| 1 | /* Copyright (c) 2007, 2012, Oracle and/or its affiliates. All rights reserved. |
| 2 | Copyright (c) 2017, MariaDB Corporation. |
| 3 | |
| 4 | This library is free software; you can redistribute it and/or |
| 5 | modify it under the terms of the GNU Library General Public |
| 6 | License as published by the Free Software Foundation; version 2 |
| 7 | of the License. |
| 8 | |
| 9 | This program is distributed in the hope that it will be useful, |
| 10 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 11 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 12 | GNU General Public License for more details. |
| 13 | |
| 14 | You should have received a copy of the GNU General Public License |
| 15 | along with this program; if not, write to the Free Software |
| 16 | Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ |
| 17 | |
| 18 | /**************************************************************** |
| 19 | |
| 20 | This file incorporates work covered by the following copyright and |
| 21 | permission notice: |
| 22 | |
| 23 | The author of this software is David M. Gay. |
| 24 | |
| 25 | Copyright (c) 1991, 2000, 2001 by Lucent Technologies. |
| 26 | |
| 27 | Permission to use, copy, modify, and distribute this software for any |
| 28 | purpose without fee is hereby granted, provided that this entire notice |
| 29 | is included in all copies of any software which is or includes a copy |
| 30 | or modification of this software and in all copies of the supporting |
| 31 | documentation for such software. |
| 32 | |
| 33 | THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED |
| 34 | WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY |
| 35 | REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY |
| 36 | OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. |
| 37 | |
| 38 | ***************************************************************/ |
| 39 | |
| 40 | #include "strings_def.h" |
| 41 | #include <my_base.h> /* for EOVERFLOW on Windows */ |
| 42 | |
| 43 | /** |
| 44 | Appears to suffice to not call malloc() in most cases. |
| 45 | @todo |
| 46 | see if it is possible to get rid of malloc(). |
| 47 | this constant is sufficient to avoid malloc() on all inputs I have tried. |
| 48 | */ |
| 49 | #define DTOA_BUFF_SIZE (460 * sizeof(void *)) |
| 50 | |
| 51 | /* Magic value returned by dtoa() to indicate overflow */ |
| 52 | #define DTOA_OVERFLOW 9999 |
| 53 | |
| 54 | static double my_strtod_int(const char *, char **, int *, char *, size_t); |
| 55 | static char *dtoa(double, int, int, int *, int *, char **, char *, size_t); |
| 56 | static void dtoa_free(char *, char *, size_t); |
| 57 | |
| 58 | /** |
| 59 | @brief |
| 60 | Converts a given floating point number to a zero-terminated string |
| 61 | representation using the 'f' format. |
| 62 | |
| 63 | @details |
| 64 | This function is a wrapper around dtoa() to do the same as |
| 65 | sprintf(to, "%-.*f", precision, x), though the conversion is usually more |
| 66 | precise. The only difference is in handling [-,+]infinity and nan values, |
| 67 | in which case we print '0\0' to the output string and indicate an overflow. |
| 68 | |
| 69 | @param x the input floating point number. |
| 70 | @param precision the number of digits after the decimal point. |
| 71 | All properties of sprintf() apply: |
| 72 | - if the number of significant digits after the decimal |
| 73 | point is less than precision, the resulting string is |
| 74 | right-padded with zeros |
| 75 | - if the precision is 0, no decimal point appears |
| 76 | - if a decimal point appears, at least one digit appears |
| 77 | before it |
| 78 | @param to pointer to the output buffer. The longest string which |
| 79 | my_fcvt() can return is FLOATING_POINT_BUFFER bytes |
| 80 | (including the terminating '\0'). |
| 81 | @param error if not NULL, points to a location where the status of |
| 82 | conversion is stored upon return. |
| 83 | FALSE successful conversion |
| 84 | TRUE the input number is [-,+]infinity or nan. |
| 85 | The output string in this case is always '0'. |
| 86 | @return number of written characters (excluding terminating '\0') |
| 87 | */ |
| 88 | |
| 89 | size_t my_fcvt(double x, int precision, char *to, my_bool *error) |
| 90 | { |
| 91 | int decpt, sign, len, i; |
| 92 | char *res, *src, *end, *dst= to; |
| 93 | char buf[DTOA_BUFF_SIZE]; |
| 94 | DBUG_ASSERT(precision >= 0 && precision < DECIMAL_NOT_SPECIFIED && to != NULL); |
| 95 | |
| 96 | res= dtoa(x, 5, precision, &decpt, &sign, &end, buf, sizeof(buf)); |
| 97 | |
| 98 | if (decpt == DTOA_OVERFLOW) |
| 99 | { |
| 100 | dtoa_free(res, buf, sizeof(buf)); |
| 101 | *to++= '0'; |
| 102 | *to= '\0'; |
| 103 | if (error != NULL) |
| 104 | *error= TRUE; |
| 105 | return 1; |
| 106 | } |
| 107 | |
| 108 | src= res; |
| 109 | len= (int)(end - src); |
| 110 | |
| 111 | if (sign) |
| 112 | *dst++= '-'; |
| 113 | |
| 114 | if (decpt <= 0) |
| 115 | { |
| 116 | *dst++= '0'; |
| 117 | *dst++= '.'; |
| 118 | for (i= decpt; i < 0; i++) |
| 119 | *dst++= '0'; |
| 120 | } |
| 121 | |
| 122 | for (i= 1; i <= len; i++) |
| 123 | { |
| 124 | *dst++= *src++; |
| 125 | if (i == decpt && i < len) |
| 126 | *dst++= '.'; |
| 127 | } |
| 128 | while (i++ <= decpt) |
| 129 | *dst++= '0'; |
| 130 | |
| 131 | if (precision > 0) |
| 132 | { |
| 133 | if (len <= decpt) |
| 134 | *dst++= '.'; |
| 135 | |
| 136 | for (i= precision - MY_MAX(0, (len - decpt)); i > 0; i--) |
| 137 | *dst++= '0'; |
| 138 | } |
| 139 | |
| 140 | *dst= '\0'; |
| 141 | if (error != NULL) |
| 142 | *error= FALSE; |
| 143 | |
| 144 | dtoa_free(res, buf, sizeof(buf)); |
| 145 | |
| 146 | return dst - to; |
| 147 | } |
| 148 | |
| 149 | /** |
| 150 | @brief |
| 151 | Converts a given floating point number to a zero-terminated string |
| 152 | representation with a given field width using the 'e' format |
| 153 | (aka scientific notation) or the 'f' one. |
| 154 | |
| 155 | @details |
| 156 | The format is chosen automatically to provide the most number of significant |
| 157 | digits (and thus, precision) with a given field width. In many cases, the |
| 158 | result is similar to that of sprintf(to, "%g", x) with a few notable |
| 159 | differences: |
| 160 | - the conversion is usually more precise than C library functions. |
| 161 | - there is no 'precision' argument. instead, we specify the number of |
| 162 | characters available for conversion (i.e. a field width). |
| 163 | - the result never exceeds the specified field width. If the field is too |
| 164 | short to contain even a rounded decimal representation, my_gcvt() |
| 165 | indicates overflow and truncates the output string to the specified width. |
| 166 | - float-type arguments are handled differently than double ones. For a |
| 167 | float input number (i.e. when the 'type' argument is MY_GCVT_ARG_FLOAT) |
| 168 | we deliberately limit the precision of conversion by FLT_DIG digits to |
| 169 | avoid garbage past the significant digits. |
| 170 | - unlike sprintf(), in cases where the 'e' format is preferred, we don't |
| 171 | zero-pad the exponent to save space for significant digits. The '+' sign |
| 172 | for a positive exponent does not appear for the same reason. |
| 173 | |
| 174 | @param x the input floating point number. |
| 175 | @param type is either MY_GCVT_ARG_FLOAT or MY_GCVT_ARG_DOUBLE. |
| 176 | Specifies the type of the input number (see notes above). |
| 177 | @param width field width in characters. The minimal field width to |
| 178 | hold any number representation (albeit rounded) is 7 |
| 179 | characters ("-Ne-NNN"). |
| 180 | @param to pointer to the output buffer. The result is always |
| 181 | zero-terminated, and the longest returned string is thus |
| 182 | 'width + 1' bytes. |
| 183 | @param error if not NULL, points to a location where the status of |
| 184 | conversion is stored upon return. |
| 185 | FALSE successful conversion |
| 186 | TRUE the input number is [-,+]infinity or nan. |
| 187 | The output string in this case is always '0'. |
| 188 | @return number of written characters (excluding terminating '\0') |
| 189 | |
| 190 | @todo |
| 191 | Check if it is possible and makes sense to do our own rounding on top of |
| 192 | dtoa() instead of calling dtoa() twice in (rare) cases when the resulting |
| 193 | string representation does not fit in the specified field width and we want |
| 194 | to re-round the input number with fewer significant digits. Examples: |
| 195 | |
| 196 | my_gcvt(-9e-3, ..., 4, ...); |
| 197 | my_gcvt(-9e-3, ..., 2, ...); |
| 198 | my_gcvt(1.87e-3, ..., 4, ...); |
| 199 | my_gcvt(55, ..., 1, ...); |
| 200 | |
| 201 | We do our best to minimize such cases by: |
| 202 | |
| 203 | - passing to dtoa() the field width as the number of significant digits |
| 204 | |
| 205 | - removing the sign of the number early (and decreasing the width before |
| 206 | passing it to dtoa()) |
| 207 | |
| 208 | - choosing the proper format to preserve the most number of significant |
| 209 | digits. |
| 210 | */ |
| 211 | |
| 212 | size_t my_gcvt(double x, my_gcvt_arg_type type, int width, char *to, |
| 213 | my_bool *error) |
| 214 | { |
| 215 | int decpt, sign, len, exp_len; |
| 216 | char *res, *src, *end, *dst= to, *dend= dst + width; |
| 217 | char buf[DTOA_BUFF_SIZE]; |
| 218 | my_bool have_space, force_e_format; |
| 219 | DBUG_ASSERT(width > 0 && to != NULL); |
| 220 | |
| 221 | /* We want to remove '-' from equations early */ |
| 222 | if (x < 0.) |
| 223 | width--; |
| 224 | |
| 225 | res= dtoa(x, 4, type == MY_GCVT_ARG_DOUBLE ? width : MY_MIN(width, FLT_DIG), |
| 226 | &decpt, &sign, &end, buf, sizeof(buf)); |
| 227 | if (decpt == DTOA_OVERFLOW) |
| 228 | { |
| 229 | dtoa_free(res, buf, sizeof(buf)); |
| 230 | *to++= '0'; |
| 231 | *to= '\0'; |
| 232 | if (error != NULL) |
| 233 | *error= TRUE; |
| 234 | return 1; |
| 235 | } |
| 236 | |
| 237 | if (error != NULL) |
| 238 | *error= FALSE; |
| 239 | |
| 240 | src= res; |
| 241 | len= (int)(end - res); |
| 242 | |
| 243 | /* |
| 244 | Number of digits in the exponent from the 'e' conversion. |
| 245 | The sign of the exponent is taken into account separetely, we don't need |
| 246 | to count it here. |
| 247 | */ |
| 248 | exp_len= 1 + (decpt >= 101 || decpt <= -99) + (decpt >= 11 || decpt <= -9); |
| 249 | |
| 250 | /* |
| 251 | Do we have enough space for all digits in the 'f' format? |
| 252 | Let 'len' be the number of significant digits returned by dtoa, |
| 253 | and F be the length of the resulting decimal representation. |
| 254 | Consider the following cases: |
| 255 | 1. decpt <= 0, i.e. we have "0.NNN" => F = len - decpt + 2 |
| 256 | 2. 0 < decpt < len, i.e. we have "NNN.NNN" => F = len + 1 |
| 257 | 3. len <= decpt, i.e. we have "NNN00" => F = decpt |
| 258 | */ |
| 259 | have_space= (decpt <= 0 ? len - decpt + 2 : |
| 260 | decpt > 0 && decpt < len ? len + 1 : |
| 261 | decpt) <= width; |
| 262 | /* |
| 263 | The following is true when no significant digits can be placed with the |
| 264 | specified field width using the 'f' format, and the 'e' format |
| 265 | will not be truncated. |
| 266 | */ |
| 267 | force_e_format= (decpt <= 0 && width <= 2 - decpt && width >= 3 + exp_len); |
| 268 | /* |
| 269 | Assume that we don't have enough space to place all significant digits in |
| 270 | the 'f' format. We have to choose between the 'e' format and the 'f' one |
| 271 | to keep as many significant digits as possible. |
| 272 | Let E and F be the lengths of decimal representation in the 'e' and 'f' |
| 273 | formats, respectively. We want to use the 'f' format if, and only if F <= E. |
| 274 | Consider the following cases: |
| 275 | 1. decpt <= 0. |
| 276 | F = len - decpt + 2 (see above) |
| 277 | E = len + (len > 1) + 1 + 1 (decpt <= -99) + (decpt <= -9) + 1 |
| 278 | ("N.NNe-MMM") |
| 279 | (F <= E) <=> (len == 1 && decpt >= -1) || (len > 1 && decpt >= -2) |
| 280 | We also need to ensure that if the 'f' format is chosen, |
| 281 | the field width allows us to place at least one significant digit |
| 282 | (i.e. width > 2 - decpt). If not, we prefer the 'e' format. |
| 283 | 2. 0 < decpt < len |
| 284 | F = len + 1 (see above) |
| 285 | E = len + 1 + 1 + ... ("N.NNeMMM") |
| 286 | F is always less than E. |
| 287 | 3. len <= decpt <= width |
| 288 | In this case we have enough space to represent the number in the 'f' |
| 289 | format, so we prefer it with some exceptions. |
| 290 | 4. width < decpt |
| 291 | The number cannot be represented in the 'f' format at all, always use |
| 292 | the 'e' 'one. |
| 293 | */ |
| 294 | if ((have_space || |
| 295 | /* |
| 296 | Not enough space, let's see if the 'f' format provides the most number |
| 297 | of significant digits. |
| 298 | */ |
| 299 | ((decpt <= width && (decpt >= -1 || (decpt == -2 && |
| 300 | (len > 1 || !force_e_format)))) && |
| 301 | !force_e_format)) && |
| 302 | |
| 303 | /* |
| 304 | Use the 'e' format in some cases even if we have enough space for the |
| 305 | 'f' one. See comment for MAX_DECPT_FOR_F_FORMAT. |
| 306 | */ |
| 307 | (!have_space || (decpt >= -MAX_DECPT_FOR_F_FORMAT + 1 && |
| 308 | (decpt <= MAX_DECPT_FOR_F_FORMAT || len > decpt)))) |
| 309 | { |
| 310 | /* 'f' format */ |
| 311 | int i; |
| 312 | |
| 313 | width-= (decpt < len) + (decpt <= 0 ? 1 - decpt : 0); |
| 314 | |
| 315 | /* Do we have to truncate any digits? */ |
| 316 | if (width < len) |
| 317 | { |
| 318 | if (width < decpt) |
| 319 | { |
| 320 | if (error != NULL) |
| 321 | *error= TRUE; |
| 322 | width= decpt; |
| 323 | } |
| 324 | |
| 325 | /* |
| 326 | We want to truncate (len - width) least significant digits after the |
| 327 | decimal point. For this we are calling dtoa with mode=5, passing the |
| 328 | number of significant digits = (len-decpt) - (len-width) = width-decpt |
| 329 | */ |
| 330 | dtoa_free(res, buf, sizeof(buf)); |
| 331 | res= dtoa(x, 5, width - decpt, &decpt, &sign, &end, buf, sizeof(buf)); |
| 332 | src= res; |
| 333 | len= (int)(end - res); |
| 334 | } |
| 335 | |
| 336 | if (len == 0) |
| 337 | { |
| 338 | /* Underflow. Just print '0' and exit */ |
| 339 | *dst++= '0'; |
| 340 | goto end; |
| 341 | } |
| 342 | |
| 343 | /* |
| 344 | At this point we are sure we have enough space to put all digits |
| 345 | returned by dtoa |
| 346 | */ |
| 347 | if (sign && dst < dend) |
| 348 | *dst++= '-'; |
| 349 | if (decpt <= 0) |
| 350 | { |
| 351 | if (dst < dend) |
| 352 | *dst++= '0'; |
| 353 | if (len > 0 && dst < dend) |
| 354 | *dst++= '.'; |
| 355 | for (; decpt < 0 && dst < dend; decpt++) |
| 356 | *dst++= '0'; |
| 357 | } |
| 358 | |
| 359 | for (i= 1; i <= len && dst < dend; i++) |
| 360 | { |
| 361 | *dst++= *src++; |
| 362 | if (i == decpt && i < len && dst < dend) |
| 363 | *dst++= '.'; |
| 364 | } |
| 365 | while (i++ <= decpt && dst < dend) |
| 366 | *dst++= '0'; |
| 367 | } |
| 368 | else |
| 369 | { |
| 370 | /* 'e' format */ |
| 371 | int decpt_sign= 0; |
| 372 | |
| 373 | if (--decpt < 0) |
| 374 | { |
| 375 | decpt= -decpt; |
| 376 | width--; |
| 377 | decpt_sign= 1; |
| 378 | } |
| 379 | width-= 1 + exp_len; /* eNNN */ |
| 380 | |
| 381 | if (len > 1) |
| 382 | width--; |
| 383 | |
| 384 | if (width <= 0) |
| 385 | { |
| 386 | /* Overflow */ |
| 387 | if (error != NULL) |
| 388 | *error= TRUE; |
| 389 | width= 0; |
| 390 | } |
| 391 | |
| 392 | /* Do we have to truncate any digits? */ |
| 393 | if (width < len) |
| 394 | { |
| 395 | /* Yes, re-convert with a smaller width */ |
| 396 | dtoa_free(res, buf, sizeof(buf)); |
| 397 | res= dtoa(x, 4, width, &decpt, &sign, &end, buf, sizeof(buf)); |
| 398 | src= res; |
| 399 | len= (int)(end - res); |
| 400 | if (--decpt < 0) |
| 401 | decpt= -decpt; |
| 402 | } |
| 403 | /* |
| 404 | At this point we are sure we have enough space to put all digits |
| 405 | returned by dtoa |
| 406 | */ |
| 407 | if (sign && dst < dend) |
| 408 | *dst++= '-'; |
| 409 | if (dst < dend) |
| 410 | *dst++= *src++; |
| 411 | if (len > 1 && dst < dend) |
| 412 | { |
| 413 | *dst++= '.'; |
| 414 | while (src < end && dst < dend) |
| 415 | *dst++= *src++; |
| 416 | } |
| 417 | if (dst < dend) |
| 418 | *dst++= 'e'; |
| 419 | if (decpt_sign && dst < dend) |
| 420 | *dst++= '-'; |
| 421 | |
| 422 | if (decpt >= 100 && dst < dend) |
| 423 | { |
| 424 | *dst++= decpt / 100 + '0'; |
| 425 | decpt%= 100; |
| 426 | if (dst < dend) |
| 427 | *dst++= decpt / 10 + '0'; |
| 428 | } |
| 429 | else if (decpt >= 10 && dst < dend) |
| 430 | *dst++= decpt / 10 + '0'; |
| 431 | if (dst < dend) |
| 432 | *dst++= decpt % 10 + '0'; |
| 433 | |
| 434 | } |
| 435 | |
| 436 | end: |
| 437 | dtoa_free(res, buf, sizeof(buf)); |
| 438 | *dst= '\0'; |
| 439 | |
| 440 | return dst - to; |
| 441 | } |
| 442 | |
| 443 | /** |
| 444 | @brief |
| 445 | Converts string to double (string does not have to be zero-terminated) |
| 446 | |
| 447 | @details |
| 448 | This is a wrapper around dtoa's version of strtod(). |
| 449 | |
| 450 | @param str input string |
| 451 | @param end address of a pointer to the first character after the input |
| 452 | string. Upon return the pointer is set to point to the first |
| 453 | rejected character. |
| 454 | @param error Upon return is set to EOVERFLOW in case of underflow or |
| 455 | overflow. |
| 456 | |
| 457 | @return The resulting double value. In case of underflow, 0.0 is |
| 458 | returned. In case overflow, signed DBL_MAX is returned. |
| 459 | */ |
| 460 | |
| 461 | double my_strtod(const char *str, char **end, int *error) |
| 462 | { |
| 463 | char buf[DTOA_BUFF_SIZE]; |
| 464 | double res; |
| 465 | DBUG_ASSERT(end != NULL && ((str != NULL && *end != NULL) || |
| 466 | (str == NULL && *end == NULL)) && |
| 467 | error != NULL); |
| 468 | |
| 469 | res= my_strtod_int(str, end, error, buf, sizeof(buf)); |
| 470 | return (*error == 0) ? res : (res < 0 ? -DBL_MAX : DBL_MAX); |
| 471 | } |
| 472 | |
| 473 | |
| 474 | double my_atof(const char *nptr) |
| 475 | { |
| 476 | int error; |
| 477 | const char *end= nptr+65535; /* Should be enough */ |
| 478 | return (my_strtod(nptr, (char**) &end, &error)); |
| 479 | } |
| 480 | |
| 481 | |
| 482 | /**************************************************************** |
| 483 | * |
| 484 | * The author of this software is David M. Gay. |
| 485 | * |
| 486 | * Copyright (c) 1991, 2000, 2001 by Lucent Technologies. |
| 487 | * |
| 488 | * Permission to use, copy, modify, and distribute this software for any |
| 489 | * purpose without fee is hereby granted, provided that this entire notice |
| 490 | * is included in all copies of any software which is or includes a copy |
| 491 | * or modification of this software and in all copies of the supporting |
| 492 | * documentation for such software. |
| 493 | * |
| 494 | * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED |
| 495 | * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY |
| 496 | * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY |
| 497 | * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. |
| 498 | * |
| 499 | ***************************************************************/ |
| 500 | /* Please send bug reports to David M. Gay (dmg at acm dot org, |
| 501 | * with " at " changed at "@" and " dot " changed to "."). */ |
| 502 | |
| 503 | /* |
| 504 | Original copy of the software is located at http://www.netlib.org/fp/dtoa.c |
| 505 | It was adjusted to serve MySQL server needs: |
| 506 | * strtod() was modified to not expect a zero-terminated string. |
| 507 | It now honors 'se' (end of string) argument as the input parameter, |
| 508 | not just as the output one. |
| 509 | * in dtoa(), in case of overflow/underflow/NaN result string now contains "0"; |
| 510 | decpt is set to DTOA_OVERFLOW to indicate overflow. |
| 511 | * support for VAX, IBM mainframe and 16-bit hardware removed |
| 512 | * we always assume that 64-bit integer type is available |
| 513 | * support for Kernigan-Ritchie style headers (pre-ANSI compilers) |
| 514 | removed |
| 515 | * all gcc warnings ironed out |
| 516 | * we always assume multithreaded environment, so we had to change |
| 517 | memory allocation procedures to use stack in most cases; |
| 518 | malloc is used as the last resort. |
| 519 | * pow5mult rewritten to use pre-calculated pow5 list instead of |
| 520 | the one generated on the fly. |
| 521 | */ |
| 522 | |
| 523 | |
| 524 | /* |
| 525 | On a machine with IEEE extended-precision registers, it is |
| 526 | necessary to specify double-precision (53-bit) rounding precision |
| 527 | before invoking strtod or dtoa. If the machine uses (the equivalent |
| 528 | of) Intel 80x87 arithmetic, the call |
| 529 | _control87(PC_53, MCW_PC); |
| 530 | does this with many compilers. Whether this or another call is |
| 531 | appropriate depends on the compiler; for this to work, it may be |
| 532 | necessary to #include "float.h" or another system-dependent header |
| 533 | file. |
| 534 | */ |
| 535 | |
| 536 | /* |
| 537 | #define Honor_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3 |
| 538 | and dtoa should round accordingly. |
| 539 | #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3 |
| 540 | and Honor_FLT_ROUNDS is not #defined. |
| 541 | |
| 542 | TODO: check if we can get rid of the above two |
| 543 | */ |
| 544 | |
| 545 | typedef int32 Long; |
| 546 | typedef uint32 ULong; |
| 547 | typedef int64 LLong; |
| 548 | typedef uint64 ULLong; |
| 549 | |
| 550 | typedef union { double d; ULong L[2]; } U; |
| 551 | |
| 552 | #if defined(WORDS_BIGENDIAN) || (defined(__FLOAT_WORD_ORDER) && \ |
| 553 | (__FLOAT_WORD_ORDER == __BIG_ENDIAN)) |
| 554 | #define word0(x) (x)->L[0] |
| 555 | #define word1(x) (x)->L[1] |
| 556 | #else |
| 557 | #define word0(x) (x)->L[1] |
| 558 | #define word1(x) (x)->L[0] |
| 559 | #endif |
| 560 | |
| 561 | #define dval(x) (x)->d |
| 562 | |
| 563 | /* #define P DBL_MANT_DIG */ |
| 564 | /* Ten_pmax= floor(P*log(2)/log(5)) */ |
| 565 | /* Bletch= (highest power of 2 < DBL_MAX_10_EXP) / 16 */ |
| 566 | /* Quick_max= floor((P-1)*log(FLT_RADIX)/log(10) - 1) */ |
| 567 | /* Int_max= floor(P*log(FLT_RADIX)/log(10) - 1) */ |
| 568 | |
| 569 | #define Exp_shift 20 |
| 570 | #define Exp_shift1 20 |
| 571 | #define Exp_msk1 0x100000 |
| 572 | #define Exp_mask 0x7ff00000 |
| 573 | #define P 53 |
| 574 | #define Bias 1023 |
| 575 | #define Emin (-1022) |
| 576 | #define Exp_1 0x3ff00000 |
| 577 | #define Exp_11 0x3ff00000 |
| 578 | #define Ebits 11 |
| 579 | #define Frac_mask 0xfffff |
| 580 | #define Frac_mask1 0xfffff |
| 581 | #define Ten_pmax 22 |
| 582 | #define Bletch 0x10 |
| 583 | #define Bndry_mask 0xfffff |
| 584 | #define Bndry_mask1 0xfffff |
| 585 | #define LSB 1 |
| 586 | #define Sign_bit 0x80000000 |
| 587 | #define Log2P 1 |
| 588 | #define Tiny1 1 |
| 589 | #define Quick_max 14 |
| 590 | #define Int_max 14 |
| 591 | |
| 592 | #ifndef Flt_Rounds |
| 593 | #ifdef FLT_ROUNDS |
| 594 | #define Flt_Rounds FLT_ROUNDS |
| 595 | #else |
| 596 | #define Flt_Rounds 1 |
| 597 | #endif |
| 598 | #endif /*Flt_Rounds*/ |
| 599 | |
| 600 | #ifdef Honor_FLT_ROUNDS |
| 601 | #define Rounding rounding |
| 602 | #undef Check_FLT_ROUNDS |
| 603 | #define Check_FLT_ROUNDS |
| 604 | #else |
| 605 | #define Rounding Flt_Rounds |
| 606 | #endif |
| 607 | |
| 608 | #define rounded_product(a,b) a*= b |
| 609 | #define rounded_quotient(a,b) a/= b |
| 610 | |
| 611 | #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1)) |
| 612 | #define Big1 0xffffffff |
| 613 | #define FFFFFFFF 0xffffffffUL |
| 614 | |
| 615 | /* This is tested to be enough for dtoa */ |
| 616 | |
| 617 | #define Kmax 15 |
| 618 | |
| 619 | #define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \ |
| 620 | 2*sizeof(int) + y->wds*sizeof(ULong)) |
| 621 | |
| 622 | /* Arbitrary-length integer */ |
| 623 | |
| 624 | typedef struct Bigint |
| 625 | { |
| 626 | union { |
| 627 | ULong *x; /* points right after this Bigint object */ |
| 628 | struct Bigint *next; /* to maintain free lists */ |
| 629 | } p; |
| 630 | int k; /* 2^k = maxwds */ |
| 631 | int maxwds; /* maximum length in 32-bit words */ |
| 632 | int sign; /* not zero if number is negative */ |
| 633 | int wds; /* current length in 32-bit words */ |
| 634 | } Bigint; |
| 635 | |
| 636 | |
| 637 | /* A simple stack-memory based allocator for Bigints */ |
| 638 | |
| 639 | typedef struct Stack_alloc |
| 640 | { |
| 641 | char *begin; |
| 642 | char *free; |
| 643 | char *end; |
| 644 | /* |
| 645 | Having list of free blocks lets us reduce maximum required amount |
| 646 | of memory from ~4000 bytes to < 1680 (tested on x86). |
| 647 | */ |
| 648 | Bigint *freelist[Kmax+1]; |
| 649 | } Stack_alloc; |
| 650 | |
| 651 | |
| 652 | /* |
| 653 | Try to allocate object on stack, and resort to malloc if all |
| 654 | stack memory is used. Ensure allocated objects to be aligned by the pointer |
| 655 | size in order to not break the alignment rules when storing a pointer to a |
| 656 | Bigint. |
| 657 | */ |
| 658 | |
| 659 | static Bigint *Balloc(int k, Stack_alloc *alloc) |
| 660 | { |
| 661 | Bigint *rv; |
| 662 | DBUG_ASSERT(k <= Kmax); |
| 663 | if (k <= Kmax && alloc->freelist[k]) |
| 664 | { |
| 665 | rv= alloc->freelist[k]; |
| 666 | alloc->freelist[k]= rv->p.next; |
| 667 | } |
| 668 | else |
| 669 | { |
| 670 | int x, len; |
| 671 | |
| 672 | x= 1 << k; |
| 673 | len= MY_ALIGN(sizeof(Bigint) + x * sizeof(ULong), SIZEOF_CHARP); |
| 674 | |
| 675 | if (alloc->free + len <= alloc->end) |
| 676 | { |
| 677 | rv= (Bigint*) alloc->free; |
| 678 | alloc->free+= len; |
| 679 | } |
| 680 | else |
| 681 | rv= (Bigint*) malloc(len); |
| 682 | |
| 683 | rv->k= k; |
| 684 | rv->maxwds= x; |
| 685 | } |
| 686 | rv->sign= rv->wds= 0; |
| 687 | rv->p.x= (ULong*) (rv + 1); |
| 688 | return rv; |
| 689 | } |
| 690 | |
| 691 | |
| 692 | /* |
| 693 | If object was allocated on stack, try putting it to the free |
| 694 | list. Otherwise call free(). |
| 695 | */ |
| 696 | |
| 697 | static void Bfree(Bigint *v, Stack_alloc *alloc) |
| 698 | { |
| 699 | char *gptr= (char*) v; /* generic pointer */ |
| 700 | if (gptr < alloc->begin || gptr >= alloc->end) |
| 701 | free(gptr); |
| 702 | else if (v->k <= Kmax) |
| 703 | { |
| 704 | /* |
| 705 | Maintain free lists only for stack objects: this way we don't |
| 706 | have to bother with freeing lists in the end of dtoa; |
| 707 | heap should not be used normally anyway. |
| 708 | */ |
| 709 | v->p.next= alloc->freelist[v->k]; |
| 710 | alloc->freelist[v->k]= v; |
| 711 | } |
| 712 | } |
| 713 | |
| 714 | |
| 715 | /* |
| 716 | This is to place return value of dtoa in: tries to use stack |
| 717 | as well, but passes by free lists management and just aligns len by |
| 718 | the pointer size in order to not break the alignment rules when storing a |
| 719 | pointer to a Bigint. |
| 720 | */ |
| 721 | |
| 722 | static char *dtoa_alloc(int i, Stack_alloc *alloc) |
| 723 | { |
| 724 | char *rv; |
| 725 | int aligned_size= MY_ALIGN(i, SIZEOF_CHARP); |
| 726 | if (alloc->free + aligned_size <= alloc->end) |
| 727 | { |
| 728 | rv= alloc->free; |
| 729 | alloc->free+= aligned_size; |
| 730 | } |
| 731 | else |
| 732 | rv= malloc(i); |
| 733 | return rv; |
| 734 | } |
| 735 | |
| 736 | |
| 737 | /* |
| 738 | dtoa_free() must be used to free values s returned by dtoa() |
| 739 | This is the counterpart of dtoa_alloc() |
| 740 | */ |
| 741 | |
| 742 | static void dtoa_free(char *gptr, char *buf, size_t buf_size) |
| 743 | { |
| 744 | if (gptr < buf || gptr >= buf + buf_size) |
| 745 | free(gptr); |
| 746 | } |
| 747 | |
| 748 | |
| 749 | /* Bigint arithmetic functions */ |
| 750 | |
| 751 | /* Multiply by m and add a */ |
| 752 | |
| 753 | static Bigint *multadd(Bigint *b, int m, int a, Stack_alloc *alloc) |
| 754 | { |
| 755 | int i, wds; |
| 756 | ULong *x; |
| 757 | ULLong carry, y; |
| 758 | Bigint *b1; |
| 759 | |
| 760 | wds= b->wds; |
| 761 | x= b->p.x; |
| 762 | i= 0; |
| 763 | carry= a; |
| 764 | do |
| 765 | { |
| 766 | y= *x * (ULLong)m + carry; |
| 767 | carry= y >> 32; |
| 768 | *x++= (ULong)(y & FFFFFFFF); |
| 769 | } |
| 770 | while (++i < wds); |
| 771 | if (carry) |
| 772 | { |
| 773 | if (wds >= b->maxwds) |
| 774 | { |
| 775 | b1= Balloc(b->k+1, alloc); |
| 776 | Bcopy(b1, b); |
| 777 | Bfree(b, alloc); |
| 778 | b= b1; |
| 779 | } |
| 780 | b->p.x[wds++]= (ULong) carry; |
| 781 | b->wds= wds; |
| 782 | } |
| 783 | return b; |
| 784 | } |
| 785 | |
| 786 | /** |
| 787 | Converts a string to Bigint. |
| 788 | |
| 789 | Now we have nd0 digits, starting at s, followed by a |
| 790 | decimal point, followed by nd-nd0 digits. |
| 791 | Unless nd0 == nd, in which case we have a number of the form: |
| 792 | ".xxxxxx" or "xxxxxx." |
| 793 | |
| 794 | @param s Input string, already partially parsed by my_strtod_int(). |
| 795 | @param nd0 Number of digits before decimal point. |
| 796 | @param nd Total number of digits. |
| 797 | @param y9 Pre-computed value of the first nine digits. |
| 798 | @param alloc Stack allocator for Bigints. |
| 799 | */ |
| 800 | static Bigint *s2b(const char *s, int nd0, int nd, ULong y9, Stack_alloc *alloc) |
| 801 | { |
| 802 | Bigint *b; |
| 803 | int i, k; |
| 804 | Long x, y; |
| 805 | |
| 806 | x= (nd + 8) / 9; |
| 807 | for (k= 0, y= 1; x > y; y <<= 1, k++) ; |
| 808 | b= Balloc(k, alloc); |
| 809 | b->p.x[0]= y9; |
| 810 | b->wds= 1; |
| 811 | |
| 812 | i= 9; |
| 813 | if (9 < nd0) |
| 814 | { |
| 815 | s+= 9; |
| 816 | do |
| 817 | b= multadd(b, 10, *s++ - '0', alloc); |
| 818 | while (++i < nd0); |
| 819 | s++; /* skip '.' */ |
| 820 | } |
| 821 | else |
| 822 | s+= 10; |
| 823 | /* now do the fractional part */ |
| 824 | for(; i < nd; i++) |
| 825 | b= multadd(b, 10, *s++ - '0', alloc); |
| 826 | return b; |
| 827 | } |
| 828 | |
| 829 | |
| 830 | static int hi0bits(register ULong x) |
| 831 | { |
| 832 | register int k= 0; |
| 833 | |
| 834 | if (!(x & 0xffff0000)) |
| 835 | { |
| 836 | k= 16; |
| 837 | x<<= 16; |
| 838 | } |
| 839 | if (!(x & 0xff000000)) |
| 840 | { |
| 841 | k+= 8; |
| 842 | x<<= 8; |
| 843 | } |
| 844 | if (!(x & 0xf0000000)) |
| 845 | { |
| 846 | k+= 4; |
| 847 | x<<= 4; |
| 848 | } |
| 849 | if (!(x & 0xc0000000)) |
| 850 | { |
| 851 | k+= 2; |
| 852 | x<<= 2; |
| 853 | } |
| 854 | if (!(x & 0x80000000)) |
| 855 | { |
| 856 | k++; |
| 857 | if (!(x & 0x40000000)) |
| 858 | return 32; |
| 859 | } |
| 860 | return k; |
| 861 | } |
| 862 | |
| 863 | |
| 864 | static int lo0bits(ULong *y) |
| 865 | { |
| 866 | register int k; |
| 867 | register ULong x= *y; |
| 868 | |
| 869 | if (x & 7) |
| 870 | { |
| 871 | if (x & 1) |
| 872 | return 0; |
| 873 | if (x & 2) |
| 874 | { |
| 875 | *y= x >> 1; |
| 876 | return 1; |
| 877 | } |
| 878 | *y= x >> 2; |
| 879 | return 2; |
| 880 | } |
| 881 | k= 0; |
| 882 | if (!(x & 0xffff)) |
| 883 | { |
| 884 | k= 16; |
| 885 | x>>= 16; |
| 886 | } |
| 887 | if (!(x & 0xff)) |
| 888 | { |
| 889 | k+= 8; |
| 890 | x>>= 8; |
| 891 | } |
| 892 | if (!(x & 0xf)) |
| 893 | { |
| 894 | k+= 4; |
| 895 | x>>= 4; |
| 896 | } |
| 897 | if (!(x & 0x3)) |
| 898 | { |
| 899 | k+= 2; |
| 900 | x>>= 2; |
| 901 | } |
| 902 | if (!(x & 1)) |
| 903 | { |
| 904 | k++; |
| 905 | x>>= 1; |
| 906 | if (!x) |
| 907 | return 32; |
| 908 | } |
| 909 | *y= x; |
| 910 | return k; |
| 911 | } |
| 912 | |
| 913 | |
| 914 | /* Convert integer to Bigint number */ |
| 915 | |
| 916 | static Bigint *i2b(int i, Stack_alloc *alloc) |
| 917 | { |
| 918 | Bigint *b; |
| 919 | |
| 920 | b= Balloc(1, alloc); |
| 921 | b->p.x[0]= i; |
| 922 | b->wds= 1; |
| 923 | return b; |
| 924 | } |
| 925 | |
| 926 | |
| 927 | /* Multiply two Bigint numbers */ |
| 928 | |
| 929 | static Bigint *mult(Bigint *a, Bigint *b, Stack_alloc *alloc) |
| 930 | { |
| 931 | Bigint *c; |
| 932 | int k, wa, wb, wc; |
| 933 | ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0; |
| 934 | ULong y; |
| 935 | ULLong carry, z; |
| 936 | |
| 937 | if (a->wds < b->wds) |
| 938 | { |
| 939 | c= a; |
| 940 | a= b; |
| 941 | b= c; |
| 942 | } |
| 943 | k= a->k; |
| 944 | wa= a->wds; |
| 945 | wb= b->wds; |
| 946 | wc= wa + wb; |
| 947 | if (wc > a->maxwds) |
| 948 | k++; |
| 949 | c= Balloc(k, alloc); |
| 950 | for (x= c->p.x, xa= x + wc; x < xa; x++) |
| 951 | *x= 0; |
| 952 | xa= a->p.x; |
| 953 | xae= xa + wa; |
| 954 | xb= b->p.x; |
| 955 | xbe= xb + wb; |
| 956 | xc0= c->p.x; |
| 957 | for (; xb < xbe; xc0++) |
| 958 | { |
| 959 | if ((y= *xb++)) |
| 960 | { |
| 961 | x= xa; |
| 962 | xc= xc0; |
| 963 | carry= 0; |
| 964 | do |
| 965 | { |
| 966 | z= *x++ * (ULLong)y + *xc + carry; |
| 967 | carry= z >> 32; |
| 968 | *xc++= (ULong) (z & FFFFFFFF); |
| 969 | } |
| 970 | while (x < xae); |
| 971 | *xc= (ULong) carry; |
| 972 | } |
| 973 | } |
| 974 | for (xc0= c->p.x, xc= xc0 + wc; wc > 0 && !*--xc; --wc) ; |
| 975 | c->wds= wc; |
| 976 | return c; |
| 977 | } |
| 978 | |
| 979 | |
| 980 | /* |
| 981 | Precalculated array of powers of 5: tested to be enough for |
| 982 | vasting majority of dtoa_r cases. |
| 983 | */ |
| 984 | |
| 985 | static ULong powers5[]= |
| 986 | { |
| 987 | 625UL, |
| 988 | |
| 989 | 390625UL, |
| 990 | |
| 991 | 2264035265UL, 35UL, |
| 992 | |
| 993 | 2242703233UL, 762134875UL, 1262UL, |
| 994 | |
| 995 | 3211403009UL, 1849224548UL, 3668416493UL, 3913284084UL, 1593091UL, |
| 996 | |
| 997 | 781532673UL, 64985353UL, 253049085UL, 594863151UL, 3553621484UL, |
| 998 | 3288652808UL, 3167596762UL, 2788392729UL, 3911132675UL, 590UL, |
| 999 | |
| 1000 | 2553183233UL, 3201533787UL, 3638140786UL, 303378311UL, 1809731782UL, |
| 1001 | 3477761648UL, 3583367183UL, 649228654UL, 2915460784UL, 487929380UL, |
| 1002 | 1011012442UL, 1677677582UL, 3428152256UL, 1710878487UL, 1438394610UL, |
| 1003 | 2161952759UL, 4100910556UL, 1608314830UL, 349175UL |
| 1004 | }; |
| 1005 | |
| 1006 | |
| 1007 | static Bigint p5_a[]= |
| 1008 | { |
| 1009 | /* { x } - k - maxwds - sign - wds */ |
| 1010 | { { powers5 }, 1, 1, 0, 1 }, |
| 1011 | { { powers5 + 1 }, 1, 1, 0, 1 }, |
| 1012 | { { powers5 + 2 }, 1, 2, 0, 2 }, |
| 1013 | { { powers5 + 4 }, 2, 3, 0, 3 }, |
| 1014 | { { powers5 + 7 }, 3, 5, 0, 5 }, |
| 1015 | { { powers5 + 12 }, 4, 10, 0, 10 }, |
| 1016 | { { powers5 + 22 }, 5, 19, 0, 19 } |
| 1017 | }; |
| 1018 | |
| 1019 | #define P5A_MAX (sizeof(p5_a)/sizeof(*p5_a) - 1) |
| 1020 | |
| 1021 | static Bigint *pow5mult(Bigint *b, int k, Stack_alloc *alloc) |
| 1022 | { |
| 1023 | Bigint *b1, *p5, *p51=NULL; |
| 1024 | int i; |
| 1025 | static int p05[3]= { 5, 25, 125 }; |
| 1026 | my_bool overflow= FALSE; |
| 1027 | |
| 1028 | if ((i= k & 3)) |
| 1029 | b= multadd(b, p05[i-1], 0, alloc); |
| 1030 | |
| 1031 | if (!(k>>= 2)) |
| 1032 | return b; |
| 1033 | p5= p5_a; |
| 1034 | for (;;) |
| 1035 | { |
| 1036 | if (k & 1) |
| 1037 | { |
| 1038 | b1= mult(b, p5, alloc); |
| 1039 | Bfree(b, alloc); |
| 1040 | b= b1; |
| 1041 | } |
| 1042 | if (!(k>>= 1)) |
| 1043 | break; |
| 1044 | /* Calculate next power of 5 */ |
| 1045 | if (overflow) |
| 1046 | { |
| 1047 | p51= mult(p5, p5, alloc); |
| 1048 | Bfree(p5, alloc); |
| 1049 | p5= p51; |
| 1050 | } |
| 1051 | else if (p5 < p5_a + P5A_MAX) |
| 1052 | ++p5; |
| 1053 | else if (p5 == p5_a + P5A_MAX) |
| 1054 | { |
| 1055 | p5= mult(p5, p5, alloc); |
| 1056 | overflow= TRUE; |
| 1057 | } |
| 1058 | } |
| 1059 | if (p51) |
| 1060 | Bfree(p51, alloc); |
| 1061 | return b; |
| 1062 | } |
| 1063 | |
| 1064 | |
| 1065 | static Bigint *lshift(Bigint *b, int k, Stack_alloc *alloc) |
| 1066 | { |
| 1067 | int i, k1, n, n1; |
| 1068 | Bigint *b1; |
| 1069 | ULong *x, *x1, *xe, z; |
| 1070 | |
| 1071 | n= k >> 5; |
| 1072 | k1= b->k; |
| 1073 | n1= n + b->wds + 1; |
| 1074 | for (i= b->maxwds; n1 > i; i<<= 1) |
| 1075 | k1++; |
| 1076 | b1= Balloc(k1, alloc); |
| 1077 | x1= b1->p.x; |
| 1078 | for (i= 0; i < n; i++) |
| 1079 | *x1++= 0; |
| 1080 | x= b->p.x; |
| 1081 | xe= x + b->wds; |
| 1082 | if (k&= 0x1f) |
| 1083 | { |
| 1084 | k1= 32 - k; |
| 1085 | z= 0; |
| 1086 | do |
| 1087 | { |
| 1088 | *x1++= *x << k | z; |
| 1089 | z= *x++ >> k1; |
| 1090 | } |
| 1091 | while (x < xe); |
| 1092 | if ((*x1= z)) |
| 1093 | ++n1; |
| 1094 | } |
| 1095 | else |
| 1096 | do |
| 1097 | *x1++= *x++; |
| 1098 | while (x < xe); |
| 1099 | b1->wds= n1 - 1; |
| 1100 | Bfree(b, alloc); |
| 1101 | return b1; |
| 1102 | } |
| 1103 | |
| 1104 | |
| 1105 | static int cmp(Bigint *a, Bigint *b) |
| 1106 | { |
| 1107 | ULong *xa, *xa0, *xb, *xb0; |
| 1108 | int i, j; |
| 1109 | |
| 1110 | i= a->wds; |
| 1111 | j= b->wds; |
| 1112 | if (i-= j) |
| 1113 | return i; |
| 1114 | xa0= a->p.x; |
| 1115 | xa= xa0 + j; |
| 1116 | xb0= b->p.x; |
| 1117 | xb= xb0 + j; |
| 1118 | for (;;) |
| 1119 | { |
| 1120 | if (*--xa != *--xb) |
| 1121 | return *xa < *xb ? -1 : 1; |
| 1122 | if (xa <= xa0) |
| 1123 | break; |
| 1124 | } |
| 1125 | return 0; |
| 1126 | } |
| 1127 | |
| 1128 | |
| 1129 | static Bigint *diff(Bigint *a, Bigint *b, Stack_alloc *alloc) |
| 1130 | { |
| 1131 | Bigint *c; |
| 1132 | int i, wa, wb; |
| 1133 | ULong *xa, *xae, *xb, *xbe, *xc; |
| 1134 | ULLong borrow, y; |
| 1135 | |
| 1136 | i= cmp(a,b); |
| 1137 | if (!i) |
| 1138 | { |
| 1139 | c= Balloc(0, alloc); |
| 1140 | c->wds= 1; |
| 1141 | c->p.x[0]= 0; |
| 1142 | return c; |
| 1143 | } |
| 1144 | if (i < 0) |
| 1145 | { |
| 1146 | c= a; |
| 1147 | a= b; |
| 1148 | b= c; |
| 1149 | i= 1; |
| 1150 | } |
| 1151 | else |
| 1152 | i= 0; |
| 1153 | c= Balloc(a->k, alloc); |
| 1154 | c->sign= i; |
| 1155 | wa= a->wds; |
| 1156 | xa= a->p.x; |
| 1157 | xae= xa + wa; |
| 1158 | wb= b->wds; |
| 1159 | xb= b->p.x; |
| 1160 | xbe= xb + wb; |
| 1161 | xc= c->p.x; |
| 1162 | borrow= 0; |
| 1163 | do |
| 1164 | { |
| 1165 | y= (ULLong)*xa++ - *xb++ - borrow; |
| 1166 | borrow= y >> 32 & (ULong)1; |
| 1167 | *xc++= (ULong) (y & FFFFFFFF); |
| 1168 | } |
| 1169 | while (xb < xbe); |
| 1170 | while (xa < xae) |
| 1171 | { |
| 1172 | y= *xa++ - borrow; |
| 1173 | borrow= y >> 32 & (ULong)1; |
| 1174 | *xc++= (ULong) (y & FFFFFFFF); |
| 1175 | } |
| 1176 | while (!*--xc) |
| 1177 | wa--; |
| 1178 | c->wds= wa; |
| 1179 | return c; |
| 1180 | } |
| 1181 | |
| 1182 | |
| 1183 | static double ulp(U *x) |
| 1184 | { |
| 1185 | register Long L; |
| 1186 | U u; |
| 1187 | |
| 1188 | L= (word0(x) & Exp_mask) - (P - 1)*Exp_msk1; |
| 1189 | word0(&u) = L; |
| 1190 | word1(&u) = 0; |
| 1191 | return dval(&u); |
| 1192 | } |
| 1193 | |
| 1194 | |
| 1195 | static double b2d(Bigint *a, int *e) |
| 1196 | { |
| 1197 | ULong *xa, *xa0, w, y, z; |
| 1198 | int k; |
| 1199 | U d; |
| 1200 | #define d0 word0(&d) |
| 1201 | #define d1 word1(&d) |
| 1202 | |
| 1203 | xa0= a->p.x; |
| 1204 | xa= xa0 + a->wds; |
| 1205 | y= *--xa; |
| 1206 | k= hi0bits(y); |
| 1207 | *e= 32 - k; |
| 1208 | if (k < Ebits) |
| 1209 | { |
| 1210 | d0= Exp_1 | y >> (Ebits - k); |
| 1211 | w= xa > xa0 ? *--xa : 0; |
| 1212 | d1= y << ((32-Ebits) + k) | w >> (Ebits - k); |
| 1213 | goto ret_d; |
| 1214 | } |
| 1215 | z= xa > xa0 ? *--xa : 0; |
| 1216 | if (k-= Ebits) |
| 1217 | { |
| 1218 | d0= Exp_1 | y << k | z >> (32 - k); |
| 1219 | y= xa > xa0 ? *--xa : 0; |
| 1220 | d1= z << k | y >> (32 - k); |
| 1221 | } |
| 1222 | else |
| 1223 | { |
| 1224 | d0= Exp_1 | y; |
| 1225 | d1= z; |
| 1226 | } |
| 1227 | ret_d: |
| 1228 | #undef d0 |
| 1229 | #undef d1 |
| 1230 | return dval(&d); |
| 1231 | } |
| 1232 | |
| 1233 | |
| 1234 | static Bigint *d2b(U *d, int *e, int *bits, Stack_alloc *alloc) |
| 1235 | { |
| 1236 | Bigint *b; |
| 1237 | int de, k; |
| 1238 | ULong *x, y, z; |
| 1239 | int i; |
| 1240 | #define d0 word0(d) |
| 1241 | #define d1 word1(d) |
| 1242 | |
| 1243 | b= Balloc(1, alloc); |
| 1244 | x= b->p.x; |
| 1245 | |
| 1246 | z= d0 & Frac_mask; |
| 1247 | d0 &= 0x7fffffff; /* clear sign bit, which we ignore */ |
| 1248 | if ((de= (int)(d0 >> Exp_shift))) |
| 1249 | z|= Exp_msk1; |
| 1250 | if ((y= d1)) |
| 1251 | { |
| 1252 | if ((k= lo0bits(&y))) |
| 1253 | { |
| 1254 | x[0]= y | z << (32 - k); |
| 1255 | z>>= k; |
| 1256 | } |
| 1257 | else |
| 1258 | x[0]= y; |
| 1259 | i= b->wds= (x[1]= z) ? 2 : 1; |
| 1260 | } |
| 1261 | else |
| 1262 | { |
| 1263 | k= lo0bits(&z); |
| 1264 | x[0]= z; |
| 1265 | i= b->wds= 1; |
| 1266 | k+= 32; |
| 1267 | } |
| 1268 | if (de) |
| 1269 | { |
| 1270 | *e= de - Bias - (P-1) + k; |
| 1271 | *bits= P - k; |
| 1272 | } |
| 1273 | else |
| 1274 | { |
| 1275 | *e= de - Bias - (P-1) + 1 + k; |
| 1276 | *bits= 32*i - hi0bits(x[i-1]); |
| 1277 | } |
| 1278 | return b; |
| 1279 | #undef d0 |
| 1280 | #undef d1 |
| 1281 | } |
| 1282 | |
| 1283 | |
| 1284 | static double ratio(Bigint *a, Bigint *b) |
| 1285 | { |
| 1286 | U da, db; |
| 1287 | int k, ka, kb; |
| 1288 | |
| 1289 | dval(&da)= b2d(a, &ka); |
| 1290 | dval(&db)= b2d(b, &kb); |
| 1291 | k= ka - kb + 32*(a->wds - b->wds); |
| 1292 | if (k > 0) |
| 1293 | word0(&da)+= (ULong)(k*Exp_msk1 * 1.0); |
| 1294 | else |
| 1295 | { |
| 1296 | k= -k; |
| 1297 | word0(&db)+= k*Exp_msk1; |
| 1298 | } |
| 1299 | return dval(&da) / dval(&db); |
| 1300 | } |
| 1301 | |
| 1302 | static const double tens[] = |
| 1303 | { |
| 1304 | 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, |
| 1305 | 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, |
| 1306 | 1e20, 1e21, 1e22 |
| 1307 | }; |
| 1308 | |
| 1309 | static const double bigtens[]= { 1e16, 1e32, 1e64, 1e128, 1e256 }; |
| 1310 | static const double tinytens[]= |
| 1311 | { 1e-16, 1e-32, 1e-64, 1e-128, |
| 1312 | 9007199254740992.*9007199254740992.e-256 /* = 2^106 * 1e-53 */ |
| 1313 | }; |
| 1314 | /* |
| 1315 | The factor of 2^53 in tinytens[4] helps us avoid setting the underflow |
| 1316 | flag unnecessarily. It leads to a song and dance at the end of strtod. |
| 1317 | */ |
| 1318 | #define Scale_Bit 0x10 |
| 1319 | #define n_bigtens 5 |
| 1320 | |
| 1321 | /* |
| 1322 | strtod for IEEE--arithmetic machines. |
| 1323 | |
| 1324 | This strtod returns a nearest machine number to the input decimal |
| 1325 | string (or sets errno to EOVERFLOW). Ties are broken by the IEEE round-even |
| 1326 | rule. |
| 1327 | |
| 1328 | Inspired loosely by William D. Clinger's paper "How to Read Floating |
| 1329 | Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101]. |
| 1330 | |
| 1331 | Modifications: |
| 1332 | |
| 1333 | 1. We only require IEEE (not IEEE double-extended). |
| 1334 | 2. We get by with floating-point arithmetic in a case that |
| 1335 | Clinger missed -- when we're computing d * 10^n |
| 1336 | for a small integer d and the integer n is not too |
| 1337 | much larger than 22 (the maximum integer k for which |
| 1338 | we can represent 10^k exactly), we may be able to |
| 1339 | compute (d*10^k) * 10^(e-k) with just one roundoff. |
| 1340 | 3. Rather than a bit-at-a-time adjustment of the binary |
| 1341 | result in the hard case, we use floating-point |
| 1342 | arithmetic to determine the adjustment to within |
| 1343 | one bit; only in really hard cases do we need to |
| 1344 | compute a second residual. |
| 1345 | 4. Because of 3., we don't need a large table of powers of 10 |
| 1346 | for ten-to-e (just some small tables, e.g. of 10^k |
| 1347 | for 0 <= k <= 22). |
| 1348 | */ |
| 1349 | |
| 1350 | static double my_strtod_int(const char *s00, char **se, int *error, char *buf, size_t buf_size) |
| 1351 | { |
| 1352 | int scale; |
| 1353 | int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, UNINIT_VAR(c), dsign, |
| 1354 | e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign; |
| 1355 | const char *s, *s0, *s1, *end = *se; |
| 1356 | double aadj, aadj1; |
| 1357 | U aadj2, adj, rv, rv0; |
| 1358 | Long L; |
| 1359 | ULong y, z; |
| 1360 | Bigint *bb, *bb1, *bd, *bd0, *bs, *delta; |
| 1361 | #ifdef SET_INEXACT |
| 1362 | int inexact, oldinexact; |
| 1363 | #endif |
| 1364 | #ifdef Honor_FLT_ROUNDS |
| 1365 | int rounding; |
| 1366 | #endif |
| 1367 | Stack_alloc alloc; |
| 1368 | |
| 1369 | *error= 0; |
| 1370 | |
| 1371 | alloc.begin= alloc.free= buf; |
| 1372 | alloc.end= buf + buf_size; |
| 1373 | memset(alloc.freelist, 0, sizeof(alloc.freelist)); |
| 1374 | |
| 1375 | sign= nz0= nz= 0; |
| 1376 | dval(&rv)= 0.; |
| 1377 | for (s= s00; s < end; s++) |
| 1378 | switch (*s) { |
| 1379 | case '-': |
| 1380 | sign= 1; |
| 1381 | /* fall through */ |
| 1382 | case '+': |
| 1383 | s++; |
| 1384 | goto break2; |
| 1385 | case '\t': |
| 1386 | case '\n': |
| 1387 | case '\v': |
| 1388 | case '\f': |
| 1389 | case '\r': |
| 1390 | case ' ': |
| 1391 | continue; |
| 1392 | default: |
| 1393 | goto break2; |
| 1394 | } |
| 1395 | break2: |
| 1396 | if (s >= end) |
| 1397 | goto ret0; |
| 1398 | |
| 1399 | if (*s == '0') |
| 1400 | { |
| 1401 | nz0= 1; |
| 1402 | while (++s < end && *s == '0') ; |
| 1403 | if (s >= end) |
| 1404 | goto ret; |
| 1405 | } |
| 1406 | s0= s; |
| 1407 | y= z= 0; |
| 1408 | for (nd= nf= 0; s < end && (c= *s) >= '0' && c <= '9'; nd++, s++) |
| 1409 | if (nd < 9) |
| 1410 | y= 10*y + c - '0'; |
| 1411 | else if (nd < 16) |
| 1412 | z= 10*z + c - '0'; |
| 1413 | nd0= nd; |
| 1414 | if (s < end && c == '.') |
| 1415 | { |
| 1416 | ++s; |
| 1417 | if (!nd) |
| 1418 | { |
| 1419 | for (; s < end && (c= *s) == '0'; ++s) |
| 1420 | nz++; |
| 1421 | if (s < end && (c= *s) > '0' && c <= '9') |
| 1422 | { |
| 1423 | s0= s; |
| 1424 | nf+= nz; |
| 1425 | nz= 0; |
| 1426 | goto have_dig; |
| 1427 | } |
| 1428 | goto dig_done; |
| 1429 | } |
| 1430 | for (; s < end && (c= *s) >= '0' && c <= '9'; ++s) |
| 1431 | { |
| 1432 | have_dig: |
| 1433 | /* |
| 1434 | Here we are parsing the fractional part. |
| 1435 | We can stop counting digits after a while: the extra digits |
| 1436 | will not contribute to the actual result produced by s2b(). |
| 1437 | We have to continue scanning, in case there is an exponent part. |
| 1438 | */ |
| 1439 | if (nd < 2 * DBL_DIG) |
| 1440 | { |
| 1441 | nz++; |
| 1442 | if (c-= '0') |
| 1443 | { |
| 1444 | nf+= nz; |
| 1445 | for (i= 1; i < nz; i++) |
| 1446 | if (nd++ < 9) |
| 1447 | y*= 10; |
| 1448 | else if (nd <= DBL_DIG + 1) |
| 1449 | z*= 10; |
| 1450 | if (nd++ < 9) |
| 1451 | y= 10*y + c; |
| 1452 | else if (nd <= DBL_DIG + 1) |
| 1453 | z= 10*z + c; |
| 1454 | nz= 0; |
| 1455 | } |
| 1456 | } |
| 1457 | } |
| 1458 | } |
| 1459 | dig_done: |
| 1460 | e= 0; |
| 1461 | if (s < end && (c == 'e' || c == 'E')) |
| 1462 | { |
| 1463 | if (!nd && !nz && !nz0) |
| 1464 | goto ret0; |
| 1465 | s00= s; |
| 1466 | esign= 0; |
| 1467 | if (++s < end) |
| 1468 | switch (c= *s) { |
| 1469 | case '-': esign= 1; |
| 1470 | /* fall through */ |
| 1471 | case '+': c= *++s; |
| 1472 | } |
| 1473 | if (s < end && c >= '0' && c <= '9') |
| 1474 | { |
| 1475 | while (s < end && c == '0') |
| 1476 | c= *++s; |
| 1477 | if (s < end && c > '0' && c <= '9') { |
| 1478 | L= c - '0'; |
| 1479 | s1= s; |
| 1480 | while (++s < end && (c= *s) >= '0' && c <= '9') |
| 1481 | L= 10*L + c - '0'; |
| 1482 | if (s - s1 > 8 || L > 19999) |
| 1483 | /* Avoid confusion from exponents |
| 1484 | * so large that e might overflow. |
| 1485 | */ |
| 1486 | e= 19999; /* safe for 16 bit ints */ |
| 1487 | else |
| 1488 | e= (int)L; |
| 1489 | if (esign) |
| 1490 | e= -e; |
| 1491 | } |
| 1492 | else |
| 1493 | e= 0; |
| 1494 | } |
| 1495 | else |
| 1496 | s= s00; |
| 1497 | } |
| 1498 | if (!nd) |
| 1499 | { |
| 1500 | if (!nz && !nz0) |
| 1501 | { |
| 1502 | ret0: |
| 1503 | s= s00; |
| 1504 | sign= 0; |
| 1505 | } |
| 1506 | goto ret; |
| 1507 | } |
| 1508 | e1= e -= nf; |
| 1509 | |
| 1510 | /* |
| 1511 | Now we have nd0 digits, starting at s0, followed by a |
| 1512 | decimal point, followed by nd-nd0 digits. The number we're |
| 1513 | after is the integer represented by those digits times |
| 1514 | 10**e |
| 1515 | */ |
| 1516 | |
| 1517 | if (!nd0) |
| 1518 | nd0= nd; |
| 1519 | k= nd < DBL_DIG + 1 ? nd : DBL_DIG + 1; |
| 1520 | dval(&rv)= y; |
| 1521 | if (k > 9) |
| 1522 | { |
| 1523 | #ifdef SET_INEXACT |
| 1524 | if (k > DBL_DIG) |
| 1525 | oldinexact = get_inexact(); |
| 1526 | #endif |
| 1527 | dval(&rv)= tens[k - 9] * dval(&rv) + z; |
| 1528 | } |
| 1529 | bd0= 0; |
| 1530 | if (nd <= DBL_DIG |
| 1531 | #ifndef Honor_FLT_ROUNDS |
| 1532 | && Flt_Rounds == 1 |
| 1533 | #endif |
| 1534 | ) |
| 1535 | { |
| 1536 | if (!e) |
| 1537 | goto ret; |
| 1538 | if (e > 0) |
| 1539 | { |
| 1540 | if (e <= Ten_pmax) |
| 1541 | { |
| 1542 | #ifdef Honor_FLT_ROUNDS |
| 1543 | /* round correctly FLT_ROUNDS = 2 or 3 */ |
| 1544 | if (sign) |
| 1545 | { |
| 1546 | rv.d= -rv.d; |
| 1547 | sign= 0; |
| 1548 | } |
| 1549 | #endif |
| 1550 | /* rv = */ rounded_product(dval(&rv), tens[e]); |
| 1551 | goto ret; |
| 1552 | } |
| 1553 | i= DBL_DIG - nd; |
| 1554 | if (e <= Ten_pmax + i) |
| 1555 | { |
| 1556 | /* |
| 1557 | A fancier test would sometimes let us do |
| 1558 | this for larger i values. |
| 1559 | */ |
| 1560 | #ifdef Honor_FLT_ROUNDS |
| 1561 | /* round correctly FLT_ROUNDS = 2 or 3 */ |
| 1562 | if (sign) |
| 1563 | { |
| 1564 | rv.d= -rv.d; |
| 1565 | sign= 0; |
| 1566 | } |
| 1567 | #endif |
| 1568 | e-= i; |
| 1569 | dval(&rv)*= tens[i]; |
| 1570 | /* rv = */ rounded_product(dval(&rv), tens[e]); |
| 1571 | goto ret; |
| 1572 | } |
| 1573 | } |
| 1574 | #ifndef Inaccurate_Divide |
| 1575 | else if (e >= -Ten_pmax) |
| 1576 | { |
| 1577 | #ifdef Honor_FLT_ROUNDS |
| 1578 | /* round correctly FLT_ROUNDS = 2 or 3 */ |
| 1579 | if (sign) |
| 1580 | { |
| 1581 | rv.d= -rv.d; |
| 1582 | sign= 0; |
| 1583 | } |
| 1584 | #endif |
| 1585 | /* rv = */ rounded_quotient(dval(&rv), tens[-e]); |
| 1586 | goto ret; |
| 1587 | } |
| 1588 | #endif |
| 1589 | } |
| 1590 | e1+= nd - k; |
| 1591 | |
| 1592 | #ifdef SET_INEXACT |
| 1593 | inexact= 1; |
| 1594 | if (k <= DBL_DIG) |
| 1595 | oldinexact= get_inexact(); |
| 1596 | #endif |
| 1597 | scale= 0; |
| 1598 | #ifdef Honor_FLT_ROUNDS |
| 1599 | if ((rounding= Flt_Rounds) >= 2) |
| 1600 | { |
| 1601 | if (sign) |
| 1602 | rounding= rounding == 2 ? 0 : 2; |
| 1603 | else |
| 1604 | if (rounding != 2) |
| 1605 | rounding= 0; |
| 1606 | } |
| 1607 | #endif |
| 1608 | |
| 1609 | /* Get starting approximation = rv * 10**e1 */ |
| 1610 | |
| 1611 | if (e1 > 0) |
| 1612 | { |
| 1613 | if ((i= e1 & 15)) |
| 1614 | dval(&rv)*= tens[i]; |
| 1615 | if (e1&= ~15) |
| 1616 | { |
| 1617 | if (e1 > DBL_MAX_10_EXP) |
| 1618 | { |
| 1619 | ovfl: |
| 1620 | *error= EOVERFLOW; |
| 1621 | /* Can't trust HUGE_VAL */ |
| 1622 | #ifdef Honor_FLT_ROUNDS |
| 1623 | switch (rounding) |
| 1624 | { |
| 1625 | case 0: /* toward 0 */ |
| 1626 | case 3: /* toward -infinity */ |
| 1627 | word0(&rv)= Big0; |
| 1628 | word1(&rv)= Big1; |
| 1629 | break; |
| 1630 | default: |
| 1631 | word0(&rv)= Exp_mask; |
| 1632 | word1(&rv)= 0; |
| 1633 | } |
| 1634 | #else /*Honor_FLT_ROUNDS*/ |
| 1635 | word0(&rv)= Exp_mask; |
| 1636 | word1(&rv)= 0; |
| 1637 | #endif /*Honor_FLT_ROUNDS*/ |
| 1638 | #ifdef SET_INEXACT |
| 1639 | /* set overflow bit */ |
| 1640 | dval(&rv0)= 1e300; |
| 1641 | dval(&rv0)*= dval(&rv0); |
| 1642 | #endif |
| 1643 | if (bd0) |
| 1644 | goto retfree; |
| 1645 | goto ret; |
| 1646 | } |
| 1647 | e1>>= 4; |
| 1648 | for(j= 0; e1 > 1; j++, e1>>= 1) |
| 1649 | if (e1 & 1) |
| 1650 | dval(&rv)*= bigtens[j]; |
| 1651 | /* The last multiplication could overflow. */ |
| 1652 | word0(&rv)-= P*Exp_msk1; |
| 1653 | dval(&rv)*= bigtens[j]; |
| 1654 | if ((z= word0(&rv) & Exp_mask) > Exp_msk1 * (DBL_MAX_EXP + Bias - P)) |
| 1655 | goto ovfl; |
| 1656 | if (z > Exp_msk1 * (DBL_MAX_EXP + Bias - 1 - P)) |
| 1657 | { |
| 1658 | /* set to largest number (Can't trust DBL_MAX) */ |
| 1659 | word0(&rv)= Big0; |
| 1660 | word1(&rv)= Big1; |
| 1661 | } |
| 1662 | else |
| 1663 | word0(&rv)+= P*Exp_msk1; |
| 1664 | } |
| 1665 | } |
| 1666 | else if (e1 < 0) |
| 1667 | { |
| 1668 | e1= -e1; |
| 1669 | if ((i= e1 & 15)) |
| 1670 | dval(&rv)/= tens[i]; |
| 1671 | if ((e1>>= 4)) |
| 1672 | { |
| 1673 | if (e1 >= 1 << n_bigtens) |
| 1674 | goto undfl; |
| 1675 | if (e1 & Scale_Bit) |
| 1676 | scale= 2 * P; |
| 1677 | for(j= 0; e1 > 0; j++, e1>>= 1) |
| 1678 | if (e1 & 1) |
| 1679 | dval(&rv)*= tinytens[j]; |
| 1680 | if (scale && (j = 2 * P + 1 - ((word0(&rv) & Exp_mask) >> Exp_shift)) > 0) |
| 1681 | { |
| 1682 | /* scaled rv is denormal; zap j low bits */ |
| 1683 | if (j >= 32) |
| 1684 | { |
| 1685 | word1(&rv)= 0; |
| 1686 | if (j >= 53) |
| 1687 | word0(&rv)= (P + 2) * Exp_msk1; |
| 1688 | else |
| 1689 | word0(&rv)&= 0xffffffff << (j - 32); |
| 1690 | } |
| 1691 | else |
| 1692 | word1(&rv)&= 0xffffffff << j; |
| 1693 | } |
| 1694 | if (!dval(&rv)) |
| 1695 | { |
| 1696 | undfl: |
| 1697 | dval(&rv)= 0.; |
| 1698 | if (bd0) |
| 1699 | goto retfree; |
| 1700 | goto ret; |
| 1701 | } |
| 1702 | } |
| 1703 | } |
| 1704 | |
| 1705 | /* Now the hard part -- adjusting rv to the correct value.*/ |
| 1706 | |
| 1707 | /* Put digits into bd: true value = bd * 10^e */ |
| 1708 | |
| 1709 | bd0= s2b(s0, nd0, nd, y, &alloc); |
| 1710 | |
| 1711 | for(;;) |
| 1712 | { |
| 1713 | bd= Balloc(bd0->k, &alloc); |
| 1714 | Bcopy(bd, bd0); |
| 1715 | bb= d2b(&rv, &bbe, &bbbits, &alloc); /* rv = bb * 2^bbe */ |
| 1716 | bs= i2b(1, &alloc); |
| 1717 | |
| 1718 | if (e >= 0) |
| 1719 | { |
| 1720 | bb2= bb5= 0; |
| 1721 | bd2= bd5= e; |
| 1722 | } |
| 1723 | else |
| 1724 | { |
| 1725 | bb2= bb5= -e; |
| 1726 | bd2= bd5= 0; |
| 1727 | } |
| 1728 | if (bbe >= 0) |
| 1729 | bb2+= bbe; |
| 1730 | else |
| 1731 | bd2-= bbe; |
| 1732 | bs2= bb2; |
| 1733 | #ifdef Honor_FLT_ROUNDS |
| 1734 | if (rounding != 1) |
| 1735 | bs2++; |
| 1736 | #endif |
| 1737 | j= bbe - scale; |
| 1738 | i= j + bbbits - 1; /* logb(rv) */ |
| 1739 | if (i < Emin) /* denormal */ |
| 1740 | j+= P - Emin; |
| 1741 | else |
| 1742 | j= P + 1 - bbbits; |
| 1743 | bb2+= j; |
| 1744 | bd2+= j; |
| 1745 | bd2+= scale; |
| 1746 | i= bb2 < bd2 ? bb2 : bd2; |
| 1747 | if (i > bs2) |
| 1748 | i= bs2; |
| 1749 | if (i > 0) |
| 1750 | { |
| 1751 | bb2-= i; |
| 1752 | bd2-= i; |
| 1753 | bs2-= i; |
| 1754 | } |
| 1755 | if (bb5 > 0) |
| 1756 | { |
| 1757 | bs= pow5mult(bs, bb5, &alloc); |
| 1758 | bb1= mult(bs, bb, &alloc); |
| 1759 | Bfree(bb, &alloc); |
| 1760 | bb= bb1; |
| 1761 | } |
| 1762 | if (bb2 > 0) |
| 1763 | bb= lshift(bb, bb2, &alloc); |
| 1764 | if (bd5 > 0) |
| 1765 | bd= pow5mult(bd, bd5, &alloc); |
| 1766 | if (bd2 > 0) |
| 1767 | bd= lshift(bd, bd2, &alloc); |
| 1768 | if (bs2 > 0) |
| 1769 | bs= lshift(bs, bs2, &alloc); |
| 1770 | delta= diff(bb, bd, &alloc); |
| 1771 | dsign= delta->sign; |
| 1772 | delta->sign= 0; |
| 1773 | i= cmp(delta, bs); |
| 1774 | #ifdef Honor_FLT_ROUNDS |
| 1775 | if (rounding != 1) |
| 1776 | { |
| 1777 | if (i < 0) |
| 1778 | { |
| 1779 | /* Error is less than an ulp */ |
| 1780 | if (!delta->p.x[0] && delta->wds <= 1) |
| 1781 | { |
| 1782 | /* exact */ |
| 1783 | #ifdef SET_INEXACT |
| 1784 | inexact= 0; |
| 1785 | #endif |
| 1786 | break; |
| 1787 | } |
| 1788 | if (rounding) |
| 1789 | { |
| 1790 | if (dsign) |
| 1791 | { |
| 1792 | adj.d= 1.; |
| 1793 | goto apply_adj; |
| 1794 | } |
| 1795 | } |
| 1796 | else if (!dsign) |
| 1797 | { |
| 1798 | adj.d= -1.; |
| 1799 | if (!word1(&rv) && !(word0(&rv) & Frac_mask)) |
| 1800 | { |
| 1801 | y= word0(&rv) & Exp_mask; |
| 1802 | if (!scale || y > 2*P*Exp_msk1) |
| 1803 | { |
| 1804 | delta= lshift(delta, Log2P, &alloc); |
| 1805 | if (cmp(delta, bs) <= 0) |
| 1806 | adj.d= -0.5; |
| 1807 | } |
| 1808 | } |
| 1809 | apply_adj: |
| 1810 | if (scale && (y= word0(&rv) & Exp_mask) <= 2 * P * Exp_msk1) |
| 1811 | word0(&adj)+= (2 * P + 1) * Exp_msk1 - y; |
| 1812 | dval(&rv)+= adj.d * ulp(&rv); |
| 1813 | } |
| 1814 | break; |
| 1815 | } |
| 1816 | adj.d= ratio(delta, bs); |
| 1817 | if (adj.d < 1.) |
| 1818 | adj.d= 1.; |
| 1819 | if (adj.d <= 0x7ffffffe) |
| 1820 | { |
| 1821 | /* adj = rounding ? ceil(adj) : floor(adj); */ |
| 1822 | y= adj.d; |
| 1823 | if (y != adj.d) |
| 1824 | { |
| 1825 | if (!((rounding >> 1) ^ dsign)) |
| 1826 | y++; |
| 1827 | adj.d= y; |
| 1828 | } |
| 1829 | } |
| 1830 | if (scale && (y= word0(&rv) & Exp_mask) <= 2 * P * Exp_msk1) |
| 1831 | word0(&adj)+= (2 * P + 1) * Exp_msk1 - y; |
| 1832 | adj.d*= ulp(&rv); |
| 1833 | if (dsign) |
| 1834 | dval(&rv)+= adj.d; |
| 1835 | else |
| 1836 | dval(&rv)-= adj.d; |
| 1837 | goto cont; |
| 1838 | } |
| 1839 | #endif /*Honor_FLT_ROUNDS*/ |
| 1840 | |
| 1841 | if (i < 0) |
| 1842 | { |
| 1843 | /* |
| 1844 | Error is less than half an ulp -- check for special case of mantissa |
| 1845 | a power of two. |
| 1846 | */ |
| 1847 | if (dsign || word1(&rv) || word0(&rv) & Bndry_mask || |
| 1848 | (word0(&rv) & Exp_mask) <= (2 * P + 1) * Exp_msk1) |
| 1849 | { |
| 1850 | #ifdef SET_INEXACT |
| 1851 | if (!delta->x[0] && delta->wds <= 1) |
| 1852 | inexact= 0; |
| 1853 | #endif |
| 1854 | break; |
| 1855 | } |
| 1856 | if (!delta->p.x[0] && delta->wds <= 1) |
| 1857 | { |
| 1858 | /* exact result */ |
| 1859 | #ifdef SET_INEXACT |
| 1860 | inexact= 0; |
| 1861 | #endif |
| 1862 | break; |
| 1863 | } |
| 1864 | delta= lshift(delta, Log2P, &alloc); |
| 1865 | if (cmp(delta, bs) > 0) |
| 1866 | goto drop_down; |
| 1867 | break; |
| 1868 | } |
| 1869 | if (i == 0) |
| 1870 | { |
| 1871 | /* exactly half-way between */ |
| 1872 | if (dsign) |
| 1873 | { |
| 1874 | if ((word0(&rv) & Bndry_mask1) == Bndry_mask1 && |
| 1875 | word1(&rv) == |
| 1876 | ((scale && (y = word0(&rv) & Exp_mask) <= 2 * P * Exp_msk1) ? |
| 1877 | (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) : |
| 1878 | 0xffffffff)) |
| 1879 | { |
| 1880 | /*boundary case -- increment exponent*/ |
| 1881 | word0(&rv)= (word0(&rv) & Exp_mask) + Exp_msk1; |
| 1882 | word1(&rv) = 0; |
| 1883 | dsign = 0; |
| 1884 | break; |
| 1885 | } |
| 1886 | } |
| 1887 | else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) |
| 1888 | { |
| 1889 | drop_down: |
| 1890 | /* boundary case -- decrement exponent */ |
| 1891 | if (scale) |
| 1892 | { |
| 1893 | L= word0(&rv) & Exp_mask; |
| 1894 | if (L <= (2 *P + 1) * Exp_msk1) |
| 1895 | { |
| 1896 | if (L > (P + 2) * Exp_msk1) |
| 1897 | /* round even ==> accept rv */ |
| 1898 | break; |
| 1899 | /* rv = smallest denormal */ |
| 1900 | goto undfl; |
| 1901 | } |
| 1902 | } |
| 1903 | L= (word0(&rv) & Exp_mask) - Exp_msk1; |
| 1904 | word0(&rv)= L | Bndry_mask1; |
| 1905 | word1(&rv)= 0xffffffff; |
| 1906 | break; |
| 1907 | } |
| 1908 | if (!(word1(&rv) & LSB)) |
| 1909 | break; |
| 1910 | if (dsign) |
| 1911 | dval(&rv)+= ulp(&rv); |
| 1912 | else |
| 1913 | { |
| 1914 | dval(&rv)-= ulp(&rv); |
| 1915 | if (!dval(&rv)) |
| 1916 | goto undfl; |
| 1917 | } |
| 1918 | dsign= 1 - dsign; |
| 1919 | break; |
| 1920 | } |
| 1921 | if ((aadj= ratio(delta, bs)) <= 2.) |
| 1922 | { |
| 1923 | if (dsign) |
| 1924 | aadj= aadj1= 1.; |
| 1925 | else if (word1(&rv) || word0(&rv) & Bndry_mask) |
| 1926 | { |
| 1927 | if (word1(&rv) == Tiny1 && !word0(&rv)) |
| 1928 | goto undfl; |
| 1929 | aadj= 1.; |
| 1930 | aadj1= -1.; |
| 1931 | } |
| 1932 | else |
| 1933 | { |
| 1934 | /* special case -- power of FLT_RADIX to be rounded down... */ |
| 1935 | if (aadj < 2. / FLT_RADIX) |
| 1936 | aadj= 1. / FLT_RADIX; |
| 1937 | else |
| 1938 | aadj*= 0.5; |
| 1939 | aadj1= -aadj; |
| 1940 | } |
| 1941 | } |
| 1942 | else |
| 1943 | { |
| 1944 | aadj*= 0.5; |
| 1945 | aadj1= dsign ? aadj : -aadj; |
| 1946 | #ifdef Check_FLT_ROUNDS |
| 1947 | switch (Rounding) |
| 1948 | { |
| 1949 | case 2: /* towards +infinity */ |
| 1950 | aadj1-= 0.5; |
| 1951 | break; |
| 1952 | case 0: /* towards 0 */ |
| 1953 | case 3: /* towards -infinity */ |
| 1954 | aadj1+= 0.5; |
| 1955 | } |
| 1956 | #else |
| 1957 | if (Flt_Rounds == 0) |
| 1958 | aadj1+= 0.5; |
| 1959 | #endif /*Check_FLT_ROUNDS*/ |
| 1960 | } |
| 1961 | y= word0(&rv) & Exp_mask; |
| 1962 | |
| 1963 | /* Check for overflow */ |
| 1964 | |
| 1965 | if (y == Exp_msk1 * (DBL_MAX_EXP + Bias - 1)) |
| 1966 | { |
| 1967 | dval(&rv0)= dval(&rv); |
| 1968 | word0(&rv)-= P * Exp_msk1; |
| 1969 | adj.d= aadj1 * ulp(&rv); |
| 1970 | dval(&rv)+= adj.d; |
| 1971 | if ((word0(&rv) & Exp_mask) >= Exp_msk1 * (DBL_MAX_EXP + Bias - P)) |
| 1972 | { |
| 1973 | if (word0(&rv0) == Big0 && word1(&rv0) == Big1) |
| 1974 | goto ovfl; |
| 1975 | word0(&rv)= Big0; |
| 1976 | word1(&rv)= Big1; |
| 1977 | goto cont; |
| 1978 | } |
| 1979 | else |
| 1980 | word0(&rv)+= P * Exp_msk1; |
| 1981 | } |
| 1982 | else |
| 1983 | { |
| 1984 | if (scale && y <= 2 * P * Exp_msk1) |
| 1985 | { |
| 1986 | if (aadj <= 0x7fffffff) |
| 1987 | { |
| 1988 | if ((z= (ULong) aadj) <= 0) |
| 1989 | z= 1; |
| 1990 | aadj= z; |
| 1991 | aadj1= dsign ? aadj : -aadj; |
| 1992 | } |
| 1993 | dval(&aadj2) = aadj1; |
| 1994 | word0(&aadj2)+= (2 * P + 1) * Exp_msk1 - y; |
| 1995 | aadj1= dval(&aadj2); |
| 1996 | adj.d= aadj1 * ulp(&rv); |
| 1997 | dval(&rv)+= adj.d; |
| 1998 | if (rv.d == 0.) |
| 1999 | goto undfl; |
| 2000 | } |
| 2001 | else |
| 2002 | { |
| 2003 | adj.d= aadj1 * ulp(&rv); |
| 2004 | dval(&rv)+= adj.d; |
| 2005 | } |
| 2006 | } |
| 2007 | z= word0(&rv) & Exp_mask; |
| 2008 | #ifndef SET_INEXACT |
| 2009 | if (!scale) |
| 2010 | if (y == z) |
| 2011 | { |
| 2012 | /* Can we stop now? */ |
| 2013 | L= (Long)aadj; |
| 2014 | aadj-= L; |
| 2015 | /* The tolerances below are conservative. */ |
| 2016 | if (dsign || word1(&rv) || word0(&rv) & Bndry_mask) |
| 2017 | { |
| 2018 | if (aadj < .4999999 || aadj > .5000001) |
| 2019 | break; |
| 2020 | } |
| 2021 | else if (aadj < .4999999 / FLT_RADIX) |
| 2022 | break; |
| 2023 | } |
| 2024 | #endif |
| 2025 | cont: |
| 2026 | Bfree(bb, &alloc); |
| 2027 | Bfree(bd, &alloc); |
| 2028 | Bfree(bs, &alloc); |
| 2029 | Bfree(delta, &alloc); |
| 2030 | } |
| 2031 | #ifdef SET_INEXACT |
| 2032 | if (inexact) |
| 2033 | { |
| 2034 | if (!oldinexact) |
| 2035 | { |
| 2036 | word0(&rv0)= Exp_1 + (70 << Exp_shift); |
| 2037 | word1(&rv0)= 0; |
| 2038 | dval(&rv0)+= 1.; |
| 2039 | } |
| 2040 | } |
| 2041 | else if (!oldinexact) |
| 2042 | clear_inexact(); |
| 2043 | #endif |
| 2044 | if (scale) |
| 2045 | { |
| 2046 | word0(&rv0)= Exp_1 - 2 * P * Exp_msk1; |
| 2047 | word1(&rv0)= 0; |
| 2048 | dval(&rv)*= dval(&rv0); |
| 2049 | } |
| 2050 | #ifdef SET_INEXACT |
| 2051 | if (inexact && !(word0(&rv) & Exp_mask)) |
| 2052 | { |
| 2053 | /* set underflow bit */ |
| 2054 | dval(&rv0)= 1e-300; |
| 2055 | dval(&rv0)*= dval(&rv0); |
| 2056 | } |
| 2057 | #endif |
| 2058 | retfree: |
| 2059 | Bfree(bb, &alloc); |
| 2060 | Bfree(bd, &alloc); |
| 2061 | Bfree(bs, &alloc); |
| 2062 | Bfree(bd0, &alloc); |
| 2063 | Bfree(delta, &alloc); |
| 2064 | ret: |
| 2065 | *se= (char *)s; |
| 2066 | return sign ? -dval(&rv) : dval(&rv); |
| 2067 | } |
| 2068 | |
| 2069 | |
| 2070 | static int quorem(Bigint *b, Bigint *S) |
| 2071 | { |
| 2072 | int n; |
| 2073 | ULong *bx, *bxe, q, *sx, *sxe; |
| 2074 | ULLong borrow, carry, y, ys; |
| 2075 | |
| 2076 | n= S->wds; |
| 2077 | if (b->wds < n) |
| 2078 | return 0; |
| 2079 | sx= S->p.x; |
| 2080 | sxe= sx + --n; |
| 2081 | bx= b->p.x; |
| 2082 | bxe= bx + n; |
| 2083 | q= *bxe / (*sxe + 1); /* ensure q <= true quotient */ |
| 2084 | if (q) |
| 2085 | { |
| 2086 | borrow= 0; |
| 2087 | carry= 0; |
| 2088 | do |
| 2089 | { |
| 2090 | ys= *sx++ * (ULLong)q + carry; |
| 2091 | carry= ys >> 32; |
| 2092 | y= *bx - (ys & FFFFFFFF) - borrow; |
| 2093 | borrow= y >> 32 & (ULong)1; |
| 2094 | *bx++= (ULong) (y & FFFFFFFF); |
| 2095 | } |
| 2096 | while (sx <= sxe); |
| 2097 | if (!*bxe) |
| 2098 | { |
| 2099 | bx= b->p.x; |
| 2100 | while (--bxe > bx && !*bxe) |
| 2101 | --n; |
| 2102 | b->wds= n; |
| 2103 | } |
| 2104 | } |
| 2105 | if (cmp(b, S) >= 0) |
| 2106 | { |
| 2107 | q++; |
| 2108 | borrow= 0; |
| 2109 | carry= 0; |
| 2110 | bx= b->p.x; |
| 2111 | sx= S->p.x; |
| 2112 | do |
| 2113 | { |
| 2114 | ys= *sx++ + carry; |
| 2115 | carry= ys >> 32; |
| 2116 | y= *bx - (ys & FFFFFFFF) - borrow; |
| 2117 | borrow= y >> 32 & (ULong)1; |
| 2118 | *bx++= (ULong) (y & FFFFFFFF); |
| 2119 | } |
| 2120 | while (sx <= sxe); |
| 2121 | bx= b->p.x; |
| 2122 | bxe= bx + n; |
| 2123 | if (!*bxe) |
| 2124 | { |
| 2125 | while (--bxe > bx && !*bxe) |
| 2126 | --n; |
| 2127 | b->wds= n; |
| 2128 | } |
| 2129 | } |
| 2130 | return q; |
| 2131 | } |
| 2132 | |
| 2133 | |
| 2134 | /* |
| 2135 | dtoa for IEEE arithmetic (dmg): convert double to ASCII string. |
| 2136 | |
| 2137 | Inspired by "How to Print Floating-Point Numbers Accurately" by |
| 2138 | Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126]. |
| 2139 | |
| 2140 | Modifications: |
| 2141 | 1. Rather than iterating, we use a simple numeric overestimate |
| 2142 | to determine k= floor(log10(d)). We scale relevant |
| 2143 | quantities using O(log2(k)) rather than O(k) multiplications. |
| 2144 | 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't |
| 2145 | try to generate digits strictly left to right. Instead, we |
| 2146 | compute with fewer bits and propagate the carry if necessary |
| 2147 | when rounding the final digit up. This is often faster. |
| 2148 | 3. Under the assumption that input will be rounded nearest, |
| 2149 | mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. |
| 2150 | That is, we allow equality in stopping tests when the |
| 2151 | round-nearest rule will give the same floating-point value |
| 2152 | as would satisfaction of the stopping test with strict |
| 2153 | inequality. |
| 2154 | 4. We remove common factors of powers of 2 from relevant |
| 2155 | quantities. |
| 2156 | 5. When converting floating-point integers less than 1e16, |
| 2157 | we use floating-point arithmetic rather than resorting |
| 2158 | to multiple-precision integers. |
| 2159 | 6. When asked to produce fewer than 15 digits, we first try |
| 2160 | to get by with floating-point arithmetic; we resort to |
| 2161 | multiple-precision integer arithmetic only if we cannot |
| 2162 | guarantee that the floating-point calculation has given |
| 2163 | the correctly rounded result. For k requested digits and |
| 2164 | "uniformly" distributed input, the probability is |
| 2165 | something like 10^(k-15) that we must resort to the Long |
| 2166 | calculation. |
| 2167 | */ |
| 2168 | |
| 2169 | static char *dtoa(double dd, int mode, int ndigits, int *decpt, int *sign, |
| 2170 | char **rve, char *buf, size_t buf_size) |
| 2171 | { |
| 2172 | /* |
| 2173 | Arguments ndigits, decpt, sign are similar to those |
| 2174 | of ecvt and fcvt; trailing zeros are suppressed from |
| 2175 | the returned string. If not null, *rve is set to point |
| 2176 | to the end of the return value. If d is +-Infinity or NaN, |
| 2177 | then *decpt is set to DTOA_OVERFLOW. |
| 2178 | |
| 2179 | mode: |
| 2180 | 0 ==> shortest string that yields d when read in |
| 2181 | and rounded to nearest. |
| 2182 | 1 ==> like 0, but with Steele & White stopping rule; |
| 2183 | e.g. with IEEE P754 arithmetic , mode 0 gives |
| 2184 | 1e23 whereas mode 1 gives 9.999999999999999e22. |
| 2185 | 2 ==> MY_MAX(1,ndigits) significant digits. This gives a |
| 2186 | return value similar to that of ecvt, except |
| 2187 | that trailing zeros are suppressed. |
| 2188 | 3 ==> through ndigits past the decimal point. This |
| 2189 | gives a return value similar to that from fcvt, |
| 2190 | except that trailing zeros are suppressed, and |
| 2191 | ndigits can be negative. |
| 2192 | 4,5 ==> similar to 2 and 3, respectively, but (in |
| 2193 | round-nearest mode) with the tests of mode 0 to |
| 2194 | possibly return a shorter string that rounds to d. |
| 2195 | With IEEE arithmetic and compilation with |
| 2196 | -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same |
| 2197 | as modes 2 and 3 when FLT_ROUNDS != 1. |
| 2198 | 6-9 ==> Debugging modes similar to mode - 4: don't try |
| 2199 | fast floating-point estimate (if applicable). |
| 2200 | |
| 2201 | Values of mode other than 0-9 are treated as mode 0. |
| 2202 | |
| 2203 | Sufficient space is allocated to the return value |
| 2204 | to hold the suppressed trailing zeros. |
| 2205 | */ |
| 2206 | |
| 2207 | int bbits, b2, b5, be, dig, i, ieps, UNINIT_VAR(ilim), ilim0, |
| 2208 | UNINIT_VAR(ilim1), j, j1, k, k0, k_check, leftright, m2, m5, s2, s5, |
| 2209 | spec_case, try_quick; |
| 2210 | Long L; |
| 2211 | int denorm; |
| 2212 | ULong x; |
| 2213 | Bigint *b, *b1, *delta, *mlo, *mhi, *S; |
| 2214 | U d2, eps, u; |
| 2215 | double ds; |
| 2216 | char *s, *s0; |
| 2217 | #ifdef Honor_FLT_ROUNDS |
| 2218 | int rounding; |
| 2219 | #endif |
| 2220 | Stack_alloc alloc; |
| 2221 | |
| 2222 | alloc.begin= alloc.free= buf; |
| 2223 | alloc.end= buf + buf_size; |
| 2224 | memset(alloc.freelist, 0, sizeof(alloc.freelist)); |
| 2225 | |
| 2226 | u.d= dd; |
| 2227 | if (word0(&u) & Sign_bit) |
| 2228 | { |
| 2229 | /* set sign for everything, including 0's and NaNs */ |
| 2230 | *sign= 1; |
| 2231 | word0(&u) &= ~Sign_bit; /* clear sign bit */ |
| 2232 | } |
| 2233 | else |
| 2234 | *sign= 0; |
| 2235 | |
| 2236 | /* If infinity, set decpt to DTOA_OVERFLOW, if 0 set it to 1 */ |
| 2237 | if (((word0(&u) & Exp_mask) == Exp_mask && (*decpt= DTOA_OVERFLOW)) || |
| 2238 | (!dval(&u) && (*decpt= 1))) |
| 2239 | { |
| 2240 | /* Infinity, NaN, 0 */ |
| 2241 | char *res= (char*) dtoa_alloc(2, &alloc); |
| 2242 | res[0]= '0'; |
| 2243 | res[1]= '\0'; |
| 2244 | if (rve) |
| 2245 | *rve= res + 1; |
| 2246 | return res; |
| 2247 | } |
| 2248 | |
| 2249 | #ifdef Honor_FLT_ROUNDS |
| 2250 | if ((rounding= Flt_Rounds) >= 2) |
| 2251 | { |
| 2252 | if (*sign) |
| 2253 | rounding= rounding == 2 ? 0 : 2; |
| 2254 | else |
| 2255 | if (rounding != 2) |
| 2256 | rounding= 0; |
| 2257 | } |
| 2258 | #endif |
| 2259 | |
| 2260 | b= d2b(&u, &be, &bbits, &alloc); |
| 2261 | if ((i= (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) |
| 2262 | { |
| 2263 | dval(&d2)= dval(&u); |
| 2264 | word0(&d2) &= Frac_mask1; |
| 2265 | word0(&d2) |= Exp_11; |
| 2266 | |
| 2267 | /* |
| 2268 | log(x) ~=~ log(1.5) + (x-1.5)/1.5 |
| 2269 | log10(x) = log(x) / log(10) |
| 2270 | ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) |
| 2271 | log10(d)= (i-Bias)*log(2)/log(10) + log10(d2) |
| 2272 | |
| 2273 | This suggests computing an approximation k to log10(d) by |
| 2274 | |
| 2275 | k= (i - Bias)*0.301029995663981 |
| 2276 | + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 ); |
| 2277 | |
| 2278 | We want k to be too large rather than too small. |
| 2279 | The error in the first-order Taylor series approximation |
| 2280 | is in our favor, so we just round up the constant enough |
| 2281 | to compensate for any error in the multiplication of |
| 2282 | (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077, |
| 2283 | and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14, |
| 2284 | adding 1e-13 to the constant term more than suffices. |
| 2285 | Hence we adjust the constant term to 0.1760912590558. |
| 2286 | (We could get a more accurate k by invoking log10, |
| 2287 | but this is probably not worthwhile.) |
| 2288 | */ |
| 2289 | |
| 2290 | i-= Bias; |
| 2291 | denorm= 0; |
| 2292 | } |
| 2293 | else |
| 2294 | { |
| 2295 | /* d is denormalized */ |
| 2296 | |
| 2297 | i= bbits + be + (Bias + (P-1) - 1); |
| 2298 | x= i > 32 ? word0(&u) << (64 - i) | word1(&u) >> (i - 32) |
| 2299 | : word1(&u) << (32 - i); |
| 2300 | dval(&d2)= x; |
| 2301 | word0(&d2)-= 31*Exp_msk1; /* adjust exponent */ |
| 2302 | i-= (Bias + (P-1) - 1) + 1; |
| 2303 | denorm= 1; |
| 2304 | } |
| 2305 | ds= (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981; |
| 2306 | k= (int)ds; |
| 2307 | if (ds < 0. && ds != k) |
| 2308 | k--; /* want k= floor(ds) */ |
| 2309 | k_check= 1; |
| 2310 | if (k >= 0 && k <= Ten_pmax) |
| 2311 | { |
| 2312 | if (dval(&u) < tens[k]) |
| 2313 | k--; |
| 2314 | k_check= 0; |
| 2315 | } |
| 2316 | j= bbits - i - 1; |
| 2317 | if (j >= 0) |
| 2318 | { |
| 2319 | b2= 0; |
| 2320 | s2= j; |
| 2321 | } |
| 2322 | else |
| 2323 | { |
| 2324 | b2= -j; |
| 2325 | s2= 0; |
| 2326 | } |
| 2327 | if (k >= 0) |
| 2328 | { |
| 2329 | b5= 0; |
| 2330 | s5= k; |
| 2331 | s2+= k; |
| 2332 | } |
| 2333 | else |
| 2334 | { |
| 2335 | b2-= k; |
| 2336 | b5= -k; |
| 2337 | s5= 0; |
| 2338 | } |
| 2339 | if (mode < 0 || mode > 9) |
| 2340 | mode= 0; |
| 2341 | |
| 2342 | #ifdef Check_FLT_ROUNDS |
| 2343 | try_quick= Rounding == 1; |
| 2344 | #else |
| 2345 | try_quick= 1; |
| 2346 | #endif |
| 2347 | |
| 2348 | if (mode > 5) |
| 2349 | { |
| 2350 | mode-= 4; |
| 2351 | try_quick= 0; |
| 2352 | } |
| 2353 | leftright= 1; |
| 2354 | switch (mode) { |
| 2355 | case 0: |
| 2356 | case 1: |
| 2357 | ilim= ilim1= -1; |
| 2358 | i= 18; |
| 2359 | ndigits= 0; |
| 2360 | break; |
| 2361 | case 2: |
| 2362 | leftright= 0; |
| 2363 | /* fall through */ |
| 2364 | case 4: |
| 2365 | if (ndigits <= 0) |
| 2366 | ndigits= 1; |
| 2367 | ilim= ilim1= i= ndigits; |
| 2368 | break; |
| 2369 | case 3: |
| 2370 | leftright= 0; |
| 2371 | /* fall through */ |
| 2372 | case 5: |
| 2373 | i= ndigits + k + 1; |
| 2374 | ilim= i; |
| 2375 | ilim1= i - 1; |
| 2376 | if (i <= 0) |
| 2377 | i= 1; |
| 2378 | } |
| 2379 | s= s0= dtoa_alloc(i, &alloc); |
| 2380 | |
| 2381 | #ifdef Honor_FLT_ROUNDS |
| 2382 | if (mode > 1 && rounding != 1) |
| 2383 | leftright= 0; |
| 2384 | #endif |
| 2385 | |
| 2386 | if (ilim >= 0 && ilim <= Quick_max && try_quick) |
| 2387 | { |
| 2388 | /* Try to get by with floating-point arithmetic. */ |
| 2389 | i= 0; |
| 2390 | dval(&d2)= dval(&u); |
| 2391 | k0= k; |
| 2392 | ilim0= ilim; |
| 2393 | ieps= 2; /* conservative */ |
| 2394 | if (k > 0) |
| 2395 | { |
| 2396 | ds= tens[k&0xf]; |
| 2397 | j= k >> 4; |
| 2398 | if (j & Bletch) |
| 2399 | { |
| 2400 | /* prevent overflows */ |
| 2401 | j&= Bletch - 1; |
| 2402 | dval(&u)/= bigtens[n_bigtens-1]; |
| 2403 | ieps++; |
| 2404 | } |
| 2405 | for (; j; j>>= 1, i++) |
| 2406 | { |
| 2407 | if (j & 1) |
| 2408 | { |
| 2409 | ieps++; |
| 2410 | ds*= bigtens[i]; |
| 2411 | } |
| 2412 | } |
| 2413 | dval(&u)/= ds; |
| 2414 | } |
| 2415 | else if ((j1= -k)) |
| 2416 | { |
| 2417 | dval(&u)*= tens[j1 & 0xf]; |
| 2418 | for (j= j1 >> 4; j; j>>= 1, i++) |
| 2419 | { |
| 2420 | if (j & 1) |
| 2421 | { |
| 2422 | ieps++; |
| 2423 | dval(&u)*= bigtens[i]; |
| 2424 | } |
| 2425 | } |
| 2426 | } |
| 2427 | if (k_check && dval(&u) < 1. && ilim > 0) |
| 2428 | { |
| 2429 | if (ilim1 <= 0) |
| 2430 | goto fast_failed; |
| 2431 | ilim= ilim1; |
| 2432 | k--; |
| 2433 | dval(&u)*= 10.; |
| 2434 | ieps++; |
| 2435 | } |
| 2436 | dval(&eps)= ieps*dval(&u) + 7.; |
| 2437 | word0(&eps)-= (P-1)*Exp_msk1; |
| 2438 | if (ilim == 0) |
| 2439 | { |
| 2440 | S= mhi= 0; |
| 2441 | dval(&u)-= 5.; |
| 2442 | if (dval(&u) > dval(&eps)) |
| 2443 | goto one_digit; |
| 2444 | if (dval(&u) < -dval(&eps)) |
| 2445 | goto no_digits; |
| 2446 | goto fast_failed; |
| 2447 | } |
| 2448 | if (leftright) |
| 2449 | { |
| 2450 | /* Use Steele & White method of only generating digits needed. */ |
| 2451 | dval(&eps)= 0.5/tens[ilim-1] - dval(&eps); |
| 2452 | for (i= 0;;) |
| 2453 | { |
| 2454 | L= (Long) dval(&u); |
| 2455 | dval(&u)-= L; |
| 2456 | *s++= '0' + (int)L; |
| 2457 | if (dval(&u) < dval(&eps)) |
| 2458 | goto ret1; |
| 2459 | if (1. - dval(&u) < dval(&eps)) |
| 2460 | goto bump_up; |
| 2461 | if (++i >= ilim) |
| 2462 | break; |
| 2463 | dval(&eps)*= 10.; |
| 2464 | dval(&u)*= 10.; |
| 2465 | } |
| 2466 | } |
| 2467 | else |
| 2468 | { |
| 2469 | /* Generate ilim digits, then fix them up. */ |
| 2470 | dval(&eps)*= tens[ilim-1]; |
| 2471 | for (i= 1;; i++, dval(&u)*= 10.) |
| 2472 | { |
| 2473 | L= (Long)(dval(&u)); |
| 2474 | if (!(dval(&u)-= L)) |
| 2475 | ilim= i; |
| 2476 | *s++= '0' + (int)L; |
| 2477 | if (i == ilim) |
| 2478 | { |
| 2479 | if (dval(&u) > 0.5 + dval(&eps)) |
| 2480 | goto bump_up; |
| 2481 | else if (dval(&u) < 0.5 - dval(&eps)) |
| 2482 | { |
| 2483 | while (*--s == '0'); |
| 2484 | s++; |
| 2485 | goto ret1; |
| 2486 | } |
| 2487 | break; |
| 2488 | } |
| 2489 | } |
| 2490 | } |
| 2491 | fast_failed: |
| 2492 | s= s0; |
| 2493 | dval(&u)= dval(&d2); |
| 2494 | k= k0; |
| 2495 | ilim= ilim0; |
| 2496 | } |
| 2497 | |
| 2498 | /* Do we have a "small" integer? */ |
| 2499 | |
| 2500 | if (be >= 0 && k <= Int_max) |
| 2501 | { |
| 2502 | /* Yes. */ |
| 2503 | ds= tens[k]; |
| 2504 | if (ndigits < 0 && ilim <= 0) |
| 2505 | { |
| 2506 | S= mhi= 0; |
| 2507 | if (ilim < 0 || dval(&u) <= 5*ds) |
| 2508 | goto no_digits; |
| 2509 | goto one_digit; |
| 2510 | } |
| 2511 | for (i= 1;; i++, dval(&u)*= 10.) |
| 2512 | { |
| 2513 | L= (Long)(dval(&u) / ds); |
| 2514 | dval(&u)-= L*ds; |
| 2515 | #ifdef Check_FLT_ROUNDS |
| 2516 | /* If FLT_ROUNDS == 2, L will usually be high by 1 */ |
| 2517 | if (dval(&u) < 0) |
| 2518 | { |
| 2519 | L--; |
| 2520 | dval(&u)+= ds; |
| 2521 | } |
| 2522 | #endif |
| 2523 | *s++= '0' + (int)L; |
| 2524 | if (!dval(&u)) |
| 2525 | { |
| 2526 | break; |
| 2527 | } |
| 2528 | if (i == ilim) |
| 2529 | { |
| 2530 | #ifdef Honor_FLT_ROUNDS |
| 2531 | if (mode > 1) |
| 2532 | { |
| 2533 | switch (rounding) { |
| 2534 | case 0: goto ret1; |
| 2535 | case 2: goto bump_up; |
| 2536 | } |
| 2537 | } |
| 2538 | #endif |
| 2539 | dval(&u)+= dval(&u); |
| 2540 | if (dval(&u) > ds || (dval(&u) == ds && L & 1)) |
| 2541 | { |
| 2542 | bump_up: |
| 2543 | while (*--s == '9') |
| 2544 | if (s == s0) |
| 2545 | { |
| 2546 | k++; |
| 2547 | *s= '0'; |
| 2548 | break; |
| 2549 | } |
| 2550 | ++*s++; |
| 2551 | } |
| 2552 | break; |
| 2553 | } |
| 2554 | } |
| 2555 | goto ret1; |
| 2556 | } |
| 2557 | |
| 2558 | m2= b2; |
| 2559 | m5= b5; |
| 2560 | mhi= mlo= 0; |
| 2561 | if (leftright) |
| 2562 | { |
| 2563 | i = denorm ? be + (Bias + (P-1) - 1 + 1) : 1 + P - bbits; |
| 2564 | b2+= i; |
| 2565 | s2+= i; |
| 2566 | mhi= i2b(1, &alloc); |
| 2567 | } |
| 2568 | if (m2 > 0 && s2 > 0) |
| 2569 | { |
| 2570 | i= m2 < s2 ? m2 : s2; |
| 2571 | b2-= i; |
| 2572 | m2-= i; |
| 2573 | s2-= i; |
| 2574 | } |
| 2575 | if (b5 > 0) |
| 2576 | { |
| 2577 | if (leftright) |
| 2578 | { |
| 2579 | if (m5 > 0) |
| 2580 | { |
| 2581 | mhi= pow5mult(mhi, m5, &alloc); |
| 2582 | b1= mult(mhi, b, &alloc); |
| 2583 | Bfree(b, &alloc); |
| 2584 | b= b1; |
| 2585 | } |
| 2586 | if ((j= b5 - m5)) |
| 2587 | b= pow5mult(b, j, &alloc); |
| 2588 | } |
| 2589 | else |
| 2590 | b= pow5mult(b, b5, &alloc); |
| 2591 | } |
| 2592 | S= i2b(1, &alloc); |
| 2593 | if (s5 > 0) |
| 2594 | S= pow5mult(S, s5, &alloc); |
| 2595 | |
| 2596 | /* Check for special case that d is a normalized power of 2. */ |
| 2597 | |
| 2598 | spec_case= 0; |
| 2599 | if ((mode < 2 || leftright) |
| 2600 | #ifdef Honor_FLT_ROUNDS |
| 2601 | && rounding == 1 |
| 2602 | #endif |
| 2603 | ) |
| 2604 | { |
| 2605 | if (!word1(&u) && !(word0(&u) & Bndry_mask) && |
| 2606 | word0(&u) & (Exp_mask & ~Exp_msk1) |
| 2607 | ) |
| 2608 | { |
| 2609 | /* The special case */ |
| 2610 | b2+= Log2P; |
| 2611 | s2+= Log2P; |
| 2612 | spec_case= 1; |
| 2613 | } |
| 2614 | } |
| 2615 | |
| 2616 | /* |
| 2617 | Arrange for convenient computation of quotients: |
| 2618 | shift left if necessary so divisor has 4 leading 0 bits. |
| 2619 | |
| 2620 | Perhaps we should just compute leading 28 bits of S once |
| 2621 | a nd for all and pass them and a shift to quorem, so it |
| 2622 | can do shifts and ors to compute the numerator for q. |
| 2623 | */ |
| 2624 | if ((i= ((s5 ? 32 - hi0bits(S->p.x[S->wds-1]) : 1) + s2) & 0x1f)) |
| 2625 | i= 32 - i; |
| 2626 | if (i > 4) |
| 2627 | { |
| 2628 | i-= 4; |
| 2629 | b2+= i; |
| 2630 | m2+= i; |
| 2631 | s2+= i; |
| 2632 | } |
| 2633 | else if (i < 4) |
| 2634 | { |
| 2635 | i+= 28; |
| 2636 | b2+= i; |
| 2637 | m2+= i; |
| 2638 | s2+= i; |
| 2639 | } |
| 2640 | if (b2 > 0) |
| 2641 | b= lshift(b, b2, &alloc); |
| 2642 | if (s2 > 0) |
| 2643 | S= lshift(S, s2, &alloc); |
| 2644 | if (k_check) |
| 2645 | { |
| 2646 | if (cmp(b,S) < 0) |
| 2647 | { |
| 2648 | k--; |
| 2649 | /* we botched the k estimate */ |
| 2650 | b= multadd(b, 10, 0, &alloc); |
| 2651 | if (leftright) |
| 2652 | mhi= multadd(mhi, 10, 0, &alloc); |
| 2653 | ilim= ilim1; |
| 2654 | } |
| 2655 | } |
| 2656 | if (ilim <= 0 && (mode == 3 || mode == 5)) |
| 2657 | { |
| 2658 | if (ilim < 0 || cmp(b,S= multadd(S,5,0, &alloc)) <= 0) |
| 2659 | { |
| 2660 | /* no digits, fcvt style */ |
| 2661 | no_digits: |
| 2662 | k= -1 - ndigits; |
| 2663 | goto ret; |
| 2664 | } |
| 2665 | one_digit: |
| 2666 | *s++= '1'; |
| 2667 | k++; |
| 2668 | goto ret; |
| 2669 | } |
| 2670 | if (leftright) |
| 2671 | { |
| 2672 | if (m2 > 0) |
| 2673 | mhi= lshift(mhi, m2, &alloc); |
| 2674 | |
| 2675 | /* |
| 2676 | Compute mlo -- check for special case that d is a normalized power of 2. |
| 2677 | */ |
| 2678 | |
| 2679 | mlo= mhi; |
| 2680 | if (spec_case) |
| 2681 | { |
| 2682 | mhi= Balloc(mhi->k, &alloc); |
| 2683 | Bcopy(mhi, mlo); |
| 2684 | mhi= lshift(mhi, Log2P, &alloc); |
| 2685 | } |
| 2686 | |
| 2687 | for (i= 1;;i++) |
| 2688 | { |
| 2689 | dig= quorem(b,S) + '0'; |
| 2690 | /* Do we yet have the shortest decimal string that will round to d? */ |
| 2691 | j= cmp(b, mlo); |
| 2692 | delta= diff(S, mhi, &alloc); |
| 2693 | j1= delta->sign ? 1 : cmp(b, delta); |
| 2694 | Bfree(delta, &alloc); |
| 2695 | if (j1 == 0 && mode != 1 && !(word1(&u) & 1) |
| 2696 | #ifdef Honor_FLT_ROUNDS |
| 2697 | && rounding >= 1 |
| 2698 | #endif |
| 2699 | ) |
| 2700 | { |
| 2701 | if (dig == '9') |
| 2702 | goto round_9_up; |
| 2703 | if (j > 0) |
| 2704 | dig++; |
| 2705 | *s++= dig; |
| 2706 | goto ret; |
| 2707 | } |
| 2708 | if (j < 0 || (j == 0 && mode != 1 && !(word1(&u) & 1))) |
| 2709 | { |
| 2710 | if (!b->p.x[0] && b->wds <= 1) |
| 2711 | { |
| 2712 | goto accept_dig; |
| 2713 | } |
| 2714 | #ifdef Honor_FLT_ROUNDS |
| 2715 | if (mode > 1) |
| 2716 | switch (rounding) { |
| 2717 | case 0: goto accept_dig; |
| 2718 | case 2: goto keep_dig; |
| 2719 | } |
| 2720 | #endif /*Honor_FLT_ROUNDS*/ |
| 2721 | if (j1 > 0) |
| 2722 | { |
| 2723 | b= lshift(b, 1, &alloc); |
| 2724 | j1= cmp(b, S); |
| 2725 | if ((j1 > 0 || (j1 == 0 && dig & 1)) |
| 2726 | && dig++ == '9') |
| 2727 | goto round_9_up; |
| 2728 | } |
| 2729 | accept_dig: |
| 2730 | *s++= dig; |
| 2731 | goto ret; |
| 2732 | } |
| 2733 | if (j1 > 0) |
| 2734 | { |
| 2735 | #ifdef Honor_FLT_ROUNDS |
| 2736 | if (!rounding) |
| 2737 | goto accept_dig; |
| 2738 | #endif |
| 2739 | if (dig == '9') |
| 2740 | { /* possible if i == 1 */ |
| 2741 | round_9_up: |
| 2742 | *s++= '9'; |
| 2743 | goto roundoff; |
| 2744 | } |
| 2745 | *s++= dig + 1; |
| 2746 | goto ret; |
| 2747 | } |
| 2748 | #ifdef Honor_FLT_ROUNDS |
| 2749 | keep_dig: |
| 2750 | #endif |
| 2751 | *s++= dig; |
| 2752 | if (i == ilim) |
| 2753 | break; |
| 2754 | b= multadd(b, 10, 0, &alloc); |
| 2755 | if (mlo == mhi) |
| 2756 | mlo= mhi= multadd(mhi, 10, 0, &alloc); |
| 2757 | else |
| 2758 | { |
| 2759 | mlo= multadd(mlo, 10, 0, &alloc); |
| 2760 | mhi= multadd(mhi, 10, 0, &alloc); |
| 2761 | } |
| 2762 | } |
| 2763 | } |
| 2764 | else |
| 2765 | for (i= 1;; i++) |
| 2766 | { |
| 2767 | *s++= dig= quorem(b,S) + '0'; |
| 2768 | if (!b->p.x[0] && b->wds <= 1) |
| 2769 | { |
| 2770 | goto ret; |
| 2771 | } |
| 2772 | if (i >= ilim) |
| 2773 | break; |
| 2774 | b= multadd(b, 10, 0, &alloc); |
| 2775 | } |
| 2776 | |
| 2777 | /* Round off last digit */ |
| 2778 | |
| 2779 | #ifdef Honor_FLT_ROUNDS |
| 2780 | switch (rounding) { |
| 2781 | case 0: goto trimzeros; |
| 2782 | case 2: goto roundoff; |
| 2783 | } |
| 2784 | #endif |
| 2785 | b= lshift(b, 1, &alloc); |
| 2786 | j= cmp(b, S); |
| 2787 | if (j > 0 || (j == 0 && dig & 1)) |
| 2788 | { |
| 2789 | roundoff: |
| 2790 | while (*--s == '9') |
| 2791 | if (s == s0) |
| 2792 | { |
| 2793 | k++; |
| 2794 | *s++= '1'; |
| 2795 | goto ret; |
| 2796 | } |
| 2797 | ++*s++; |
| 2798 | } |
| 2799 | else |
| 2800 | { |
| 2801 | #ifdef Honor_FLT_ROUNDS |
| 2802 | trimzeros: |
| 2803 | #endif |
| 2804 | while (*--s == '0'); |
| 2805 | s++; |
| 2806 | } |
| 2807 | ret: |
| 2808 | Bfree(S, &alloc); |
| 2809 | if (mhi) |
| 2810 | { |
| 2811 | if (mlo && mlo != mhi) |
| 2812 | Bfree(mlo, &alloc); |
| 2813 | Bfree(mhi, &alloc); |
| 2814 | } |
| 2815 | ret1: |
| 2816 | Bfree(b, &alloc); |
| 2817 | *s= 0; |
| 2818 | *decpt= k + 1; |
| 2819 | if (rve) |
| 2820 | *rve= s; |
| 2821 | return s0; |
| 2822 | } |
| 2823 | |