1 | /* Copyright (c) 2004, 2014, Oracle and/or its affiliates. |
2 | Copyright (c) 2009, 2014, Monty Program Ab. |
3 | |
4 | This program is free software; you can redistribute it and/or modify |
5 | it under the terms of the GNU General Public License as published by |
6 | the Free Software Foundation; version 2 of the License. |
7 | |
8 | This program is distributed in the hope that it will be useful, |
9 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
10 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
11 | GNU General Public License for more details. |
12 | |
13 | You should have received a copy of the GNU General Public License |
14 | along with this program; if not, write to the Free Software |
15 | Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ |
16 | |
17 | /* |
18 | ======================================================================= |
19 | NOTE: this library implements SQL standard "exact numeric" type |
20 | and is not at all generic, but rather intentinally crippled to |
21 | follow the standard :) |
22 | ======================================================================= |
23 | Quoting the standard |
24 | (SQL:2003, Part 2 Foundations, aka ISO/IEC 9075-2:2003) |
25 | |
26 | 4.4.2 Characteristics of numbers, page 27: |
27 | |
28 | An exact numeric type has a precision P and a scale S. P is a positive |
29 | integer that determines the number of significant digits in a |
30 | particular radix R, where R is either 2 or 10. S is a non-negative |
31 | integer. Every value of an exact numeric type of scale S is of the |
32 | form n*10^{-S}, where n is an integer such that -R^P <= n <= R^P. |
33 | |
34 | [...] |
35 | |
36 | If an assignment of some number would result in a loss of its most |
37 | significant digit, an exception condition is raised. If least |
38 | significant digits are lost, implementation-defined rounding or |
39 | truncating occurs, with no exception condition being raised. |
40 | |
41 | [...] |
42 | |
43 | Whenever an exact or approximate numeric value is assigned to an exact |
44 | numeric value site, an approximation of its value that preserves |
45 | leading significant digits after rounding or truncating is represented |
46 | in the declared type of the target. The value is converted to have the |
47 | precision and scale of the target. The choice of whether to truncate |
48 | or round is implementation-defined. |
49 | |
50 | [...] |
51 | |
52 | All numeric values between the smallest and the largest value, |
53 | inclusive, in a given exact numeric type have an approximation |
54 | obtained by rounding or truncation for that type; it is |
55 | implementation-defined which other numeric values have such |
56 | approximations. |
57 | |
58 | 5.3 <literal>, page 143 |
59 | |
60 | <exact numeric literal> ::= |
61 | <unsigned integer> [ <period> [ <unsigned integer> ] ] |
62 | | <period> <unsigned integer> |
63 | |
64 | 6.1 <data type>, page 165: |
65 | |
66 | 19) The <scale> of an <exact numeric type> shall not be greater than |
67 | the <precision> of the <exact numeric type>. |
68 | |
69 | 20) For the <exact numeric type>s DECIMAL and NUMERIC: |
70 | |
71 | a) The maximum value of <precision> is implementation-defined. |
72 | <precision> shall not be greater than this value. |
73 | b) The maximum value of <scale> is implementation-defined. <scale> |
74 | shall not be greater than this maximum value. |
75 | |
76 | 21) NUMERIC specifies the data type exact numeric, with the decimal |
77 | precision and scale specified by the <precision> and <scale>. |
78 | |
79 | 22) DECIMAL specifies the data type exact numeric, with the decimal |
80 | scale specified by the <scale> and the implementation-defined |
81 | decimal precision equal to or greater than the value of the |
82 | specified <precision>. |
83 | |
84 | 6.26 <numeric value expression>, page 241: |
85 | |
86 | 1) If the declared type of both operands of a dyadic arithmetic |
87 | operator is exact numeric, then the declared type of the result is |
88 | an implementation-defined exact numeric type, with precision and |
89 | scale determined as follows: |
90 | |
91 | a) Let S1 and S2 be the scale of the first and second operands |
92 | respectively. |
93 | b) The precision of the result of addition and subtraction is |
94 | implementation-defined, and the scale is the maximum of S1 and S2. |
95 | c) The precision of the result of multiplication is |
96 | implementation-defined, and the scale is S1 + S2. |
97 | d) The precision and scale of the result of division are |
98 | implementation-defined. |
99 | */ |
100 | |
101 | #include "strings_def.h" |
102 | #include <m_ctype.h> |
103 | #include <myisampack.h> |
104 | #include <my_sys.h> /* for my_alloca */ |
105 | #include <decimal.h> |
106 | |
107 | /* |
108 | Internally decimal numbers are stored base 10^9 (see DIG_BASE below) |
109 | So one variable of type decimal_digit_t is limited: |
110 | |
111 | 0 < decimal_digit <= DIG_MAX < DIG_BASE |
112 | |
113 | in the struct st_decimal_t: |
114 | |
115 | intg is the number of *decimal* digits (NOT number of decimal_digit_t's !) |
116 | before the point |
117 | frac - number of decimal digits after the point |
118 | buf is an array of decimal_digit_t's |
119 | len is the length of buf (length of allocated space) in decimal_digit_t's, |
120 | not in bytes |
121 | */ |
122 | typedef decimal_digit_t dec1; |
123 | typedef longlong dec2; |
124 | |
125 | #define DIG_PER_DEC1 9 |
126 | #define DIG_MASK 100000000 |
127 | #define DIG_BASE 1000000000 |
128 | #define DIG_MAX (DIG_BASE-1) |
129 | #define DIG_BASE2 ((dec2)DIG_BASE * (dec2)DIG_BASE) |
130 | static const dec1 powers10[DIG_PER_DEC1+1]={ |
131 | 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000}; |
132 | static const int dig2bytes[DIG_PER_DEC1+1]={0, 1, 1, 2, 2, 3, 3, 4, 4, 4}; |
133 | static const dec1 frac_max[DIG_PER_DEC1-1]={ |
134 | 900000000, 990000000, 999000000, |
135 | 999900000, 999990000, 999999000, |
136 | 999999900, 999999990 }; |
137 | |
138 | static inline int ROUND_UP(int x) |
139 | { |
140 | return (x + (x > 0 ? DIG_PER_DEC1 - 1 : 0)) / DIG_PER_DEC1; |
141 | } |
142 | |
143 | #ifdef HAVE_valgrind |
144 | #define sanity(d) DBUG_ASSERT((d)->len > 0) |
145 | #else |
146 | #define sanity(d) DBUG_ASSERT((d)->len >0 && ((d)->buf[0] | \ |
147 | (d)->buf[(d)->len-1] | 1)) |
148 | #endif |
149 | |
150 | #define FIX_INTG_FRAC_ERROR(len, intg1, frac1, error) \ |
151 | do \ |
152 | { \ |
153 | if (unlikely(intg1+frac1 > (len))) \ |
154 | { \ |
155 | if (unlikely(intg1 > (len))) \ |
156 | { \ |
157 | intg1=(len); \ |
158 | frac1=0; \ |
159 | error=E_DEC_OVERFLOW; \ |
160 | } \ |
161 | else \ |
162 | { \ |
163 | frac1=(len)-intg1; \ |
164 | error=E_DEC_TRUNCATED; \ |
165 | } \ |
166 | } \ |
167 | else \ |
168 | error=E_DEC_OK; \ |
169 | } while(0) |
170 | |
171 | #define ADD(to, from1, from2, carry) /* assume carry <= 1 */ \ |
172 | do \ |
173 | { \ |
174 | dec1 a=(from1)+(from2)+(carry); \ |
175 | DBUG_ASSERT((carry) <= 1); \ |
176 | if (((carry)= a >= DIG_BASE)) /* no division here! */ \ |
177 | a-=DIG_BASE; \ |
178 | (to)=a; \ |
179 | } while(0) |
180 | |
181 | #define ADD2(to, from1, from2, carry) \ |
182 | do \ |
183 | { \ |
184 | dec2 a=((dec2)(from1))+(from2)+(carry); \ |
185 | if (((carry)= a >= DIG_BASE)) \ |
186 | a-=DIG_BASE; \ |
187 | if (unlikely(a >= DIG_BASE)) \ |
188 | { \ |
189 | a-=DIG_BASE; \ |
190 | carry++; \ |
191 | } \ |
192 | (to)=(dec1) a; \ |
193 | } while(0) |
194 | |
195 | #define SUB(to, from1, from2, carry) /* to=from1-from2 */ \ |
196 | do \ |
197 | { \ |
198 | dec1 a=(from1)-(from2)-(carry); \ |
199 | if (((carry)= a < 0)) \ |
200 | a+=DIG_BASE; \ |
201 | (to)=a; \ |
202 | } while(0) |
203 | |
204 | #define SUB2(to, from1, from2, carry) /* to=from1-from2 */ \ |
205 | do \ |
206 | { \ |
207 | dec1 a=(from1)-(from2)-(carry); \ |
208 | if (((carry)= a < 0)) \ |
209 | a+=DIG_BASE; \ |
210 | if (unlikely(a < 0)) \ |
211 | { \ |
212 | a+=DIG_BASE; \ |
213 | carry++; \ |
214 | } \ |
215 | (to)=a; \ |
216 | } while(0) |
217 | |
218 | /* |
219 | Get maximum value for given precision and scale |
220 | |
221 | SYNOPSIS |
222 | max_decimal() |
223 | precision/scale - see decimal_bin_size() below |
224 | to - decimal where where the result will be stored |
225 | to->buf and to->len must be set. |
226 | */ |
227 | |
228 | void max_decimal(int precision, int frac, decimal_t *to) |
229 | { |
230 | int intpart; |
231 | dec1 *buf= to->buf; |
232 | DBUG_ASSERT(precision && precision >= frac); |
233 | |
234 | to->sign= 0; |
235 | if ((intpart= to->intg= (precision - frac))) |
236 | { |
237 | int firstdigits= intpart % DIG_PER_DEC1; |
238 | if (firstdigits) |
239 | *buf++= powers10[firstdigits] - 1; /* get 9 99 999 ... */ |
240 | for(intpart/= DIG_PER_DEC1; intpart; intpart--) |
241 | *buf++= DIG_MAX; |
242 | } |
243 | |
244 | if ((to->frac= frac)) |
245 | { |
246 | int lastdigits= frac % DIG_PER_DEC1; |
247 | for(frac/= DIG_PER_DEC1; frac; frac--) |
248 | *buf++= DIG_MAX; |
249 | if (lastdigits) |
250 | *buf= frac_max[lastdigits - 1]; |
251 | } |
252 | } |
253 | |
254 | |
255 | static dec1 *remove_leading_zeroes(const decimal_t *from, int *intg_result) |
256 | { |
257 | int intg= from->intg, i; |
258 | dec1 *buf0= from->buf; |
259 | i= ((intg - 1) % DIG_PER_DEC1) + 1; |
260 | while (intg > 0 && *buf0 == 0) |
261 | { |
262 | intg-= i; |
263 | i= DIG_PER_DEC1; |
264 | buf0++; |
265 | } |
266 | if (intg > 0) |
267 | { |
268 | for (i= (intg - 1) % DIG_PER_DEC1; *buf0 < powers10[i--]; intg--) ; |
269 | DBUG_ASSERT(intg > 0); |
270 | } |
271 | else |
272 | intg=0; |
273 | *intg_result= intg; |
274 | return buf0; |
275 | } |
276 | |
277 | |
278 | /* |
279 | Count actual length of fraction part (without ending zeroes) |
280 | |
281 | SYNOPSIS |
282 | decimal_actual_fraction() |
283 | from number for processing |
284 | */ |
285 | |
286 | int decimal_actual_fraction(const decimal_t *from) |
287 | { |
288 | int frac= from->frac, i; |
289 | dec1 *buf0= from->buf + ROUND_UP(from->intg) + ROUND_UP(frac) - 1; |
290 | |
291 | if (frac == 0) |
292 | return 0; |
293 | |
294 | i= ((frac - 1) % DIG_PER_DEC1 + 1); |
295 | while (frac > 0 && *buf0 == 0) |
296 | { |
297 | frac-= i; |
298 | i= DIG_PER_DEC1; |
299 | buf0--; |
300 | } |
301 | if (frac > 0) |
302 | { |
303 | for (i= DIG_PER_DEC1 - ((frac - 1) % DIG_PER_DEC1); |
304 | *buf0 % powers10[i++] == 0; |
305 | frac--) {} |
306 | } |
307 | return frac; |
308 | } |
309 | |
310 | |
311 | /* |
312 | Convert decimal to its printable string representation |
313 | |
314 | SYNOPSIS |
315 | decimal2string() |
316 | from - value to convert |
317 | to - points to buffer where string representation |
318 | should be stored |
319 | *to_len - in: size of to buffer (incl. terminating '\0') |
320 | out: length of the actually written string (excl. '\0') |
321 | fixed_precision - 0 if representation can be variable length and |
322 | fixed_decimals will not be checked in this case. |
323 | Put number as with fixed point position with this |
324 | number of digits (sign counted and decimal point is |
325 | counted) |
326 | fixed_decimals - number digits after point. |
327 | filler - character to fill gaps in case of fixed_precision > 0 |
328 | |
329 | RETURN VALUE |
330 | E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW |
331 | */ |
332 | |
333 | int decimal2string(const decimal_t *from, char *to, int *to_len, |
334 | int fixed_precision, int fixed_decimals, |
335 | char filler) |
336 | { |
337 | /* {intg_len, frac_len} output widths; {intg, frac} places in input */ |
338 | int len, intg, frac= from->frac, i, intg_len, frac_len, fill; |
339 | /* number digits before decimal point */ |
340 | int fixed_intg= (fixed_precision ? |
341 | (fixed_precision - fixed_decimals) : 0); |
342 | int error=E_DEC_OK; |
343 | char *s=to; |
344 | dec1 *buf, *buf0=from->buf, tmp; |
345 | |
346 | DBUG_ASSERT(*to_len >= 2+ (int) from->sign); |
347 | |
348 | /* removing leading zeroes */ |
349 | buf0= remove_leading_zeroes(from, &intg); |
350 | if (unlikely(intg+frac==0)) |
351 | { |
352 | intg=1; |
353 | tmp=0; |
354 | buf0=&tmp; |
355 | } |
356 | |
357 | if (!(intg_len= fixed_precision ? fixed_intg : intg)) |
358 | intg_len= 1; |
359 | frac_len= fixed_precision ? fixed_decimals : frac; |
360 | len= from->sign + intg_len + MY_TEST(frac) + frac_len; |
361 | if (fixed_precision) |
362 | { |
363 | if (frac > fixed_decimals) |
364 | { |
365 | error= E_DEC_TRUNCATED; |
366 | frac= fixed_decimals; |
367 | } |
368 | if (intg > fixed_intg) |
369 | { |
370 | error= E_DEC_OVERFLOW; |
371 | intg= fixed_intg; |
372 | } |
373 | } |
374 | else if (unlikely(len > --*to_len)) /* reserve one byte for \0 */ |
375 | { |
376 | int j= len-*to_len; |
377 | error= (frac && j <= frac + 1) ? E_DEC_TRUNCATED : E_DEC_OVERFLOW; |
378 | if (frac && j >= frac + 1) j--; |
379 | if (j > frac) |
380 | { |
381 | intg-= j-frac; |
382 | frac= 0; |
383 | } |
384 | else |
385 | frac-=j; |
386 | frac_len= frac; |
387 | len= from->sign + intg_len + MY_TEST(frac) + frac_len; |
388 | } |
389 | *to_len=len; |
390 | s[len]=0; |
391 | |
392 | if (from->sign) |
393 | *s++='-'; |
394 | |
395 | if (frac) |
396 | { |
397 | char *s1= s + intg_len; |
398 | fill= frac_len - frac; |
399 | buf=buf0+ROUND_UP(intg); |
400 | *s1++='.'; |
401 | for (; frac>0; frac-=DIG_PER_DEC1) |
402 | { |
403 | dec1 x=*buf++; |
404 | for (i=MY_MIN(frac, DIG_PER_DEC1); i; i--) |
405 | { |
406 | dec1 y=x/DIG_MASK; |
407 | *s1++='0'+(uchar)y; |
408 | x-=y*DIG_MASK; |
409 | x*=10; |
410 | } |
411 | } |
412 | for(; fill; fill--) |
413 | *s1++=filler; |
414 | } |
415 | |
416 | fill= intg_len - intg; |
417 | if (intg == 0) |
418 | fill--; /* symbol 0 before digital point */ |
419 | for(; fill; fill--) |
420 | *s++=filler; |
421 | if (intg) |
422 | { |
423 | s+=intg; |
424 | for (buf=buf0+ROUND_UP(intg); intg>0; intg-=DIG_PER_DEC1) |
425 | { |
426 | dec1 x=*--buf; |
427 | for (i=MY_MIN(intg, DIG_PER_DEC1); i; i--) |
428 | { |
429 | dec1 y=x/10; |
430 | *--s='0'+(uchar)(x-y*10); |
431 | x=y; |
432 | } |
433 | } |
434 | } |
435 | else |
436 | *s= '0'; |
437 | return error; |
438 | } |
439 | |
440 | |
441 | /* |
442 | Return bounds of decimal digits in the number |
443 | |
444 | SYNOPSIS |
445 | digits_bounds() |
446 | from - decimal number for processing |
447 | start_result - index (from 0 ) of first decimal digits will |
448 | be written by this address |
449 | end_result - index of position just after last decimal digit |
450 | be written by this address |
451 | */ |
452 | |
453 | static void digits_bounds(decimal_t *from, int *start_result, int *end_result) |
454 | { |
455 | int start, stop, i; |
456 | dec1 *buf_beg= from->buf; |
457 | dec1 *end= from->buf + ROUND_UP(from->intg) + ROUND_UP(from->frac); |
458 | dec1 *buf_end= end - 1; |
459 | |
460 | /* find non-zero digit from number beginning */ |
461 | while (buf_beg < end && *buf_beg == 0) |
462 | buf_beg++; |
463 | |
464 | if (buf_beg >= end) |
465 | { |
466 | /* it is zero */ |
467 | *start_result= *end_result= 0; |
468 | return; |
469 | } |
470 | |
471 | /* find non-zero decimal digit from number beginning */ |
472 | if (buf_beg == from->buf && from->intg) |
473 | { |
474 | start= DIG_PER_DEC1 - (i= ((from->intg-1) % DIG_PER_DEC1 + 1)); |
475 | i--; |
476 | } |
477 | else |
478 | { |
479 | i= DIG_PER_DEC1 - 1; |
480 | start= (int) ((buf_beg - from->buf) * DIG_PER_DEC1); |
481 | } |
482 | if (buf_beg < end) |
483 | for (; *buf_beg < powers10[i--]; start++) ; |
484 | *start_result= start; /* index of first decimal digit (from 0) */ |
485 | |
486 | /* find non-zero digit at the end */ |
487 | while (buf_end > buf_beg && *buf_end == 0) |
488 | buf_end--; |
489 | /* find non-zero decimal digit from the end */ |
490 | if (buf_end == end - 1 && from->frac) |
491 | { |
492 | stop= (int) (((buf_end - from->buf) * DIG_PER_DEC1 + |
493 | (i= ((from->frac - 1) % DIG_PER_DEC1 + 1)))); |
494 | i= DIG_PER_DEC1 - i + 1; |
495 | } |
496 | else |
497 | { |
498 | stop= (int) ((buf_end - from->buf + 1) * DIG_PER_DEC1); |
499 | i= 1; |
500 | } |
501 | for (; *buf_end % powers10[i++] == 0; stop--) {} |
502 | *end_result= stop; /* index of position after last decimal digit (from 0) */ |
503 | } |
504 | |
505 | |
506 | /* |
507 | Left shift for alignment of data in buffer |
508 | |
509 | SYNOPSIS |
510 | do_mini_left_shift() |
511 | dec pointer to decimal number which have to be shifted |
512 | shift number of decimal digits on which it should be shifted |
513 | beg/end bounds of decimal digits (see digits_bounds()) |
514 | |
515 | NOTE |
516 | Result fitting in the buffer should be garanted. |
517 | 'shift' have to be from 1 to DIG_PER_DEC1-1 (inclusive) |
518 | */ |
519 | |
520 | void do_mini_left_shift(decimal_t *dec, int shift, int beg, int last) |
521 | { |
522 | dec1 *from= dec->buf + ROUND_UP(beg + 1) - 1; |
523 | dec1 *end= dec->buf + ROUND_UP(last) - 1; |
524 | int c_shift= DIG_PER_DEC1 - shift; |
525 | DBUG_ASSERT(from >= dec->buf); |
526 | DBUG_ASSERT(end < dec->buf + dec->len); |
527 | if (beg % DIG_PER_DEC1 < shift) |
528 | *(from - 1)= (*from) / powers10[c_shift]; |
529 | for(; from < end; from++) |
530 | *from= ((*from % powers10[c_shift]) * powers10[shift] + |
531 | (*(from + 1)) / powers10[c_shift]); |
532 | *from= (*from % powers10[c_shift]) * powers10[shift]; |
533 | } |
534 | |
535 | |
536 | /* |
537 | Right shift for alignment of data in buffer |
538 | |
539 | SYNOPSIS |
540 | do_mini_left_shift() |
541 | dec pointer to decimal number which have to be shifted |
542 | shift number of decimal digits on which it should be shifted |
543 | beg/end bounds of decimal digits (see digits_bounds()) |
544 | |
545 | NOTE |
546 | Result fitting in the buffer should be garanted. |
547 | 'shift' have to be from 1 to DIG_PER_DEC1-1 (inclusive) |
548 | */ |
549 | |
550 | void do_mini_right_shift(decimal_t *dec, int shift, int beg, int last) |
551 | { |
552 | dec1 *from= dec->buf + ROUND_UP(last) - 1; |
553 | dec1 *end= dec->buf + ROUND_UP(beg + 1) - 1; |
554 | int c_shift= DIG_PER_DEC1 - shift; |
555 | DBUG_ASSERT(from < dec->buf + dec->len); |
556 | DBUG_ASSERT(end >= dec->buf); |
557 | if (DIG_PER_DEC1 - ((last - 1) % DIG_PER_DEC1 + 1) < shift) |
558 | *(from + 1)= (*from % powers10[shift]) * powers10[c_shift]; |
559 | for(; from > end; from--) |
560 | *from= (*from / powers10[shift] + |
561 | (*(from - 1) % powers10[shift]) * powers10[c_shift]); |
562 | *from= *from / powers10[shift]; |
563 | } |
564 | |
565 | |
566 | /* |
567 | Shift of decimal digits in given number (with rounding if it need) |
568 | |
569 | SYNOPSIS |
570 | decimal_shift() |
571 | dec number to be shifted |
572 | shift number of decimal positions |
573 | shift > 0 means shift to left shift |
574 | shift < 0 meand right shift |
575 | NOTE |
576 | In fact it is multipling on 10^shift. |
577 | RETURN |
578 | E_DEC_OK OK |
579 | E_DEC_OVERFLOW operation lead to overflow, number is untoched |
580 | E_DEC_TRUNCATED number was rounded to fit into buffer |
581 | */ |
582 | |
583 | int decimal_shift(decimal_t *dec, int shift) |
584 | { |
585 | /* index of first non zero digit (all indexes from 0) */ |
586 | int beg; |
587 | /* index of position after last decimal digit */ |
588 | int end; |
589 | /* index of digit position just after point */ |
590 | int point= ROUND_UP(dec->intg) * DIG_PER_DEC1; |
591 | /* new point position */ |
592 | int new_point= point + shift; |
593 | /* number of digits in result */ |
594 | int digits_int, digits_frac; |
595 | /* length of result and new fraction in big digits*/ |
596 | int new_len, new_frac_len; |
597 | /* return code */ |
598 | int err= E_DEC_OK; |
599 | int new_front; |
600 | |
601 | if (shift == 0) |
602 | return E_DEC_OK; |
603 | |
604 | digits_bounds(dec, &beg, &end); |
605 | |
606 | if (beg == end) |
607 | { |
608 | decimal_make_zero(dec); |
609 | return E_DEC_OK; |
610 | } |
611 | |
612 | digits_int= new_point - beg; |
613 | set_if_bigger(digits_int, 0); |
614 | digits_frac= end - new_point; |
615 | set_if_bigger(digits_frac, 0); |
616 | |
617 | if ((new_len= ROUND_UP(digits_int) + (new_frac_len= ROUND_UP(digits_frac))) > |
618 | dec->len) |
619 | { |
620 | int lack= new_len - dec->len; |
621 | int diff; |
622 | |
623 | if (new_frac_len < lack) |
624 | return E_DEC_OVERFLOW; /* lack more then we have in fraction */ |
625 | |
626 | /* cat off fraction part to allow new number to fit in our buffer */ |
627 | err= E_DEC_TRUNCATED; |
628 | new_frac_len-= lack; |
629 | diff= digits_frac - (new_frac_len * DIG_PER_DEC1); |
630 | /* Make rounding method as parameter? */ |
631 | decimal_round(dec, dec, end - point - diff, HALF_UP); |
632 | end-= diff; |
633 | digits_frac= new_frac_len * DIG_PER_DEC1; |
634 | |
635 | if (end <= beg) |
636 | { |
637 | /* |
638 | we lost all digits (they will be shifted out of buffer), so we can |
639 | just return 0 |
640 | */ |
641 | decimal_make_zero(dec); |
642 | return E_DEC_TRUNCATED; |
643 | } |
644 | } |
645 | |
646 | if (shift % DIG_PER_DEC1) |
647 | { |
648 | int l_mini_shift, r_mini_shift, mini_shift; |
649 | int do_left; |
650 | /* |
651 | Calculate left/right shift to align decimal digits inside our bug |
652 | digits correctly |
653 | */ |
654 | if (shift > 0) |
655 | { |
656 | l_mini_shift= shift % DIG_PER_DEC1; |
657 | r_mini_shift= DIG_PER_DEC1 - l_mini_shift; |
658 | /* |
659 | It is left shift so prefer left shift, but if we have not place from |
660 | left, we have to have it from right, because we checked length of |
661 | result |
662 | */ |
663 | do_left= l_mini_shift <= beg; |
664 | DBUG_ASSERT(do_left || (dec->len * DIG_PER_DEC1 - end) >= r_mini_shift); |
665 | } |
666 | else |
667 | { |
668 | r_mini_shift= (-shift) % DIG_PER_DEC1; |
669 | l_mini_shift= DIG_PER_DEC1 - r_mini_shift; |
670 | /* see comment above */ |
671 | do_left= !((dec->len * DIG_PER_DEC1 - end) >= r_mini_shift); |
672 | DBUG_ASSERT(!do_left || l_mini_shift <= beg); |
673 | } |
674 | if (do_left) |
675 | { |
676 | do_mini_left_shift(dec, l_mini_shift, beg, end); |
677 | mini_shift= -l_mini_shift; |
678 | } |
679 | else |
680 | { |
681 | do_mini_right_shift(dec, r_mini_shift, beg, end); |
682 | mini_shift= r_mini_shift; |
683 | } |
684 | new_point+= mini_shift; |
685 | /* |
686 | If number is shifted and correctly aligned in buffer we can |
687 | finish |
688 | */ |
689 | if (!(shift+= mini_shift) && (new_point - digits_int) < DIG_PER_DEC1) |
690 | { |
691 | dec->intg= digits_int; |
692 | dec->frac= digits_frac; |
693 | return err; /* already shifted as it should be */ |
694 | } |
695 | beg+= mini_shift; |
696 | end+= mini_shift; |
697 | } |
698 | |
699 | /* if new 'decimal front' is in first digit, we do not need move digits */ |
700 | if ((new_front= (new_point - digits_int)) >= DIG_PER_DEC1 || |
701 | new_front < 0) |
702 | { |
703 | /* need to move digits */ |
704 | int d_shift; |
705 | dec1 *to, *barier; |
706 | if (new_front > 0) |
707 | { |
708 | /* move left */ |
709 | d_shift= new_front / DIG_PER_DEC1; |
710 | to= dec->buf + (ROUND_UP(beg + 1) - 1 - d_shift); |
711 | barier= dec->buf + (ROUND_UP(end) - 1 - d_shift); |
712 | DBUG_ASSERT(to >= dec->buf); |
713 | DBUG_ASSERT(barier + d_shift < dec->buf + dec->len); |
714 | for(; to <= barier; to++) |
715 | *to= *(to + d_shift); |
716 | for(barier+= d_shift; to <= barier; to++) |
717 | *to= 0; |
718 | d_shift= -d_shift; |
719 | } |
720 | else |
721 | { |
722 | /* move right */ |
723 | d_shift= (1 - new_front) / DIG_PER_DEC1; |
724 | to= dec->buf + ROUND_UP(end) - 1 + d_shift; |
725 | barier= dec->buf + ROUND_UP(beg + 1) - 1 + d_shift; |
726 | DBUG_ASSERT(to < dec->buf + dec->len); |
727 | DBUG_ASSERT(barier - d_shift >= dec->buf); |
728 | for(; to >= barier; to--) |
729 | *to= *(to - d_shift); |
730 | for(barier-= d_shift; to >= barier; to--) |
731 | *to= 0; |
732 | } |
733 | d_shift*= DIG_PER_DEC1; |
734 | beg+= d_shift; |
735 | end+= d_shift; |
736 | new_point+= d_shift; |
737 | } |
738 | |
739 | /* |
740 | If there are gaps then fill ren with 0. |
741 | |
742 | Only one of following 'for' loops will work because beg <= end |
743 | */ |
744 | beg= ROUND_UP(beg + 1) - 1; |
745 | end= ROUND_UP(end) - 1; |
746 | DBUG_ASSERT(new_point >= 0); |
747 | |
748 | /* We don't want negative new_point below */ |
749 | if (new_point != 0) |
750 | new_point= ROUND_UP(new_point) - 1; |
751 | |
752 | if (new_point > end) |
753 | { |
754 | do |
755 | { |
756 | dec->buf[new_point]=0; |
757 | } while (--new_point > end); |
758 | } |
759 | else |
760 | { |
761 | for (; new_point < beg; new_point++) |
762 | dec->buf[new_point]= 0; |
763 | } |
764 | dec->intg= digits_int; |
765 | dec->frac= digits_frac; |
766 | return err; |
767 | } |
768 | |
769 | |
770 | /* |
771 | Convert string to decimal |
772 | |
773 | SYNOPSIS |
774 | internal_str2decl() |
775 | from - value to convert. Doesn't have to be \0 terminated! |
776 | to - decimal where where the result will be stored |
777 | to->buf and to->len must be set. |
778 | end - Pointer to pointer to end of string. Will on return be |
779 | set to the char after the last used character |
780 | fixed - use to->intg, to->frac as limits for input number |
781 | |
782 | NOTE |
783 | to->intg and to->frac can be modified even when fixed=1 |
784 | (but only decreased, in this case) |
785 | |
786 | RETURN VALUE |
787 | E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW/E_DEC_BAD_NUM/E_DEC_OOM |
788 | In case of E_DEC_FATAL_ERROR *to is set to decimal zero |
789 | (to make error handling easier) |
790 | */ |
791 | |
792 | int |
793 | internal_str2dec(const char *from, decimal_t *to, char **end, my_bool fixed) |
794 | { |
795 | const char *s= from, *s1, *endp, *end_of_string= *end; |
796 | int i, intg, frac, error, intg1, frac1; |
797 | dec1 x,*buf; |
798 | sanity(to); |
799 | |
800 | error= E_DEC_BAD_NUM; /* In case of bad number */ |
801 | while (s < end_of_string && my_isspace(&my_charset_latin1, *s)) |
802 | s++; |
803 | if (s == end_of_string) |
804 | goto fatal_error; |
805 | |
806 | if ((to->sign= (*s == '-'))) |
807 | s++; |
808 | else if (*s == '+') |
809 | s++; |
810 | |
811 | s1=s; |
812 | while (s < end_of_string && my_isdigit(&my_charset_latin1, *s)) |
813 | s++; |
814 | intg= (int) (s-s1); |
815 | if (s < end_of_string && *s=='.') |
816 | { |
817 | endp= s+1; |
818 | while (endp < end_of_string && my_isdigit(&my_charset_latin1, *endp)) |
819 | endp++; |
820 | frac= (int) (endp - s - 1); |
821 | } |
822 | else |
823 | { |
824 | frac= 0; |
825 | endp= s; |
826 | } |
827 | |
828 | *end= (char*) endp; |
829 | |
830 | if (frac+intg == 0) |
831 | goto fatal_error; |
832 | |
833 | error= 0; |
834 | if (fixed) |
835 | { |
836 | if (frac > to->frac) |
837 | { |
838 | error=E_DEC_TRUNCATED; |
839 | frac=to->frac; |
840 | } |
841 | if (intg > to->intg) |
842 | { |
843 | error=E_DEC_OVERFLOW; |
844 | intg=to->intg; |
845 | } |
846 | intg1=ROUND_UP(intg); |
847 | frac1=ROUND_UP(frac); |
848 | if (intg1+frac1 > to->len) |
849 | { |
850 | error= E_DEC_OOM; |
851 | goto fatal_error; |
852 | } |
853 | } |
854 | else |
855 | { |
856 | intg1=ROUND_UP(intg); |
857 | frac1=ROUND_UP(frac); |
858 | FIX_INTG_FRAC_ERROR(to->len, intg1, frac1, error); |
859 | if (unlikely(error)) |
860 | { |
861 | frac=frac1*DIG_PER_DEC1; |
862 | if (error == E_DEC_OVERFLOW) |
863 | intg=intg1*DIG_PER_DEC1; |
864 | } |
865 | } |
866 | /* Error is guaranteed to be set here */ |
867 | to->intg=intg; |
868 | to->frac=frac; |
869 | |
870 | buf=to->buf+intg1; |
871 | s1=s; |
872 | |
873 | for (x=0, i=0; intg; intg--) |
874 | { |
875 | x+= (*--s - '0')*powers10[i]; |
876 | |
877 | if (unlikely(++i == DIG_PER_DEC1)) |
878 | { |
879 | *--buf=x; |
880 | x=0; |
881 | i=0; |
882 | } |
883 | } |
884 | if (i) |
885 | *--buf=x; |
886 | |
887 | buf=to->buf+intg1; |
888 | for (x=0, i=0; frac; frac--) |
889 | { |
890 | x= (*++s1 - '0') + x*10; |
891 | |
892 | if (unlikely(++i == DIG_PER_DEC1)) |
893 | { |
894 | *buf++=x; |
895 | x=0; |
896 | i=0; |
897 | } |
898 | } |
899 | if (i) |
900 | *buf=x*powers10[DIG_PER_DEC1-i]; |
901 | |
902 | /* Handle exponent */ |
903 | if (endp+1 < end_of_string && (*endp == 'e' || *endp == 'E')) |
904 | { |
905 | int str_error; |
906 | longlong exponent= my_strtoll10(endp+1, (char**) &end_of_string, |
907 | &str_error); |
908 | |
909 | if (end_of_string != endp +1) /* If at least one digit */ |
910 | { |
911 | *end= (char*) end_of_string; |
912 | if (str_error > 0) |
913 | { |
914 | error= E_DEC_BAD_NUM; |
915 | goto fatal_error; |
916 | } |
917 | if (exponent > INT_MAX/2 || (str_error == 0 && exponent < 0)) |
918 | { |
919 | error= E_DEC_OVERFLOW; |
920 | goto fatal_error; |
921 | } |
922 | if (exponent < INT_MIN/2 && error != E_DEC_OVERFLOW) |
923 | { |
924 | error= E_DEC_TRUNCATED; |
925 | goto fatal_error; |
926 | } |
927 | if (error != E_DEC_OVERFLOW) |
928 | error= decimal_shift(to, (int) exponent); |
929 | } |
930 | } |
931 | if (to->sign && decimal_is_zero(to)) |
932 | to->sign= 0; |
933 | return error; |
934 | |
935 | fatal_error: |
936 | decimal_make_zero(to); |
937 | return error; |
938 | } |
939 | |
940 | |
941 | /* |
942 | Convert decimal to double |
943 | |
944 | SYNOPSIS |
945 | decimal2double() |
946 | from - value to convert |
947 | to - result will be stored there |
948 | |
949 | RETURN VALUE |
950 | E_DEC_OK/E_DEC_OVERFLOW/E_DEC_TRUNCATED |
951 | */ |
952 | |
953 | int decimal2double(const decimal_t *from, double *to) |
954 | { |
955 | char strbuf[FLOATING_POINT_BUFFER], *end; |
956 | int len= sizeof(strbuf); |
957 | int rc, error; |
958 | |
959 | rc = decimal2string(from, strbuf, &len, 0, 0, 0); |
960 | end= strbuf + len; |
961 | |
962 | DBUG_PRINT("info" , ("interm.: %s" , strbuf)); |
963 | |
964 | *to= my_strtod(strbuf, &end, &error); |
965 | |
966 | DBUG_PRINT("info" , ("result: %f" , *to)); |
967 | |
968 | return (rc != E_DEC_OK) ? rc : (error ? E_DEC_OVERFLOW : E_DEC_OK); |
969 | } |
970 | |
971 | /* |
972 | Convert double to decimal |
973 | |
974 | SYNOPSIS |
975 | double2decimal() |
976 | from - value to convert |
977 | to - result will be stored there |
978 | |
979 | RETURN VALUE |
980 | E_DEC_OK/E_DEC_OVERFLOW/E_DEC_TRUNCATED |
981 | */ |
982 | |
983 | int double2decimal(double from, decimal_t *to) |
984 | { |
985 | char buff[FLOATING_POINT_BUFFER], *end; |
986 | int res; |
987 | DBUG_ENTER("double2decimal" ); |
988 | end= buff + my_gcvt(from, MY_GCVT_ARG_DOUBLE, sizeof(buff) - 1, buff, NULL); |
989 | res= string2decimal(buff, to, &end); |
990 | DBUG_PRINT("exit" , ("res: %d" , res)); |
991 | DBUG_RETURN(res); |
992 | } |
993 | |
994 | |
995 | static int ull2dec(ulonglong from, decimal_t *to) |
996 | { |
997 | int intg1, error=E_DEC_OK; |
998 | ulonglong x=from; |
999 | dec1 *buf; |
1000 | |
1001 | sanity(to); |
1002 | |
1003 | if (!from) |
1004 | { |
1005 | decimal_make_zero(to); |
1006 | return E_DEC_OK; |
1007 | } |
1008 | |
1009 | for (intg1=1; from >= DIG_BASE; intg1++, from/=DIG_BASE) {} |
1010 | if (unlikely(intg1 > to->len)) |
1011 | { |
1012 | intg1=to->len; |
1013 | error=E_DEC_OVERFLOW; |
1014 | } |
1015 | to->frac=0; |
1016 | for(to->intg= (intg1-1)*DIG_PER_DEC1; from; to->intg++, from/=10) {} |
1017 | |
1018 | for (buf=to->buf+intg1; intg1; intg1--) |
1019 | { |
1020 | ulonglong y=x/DIG_BASE; |
1021 | *--buf=(dec1)(x-y*DIG_BASE); |
1022 | x=y; |
1023 | } |
1024 | return error; |
1025 | } |
1026 | |
1027 | int ulonglong2decimal(ulonglong from, decimal_t *to) |
1028 | { |
1029 | to->sign=0; |
1030 | return ull2dec(from, to); |
1031 | } |
1032 | |
1033 | int longlong2decimal(longlong from, decimal_t *to) |
1034 | { |
1035 | if ((to->sign= from < 0)) |
1036 | { |
1037 | if (from == LONGLONG_MIN) // avoid undefined behavior |
1038 | return ull2dec((ulonglong)LONGLONG_MIN, to); |
1039 | return ull2dec(-from, to); |
1040 | } |
1041 | return ull2dec(from, to); |
1042 | } |
1043 | |
1044 | int decimal2ulonglong(const decimal_t *from, ulonglong *to) |
1045 | { |
1046 | dec1 *buf=from->buf; |
1047 | ulonglong x=0; |
1048 | int intg, frac; |
1049 | |
1050 | if (from->sign) |
1051 | { |
1052 | *to= 0; |
1053 | return E_DEC_OVERFLOW; |
1054 | } |
1055 | |
1056 | for (intg=from->intg; intg > 0; intg-=DIG_PER_DEC1) |
1057 | { |
1058 | ulonglong y=x; |
1059 | x=x*DIG_BASE + *buf++; |
1060 | if (unlikely(y > ((ulonglong) ULONGLONG_MAX/DIG_BASE) || x < y)) |
1061 | { |
1062 | *to=ULONGLONG_MAX; |
1063 | return E_DEC_OVERFLOW; |
1064 | } |
1065 | } |
1066 | *to=x; |
1067 | for (frac=from->frac; unlikely(frac > 0); frac-=DIG_PER_DEC1) |
1068 | if (*buf++) |
1069 | return E_DEC_TRUNCATED; |
1070 | return E_DEC_OK; |
1071 | } |
1072 | |
1073 | int decimal2longlong(const decimal_t *from, longlong *to) |
1074 | { |
1075 | dec1 *buf=from->buf; |
1076 | longlong x=0; |
1077 | int intg, frac; |
1078 | |
1079 | for (intg=from->intg; intg > 0; intg-=DIG_PER_DEC1) |
1080 | { |
1081 | longlong y=x; |
1082 | /* |
1083 | Attention: trick! |
1084 | we're calculating -|from| instead of |from| here |
1085 | because |LONGLONG_MIN| > LONGLONG_MAX |
1086 | so we can convert -9223372036854775808 correctly |
1087 | */ |
1088 | x=x*DIG_BASE - *buf++; |
1089 | if (unlikely(y < (LONGLONG_MIN/DIG_BASE) || x > y)) |
1090 | { |
1091 | /* |
1092 | the decimal is bigger than any possible integer |
1093 | return border integer depending on the sign |
1094 | */ |
1095 | *to= from->sign ? LONGLONG_MIN : LONGLONG_MAX; |
1096 | return E_DEC_OVERFLOW; |
1097 | } |
1098 | } |
1099 | /* boundary case: 9223372036854775808 */ |
1100 | if (unlikely(from->sign==0 && x == LONGLONG_MIN)) |
1101 | { |
1102 | *to= LONGLONG_MAX; |
1103 | return E_DEC_OVERFLOW; |
1104 | } |
1105 | |
1106 | *to=from->sign ? x : -x; |
1107 | for (frac=from->frac; unlikely(frac > 0); frac-=DIG_PER_DEC1) |
1108 | if (*buf++) |
1109 | return E_DEC_TRUNCATED; |
1110 | return E_DEC_OK; |
1111 | } |
1112 | |
1113 | /* |
1114 | Convert decimal to its binary fixed-length representation |
1115 | two representations of the same length can be compared with memcmp |
1116 | with the correct -1/0/+1 result |
1117 | |
1118 | SYNOPSIS |
1119 | decimal2bin() |
1120 | from - value to convert |
1121 | to - points to buffer where string representation should be stored |
1122 | precision/scale - see decimal_bin_size() below |
1123 | |
1124 | NOTE |
1125 | the buffer is assumed to be of the size decimal_bin_size(precision, scale) |
1126 | |
1127 | RETURN VALUE |
1128 | E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW |
1129 | |
1130 | DESCRIPTION |
1131 | for storage decimal numbers are converted to the "binary" format. |
1132 | |
1133 | This format has the following properties: |
1134 | 1. length of the binary representation depends on the {precision, scale} |
1135 | as provided by the caller and NOT on the intg/frac of the decimal to |
1136 | convert. |
1137 | 2. binary representations of the same {precision, scale} can be compared |
1138 | with memcmp - with the same result as decimal_cmp() of the original |
1139 | decimals (not taking into account possible precision loss during |
1140 | conversion). |
1141 | |
1142 | This binary format is as follows: |
1143 | 1. First the number is converted to have a requested precision and scale. |
1144 | 2. Every full DIG_PER_DEC1 digits of intg part are stored in 4 bytes |
1145 | as is |
1146 | 3. The first intg % DIG_PER_DEC1 digits are stored in the reduced |
1147 | number of bytes (enough bytes to store this number of digits - |
1148 | see dig2bytes) |
1149 | 4. same for frac - full decimal_digit_t's are stored as is, |
1150 | the last frac % DIG_PER_DEC1 digits - in the reduced number of bytes. |
1151 | 5. If the number is negative - every byte is inversed. |
1152 | 5. The very first bit of the resulting byte array is inverted (because |
1153 | memcmp compares unsigned bytes, see property 2 above) |
1154 | |
1155 | Example: |
1156 | |
1157 | 1234567890.1234 |
1158 | |
1159 | internally is represented as 3 decimal_digit_t's |
1160 | |
1161 | 1 234567890 123400000 |
1162 | |
1163 | (assuming we want a binary representation with precision=14, scale=4) |
1164 | in hex it's |
1165 | |
1166 | 00-00-00-01 0D-FB-38-D2 07-5A-EF-40 |
1167 | |
1168 | now, middle decimal_digit_t is full - it stores 9 decimal digits. It goes |
1169 | into binary representation as is: |
1170 | |
1171 | |
1172 | ........... 0D-FB-38-D2 ............ |
1173 | |
1174 | First decimal_digit_t has only one decimal digit. We can store one digit in |
1175 | one byte, no need to waste four: |
1176 | |
1177 | 01 0D-FB-38-D2 ............ |
1178 | |
1179 | now, last digit. It's 123400000. We can store 1234 in two bytes: |
1180 | |
1181 | 01 0D-FB-38-D2 04-D2 |
1182 | |
1183 | So, we've packed 12 bytes number in 7 bytes. |
1184 | And now we invert the highest bit to get the final result: |
1185 | |
1186 | 81 0D FB 38 D2 04 D2 |
1187 | |
1188 | And for -1234567890.1234 it would be |
1189 | |
1190 | 7E F2 04 C7 2D FB 2D |
1191 | */ |
1192 | int decimal2bin(const decimal_t *from, uchar *to, int precision, int frac) |
1193 | { |
1194 | dec1 mask=from->sign ? -1 : 0, *buf1=from->buf, *stop1; |
1195 | int error=E_DEC_OK, intg=precision-frac, |
1196 | isize1, intg1, intg1x, from_intg, |
1197 | intg0=intg/DIG_PER_DEC1, |
1198 | frac0=frac/DIG_PER_DEC1, |
1199 | intg0x=intg-intg0*DIG_PER_DEC1, |
1200 | frac0x=frac-frac0*DIG_PER_DEC1, |
1201 | frac1=from->frac/DIG_PER_DEC1, |
1202 | frac1x=from->frac-frac1*DIG_PER_DEC1, |
1203 | isize0=intg0*sizeof(dec1)+dig2bytes[intg0x], |
1204 | fsize0=frac0*sizeof(dec1)+dig2bytes[frac0x], |
1205 | fsize1=frac1*sizeof(dec1)+dig2bytes[frac1x]; |
1206 | const int orig_isize0= isize0; |
1207 | const int orig_fsize0= fsize0; |
1208 | uchar *orig_to= to; |
1209 | |
1210 | buf1= remove_leading_zeroes(from, &from_intg); |
1211 | |
1212 | if (unlikely(from_intg+fsize1==0)) |
1213 | { |
1214 | mask=0; /* just in case */ |
1215 | intg=1; |
1216 | buf1=&mask; |
1217 | } |
1218 | |
1219 | intg1=from_intg/DIG_PER_DEC1; |
1220 | intg1x=from_intg-intg1*DIG_PER_DEC1; |
1221 | isize1=intg1*sizeof(dec1)+dig2bytes[intg1x]; |
1222 | |
1223 | if (intg < from_intg) |
1224 | { |
1225 | buf1+=intg1-intg0+(intg1x>0)-(intg0x>0); |
1226 | intg1=intg0; intg1x=intg0x; |
1227 | error=E_DEC_OVERFLOW; |
1228 | } |
1229 | else if (isize0 > isize1) |
1230 | { |
1231 | while (isize0-- > isize1) |
1232 | *to++= (char)mask; |
1233 | } |
1234 | if (fsize0 < fsize1) |
1235 | { |
1236 | frac1=frac0; frac1x=frac0x; |
1237 | error=E_DEC_TRUNCATED; |
1238 | } |
1239 | else if (fsize0 > fsize1 && frac1x) |
1240 | { |
1241 | if (frac0 == frac1) |
1242 | { |
1243 | frac1x=frac0x; |
1244 | fsize0= fsize1; |
1245 | } |
1246 | else |
1247 | { |
1248 | frac1++; |
1249 | frac1x=0; |
1250 | } |
1251 | } |
1252 | |
1253 | /* intg1x part */ |
1254 | if (intg1x) |
1255 | { |
1256 | int i=dig2bytes[intg1x]; |
1257 | dec1 x=(*buf1++ % powers10[intg1x]) ^ mask; |
1258 | switch (i) |
1259 | { |
1260 | case 1: mi_int1store(to, x); break; |
1261 | case 2: mi_int2store(to, x); break; |
1262 | case 3: mi_int3store(to, x); break; |
1263 | case 4: mi_int4store(to, x); break; |
1264 | default: DBUG_ASSERT(0); |
1265 | } |
1266 | to+=i; |
1267 | } |
1268 | |
1269 | /* intg1+frac1 part */ |
1270 | for (stop1=buf1+intg1+frac1; buf1 < stop1; to+=sizeof(dec1)) |
1271 | { |
1272 | dec1 x=*buf1++ ^ mask; |
1273 | DBUG_ASSERT(sizeof(dec1) == 4); |
1274 | mi_int4store(to, x); |
1275 | } |
1276 | |
1277 | /* frac1x part */ |
1278 | if (frac1x) |
1279 | { |
1280 | dec1 x; |
1281 | int i=dig2bytes[frac1x], |
1282 | lim=(frac1 < frac0 ? DIG_PER_DEC1 : frac0x); |
1283 | while (frac1x < lim && dig2bytes[frac1x] == i) |
1284 | frac1x++; |
1285 | x=(*buf1 / powers10[DIG_PER_DEC1 - frac1x]) ^ mask; |
1286 | switch (i) |
1287 | { |
1288 | case 1: mi_int1store(to, x); break; |
1289 | case 2: mi_int2store(to, x); break; |
1290 | case 3: mi_int3store(to, x); break; |
1291 | case 4: mi_int4store(to, x); break; |
1292 | default: DBUG_ASSERT(0); |
1293 | } |
1294 | to+=i; |
1295 | } |
1296 | if (fsize0 > fsize1) |
1297 | { |
1298 | uchar *to_end= orig_to + orig_fsize0 + orig_isize0; |
1299 | |
1300 | while (fsize0-- > fsize1 && to < to_end) |
1301 | *to++= (uchar)mask; |
1302 | } |
1303 | orig_to[0]^= 0x80; |
1304 | |
1305 | /* Check that we have written the whole decimal and nothing more */ |
1306 | DBUG_ASSERT(to == orig_to + orig_fsize0 + orig_isize0); |
1307 | return error; |
1308 | } |
1309 | |
1310 | /* |
1311 | Restores decimal from its binary fixed-length representation |
1312 | |
1313 | SYNOPSIS |
1314 | bin2decimal() |
1315 | from - value to convert |
1316 | to - result |
1317 | precision/scale - see decimal_bin_size() below |
1318 | |
1319 | NOTE |
1320 | see decimal2bin() |
1321 | the buffer is assumed to be of the size decimal_bin_size(precision, scale) |
1322 | |
1323 | RETURN VALUE |
1324 | E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW |
1325 | */ |
1326 | |
1327 | int bin2decimal(const uchar *from, decimal_t *to, int precision, int scale) |
1328 | { |
1329 | int error=E_DEC_OK, intg=precision-scale, |
1330 | intg0=intg/DIG_PER_DEC1, frac0=scale/DIG_PER_DEC1, |
1331 | intg0x=intg-intg0*DIG_PER_DEC1, frac0x=scale-frac0*DIG_PER_DEC1, |
1332 | intg1=intg0+(intg0x>0), frac1=frac0+(frac0x>0); |
1333 | dec1 *buf=to->buf, mask=(*from & 0x80) ? 0 : -1; |
1334 | const uchar *stop; |
1335 | uchar *d_copy; |
1336 | int bin_size= decimal_bin_size(precision, scale); |
1337 | |
1338 | sanity(to); |
1339 | d_copy= (uchar*) my_alloca(bin_size); |
1340 | memcpy(d_copy, from, bin_size); |
1341 | d_copy[0]^= 0x80; |
1342 | from= d_copy; |
1343 | |
1344 | FIX_INTG_FRAC_ERROR(to->len, intg1, frac1, error); |
1345 | if (unlikely(error)) |
1346 | { |
1347 | if (intg1 < intg0+(intg0x>0)) |
1348 | { |
1349 | from+=dig2bytes[intg0x]+sizeof(dec1)*(intg0-intg1); |
1350 | frac0=frac0x=intg0x=0; |
1351 | intg0=intg1; |
1352 | } |
1353 | else |
1354 | { |
1355 | frac0x=0; |
1356 | frac0=frac1; |
1357 | } |
1358 | } |
1359 | |
1360 | to->sign=(mask != 0); |
1361 | to->intg=intg0*DIG_PER_DEC1+intg0x; |
1362 | to->frac=frac0*DIG_PER_DEC1+frac0x; |
1363 | |
1364 | if (intg0x) |
1365 | { |
1366 | int i=dig2bytes[intg0x]; |
1367 | dec1 UNINIT_VAR(x); |
1368 | switch (i) |
1369 | { |
1370 | case 1: x=mi_sint1korr(from); break; |
1371 | case 2: x=mi_sint2korr(from); break; |
1372 | case 3: x=mi_sint3korr(from); break; |
1373 | case 4: x=mi_sint4korr(from); break; |
1374 | default: abort(); |
1375 | } |
1376 | from+=i; |
1377 | *buf=x ^ mask; |
1378 | if (((ulonglong)*buf) >= (ulonglong) powers10[intg0x+1]) |
1379 | goto err; |
1380 | if (buf > to->buf || *buf != 0) |
1381 | buf++; |
1382 | else |
1383 | to->intg-=intg0x; |
1384 | } |
1385 | for (stop=from+intg0*sizeof(dec1); from < stop; from+=sizeof(dec1)) |
1386 | { |
1387 | DBUG_ASSERT(sizeof(dec1) == 4); |
1388 | *buf=mi_sint4korr(from) ^ mask; |
1389 | if (((uint32)*buf) > DIG_MAX) |
1390 | goto err; |
1391 | if (buf > to->buf || *buf != 0) |
1392 | buf++; |
1393 | else |
1394 | to->intg-=DIG_PER_DEC1; |
1395 | } |
1396 | DBUG_ASSERT(to->intg >=0); |
1397 | for (stop=from+frac0*sizeof(dec1); from < stop; from+=sizeof(dec1)) |
1398 | { |
1399 | DBUG_ASSERT(sizeof(dec1) == 4); |
1400 | *buf=mi_sint4korr(from) ^ mask; |
1401 | if (((uint32)*buf) > DIG_MAX) |
1402 | goto err; |
1403 | buf++; |
1404 | } |
1405 | if (frac0x) |
1406 | { |
1407 | int i=dig2bytes[frac0x]; |
1408 | dec1 UNINIT_VAR(x); |
1409 | switch (i) |
1410 | { |
1411 | case 1: x=mi_sint1korr(from); break; |
1412 | case 2: x=mi_sint2korr(from); break; |
1413 | case 3: x=mi_sint3korr(from); break; |
1414 | case 4: x=mi_sint4korr(from); break; |
1415 | default: abort(); |
1416 | } |
1417 | *buf=(x ^ mask) * powers10[DIG_PER_DEC1 - frac0x]; |
1418 | if (((uint32)*buf) > DIG_MAX) |
1419 | goto err; |
1420 | buf++; |
1421 | } |
1422 | my_afree(d_copy); |
1423 | |
1424 | /* |
1425 | No digits? We have read the number zero, of unspecified precision. |
1426 | Make it a proper zero, with non-zero precision. |
1427 | */ |
1428 | if (to->intg == 0 && to->frac == 0) |
1429 | decimal_make_zero(to); |
1430 | return error; |
1431 | |
1432 | err: |
1433 | my_afree(d_copy); |
1434 | decimal_make_zero(to); |
1435 | return(E_DEC_BAD_NUM); |
1436 | } |
1437 | |
1438 | /* |
1439 | Returns the size of array to hold a decimal with given precision and scale |
1440 | |
1441 | RETURN VALUE |
1442 | size in dec1 |
1443 | (multiply by sizeof(dec1) to get the size if bytes) |
1444 | */ |
1445 | |
1446 | int decimal_size(int precision, int scale) |
1447 | { |
1448 | DBUG_ASSERT(scale >= 0 && precision > 0 && scale <= precision); |
1449 | return ROUND_UP(precision-scale)+ROUND_UP(scale); |
1450 | } |
1451 | |
1452 | /* |
1453 | Returns the size of array to hold a binary representation of a decimal |
1454 | |
1455 | RETURN VALUE |
1456 | size in bytes |
1457 | */ |
1458 | |
1459 | int decimal_bin_size(int precision, int scale) |
1460 | { |
1461 | int intg=precision-scale, |
1462 | intg0=intg/DIG_PER_DEC1, frac0=scale/DIG_PER_DEC1, |
1463 | intg0x=intg-intg0*DIG_PER_DEC1, frac0x=scale-frac0*DIG_PER_DEC1; |
1464 | |
1465 | DBUG_ASSERT(scale >= 0); |
1466 | DBUG_ASSERT(precision > 0); |
1467 | DBUG_ASSERT(scale <= precision); |
1468 | return intg0*sizeof(dec1)+dig2bytes[intg0x]+ |
1469 | frac0*sizeof(dec1)+dig2bytes[frac0x]; |
1470 | } |
1471 | |
1472 | /* |
1473 | Rounds the decimal to "scale" digits |
1474 | |
1475 | SYNOPSIS |
1476 | decimal_round() |
1477 | from - decimal to round, |
1478 | to - result buffer. from==to is allowed |
1479 | scale - to what position to round. can be negative! |
1480 | mode - round to nearest even or truncate |
1481 | |
1482 | NOTES |
1483 | scale can be negative ! |
1484 | one TRUNCATED error (line XXX below) isn't treated very logical :( |
1485 | |
1486 | RETURN VALUE |
1487 | E_DEC_OK/E_DEC_TRUNCATED |
1488 | */ |
1489 | |
1490 | int |
1491 | decimal_round(const decimal_t *from, decimal_t *to, int scale, |
1492 | decimal_round_mode mode) |
1493 | { |
1494 | int frac0=scale>0 ? ROUND_UP(scale) : scale/DIG_PER_DEC1, |
1495 | frac1=ROUND_UP(from->frac), UNINIT_VAR(round_digit), |
1496 | intg0=ROUND_UP(from->intg), error=E_DEC_OK, len=to->len; |
1497 | |
1498 | dec1 *buf0=from->buf, *buf1=to->buf, x, y, carry=0; |
1499 | int first_dig; |
1500 | |
1501 | sanity(to); |
1502 | |
1503 | switch (mode) { |
1504 | case HALF_UP: |
1505 | case HALF_EVEN: round_digit=5; break; |
1506 | case CEILING: round_digit= from->sign ? 10 : 0; break; |
1507 | case FLOOR: round_digit= from->sign ? 0 : 10; break; |
1508 | case TRUNCATE: round_digit=10; break; |
1509 | default: DBUG_ASSERT(0); |
1510 | } |
1511 | |
1512 | /* |
1513 | For my_decimal we always use len == DECIMAL_BUFF_LENGTH == 9 |
1514 | For internal testing here (ifdef MAIN) we always use len == 100/4 |
1515 | */ |
1516 | DBUG_ASSERT(from->len == to->len); |
1517 | |
1518 | if (unlikely(frac0+intg0 > len)) |
1519 | { |
1520 | frac0=len-intg0; |
1521 | scale=frac0*DIG_PER_DEC1; |
1522 | error=E_DEC_TRUNCATED; |
1523 | } |
1524 | |
1525 | if (scale+from->intg < 0) |
1526 | { |
1527 | decimal_make_zero(to); |
1528 | return E_DEC_OK; |
1529 | } |
1530 | |
1531 | if (to != from) |
1532 | { |
1533 | dec1 *p0= buf0+intg0+MY_MAX(frac1, frac0); |
1534 | dec1 *p1= buf1+intg0+MY_MAX(frac1, frac0); |
1535 | |
1536 | DBUG_ASSERT(p0 - buf0 <= len); |
1537 | DBUG_ASSERT(p1 - buf1 <= len); |
1538 | |
1539 | while (buf0 < p0) |
1540 | *(--p1) = *(--p0); |
1541 | |
1542 | buf0=to->buf; |
1543 | buf1=to->buf; |
1544 | to->sign=from->sign; |
1545 | to->intg=MY_MIN(intg0, len)*DIG_PER_DEC1; |
1546 | } |
1547 | |
1548 | if (frac0 > frac1) |
1549 | { |
1550 | buf1+=intg0+frac1; |
1551 | while (frac0-- > frac1) |
1552 | *buf1++=0; |
1553 | goto done; |
1554 | } |
1555 | |
1556 | if (scale >= from->frac) |
1557 | goto done; /* nothing to do */ |
1558 | |
1559 | buf0+=intg0+frac0-1; |
1560 | buf1+=intg0+frac0-1; |
1561 | if (scale == frac0*DIG_PER_DEC1) |
1562 | { |
1563 | int do_inc= FALSE; |
1564 | DBUG_ASSERT(frac0+intg0 >= 0); |
1565 | switch (round_digit) { |
1566 | case 0: |
1567 | { |
1568 | dec1 *p0= buf0 + (frac1-frac0); |
1569 | for (; p0 > buf0; p0--) |
1570 | { |
1571 | if (*p0) |
1572 | { |
1573 | do_inc= TRUE; |
1574 | break; |
1575 | } |
1576 | } |
1577 | break; |
1578 | } |
1579 | case 5: |
1580 | { |
1581 | x= buf0[1]/DIG_MASK; |
1582 | do_inc= (x>5) || ((x == 5) && |
1583 | (mode == HALF_UP || (frac0+intg0 > 0 && *buf0 & 1))); |
1584 | break; |
1585 | } |
1586 | default: |
1587 | break; |
1588 | } |
1589 | if (do_inc) |
1590 | { |
1591 | if (frac0+intg0>0) |
1592 | (*buf1)++; |
1593 | else |
1594 | *(++buf1)=DIG_BASE; |
1595 | } |
1596 | else if (frac0+intg0==0) |
1597 | { |
1598 | decimal_make_zero(to); |
1599 | return E_DEC_OK; |
1600 | } |
1601 | } |
1602 | else |
1603 | { |
1604 | /* TODO - fix this code as it won't work for CEILING mode */ |
1605 | int pos=frac0*DIG_PER_DEC1-scale-1; |
1606 | DBUG_ASSERT(frac0+intg0 > 0); |
1607 | x=*buf1 / powers10[pos]; |
1608 | y=x % 10; |
1609 | if (y > round_digit || |
1610 | (round_digit == 5 && y == 5 && (mode == HALF_UP || (x/10) & 1))) |
1611 | x+=10; |
1612 | *buf1=powers10[pos]*(x-y); |
1613 | } |
1614 | if (*buf1 >= DIG_BASE) |
1615 | { |
1616 | carry=1; |
1617 | *buf1-=DIG_BASE; |
1618 | while (carry && --buf1 >= to->buf) |
1619 | ADD(*buf1, *buf1, 0, carry); |
1620 | if (unlikely(carry)) |
1621 | { |
1622 | /* shifting the number to create space for new digit */ |
1623 | if (frac0+intg0 >= len) |
1624 | { |
1625 | frac0--; |
1626 | scale=frac0*DIG_PER_DEC1; |
1627 | error=E_DEC_TRUNCATED; /* XXX */ |
1628 | } |
1629 | for (buf1=to->buf+intg0+MY_MAX(frac0,0); buf1 > to->buf; buf1--) |
1630 | { |
1631 | buf1[0]=buf1[-1]; |
1632 | } |
1633 | *buf1=1; |
1634 | to->intg++; |
1635 | intg0++; |
1636 | } |
1637 | } |
1638 | else |
1639 | { |
1640 | for (;;) |
1641 | { |
1642 | if (likely(*buf1)) |
1643 | break; |
1644 | if (buf1-- == to->buf) |
1645 | { |
1646 | /* making 'zero' with the proper scale */ |
1647 | dec1 *p0= to->buf + frac0 + 1; |
1648 | to->intg=1; |
1649 | to->frac= MY_MAX(scale, 0); |
1650 | to->sign= 0; |
1651 | for (buf1= to->buf; buf1<p0; buf1++) |
1652 | *buf1= 0; |
1653 | return E_DEC_OK; |
1654 | } |
1655 | } |
1656 | } |
1657 | /* |
1658 | In case we're rounding e.g. 1.5e9 to 2.0e9, the decimal_digit_t's inside |
1659 | the buffer are as follows. |
1660 | |
1661 | Before <1, 5e8> |
1662 | After <2, 5e8> |
1663 | |
1664 | Hence we need to set the 2nd field to 0. |
1665 | The same holds if we round 1.5e-9 to 2e-9. |
1666 | */ |
1667 | if (frac0 < frac1) |
1668 | { |
1669 | dec1 *buf= to->buf + ((scale == 0 && intg0 == 0) ? 1 : intg0 + frac0); |
1670 | dec1 *end= to->buf + len; |
1671 | |
1672 | while (buf < end) |
1673 | *buf++=0; |
1674 | } |
1675 | |
1676 | /* Here we check 999.9 -> 1000 case when we need to increase intg */ |
1677 | first_dig= to->intg % DIG_PER_DEC1; |
1678 | if (first_dig && (*buf1 >= powers10[first_dig])) |
1679 | to->intg++; |
1680 | |
1681 | if (scale<0) |
1682 | scale=0; |
1683 | |
1684 | done: |
1685 | to->frac=scale; |
1686 | return error; |
1687 | } |
1688 | |
1689 | /* |
1690 | Returns the size of the result of the operation |
1691 | |
1692 | SYNOPSIS |
1693 | decimal_result_size() |
1694 | from1 - operand of the unary operation or first operand of the |
1695 | binary operation |
1696 | from2 - second operand of the binary operation |
1697 | op - operation. one char '+', '-', '*', '/' are allowed |
1698 | others may be added later |
1699 | param - extra param to the operation. unused for '+', '-', '*' |
1700 | scale increment for '/' |
1701 | |
1702 | NOTE |
1703 | returned valued may be larger than the actual buffer required |
1704 | in the operation, as decimal_result_size, by design, operates on |
1705 | precision/scale values only and not on the actual decimal number |
1706 | |
1707 | RETURN VALUE |
1708 | size of to->buf array in dec1 elements. to get size in bytes |
1709 | multiply by sizeof(dec1) |
1710 | */ |
1711 | |
1712 | int decimal_result_size(decimal_t *from1, decimal_t *from2, char op, int param) |
1713 | { |
1714 | switch (op) { |
1715 | case '-': |
1716 | return ROUND_UP(MY_MAX(from1->intg, from2->intg)) + |
1717 | ROUND_UP(MY_MAX(from1->frac, from2->frac)); |
1718 | case '+': |
1719 | return ROUND_UP(MY_MAX(from1->intg, from2->intg)+1) + |
1720 | ROUND_UP(MY_MAX(from1->frac, from2->frac)); |
1721 | case '*': |
1722 | return ROUND_UP(from1->intg+from2->intg)+ |
1723 | ROUND_UP(from1->frac)+ROUND_UP(from2->frac); |
1724 | case '/': |
1725 | return ROUND_UP(from1->intg+from2->intg+1+from1->frac+from2->frac+param); |
1726 | default: DBUG_ASSERT(0); |
1727 | } |
1728 | return -1; /* shut up the warning */ |
1729 | } |
1730 | |
1731 | static int do_add(const decimal_t *from1, const decimal_t *from2, decimal_t *to) |
1732 | { |
1733 | int intg1=ROUND_UP(from1->intg), intg2=ROUND_UP(from2->intg), |
1734 | frac1=ROUND_UP(from1->frac), frac2=ROUND_UP(from2->frac), |
1735 | frac0=MY_MAX(frac1, frac2), intg0=MY_MAX(intg1, intg2), error; |
1736 | dec1 *buf1, *buf2, *buf0, *stop, *stop2, x, carry; |
1737 | |
1738 | sanity(to); |
1739 | |
1740 | /* is there a need for extra word because of carry ? */ |
1741 | x=intg1 > intg2 ? from1->buf[0] : |
1742 | intg2 > intg1 ? from2->buf[0] : |
1743 | from1->buf[0] + from2->buf[0] ; |
1744 | if (unlikely(x > DIG_MAX-1)) /* yes, there is */ |
1745 | { |
1746 | intg0++; |
1747 | to->buf[0]=0; /* safety */ |
1748 | } |
1749 | |
1750 | FIX_INTG_FRAC_ERROR(to->len, intg0, frac0, error); |
1751 | if (unlikely(error == E_DEC_OVERFLOW)) |
1752 | { |
1753 | max_decimal(to->len * DIG_PER_DEC1, 0, to); |
1754 | return error; |
1755 | } |
1756 | |
1757 | buf0=to->buf+intg0+frac0; |
1758 | |
1759 | to->sign=from1->sign; |
1760 | to->frac=MY_MAX(from1->frac, from2->frac); |
1761 | to->intg=intg0*DIG_PER_DEC1; |
1762 | if (unlikely(error)) |
1763 | { |
1764 | set_if_smaller(to->frac, frac0*DIG_PER_DEC1); |
1765 | set_if_smaller(frac1, frac0); |
1766 | set_if_smaller(frac2, frac0); |
1767 | set_if_smaller(intg1, intg0); |
1768 | set_if_smaller(intg2, intg0); |
1769 | } |
1770 | |
1771 | /* part 1 - MY_MAX(frac) ... min (frac) */ |
1772 | if (frac1 > frac2) |
1773 | { |
1774 | buf1=from1->buf+intg1+frac1; |
1775 | stop=from1->buf+intg1+frac2; |
1776 | buf2=from2->buf+intg2+frac2; |
1777 | stop2=from1->buf+(intg1 > intg2 ? intg1-intg2 : 0); |
1778 | } |
1779 | else |
1780 | { |
1781 | buf1=from2->buf+intg2+frac2; |
1782 | stop=from2->buf+intg2+frac1; |
1783 | buf2=from1->buf+intg1+frac1; |
1784 | stop2=from2->buf+(intg2 > intg1 ? intg2-intg1 : 0); |
1785 | } |
1786 | while (buf1 > stop) |
1787 | *--buf0=*--buf1; |
1788 | |
1789 | /* part 2 - MY_MIN(frac) ... MY_MIN(intg) */ |
1790 | carry=0; |
1791 | while (buf1 > stop2) |
1792 | { |
1793 | ADD(*--buf0, *--buf1, *--buf2, carry); |
1794 | } |
1795 | |
1796 | /* part 3 - MY_MIN(intg) ... MY_MAX(intg) */ |
1797 | buf1= intg1 > intg2 ? ((stop=from1->buf)+intg1-intg2) : |
1798 | ((stop=from2->buf)+intg2-intg1) ; |
1799 | while (buf1 > stop) |
1800 | { |
1801 | ADD(*--buf0, *--buf1, 0, carry); |
1802 | } |
1803 | |
1804 | if (unlikely(carry)) |
1805 | *--buf0=1; |
1806 | DBUG_ASSERT(buf0 == to->buf || buf0 == to->buf+1); |
1807 | |
1808 | return error; |
1809 | } |
1810 | |
1811 | /* to=from1-from2. |
1812 | if to==0, return -1/0/+1 - the result of the comparison */ |
1813 | static int do_sub(const decimal_t *from1, const decimal_t *from2, decimal_t *to) |
1814 | { |
1815 | int intg1=ROUND_UP(from1->intg), intg2=ROUND_UP(from2->intg), |
1816 | frac1=ROUND_UP(from1->frac), frac2=ROUND_UP(from2->frac); |
1817 | int frac0=MY_MAX(frac1, frac2), error; |
1818 | dec1 *buf1, *buf2, *buf0, *stop1, *stop2, *start1, *start2; |
1819 | my_bool carry=0; |
1820 | |
1821 | /* let carry:=1 if from2 > from1 */ |
1822 | start1=buf1=from1->buf; stop1=buf1+intg1; |
1823 | start2=buf2=from2->buf; stop2=buf2+intg2; |
1824 | if (unlikely(*buf1 == 0)) |
1825 | { |
1826 | while (buf1 < stop1 && *buf1 == 0) |
1827 | buf1++; |
1828 | start1=buf1; |
1829 | intg1= (int) (stop1-buf1); |
1830 | } |
1831 | if (unlikely(*buf2 == 0)) |
1832 | { |
1833 | while (buf2 < stop2 && *buf2 == 0) |
1834 | buf2++; |
1835 | start2=buf2; |
1836 | intg2= (int) (stop2-buf2); |
1837 | } |
1838 | if (intg2 > intg1) |
1839 | carry=1; |
1840 | else if (intg2 == intg1) |
1841 | { |
1842 | dec1 *end1= stop1 + (frac1 - 1); |
1843 | dec1 *end2= stop2 + (frac2 - 1); |
1844 | while (unlikely((buf1 <= end1) && (*end1 == 0))) |
1845 | end1--; |
1846 | while (unlikely((buf2 <= end2) && (*end2 == 0))) |
1847 | end2--; |
1848 | frac1= (int) (end1 - stop1) + 1; |
1849 | frac2= (int) (end2 - stop2) + 1; |
1850 | while (buf1 <=end1 && buf2 <= end2 && *buf1 == *buf2) |
1851 | buf1++, buf2++; |
1852 | if (buf1 <= end1) |
1853 | { |
1854 | if (buf2 <= end2) |
1855 | carry= *buf2 > *buf1; |
1856 | else |
1857 | carry= 0; |
1858 | } |
1859 | else |
1860 | { |
1861 | if (buf2 <= end2) |
1862 | carry=1; |
1863 | else /* short-circuit everything: from1 == from2 */ |
1864 | { |
1865 | if (to == 0) /* decimal_cmp() */ |
1866 | return 0; |
1867 | decimal_make_zero(to); |
1868 | return E_DEC_OK; |
1869 | } |
1870 | } |
1871 | } |
1872 | |
1873 | if (to == 0) /* decimal_cmp() */ |
1874 | return carry == from1->sign ? 1 : -1; |
1875 | |
1876 | sanity(to); |
1877 | |
1878 | to->sign=from1->sign; |
1879 | |
1880 | /* ensure that always from1 > from2 (and intg1 >= intg2) */ |
1881 | if (carry) |
1882 | { |
1883 | swap_variables(const decimal_t *, from1, from2); |
1884 | swap_variables(dec1 *,start1, start2); |
1885 | swap_variables(int,intg1,intg2); |
1886 | swap_variables(int,frac1,frac2); |
1887 | to->sign= !to->sign; |
1888 | } |
1889 | |
1890 | FIX_INTG_FRAC_ERROR(to->len, intg1, frac0, error); |
1891 | buf0=to->buf+intg1+frac0; |
1892 | |
1893 | to->frac=MY_MAX(from1->frac, from2->frac); |
1894 | to->intg=intg1*DIG_PER_DEC1; |
1895 | if (unlikely(error)) |
1896 | { |
1897 | set_if_smaller(to->frac, frac0*DIG_PER_DEC1); |
1898 | set_if_smaller(frac1, frac0); |
1899 | set_if_smaller(frac2, frac0); |
1900 | set_if_smaller(intg2, intg1); |
1901 | } |
1902 | carry=0; |
1903 | |
1904 | /* part 1 - MY_MAX(frac) ... min (frac) */ |
1905 | if (frac1 > frac2) |
1906 | { |
1907 | buf1=start1+intg1+frac1; |
1908 | stop1=start1+intg1+frac2; |
1909 | buf2=start2+intg2+frac2; |
1910 | while (frac0-- > frac1) |
1911 | *--buf0=0; |
1912 | while (buf1 > stop1) |
1913 | *--buf0=*--buf1; |
1914 | } |
1915 | else |
1916 | { |
1917 | buf1=start1+intg1+frac1; |
1918 | buf2=start2+intg2+frac2; |
1919 | stop2=start2+intg2+frac1; |
1920 | while (frac0-- > frac2) |
1921 | *--buf0=0; |
1922 | while (buf2 > stop2) |
1923 | { |
1924 | SUB(*--buf0, 0, *--buf2, carry); |
1925 | } |
1926 | } |
1927 | |
1928 | /* part 2 - MY_MIN(frac) ... intg2 */ |
1929 | while (buf2 > start2) |
1930 | { |
1931 | SUB(*--buf0, *--buf1, *--buf2, carry); |
1932 | } |
1933 | |
1934 | /* part 3 - intg2 ... intg1 */ |
1935 | while (carry && buf1 > start1) |
1936 | { |
1937 | SUB(*--buf0, *--buf1, 0, carry); |
1938 | } |
1939 | |
1940 | while (buf1 > start1) |
1941 | *--buf0=*--buf1; |
1942 | |
1943 | while (buf0 > to->buf) |
1944 | *--buf0=0; |
1945 | |
1946 | return error; |
1947 | } |
1948 | |
1949 | int decimal_intg(const decimal_t *from) |
1950 | { |
1951 | int res; |
1952 | remove_leading_zeroes(from, &res); |
1953 | return res; |
1954 | } |
1955 | |
1956 | int decimal_add(const decimal_t *from1, const decimal_t *from2, decimal_t *to) |
1957 | { |
1958 | if (likely(from1->sign == from2->sign)) |
1959 | return do_add(from1, from2, to); |
1960 | return do_sub(from1, from2, to); |
1961 | } |
1962 | |
1963 | int decimal_sub(const decimal_t *from1, const decimal_t *from2, decimal_t *to) |
1964 | { |
1965 | if (likely(from1->sign == from2->sign)) |
1966 | return do_sub(from1, from2, to); |
1967 | return do_add(from1, from2, to); |
1968 | } |
1969 | |
1970 | int decimal_cmp(const decimal_t *from1, const decimal_t *from2) |
1971 | { |
1972 | if (likely(from1->sign == from2->sign)) |
1973 | return do_sub(from1, from2, 0); |
1974 | return from1->sign > from2->sign ? -1 : 1; |
1975 | } |
1976 | |
1977 | int decimal_is_zero(const decimal_t *from) |
1978 | { |
1979 | dec1 *buf1=from->buf, |
1980 | *end=buf1+ROUND_UP(from->intg)+ROUND_UP(from->frac); |
1981 | while (buf1 < end) |
1982 | if (*buf1++) |
1983 | return 0; |
1984 | return 1; |
1985 | } |
1986 | |
1987 | /* |
1988 | multiply two decimals |
1989 | |
1990 | SYNOPSIS |
1991 | decimal_mul() |
1992 | from1, from2 - factors |
1993 | to - product |
1994 | |
1995 | RETURN VALUE |
1996 | E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW; |
1997 | |
1998 | NOTES |
1999 | in this implementation, with sizeof(dec1)=4 we have DIG_PER_DEC1=9, |
2000 | and 63-digit number will take only 7 dec1 words (basically a 7-digit |
2001 | "base 999999999" number). Thus there's no need in fast multiplication |
2002 | algorithms, 7-digit numbers can be multiplied with a naive O(n*n) |
2003 | method. |
2004 | |
2005 | XXX if this library is to be used with huge numbers of thousands of |
2006 | digits, fast multiplication must be implemented. |
2007 | */ |
2008 | int decimal_mul(const decimal_t *from1, const decimal_t *from2, decimal_t *to) |
2009 | { |
2010 | int intg1=ROUND_UP(from1->intg), intg2=ROUND_UP(from2->intg), |
2011 | frac1=ROUND_UP(from1->frac), frac2=ROUND_UP(from2->frac), |
2012 | intg0=ROUND_UP(from1->intg+from2->intg), |
2013 | frac0=frac1+frac2, error, i, j, d_to_move; |
2014 | dec1 *buf1=from1->buf+intg1, *buf2=from2->buf+intg2, *buf0, |
2015 | *start2, *stop2, *stop1, *start0, carry; |
2016 | |
2017 | sanity(to); |
2018 | |
2019 | i=intg0; /* save 'ideal' values */ |
2020 | j=frac0; |
2021 | FIX_INTG_FRAC_ERROR(to->len, intg0, frac0, error); /* bound size */ |
2022 | to->sign=from1->sign != from2->sign; |
2023 | to->frac=from1->frac+from2->frac; /* store size in digits */ |
2024 | to->intg=intg0*DIG_PER_DEC1; |
2025 | |
2026 | if (unlikely(error)) |
2027 | { |
2028 | set_if_smaller(to->frac, frac0*DIG_PER_DEC1); |
2029 | set_if_smaller(to->intg, intg0*DIG_PER_DEC1); |
2030 | if (unlikely(i > intg0)) /* bounded integer-part */ |
2031 | { |
2032 | i-=intg0; |
2033 | j=i >> 1; |
2034 | intg1-= j; |
2035 | intg2-=i-j; |
2036 | frac1=frac2=0; /* frac0 is already 0 here */ |
2037 | } |
2038 | else /* bounded fract part */ |
2039 | { |
2040 | j-=frac0; |
2041 | i=j >> 1; |
2042 | if (frac1 <= frac2) |
2043 | { |
2044 | frac1-= i; |
2045 | frac2-=j-i; |
2046 | } |
2047 | else |
2048 | { |
2049 | frac2-= i; |
2050 | frac1-=j-i; |
2051 | } |
2052 | } |
2053 | } |
2054 | start0=to->buf+intg0+frac0-1; |
2055 | start2=buf2+frac2-1; |
2056 | stop1=buf1-intg1; |
2057 | stop2=buf2-intg2; |
2058 | |
2059 | bzero(to->buf, (intg0+frac0)*sizeof(dec1)); |
2060 | |
2061 | for (buf1+=frac1-1; buf1 >= stop1; buf1--, start0--) |
2062 | { |
2063 | carry=0; |
2064 | for (buf0=start0, buf2=start2; buf2 >= stop2; buf2--, buf0--) |
2065 | { |
2066 | dec1 hi, lo; |
2067 | dec2 p= ((dec2)*buf1) * ((dec2)*buf2); |
2068 | hi=(dec1)(p/DIG_BASE); |
2069 | lo=(dec1)(p-((dec2)hi)*DIG_BASE); |
2070 | ADD2(*buf0, *buf0, lo, carry); |
2071 | carry+=hi; |
2072 | } |
2073 | if (carry) |
2074 | { |
2075 | if (buf0 < to->buf) |
2076 | return E_DEC_OVERFLOW; |
2077 | ADD2(*buf0, *buf0, 0, carry); |
2078 | } |
2079 | for (buf0--; carry; buf0--) |
2080 | { |
2081 | if (buf0 < to->buf) |
2082 | return E_DEC_OVERFLOW; |
2083 | ADD(*buf0, *buf0, 0, carry); |
2084 | } |
2085 | } |
2086 | |
2087 | /* Now we have to check for -0.000 case */ |
2088 | if (to->sign) |
2089 | { |
2090 | dec1 *buf= to->buf; |
2091 | dec1 *end= to->buf + intg0 + frac0; |
2092 | DBUG_ASSERT(buf != end); |
2093 | for (;;) |
2094 | { |
2095 | if (*buf) |
2096 | break; |
2097 | if (++buf == end) |
2098 | { |
2099 | /* We got decimal zero */ |
2100 | decimal_make_zero(to); |
2101 | break; |
2102 | } |
2103 | } |
2104 | } |
2105 | buf1= to->buf; |
2106 | d_to_move= intg0 + ROUND_UP(to->frac); |
2107 | while (!*buf1 && (to->intg > DIG_PER_DEC1)) |
2108 | { |
2109 | buf1++; |
2110 | to->intg-= DIG_PER_DEC1; |
2111 | d_to_move--; |
2112 | } |
2113 | if (to->buf < buf1) |
2114 | { |
2115 | dec1 *cur_d= to->buf; |
2116 | for (; d_to_move--; cur_d++, buf1++) |
2117 | *cur_d= *buf1; |
2118 | } |
2119 | return error; |
2120 | } |
2121 | |
2122 | /* |
2123 | naive division algorithm (Knuth's Algorithm D in 4.3.1) - |
2124 | it's ok for short numbers |
2125 | also we're using alloca() to allocate a temporary buffer |
2126 | |
2127 | XXX if this library is to be used with huge numbers of thousands of |
2128 | digits, fast division must be implemented and alloca should be |
2129 | changed to malloc (or at least fallback to malloc if alloca() fails) |
2130 | but then, decimal_mul() should be rewritten too :( |
2131 | */ |
2132 | static int do_div_mod(const decimal_t *from1, const decimal_t *from2, |
2133 | decimal_t *to, decimal_t *mod, int scale_incr) |
2134 | { |
2135 | int frac1=ROUND_UP(from1->frac)*DIG_PER_DEC1, prec1=from1->intg+frac1, |
2136 | frac2=ROUND_UP(from2->frac)*DIG_PER_DEC1, prec2=from2->intg+frac2, |
2137 | UNINIT_VAR(error), i, intg0, frac0, len1, len2, dintg, div_mod=(!mod); |
2138 | dec1 *buf0, *buf1=from1->buf, *buf2=from2->buf, *tmp1, |
2139 | *start2, *stop2, *stop1, *stop0, norm2, carry, *start1, dcarry; |
2140 | dec2 norm_factor, x, guess, y; |
2141 | |
2142 | if (mod) |
2143 | to=mod; |
2144 | |
2145 | sanity(to); |
2146 | |
2147 | /* removing all the leading zeroes */ |
2148 | i= ((prec2 - 1) % DIG_PER_DEC1) + 1; |
2149 | while (prec2 > 0 && *buf2 == 0) |
2150 | { |
2151 | prec2-= i; |
2152 | i= DIG_PER_DEC1; |
2153 | buf2++; |
2154 | } |
2155 | if (prec2 <= 0) /* short-circuit everything: from2 == 0 */ |
2156 | return E_DEC_DIV_ZERO; |
2157 | for (i= (prec2 - 1) % DIG_PER_DEC1; *buf2 < powers10[i--]; prec2--) ; |
2158 | DBUG_ASSERT(prec2 > 0); |
2159 | |
2160 | i=((prec1-1) % DIG_PER_DEC1)+1; |
2161 | while (prec1 > 0 && *buf1 == 0) |
2162 | { |
2163 | prec1-=i; |
2164 | i=DIG_PER_DEC1; |
2165 | buf1++; |
2166 | } |
2167 | if (prec1 <= 0) |
2168 | { /* short-circuit everything: from1 == 0 */ |
2169 | decimal_make_zero(to); |
2170 | return E_DEC_OK; |
2171 | } |
2172 | for (i=(prec1-1) % DIG_PER_DEC1; *buf1 < powers10[i--]; prec1--) ; |
2173 | DBUG_ASSERT(prec1 > 0); |
2174 | |
2175 | /* let's fix scale_incr, taking into account frac1,frac2 increase */ |
2176 | if ((scale_incr-= frac1 - from1->frac + frac2 - from2->frac) < 0) |
2177 | scale_incr=0; |
2178 | |
2179 | dintg=(prec1-frac1)-(prec2-frac2)+(*buf1 >= *buf2); |
2180 | if (dintg < 0) |
2181 | { |
2182 | dintg/=DIG_PER_DEC1; |
2183 | intg0=0; |
2184 | } |
2185 | else |
2186 | intg0=ROUND_UP(dintg); |
2187 | if (mod) |
2188 | { |
2189 | /* we're calculating N1 % N2. |
2190 | The result will have |
2191 | frac=MY_MAX(frac1, frac2), as for subtraction |
2192 | intg=intg2 |
2193 | */ |
2194 | to->sign=from1->sign; |
2195 | to->frac=MY_MAX(from1->frac, from2->frac); |
2196 | frac0=0; |
2197 | } |
2198 | else |
2199 | { |
2200 | /* |
2201 | we're calculating N1/N2. N1 is in the buf1, has prec1 digits |
2202 | N2 is in the buf2, has prec2 digits. Scales are frac1 and |
2203 | frac2 accordingly. |
2204 | Thus, the result will have |
2205 | frac = ROUND_UP(frac1+frac2+scale_incr) |
2206 | and |
2207 | intg = (prec1-frac1) - (prec2-frac2) + 1 |
2208 | prec = intg+frac |
2209 | */ |
2210 | frac0=ROUND_UP(frac1+frac2+scale_incr); |
2211 | FIX_INTG_FRAC_ERROR(to->len, intg0, frac0, error); |
2212 | to->sign=from1->sign != from2->sign; |
2213 | to->intg=intg0*DIG_PER_DEC1; |
2214 | to->frac=frac0*DIG_PER_DEC1; |
2215 | } |
2216 | buf0=to->buf; |
2217 | stop0=buf0+intg0+frac0; |
2218 | if (likely(div_mod)) |
2219 | while (dintg++ < 0 && buf0 < &to->buf[to->len]) |
2220 | { |
2221 | *buf0++=0; |
2222 | } |
2223 | |
2224 | len1=(i=ROUND_UP(prec1))+ROUND_UP(2*frac2+scale_incr+1) + 1; |
2225 | set_if_bigger(len1, 3); |
2226 | if (!(tmp1=(dec1 *)my_alloca(len1*sizeof(dec1)))) |
2227 | return E_DEC_OOM; |
2228 | memcpy(tmp1, buf1, i*sizeof(dec1)); |
2229 | bzero(tmp1+i, (len1-i)*sizeof(dec1)); |
2230 | |
2231 | start1=tmp1; |
2232 | stop1=start1+len1; |
2233 | start2=buf2; |
2234 | stop2=buf2+ROUND_UP(prec2)-1; |
2235 | |
2236 | /* removing end zeroes */ |
2237 | while (*stop2 == 0 && stop2 >= start2) |
2238 | stop2--; |
2239 | len2= (int) (stop2++ - start2); |
2240 | |
2241 | /* |
2242 | calculating norm2 (normalized *start2) - we need *start2 to be large |
2243 | (at least > DIG_BASE/2), but unlike Knuth's Alg. D we don't want to |
2244 | normalize input numbers (as we don't make a copy of the divisor). |
2245 | Thus we normalize first dec1 of buf2 only, and we'll normalize *start1 |
2246 | on the fly for the purpose of guesstimation only. |
2247 | It's also faster, as we're saving on normalization of buf2 |
2248 | */ |
2249 | norm_factor=DIG_BASE/(*start2+1); |
2250 | norm2=(dec1)(norm_factor*start2[0]); |
2251 | if (unlikely(len2>0)) |
2252 | norm2+=(dec1)(norm_factor*start2[1]/DIG_BASE); |
2253 | |
2254 | if (*start1 < *start2) |
2255 | dcarry=*start1++; |
2256 | else |
2257 | dcarry=0; |
2258 | |
2259 | /* main loop */ |
2260 | for (; buf0 < stop0; buf0++) |
2261 | { |
2262 | /* short-circuit, if possible */ |
2263 | if (unlikely(dcarry == 0 && *start1 < *start2)) |
2264 | guess=0; |
2265 | else |
2266 | { |
2267 | /* D3: make a guess */ |
2268 | x=start1[0]+((dec2)dcarry)*DIG_BASE; |
2269 | y=start1[1]; |
2270 | guess=(norm_factor*x+norm_factor*y/DIG_BASE)/norm2; |
2271 | if (unlikely(guess >= DIG_BASE)) |
2272 | guess=DIG_BASE-1; |
2273 | if (unlikely(len2>0)) |
2274 | { |
2275 | /* hmm, this is a suspicious trick - I removed normalization here */ |
2276 | if (start2[1]*guess > (x-guess*start2[0])*DIG_BASE+y) |
2277 | guess--; |
2278 | if (unlikely(start2[1]*guess > (x-guess*start2[0])*DIG_BASE+y)) |
2279 | guess--; |
2280 | DBUG_ASSERT(start2[1]*guess <= (x-guess*start2[0])*DIG_BASE+y); |
2281 | } |
2282 | |
2283 | /* D4: multiply and subtract */ |
2284 | buf2=stop2; |
2285 | buf1=start1+len2; |
2286 | DBUG_ASSERT(buf1 < stop1); |
2287 | for (carry=0; buf2 > start2; buf1--) |
2288 | { |
2289 | dec1 hi, lo; |
2290 | x=guess * (*--buf2); |
2291 | hi=(dec1)(x/DIG_BASE); |
2292 | lo=(dec1)(x-((dec2)hi)*DIG_BASE); |
2293 | SUB2(*buf1, *buf1, lo, carry); |
2294 | carry+=hi; |
2295 | } |
2296 | carry= dcarry < carry; |
2297 | |
2298 | /* D5: check the remainder */ |
2299 | if (unlikely(carry)) |
2300 | { |
2301 | /* D6: correct the guess */ |
2302 | guess--; |
2303 | buf2=stop2; |
2304 | buf1=start1+len2; |
2305 | for (carry=0; buf2 > start2; buf1--) |
2306 | { |
2307 | ADD(*buf1, *buf1, *--buf2, carry); |
2308 | } |
2309 | } |
2310 | } |
2311 | if (likely(div_mod)) |
2312 | { |
2313 | DBUG_ASSERT(buf0 < to->buf + to->len); |
2314 | *buf0=(dec1)guess; |
2315 | } |
2316 | #ifdef WORKAROUND_GCC_4_3_2_BUG |
2317 | dcarry= *(volatile dec1 *)start1; |
2318 | #else |
2319 | dcarry= *start1; |
2320 | #endif |
2321 | start1++; |
2322 | } |
2323 | if (mod) |
2324 | { |
2325 | /* |
2326 | now the result is in tmp1, it has |
2327 | intg=prec1-frac1 |
2328 | frac=MY_MAX(frac1, frac2)=to->frac |
2329 | */ |
2330 | if (dcarry) |
2331 | *--start1=dcarry; |
2332 | buf0=to->buf; |
2333 | intg0=(int) (ROUND_UP(prec1-frac1)-(start1-tmp1)); |
2334 | frac0=ROUND_UP(to->frac); |
2335 | error=E_DEC_OK; |
2336 | if (unlikely(frac0==0 && intg0==0)) |
2337 | { |
2338 | decimal_make_zero(to); |
2339 | goto done; |
2340 | } |
2341 | if (intg0<=0) |
2342 | { |
2343 | if (unlikely(-intg0 >= to->len)) |
2344 | { |
2345 | decimal_make_zero(to); |
2346 | error=E_DEC_TRUNCATED; |
2347 | goto done; |
2348 | } |
2349 | stop1= start1 + frac0 + intg0; |
2350 | frac0+=intg0; |
2351 | to->intg=0; |
2352 | while (intg0++ < 0) |
2353 | *buf0++=0; |
2354 | } |
2355 | else |
2356 | { |
2357 | if (unlikely(intg0 > to->len)) |
2358 | { |
2359 | frac0=0; |
2360 | intg0=to->len; |
2361 | error=E_DEC_OVERFLOW; |
2362 | goto done; |
2363 | } |
2364 | DBUG_ASSERT(intg0 <= ROUND_UP(from2->intg)); |
2365 | stop1=start1+frac0+intg0; |
2366 | to->intg=MY_MIN(intg0*DIG_PER_DEC1, from2->intg); |
2367 | } |
2368 | if (unlikely(intg0+frac0 > to->len)) |
2369 | { |
2370 | stop1-=frac0+intg0-to->len; |
2371 | frac0=to->len-intg0; |
2372 | to->frac=frac0*DIG_PER_DEC1; |
2373 | error=E_DEC_TRUNCATED; |
2374 | } |
2375 | DBUG_ASSERT(buf0 + (stop1 - start1) <= to->buf + to->len); |
2376 | while (start1 < stop1) |
2377 | *buf0++=*start1++; |
2378 | } |
2379 | done: |
2380 | my_afree(tmp1); |
2381 | return error; |
2382 | } |
2383 | |
2384 | /* |
2385 | division of two decimals |
2386 | |
2387 | SYNOPSIS |
2388 | decimal_div() |
2389 | from1 - dividend |
2390 | from2 - divisor |
2391 | to - quotient |
2392 | |
2393 | RETURN VALUE |
2394 | E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW/E_DEC_DIV_ZERO; |
2395 | |
2396 | NOTES |
2397 | see do_div_mod() |
2398 | */ |
2399 | |
2400 | int |
2401 | decimal_div(const decimal_t *from1, const decimal_t *from2, decimal_t *to, |
2402 | int scale_incr) |
2403 | { |
2404 | return do_div_mod(from1, from2, to, 0, scale_incr); |
2405 | } |
2406 | |
2407 | /* |
2408 | modulus |
2409 | |
2410 | SYNOPSIS |
2411 | decimal_mod() |
2412 | from1 - dividend |
2413 | from2 - divisor |
2414 | to - modulus |
2415 | |
2416 | RETURN VALUE |
2417 | E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW/E_DEC_DIV_ZERO; |
2418 | |
2419 | NOTES |
2420 | see do_div_mod() |
2421 | |
2422 | DESCRIPTION |
2423 | the modulus R in R = M mod N |
2424 | |
2425 | is defined as |
2426 | |
2427 | 0 <= |R| < |M| |
2428 | sign R == sign M |
2429 | R = M - k*N, where k is integer |
2430 | |
2431 | thus, there's no requirement for M or N to be integers |
2432 | */ |
2433 | |
2434 | int decimal_mod(const decimal_t *from1, const decimal_t *from2, decimal_t *to) |
2435 | { |
2436 | return do_div_mod(from1, from2, 0, to, 0); |
2437 | } |
2438 | |
2439 | #ifdef MAIN |
2440 | |
2441 | int full= 0; |
2442 | decimal_t a, b, c; |
2443 | char buf1[100], buf2[100], buf3[100]; |
2444 | |
2445 | void dump_decimal(decimal_t *d) |
2446 | { |
2447 | int i; |
2448 | printf("/* intg=%d, frac=%d, sign=%d, buf[]={" , d->intg, d->frac, d->sign); |
2449 | for (i=0; i < ROUND_UP(d->frac)+ROUND_UP(d->intg)-1; i++) |
2450 | printf("%09d, " , d->buf[i]); |
2451 | printf("%09d} */ " , d->buf[i]); |
2452 | } |
2453 | |
2454 | |
2455 | void check_result_code(int actual, int want) |
2456 | { |
2457 | if (actual != want) |
2458 | { |
2459 | printf("\n^^^^^^^^^^^^^ must return %d\n" , want); |
2460 | exit(1); |
2461 | } |
2462 | } |
2463 | |
2464 | |
2465 | void print_decimal(decimal_t *d, const char *orig, int actual, int want) |
2466 | { |
2467 | char s[100]; |
2468 | int slen=sizeof(s); |
2469 | |
2470 | if (full) dump_decimal(d); |
2471 | decimal2string(d, s, &slen, 0, 0, 0); |
2472 | printf("'%s'" , s); |
2473 | check_result_code(actual, want); |
2474 | if (orig && strcmp(orig, s)) |
2475 | { |
2476 | printf("\n^^^^^^^^^^^^^ must've been '%s'\n" , orig); |
2477 | exit(1); |
2478 | } |
2479 | } |
2480 | |
2481 | void test_d2s() |
2482 | { |
2483 | char s[100]; |
2484 | int slen, res; |
2485 | |
2486 | /***********************************/ |
2487 | printf("==== decimal2string ====\n" ); |
2488 | a.buf[0]=12345; a.intg=5; a.frac=0; a.sign=0; |
2489 | slen=sizeof(s); |
2490 | res=decimal2string(&a, s, &slen, 0, 0, 0); |
2491 | dump_decimal(&a); printf(" --> res=%d str='%s' len=%d\n" , res, s, slen); |
2492 | |
2493 | a.buf[1]=987000000; a.frac=3; |
2494 | slen=sizeof(s); |
2495 | res=decimal2string(&a, s, &slen, 0, 0, 0); |
2496 | dump_decimal(&a); printf(" --> res=%d str='%s' len=%d\n" , res, s, slen); |
2497 | |
2498 | a.sign=1; |
2499 | slen=sizeof(s); |
2500 | res=decimal2string(&a, s, &slen, 0, 0, 0); |
2501 | dump_decimal(&a); printf(" --> res=%d str='%s' len=%d\n" , res, s, slen); |
2502 | |
2503 | slen=8; |
2504 | res=decimal2string(&a, s, &slen, 0, 0, 0); |
2505 | dump_decimal(&a); printf(" --> res=%d str='%s' len=%d\n" , res, s, slen); |
2506 | |
2507 | slen=5; |
2508 | res=decimal2string(&a, s, &slen, 0, 0, 0); |
2509 | dump_decimal(&a); printf(" --> res=%d str='%s' len=%d\n" , res, s, slen); |
2510 | |
2511 | a.buf[0]=987000000; a.frac=3; a.intg=0; |
2512 | slen=sizeof(s); |
2513 | res=decimal2string(&a, s, &slen, 0, 0, 0); |
2514 | dump_decimal(&a); printf(" --> res=%d str='%s' len=%d\n" , res, s, slen); |
2515 | } |
2516 | |
2517 | void test_s2d(const char *s, const char *orig, int ex) |
2518 | { |
2519 | char s1[100], *end; |
2520 | int res; |
2521 | sprintf(s1, "'%s'" , s); |
2522 | end= strend(s); |
2523 | printf("len=%2d %-30s => res=%d " , a.len, s1, |
2524 | (res= string2decimal(s, &a, &end))); |
2525 | print_decimal(&a, orig, res, ex); |
2526 | printf("\n" ); |
2527 | } |
2528 | |
2529 | void test_d2f(const char *s, int ex) |
2530 | { |
2531 | char s1[100], *end; |
2532 | double x; |
2533 | int res; |
2534 | |
2535 | sprintf(s1, "'%s'" , s); |
2536 | end= strend(s); |
2537 | string2decimal(s, &a, &end); |
2538 | res=decimal2double(&a, &x); |
2539 | if (full) dump_decimal(&a); |
2540 | printf("%-40s => res=%d %.*g\n" , s1, res, a.intg+a.frac, x); |
2541 | check_result_code(res, ex); |
2542 | } |
2543 | |
2544 | void test_d2b2d(const char *str, int p, int s, const char *orig, int ex) |
2545 | { |
2546 | char s1[100], buf[100], *end; |
2547 | int res, i, size=decimal_bin_size(p, s); |
2548 | |
2549 | sprintf(s1, "'%s'" , str); |
2550 | end= strend(str); |
2551 | string2decimal(str, &a, &end); |
2552 | res=decimal2bin(&a, buf, p, s); |
2553 | printf("%-31s {%2d, %2d} => res=%d size=%-2d " , s1, p, s, res, size); |
2554 | if (full) |
2555 | { |
2556 | printf("0x" ); |
2557 | for (i=0; i < size; i++) |
2558 | printf("%02x" , ((uchar *)buf)[i]); |
2559 | } |
2560 | res=bin2decimal(buf, &a, p, s); |
2561 | printf(" => res=%d " , res); |
2562 | print_decimal(&a, orig, res, ex); |
2563 | printf("\n" ); |
2564 | } |
2565 | |
2566 | void test_f2d(double from, int ex) |
2567 | { |
2568 | int res; |
2569 | |
2570 | res=double2decimal(from, &a); |
2571 | printf("%-40.*f => res=%d " , DBL_DIG-2, from, res); |
2572 | print_decimal(&a, 0, res, ex); |
2573 | printf("\n" ); |
2574 | } |
2575 | |
2576 | void test_ull2d(ulonglong from, const char *orig, int ex) |
2577 | { |
2578 | char s[100]; |
2579 | int res; |
2580 | |
2581 | res=ulonglong2decimal(from, &a); |
2582 | longlong10_to_str(from,s,10); |
2583 | printf("%-40s => res=%d " , s, res); |
2584 | print_decimal(&a, orig, res, ex); |
2585 | printf("\n" ); |
2586 | } |
2587 | |
2588 | void test_ll2d(longlong from, const char *orig, int ex) |
2589 | { |
2590 | char s[100]; |
2591 | int res; |
2592 | |
2593 | res=longlong2decimal(from, &a); |
2594 | longlong10_to_str(from,s,-10); |
2595 | printf("%-40s => res=%d " , s, res); |
2596 | print_decimal(&a, orig, res, ex); |
2597 | printf("\n" ); |
2598 | } |
2599 | |
2600 | void test_d2ull(const char *s, const char *orig, int ex) |
2601 | { |
2602 | char s1[100], *end; |
2603 | ulonglong x; |
2604 | int res; |
2605 | |
2606 | end= strend(s); |
2607 | string2decimal(s, &a, &end); |
2608 | res=decimal2ulonglong(&a, &x); |
2609 | if (full) dump_decimal(&a); |
2610 | longlong10_to_str(x,s1,10); |
2611 | printf("%-40s => res=%d %s\n" , s, res, s1); |
2612 | check_result_code(res, ex); |
2613 | if (orig && strcmp(orig, s1)) |
2614 | { |
2615 | printf("\n^^^^^^^^^^^^^ must've been '%s'\n" , orig); |
2616 | exit(1); |
2617 | } |
2618 | } |
2619 | |
2620 | void test_d2ll(const char *s, const char *orig, int ex) |
2621 | { |
2622 | char s1[100], *end; |
2623 | longlong x; |
2624 | int res; |
2625 | |
2626 | end= strend(s); |
2627 | string2decimal(s, &a, &end); |
2628 | res=decimal2longlong(&a, &x); |
2629 | if (full) dump_decimal(&a); |
2630 | longlong10_to_str(x,s1,-10); |
2631 | printf("%-40s => res=%d %s\n" , s, res, s1); |
2632 | check_result_code(res, ex); |
2633 | if (orig && strcmp(orig, s1)) |
2634 | { |
2635 | printf("\n^^^^^^^^^^^^^ must've been '%s'\n" , orig); |
2636 | exit(1); |
2637 | } |
2638 | } |
2639 | |
2640 | void test_da(const char *s1, const char *s2, const char *orig, int ex) |
2641 | { |
2642 | char s[100], *end; |
2643 | int res; |
2644 | sprintf(s, "'%s' + '%s'" , s1, s2); |
2645 | end= strend(s1); |
2646 | string2decimal(s1, &a, &end); |
2647 | end= strend(s2); |
2648 | string2decimal(s2, &b, &end); |
2649 | res=decimal_add(&a, &b, &c); |
2650 | printf("%-40s => res=%d " , s, res); |
2651 | print_decimal(&c, orig, res, ex); |
2652 | printf("\n" ); |
2653 | } |
2654 | |
2655 | void test_ds(const char *s1, const char *s2, const char *orig, int ex) |
2656 | { |
2657 | char s[100], *end; |
2658 | int res; |
2659 | sprintf(s, "'%s' - '%s'" , s1, s2); |
2660 | end= strend(s1); |
2661 | string2decimal(s1, &a, &end); |
2662 | end= strend(s2); |
2663 | string2decimal(s2, &b, &end); |
2664 | res=decimal_sub(&a, &b, &c); |
2665 | printf("%-40s => res=%d " , s, res); |
2666 | print_decimal(&c, orig, res, ex); |
2667 | printf("\n" ); |
2668 | } |
2669 | |
2670 | void test_dc(const char *s1, const char *s2, int orig) |
2671 | { |
2672 | char s[100], *end; |
2673 | int res; |
2674 | sprintf(s, "'%s' <=> '%s'" , s1, s2); |
2675 | end= strend(s1); |
2676 | string2decimal(s1, &a, &end); |
2677 | end= strend(s2); |
2678 | string2decimal(s2, &b, &end); |
2679 | res=decimal_cmp(&a, &b); |
2680 | printf("%-40s => res=%d\n" , s, res); |
2681 | if (orig != res) |
2682 | { |
2683 | printf("\n^^^^^^^^^^^^^ must've been %d\n" , orig); |
2684 | exit(1); |
2685 | } |
2686 | } |
2687 | |
2688 | void test_dm(const char *s1, const char *s2, const char *orig, int ex) |
2689 | { |
2690 | char s[100], *end; |
2691 | int res; |
2692 | sprintf(s, "'%s' * '%s'" , s1, s2); |
2693 | end= strend(s1); |
2694 | string2decimal(s1, &a, &end); |
2695 | end= strend(s2); |
2696 | string2decimal(s2, &b, &end); |
2697 | res=decimal_mul(&a, &b, &c); |
2698 | printf("%-40s => res=%d " , s, res); |
2699 | print_decimal(&c, orig, res, ex); |
2700 | printf("\n" ); |
2701 | } |
2702 | |
2703 | void test_dv(const char *s1, const char *s2, const char *orig, int ex) |
2704 | { |
2705 | char s[100], *end; |
2706 | int res; |
2707 | sprintf(s, "'%s' / '%s'" , s1, s2); |
2708 | end= strend(s1); |
2709 | string2decimal(s1, &a, &end); |
2710 | end= strend(s2); |
2711 | string2decimal(s2, &b, &end); |
2712 | res=decimal_div(&a, &b, &c, 5); |
2713 | printf("%-40s => res=%d " , s, res); |
2714 | check_result_code(res, ex); |
2715 | if (res == E_DEC_DIV_ZERO) |
2716 | printf("E_DEC_DIV_ZERO" ); |
2717 | else |
2718 | print_decimal(&c, orig, res, ex); |
2719 | printf("\n" ); |
2720 | } |
2721 | |
2722 | void test_md(const char *s1, const char *s2, const char *orig, int ex) |
2723 | { |
2724 | char s[100], *end; |
2725 | int res; |
2726 | sprintf(s, "'%s' %% '%s'" , s1, s2); |
2727 | end= strend(s1); |
2728 | string2decimal(s1, &a, &end); |
2729 | end= strend(s2); |
2730 | string2decimal(s2, &b, &end); |
2731 | res=decimal_mod(&a, &b, &c); |
2732 | printf("%-40s => res=%d " , s, res); |
2733 | check_result_code(res, ex); |
2734 | if (res == E_DEC_DIV_ZERO) |
2735 | printf("E_DEC_DIV_ZERO" ); |
2736 | else |
2737 | print_decimal(&c, orig, res, ex); |
2738 | printf("\n" ); |
2739 | } |
2740 | |
2741 | const char *round_mode[]= |
2742 | {"TRUNCATE" , "HALF_EVEN" , "HALF_UP" , "CEILING" , "FLOOR" }; |
2743 | |
2744 | void test_ro(const char *s1, int n, decimal_round_mode mode, const char *orig, |
2745 | int ex) |
2746 | { |
2747 | char s[100], *end; |
2748 | int res; |
2749 | sprintf(s, "'%s', %d, %s" , s1, n, round_mode[mode]); |
2750 | end= strend(s1); |
2751 | string2decimal(s1, &a, &end); |
2752 | res=decimal_round(&a, &b, n, mode); |
2753 | printf("%-40s => res=%d " , s, res); |
2754 | print_decimal(&b, orig, res, ex); |
2755 | printf("\n" ); |
2756 | } |
2757 | |
2758 | |
2759 | void test_mx(int precision, int frac, const char *orig) |
2760 | { |
2761 | char s[100]; |
2762 | sprintf(s, "%d, %d" , precision, frac); |
2763 | max_decimal(precision, frac, &a); |
2764 | printf("%-40s => " , s); |
2765 | print_decimal(&a, orig, 0, 0); |
2766 | printf("\n" ); |
2767 | } |
2768 | |
2769 | |
2770 | void test_pr(const char *s1, int prec, int dec, char filler, const char *orig, |
2771 | int ex) |
2772 | { |
2773 | char s[100], *end; |
2774 | char s2[100]; |
2775 | int slen= sizeof(s2); |
2776 | int res; |
2777 | |
2778 | sprintf(s, filler ? "'%s', %d, %d, '%c'" : "'%s', %d, %d, '\\0'" , |
2779 | s1, prec, dec, filler); |
2780 | end= strend(s1); |
2781 | string2decimal(s1, &a, &end); |
2782 | res= decimal2string(&a, s2, &slen, prec, dec, filler); |
2783 | printf("%-40s => res=%d '%s'" , s, res, s2); |
2784 | check_result_code(res, ex); |
2785 | if (orig && strcmp(orig, s2)) |
2786 | { |
2787 | printf("\n^^^^^^^^^^^^^ must've been '%s'\n" , orig); |
2788 | exit(1); |
2789 | } |
2790 | printf("\n" ); |
2791 | } |
2792 | |
2793 | |
2794 | void test_sh(const char *s1, int shift, const char *orig, int ex) |
2795 | { |
2796 | char s[100], *end; |
2797 | int res; |
2798 | sprintf(s, "'%s' %s %d" , s1, ((shift < 0) ? ">>" : "<<" ), abs(shift)); |
2799 | end= strend(s1); |
2800 | string2decimal(s1, &a, &end); |
2801 | res= decimal_shift(&a, shift); |
2802 | printf("%-40s => res=%d " , s, res); |
2803 | print_decimal(&a, orig, res, ex); |
2804 | printf("\n" ); |
2805 | } |
2806 | |
2807 | |
2808 | void test_fr(const char *s1, const char *orig) |
2809 | { |
2810 | char s[100], *end; |
2811 | sprintf(s, "'%s'" , s1); |
2812 | printf("%-40s => " , s); |
2813 | end= strend(s1); |
2814 | string2decimal(s1, &a, &end); |
2815 | a.frac= decimal_actual_fraction(&a); |
2816 | print_decimal(&a, orig, 0, 0); |
2817 | printf("\n" ); |
2818 | } |
2819 | |
2820 | |
2821 | int main() |
2822 | { |
2823 | a.buf=(void*)buf1; |
2824 | a.len=sizeof(buf1)/sizeof(dec1); |
2825 | b.buf=(void*)buf2; |
2826 | b.len=sizeof(buf2)/sizeof(dec1); |
2827 | c.buf=(void*)buf3; |
2828 | c.len=sizeof(buf3)/sizeof(dec1); |
2829 | |
2830 | if (full) |
2831 | test_d2s(); |
2832 | |
2833 | printf("==== string2decimal ====\n" ); |
2834 | test_s2d("12345" , "12345" , 0); |
2835 | test_s2d("12345." , "12345" , 0); |
2836 | test_s2d("123.45" , "123.45" , 0); |
2837 | test_s2d("-123.45" , "-123.45" , 0); |
2838 | test_s2d(".00012345000098765" , "0.00012345000098765" , 0); |
2839 | test_s2d(".12345000098765" , "0.12345000098765" , 0); |
2840 | test_s2d("-.000000012345000098765" , "-0.000000012345000098765" , 0); |
2841 | test_s2d("1234500009876.5" , "1234500009876.5" , 0); |
2842 | a.len=1; |
2843 | test_s2d("123450000098765" , "98765" , 2); |
2844 | test_s2d("123450.000098765" , "123450" , 1); |
2845 | a.len=sizeof(buf1)/sizeof(dec1); |
2846 | test_s2d("123E5" , "12300000" , 0); |
2847 | test_s2d("123E-2" , "1.23" , 0); |
2848 | |
2849 | printf("==== decimal2double ====\n" ); |
2850 | test_d2f("12345" , 0); |
2851 | test_d2f("123.45" , 0); |
2852 | test_d2f("-123.45" , 0); |
2853 | test_d2f("0.00012345000098765" , 0); |
2854 | test_d2f("1234500009876.5" , 0); |
2855 | |
2856 | printf("==== double2decimal ====\n" ); |
2857 | test_f2d(12345, 0); |
2858 | test_f2d(1.0/3, 0); |
2859 | test_f2d(-123.45, 0); |
2860 | test_f2d(0.00012345000098765, 0); |
2861 | test_f2d(1234500009876.5, 0); |
2862 | |
2863 | printf("==== ulonglong2decimal ====\n" ); |
2864 | test_ull2d(ULL(12345), "12345" , 0); |
2865 | test_ull2d(ULL(0), "0" , 0); |
2866 | test_ull2d(ULL(18446744073709551615), "18446744073709551615" , 0); |
2867 | |
2868 | printf("==== decimal2ulonglong ====\n" ); |
2869 | test_d2ull("12345" , "12345" , 0); |
2870 | test_d2ull("0" , "0" , 0); |
2871 | test_d2ull("18446744073709551615" , "18446744073709551615" , 0); |
2872 | test_d2ull("18446744073709551616" , "18446744073" , 2); |
2873 | test_d2ull("-1" , "0" , 2); |
2874 | test_d2ull("1.23" , "1" , 1); |
2875 | test_d2ull("9999999999999999999999999.000" , "9999999999999999" , 2); |
2876 | |
2877 | printf("==== longlong2decimal ====\n" ); |
2878 | test_ll2d(LL(-12345), "-12345" , 0); |
2879 | test_ll2d(LL(-1), "-1" , 0); |
2880 | test_ll2d(LL(-9223372036854775807), "-9223372036854775807" , 0); |
2881 | test_ll2d(ULL(9223372036854775808), "-9223372036854775808" , 0); |
2882 | |
2883 | printf("==== decimal2longlong ====\n" ); |
2884 | test_d2ll("18446744073709551615" , "18446744073" , 2); |
2885 | test_d2ll("-1" , "-1" , 0); |
2886 | test_d2ll("-1.23" , "-1" , 1); |
2887 | test_d2ll("-9223372036854775807" , "-9223372036854775807" , 0); |
2888 | test_d2ll("-9223372036854775808" , "-9223372036854775808" , 0); |
2889 | test_d2ll("9223372036854775808" , "9223372036854775807" , 2); |
2890 | |
2891 | printf("==== do_add ====\n" ); |
2892 | test_da(".00012345000098765" ,"123.45" , "123.45012345000098765" , 0); |
2893 | test_da(".1" ,".45" , "0.55" , 0); |
2894 | test_da("1234500009876.5" ,".00012345000098765" , "1234500009876.50012345000098765" , 0); |
2895 | test_da("9999909999999.5" ,".555" , "9999910000000.055" , 0); |
2896 | test_da("99999999" ,"1" , "100000000" , 0); |
2897 | test_da("989999999" ,"1" , "990000000" , 0); |
2898 | test_da("999999999" ,"1" , "1000000000" , 0); |
2899 | test_da("12345" ,"123.45" , "12468.45" , 0); |
2900 | test_da("-12345" ,"-123.45" , "-12468.45" , 0); |
2901 | test_ds("-12345" ,"123.45" , "-12468.45" , 0); |
2902 | test_ds("12345" ,"-123.45" , "12468.45" , 0); |
2903 | |
2904 | printf("==== do_sub ====\n" ); |
2905 | test_ds(".00012345000098765" , "123.45" ,"-123.44987654999901235" , 0); |
2906 | test_ds("1234500009876.5" , ".00012345000098765" ,"1234500009876.49987654999901235" , 0); |
2907 | test_ds("9999900000000.5" , ".555" ,"9999899999999.945" , 0); |
2908 | test_ds("1111.5551" , "1111.555" ,"0.0001" , 0); |
2909 | test_ds(".555" , ".555" ,"0" , 0); |
2910 | test_ds("10000000" , "1" ,"9999999" , 0); |
2911 | test_ds("1000001000" , ".1" ,"1000000999.9" , 0); |
2912 | test_ds("1000000000" , ".1" ,"999999999.9" , 0); |
2913 | test_ds("12345" , "123.45" ,"12221.55" , 0); |
2914 | test_ds("-12345" , "-123.45" ,"-12221.55" , 0); |
2915 | test_da("-12345" , "123.45" ,"-12221.55" , 0); |
2916 | test_da("12345" , "-123.45" ,"12221.55" , 0); |
2917 | test_ds("123.45" , "12345" ,"-12221.55" , 0); |
2918 | test_ds("-123.45" , "-12345" ,"12221.55" , 0); |
2919 | test_da("123.45" , "-12345" ,"-12221.55" , 0); |
2920 | test_da("-123.45" , "12345" ,"12221.55" , 0); |
2921 | test_da("5" , "-6.0" ,"-1.0" , 0); |
2922 | |
2923 | printf("==== decimal_mul ====\n" ); |
2924 | test_dm("12" , "10" ,"120" , 0); |
2925 | test_dm("-123.456" , "98765.4321" ,"-12193185.1853376" , 0); |
2926 | test_dm("-123456000000" , "98765432100000" ,"-12193185185337600000000000" , 0); |
2927 | test_dm("123456" , "987654321" ,"121931851853376" , 0); |
2928 | test_dm("123456" , "9876543210" ,"1219318518533760" , 0); |
2929 | test_dm("123" , "0.01" ,"1.23" , 0); |
2930 | test_dm("123" , "0" ,"0" , 0); |
2931 | |
2932 | printf("==== decimal_div ====\n" ); |
2933 | test_dv("120" , "10" ,"12.000000000" , 0); |
2934 | test_dv("123" , "0.01" ,"12300.000000000" , 0); |
2935 | test_dv("120" , "100000000000.00000" ,"0.000000001200000000" , 0); |
2936 | test_dv("123" , "0" ,"" , 4); |
2937 | test_dv("0" , "0" , "" , 4); |
2938 | test_dv("-12193185.1853376" , "98765.4321" ,"-123.456000000000000000" , 0); |
2939 | test_dv("121931851853376" , "987654321" ,"123456.000000000" , 0); |
2940 | test_dv("0" , "987" ,"0" , 0); |
2941 | test_dv("1" , "3" ,"0.333333333" , 0); |
2942 | test_dv("1.000000000000" , "3" ,"0.333333333333333333" , 0); |
2943 | test_dv("1" , "1" ,"1.000000000" , 0); |
2944 | test_dv("0.0123456789012345678912345" , "9999999999" ,"0.000000000001234567890246913578148141" , 0); |
2945 | test_dv("10.333000000" , "12.34500" ,"0.837019036046982584042122316" , 0); |
2946 | test_dv("10.000000000060" , "2" ,"5.000000000030000000" , 0); |
2947 | |
2948 | printf("==== decimal_mod ====\n" ); |
2949 | test_md("234" ,"10" ,"4" , 0); |
2950 | test_md("234.567" ,"10.555" ,"2.357" , 0); |
2951 | test_md("-234.567" ,"10.555" ,"-2.357" , 0); |
2952 | test_md("234.567" ,"-10.555" ,"2.357" , 0); |
2953 | c.buf[1]=0x3ABECA; |
2954 | test_md("99999999999999999999999999999999999999" ,"3" ,"0" , 0); |
2955 | if (c.buf[1] != 0x3ABECA) |
2956 | { |
2957 | printf("%X - overflow\n" , c.buf[1]); |
2958 | exit(1); |
2959 | } |
2960 | |
2961 | printf("==== decimal2bin/bin2decimal ====\n" ); |
2962 | test_d2b2d("-10.55" , 4, 2,"-10.55" , 0); |
2963 | test_d2b2d("0.0123456789012345678912345" , 30, 25,"0.0123456789012345678912345" , 0); |
2964 | test_d2b2d("12345" , 5, 0,"12345" , 0); |
2965 | test_d2b2d("12345" , 10, 3,"12345.000" , 0); |
2966 | test_d2b2d("123.45" , 10, 3,"123.450" , 0); |
2967 | test_d2b2d("-123.45" , 20, 10,"-123.4500000000" , 0); |
2968 | test_d2b2d(".00012345000098765" , 15, 14,"0.00012345000098" , 0); |
2969 | test_d2b2d(".00012345000098765" , 22, 20,"0.00012345000098765000" , 0); |
2970 | test_d2b2d(".12345000098765" , 30, 20,"0.12345000098765000000" , 0); |
2971 | test_d2b2d("-.000000012345000098765" , 30, 20,"-0.00000001234500009876" , 0); |
2972 | test_d2b2d("1234500009876.5" , 30, 5,"1234500009876.50000" , 0); |
2973 | test_d2b2d("111111111.11" , 10, 2,"11111111.11" , 0); |
2974 | test_d2b2d("000000000.01" , 7, 3,"0.010" , 0); |
2975 | test_d2b2d("123.4" , 10, 2, "123.40" , 0); |
2976 | |
2977 | |
2978 | printf("==== decimal_cmp ====\n" ); |
2979 | test_dc("12" ,"13" ,-1); |
2980 | test_dc("13" ,"12" ,1); |
2981 | test_dc("-10" ,"10" ,-1); |
2982 | test_dc("10" ,"-10" ,1); |
2983 | test_dc("-12" ,"-13" ,1); |
2984 | test_dc("0" ,"12" ,-1); |
2985 | test_dc("-10" ,"0" ,-1); |
2986 | test_dc("4" ,"4" ,0); |
2987 | |
2988 | printf("==== decimal_round ====\n" ); |
2989 | test_ro("5678.123451" ,-4,TRUNCATE,"0" , 0); |
2990 | test_ro("5678.123451" ,-3,TRUNCATE,"5000" , 0); |
2991 | test_ro("5678.123451" ,-2,TRUNCATE,"5600" , 0); |
2992 | test_ro("5678.123451" ,-1,TRUNCATE,"5670" , 0); |
2993 | test_ro("5678.123451" ,0,TRUNCATE,"5678" , 0); |
2994 | test_ro("5678.123451" ,1,TRUNCATE,"5678.1" , 0); |
2995 | test_ro("5678.123451" ,2,TRUNCATE,"5678.12" , 0); |
2996 | test_ro("5678.123451" ,3,TRUNCATE,"5678.123" , 0); |
2997 | test_ro("5678.123451" ,4,TRUNCATE,"5678.1234" , 0); |
2998 | test_ro("5678.123451" ,5,TRUNCATE,"5678.12345" , 0); |
2999 | test_ro("5678.123451" ,6,TRUNCATE,"5678.123451" , 0); |
3000 | test_ro("-5678.123451" ,-4,TRUNCATE,"0" , 0); |
3001 | memset(buf2, 33, sizeof(buf2)); |
3002 | test_ro("99999999999999999999999999999999999999" ,-31,TRUNCATE,"99999990000000000000000000000000000000" , 0); |
3003 | test_ro("15.1" ,0,HALF_UP,"15" , 0); |
3004 | test_ro("15.5" ,0,HALF_UP,"16" , 0); |
3005 | test_ro("15.9" ,0,HALF_UP,"16" , 0); |
3006 | test_ro("-15.1" ,0,HALF_UP,"-15" , 0); |
3007 | test_ro("-15.5" ,0,HALF_UP,"-16" , 0); |
3008 | test_ro("-15.9" ,0,HALF_UP,"-16" , 0); |
3009 | test_ro("15.1" ,1,HALF_UP,"15.1" , 0); |
3010 | test_ro("-15.1" ,1,HALF_UP,"-15.1" , 0); |
3011 | test_ro("15.17" ,1,HALF_UP,"15.2" , 0); |
3012 | test_ro("15.4" ,-1,HALF_UP,"20" , 0); |
3013 | test_ro("-15.4" ,-1,HALF_UP,"-20" , 0); |
3014 | test_ro("5.4" ,-1,HALF_UP,"10" , 0); |
3015 | test_ro(".999" , 0, HALF_UP, "1" , 0); |
3016 | memset(buf2, 33, sizeof(buf2)); |
3017 | test_ro("999999999" , -9, HALF_UP, "1000000000" , 0); |
3018 | test_ro("15.1" ,0,HALF_EVEN,"15" , 0); |
3019 | test_ro("15.5" ,0,HALF_EVEN,"16" , 0); |
3020 | test_ro("14.5" ,0,HALF_EVEN,"14" , 0); |
3021 | test_ro("15.9" ,0,HALF_EVEN,"16" , 0); |
3022 | test_ro("15.1" ,0,CEILING,"16" , 0); |
3023 | test_ro("-15.1" ,0,CEILING,"-15" , 0); |
3024 | test_ro("15.1" ,0,FLOOR,"15" , 0); |
3025 | test_ro("-15.1" ,0,FLOOR,"-16" , 0); |
3026 | test_ro("999999999999999999999.999" , 0, CEILING,"1000000000000000000000" , 0); |
3027 | test_ro("-999999999999999999999.999" , 0, FLOOR,"-1000000000000000000000" , 0); |
3028 | |
3029 | b.buf[0]=DIG_BASE+1; |
3030 | b.buf++; |
3031 | test_ro(".3" , 0, HALF_UP, "0" , 0); |
3032 | b.buf--; |
3033 | if (b.buf[0] != DIG_BASE+1) |
3034 | { |
3035 | printf("%d - underflow\n" , b.buf[0]); |
3036 | exit(1); |
3037 | } |
3038 | |
3039 | printf("==== max_decimal ====\n" ); |
3040 | test_mx(1,1,"0.9" ); |
3041 | test_mx(1,0,"9" ); |
3042 | test_mx(2,1,"9.9" ); |
3043 | test_mx(4,2,"99.99" ); |
3044 | test_mx(6,3,"999.999" ); |
3045 | test_mx(8,4,"9999.9999" ); |
3046 | test_mx(10,5,"99999.99999" ); |
3047 | test_mx(12,6,"999999.999999" ); |
3048 | test_mx(14,7,"9999999.9999999" ); |
3049 | test_mx(16,8,"99999999.99999999" ); |
3050 | test_mx(18,9,"999999999.999999999" ); |
3051 | test_mx(20,10,"9999999999.9999999999" ); |
3052 | test_mx(20,20,"0.99999999999999999999" ); |
3053 | test_mx(20,0,"99999999999999999999" ); |
3054 | test_mx(40,20,"99999999999999999999.99999999999999999999" ); |
3055 | |
3056 | printf("==== decimal2string ====\n" ); |
3057 | test_pr("123.123" , 0, 0, 0, "123.123" , 0); |
3058 | test_pr("123.123" , 7, 3, '0', "123.123" , 0); |
3059 | test_pr("123.123" , 9, 3, '0', "00123.123" , 0); |
3060 | test_pr("123.123" , 9, 4, '0', "0123.1230" , 0); |
3061 | test_pr("123.123" , 9, 5, '0', "123.12300" , 0); |
3062 | test_pr("123.123" , 9, 2, '0', "000123.12" , 1); |
3063 | test_pr("123.123" , 9, 6, '0', "23.123000" , 2); |
3064 | |
3065 | printf("==== decimal_shift ====\n" ); |
3066 | test_sh("123.123" , 1, "1231.23" , 0); |
3067 | test_sh("123457189.123123456789000" , 1, "1234571891.23123456789" , 0); |
3068 | test_sh("123457189.123123456789000" , 4, "1234571891231.23456789" , 0); |
3069 | test_sh("123457189.123123456789000" , 8, "12345718912312345.6789" , 0); |
3070 | test_sh("123457189.123123456789000" , 9, "123457189123123456.789" , 0); |
3071 | test_sh("123457189.123123456789000" , 10, "1234571891231234567.89" , 0); |
3072 | test_sh("123457189.123123456789000" , 17, "12345718912312345678900000" , 0); |
3073 | test_sh("123457189.123123456789000" , 18, "123457189123123456789000000" , 0); |
3074 | test_sh("123457189.123123456789000" , 19, "1234571891231234567890000000" , 0); |
3075 | test_sh("123457189.123123456789000" , 26, "12345718912312345678900000000000000" , 0); |
3076 | test_sh("123457189.123123456789000" , 27, "123457189123123456789000000000000000" , 0); |
3077 | test_sh("123457189.123123456789000" , 28, "1234571891231234567890000000000000000" , 0); |
3078 | test_sh("000000000000000000000000123457189.123123456789000" , 26, "12345718912312345678900000000000000" , 0); |
3079 | test_sh("00000000123457189.123123456789000" , 27, "123457189123123456789000000000000000" , 0); |
3080 | test_sh("00000000000000000123457189.123123456789000" , 28, "1234571891231234567890000000000000000" , 0); |
3081 | test_sh("123" , 1, "1230" , 0); |
3082 | test_sh("123" , 10, "1230000000000" , 0); |
3083 | test_sh(".123" , 1, "1.23" , 0); |
3084 | test_sh(".123" , 10, "1230000000" , 0); |
3085 | test_sh(".123" , 14, "12300000000000" , 0); |
3086 | test_sh("000.000" , 1000, "0" , 0); |
3087 | test_sh("000." , 1000, "0" , 0); |
3088 | test_sh(".000" , 1000, "0" , 0); |
3089 | test_sh("1" , 1000, "1" , 2); |
3090 | test_sh("123.123" , -1, "12.3123" , 0); |
3091 | test_sh("123987654321.123456789000" , -1, "12398765432.1123456789" , 0); |
3092 | test_sh("123987654321.123456789000" , -2, "1239876543.21123456789" , 0); |
3093 | test_sh("123987654321.123456789000" , -3, "123987654.321123456789" , 0); |
3094 | test_sh("123987654321.123456789000" , -8, "1239.87654321123456789" , 0); |
3095 | test_sh("123987654321.123456789000" , -9, "123.987654321123456789" , 0); |
3096 | test_sh("123987654321.123456789000" , -10, "12.3987654321123456789" , 0); |
3097 | test_sh("123987654321.123456789000" , -11, "1.23987654321123456789" , 0); |
3098 | test_sh("123987654321.123456789000" , -12, "0.123987654321123456789" , 0); |
3099 | test_sh("123987654321.123456789000" , -13, "0.0123987654321123456789" , 0); |
3100 | test_sh("123987654321.123456789000" , -14, "0.00123987654321123456789" , 0); |
3101 | test_sh("00000087654321.123456789000" , -14, "0.00000087654321123456789" , 0); |
3102 | a.len= 2; |
3103 | test_sh("123.123" , -2, "1.23123" , 0); |
3104 | test_sh("123.123" , -3, "0.123123" , 0); |
3105 | test_sh("123.123" , -6, "0.000123123" , 0); |
3106 | test_sh("123.123" , -7, "0.0000123123" , 0); |
3107 | test_sh("123.123" , -15, "0.000000000000123123" , 0); |
3108 | test_sh("123.123" , -16, "0.000000000000012312" , 1); |
3109 | test_sh("123.123" , -17, "0.000000000000001231" , 1); |
3110 | test_sh("123.123" , -18, "0.000000000000000123" , 1); |
3111 | test_sh("123.123" , -19, "0.000000000000000012" , 1); |
3112 | test_sh("123.123" , -20, "0.000000000000000001" , 1); |
3113 | test_sh("123.123" , -21, "0" , 1); |
3114 | test_sh(".000000000123" , -1, "0.0000000000123" , 0); |
3115 | test_sh(".000000000123" , -6, "0.000000000000000123" , 0); |
3116 | test_sh(".000000000123" , -7, "0.000000000000000012" , 1); |
3117 | test_sh(".000000000123" , -8, "0.000000000000000001" , 1); |
3118 | test_sh(".000000000123" , -9, "0" , 1); |
3119 | test_sh(".000000000123" , 1, "0.00000000123" , 0); |
3120 | test_sh(".000000000123" , 8, "0.0123" , 0); |
3121 | test_sh(".000000000123" , 9, "0.123" , 0); |
3122 | test_sh(".000000000123" , 10, "1.23" , 0); |
3123 | test_sh(".000000000123" , 17, "12300000" , 0); |
3124 | test_sh(".000000000123" , 18, "123000000" , 0); |
3125 | test_sh(".000000000123" , 19, "1230000000" , 0); |
3126 | test_sh(".000000000123" , 20, "12300000000" , 0); |
3127 | test_sh(".000000000123" , 21, "123000000000" , 0); |
3128 | test_sh(".000000000123" , 22, "1230000000000" , 0); |
3129 | test_sh(".000000000123" , 23, "12300000000000" , 0); |
3130 | test_sh(".000000000123" , 24, "123000000000000" , 0); |
3131 | test_sh(".000000000123" , 25, "1230000000000000" , 0); |
3132 | test_sh(".000000000123" , 26, "12300000000000000" , 0); |
3133 | test_sh(".000000000123" , 27, "123000000000000000" , 0); |
3134 | test_sh(".000000000123" , 28, "0.000000000123" , 2); |
3135 | test_sh("123456789.987654321" , -1, "12345678.998765432" , 1); |
3136 | test_sh("123456789.987654321" , -2, "1234567.899876543" , 1); |
3137 | test_sh("123456789.987654321" , -8, "1.234567900" , 1); |
3138 | test_sh("123456789.987654321" , -9, "0.123456789987654321" , 0); |
3139 | test_sh("123456789.987654321" , -10, "0.012345678998765432" , 1); |
3140 | test_sh("123456789.987654321" , -17, "0.000000001234567900" , 1); |
3141 | test_sh("123456789.987654321" , -18, "0.000000000123456790" , 1); |
3142 | test_sh("123456789.987654321" , -19, "0.000000000012345679" , 1); |
3143 | test_sh("123456789.987654321" , -26, "0.000000000000000001" , 1); |
3144 | test_sh("123456789.987654321" , -27, "0" , 1); |
3145 | test_sh("123456789.987654321" , 1, "1234567900" , 1); |
3146 | test_sh("123456789.987654321" , 2, "12345678999" , 1); |
3147 | test_sh("123456789.987654321" , 4, "1234567899877" , 1); |
3148 | test_sh("123456789.987654321" , 8, "12345678998765432" , 1); |
3149 | test_sh("123456789.987654321" , 9, "123456789987654321" , 0); |
3150 | test_sh("123456789.987654321" , 10, "123456789.987654321" , 2); |
3151 | test_sh("123456789.987654321" , 0, "123456789.987654321" , 0); |
3152 | a.len= sizeof(buf1)/sizeof(dec1); |
3153 | |
3154 | printf("==== decimal_actual_fraction ====\n" ); |
3155 | test_fr("1.123456789000000000" , "1.123456789" ); |
3156 | test_fr("1.12345678000000000" , "1.12345678" ); |
3157 | test_fr("1.1234567000000000" , "1.1234567" ); |
3158 | test_fr("1.123456000000000" , "1.123456" ); |
3159 | test_fr("1.12345000000000" , "1.12345" ); |
3160 | test_fr("1.1234000000000" , "1.1234" ); |
3161 | test_fr("1.123000000000" , "1.123" ); |
3162 | test_fr("1.12000000000" , "1.12" ); |
3163 | test_fr("1.1000000000" , "1.1" ); |
3164 | test_fr("1.000000000" , "1" ); |
3165 | test_fr("1.0" , "1" ); |
3166 | test_fr("10000000000000000000.0" , "10000000000000000000" ); |
3167 | |
3168 | return 0; |
3169 | } |
3170 | #endif |
3171 | |