(x-y); |
| 1613 | } |
| 1614 | if (*buf1 >= DIG_BASE) |
| 1615 | { |
| 1616 | carry=1; |
| 1617 | *buf1-=DIG_BASE; |
| 1618 | while (carry && --buf1 >= to->buf) |
| 1619 | ADD(*buf1, *buf1, 0, carry); |
| 1620 | if (unlikely(carry)) |
| 1621 | { |
| 1622 | /* shifting the number to create space for new digit */ |
| 1623 | if (frac0+intg0 >= len) |
| 1624 | { |
| 1625 | frac0--; |
| 1626 | scale=frac0*DIG_PER_DEC1; |
| 1627 | error=E_DEC_TRUNCATED; /* XXX */ |
| 1628 | } |
| 1629 | for (buf1=to->buf+intg0+MY_MAX(frac0,0); buf1 > to->buf; buf1--) |
| 1630 | { |
| 1631 | buf1[0]=buf1[-1]; |
| 1632 | } |
| 1633 | *buf1=1; |
| 1634 | to->intg++; |
| 1635 | intg0++; |
| 1636 | } |
| 1637 | } |
| 1638 | else |
| 1639 | { |
| 1640 | for (;;) |
| 1641 | { |
| 1642 | if (likely(*buf1)) |
| 1643 | break; |
| 1644 | if (buf1-- == to->buf) |
| 1645 | { |
| 1646 | /* making 'zero' with the proper scale */ |
| 1647 | dec1 *p0= to->buf + frac0 + 1; |
| 1648 | to->intg=1; |
| 1649 | to->frac= MY_MAX(scale, 0); |
| 1650 | to->sign= 0; |
| 1651 | for (buf1= to->buf; buf1<p0; buf1++) |
| 1652 | *buf1= 0; |
| 1653 | return E_DEC_OK; |
| 1654 | } |
| 1655 | } |
| 1656 | } |
| 1657 | /* |
| 1658 | In case we're rounding e.g. 1.5e9 to 2.0e9, the decimal_digit_t's inside |
| 1659 | the buffer are as follows. |
| 1660 | |
| 1661 | Before <1, 5e8> |
| 1662 | After <2, 5e8> |
| 1663 | |
| 1664 | Hence we need to set the 2nd field to 0. |
| 1665 | The same holds if we round 1.5e-9 to 2e-9. |
| 1666 | */ |
| 1667 | if (frac0 < frac1) |
| 1668 | { |
| 1669 | dec1 *buf= to->buf + ((scale == 0 && intg0 == 0) ? 1 : intg0 + frac0); |
| 1670 | dec1 *end= to->buf + len; |
| 1671 | |
| 1672 | while (buf < end) |
| 1673 | *buf++=0; |
| 1674 | } |
| 1675 | |
| 1676 | /* Here we check 999.9 -> 1000 case when we need to increase intg */ |
| 1677 | first_dig= to->intg % DIG_PER_DEC1; |
| 1678 | if (first_dig && (*buf1 >= powers10[first_dig])) |
| 1679 | to->intg++; |
| 1680 | |
| 1681 | if (scale<0) |
| 1682 | scale=0; |
| 1683 | |
| 1684 | done: |
| 1685 | to->frac=scale; |
| 1686 | return error; |
| 1687 | } |
| 1688 | |
| 1689 | /* |
| 1690 | Returns the size of the result of the operation |
| 1691 | |
| 1692 | SYNOPSIS |
| 1693 | decimal_result_size() |
| 1694 | from1 - operand of the unary operation or first operand of the |
| 1695 | binary operation |
| 1696 | from2 - second operand of the binary operation |
| 1697 | op - operation. one char '+', '-', '*', '/' are allowed |
| 1698 | others may be added later |
| 1699 | param - extra param to the operation. unused for '+', '-', '*' |
| 1700 | scale increment for '/' |
| 1701 | |
| 1702 | NOTE |
| 1703 | returned valued may be larger than the actual buffer required |
| 1704 | in the operation, as decimal_result_size, by design, operates on |
| 1705 | precision/scale values only and not on the actual decimal number |
| 1706 | |
| 1707 | RETURN VALUE |
| 1708 | size of to->buf array in dec1 elements. to get size in bytes |
| 1709 | multiply by sizeof(dec1) |
| 1710 | */ |
| 1711 | |
| 1712 | int decimal_result_size(decimal_t *from1, decimal_t *from2, char op, int param) |
| 1713 | { |
| 1714 | switch (op) { |
| 1715 | case '-': |
| 1716 | return ROUND_UP(MY_MAX(from1->intg, from2->intg)) + |
| 1717 | ROUND_UP(MY_MAX(from1->frac, from2->frac)); |
| 1718 | case '+': |
| 1719 | return ROUND_UP(MY_MAX(from1->intg, from2->intg)+1) + |
| 1720 | ROUND_UP(MY_MAX(from1->frac, from2->frac)); |
| 1721 | case '*': |
| 1722 | return ROUND_UP(from1->intg+from2->intg)+ |
| 1723 | ROUND_UP(from1->frac)+ROUND_UP(from2->frac); |
| 1724 | case '/': |
| 1725 | return ROUND_UP(from1->intg+from2->intg+1+from1->frac+from2->frac+param); |
| 1726 | default: DBUG_ASSERT(0); |
| 1727 | } |
| 1728 | return -1; /* shut up the warning */ |
| 1729 | } |
| 1730 | |
| 1731 | static int do_add(const decimal_t *from1, const decimal_t *from2, decimal_t *to) |
| 1732 | { |
| 1733 | int intg1=ROUND_UP(from1->intg), intg2=ROUND_UP(from2->intg), |
| 1734 | frac1=ROUND_UP(from1->frac), frac2=ROUND_UP(from2->frac), |
| 1735 | frac0=MY_MAX(frac1, frac2), intg0=MY_MAX(intg1, intg2), error; |
| 1736 | dec1 *buf1, *buf2, *buf0, *stop, *stop2, x, carry; |
| 1737 | |
| 1738 | sanity(to); |
| 1739 | |
| 1740 | /* is there a need for extra word because of carry ? */ |
| 1741 | x=intg1 > intg2 ? from1->buf[0] : |
| 1742 | intg2 > intg1 ? from2->buf[0] : |
| 1743 | from1->buf[0] + from2->buf[0] ; |
| 1744 | if (unlikely(x > DIG_MAX-1)) /* yes, there is */ |
| 1745 | { |
| 1746 | intg0++; |
| 1747 | to->buf[0]=0; /* safety */ |
| 1748 | } |
| 1749 | |
| 1750 | FIX_INTG_FRAC_ERROR(to->len, intg0, frac0, error); |
| 1751 | if (unlikely(error == E_DEC_OVERFLOW)) |
| 1752 | { |
| 1753 | max_decimal(to->len * DIG_PER_DEC1, 0, to); |
| 1754 | return error; |
| 1755 | } |
| 1756 | |
| 1757 | buf0=to->buf+intg0+frac0; |
| 1758 | |
| 1759 | to->sign=from1->sign; |
| 1760 | to->frac=MY_MAX(from1->frac, from2->frac); |
| 1761 | to->intg=intg0*DIG_PER_DEC1; |
| 1762 | if (unlikely(error)) |
| 1763 | { |
| 1764 | set_if_smaller(to->frac, frac0*DIG_PER_DEC1); |
| 1765 | set_if_smaller(frac1, frac0); |
| 1766 | set_if_smaller(frac2, frac0); |
| 1767 | set_if_smaller(intg1, intg0); |
| 1768 | set_if_smaller(intg2, intg0); |
| 1769 | } |
| 1770 | |
| 1771 | /* part 1 - MY_MAX(frac) ... min (frac) */ |
| 1772 | if (frac1 > frac2) |
| 1773 | { |
| 1774 | buf1=from1->buf+intg1+frac1; |
| 1775 | stop=from1->buf+intg1+frac2; |
| 1776 | buf2=from2->buf+intg2+frac2; |
| 1777 | stop2=from1->buf+(intg1 > intg2 ? intg1-intg2 : 0); |
| 1778 | } |
| 1779 | else |
| 1780 | { |
| 1781 | buf1=from2->buf+intg2+frac2; |
| 1782 | stop=from2->buf+intg2+frac1; |
| 1783 | buf2=from1->buf+intg1+frac1; |
| 1784 | stop2=from2->buf+(intg2 > intg1 ? intg2-intg1 : 0); |
| 1785 | } |
| 1786 | while (buf1 > stop) |
| 1787 | *--buf0=*--buf1; |
| 1788 | |
| 1789 | /* part 2 - MY_MIN(frac) ... MY_MIN(intg) */ |
| 1790 | carry=0; |
| 1791 | while (buf1 > stop2) |
| 1792 | { |
| 1793 | ADD(*--buf0, *--buf1, *--buf2, carry); |
| 1794 | } |
| 1795 | |
| 1796 | /* part 3 - MY_MIN(intg) ... MY_MAX(intg) */ |
| 1797 | buf1= intg1 > intg2 ? ((stop=from1->buf)+intg1-intg2) : |
| 1798 | ((stop=from2->buf)+intg2-intg1) ; |
| 1799 | while (buf1 > stop) |
| 1800 | { |
| 1801 | ADD(*--buf0, *--buf1, 0, carry); |
| 1802 | } |
| 1803 | |
| 1804 | if (unlikely(carry)) |
| 1805 | *--buf0=1; |
| 1806 | DBUG_ASSERT(buf0 == to->buf || buf0 == to->buf+1); |
| 1807 | |
| 1808 | return error; |
| 1809 | } |
| 1810 | |
| 1811 | /* to=from1-from2. |
| 1812 | if to==0, return -1/0/+1 - the result of the comparison */ |
| 1813 | static int do_sub(const decimal_t *from1, const decimal_t *from2, decimal_t *to) |
| 1814 | { |
| 1815 | int intg1=ROUND_UP(from1->intg), intg2=ROUND_UP(from2->intg), |
| 1816 | frac1=ROUND_UP(from1->frac), frac2=ROUND_UP(from2->frac); |
| 1817 | int frac0=MY_MAX(frac1, frac2), error; |
| 1818 | dec1 *buf1, *buf2, *buf0, *stop1, *stop2, *start1, *start2; |
| 1819 | my_bool carry=0; |
| 1820 | |
| 1821 | /* let carry:=1 if from2 > from1 */ |
| 1822 | start1=buf1=from1->buf; stop1=buf1+intg1; |
| 1823 | start2=buf2=from2->buf; stop2=buf2+intg2; |
| 1824 | if (unlikely(*buf1 == 0)) |
| 1825 | { |
| 1826 | while (buf1 < stop1 && *buf1 == 0) |
| 1827 | buf1++; |
| 1828 | start1=buf1; |
| 1829 | intg1= (int) (stop1-buf1); |
| 1830 | } |
| 1831 | if (unlikely(*buf2 == 0)) |
| 1832 | { |
| 1833 | while (buf2 < stop2 && *buf2 == 0) |
| 1834 | buf2++; |
| 1835 | start2=buf2; |
| 1836 | intg2= (int) (stop2-buf2); |
| 1837 | } |
| 1838 | if (intg2 > intg1) |
| 1839 | carry=1; |
| 1840 | else if (intg2 == intg1) |
| 1841 | { |
| 1842 | dec1 *end1= stop1 + (frac1 - 1); |
| 1843 | dec1 *end2= stop2 + (frac2 - 1); |
| 1844 | while (unlikely((buf1 <= end1) && (*end1 == 0))) |
| 1845 | end1--; |
| 1846 | while (unlikely((buf2 <= end2) && (*end2 == 0))) |
| 1847 | end2--; |
| 1848 | frac1= (int) (end1 - stop1) + 1; |
| 1849 | frac2= (int) (end2 - stop2) + 1; |
| 1850 | while (buf1 <=end1 && buf2 <= end2 && *buf1 == *buf2) |
| 1851 | buf1++, buf2++; |
| 1852 | if (buf1 <= end1) |
| 1853 | { |
| 1854 | if (buf2 <= end2) |
| 1855 | carry= *buf2 > *buf1; |
| 1856 | else |
| 1857 | carry= 0; |
| 1858 | } |
| 1859 | else |
| 1860 | { |
| 1861 | if (buf2 <= end2) |
| 1862 | carry=1; |
| 1863 | else /* short-circuit everything: from1 == from2 */ |
| 1864 | { |
| 1865 | if (to == 0) /* decimal_cmp() */ |
| 1866 | return 0; |
| 1867 | decimal_make_zero(to); |
| 1868 | return E_DEC_OK; |
| 1869 | } |
| 1870 | } |
| 1871 | } |
| 1872 | |
| 1873 | if (to == 0) /* decimal_cmp() */ |
| 1874 | return carry == from1->sign ? 1 : -1; |
| 1875 | |
| 1876 | sanity(to); |
| 1877 | |
| 1878 | to->sign=from1->sign; |
| 1879 | |
| 1880 | /* ensure that always from1 > from2 (and intg1 >= intg2) */ |
| 1881 | if (carry) |
| 1882 | { |
| 1883 | swap_variables(const decimal_t *, from1, from2); |
| 1884 | swap_variables(dec1 *,start1, start2); |
| 1885 | swap_variables(int,intg1,intg2); |
| 1886 | swap_variables(int,frac1,frac2); |
| 1887 | to->sign= !to->sign; |
| 1888 | } |
| 1889 | |
| 1890 | FIX_INTG_FRAC_ERROR(to->len, intg1, frac0, error); |
| 1891 | buf0=to->buf+intg1+frac0; |
| 1892 | |
| 1893 | to->frac=MY_MAX(from1->frac, from2->frac); |
| 1894 | to->intg=intg1*DIG_PER_DEC1; |
| 1895 | if (unlikely(error)) |
| 1896 | { |
| 1897 | set_if_smaller(to->frac, frac0*DIG_PER_DEC1); |
| 1898 | set_if_smaller(frac1, frac0); |
| 1899 | set_if_smaller(frac2, frac0); |
| 1900 | set_if_smaller(intg2, intg1); |
| 1901 | } |
| 1902 | carry=0; |
| 1903 | |
| 1904 | /* part 1 - MY_MAX(frac) ... min (frac) */ |
| 1905 | if (frac1 > frac2) |
| 1906 | { |
| 1907 | buf1=start1+intg1+frac1; |
| 1908 | stop1=start1+intg1+frac2; |
| 1909 | buf2=start2+intg2+frac2; |
| 1910 | while (frac0-- > frac1) |
| 1911 | *--buf0=0; |
| 1912 | while (buf1 > stop1) |
| 1913 | *--buf0=*--buf1; |
| 1914 | } |
| 1915 | else |
| 1916 | { |
| 1917 | buf1=start1+intg1+frac1; |
| 1918 | buf2=start2+intg2+frac2; |
| 1919 | stop2=start2+intg2+frac1; |
| 1920 | while (frac0-- > frac2) |
| 1921 | *--buf0=0; |
| 1922 | while (buf2 > stop2) |
| 1923 | { |
| 1924 | SUB(*--buf0, 0, *--buf2, carry); |
| 1925 | } |
| 1926 | } |
| 1927 | |
| 1928 | /* part 2 - MY_MIN(frac) ... intg2 */ |
| 1929 | while (buf2 > start2) |
| 1930 | { |
| 1931 | SUB(*--buf0, *--buf1, *--buf2, carry); |
| 1932 | } |
| 1933 | |
| 1934 | /* part 3 - intg2 ... intg1 */ |
| 1935 | while (carry && buf1 > start1) |
| 1936 | { |
| 1937 | SUB(*--buf0, *--buf1, 0, carry); |
| 1938 | } |
| 1939 | |
| 1940 | while (buf1 > start1) |
| 1941 | *--buf0=*--buf1; |
| 1942 | |
| 1943 | while (buf0 > to->buf) |
| 1944 | *--buf0=0; |
| 1945 | |
| 1946 | return error; |
| 1947 | } |
| 1948 | |
| 1949 | int decimal_intg(const decimal_t *from) |
| 1950 | { |
| 1951 | int res; |
| 1952 | remove_leading_zeroes(from, &res); |
| 1953 | return res; |
| 1954 | } |
| 1955 | |
| 1956 | int decimal_add(const decimal_t *from1, const decimal_t *from2, decimal_t *to) |
| 1957 | { |
| 1958 | if (likely(from1->sign == from2->sign)) |
| 1959 | return do_add(from1, from2, to); |
| 1960 | return do_sub(from1, from2, to); |
| 1961 | } |
| 1962 | |
| 1963 | int decimal_sub(const decimal_t *from1, const decimal_t *from2, decimal_t *to) |
| 1964 | { |
| 1965 | if (likely(from1->sign == from2->sign)) |
| 1966 | return do_sub(from1, from2, to); |
| 1967 | return do_add(from1, from2, to); |
| 1968 | } |
| 1969 | |
| 1970 | int decimal_cmp(const decimal_t *from1, const decimal_t *from2) |
| 1971 | { |
| 1972 | if (likely(from1->sign == from2->sign)) |
| 1973 | return do_sub(from1, from2, 0); |
| 1974 | return from1->sign > from2->sign ? -1 : 1; |
| 1975 | } |
| 1976 | |
| 1977 | int decimal_is_zero(const decimal_t *from) |
| 1978 | { |
| 1979 | dec1 *buf1=from->buf, |
| 1980 | *end=buf1+ROUND_UP(from->intg)+ROUND_UP(from->frac); |
| 1981 | while (buf1 < end) |
| 1982 | if (*buf1++) |
| 1983 | return 0; |
| 1984 | return 1; |
| 1985 | } |
| 1986 | |
| 1987 | /* |
| 1988 | multiply two decimals |
| 1989 | |
| 1990 | SYNOPSIS |
| 1991 | decimal_mul() |
| 1992 | from1, from2 - factors |
| 1993 | to - product |
| 1994 | |
| 1995 | RETURN VALUE |
| 1996 | E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW; |
| 1997 | |
| 1998 | NOTES |
| 1999 | in this implementation, with sizeof(dec1)=4 we have DIG_PER_DEC1=9, |
| 2000 | and 63-digit number will take only 7 dec1 words (basically a 7-digit |
| 2001 | "base 999999999" number). Thus there's no need in fast multiplication |
| 2002 | algorithms, 7-digit numbers can be multiplied with a naive O(n*n) |
| 2003 | method. |
| 2004 | |
| 2005 | XXX if this library is to be used with huge numbers of thousands of |
| 2006 | digits, fast multiplication must be implemented. |
| 2007 | */ |
| 2008 | int decimal_mul(const decimal_t *from1, const decimal_t *from2, decimal_t *to) |
| 2009 | { |
| 2010 | int intg1=ROUND_UP(from1->intg), intg2=ROUND_UP(from2->intg), |
| 2011 | frac1=ROUND_UP(from1->frac), frac2=ROUND_UP(from2->frac), |
| 2012 | intg0=ROUND_UP(from1->intg+from2->intg), |
| 2013 | frac0=frac1+frac2, error, i, j, d_to_move; |
| 2014 | dec1 *buf1=from1->buf+intg1, *buf2=from2->buf+intg2, *buf0, |
| 2015 | *start2, *stop2, *stop1, *start0, carry; |
| 2016 | |
| 2017 | sanity(to); |
| 2018 | |
| 2019 | i=intg0; /* save 'ideal' values */ |
| 2020 | j=frac0; |
| 2021 | FIX_INTG_FRAC_ERROR(to->len, intg0, frac0, error); /* bound size */ |
| 2022 | to->sign=from1->sign != from2->sign; |
| 2023 | to->frac=from1->frac+from2->frac; /* store size in digits */ |
| 2024 | to->intg=intg0*DIG_PER_DEC1; |
| 2025 | |
| 2026 | if (unlikely(error)) |
| 2027 | { |
| 2028 | set_if_smaller(to->frac, frac0*DIG_PER_DEC1); |
| 2029 | set_if_smaller(to->intg, intg0*DIG_PER_DEC1); |
| 2030 | if (unlikely(i > intg0)) /* bounded integer-part */ |
| 2031 | { |
| 2032 | i-=intg0; |
| 2033 | j=i >> 1; |
| 2034 | intg1-= j; |
| 2035 | intg2-=i-j; |
| 2036 | frac1=frac2=0; /* frac0 is already 0 here */ |
| 2037 | } |
| 2038 | else /* bounded fract part */ |
| 2039 | { |
| 2040 | j-=frac0; |
| 2041 | i=j >> 1; |
| 2042 | if (frac1 <= frac2) |
| 2043 | { |
| 2044 | frac1-= i; |
| 2045 | frac2-=j-i; |
| 2046 | } |
| 2047 | else |
| 2048 | { |
| 2049 | frac2-= i; |
| 2050 | frac1-=j-i; |
| 2051 | } |
| 2052 | } |
| 2053 | } |
| 2054 | start0=to->buf+intg0+frac0-1; |
| 2055 | start2=buf2+frac2-1; |
| 2056 | stop1=buf1-intg1; |
| 2057 | stop2=buf2-intg2; |
| 2058 | |
| 2059 | bzero(to->buf, (intg0+frac0)*sizeof(dec1)); |
| 2060 | |
| 2061 | for (buf1+=frac1-1; buf1 >= stop1; buf1--, start0--) |
| 2062 | { |
| 2063 | carry=0; |
| 2064 | for (buf0=start0, buf2=start2; buf2 >= stop2; buf2--, buf0--) |
| 2065 | { |
| 2066 | dec1 hi, lo; |
| 2067 | dec2 p= ((dec2)*buf1) * ((dec2)*buf2); |
| 2068 | hi=(dec1)(p/DIG_BASE); |
| 2069 | lo=(dec1)(p-((dec2)hi)*DIG_BASE); |
| 2070 | ADD2(*buf0, *buf0, lo, carry); |
| 2071 | carry+=hi; |
| 2072 | } |
| 2073 | if (carry) |
| 2074 | { |
| 2075 | if (buf0 < to->buf) |
| 2076 | return E_DEC_OVERFLOW; |
| 2077 | ADD2(*buf0, *buf0, 0, carry); |
| 2078 | } |
| 2079 | for (buf0--; carry; buf0--) |
| 2080 | { |
| 2081 | if (buf0 < to->buf) |
| 2082 | return E_DEC_OVERFLOW; |
| 2083 | ADD(*buf0, *buf0, 0, carry); |
| 2084 | } |
| 2085 | } |
| 2086 | |
| 2087 | /* Now we have to check for -0.000 case */ |
| 2088 | if (to->sign) |
| 2089 | { |
| 2090 | dec1 *buf= to->buf; |
| 2091 | dec1 *end= to->buf + intg0 + frac0; |
| 2092 | DBUG_ASSERT(buf != end); |
| 2093 | for (;;) |
| 2094 | { |
| 2095 | if (*buf) |
| 2096 | break; |
| 2097 | if (++buf == end) |
| 2098 | { |
| 2099 | /* We got decimal zero */ |
| 2100 | decimal_make_zero(to); |
| 2101 | break; |
| 2102 | } |
| 2103 | } |
| 2104 | } |
| 2105 | buf1= to->buf; |
| 2106 | d_to_move= intg0 + ROUND_UP(to->frac); |
| 2107 | while (!*buf1 && (to->intg > DIG_PER_DEC1)) |
| 2108 | { |
| 2109 | buf1++; |
| 2110 | to->intg-= DIG_PER_DEC1; |
| 2111 | d_to_move--; |
| 2112 | } |
| 2113 | if (to->buf < buf1) |
| 2114 | { |
| 2115 | dec1 *cur_d= to->buf; |
| 2116 | for (; d_to_move--; cur_d++, buf1++) |
| 2117 | *cur_d= *buf1; |
| 2118 | } |
| 2119 | return error; |
| 2120 | } |
| 2121 | |
| 2122 | /* |
| 2123 | naive division algorithm (Knuth's Algorithm D in 4.3.1) - |
| 2124 | it's ok for short numbers |
| 2125 | also we're using alloca() to allocate a temporary buffer |
| 2126 | |
| 2127 | XXX if this library is to be used with huge numbers of thousands of |
| 2128 | digits, fast division must be implemented and alloca should be |
| 2129 | changed to malloc (or at least fallback to malloc if alloca() fails) |
| 2130 | but then, decimal_mul() should be rewritten too :( |
| 2131 | */ |
| 2132 | static int do_div_mod(const decimal_t *from1, const decimal_t *from2, |
| 2133 | decimal_t *to, decimal_t *mod, int scale_incr) |
| 2134 | { |
| 2135 | int frac1=ROUND_UP(from1->frac)*DIG_PER_DEC1, prec1=from1->intg+frac1, |
| 2136 | frac2=ROUND_UP(from2->frac)*DIG_PER_DEC1, prec2=from2->intg+frac2, |
| 2137 | UNINIT_VAR(error), i, intg0, frac0, len1, len2, dintg, div_mod=(!mod); |
| 2138 | dec1 *buf0, *buf1=from1->buf, *buf2=from2->buf, *tmp1, |
| 2139 | *start2, *stop2, *stop1, *stop0, norm2, carry, *start1, dcarry; |
| 2140 | dec2 norm_factor, x, guess, y; |
| 2141 | |
| 2142 | if (mod) |
| 2143 | to=mod; |
| 2144 | |
| 2145 | sanity(to); |
| 2146 | |
| 2147 | /* removing all the leading zeroes */ |
| 2148 | i= ((prec2 - 1) % DIG_PER_DEC1) + 1; |
| 2149 | while (prec2 > 0 && *buf2 == 0) |
| 2150 | { |
| 2151 | prec2-= i; |
| 2152 | i= DIG_PER_DEC1; |
| 2153 | buf2++; |
| 2154 | } |
| 2155 | if (prec2 <= 0) /* short-circuit everything: from2 == 0 */ |
| 2156 | return E_DEC_DIV_ZERO; |
| 2157 | for (i= (prec2 - 1) % DIG_PER_DEC1; *buf2 < powers10[i--]; prec2--) ; |
| 2158 | DBUG_ASSERT(prec2 > 0); |
| 2159 | |
| 2160 | i=((prec1-1) % DIG_PER_DEC1)+1; |
| 2161 | while (prec1 > 0 && *buf1 == 0) |
| 2162 | { |
| 2163 | prec1-=i; |
| 2164 | i=DIG_PER_DEC1; |
| 2165 | buf1++; |
| 2166 | } |
| 2167 | if (prec1 <= 0) |
| 2168 | { /* short-circuit everything: from1 == 0 */ |
| 2169 | decimal_make_zero(to); |
| 2170 | return E_DEC_OK; |
| 2171 | } |
| 2172 | for (i=(prec1-1) % DIG_PER_DEC1; *buf1 < powers10[i--]; prec1--) ; |
| 2173 | DBUG_ASSERT(prec1 > 0); |
| 2174 | |
| 2175 | /* let's fix scale_incr, taking into account frac1,frac2 increase */ |
| 2176 | if ((scale_incr-= frac1 - from1->frac + frac2 - from2->frac) < 0) |
| 2177 | scale_incr=0; |
| 2178 | |
| 2179 | dintg=(prec1-frac1)-(prec2-frac2)+(*buf1 >= *buf2); |
| 2180 | if (dintg < 0) |
| 2181 | { |
| 2182 | dintg/=DIG_PER_DEC1; |
| 2183 | intg0=0; |
| 2184 | } |
| 2185 | else |
| 2186 | intg0=ROUND_UP(dintg); |
| 2187 | if (mod) |
| 2188 | { |
| 2189 | /* we're calculating N1 % N2. |
| 2190 | The result will have |
| 2191 | frac=MY_MAX(frac1, frac2), as for subtraction |
| 2192 | intg=intg2 |
| 2193 | */ |
| 2194 | to->sign=from1->sign; |
| 2195 | to->frac=MY_MAX(from1->frac, from2->frac); |
| 2196 | frac0=0; |
| 2197 | } |
| 2198 | else |
| 2199 | { |
| 2200 | /* |
| 2201 | we're calculating N1/N2. N1 is in the buf1, has prec1 digits |
| 2202 | N2 is in the buf2, has prec2 digits. Scales are frac1 and |
| 2203 | frac2 accordingly. |
| 2204 | Thus, the result will have |
| 2205 | frac = ROUND_UP(frac1+frac2+scale_incr) |
| 2206 | and |
| 2207 | intg = (prec1-frac1) - (prec2-frac2) + 1 |
| 2208 | prec = intg+frac |
| 2209 | */ |
| 2210 | frac0=ROUND_UP(frac1+frac2+scale_incr); |
| 2211 | FIX_INTG_FRAC_ERROR(to->len, intg0, frac0, error); |
| 2212 | to->sign=from1->sign != from2->sign; |
| 2213 | to->intg=intg0*DIG_PER_DEC1; |
| 2214 | to->frac=frac0*DIG_PER_DEC1; |
| 2215 | } |
| 2216 | buf0=to->buf; |
| 2217 | stop0=buf0+intg0+frac0; |
| 2218 | if (likely(div_mod)) |
| 2219 | while (dintg++ < 0 && buf0 < &to->buf[to->len]) |
| 2220 | { |
| 2221 | *buf0++=0; |
| 2222 | } |
| 2223 | |
| 2224 | len1=(i=ROUND_UP(prec1))+ROUND_UP(2*frac2+scale_incr+1) + 1; |
| 2225 | set_if_bigger(len1, 3); |
| 2226 | if (!(tmp1=(dec1 *)my_alloca(len1*sizeof(dec1)))) |
| 2227 | return E_DEC_OOM; |
| 2228 | memcpy(tmp1, buf1, i*sizeof(dec1)); |
| 2229 | bzero(tmp1+i, (len1-i)*sizeof(dec1)); |
| 2230 | |
| 2231 | start1=tmp1; |
| 2232 | stop1=start1+len1; |
| 2233 | start2=buf2; |
| 2234 | stop2=buf2+ROUND_UP(prec2)-1; |
| 2235 | |
| 2236 | /* removing end zeroes */ |
| 2237 | while (*stop2 == 0 && stop2 >= start2) |
| 2238 | stop2--; |
| 2239 | len2= (int) (stop2++ - start2); |
| 2240 | |
| 2241 | /* |
| 2242 | calculating norm2 (normalized *start2) - we need *start2 to be large |
| 2243 | (at least > DIG_BASE/2), but unlike Knuth's Alg. D we don't want to |
| 2244 | normalize input numbers (as we don't make a copy of the divisor). |
| 2245 | Thus we normalize first dec1 of buf2 only, and we'll normalize *start1 |
| 2246 | on the fly for the purpose of guesstimation only. |
| 2247 | It's also faster, as we're saving on normalization of buf2 |
| 2248 | */ |
| 2249 | norm_factor=DIG_BASE/(*start2+1); |
| 2250 | norm2=(dec1)(norm_factor*start2[0]); |
| 2251 | if (unlikely(len2>0)) |
| 2252 | norm2+=(dec1)(norm_factor*start2[1]/DIG_BASE); |
| 2253 | |
| 2254 | if (*start1 < *start2) |
| 2255 | dcarry=*start1++; |
| 2256 | else |
| 2257 | dcarry=0; |
| 2258 | |
| 2259 | /* main loop */ |
| 2260 | for (; buf0 < stop0; buf0++) |
| 2261 | { |
| 2262 | /* short-circuit, if possible */ |
| 2263 | if (unlikely(dcarry == 0 && *start1 < *start2)) |
| 2264 | guess=0; |
| 2265 | else |
| 2266 | { |
| 2267 | /* D3: make a guess */ |
| 2268 | x=start1[0]+((dec2)dcarry)*DIG_BASE; |
| 2269 | y=start1[1]; |
| 2270 | guess=(norm_factor*x+norm_factor*y/DIG_BASE)/norm2; |
| 2271 | if (unlikely(guess >= DIG_BASE)) |
| 2272 | guess=DIG_BASE-1; |
| 2273 | if (unlikely(len2>0)) |
| 2274 | { |
| 2275 | /* hmm, this is a suspicious trick - I removed normalization here */ |
| 2276 | if (start2[1]*guess > (x-guess*start2[0])*DIG_BASE+y) |
| 2277 | guess--; |
| 2278 | if (unlikely(start2[1]*guess > (x-guess*start2[0])*DIG_BASE+y)) |
| 2279 | guess--; |
| 2280 | DBUG_ASSERT(start2[1]*guess <= (x-guess*start2[0])*DIG_BASE+y); |
| 2281 | } |
| 2282 | |
| 2283 | /* D4: multiply and subtract */ |
| 2284 | buf2=stop2; |
| 2285 | buf1=start1+len2; |
| 2286 | DBUG_ASSERT(buf1 < stop1); |
| 2287 | for (carry=0; buf2 > start2; buf1--) |
| 2288 | { |
| 2289 | dec1 hi, lo; |
| 2290 | x=guess * (*--buf2); |
| 2291 | hi=(dec1)(x/DIG_BASE); |
| 2292 | lo=(dec1)(x-((dec2)hi)*DIG_BASE); |
| 2293 | SUB2(*buf1, *buf1, lo, carry); |
| 2294 | carry+=hi; |
| 2295 | } |
| 2296 | carry= dcarry < carry; |
| 2297 | |
| 2298 | /* D5: check the remainder */ |
| 2299 | if (unlikely(carry)) |
| 2300 | { |
| 2301 | /* D6: correct the guess */ |
| 2302 | guess--; |
| 2303 | buf2=stop2; |
| 2304 | buf1=start1+len2; |
| 2305 | for (carry=0; buf2 > start2; buf1--) |
| 2306 | { |
| 2307 | ADD(*buf1, *buf1, *--buf2, carry); |
| 2308 | } |
| 2309 | } |
| 2310 | } |
| 2311 | if (likely(div_mod)) |
| 2312 | { |
| 2313 | DBUG_ASSERT(buf0 < to->buf + to->len); |
| 2314 | *buf0=(dec1)guess; |
| 2315 | } |
| 2316 | #ifdef WORKAROUND_GCC_4_3_2_BUG |
| 2317 | dcarry= *(volatile dec1 *)start1; |
| 2318 | #else |
| 2319 | dcarry= *start1; |
| 2320 | #endif |
| 2321 | start1++; |
| 2322 | } |
| 2323 | if (mod) |
| 2324 | { |
| 2325 | /* |
| 2326 | now the result is in tmp1, it has |
| 2327 | intg=prec1-frac1 |
| 2328 | frac=MY_MAX(frac1, frac2)=to->frac |
| 2329 | */ |
| 2330 | if (dcarry) |
| 2331 | *--start1=dcarry; |
| 2332 | buf0=to->buf; |
| 2333 | intg0=(int) (ROUND_UP(prec1-frac1)-(start1-tmp1)); |
| 2334 | frac0=ROUND_UP(to->frac); |
| 2335 | error=E_DEC_OK; |
| 2336 | if (unlikely(frac0==0 && intg0==0)) |
| 2337 | { |
| 2338 | decimal_make_zero(to); |
| 2339 | goto done; |
| 2340 | } |
| 2341 | if (intg0<=0) |
| 2342 | { |
| 2343 | if (unlikely(-intg0 >= to->len)) |
| 2344 | { |
| 2345 | decimal_make_zero(to); |
| 2346 | error=E_DEC_TRUNCATED; |
| 2347 | goto done; |
| 2348 | } |
| 2349 | stop1= start1 + frac0 + intg0; |
| 2350 | frac0+=intg0; |
| 2351 | to->intg=0; |
| 2352 | while (intg0++ < 0) |
| 2353 | *buf0++=0; |
| 2354 | } |
| 2355 | else |
| 2356 | { |
| 2357 | if (unlikely(intg0 > to->len)) |
| 2358 | { |
| 2359 | frac0=0; |
| 2360 | intg0=to->len; |
| 2361 | error=E_DEC_OVERFLOW; |
| 2362 | goto done; |
| 2363 | } |
| 2364 | DBUG_ASSERT(intg0 <= ROUND_UP(from2->intg)); |
| 2365 | stop1=start1+frac0+intg0; |
| 2366 | to->intg=MY_MIN(intg0*DIG_PER_DEC1, from2->intg); |
| 2367 | } |
| 2368 | if (unlikely(intg0+frac0 > to->len)) |
| 2369 | { |
| 2370 | stop1-=frac0+intg0-to->len; |
| 2371 | frac0=to->len-intg0; |
| 2372 | to->frac=frac0*DIG_PER_DEC1; |
| 2373 | error=E_DEC_TRUNCATED; |
| 2374 | } |
| 2375 | DBUG_ASSERT(buf0 + (stop1 - start1) <= to->buf + to->len); |
| 2376 | while (start1 < stop1) |
| 2377 | *buf0++=*start1++; |
| 2378 | } |
| 2379 | done: |
| 2380 | my_afree(tmp1); |
| 2381 | return error; |
| 2382 | } |
| 2383 | |
| 2384 | /* |
| 2385 | division of two decimals |
| 2386 | |
| 2387 | SYNOPSIS |
| 2388 | decimal_div() |
| 2389 | from1 - dividend |
| 2390 | from2 - divisor |
| 2391 | to - quotient |
| 2392 | |
| 2393 | RETURN VALUE |
| 2394 | E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW/E_DEC_DIV_ZERO; |
| 2395 | |
| 2396 | NOTES |
| 2397 | see do_div_mod() |
| 2398 | */ |
| 2399 | |
| 2400 | int |
| 2401 | decimal_div(const decimal_t *from1, const decimal_t *from2, decimal_t *to, |
| 2402 | int scale_incr) |
| 2403 | { |
| 2404 | return do_div_mod(from1, from2, to, 0, scale_incr); |
| 2405 | } |
| 2406 | |
| 2407 | /* |
| 2408 | modulus |
| 2409 | |
| 2410 | SYNOPSIS |
| 2411 | decimal_mod() |
| 2412 | from1 - dividend |
| 2413 | from2 - divisor |
| 2414 | to - modulus |
| 2415 | |
| 2416 | RETURN VALUE |
| 2417 | E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW/E_DEC_DIV_ZERO; |
| 2418 | |
| 2419 | NOTES |
| 2420 | see do_div_mod() |
| 2421 | |
| 2422 | DESCRIPTION |
| 2423 | the modulus R in R = M mod N |
| 2424 | |
| 2425 | is defined as |
| 2426 | |
| 2427 | 0 <= |R| < |M| |
| 2428 | sign R == sign M |
| 2429 | R = M - k*N, where k is integer |
| 2430 | |
| 2431 | thus, there's no requirement for M or N to be integers |
| 2432 | */ |
| 2433 | |
| 2434 | int decimal_mod(const decimal_t *from1, const decimal_t *from2, decimal_t *to) |
| 2435 | { |
| 2436 | return do_div_mod(from1, from2, 0, to, 0); |
| 2437 | } |
| 2438 | |
| 2439 | #ifdef MAIN |
| 2440 | |
| 2441 | int full= 0; |
| 2442 | decimal_t a, b, c; |
| 2443 | char buf1[100], buf2[100], buf3[100]; |
| 2444 | |
| 2445 | void dump_decimal(decimal_t *d) |
| 2446 | { |
| 2447 | int i; |
| 2448 | printf("/* intg=%d, frac=%d, sign=%d, buf[]={" , d->intg, d->frac, d->sign); |
| 2449 | for (i=0; i < ROUND_UP(d->frac)+ROUND_UP(d->intg)-1; i++) |
| 2450 | printf("%09d, " , d->buf[i]); |
| 2451 | printf("%09d} */ " , d->buf[i]); |
| 2452 | } |
| 2453 | |
| 2454 | |
| 2455 | void check_result_code(int actual, int want) |
| 2456 | { |
| 2457 | if (actual != want) |
| 2458 | { |
| 2459 | printf("\n^^^^^^^^^^^^^ must return %d\n" , want); |
| 2460 | exit(1); |
| 2461 | } |
| 2462 | } |
| 2463 | |
| 2464 | |
| 2465 | void print_decimal(decimal_t *d, const char *orig, int actual, int want) |
| 2466 | { |
| 2467 | char s[100]; |
| 2468 | int slen=sizeof(s); |
| 2469 | |
| 2470 | if (full) dump_decimal(d); |
| 2471 | decimal2string(d, s, &slen, 0, 0, 0); |
| 2472 | printf("'%s'" , s); |
| 2473 | check_result_code(actual, want); |
| 2474 | if (orig && strcmp(orig, s)) |
| 2475 | { |
| 2476 | printf("\n^^^^^^^^^^^^^ must've been '%s'\n" , orig); |
| 2477 | exit(1); |
| 2478 | } |
| 2479 | } |
| 2480 | |
| 2481 | void test_d2s() |
| 2482 | { |
| 2483 | char s[100]; |
| 2484 | int slen, res; |
| 2485 | |
| 2486 | /***********************************/ |
| 2487 | printf("==== decimal2string ====\n" ); |
| 2488 | a.buf[0]=12345; a.intg=5; a.frac=0; a.sign=0; |
| 2489 | slen=sizeof(s); |
| 2490 | res=decimal2string(&a, s, &slen, 0, 0, 0); |
| 2491 | dump_decimal(&a); printf(" --> res=%d str='%s' len=%d\n" , res, s, slen); |
| 2492 | |
| 2493 | a.buf[1]=987000000; a.frac=3; |
| 2494 | slen=sizeof(s); |
| 2495 | res=decimal2string(&a, s, &slen, 0, 0, 0); |
| 2496 | dump_decimal(&a); printf(" --> res=%d str='%s' len=%d\n" , res, s, slen); |
| 2497 | |
| 2498 | a.sign=1; |
| 2499 | slen=sizeof(s); |
| 2500 | res=decimal2string(&a, s, &slen, 0, 0, 0); |
| 2501 | dump_decimal(&a); printf(" --> res=%d str='%s' len=%d\n" , res, s, slen); |
| 2502 | |
| 2503 | slen=8; |
| 2504 | res=decimal2string(&a, s, &slen, 0, 0, 0); |
| 2505 | dump_decimal(&a); printf(" --> res=%d str='%s' len=%d\n" , res, s, slen); |
| 2506 | |
| 2507 | slen=5; |
| 2508 | res=decimal2string(&a, s, &slen, 0, 0, 0); |
| 2509 | dump_decimal(&a); printf(" --> res=%d str='%s' len=%d\n" , res, s, slen); |
| 2510 | |
| 2511 | a.buf[0]=987000000; a.frac=3; a.intg=0; |
| 2512 | slen=sizeof(s); |
| 2513 | res=decimal2string(&a, s, &slen, 0, 0, 0); |
| 2514 | dump_decimal(&a); printf(" --> res=%d str='%s' len=%d\n" , res, s, slen); |
| 2515 | } |
| 2516 | |
| 2517 | void test_s2d(const char *s, const char *orig, int ex) |
| 2518 | { |
| 2519 | char s1[100], *end; |
| 2520 | int res; |
| 2521 | sprintf(s1, "'%s'" , s); |
| 2522 | end= strend(s); |
| 2523 | printf("len=%2d %-30s => res=%d " , a.len, s1, |
| 2524 | (res= string2decimal(s, &a, &end))); |
| 2525 | print_decimal(&a, orig, res, ex); |
| 2526 | printf("\n" ); |
| 2527 | } |
| 2528 | |
| 2529 | void test_d2f(const char *s, int ex) |
| 2530 | { |
| 2531 | char s1[100], *end; |
| 2532 | double x; |
| 2533 | int res; |
| 2534 | |
| 2535 | sprintf(s1, "'%s'" , s); |
| 2536 | end= strend(s); |
| 2537 | string2decimal(s, &a, &end); |
| 2538 | res=decimal2double(&a, &x); |
| 2539 | if (full) dump_decimal(&a); |
| 2540 | printf("%-40s => res=%d %.*g\n" , s1, res, a.intg+a.frac, x); |
| 2541 | check_result_code(res, ex); |
| 2542 | } |
| 2543 | |
| 2544 | void test_d2b2d(const char *str, int p, int s, const char *orig, int ex) |
| 2545 | { |
| 2546 | char s1[100], buf[100], *end; |
| 2547 | int res, i, size=decimal_bin_size(p, s); |
| 2548 | |
| 2549 | sprintf(s1, "'%s'" , str); |
| 2550 | end= strend(str); |
| 2551 | string2decimal(str, &a, &end); |
| 2552 | res=decimal2bin(&a, buf, p, s); |
| 2553 | printf("%-31s {%2d, %2d} => res=%d size=%-2d " , s1, p, s, res, size); |
| 2554 | if (full) |
| 2555 | { |
| 2556 | printf("0x" ); |
| 2557 | for (i=0; i < size; i++) |
| 2558 | printf("%02x" , ((uchar *)buf)[i]); |
| 2559 | } |
| 2560 | res=bin2decimal(buf, &a, p, s); |
| 2561 | printf(" => res=%d " , res); |
| 2562 | print_decimal(&a, orig, res, ex); |
| 2563 | printf("\n" ); |
| 2564 | } |
| 2565 | |
| 2566 | void test_f2d(double from, int ex) |
| 2567 | { |
| 2568 | int res; |
| 2569 | |
| 2570 | res=double2decimal(from, &a); |
| 2571 | printf("%-40.*f => res=%d " , DBL_DIG-2, from, res); |
| 2572 | print_decimal(&a, 0, res, ex); |
| 2573 | printf("\n" ); |
| 2574 | } |
| 2575 | |
| 2576 | void test_ull2d(ulonglong from, const char *orig, int ex) |
| 2577 | { |
| 2578 | char s[100]; |
| 2579 | int res; |
| 2580 | |
| 2581 | res=ulonglong2decimal(from, &a); |
| 2582 | longlong10_to_str(from,s,10); |
| 2583 | printf("%-40s => res=%d " , s, res); |
| 2584 | print_decimal(&a, orig, res, ex); |
| 2585 | printf("\n" ); |
| 2586 | } |
| 2587 | |
| 2588 | void test_ll2d(longlong from, const char *orig, int ex) |
| 2589 | { |
| 2590 | char s[100]; |
| 2591 | int res; |
| 2592 | |
| 2593 | res=longlong2decimal(from, &a); |
| 2594 | longlong10_to_str(from,s,-10); |
| 2595 | printf("%-40s => res=%d " , s, res); |
| 2596 | print_decimal(&a, orig, res, ex); |
| 2597 | printf("\n" ); |
| 2598 | } |
| 2599 | |
| 2600 | void test_d2ull(const char *s, const char *orig, int ex) |
| 2601 | { |
| 2602 | char s1[100], *end; |
| 2603 | ulonglong x; |
| 2604 | int res; |
| 2605 | |
| 2606 | end= strend(s); |
| 2607 | string2decimal(s, &a, &end); |
| 2608 | res=decimal2ulonglong(&a, &x); |
| 2609 | if (full) dump_decimal(&a); |
| 2610 | longlong10_to_str(x,s1,10); |
| 2611 | printf("%-40s => res=%d %s\n" , s, res, s1); |
| 2612 | check_result_code(res, ex); |
| 2613 | if (orig && strcmp(orig, s1)) |
| 2614 | { |
| 2615 | printf("\n^^^^^^^^^^^^^ must've been '%s'\n" , orig); |
| 2616 | exit(1); |
| 2617 | } |
| 2618 | } |
| 2619 | |
| 2620 | void test_d2ll(const char *s, const char *orig, int ex) |
| 2621 | { |
| 2622 | char s1[100], *end; |
| 2623 | longlong x; |
| 2624 | int res; |
| 2625 | |
| 2626 | end= strend(s); |
| 2627 | string2decimal(s, &a, &end); |
| 2628 | res=decimal2longlong(&a, &x); |
| 2629 | if (full) dump_decimal(&a); |
| 2630 | longlong10_to_str(x,s1,-10); |
| 2631 | printf("%-40s => res=%d %s\n" , s, res, s1); |
| 2632 | check_result_code(res, ex); |
| 2633 | if (orig && strcmp(orig, s1)) |
| 2634 | { |
| 2635 | printf("\n^^^^^^^^^^^^^ must've been '%s'\n" , orig); |
| 2636 | exit(1); |
| 2637 | } |
| 2638 | } |
| 2639 | |
| 2640 | void test_da(const char *s1, const char *s2, const char *orig, int ex) |
| 2641 | { |
| 2642 | char s[100], *end; |
| 2643 | int res; |
| 2644 | sprintf(s, "'%s' + '%s'" , s1, s2); |
| 2645 | end= strend(s1); |
| 2646 | string2decimal(s1, &a, &end); |
| 2647 | end= strend(s2); |
| 2648 | string2decimal(s2, &b, &end); |
| 2649 | res=decimal_add(&a, &b, &c); |
| 2650 | printf("%-40s => res=%d " , s, res); |
| 2651 | print_decimal(&c, orig, res, ex); |
| 2652 | printf("\n" ); |
| 2653 | } |
| 2654 | |
| 2655 | void test_ds(const char *s1, const char *s2, const char *orig, int ex) |
| 2656 | { |
| 2657 | char s[100], *end; |
| 2658 | int res; |
| 2659 | sprintf(s, "'%s' - '%s'" , s1, s2); |
| 2660 | end= strend(s1); |
| 2661 | string2decimal(s1, &a, &end); |
| 2662 | end= strend(s2); |
| 2663 | string2decimal(s2, &b, &end); |
| 2664 | res=decimal_sub(&a, &b, &c); |
| 2665 | printf("%-40s => res=%d " , s, res); |
| 2666 | print_decimal(&c, orig, res, ex); |
| 2667 | printf("\n" ); |
| 2668 | } |
| 2669 | |
| 2670 | void test_dc(const char *s1, const char *s2, int orig) |
| 2671 | { |
| 2672 | char s[100], *end; |
| 2673 | int res; |
| 2674 | sprintf(s, "'%s' <=> '%s'" , s1, s2); |
| 2675 | end= strend(s1); |
| 2676 | string2decimal(s1, &a, &end); |
| 2677 | end= strend(s2); |
| 2678 | string2decimal(s2, &b, &end); |
| 2679 | res=decimal_cmp(&a, &b); |
| 2680 | printf("%-40s => res=%d\n" , s, res); |
| 2681 | if (orig != res) |
| 2682 | { |
| 2683 | printf("\n^^^^^^^^^^^^^ must've been %d\n" , orig); |
| 2684 | exit(1); |
| 2685 | } |
| 2686 | } |
| 2687 | |
| 2688 | void test_dm(const char *s1, const char *s2, const char *orig, int ex) |
| 2689 | { |
| 2690 | char s[100], *end; |
| 2691 | int res; |
| 2692 | sprintf(s, "'%s' * '%s'" , s1, s2); |
| 2693 | end= strend(s1); |
| 2694 | string2decimal(s1, &a, &end); |
| 2695 | end= strend(s2); |
| 2696 | string2decimal(s2, &b, &end); |
| 2697 | res=decimal_mul(&a, &b, &c); |
| 2698 | printf("%-40s => res=%d " , s, res); |
| 2699 | print_decimal(&c, orig, res, ex); |
| 2700 | printf("\n" ); |
| 2701 | } |
| 2702 | |
| 2703 | void test_dv(const char *s1, const char *s2, const char *orig, int ex) |
| 2704 | { |
| 2705 | char s[100], *end; |
| 2706 | int res; |
| 2707 | sprintf(s, "'%s' / '%s'" , s1, s2); |
| 2708 | end= strend(s1); |
| 2709 | string2decimal(s1, &a, &end); |
| 2710 | end= strend(s2); |
| 2711 | string2decimal(s2, &b, &end); |
| 2712 | res=decimal_div(&a, &b, &c, 5); |
| 2713 | printf("%-40s => res=%d " , s, res); |
| 2714 | check_result_code(res, ex); |
| 2715 | if (res == E_DEC_DIV_ZERO) |
| 2716 | printf("E_DEC_DIV_ZERO" ); |
| 2717 | else |
| 2718 | print_decimal(&c, orig, res, ex); |
| 2719 | printf("\n" ); |
| 2720 | } |
| 2721 | |
| 2722 | void test_md(const char *s1, const char *s2, const char *orig, int ex) |
| 2723 | { |
| 2724 | char s[100], *end; |
| 2725 | int res; |
| 2726 | sprintf(s, "'%s' %% '%s'" , s1, s2); |
| 2727 | end= strend(s1); |
| 2728 | string2decimal(s1, &a, &end); |
| 2729 | end= strend(s2); |
| 2730 | string2decimal(s2, &b, &end); |
| 2731 | res=decimal_mod(&a, &b, &c); |
| 2732 | printf("%-40s => res=%d " , s, res); |
| 2733 | check_result_code(res, ex); |
| 2734 | if (res == E_DEC_DIV_ZERO) |
| 2735 | printf("E_DEC_DIV_ZERO" ); |
| 2736 | else |
| 2737 | print_decimal(&c, orig, res, ex); |
| 2738 | printf("\n" ); |
| 2739 | } |
| 2740 | |
| 2741 | const char *round_mode[]= |
| 2742 | {"TRUNCATE" , "HALF_EVEN" , "HALF_UP" , "CEILING" , "FLOOR" }; |
| 2743 | |
| 2744 | void test_ro(const char *s1, int n, decimal_round_mode mode, const char *orig, |
| 2745 | int ex) |
| 2746 | { |
| 2747 | char s[100], *end; |
| 2748 | int res; |
| 2749 | sprintf(s, "'%s', %d, %s" , s1, n, round_mode[mode]); |
| 2750 | end= strend(s1); |
| 2751 | string2decimal(s1, &a, &end); |
| 2752 | res=decimal_round(&a, &b, n, mode); |
| 2753 | printf("%-40s => res=%d " , s, res); |
| 2754 | print_decimal(&b, orig, res, ex); |
| 2755 | printf("\n" ); |
| 2756 | } |
| 2757 | |
| 2758 | |
| 2759 | void test_mx(int precision, int frac, const char *orig) |
| 2760 | { |
| 2761 | char s[100]; |
| 2762 | sprintf(s, "%d, %d" , precision, frac); |
| 2763 | max_decimal(precision, frac, &a); |
| 2764 | printf("%-40s => " , s); |
| 2765 | print_decimal(&a, orig, 0, 0); |
| 2766 | printf("\n" ); |
| 2767 | } |
| 2768 | |
| 2769 | |
| 2770 | void test_pr(const char *s1, int prec, int dec, char filler, const char *orig, |
| 2771 | int ex) |
| 2772 | { |
| 2773 | char s[100], *end; |
| 2774 | char s2[100]; |
| 2775 | int slen= sizeof(s2); |
| 2776 | int res; |
| 2777 | |
| 2778 | sprintf(s, filler ? "'%s', %d, %d, '%c'" : "'%s', %d, %d, '\\0'" , |
| 2779 | s1, prec, dec, filler); |
| 2780 | end= strend(s1); |
| 2781 | string2decimal(s1, &a, &end); |
| 2782 | res= decimal2string(&a, s2, &slen, prec, dec, filler); |
| 2783 | printf("%-40s => res=%d '%s'" , s, res, s2); |
| 2784 | check_result_code(res, ex); |
| 2785 | if (orig && strcmp(orig, s2)) |
| 2786 | { |
| 2787 | printf("\n^^^^^^^^^^^^^ must've been '%s'\n" , orig); |
| 2788 | exit(1); |
| 2789 | } |
| 2790 | printf("\n" ); |
| 2791 | } |
| 2792 | |
| 2793 | |
| 2794 | void test_sh(const char *s1, int shift, const char *orig, int ex) |
| 2795 | { |
| 2796 | char s[100], *end; |
| 2797 | int res; |
| 2798 | sprintf(s, "'%s' %s %d" , s1, ((shift < 0) ? ">>" : "<<" ), abs(shift)); |
| 2799 | end= strend(s1); |
| 2800 | string2decimal(s1, &a, &end); |
| 2801 | res= decimal_shift(&a, shift); |
| 2802 | printf("%-40s => res=%d " , s, res); |
| 2803 | print_decimal(&a, orig, res, ex); |
| 2804 | printf("\n" ); |
| 2805 | } |
| 2806 | |
| 2807 | |
| 2808 | void test_fr(const char *s1, const char *orig) |
| 2809 | { |
| 2810 | char s[100], *end; |
| 2811 | sprintf(s, "'%s'" , s1); |
| 2812 | printf("%-40s => " , s); |
| 2813 | end= strend(s1); |
| 2814 | string2decimal(s1, &a, &end); |
| 2815 | a.frac= decimal_actual_fraction(&a); |
| 2816 | print_decimal(&a, orig, 0, 0); |
| 2817 | printf("\n" ); |
| 2818 | } |
| 2819 | |
| 2820 | |
| 2821 | int main() |
| 2822 | { |
| 2823 | a.buf=(void*)buf1; |
| 2824 | a.len=sizeof(buf1)/sizeof(dec1); |
| 2825 | b.buf=(void*)buf2; |
| 2826 | b.len=sizeof(buf2)/sizeof(dec1); |
| 2827 | c.buf=(void*)buf3; |
| 2828 | c.len=sizeof(buf3)/sizeof(dec1); |
| 2829 | |
| 2830 | if (full) |
| 2831 | test_d2s(); |
| 2832 | |
| 2833 | printf("==== string2decimal ====\n" ); |
| 2834 | test_s2d("12345" , "12345" , 0); |
| 2835 | test_s2d("12345." , "12345" , 0); |
| 2836 | test_s2d("123.45" , "123.45" , 0); |
| 2837 | test_s2d("-123.45" , "-123.45" , 0); |
| 2838 | test_s2d(".00012345000098765" , "0.00012345000098765" , 0); |
| 2839 | test_s2d(".12345000098765" , "0.12345000098765" , 0); |
| 2840 | test_s2d("-.000000012345000098765" , "-0.000000012345000098765" , 0); |
| 2841 | test_s2d("1234500009876.5" , "1234500009876.5" , 0); |
| 2842 | a.len=1; |
| 2843 | test_s2d("123450000098765" , "98765" , 2); |
| 2844 | test_s2d("123450.000098765" , "123450" , 1); |
| 2845 | a.len=sizeof(buf1)/sizeof(dec1); |
| 2846 | test_s2d("123E5" , "12300000" , 0); |
| 2847 | test_s2d("123E-2" , "1.23" , 0); |
| 2848 | |
| 2849 | printf("==== decimal2double ====\n" ); |
| 2850 | test_d2f("12345" , 0); |
| 2851 | test_d2f("123.45" , 0); |
| 2852 | test_d2f("-123.45" , 0); |
| 2853 | test_d2f("0.00012345000098765" , 0); |
| 2854 | test_d2f("1234500009876.5" , 0); |
| 2855 | |
| 2856 | printf("==== double2decimal ====\n" ); |
| 2857 | test_f2d(12345, 0); |
| 2858 | test_f2d(1.0/3, 0); |
| 2859 | test_f2d(-123.45, 0); |
| 2860 | test_f2d(0.00012345000098765, 0); |
| 2861 | test_f2d(1234500009876.5, 0); |
| 2862 | |
| 2863 | printf("==== ulonglong2decimal ====\n" ); |
| 2864 | test_ull2d(ULL(12345), "12345" , 0); |
| 2865 | test_ull2d(ULL(0), "0" , 0); |
| 2866 | test_ull2d(ULL(18446744073709551615), "18446744073709551615" , 0); |
| 2867 | |
| 2868 | printf("==== decimal2ulonglong ====\n" ); |
| 2869 | test_d2ull("12345" , "12345" , 0); |
| 2870 | test_d2ull("0" , "0" , 0); |
| 2871 | test_d2ull("18446744073709551615" , "18446744073709551615" , 0); |
| 2872 | test_d2ull("18446744073709551616" , "18446744073" , 2); |
| 2873 | test_d2ull("-1" , "0" , 2); |
| 2874 | test_d2ull("1.23" , "1" , 1); |
| 2875 | test_d2ull("9999999999999999999999999.000" , "9999999999999999" , 2); |
| 2876 | |
| 2877 | printf("==== longlong2decimal ====\n" ); |
| 2878 | test_ll2d(LL(-12345), "-12345" , 0); |
| 2879 | test_ll2d(LL(-1), "-1" , 0); |
| 2880 | test_ll2d(LL(-9223372036854775807), "-9223372036854775807" , 0); |
| 2881 | test_ll2d(ULL(9223372036854775808), "-9223372036854775808" , 0); |
| 2882 | |
| 2883 | printf("==== decimal2longlong ====\n" ); |
| 2884 | test_d2ll("18446744073709551615" , "18446744073" , 2); |
| 2885 | test_d2ll("-1" , "-1" , 0); |
| 2886 | test_d2ll("-1.23" , "-1" , 1); |
| 2887 | test_d2ll("-9223372036854775807" , "-9223372036854775807" , 0); |
| 2888 | test_d2ll("-9223372036854775808" , "-9223372036854775808" , 0); |
| 2889 | test_d2ll("9223372036854775808" , "9223372036854775807" , 2); |
| 2890 | |
| 2891 | printf("==== do_add ====\n" ); |
| 2892 | test_da(".00012345000098765" ,"123.45" , "123.45012345000098765" , 0); |
| 2893 | test_da(".1" ,".45" , "0.55" , 0); |
| 2894 | test_da("1234500009876.5" ,".00012345000098765" , "1234500009876.50012345000098765" , 0); |
| 2895 | test_da("9999909999999.5" ,".555" , "9999910000000.055" , 0); |
| 2896 | test_da("99999999" ,"1" , "100000000" , 0); |
| 2897 | test_da("989999999" ,"1" , "990000000" , 0); |
| 2898 | test_da("999999999" ,"1" , "1000000000" , 0); |
| 2899 | test_da("12345" ,"123.45" , "12468.45" , 0); |
| 2900 | test_da("-12345" ,"-123.45" , "-12468.45" , 0); |
| 2901 | test_ds("-12345" ,"123.45" , "-12468.45" , 0); |
| 2902 | test_ds("12345" ,"-123.45" , "12468.45" , 0); |
| 2903 | |
| 2904 | printf("==== do_sub ====\n" ); |
| 2905 | test_ds(".00012345000098765" , "123.45" ,"-123.44987654999901235" , 0); |
| 2906 | test_ds("1234500009876.5" , ".00012345000098765" ,"1234500009876.49987654999901235" , 0); |
| 2907 | test_ds("9999900000000.5" , ".555" ,"9999899999999.945" , 0); |
| 2908 | test_ds("1111.5551" , "1111.555" ,"0.0001" , 0); |
| 2909 | test_ds(".555" , ".555" ,"0" , 0); |
| 2910 | test_ds("10000000" , "1" ,"9999999" , 0); |
| 2911 | test_ds("1000001000" , ".1" ,"1000000999.9" , 0); |
| 2912 | test_ds("1000000000" , ".1" ,"999999999.9" , 0); |
| 2913 | test_ds("12345" , "123.45" ,"12221.55" , 0); |
| 2914 | test_ds("-12345" , "-123.45" ,"-12221.55" , 0); |
| 2915 | test_da("-12345" , "123.45" ,"-12221.55" , 0); |
| 2916 | test_da("12345" , "-123.45" ,"12221.55" , 0); |
| 2917 | test_ds("123.45" , "12345" ,"-12221.55" , 0); |
| 2918 | test_ds("-123.45" , "-12345" ,"12221.55" , 0); |
| 2919 | test_da("123.45" , "-12345" ,"-12221.55" , 0); |
| 2920 | test_da("-123.45" , "12345" ,"12221.55" , 0); |
| 2921 | test_da("5" , "-6.0" ,"-1.0" , 0); |
| 2922 | |
| 2923 | printf("==== decimal_mul ====\n" ); |
| 2924 | test_dm("12" , "10" ,"120" , 0); |
| 2925 | test_dm("-123.456" , "98765.4321" ,"-12193185.1853376" , 0); |
| 2926 | test_dm("-123456000000" , "98765432100000" ,"-12193185185337600000000000" , 0); |
| 2927 | test_dm("123456" , "987654321" ,"121931851853376" , 0); |
| 2928 | test_dm("123456" , "9876543210" ,"1219318518533760" , 0); |
| 2929 | test_dm("123" , "0.01" ,"1.23" , 0); |
| 2930 | test_dm("123" , "0" ,"0" , 0); |
| 2931 | |
| 2932 | printf("==== decimal_div ====\n" ); |
| 2933 | test_dv("120" , "10" ,"12.000000000" , 0); |
| 2934 | test_dv("123" , "0.01" ,"12300.000000000" , 0); |
| 2935 | test_dv("120" , "100000000000.00000" ,"0.000000001200000000" , 0); |
| 2936 | test_dv("123" , "0" ,"" , 4); |
| 2937 | test_dv("0" , "0" , "" , 4); |
| 2938 | test_dv("-12193185.1853376" , "98765.4321" ,"-123.456000000000000000" , 0); |
| 2939 | test_dv("121931851853376" , "987654321" ,"123456.000000000" , 0); |
| 2940 | test_dv("0" , "987" ,"0" , 0); |
| 2941 | test_dv("1" , "3" ,"0.333333333" , 0); |
| 2942 | test_dv("1.000000000000" , "3" ,"0.333333333333333333" , 0); |
| 2943 | test_dv("1" , "1" ,"1.000000000" , 0); |
| 2944 | test_dv("0.0123456789012345678912345" , "9999999999" ,"0.000000000001234567890246913578148141" , 0); |
| 2945 | test_dv("10.333000000" , "12.34500" ,"0.837019036046982584042122316" , 0); |
| 2946 | test_dv("10.000000000060" , "2" ,"5.000000000030000000" , 0); |
| 2947 | |
| 2948 | printf("==== decimal_mod ====\n" ); |
| 2949 | test_md("234" ,"10" ,"4" , 0); |
| 2950 | test_md("234.567" ,"10.555" ,"2.357" , 0); |
| 2951 | test_md("-234.567" ,"10.555" ,"-2.357" , 0); |
| 2952 | test_md("234.567" ,"-10.555" ,"2.357" , 0); |
| 2953 | c.buf[1]=0x3ABECA; |
| 2954 | test_md("99999999999999999999999999999999999999" ,"3" ,"0" , 0); |
| 2955 | if (c.buf[1] != 0x3ABECA) |
| 2956 | { |
| 2957 | printf("%X - overflow\n" , c.buf[1]); |
| 2958 | exit(1); |
| 2959 | } |
| 2960 | |
| 2961 | printf("==== decimal2bin/bin2decimal ====\n" ); |
| 2962 | test_d2b2d("-10.55" , 4, 2,"-10.55" , 0); |
| 2963 | test_d2b2d("0.0123456789012345678912345" , 30, 25,"0.0123456789012345678912345" , 0); |
| 2964 | test_d2b2d("12345" , 5, 0,"12345" , 0); |
| 2965 | test_d2b2d("12345" , 10, 3,"12345.000" , 0); |
| 2966 | test_d2b2d("123.45" , 10, 3,"123.450" , 0); |
| 2967 | test_d2b2d("-123.45" , 20, 10,"-123.4500000000" , 0); |
| 2968 | test_d2b2d(".00012345000098765" , 15, 14,"0.00012345000098" , 0); |
| 2969 | test_d2b2d(".00012345000098765" , 22, 20,"0.00012345000098765000" , 0); |
| 2970 | test_d2b2d(".12345000098765" , 30, 20,"0.12345000098765000000" , 0); |
| 2971 | test_d2b2d("-.000000012345000098765" , 30, 20,"-0.00000001234500009876" , 0); |
| 2972 | test_d2b2d("1234500009876.5" , 30, 5,"1234500009876.50000" , 0); |
| 2973 | test_d2b2d("111111111.11" , 10, 2,"11111111.11" , 0); |
| 2974 | test_d2b2d("000000000.01" , 7, 3,"0.010" , 0); |
| 2975 | test_d2b2d("123.4" , 10, 2, "123.40" , 0); |
| 2976 | |
| 2977 | |
| 2978 | printf("==== decimal_cmp ====\n" ); |
| 2979 | test_dc("12" ,"13" ,-1); |
| 2980 | test_dc("13" ,"12" ,1); |
| 2981 | test_dc("-10" ,"10" ,-1); |
| 2982 | test_dc("10" ,"-10" ,1); |
| 2983 | test_dc("-12" ,"-13" ,1); |
| 2984 | test_dc("0" ,"12" ,-1); |
| 2985 | test_dc("-10" ,"0" ,-1); |
| 2986 | test_dc("4" ,"4" ,0); |
| 2987 | |
| 2988 | printf("==== decimal_round ====\n" ); |
| 2989 | test_ro("5678.123451" ,-4,TRUNCATE,"0" , 0); |
| 2990 | test_ro("5678.123451" ,-3,TRUNCATE,"5000" , 0); |
| 2991 | test_ro("5678.123451" ,-2,TRUNCATE,"5600" , 0); |
| 2992 | test_ro("5678.123451" ,-1,TRUNCATE,"5670" , 0); |
| 2993 | test_ro("5678.123451" ,0,TRUNCATE,"5678" , 0); |
| 2994 | test_ro("5678.123451" ,1,TRUNCATE,"5678.1" , 0); |
| 2995 | test_ro("5678.123451" ,2,TRUNCATE,"5678.12" , 0); |
| 2996 | test_ro("5678.123451" ,3,TRUNCATE,"5678.123" , 0); |
| 2997 | test_ro("5678.123451" ,4,TRUNCATE,"5678.1234" , 0); |
| 2998 | test_ro("5678.123451" ,5,TRUNCATE,"5678.12345" , 0); |
| 2999 | test_ro("5678.123451" ,6,TRUNCATE,"5678.123451" , 0); |
| 3000 | test_ro("-5678.123451" ,-4,TRUNCATE,"0" , 0); |
| 3001 | memset(buf2, 33, sizeof(buf2)); |
| 3002 | test_ro("99999999999999999999999999999999999999" ,-31,TRUNCATE,"99999990000000000000000000000000000000" , 0); |
| 3003 | test_ro("15.1" ,0,HALF_UP,"15" , 0); |
| 3004 | test_ro("15.5" ,0,HALF_UP,"16" , 0); |
| 3005 | test_ro("15.9" ,0,HALF_UP,"16" , 0); |
| 3006 | test_ro("-15.1" ,0,HALF_UP,"-15" , 0); |
| 3007 | test_ro("-15.5" ,0,HALF_UP,"-16" , 0); |
| 3008 | test_ro("-15.9" ,0,HALF_UP,"-16" , 0); |
| 3009 | test_ro("15.1" ,1,HALF_UP,"15.1" , 0); |
| 3010 | test_ro("-15.1" ,1,HALF_UP,"-15.1" , 0); |
| 3011 | test_ro("15.17" ,1,HALF_UP,"15.2" , 0); |
| 3012 | test_ro("15.4" ,-1,HALF_UP,"20" , 0); |
| 3013 | test_ro("-15.4" ,-1,HALF_UP,"-20" , 0); |
| 3014 | test_ro("5.4" ,-1,HALF_UP,"10" , 0); |
| 3015 | test_ro(".999" , 0, HALF_UP, "1" , 0); |
| 3016 | memset(buf2, 33, sizeof(buf2)); |
| 3017 | test_ro("999999999" , -9, HALF_UP, "1000000000" , 0); |
| 3018 | test_ro("15.1" ,0,HALF_EVEN,"15" , 0); |
| 3019 | test_ro("15.5" ,0,HALF_EVEN,"16" , 0); |
| 3020 | test_ro("14.5" ,0,HALF_EVEN,"14" , 0); |
| 3021 | test_ro("15.9" ,0,HALF_EVEN,"16" , 0); |
| 3022 | test_ro("15.1" ,0,CEILING,"16" , 0); |
| 3023 | test_ro("-15.1" ,0,CEILING,"-15" , 0); |
| 3024 | test_ro("15.1" ,0,FLOOR,"15" , 0); |
| 3025 | test_ro("-15.1" ,0,FLOOR,"-16" , 0); |
| 3026 | test_ro("999999999999999999999.999" , 0, CEILING,"1000000000000000000000" , 0); |
| 3027 | test_ro("-999999999999999999999.999" , 0, FLOOR,"-1000000000000000000000" , 0); |
| 3028 | |
| 3029 | b.buf[0]=DIG_BASE+1; |
| 3030 | b.buf++; |
| 3031 | test_ro(".3" , 0, HALF_UP, "0" , 0); |
| 3032 | b.buf--; |
| 3033 | if (b.buf[0] != DIG_BASE+1) |
| 3034 | { |
| 3035 | printf("%d - underflow\n" , b.buf[0]); |
| 3036 | exit(1); |
| 3037 | } |
| 3038 | |
| 3039 | printf("==== max_decimal ====\n" ); |
| 3040 | test_mx(1,1,"0.9" ); |
| 3041 | test_mx(1,0,"9" ); |
| 3042 | test_mx(2,1,"9.9" ); |
| 3043 | test_mx(4,2,"99.99" ); |
| 3044 | test_mx(6,3,"999.999" ); |
| 3045 | test_mx(8,4,"9999.9999" ); |
| 3046 | test_mx(10,5,"99999.99999" ); |
| 3047 | test_mx(12,6,"999999.999999" ); |
| 3048 | test_mx(14,7,"9999999.9999999" ); |
| 3049 | test_mx(16,8,"99999999.99999999" ); |
| 3050 | test_mx(18,9,"999999999.999999999" ); |
| 3051 | test_mx(20,10,"9999999999.9999999999" ); |
| 3052 | test_mx(20,20,"0.99999999999999999999" ); |
| 3053 | test_mx(20,0,"99999999999999999999" ); |
| 3054 | test_mx(40,20,"99999999999999999999.99999999999999999999" ); |
| 3055 | |
| 3056 | printf("==== decimal2string ====\n" ); |
| 3057 | test_pr("123.123" , 0, 0, 0, "123.123" , 0); |
| 3058 | test_pr("123.123" , 7, 3, '0', "123.123" , 0); |
| 3059 | test_pr("123.123" , 9, 3, '0', "00123.123" , 0); |
| 3060 | test_pr("123.123" , 9, 4, '0', "0123.1230" , 0); |
| 3061 | test_pr("123.123" , 9, 5, '0', "123.12300" , 0); |
| 3062 | test_pr("123.123" , 9, 2, '0', "000123.12" , 1); |
| 3063 | test_pr("123.123" , 9, 6, '0', "23.123000" , 2); |
| 3064 | |
| 3065 | printf("==== decimal_shift ====\n" ); |
| 3066 | test_sh("123.123" , 1, "1231.23" , 0); |
| 3067 | test_sh("123457189.123123456789000" , 1, "1234571891.23123456789" , 0); |
| 3068 | test_sh("123457189.123123456789000" , 4, "1234571891231.23456789" , 0); |
| 3069 | test_sh("123457189.123123456789000" , 8, "12345718912312345.6789" , 0); |
| 3070 | test_sh("123457189.123123456789000" , 9, "123457189123123456.789" , 0); |
| 3071 | test_sh("123457189.123123456789000" , 10, "1234571891231234567.89" , 0); |
| 3072 | test_sh("123457189.123123456789000" , 17, "12345718912312345678900000" , 0); |
| 3073 | test_sh("123457189.123123456789000" , 18, "123457189123123456789000000" , 0); |
| 3074 | test_sh("123457189.123123456789000" , 19, "1234571891231234567890000000" , 0); |
| 3075 | test_sh("123457189.123123456789000" , 26, "12345718912312345678900000000000000" , 0); |
| 3076 | test_sh("123457189.123123456789000" , 27, "123457189123123456789000000000000000" , 0); |
| 3077 | test_sh("123457189.123123456789000" , 28, "1234571891231234567890000000000000000" , 0); |
| 3078 | test_sh("000000000000000000000000123457189.123123456789000" , 26, "12345718912312345678900000000000000" , 0); |
| 3079 | test_sh("00000000123457189.123123456789000" , 27, "123457189123123456789000000000000000" , 0); |
| 3080 | test_sh("00000000000000000123457189.123123456789000" , 28, "1234571891231234567890000000000000000" , 0); |
| 3081 | test_sh("123" , 1, "1230" , 0); |
| 3082 | test_sh("123" , 10, "1230000000000" , 0); |
| 3083 | test_sh(".123" , 1, "1.23" , 0); |
| 3084 | test_sh(".123" , 10, "1230000000" , 0); |
| 3085 | test_sh(".123" , 14, "12300000000000" , 0); |
| 3086 | test_sh("000.000" , 1000, "0" , 0); |
| 3087 | test_sh("000." , 1000, "0" , 0); |
| 3088 | test_sh(".000" , 1000, "0" , 0); |
| 3089 | test_sh("1" , 1000, "1" , 2); |
| 3090 | test_sh("123.123" , -1, "12.3123" , 0); |
| 3091 | test_sh("123987654321.123456789000" , -1, "12398765432.1123456789" , 0); |
| 3092 | test_sh("123987654321.123456789000" , -2, "1239876543.21123456789" , 0); |
| 3093 | test_sh("123987654321.123456789000" , -3, "123987654.321123456789" , 0); |
| 3094 | test_sh("123987654321.123456789000" , -8, "1239.87654321123456789" , 0); |
| 3095 | test_sh("123987654321.123456789000" , -9, "123.987654321123456789" , 0); |
| 3096 | test_sh("123987654321.123456789000" , -10, "12.3987654321123456789" , 0); |
| 3097 | test_sh("123987654321.123456789000" , -11, "1.23987654321123456789" , 0); |
| 3098 | test_sh("123987654321.123456789000" , -12, "0.123987654321123456789" , 0); |
| 3099 | test_sh("123987654321.123456789000" , -13, "0.0123987654321123456789" , 0); |
| 3100 | test_sh("123987654321.123456789000" , -14, "0.00123987654321123456789" , 0); |
| 3101 | test_sh("00000087654321.123456789000" , -14, "0.00000087654321123456789" , 0); |
| 3102 | a.len= 2; |
| 3103 | test_sh("123.123" , -2, "1.23123" , 0); |
| 3104 | test_sh("123.123" , -3, "0.123123" , 0); |
| 3105 | test_sh("123.123" , -6, "0.000123123" , 0); |
| 3106 | test_sh("123.123" , -7, "0.0000123123" , 0); |
| 3107 | test_sh("123.123" , -15, "0.000000000000123123" , 0); |
| 3108 | test_sh("123.123" , -16, "0.000000000000012312" , 1); |
| 3109 | test_sh("123.123" , -17, "0.000000000000001231" , 1); |
| 3110 | test_sh("123.123" , -18, "0.000000000000000123" , 1); |
| 3111 | test_sh("123.123" , -19, "0.000000000000000012" , 1); |
| 3112 | test_sh("123.123" , -20, "0.000000000000000001" , 1); |
| 3113 | test_sh("123.123" , -21, "0" , 1); |
| 3114 | test_sh(".000000000123" , -1, "0.0000000000123" , 0); |
| 3115 | test_sh(".000000000123" , -6, "0.000000000000000123" , 0); |
| 3116 | test_sh(".000000000123" , -7, "0.000000000000000012" , 1); |
| 3117 | test_sh(".000000000123" , -8, "0.000000000000000001" , 1); |
| 3118 | test_sh(".000000000123" , -9, "0" , 1); |
| 3119 | test_sh(".000000000123" , 1, "0.00000000123" , 0); |
| 3120 | test_sh(".000000000123" , 8, "0.0123" , 0); |
| 3121 | test_sh(".000000000123" , 9, "0.123" , 0); |
| 3122 | test_sh(".000000000123" , 10, "1.23" , 0); |
| 3123 | test_sh(".000000000123" , 17, "12300000" , 0); |
| 3124 | test_sh(".000000000123" , 18, "123000000" , 0); |
| 3125 | test_sh(".000000000123" , 19, "1230000000" , 0); |
| 3126 | test_sh(".000000000123" , 20, "12300000000" , 0); |
| 3127 | test_sh(".000000000123" , 21, "123000000000" , 0); |
| 3128 | test_sh(".000000000123" , 22, "1230000000000" , 0); |
| 3129 | test_sh(".000000000123" , 23, "12300000000000" , 0); |
| 3130 | test_sh(".000000000123" , 24, "123000000000000" , 0); |
| 3131 | test_sh(".000000000123" , 25, "1230000000000000" , 0); |
| 3132 | test_sh(".000000000123" , 26, "12300000000000000" , 0); |
| 3133 | test_sh(".000000000123" , 27, "123000000000000000" , 0); |
| 3134 | test_sh(".000000000123" , 28, "0.000000000123" , 2); |
| 3135 | test_sh("123456789.987654321" , -1, "12345678.998765432" , 1); |
| 3136 | test_sh("123456789.987654321" , -2, "1234567.899876543" , 1); |
| 3137 | test_sh("123456789.987654321" , -8, "1.234567900" , 1); |
| 3138 | test_sh("123456789.987654321" , -9, "0.123456789987654321" , 0); |
| 3139 | test_sh("123456789.987654321" , -10, "0.012345678998765432" , 1); |
| 3140 | test_sh("123456789.987654321" , -17, "0.000000001234567900" , 1); |
| 3141 | test_sh("123456789.987654321" , -18, "0.000000000123456790" , 1); |
| 3142 | test_sh("123456789.987654321" , -19, "0.000000000012345679" , 1); |
| 3143 | test_sh("123456789.987654321" , -26, "0.000000000000000001" , 1); |
| 3144 | test_sh("123456789.987654321" , -27, "0" , 1); |
| 3145 | test_sh("123456789.987654321" , 1, "1234567900" , 1); |
| 3146 | test_sh("123456789.987654321" , 2, "12345678999" , 1); |
| 3147 | test_sh("123456789.987654321" , 4, "1234567899877" , 1); |
| 3148 | test_sh("123456789.987654321" , 8, "12345678998765432" , 1); |
| 3149 | test_sh("123456789.987654321" , 9, "123456789987654321" , 0); |
| 3150 | test_sh("123456789.987654321" , 10, "123456789.987654321" , 2); |
| 3151 | test_sh("123456789.987654321" , 0, "123456789.987654321" , 0); |
| 3152 | a.len= sizeof(buf1)/sizeof(dec1); |
| 3153 | |
| 3154 | printf("==== decimal_actual_fraction ====\n" ); |
| 3155 | test_fr("1.123456789000000000" , "1.123456789" ); |
| 3156 | test_fr("1.12345678000000000" , "1.12345678" ); |
| 3157 | test_fr("1.1234567000000000" , "1.1234567" ); |
| 3158 | test_fr("1.123456000000000" , "1.123456" ); |
| 3159 | test_fr("1.12345000000000" , "1.12345" ); |
| 3160 | test_fr("1.1234000000000" , "1.1234" ); |
| 3161 | test_fr("1.123000000000" , "1.123" ); |
| 3162 | test_fr("1.12000000000" , "1.12" ); |
| 3163 | test_fr("1.1000000000" , "1.1" ); |
| 3164 | test_fr("1.000000000" , "1" ); |
| 3165 | test_fr("1.0" , "1" ); |
| 3166 | test_fr("10000000000000000000.0" , "10000000000000000000" ); |
| 3167 | |
| 3168 | return 0; |
| 3169 | } |
| 3170 | #endif |
| 3171 | |