1 | // random number generation (out of line) -*- C++ -*- |
2 | |
3 | // Copyright (C) 2009-2017 Free Software Foundation, Inc. |
4 | // |
5 | // This file is part of the GNU ISO C++ Library. This library is free |
6 | // software; you can redistribute it and/or modify it under the |
7 | // terms of the GNU General Public License as published by the |
8 | // Free Software Foundation; either version 3, or (at your option) |
9 | // any later version. |
10 | |
11 | // This library is distributed in the hope that it will be useful, |
12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 | // GNU General Public License for more details. |
15 | |
16 | // Under Section 7 of GPL version 3, you are granted additional |
17 | // permissions described in the GCC Runtime Library Exception, version |
18 | // 3.1, as published by the Free Software Foundation. |
19 | |
20 | // You should have received a copy of the GNU General Public License and |
21 | // a copy of the GCC Runtime Library Exception along with this program; |
22 | // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
23 | // <http://www.gnu.org/licenses/>. |
24 | |
25 | /** @file bits/random.tcc |
26 | * This is an internal header file, included by other library headers. |
27 | * Do not attempt to use it directly. @headername{random} |
28 | */ |
29 | |
30 | #ifndef _RANDOM_TCC |
31 | #define _RANDOM_TCC 1 |
32 | |
33 | #include <numeric> // std::accumulate and std::partial_sum |
34 | |
35 | namespace std _GLIBCXX_VISIBILITY(default) |
36 | { |
37 | /* |
38 | * (Further) implementation-space details. |
39 | */ |
40 | namespace __detail |
41 | { |
42 | _GLIBCXX_BEGIN_NAMESPACE_VERSION |
43 | |
44 | // General case for x = (ax + c) mod m -- use Schrage's algorithm |
45 | // to avoid integer overflow. |
46 | // |
47 | // Preconditions: a > 0, m > 0. |
48 | // |
49 | // Note: only works correctly for __m % __a < __m / __a. |
50 | template<typename _Tp, _Tp __m, _Tp __a, _Tp __c> |
51 | _Tp |
52 | _Mod<_Tp, __m, __a, __c, false, true>:: |
53 | __calc(_Tp __x) |
54 | { |
55 | if (__a == 1) |
56 | __x %= __m; |
57 | else |
58 | { |
59 | static const _Tp __q = __m / __a; |
60 | static const _Tp __r = __m % __a; |
61 | |
62 | _Tp __t1 = __a * (__x % __q); |
63 | _Tp __t2 = __r * (__x / __q); |
64 | if (__t1 >= __t2) |
65 | __x = __t1 - __t2; |
66 | else |
67 | __x = __m - __t2 + __t1; |
68 | } |
69 | |
70 | if (__c != 0) |
71 | { |
72 | const _Tp __d = __m - __x; |
73 | if (__d > __c) |
74 | __x += __c; |
75 | else |
76 | __x = __c - __d; |
77 | } |
78 | return __x; |
79 | } |
80 | |
81 | template<typename _InputIterator, typename _OutputIterator, |
82 | typename _Tp> |
83 | _OutputIterator |
84 | __normalize(_InputIterator __first, _InputIterator __last, |
85 | _OutputIterator __result, const _Tp& __factor) |
86 | { |
87 | for (; __first != __last; ++__first, ++__result) |
88 | *__result = *__first / __factor; |
89 | return __result; |
90 | } |
91 | |
92 | _GLIBCXX_END_NAMESPACE_VERSION |
93 | } // namespace __detail |
94 | |
95 | _GLIBCXX_BEGIN_NAMESPACE_VERSION |
96 | |
97 | template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> |
98 | constexpr _UIntType |
99 | linear_congruential_engine<_UIntType, __a, __c, __m>::multiplier; |
100 | |
101 | template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> |
102 | constexpr _UIntType |
103 | linear_congruential_engine<_UIntType, __a, __c, __m>::increment; |
104 | |
105 | template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> |
106 | constexpr _UIntType |
107 | linear_congruential_engine<_UIntType, __a, __c, __m>::modulus; |
108 | |
109 | template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> |
110 | constexpr _UIntType |
111 | linear_congruential_engine<_UIntType, __a, __c, __m>::default_seed; |
112 | |
113 | /** |
114 | * Seeds the LCR with integral value @p __s, adjusted so that the |
115 | * ring identity is never a member of the convergence set. |
116 | */ |
117 | template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> |
118 | void |
119 | linear_congruential_engine<_UIntType, __a, __c, __m>:: |
120 | seed(result_type __s) |
121 | { |
122 | if ((__detail::__mod<_UIntType, __m>(__c) == 0) |
123 | && (__detail::__mod<_UIntType, __m>(__s) == 0)) |
124 | _M_x = 1; |
125 | else |
126 | _M_x = __detail::__mod<_UIntType, __m>(__s); |
127 | } |
128 | |
129 | /** |
130 | * Seeds the LCR engine with a value generated by @p __q. |
131 | */ |
132 | template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> |
133 | template<typename _Sseq> |
134 | typename std::enable_if<std::is_class<_Sseq>::value>::type |
135 | linear_congruential_engine<_UIntType, __a, __c, __m>:: |
136 | seed(_Sseq& __q) |
137 | { |
138 | const _UIntType __k0 = __m == 0 ? std::numeric_limits<_UIntType>::digits |
139 | : std::__lg(__m); |
140 | const _UIntType __k = (__k0 + 31) / 32; |
141 | uint_least32_t __arr[__k + 3]; |
142 | __q.generate(__arr + 0, __arr + __k + 3); |
143 | _UIntType __factor = 1u; |
144 | _UIntType __sum = 0u; |
145 | for (size_t __j = 0; __j < __k; ++__j) |
146 | { |
147 | __sum += __arr[__j + 3] * __factor; |
148 | __factor *= __detail::_Shift<_UIntType, 32>::__value; |
149 | } |
150 | seed(__sum); |
151 | } |
152 | |
153 | template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m, |
154 | typename _CharT, typename _Traits> |
155 | std::basic_ostream<_CharT, _Traits>& |
156 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
157 | const linear_congruential_engine<_UIntType, |
158 | __a, __c, __m>& __lcr) |
159 | { |
160 | typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
161 | typedef typename __ostream_type::ios_base __ios_base; |
162 | |
163 | const typename __ios_base::fmtflags __flags = __os.flags(); |
164 | const _CharT __fill = __os.fill(); |
165 | __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left); |
166 | __os.fill(__os.widen(' ')); |
167 | |
168 | __os << __lcr._M_x; |
169 | |
170 | __os.flags(__flags); |
171 | __os.fill(__fill); |
172 | return __os; |
173 | } |
174 | |
175 | template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m, |
176 | typename _CharT, typename _Traits> |
177 | std::basic_istream<_CharT, _Traits>& |
178 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
179 | linear_congruential_engine<_UIntType, __a, __c, __m>& __lcr) |
180 | { |
181 | typedef std::basic_istream<_CharT, _Traits> __istream_type; |
182 | typedef typename __istream_type::ios_base __ios_base; |
183 | |
184 | const typename __ios_base::fmtflags __flags = __is.flags(); |
185 | __is.flags(__ios_base::dec); |
186 | |
187 | __is >> __lcr._M_x; |
188 | |
189 | __is.flags(__flags); |
190 | return __is; |
191 | } |
192 | |
193 | |
194 | template<typename _UIntType, |
195 | size_t __w, size_t __n, size_t __m, size_t __r, |
196 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
197 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
198 | _UIntType __f> |
199 | constexpr size_t |
200 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
201 | __s, __b, __t, __c, __l, __f>::word_size; |
202 | |
203 | template<typename _UIntType, |
204 | size_t __w, size_t __n, size_t __m, size_t __r, |
205 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
206 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
207 | _UIntType __f> |
208 | constexpr size_t |
209 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
210 | __s, __b, __t, __c, __l, __f>::state_size; |
211 | |
212 | template<typename _UIntType, |
213 | size_t __w, size_t __n, size_t __m, size_t __r, |
214 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
215 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
216 | _UIntType __f> |
217 | constexpr size_t |
218 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
219 | __s, __b, __t, __c, __l, __f>::shift_size; |
220 | |
221 | template<typename _UIntType, |
222 | size_t __w, size_t __n, size_t __m, size_t __r, |
223 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
224 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
225 | _UIntType __f> |
226 | constexpr size_t |
227 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
228 | __s, __b, __t, __c, __l, __f>::mask_bits; |
229 | |
230 | template<typename _UIntType, |
231 | size_t __w, size_t __n, size_t __m, size_t __r, |
232 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
233 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
234 | _UIntType __f> |
235 | constexpr _UIntType |
236 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
237 | __s, __b, __t, __c, __l, __f>::xor_mask; |
238 | |
239 | template<typename _UIntType, |
240 | size_t __w, size_t __n, size_t __m, size_t __r, |
241 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
242 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
243 | _UIntType __f> |
244 | constexpr size_t |
245 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
246 | __s, __b, __t, __c, __l, __f>::tempering_u; |
247 | |
248 | template<typename _UIntType, |
249 | size_t __w, size_t __n, size_t __m, size_t __r, |
250 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
251 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
252 | _UIntType __f> |
253 | constexpr _UIntType |
254 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
255 | __s, __b, __t, __c, __l, __f>::tempering_d; |
256 | |
257 | template<typename _UIntType, |
258 | size_t __w, size_t __n, size_t __m, size_t __r, |
259 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
260 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
261 | _UIntType __f> |
262 | constexpr size_t |
263 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
264 | __s, __b, __t, __c, __l, __f>::tempering_s; |
265 | |
266 | template<typename _UIntType, |
267 | size_t __w, size_t __n, size_t __m, size_t __r, |
268 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
269 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
270 | _UIntType __f> |
271 | constexpr _UIntType |
272 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
273 | __s, __b, __t, __c, __l, __f>::tempering_b; |
274 | |
275 | template<typename _UIntType, |
276 | size_t __w, size_t __n, size_t __m, size_t __r, |
277 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
278 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
279 | _UIntType __f> |
280 | constexpr size_t |
281 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
282 | __s, __b, __t, __c, __l, __f>::tempering_t; |
283 | |
284 | template<typename _UIntType, |
285 | size_t __w, size_t __n, size_t __m, size_t __r, |
286 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
287 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
288 | _UIntType __f> |
289 | constexpr _UIntType |
290 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
291 | __s, __b, __t, __c, __l, __f>::tempering_c; |
292 | |
293 | template<typename _UIntType, |
294 | size_t __w, size_t __n, size_t __m, size_t __r, |
295 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
296 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
297 | _UIntType __f> |
298 | constexpr size_t |
299 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
300 | __s, __b, __t, __c, __l, __f>::tempering_l; |
301 | |
302 | template<typename _UIntType, |
303 | size_t __w, size_t __n, size_t __m, size_t __r, |
304 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
305 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
306 | _UIntType __f> |
307 | constexpr _UIntType |
308 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
309 | __s, __b, __t, __c, __l, __f>:: |
310 | initialization_multiplier; |
311 | |
312 | template<typename _UIntType, |
313 | size_t __w, size_t __n, size_t __m, size_t __r, |
314 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
315 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
316 | _UIntType __f> |
317 | constexpr _UIntType |
318 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
319 | __s, __b, __t, __c, __l, __f>::default_seed; |
320 | |
321 | template<typename _UIntType, |
322 | size_t __w, size_t __n, size_t __m, size_t __r, |
323 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
324 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
325 | _UIntType __f> |
326 | void |
327 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
328 | __s, __b, __t, __c, __l, __f>:: |
329 | seed(result_type __sd) |
330 | { |
331 | _M_x[0] = __detail::__mod<_UIntType, |
332 | __detail::_Shift<_UIntType, __w>::__value>(__sd); |
333 | |
334 | for (size_t __i = 1; __i < state_size; ++__i) |
335 | { |
336 | _UIntType __x = _M_x[__i - 1]; |
337 | __x ^= __x >> (__w - 2); |
338 | __x *= __f; |
339 | __x += __detail::__mod<_UIntType, __n>(__i); |
340 | _M_x[__i] = __detail::__mod<_UIntType, |
341 | __detail::_Shift<_UIntType, __w>::__value>(__x); |
342 | } |
343 | _M_p = state_size; |
344 | } |
345 | |
346 | template<typename _UIntType, |
347 | size_t __w, size_t __n, size_t __m, size_t __r, |
348 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
349 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
350 | _UIntType __f> |
351 | template<typename _Sseq> |
352 | typename std::enable_if<std::is_class<_Sseq>::value>::type |
353 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
354 | __s, __b, __t, __c, __l, __f>:: |
355 | seed(_Sseq& __q) |
356 | { |
357 | const _UIntType __upper_mask = (~_UIntType()) << __r; |
358 | const size_t __k = (__w + 31) / 32; |
359 | uint_least32_t __arr[__n * __k]; |
360 | __q.generate(__arr + 0, __arr + __n * __k); |
361 | |
362 | bool __zero = true; |
363 | for (size_t __i = 0; __i < state_size; ++__i) |
364 | { |
365 | _UIntType __factor = 1u; |
366 | _UIntType __sum = 0u; |
367 | for (size_t __j = 0; __j < __k; ++__j) |
368 | { |
369 | __sum += __arr[__k * __i + __j] * __factor; |
370 | __factor *= __detail::_Shift<_UIntType, 32>::__value; |
371 | } |
372 | _M_x[__i] = __detail::__mod<_UIntType, |
373 | __detail::_Shift<_UIntType, __w>::__value>(__sum); |
374 | |
375 | if (__zero) |
376 | { |
377 | if (__i == 0) |
378 | { |
379 | if ((_M_x[0] & __upper_mask) != 0u) |
380 | __zero = false; |
381 | } |
382 | else if (_M_x[__i] != 0u) |
383 | __zero = false; |
384 | } |
385 | } |
386 | if (__zero) |
387 | _M_x[0] = __detail::_Shift<_UIntType, __w - 1>::__value; |
388 | _M_p = state_size; |
389 | } |
390 | |
391 | template<typename _UIntType, size_t __w, |
392 | size_t __n, size_t __m, size_t __r, |
393 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
394 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
395 | _UIntType __f> |
396 | void |
397 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
398 | __s, __b, __t, __c, __l, __f>:: |
399 | _M_gen_rand(void) |
400 | { |
401 | const _UIntType __upper_mask = (~_UIntType()) << __r; |
402 | const _UIntType __lower_mask = ~__upper_mask; |
403 | |
404 | for (size_t __k = 0; __k < (__n - __m); ++__k) |
405 | { |
406 | _UIntType __y = ((_M_x[__k] & __upper_mask) |
407 | | (_M_x[__k + 1] & __lower_mask)); |
408 | _M_x[__k] = (_M_x[__k + __m] ^ (__y >> 1) |
409 | ^ ((__y & 0x01) ? __a : 0)); |
410 | } |
411 | |
412 | for (size_t __k = (__n - __m); __k < (__n - 1); ++__k) |
413 | { |
414 | _UIntType __y = ((_M_x[__k] & __upper_mask) |
415 | | (_M_x[__k + 1] & __lower_mask)); |
416 | _M_x[__k] = (_M_x[__k + (__m - __n)] ^ (__y >> 1) |
417 | ^ ((__y & 0x01) ? __a : 0)); |
418 | } |
419 | |
420 | _UIntType __y = ((_M_x[__n - 1] & __upper_mask) |
421 | | (_M_x[0] & __lower_mask)); |
422 | _M_x[__n - 1] = (_M_x[__m - 1] ^ (__y >> 1) |
423 | ^ ((__y & 0x01) ? __a : 0)); |
424 | _M_p = 0; |
425 | } |
426 | |
427 | template<typename _UIntType, size_t __w, |
428 | size_t __n, size_t __m, size_t __r, |
429 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
430 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
431 | _UIntType __f> |
432 | void |
433 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
434 | __s, __b, __t, __c, __l, __f>:: |
435 | discard(unsigned long long __z) |
436 | { |
437 | while (__z > state_size - _M_p) |
438 | { |
439 | __z -= state_size - _M_p; |
440 | _M_gen_rand(); |
441 | } |
442 | _M_p += __z; |
443 | } |
444 | |
445 | template<typename _UIntType, size_t __w, |
446 | size_t __n, size_t __m, size_t __r, |
447 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
448 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
449 | _UIntType __f> |
450 | typename |
451 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
452 | __s, __b, __t, __c, __l, __f>::result_type |
453 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
454 | __s, __b, __t, __c, __l, __f>:: |
455 | operator()() |
456 | { |
457 | // Reload the vector - cost is O(n) amortized over n calls. |
458 | if (_M_p >= state_size) |
459 | _M_gen_rand(); |
460 | |
461 | // Calculate o(x(i)). |
462 | result_type __z = _M_x[_M_p++]; |
463 | __z ^= (__z >> __u) & __d; |
464 | __z ^= (__z << __s) & __b; |
465 | __z ^= (__z << __t) & __c; |
466 | __z ^= (__z >> __l); |
467 | |
468 | return __z; |
469 | } |
470 | |
471 | template<typename _UIntType, size_t __w, |
472 | size_t __n, size_t __m, size_t __r, |
473 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
474 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
475 | _UIntType __f, typename _CharT, typename _Traits> |
476 | std::basic_ostream<_CharT, _Traits>& |
477 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
478 | const mersenne_twister_engine<_UIntType, __w, __n, __m, |
479 | __r, __a, __u, __d, __s, __b, __t, __c, __l, __f>& __x) |
480 | { |
481 | typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
482 | typedef typename __ostream_type::ios_base __ios_base; |
483 | |
484 | const typename __ios_base::fmtflags __flags = __os.flags(); |
485 | const _CharT __fill = __os.fill(); |
486 | const _CharT __space = __os.widen(' '); |
487 | __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left); |
488 | __os.fill(__space); |
489 | |
490 | for (size_t __i = 0; __i < __n; ++__i) |
491 | __os << __x._M_x[__i] << __space; |
492 | __os << __x._M_p; |
493 | |
494 | __os.flags(__flags); |
495 | __os.fill(__fill); |
496 | return __os; |
497 | } |
498 | |
499 | template<typename _UIntType, size_t __w, |
500 | size_t __n, size_t __m, size_t __r, |
501 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
502 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
503 | _UIntType __f, typename _CharT, typename _Traits> |
504 | std::basic_istream<_CharT, _Traits>& |
505 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
506 | mersenne_twister_engine<_UIntType, __w, __n, __m, |
507 | __r, __a, __u, __d, __s, __b, __t, __c, __l, __f>& __x) |
508 | { |
509 | typedef std::basic_istream<_CharT, _Traits> __istream_type; |
510 | typedef typename __istream_type::ios_base __ios_base; |
511 | |
512 | const typename __ios_base::fmtflags __flags = __is.flags(); |
513 | __is.flags(__ios_base::dec | __ios_base::skipws); |
514 | |
515 | for (size_t __i = 0; __i < __n; ++__i) |
516 | __is >> __x._M_x[__i]; |
517 | __is >> __x._M_p; |
518 | |
519 | __is.flags(__flags); |
520 | return __is; |
521 | } |
522 | |
523 | |
524 | template<typename _UIntType, size_t __w, size_t __s, size_t __r> |
525 | constexpr size_t |
526 | subtract_with_carry_engine<_UIntType, __w, __s, __r>::word_size; |
527 | |
528 | template<typename _UIntType, size_t __w, size_t __s, size_t __r> |
529 | constexpr size_t |
530 | subtract_with_carry_engine<_UIntType, __w, __s, __r>::short_lag; |
531 | |
532 | template<typename _UIntType, size_t __w, size_t __s, size_t __r> |
533 | constexpr size_t |
534 | subtract_with_carry_engine<_UIntType, __w, __s, __r>::long_lag; |
535 | |
536 | template<typename _UIntType, size_t __w, size_t __s, size_t __r> |
537 | constexpr _UIntType |
538 | subtract_with_carry_engine<_UIntType, __w, __s, __r>::default_seed; |
539 | |
540 | template<typename _UIntType, size_t __w, size_t __s, size_t __r> |
541 | void |
542 | subtract_with_carry_engine<_UIntType, __w, __s, __r>:: |
543 | seed(result_type __value) |
544 | { |
545 | std::linear_congruential_engine<result_type, 40014u, 0u, 2147483563u> |
546 | __lcg(__value == 0u ? default_seed : __value); |
547 | |
548 | const size_t __n = (__w + 31) / 32; |
549 | |
550 | for (size_t __i = 0; __i < long_lag; ++__i) |
551 | { |
552 | _UIntType __sum = 0u; |
553 | _UIntType __factor = 1u; |
554 | for (size_t __j = 0; __j < __n; ++__j) |
555 | { |
556 | __sum += __detail::__mod<uint_least32_t, |
557 | __detail::_Shift<uint_least32_t, 32>::__value> |
558 | (__lcg()) * __factor; |
559 | __factor *= __detail::_Shift<_UIntType, 32>::__value; |
560 | } |
561 | _M_x[__i] = __detail::__mod<_UIntType, |
562 | __detail::_Shift<_UIntType, __w>::__value>(__sum); |
563 | } |
564 | _M_carry = (_M_x[long_lag - 1] == 0) ? 1 : 0; |
565 | _M_p = 0; |
566 | } |
567 | |
568 | template<typename _UIntType, size_t __w, size_t __s, size_t __r> |
569 | template<typename _Sseq> |
570 | typename std::enable_if<std::is_class<_Sseq>::value>::type |
571 | subtract_with_carry_engine<_UIntType, __w, __s, __r>:: |
572 | seed(_Sseq& __q) |
573 | { |
574 | const size_t __k = (__w + 31) / 32; |
575 | uint_least32_t __arr[__r * __k]; |
576 | __q.generate(__arr + 0, __arr + __r * __k); |
577 | |
578 | for (size_t __i = 0; __i < long_lag; ++__i) |
579 | { |
580 | _UIntType __sum = 0u; |
581 | _UIntType __factor = 1u; |
582 | for (size_t __j = 0; __j < __k; ++__j) |
583 | { |
584 | __sum += __arr[__k * __i + __j] * __factor; |
585 | __factor *= __detail::_Shift<_UIntType, 32>::__value; |
586 | } |
587 | _M_x[__i] = __detail::__mod<_UIntType, |
588 | __detail::_Shift<_UIntType, __w>::__value>(__sum); |
589 | } |
590 | _M_carry = (_M_x[long_lag - 1] == 0) ? 1 : 0; |
591 | _M_p = 0; |
592 | } |
593 | |
594 | template<typename _UIntType, size_t __w, size_t __s, size_t __r> |
595 | typename subtract_with_carry_engine<_UIntType, __w, __s, __r>:: |
596 | result_type |
597 | subtract_with_carry_engine<_UIntType, __w, __s, __r>:: |
598 | operator()() |
599 | { |
600 | // Derive short lag index from current index. |
601 | long __ps = _M_p - short_lag; |
602 | if (__ps < 0) |
603 | __ps += long_lag; |
604 | |
605 | // Calculate new x(i) without overflow or division. |
606 | // NB: Thanks to the requirements for _UIntType, _M_x[_M_p] + _M_carry |
607 | // cannot overflow. |
608 | _UIntType __xi; |
609 | if (_M_x[__ps] >= _M_x[_M_p] + _M_carry) |
610 | { |
611 | __xi = _M_x[__ps] - _M_x[_M_p] - _M_carry; |
612 | _M_carry = 0; |
613 | } |
614 | else |
615 | { |
616 | __xi = (__detail::_Shift<_UIntType, __w>::__value |
617 | - _M_x[_M_p] - _M_carry + _M_x[__ps]); |
618 | _M_carry = 1; |
619 | } |
620 | _M_x[_M_p] = __xi; |
621 | |
622 | // Adjust current index to loop around in ring buffer. |
623 | if (++_M_p >= long_lag) |
624 | _M_p = 0; |
625 | |
626 | return __xi; |
627 | } |
628 | |
629 | template<typename _UIntType, size_t __w, size_t __s, size_t __r, |
630 | typename _CharT, typename _Traits> |
631 | std::basic_ostream<_CharT, _Traits>& |
632 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
633 | const subtract_with_carry_engine<_UIntType, |
634 | __w, __s, __r>& __x) |
635 | { |
636 | typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
637 | typedef typename __ostream_type::ios_base __ios_base; |
638 | |
639 | const typename __ios_base::fmtflags __flags = __os.flags(); |
640 | const _CharT __fill = __os.fill(); |
641 | const _CharT __space = __os.widen(' '); |
642 | __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left); |
643 | __os.fill(__space); |
644 | |
645 | for (size_t __i = 0; __i < __r; ++__i) |
646 | __os << __x._M_x[__i] << __space; |
647 | __os << __x._M_carry << __space << __x._M_p; |
648 | |
649 | __os.flags(__flags); |
650 | __os.fill(__fill); |
651 | return __os; |
652 | } |
653 | |
654 | template<typename _UIntType, size_t __w, size_t __s, size_t __r, |
655 | typename _CharT, typename _Traits> |
656 | std::basic_istream<_CharT, _Traits>& |
657 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
658 | subtract_with_carry_engine<_UIntType, __w, __s, __r>& __x) |
659 | { |
660 | typedef std::basic_ostream<_CharT, _Traits> __istream_type; |
661 | typedef typename __istream_type::ios_base __ios_base; |
662 | |
663 | const typename __ios_base::fmtflags __flags = __is.flags(); |
664 | __is.flags(__ios_base::dec | __ios_base::skipws); |
665 | |
666 | for (size_t __i = 0; __i < __r; ++__i) |
667 | __is >> __x._M_x[__i]; |
668 | __is >> __x._M_carry; |
669 | __is >> __x._M_p; |
670 | |
671 | __is.flags(__flags); |
672 | return __is; |
673 | } |
674 | |
675 | |
676 | template<typename _RandomNumberEngine, size_t __p, size_t __r> |
677 | constexpr size_t |
678 | discard_block_engine<_RandomNumberEngine, __p, __r>::block_size; |
679 | |
680 | template<typename _RandomNumberEngine, size_t __p, size_t __r> |
681 | constexpr size_t |
682 | discard_block_engine<_RandomNumberEngine, __p, __r>::used_block; |
683 | |
684 | template<typename _RandomNumberEngine, size_t __p, size_t __r> |
685 | typename discard_block_engine<_RandomNumberEngine, |
686 | __p, __r>::result_type |
687 | discard_block_engine<_RandomNumberEngine, __p, __r>:: |
688 | operator()() |
689 | { |
690 | if (_M_n >= used_block) |
691 | { |
692 | _M_b.discard(block_size - _M_n); |
693 | _M_n = 0; |
694 | } |
695 | ++_M_n; |
696 | return _M_b(); |
697 | } |
698 | |
699 | template<typename _RandomNumberEngine, size_t __p, size_t __r, |
700 | typename _CharT, typename _Traits> |
701 | std::basic_ostream<_CharT, _Traits>& |
702 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
703 | const discard_block_engine<_RandomNumberEngine, |
704 | __p, __r>& __x) |
705 | { |
706 | typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
707 | typedef typename __ostream_type::ios_base __ios_base; |
708 | |
709 | const typename __ios_base::fmtflags __flags = __os.flags(); |
710 | const _CharT __fill = __os.fill(); |
711 | const _CharT __space = __os.widen(' '); |
712 | __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left); |
713 | __os.fill(__space); |
714 | |
715 | __os << __x.base() << __space << __x._M_n; |
716 | |
717 | __os.flags(__flags); |
718 | __os.fill(__fill); |
719 | return __os; |
720 | } |
721 | |
722 | template<typename _RandomNumberEngine, size_t __p, size_t __r, |
723 | typename _CharT, typename _Traits> |
724 | std::basic_istream<_CharT, _Traits>& |
725 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
726 | discard_block_engine<_RandomNumberEngine, __p, __r>& __x) |
727 | { |
728 | typedef std::basic_istream<_CharT, _Traits> __istream_type; |
729 | typedef typename __istream_type::ios_base __ios_base; |
730 | |
731 | const typename __ios_base::fmtflags __flags = __is.flags(); |
732 | __is.flags(__ios_base::dec | __ios_base::skipws); |
733 | |
734 | __is >> __x._M_b >> __x._M_n; |
735 | |
736 | __is.flags(__flags); |
737 | return __is; |
738 | } |
739 | |
740 | |
741 | template<typename _RandomNumberEngine, size_t __w, typename _UIntType> |
742 | typename independent_bits_engine<_RandomNumberEngine, __w, _UIntType>:: |
743 | result_type |
744 | independent_bits_engine<_RandomNumberEngine, __w, _UIntType>:: |
745 | operator()() |
746 | { |
747 | typedef typename _RandomNumberEngine::result_type _Eresult_type; |
748 | const _Eresult_type __r |
749 | = (_M_b.max() - _M_b.min() < std::numeric_limits<_Eresult_type>::max() |
750 | ? _M_b.max() - _M_b.min() + 1 : 0); |
751 | const unsigned __edig = std::numeric_limits<_Eresult_type>::digits; |
752 | const unsigned __m = __r ? std::__lg(__r) : __edig; |
753 | |
754 | typedef typename std::common_type<_Eresult_type, result_type>::type |
755 | __ctype; |
756 | const unsigned __cdig = std::numeric_limits<__ctype>::digits; |
757 | |
758 | unsigned __n, __n0; |
759 | __ctype __s0, __s1, __y0, __y1; |
760 | |
761 | for (size_t __i = 0; __i < 2; ++__i) |
762 | { |
763 | __n = (__w + __m - 1) / __m + __i; |
764 | __n0 = __n - __w % __n; |
765 | const unsigned __w0 = __w / __n; // __w0 <= __m |
766 | |
767 | __s0 = 0; |
768 | __s1 = 0; |
769 | if (__w0 < __cdig) |
770 | { |
771 | __s0 = __ctype(1) << __w0; |
772 | __s1 = __s0 << 1; |
773 | } |
774 | |
775 | __y0 = 0; |
776 | __y1 = 0; |
777 | if (__r) |
778 | { |
779 | __y0 = __s0 * (__r / __s0); |
780 | if (__s1) |
781 | __y1 = __s1 * (__r / __s1); |
782 | |
783 | if (__r - __y0 <= __y0 / __n) |
784 | break; |
785 | } |
786 | else |
787 | break; |
788 | } |
789 | |
790 | result_type __sum = 0; |
791 | for (size_t __k = 0; __k < __n0; ++__k) |
792 | { |
793 | __ctype __u; |
794 | do |
795 | __u = _M_b() - _M_b.min(); |
796 | while (__y0 && __u >= __y0); |
797 | __sum = __s0 * __sum + (__s0 ? __u % __s0 : __u); |
798 | } |
799 | for (size_t __k = __n0; __k < __n; ++__k) |
800 | { |
801 | __ctype __u; |
802 | do |
803 | __u = _M_b() - _M_b.min(); |
804 | while (__y1 && __u >= __y1); |
805 | __sum = __s1 * __sum + (__s1 ? __u % __s1 : __u); |
806 | } |
807 | return __sum; |
808 | } |
809 | |
810 | |
811 | template<typename _RandomNumberEngine, size_t __k> |
812 | constexpr size_t |
813 | shuffle_order_engine<_RandomNumberEngine, __k>::table_size; |
814 | |
815 | template<typename _RandomNumberEngine, size_t __k> |
816 | typename shuffle_order_engine<_RandomNumberEngine, __k>::result_type |
817 | shuffle_order_engine<_RandomNumberEngine, __k>:: |
818 | operator()() |
819 | { |
820 | size_t __j = __k * ((_M_y - _M_b.min()) |
821 | / (_M_b.max() - _M_b.min() + 1.0L)); |
822 | _M_y = _M_v[__j]; |
823 | _M_v[__j] = _M_b(); |
824 | |
825 | return _M_y; |
826 | } |
827 | |
828 | template<typename _RandomNumberEngine, size_t __k, |
829 | typename _CharT, typename _Traits> |
830 | std::basic_ostream<_CharT, _Traits>& |
831 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
832 | const shuffle_order_engine<_RandomNumberEngine, __k>& __x) |
833 | { |
834 | typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
835 | typedef typename __ostream_type::ios_base __ios_base; |
836 | |
837 | const typename __ios_base::fmtflags __flags = __os.flags(); |
838 | const _CharT __fill = __os.fill(); |
839 | const _CharT __space = __os.widen(' '); |
840 | __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left); |
841 | __os.fill(__space); |
842 | |
843 | __os << __x.base(); |
844 | for (size_t __i = 0; __i < __k; ++__i) |
845 | __os << __space << __x._M_v[__i]; |
846 | __os << __space << __x._M_y; |
847 | |
848 | __os.flags(__flags); |
849 | __os.fill(__fill); |
850 | return __os; |
851 | } |
852 | |
853 | template<typename _RandomNumberEngine, size_t __k, |
854 | typename _CharT, typename _Traits> |
855 | std::basic_istream<_CharT, _Traits>& |
856 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
857 | shuffle_order_engine<_RandomNumberEngine, __k>& __x) |
858 | { |
859 | typedef std::basic_istream<_CharT, _Traits> __istream_type; |
860 | typedef typename __istream_type::ios_base __ios_base; |
861 | |
862 | const typename __ios_base::fmtflags __flags = __is.flags(); |
863 | __is.flags(__ios_base::dec | __ios_base::skipws); |
864 | |
865 | __is >> __x._M_b; |
866 | for (size_t __i = 0; __i < __k; ++__i) |
867 | __is >> __x._M_v[__i]; |
868 | __is >> __x._M_y; |
869 | |
870 | __is.flags(__flags); |
871 | return __is; |
872 | } |
873 | |
874 | |
875 | template<typename _IntType, typename _CharT, typename _Traits> |
876 | std::basic_ostream<_CharT, _Traits>& |
877 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
878 | const uniform_int_distribution<_IntType>& __x) |
879 | { |
880 | typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
881 | typedef typename __ostream_type::ios_base __ios_base; |
882 | |
883 | const typename __ios_base::fmtflags __flags = __os.flags(); |
884 | const _CharT __fill = __os.fill(); |
885 | const _CharT __space = __os.widen(' '); |
886 | __os.flags(__ios_base::scientific | __ios_base::left); |
887 | __os.fill(__space); |
888 | |
889 | __os << __x.a() << __space << __x.b(); |
890 | |
891 | __os.flags(__flags); |
892 | __os.fill(__fill); |
893 | return __os; |
894 | } |
895 | |
896 | template<typename _IntType, typename _CharT, typename _Traits> |
897 | std::basic_istream<_CharT, _Traits>& |
898 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
899 | uniform_int_distribution<_IntType>& __x) |
900 | { |
901 | typedef std::basic_istream<_CharT, _Traits> __istream_type; |
902 | typedef typename __istream_type::ios_base __ios_base; |
903 | |
904 | const typename __ios_base::fmtflags __flags = __is.flags(); |
905 | __is.flags(__ios_base::dec | __ios_base::skipws); |
906 | |
907 | _IntType __a, __b; |
908 | __is >> __a >> __b; |
909 | __x.param(typename uniform_int_distribution<_IntType>:: |
910 | param_type(__a, __b)); |
911 | |
912 | __is.flags(__flags); |
913 | return __is; |
914 | } |
915 | |
916 | |
917 | template<typename _RealType> |
918 | template<typename _ForwardIterator, |
919 | typename _UniformRandomNumberGenerator> |
920 | void |
921 | uniform_real_distribution<_RealType>:: |
922 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
923 | _UniformRandomNumberGenerator& __urng, |
924 | const param_type& __p) |
925 | { |
926 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
927 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
928 | __aurng(__urng); |
929 | auto __range = __p.b() - __p.a(); |
930 | while (__f != __t) |
931 | *__f++ = __aurng() * __range + __p.a(); |
932 | } |
933 | |
934 | template<typename _RealType, typename _CharT, typename _Traits> |
935 | std::basic_ostream<_CharT, _Traits>& |
936 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
937 | const uniform_real_distribution<_RealType>& __x) |
938 | { |
939 | typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
940 | typedef typename __ostream_type::ios_base __ios_base; |
941 | |
942 | const typename __ios_base::fmtflags __flags = __os.flags(); |
943 | const _CharT __fill = __os.fill(); |
944 | const std::streamsize __precision = __os.precision(); |
945 | const _CharT __space = __os.widen(' '); |
946 | __os.flags(__ios_base::scientific | __ios_base::left); |
947 | __os.fill(__space); |
948 | __os.precision(std::numeric_limits<_RealType>::max_digits10); |
949 | |
950 | __os << __x.a() << __space << __x.b(); |
951 | |
952 | __os.flags(__flags); |
953 | __os.fill(__fill); |
954 | __os.precision(__precision); |
955 | return __os; |
956 | } |
957 | |
958 | template<typename _RealType, typename _CharT, typename _Traits> |
959 | std::basic_istream<_CharT, _Traits>& |
960 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
961 | uniform_real_distribution<_RealType>& __x) |
962 | { |
963 | typedef std::basic_istream<_CharT, _Traits> __istream_type; |
964 | typedef typename __istream_type::ios_base __ios_base; |
965 | |
966 | const typename __ios_base::fmtflags __flags = __is.flags(); |
967 | __is.flags(__ios_base::skipws); |
968 | |
969 | _RealType __a, __b; |
970 | __is >> __a >> __b; |
971 | __x.param(typename uniform_real_distribution<_RealType>:: |
972 | param_type(__a, __b)); |
973 | |
974 | __is.flags(__flags); |
975 | return __is; |
976 | } |
977 | |
978 | |
979 | template<typename _ForwardIterator, |
980 | typename _UniformRandomNumberGenerator> |
981 | void |
982 | std::bernoulli_distribution:: |
983 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
984 | _UniformRandomNumberGenerator& __urng, |
985 | const param_type& __p) |
986 | { |
987 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
988 | __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
989 | __aurng(__urng); |
990 | auto __limit = __p.p() * (__aurng.max() - __aurng.min()); |
991 | |
992 | while (__f != __t) |
993 | *__f++ = (__aurng() - __aurng.min()) < __limit; |
994 | } |
995 | |
996 | template<typename _CharT, typename _Traits> |
997 | std::basic_ostream<_CharT, _Traits>& |
998 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
999 | const bernoulli_distribution& __x) |
1000 | { |
1001 | typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
1002 | typedef typename __ostream_type::ios_base __ios_base; |
1003 | |
1004 | const typename __ios_base::fmtflags __flags = __os.flags(); |
1005 | const _CharT __fill = __os.fill(); |
1006 | const std::streamsize __precision = __os.precision(); |
1007 | __os.flags(__ios_base::scientific | __ios_base::left); |
1008 | __os.fill(__os.widen(' ')); |
1009 | __os.precision(std::numeric_limits<double>::max_digits10); |
1010 | |
1011 | __os << __x.p(); |
1012 | |
1013 | __os.flags(__flags); |
1014 | __os.fill(__fill); |
1015 | __os.precision(__precision); |
1016 | return __os; |
1017 | } |
1018 | |
1019 | |
1020 | template<typename _IntType> |
1021 | template<typename _UniformRandomNumberGenerator> |
1022 | typename geometric_distribution<_IntType>::result_type |
1023 | geometric_distribution<_IntType>:: |
1024 | operator()(_UniformRandomNumberGenerator& __urng, |
1025 | const param_type& __param) |
1026 | { |
1027 | // About the epsilon thing see this thread: |
1028 | // http://gcc.gnu.org/ml/gcc-patches/2006-10/msg00971.html |
1029 | const double __naf = |
1030 | (1 - std::numeric_limits<double>::epsilon()) / 2; |
1031 | // The largest _RealType convertible to _IntType. |
1032 | const double __thr = |
1033 | std::numeric_limits<_IntType>::max() + __naf; |
1034 | __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
1035 | __aurng(__urng); |
1036 | |
1037 | double __cand; |
1038 | do |
1039 | __cand = std::floor(std::log(1.0 - __aurng()) / __param._M_log_1_p); |
1040 | while (__cand >= __thr); |
1041 | |
1042 | return result_type(__cand + __naf); |
1043 | } |
1044 | |
1045 | template<typename _IntType> |
1046 | template<typename _ForwardIterator, |
1047 | typename _UniformRandomNumberGenerator> |
1048 | void |
1049 | geometric_distribution<_IntType>:: |
1050 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
1051 | _UniformRandomNumberGenerator& __urng, |
1052 | const param_type& __param) |
1053 | { |
1054 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
1055 | // About the epsilon thing see this thread: |
1056 | // http://gcc.gnu.org/ml/gcc-patches/2006-10/msg00971.html |
1057 | const double __naf = |
1058 | (1 - std::numeric_limits<double>::epsilon()) / 2; |
1059 | // The largest _RealType convertible to _IntType. |
1060 | const double __thr = |
1061 | std::numeric_limits<_IntType>::max() + __naf; |
1062 | __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
1063 | __aurng(__urng); |
1064 | |
1065 | while (__f != __t) |
1066 | { |
1067 | double __cand; |
1068 | do |
1069 | __cand = std::floor(std::log(1.0 - __aurng()) |
1070 | / __param._M_log_1_p); |
1071 | while (__cand >= __thr); |
1072 | |
1073 | *__f++ = __cand + __naf; |
1074 | } |
1075 | } |
1076 | |
1077 | template<typename _IntType, |
1078 | typename _CharT, typename _Traits> |
1079 | std::basic_ostream<_CharT, _Traits>& |
1080 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
1081 | const geometric_distribution<_IntType>& __x) |
1082 | { |
1083 | typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
1084 | typedef typename __ostream_type::ios_base __ios_base; |
1085 | |
1086 | const typename __ios_base::fmtflags __flags = __os.flags(); |
1087 | const _CharT __fill = __os.fill(); |
1088 | const std::streamsize __precision = __os.precision(); |
1089 | __os.flags(__ios_base::scientific | __ios_base::left); |
1090 | __os.fill(__os.widen(' ')); |
1091 | __os.precision(std::numeric_limits<double>::max_digits10); |
1092 | |
1093 | __os << __x.p(); |
1094 | |
1095 | __os.flags(__flags); |
1096 | __os.fill(__fill); |
1097 | __os.precision(__precision); |
1098 | return __os; |
1099 | } |
1100 | |
1101 | template<typename _IntType, |
1102 | typename _CharT, typename _Traits> |
1103 | std::basic_istream<_CharT, _Traits>& |
1104 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
1105 | geometric_distribution<_IntType>& __x) |
1106 | { |
1107 | typedef std::basic_istream<_CharT, _Traits> __istream_type; |
1108 | typedef typename __istream_type::ios_base __ios_base; |
1109 | |
1110 | const typename __ios_base::fmtflags __flags = __is.flags(); |
1111 | __is.flags(__ios_base::skipws); |
1112 | |
1113 | double __p; |
1114 | __is >> __p; |
1115 | __x.param(typename geometric_distribution<_IntType>::param_type(__p)); |
1116 | |
1117 | __is.flags(__flags); |
1118 | return __is; |
1119 | } |
1120 | |
1121 | // This is Leger's algorithm, also in Devroye, Ch. X, Example 1.5. |
1122 | template<typename _IntType> |
1123 | template<typename _UniformRandomNumberGenerator> |
1124 | typename negative_binomial_distribution<_IntType>::result_type |
1125 | negative_binomial_distribution<_IntType>:: |
1126 | operator()(_UniformRandomNumberGenerator& __urng) |
1127 | { |
1128 | const double __y = _M_gd(__urng); |
1129 | |
1130 | // XXX Is the constructor too slow? |
1131 | std::poisson_distribution<result_type> __poisson(__y); |
1132 | return __poisson(__urng); |
1133 | } |
1134 | |
1135 | template<typename _IntType> |
1136 | template<typename _UniformRandomNumberGenerator> |
1137 | typename negative_binomial_distribution<_IntType>::result_type |
1138 | negative_binomial_distribution<_IntType>:: |
1139 | operator()(_UniformRandomNumberGenerator& __urng, |
1140 | const param_type& __p) |
1141 | { |
1142 | typedef typename std::gamma_distribution<double>::param_type |
1143 | param_type; |
1144 | |
1145 | const double __y = |
1146 | _M_gd(__urng, param_type(__p.k(), (1.0 - __p.p()) / __p.p())); |
1147 | |
1148 | std::poisson_distribution<result_type> __poisson(__y); |
1149 | return __poisson(__urng); |
1150 | } |
1151 | |
1152 | template<typename _IntType> |
1153 | template<typename _ForwardIterator, |
1154 | typename _UniformRandomNumberGenerator> |
1155 | void |
1156 | negative_binomial_distribution<_IntType>:: |
1157 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
1158 | _UniformRandomNumberGenerator& __urng) |
1159 | { |
1160 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
1161 | while (__f != __t) |
1162 | { |
1163 | const double __y = _M_gd(__urng); |
1164 | |
1165 | // XXX Is the constructor too slow? |
1166 | std::poisson_distribution<result_type> __poisson(__y); |
1167 | *__f++ = __poisson(__urng); |
1168 | } |
1169 | } |
1170 | |
1171 | template<typename _IntType> |
1172 | template<typename _ForwardIterator, |
1173 | typename _UniformRandomNumberGenerator> |
1174 | void |
1175 | negative_binomial_distribution<_IntType>:: |
1176 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
1177 | _UniformRandomNumberGenerator& __urng, |
1178 | const param_type& __p) |
1179 | { |
1180 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
1181 | typename std::gamma_distribution<result_type>::param_type |
1182 | __p2(__p.k(), (1.0 - __p.p()) / __p.p()); |
1183 | |
1184 | while (__f != __t) |
1185 | { |
1186 | const double __y = _M_gd(__urng, __p2); |
1187 | |
1188 | std::poisson_distribution<result_type> __poisson(__y); |
1189 | *__f++ = __poisson(__urng); |
1190 | } |
1191 | } |
1192 | |
1193 | template<typename _IntType, typename _CharT, typename _Traits> |
1194 | std::basic_ostream<_CharT, _Traits>& |
1195 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
1196 | const negative_binomial_distribution<_IntType>& __x) |
1197 | { |
1198 | typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
1199 | typedef typename __ostream_type::ios_base __ios_base; |
1200 | |
1201 | const typename __ios_base::fmtflags __flags = __os.flags(); |
1202 | const _CharT __fill = __os.fill(); |
1203 | const std::streamsize __precision = __os.precision(); |
1204 | const _CharT __space = __os.widen(' '); |
1205 | __os.flags(__ios_base::scientific | __ios_base::left); |
1206 | __os.fill(__os.widen(' ')); |
1207 | __os.precision(std::numeric_limits<double>::max_digits10); |
1208 | |
1209 | __os << __x.k() << __space << __x.p() |
1210 | << __space << __x._M_gd; |
1211 | |
1212 | __os.flags(__flags); |
1213 | __os.fill(__fill); |
1214 | __os.precision(__precision); |
1215 | return __os; |
1216 | } |
1217 | |
1218 | template<typename _IntType, typename _CharT, typename _Traits> |
1219 | std::basic_istream<_CharT, _Traits>& |
1220 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
1221 | negative_binomial_distribution<_IntType>& __x) |
1222 | { |
1223 | typedef std::basic_istream<_CharT, _Traits> __istream_type; |
1224 | typedef typename __istream_type::ios_base __ios_base; |
1225 | |
1226 | const typename __ios_base::fmtflags __flags = __is.flags(); |
1227 | __is.flags(__ios_base::skipws); |
1228 | |
1229 | _IntType __k; |
1230 | double __p; |
1231 | __is >> __k >> __p >> __x._M_gd; |
1232 | __x.param(typename negative_binomial_distribution<_IntType>:: |
1233 | param_type(__k, __p)); |
1234 | |
1235 | __is.flags(__flags); |
1236 | return __is; |
1237 | } |
1238 | |
1239 | |
1240 | template<typename _IntType> |
1241 | void |
1242 | poisson_distribution<_IntType>::param_type:: |
1243 | _M_initialize() |
1244 | { |
1245 | #if _GLIBCXX_USE_C99_MATH_TR1 |
1246 | if (_M_mean >= 12) |
1247 | { |
1248 | const double __m = std::floor(_M_mean); |
1249 | _M_lm_thr = std::log(_M_mean); |
1250 | _M_lfm = std::lgamma(__m + 1); |
1251 | _M_sm = std::sqrt(__m); |
1252 | |
1253 | const double __pi_4 = 0.7853981633974483096156608458198757L; |
1254 | const double __dx = std::sqrt(2 * __m * std::log(32 * __m |
1255 | / __pi_4)); |
1256 | _M_d = std::round(std::max<double>(6.0, std::min(__m, __dx))); |
1257 | const double __cx = 2 * __m + _M_d; |
1258 | _M_scx = std::sqrt(__cx / 2); |
1259 | _M_1cx = 1 / __cx; |
1260 | |
1261 | _M_c2b = std::sqrt(__pi_4 * __cx) * std::exp(_M_1cx); |
1262 | _M_cb = 2 * __cx * std::exp(-_M_d * _M_1cx * (1 + _M_d / 2)) |
1263 | / _M_d; |
1264 | } |
1265 | else |
1266 | #endif |
1267 | _M_lm_thr = std::exp(-_M_mean); |
1268 | } |
1269 | |
1270 | /** |
1271 | * A rejection algorithm when mean >= 12 and a simple method based |
1272 | * upon the multiplication of uniform random variates otherwise. |
1273 | * NB: The former is available only if _GLIBCXX_USE_C99_MATH_TR1 |
1274 | * is defined. |
1275 | * |
1276 | * Reference: |
1277 | * Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag, |
1278 | * New York, 1986, Ch. X, Sects. 3.3 & 3.4 (+ Errata!). |
1279 | */ |
1280 | template<typename _IntType> |
1281 | template<typename _UniformRandomNumberGenerator> |
1282 | typename poisson_distribution<_IntType>::result_type |
1283 | poisson_distribution<_IntType>:: |
1284 | operator()(_UniformRandomNumberGenerator& __urng, |
1285 | const param_type& __param) |
1286 | { |
1287 | __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
1288 | __aurng(__urng); |
1289 | #if _GLIBCXX_USE_C99_MATH_TR1 |
1290 | if (__param.mean() >= 12) |
1291 | { |
1292 | double __x; |
1293 | |
1294 | // See comments above... |
1295 | const double __naf = |
1296 | (1 - std::numeric_limits<double>::epsilon()) / 2; |
1297 | const double __thr = |
1298 | std::numeric_limits<_IntType>::max() + __naf; |
1299 | |
1300 | const double __m = std::floor(__param.mean()); |
1301 | // sqrt(pi / 2) |
1302 | const double __spi_2 = 1.2533141373155002512078826424055226L; |
1303 | const double __c1 = __param._M_sm * __spi_2; |
1304 | const double __c2 = __param._M_c2b + __c1; |
1305 | const double __c3 = __c2 + 1; |
1306 | const double __c4 = __c3 + 1; |
1307 | // e^(1 / 78) |
1308 | const double __e178 = 1.0129030479320018583185514777512983L; |
1309 | const double __c5 = __c4 + __e178; |
1310 | const double __c = __param._M_cb + __c5; |
1311 | const double __2cx = 2 * (2 * __m + __param._M_d); |
1312 | |
1313 | bool __reject = true; |
1314 | do |
1315 | { |
1316 | const double __u = __c * __aurng(); |
1317 | const double __e = -std::log(1.0 - __aurng()); |
1318 | |
1319 | double __w = 0.0; |
1320 | |
1321 | if (__u <= __c1) |
1322 | { |
1323 | const double __n = _M_nd(__urng); |
1324 | const double __y = -std::abs(__n) * __param._M_sm - 1; |
1325 | __x = std::floor(__y); |
1326 | __w = -__n * __n / 2; |
1327 | if (__x < -__m) |
1328 | continue; |
1329 | } |
1330 | else if (__u <= __c2) |
1331 | { |
1332 | const double __n = _M_nd(__urng); |
1333 | const double __y = 1 + std::abs(__n) * __param._M_scx; |
1334 | __x = std::ceil(__y); |
1335 | __w = __y * (2 - __y) * __param._M_1cx; |
1336 | if (__x > __param._M_d) |
1337 | continue; |
1338 | } |
1339 | else if (__u <= __c3) |
1340 | // NB: This case not in the book, nor in the Errata, |
1341 | // but should be ok... |
1342 | __x = -1; |
1343 | else if (__u <= __c4) |
1344 | __x = 0; |
1345 | else if (__u <= __c5) |
1346 | __x = 1; |
1347 | else |
1348 | { |
1349 | const double __v = -std::log(1.0 - __aurng()); |
1350 | const double __y = __param._M_d |
1351 | + __v * __2cx / __param._M_d; |
1352 | __x = std::ceil(__y); |
1353 | __w = -__param._M_d * __param._M_1cx * (1 + __y / 2); |
1354 | } |
1355 | |
1356 | __reject = (__w - __e - __x * __param._M_lm_thr |
1357 | > __param._M_lfm - std::lgamma(__x + __m + 1)); |
1358 | |
1359 | __reject |= __x + __m >= __thr; |
1360 | |
1361 | } while (__reject); |
1362 | |
1363 | return result_type(__x + __m + __naf); |
1364 | } |
1365 | else |
1366 | #endif |
1367 | { |
1368 | _IntType __x = 0; |
1369 | double __prod = 1.0; |
1370 | |
1371 | do |
1372 | { |
1373 | __prod *= __aurng(); |
1374 | __x += 1; |
1375 | } |
1376 | while (__prod > __param._M_lm_thr); |
1377 | |
1378 | return __x - 1; |
1379 | } |
1380 | } |
1381 | |
1382 | template<typename _IntType> |
1383 | template<typename _ForwardIterator, |
1384 | typename _UniformRandomNumberGenerator> |
1385 | void |
1386 | poisson_distribution<_IntType>:: |
1387 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
1388 | _UniformRandomNumberGenerator& __urng, |
1389 | const param_type& __param) |
1390 | { |
1391 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
1392 | // We could duplicate everything from operator()... |
1393 | while (__f != __t) |
1394 | *__f++ = this->operator()(__urng, __param); |
1395 | } |
1396 | |
1397 | template<typename _IntType, |
1398 | typename _CharT, typename _Traits> |
1399 | std::basic_ostream<_CharT, _Traits>& |
1400 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
1401 | const poisson_distribution<_IntType>& __x) |
1402 | { |
1403 | typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
1404 | typedef typename __ostream_type::ios_base __ios_base; |
1405 | |
1406 | const typename __ios_base::fmtflags __flags = __os.flags(); |
1407 | const _CharT __fill = __os.fill(); |
1408 | const std::streamsize __precision = __os.precision(); |
1409 | const _CharT __space = __os.widen(' '); |
1410 | __os.flags(__ios_base::scientific | __ios_base::left); |
1411 | __os.fill(__space); |
1412 | __os.precision(std::numeric_limits<double>::max_digits10); |
1413 | |
1414 | __os << __x.mean() << __space << __x._M_nd; |
1415 | |
1416 | __os.flags(__flags); |
1417 | __os.fill(__fill); |
1418 | __os.precision(__precision); |
1419 | return __os; |
1420 | } |
1421 | |
1422 | template<typename _IntType, |
1423 | typename _CharT, typename _Traits> |
1424 | std::basic_istream<_CharT, _Traits>& |
1425 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
1426 | poisson_distribution<_IntType>& __x) |
1427 | { |
1428 | typedef std::basic_istream<_CharT, _Traits> __istream_type; |
1429 | typedef typename __istream_type::ios_base __ios_base; |
1430 | |
1431 | const typename __ios_base::fmtflags __flags = __is.flags(); |
1432 | __is.flags(__ios_base::skipws); |
1433 | |
1434 | double __mean; |
1435 | __is >> __mean >> __x._M_nd; |
1436 | __x.param(typename poisson_distribution<_IntType>::param_type(__mean)); |
1437 | |
1438 | __is.flags(__flags); |
1439 | return __is; |
1440 | } |
1441 | |
1442 | |
1443 | template<typename _IntType> |
1444 | void |
1445 | binomial_distribution<_IntType>::param_type:: |
1446 | _M_initialize() |
1447 | { |
1448 | const double __p12 = _M_p <= 0.5 ? _M_p : 1.0 - _M_p; |
1449 | |
1450 | _M_easy = true; |
1451 | |
1452 | #if _GLIBCXX_USE_C99_MATH_TR1 |
1453 | if (_M_t * __p12 >= 8) |
1454 | { |
1455 | _M_easy = false; |
1456 | const double __np = std::floor(_M_t * __p12); |
1457 | const double __pa = __np / _M_t; |
1458 | const double __1p = 1 - __pa; |
1459 | |
1460 | const double __pi_4 = 0.7853981633974483096156608458198757L; |
1461 | const double __d1x = |
1462 | std::sqrt(__np * __1p * std::log(32 * __np |
1463 | / (81 * __pi_4 * __1p))); |
1464 | _M_d1 = std::round(std::max<double>(1.0, __d1x)); |
1465 | const double __d2x = |
1466 | std::sqrt(__np * __1p * std::log(32 * _M_t * __1p |
1467 | / (__pi_4 * __pa))); |
1468 | _M_d2 = std::round(std::max<double>(1.0, __d2x)); |
1469 | |
1470 | // sqrt(pi / 2) |
1471 | const double __spi_2 = 1.2533141373155002512078826424055226L; |
1472 | _M_s1 = std::sqrt(__np * __1p) * (1 + _M_d1 / (4 * __np)); |
1473 | _M_s2 = std::sqrt(__np * __1p) * (1 + _M_d2 / (4 * _M_t * __1p)); |
1474 | _M_c = 2 * _M_d1 / __np; |
1475 | _M_a1 = std::exp(_M_c) * _M_s1 * __spi_2; |
1476 | const double __a12 = _M_a1 + _M_s2 * __spi_2; |
1477 | const double __s1s = _M_s1 * _M_s1; |
1478 | _M_a123 = __a12 + (std::exp(_M_d1 / (_M_t * __1p)) |
1479 | * 2 * __s1s / _M_d1 |
1480 | * std::exp(-_M_d1 * _M_d1 / (2 * __s1s))); |
1481 | const double __s2s = _M_s2 * _M_s2; |
1482 | _M_s = (_M_a123 + 2 * __s2s / _M_d2 |
1483 | * std::exp(-_M_d2 * _M_d2 / (2 * __s2s))); |
1484 | _M_lf = (std::lgamma(__np + 1) |
1485 | + std::lgamma(_M_t - __np + 1)); |
1486 | _M_lp1p = std::log(__pa / __1p); |
1487 | |
1488 | _M_q = -std::log(1 - (__p12 - __pa) / __1p); |
1489 | } |
1490 | else |
1491 | #endif |
1492 | _M_q = -std::log(1 - __p12); |
1493 | } |
1494 | |
1495 | template<typename _IntType> |
1496 | template<typename _UniformRandomNumberGenerator> |
1497 | typename binomial_distribution<_IntType>::result_type |
1498 | binomial_distribution<_IntType>:: |
1499 | _M_waiting(_UniformRandomNumberGenerator& __urng, |
1500 | _IntType __t, double __q) |
1501 | { |
1502 | _IntType __x = 0; |
1503 | double __sum = 0.0; |
1504 | __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
1505 | __aurng(__urng); |
1506 | |
1507 | do |
1508 | { |
1509 | if (__t == __x) |
1510 | return __x; |
1511 | const double __e = -std::log(1.0 - __aurng()); |
1512 | __sum += __e / (__t - __x); |
1513 | __x += 1; |
1514 | } |
1515 | while (__sum <= __q); |
1516 | |
1517 | return __x - 1; |
1518 | } |
1519 | |
1520 | /** |
1521 | * A rejection algorithm when t * p >= 8 and a simple waiting time |
1522 | * method - the second in the referenced book - otherwise. |
1523 | * NB: The former is available only if _GLIBCXX_USE_C99_MATH_TR1 |
1524 | * is defined. |
1525 | * |
1526 | * Reference: |
1527 | * Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag, |
1528 | * New York, 1986, Ch. X, Sect. 4 (+ Errata!). |
1529 | */ |
1530 | template<typename _IntType> |
1531 | template<typename _UniformRandomNumberGenerator> |
1532 | typename binomial_distribution<_IntType>::result_type |
1533 | binomial_distribution<_IntType>:: |
1534 | operator()(_UniformRandomNumberGenerator& __urng, |
1535 | const param_type& __param) |
1536 | { |
1537 | result_type __ret; |
1538 | const _IntType __t = __param.t(); |
1539 | const double __p = __param.p(); |
1540 | const double __p12 = __p <= 0.5 ? __p : 1.0 - __p; |
1541 | __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
1542 | __aurng(__urng); |
1543 | |
1544 | #if _GLIBCXX_USE_C99_MATH_TR1 |
1545 | if (!__param._M_easy) |
1546 | { |
1547 | double __x; |
1548 | |
1549 | // See comments above... |
1550 | const double __naf = |
1551 | (1 - std::numeric_limits<double>::epsilon()) / 2; |
1552 | const double __thr = |
1553 | std::numeric_limits<_IntType>::max() + __naf; |
1554 | |
1555 | const double __np = std::floor(__t * __p12); |
1556 | |
1557 | // sqrt(pi / 2) |
1558 | const double __spi_2 = 1.2533141373155002512078826424055226L; |
1559 | const double __a1 = __param._M_a1; |
1560 | const double __a12 = __a1 + __param._M_s2 * __spi_2; |
1561 | const double __a123 = __param._M_a123; |
1562 | const double __s1s = __param._M_s1 * __param._M_s1; |
1563 | const double __s2s = __param._M_s2 * __param._M_s2; |
1564 | |
1565 | bool __reject; |
1566 | do |
1567 | { |
1568 | const double __u = __param._M_s * __aurng(); |
1569 | |
1570 | double __v; |
1571 | |
1572 | if (__u <= __a1) |
1573 | { |
1574 | const double __n = _M_nd(__urng); |
1575 | const double __y = __param._M_s1 * std::abs(__n); |
1576 | __reject = __y >= __param._M_d1; |
1577 | if (!__reject) |
1578 | { |
1579 | const double __e = -std::log(1.0 - __aurng()); |
1580 | __x = std::floor(__y); |
1581 | __v = -__e - __n * __n / 2 + __param._M_c; |
1582 | } |
1583 | } |
1584 | else if (__u <= __a12) |
1585 | { |
1586 | const double __n = _M_nd(__urng); |
1587 | const double __y = __param._M_s2 * std::abs(__n); |
1588 | __reject = __y >= __param._M_d2; |
1589 | if (!__reject) |
1590 | { |
1591 | const double __e = -std::log(1.0 - __aurng()); |
1592 | __x = std::floor(-__y); |
1593 | __v = -__e - __n * __n / 2; |
1594 | } |
1595 | } |
1596 | else if (__u <= __a123) |
1597 | { |
1598 | const double __e1 = -std::log(1.0 - __aurng()); |
1599 | const double __e2 = -std::log(1.0 - __aurng()); |
1600 | |
1601 | const double __y = __param._M_d1 |
1602 | + 2 * __s1s * __e1 / __param._M_d1; |
1603 | __x = std::floor(__y); |
1604 | __v = (-__e2 + __param._M_d1 * (1 / (__t - __np) |
1605 | -__y / (2 * __s1s))); |
1606 | __reject = false; |
1607 | } |
1608 | else |
1609 | { |
1610 | const double __e1 = -std::log(1.0 - __aurng()); |
1611 | const double __e2 = -std::log(1.0 - __aurng()); |
1612 | |
1613 | const double __y = __param._M_d2 |
1614 | + 2 * __s2s * __e1 / __param._M_d2; |
1615 | __x = std::floor(-__y); |
1616 | __v = -__e2 - __param._M_d2 * __y / (2 * __s2s); |
1617 | __reject = false; |
1618 | } |
1619 | |
1620 | __reject = __reject || __x < -__np || __x > __t - __np; |
1621 | if (!__reject) |
1622 | { |
1623 | const double __lfx = |
1624 | std::lgamma(__np + __x + 1) |
1625 | + std::lgamma(__t - (__np + __x) + 1); |
1626 | __reject = __v > __param._M_lf - __lfx |
1627 | + __x * __param._M_lp1p; |
1628 | } |
1629 | |
1630 | __reject |= __x + __np >= __thr; |
1631 | } |
1632 | while (__reject); |
1633 | |
1634 | __x += __np + __naf; |
1635 | |
1636 | const _IntType __z = _M_waiting(__urng, __t - _IntType(__x), |
1637 | __param._M_q); |
1638 | __ret = _IntType(__x) + __z; |
1639 | } |
1640 | else |
1641 | #endif |
1642 | __ret = _M_waiting(__urng, __t, __param._M_q); |
1643 | |
1644 | if (__p12 != __p) |
1645 | __ret = __t - __ret; |
1646 | return __ret; |
1647 | } |
1648 | |
1649 | template<typename _IntType> |
1650 | template<typename _ForwardIterator, |
1651 | typename _UniformRandomNumberGenerator> |
1652 | void |
1653 | binomial_distribution<_IntType>:: |
1654 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
1655 | _UniformRandomNumberGenerator& __urng, |
1656 | const param_type& __param) |
1657 | { |
1658 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
1659 | // We could duplicate everything from operator()... |
1660 | while (__f != __t) |
1661 | *__f++ = this->operator()(__urng, __param); |
1662 | } |
1663 | |
1664 | template<typename _IntType, |
1665 | typename _CharT, typename _Traits> |
1666 | std::basic_ostream<_CharT, _Traits>& |
1667 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
1668 | const binomial_distribution<_IntType>& __x) |
1669 | { |
1670 | typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
1671 | typedef typename __ostream_type::ios_base __ios_base; |
1672 | |
1673 | const typename __ios_base::fmtflags __flags = __os.flags(); |
1674 | const _CharT __fill = __os.fill(); |
1675 | const std::streamsize __precision = __os.precision(); |
1676 | const _CharT __space = __os.widen(' '); |
1677 | __os.flags(__ios_base::scientific | __ios_base::left); |
1678 | __os.fill(__space); |
1679 | __os.precision(std::numeric_limits<double>::max_digits10); |
1680 | |
1681 | __os << __x.t() << __space << __x.p() |
1682 | << __space << __x._M_nd; |
1683 | |
1684 | __os.flags(__flags); |
1685 | __os.fill(__fill); |
1686 | __os.precision(__precision); |
1687 | return __os; |
1688 | } |
1689 | |
1690 | template<typename _IntType, |
1691 | typename _CharT, typename _Traits> |
1692 | std::basic_istream<_CharT, _Traits>& |
1693 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
1694 | binomial_distribution<_IntType>& __x) |
1695 | { |
1696 | typedef std::basic_istream<_CharT, _Traits> __istream_type; |
1697 | typedef typename __istream_type::ios_base __ios_base; |
1698 | |
1699 | const typename __ios_base::fmtflags __flags = __is.flags(); |
1700 | __is.flags(__ios_base::dec | __ios_base::skipws); |
1701 | |
1702 | _IntType __t; |
1703 | double __p; |
1704 | __is >> __t >> __p >> __x._M_nd; |
1705 | __x.param(typename binomial_distribution<_IntType>:: |
1706 | param_type(__t, __p)); |
1707 | |
1708 | __is.flags(__flags); |
1709 | return __is; |
1710 | } |
1711 | |
1712 | |
1713 | template<typename _RealType> |
1714 | template<typename _ForwardIterator, |
1715 | typename _UniformRandomNumberGenerator> |
1716 | void |
1717 | std::exponential_distribution<_RealType>:: |
1718 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
1719 | _UniformRandomNumberGenerator& __urng, |
1720 | const param_type& __p) |
1721 | { |
1722 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
1723 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
1724 | __aurng(__urng); |
1725 | while (__f != __t) |
1726 | *__f++ = -std::log(result_type(1) - __aurng()) / __p.lambda(); |
1727 | } |
1728 | |
1729 | template<typename _RealType, typename _CharT, typename _Traits> |
1730 | std::basic_ostream<_CharT, _Traits>& |
1731 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
1732 | const exponential_distribution<_RealType>& __x) |
1733 | { |
1734 | typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
1735 | typedef typename __ostream_type::ios_base __ios_base; |
1736 | |
1737 | const typename __ios_base::fmtflags __flags = __os.flags(); |
1738 | const _CharT __fill = __os.fill(); |
1739 | const std::streamsize __precision = __os.precision(); |
1740 | __os.flags(__ios_base::scientific | __ios_base::left); |
1741 | __os.fill(__os.widen(' ')); |
1742 | __os.precision(std::numeric_limits<_RealType>::max_digits10); |
1743 | |
1744 | __os << __x.lambda(); |
1745 | |
1746 | __os.flags(__flags); |
1747 | __os.fill(__fill); |
1748 | __os.precision(__precision); |
1749 | return __os; |
1750 | } |
1751 | |
1752 | template<typename _RealType, typename _CharT, typename _Traits> |
1753 | std::basic_istream<_CharT, _Traits>& |
1754 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
1755 | exponential_distribution<_RealType>& __x) |
1756 | { |
1757 | typedef std::basic_istream<_CharT, _Traits> __istream_type; |
1758 | typedef typename __istream_type::ios_base __ios_base; |
1759 | |
1760 | const typename __ios_base::fmtflags __flags = __is.flags(); |
1761 | __is.flags(__ios_base::dec | __ios_base::skipws); |
1762 | |
1763 | _RealType __lambda; |
1764 | __is >> __lambda; |
1765 | __x.param(typename exponential_distribution<_RealType>:: |
1766 | param_type(__lambda)); |
1767 | |
1768 | __is.flags(__flags); |
1769 | return __is; |
1770 | } |
1771 | |
1772 | |
1773 | /** |
1774 | * Polar method due to Marsaglia. |
1775 | * |
1776 | * Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag, |
1777 | * New York, 1986, Ch. V, Sect. 4.4. |
1778 | */ |
1779 | template<typename _RealType> |
1780 | template<typename _UniformRandomNumberGenerator> |
1781 | typename normal_distribution<_RealType>::result_type |
1782 | normal_distribution<_RealType>:: |
1783 | operator()(_UniformRandomNumberGenerator& __urng, |
1784 | const param_type& __param) |
1785 | { |
1786 | result_type __ret; |
1787 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
1788 | __aurng(__urng); |
1789 | |
1790 | if (_M_saved_available) |
1791 | { |
1792 | _M_saved_available = false; |
1793 | __ret = _M_saved; |
1794 | } |
1795 | else |
1796 | { |
1797 | result_type __x, __y, __r2; |
1798 | do |
1799 | { |
1800 | __x = result_type(2.0) * __aurng() - 1.0; |
1801 | __y = result_type(2.0) * __aurng() - 1.0; |
1802 | __r2 = __x * __x + __y * __y; |
1803 | } |
1804 | while (__r2 > 1.0 || __r2 == 0.0); |
1805 | |
1806 | const result_type __mult = std::sqrt(-2 * std::log(__r2) / __r2); |
1807 | _M_saved = __x * __mult; |
1808 | _M_saved_available = true; |
1809 | __ret = __y * __mult; |
1810 | } |
1811 | |
1812 | __ret = __ret * __param.stddev() + __param.mean(); |
1813 | return __ret; |
1814 | } |
1815 | |
1816 | template<typename _RealType> |
1817 | template<typename _ForwardIterator, |
1818 | typename _UniformRandomNumberGenerator> |
1819 | void |
1820 | normal_distribution<_RealType>:: |
1821 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
1822 | _UniformRandomNumberGenerator& __urng, |
1823 | const param_type& __param) |
1824 | { |
1825 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
1826 | |
1827 | if (__f == __t) |
1828 | return; |
1829 | |
1830 | if (_M_saved_available) |
1831 | { |
1832 | _M_saved_available = false; |
1833 | *__f++ = _M_saved * __param.stddev() + __param.mean(); |
1834 | |
1835 | if (__f == __t) |
1836 | return; |
1837 | } |
1838 | |
1839 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
1840 | __aurng(__urng); |
1841 | |
1842 | while (__f + 1 < __t) |
1843 | { |
1844 | result_type __x, __y, __r2; |
1845 | do |
1846 | { |
1847 | __x = result_type(2.0) * __aurng() - 1.0; |
1848 | __y = result_type(2.0) * __aurng() - 1.0; |
1849 | __r2 = __x * __x + __y * __y; |
1850 | } |
1851 | while (__r2 > 1.0 || __r2 == 0.0); |
1852 | |
1853 | const result_type __mult = std::sqrt(-2 * std::log(__r2) / __r2); |
1854 | *__f++ = __y * __mult * __param.stddev() + __param.mean(); |
1855 | *__f++ = __x * __mult * __param.stddev() + __param.mean(); |
1856 | } |
1857 | |
1858 | if (__f != __t) |
1859 | { |
1860 | result_type __x, __y, __r2; |
1861 | do |
1862 | { |
1863 | __x = result_type(2.0) * __aurng() - 1.0; |
1864 | __y = result_type(2.0) * __aurng() - 1.0; |
1865 | __r2 = __x * __x + __y * __y; |
1866 | } |
1867 | while (__r2 > 1.0 || __r2 == 0.0); |
1868 | |
1869 | const result_type __mult = std::sqrt(-2 * std::log(__r2) / __r2); |
1870 | _M_saved = __x * __mult; |
1871 | _M_saved_available = true; |
1872 | *__f = __y * __mult * __param.stddev() + __param.mean(); |
1873 | } |
1874 | } |
1875 | |
1876 | template<typename _RealType> |
1877 | bool |
1878 | operator==(const std::normal_distribution<_RealType>& __d1, |
1879 | const std::normal_distribution<_RealType>& __d2) |
1880 | { |
1881 | if (__d1._M_param == __d2._M_param |
1882 | && __d1._M_saved_available == __d2._M_saved_available) |
1883 | { |
1884 | if (__d1._M_saved_available |
1885 | && __d1._M_saved == __d2._M_saved) |
1886 | return true; |
1887 | else if(!__d1._M_saved_available) |
1888 | return true; |
1889 | else |
1890 | return false; |
1891 | } |
1892 | else |
1893 | return false; |
1894 | } |
1895 | |
1896 | template<typename _RealType, typename _CharT, typename _Traits> |
1897 | std::basic_ostream<_CharT, _Traits>& |
1898 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
1899 | const normal_distribution<_RealType>& __x) |
1900 | { |
1901 | typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
1902 | typedef typename __ostream_type::ios_base __ios_base; |
1903 | |
1904 | const typename __ios_base::fmtflags __flags = __os.flags(); |
1905 | const _CharT __fill = __os.fill(); |
1906 | const std::streamsize __precision = __os.precision(); |
1907 | const _CharT __space = __os.widen(' '); |
1908 | __os.flags(__ios_base::scientific | __ios_base::left); |
1909 | __os.fill(__space); |
1910 | __os.precision(std::numeric_limits<_RealType>::max_digits10); |
1911 | |
1912 | __os << __x.mean() << __space << __x.stddev() |
1913 | << __space << __x._M_saved_available; |
1914 | if (__x._M_saved_available) |
1915 | __os << __space << __x._M_saved; |
1916 | |
1917 | __os.flags(__flags); |
1918 | __os.fill(__fill); |
1919 | __os.precision(__precision); |
1920 | return __os; |
1921 | } |
1922 | |
1923 | template<typename _RealType, typename _CharT, typename _Traits> |
1924 | std::basic_istream<_CharT, _Traits>& |
1925 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
1926 | normal_distribution<_RealType>& __x) |
1927 | { |
1928 | typedef std::basic_istream<_CharT, _Traits> __istream_type; |
1929 | typedef typename __istream_type::ios_base __ios_base; |
1930 | |
1931 | const typename __ios_base::fmtflags __flags = __is.flags(); |
1932 | __is.flags(__ios_base::dec | __ios_base::skipws); |
1933 | |
1934 | double __mean, __stddev; |
1935 | __is >> __mean >> __stddev |
1936 | >> __x._M_saved_available; |
1937 | if (__x._M_saved_available) |
1938 | __is >> __x._M_saved; |
1939 | __x.param(typename normal_distribution<_RealType>:: |
1940 | param_type(__mean, __stddev)); |
1941 | |
1942 | __is.flags(__flags); |
1943 | return __is; |
1944 | } |
1945 | |
1946 | |
1947 | template<typename _RealType> |
1948 | template<typename _ForwardIterator, |
1949 | typename _UniformRandomNumberGenerator> |
1950 | void |
1951 | lognormal_distribution<_RealType>:: |
1952 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
1953 | _UniformRandomNumberGenerator& __urng, |
1954 | const param_type& __p) |
1955 | { |
1956 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
1957 | while (__f != __t) |
1958 | *__f++ = std::exp(__p.s() * _M_nd(__urng) + __p.m()); |
1959 | } |
1960 | |
1961 | template<typename _RealType, typename _CharT, typename _Traits> |
1962 | std::basic_ostream<_CharT, _Traits>& |
1963 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
1964 | const lognormal_distribution<_RealType>& __x) |
1965 | { |
1966 | typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
1967 | typedef typename __ostream_type::ios_base __ios_base; |
1968 | |
1969 | const typename __ios_base::fmtflags __flags = __os.flags(); |
1970 | const _CharT __fill = __os.fill(); |
1971 | const std::streamsize __precision = __os.precision(); |
1972 | const _CharT __space = __os.widen(' '); |
1973 | __os.flags(__ios_base::scientific | __ios_base::left); |
1974 | __os.fill(__space); |
1975 | __os.precision(std::numeric_limits<_RealType>::max_digits10); |
1976 | |
1977 | __os << __x.m() << __space << __x.s() |
1978 | << __space << __x._M_nd; |
1979 | |
1980 | __os.flags(__flags); |
1981 | __os.fill(__fill); |
1982 | __os.precision(__precision); |
1983 | return __os; |
1984 | } |
1985 | |
1986 | template<typename _RealType, typename _CharT, typename _Traits> |
1987 | std::basic_istream<_CharT, _Traits>& |
1988 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
1989 | lognormal_distribution<_RealType>& __x) |
1990 | { |
1991 | typedef std::basic_istream<_CharT, _Traits> __istream_type; |
1992 | typedef typename __istream_type::ios_base __ios_base; |
1993 | |
1994 | const typename __ios_base::fmtflags __flags = __is.flags(); |
1995 | __is.flags(__ios_base::dec | __ios_base::skipws); |
1996 | |
1997 | _RealType __m, __s; |
1998 | __is >> __m >> __s >> __x._M_nd; |
1999 | __x.param(typename lognormal_distribution<_RealType>:: |
2000 | param_type(__m, __s)); |
2001 | |
2002 | __is.flags(__flags); |
2003 | return __is; |
2004 | } |
2005 | |
2006 | template<typename _RealType> |
2007 | template<typename _ForwardIterator, |
2008 | typename _UniformRandomNumberGenerator> |
2009 | void |
2010 | std::chi_squared_distribution<_RealType>:: |
2011 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
2012 | _UniformRandomNumberGenerator& __urng) |
2013 | { |
2014 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
2015 | while (__f != __t) |
2016 | *__f++ = 2 * _M_gd(__urng); |
2017 | } |
2018 | |
2019 | template<typename _RealType> |
2020 | template<typename _ForwardIterator, |
2021 | typename _UniformRandomNumberGenerator> |
2022 | void |
2023 | std::chi_squared_distribution<_RealType>:: |
2024 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
2025 | _UniformRandomNumberGenerator& __urng, |
2026 | const typename |
2027 | std::gamma_distribution<result_type>::param_type& __p) |
2028 | { |
2029 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
2030 | while (__f != __t) |
2031 | *__f++ = 2 * _M_gd(__urng, __p); |
2032 | } |
2033 | |
2034 | template<typename _RealType, typename _CharT, typename _Traits> |
2035 | std::basic_ostream<_CharT, _Traits>& |
2036 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
2037 | const chi_squared_distribution<_RealType>& __x) |
2038 | { |
2039 | typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
2040 | typedef typename __ostream_type::ios_base __ios_base; |
2041 | |
2042 | const typename __ios_base::fmtflags __flags = __os.flags(); |
2043 | const _CharT __fill = __os.fill(); |
2044 | const std::streamsize __precision = __os.precision(); |
2045 | const _CharT __space = __os.widen(' '); |
2046 | __os.flags(__ios_base::scientific | __ios_base::left); |
2047 | __os.fill(__space); |
2048 | __os.precision(std::numeric_limits<_RealType>::max_digits10); |
2049 | |
2050 | __os << __x.n() << __space << __x._M_gd; |
2051 | |
2052 | __os.flags(__flags); |
2053 | __os.fill(__fill); |
2054 | __os.precision(__precision); |
2055 | return __os; |
2056 | } |
2057 | |
2058 | template<typename _RealType, typename _CharT, typename _Traits> |
2059 | std::basic_istream<_CharT, _Traits>& |
2060 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
2061 | chi_squared_distribution<_RealType>& __x) |
2062 | { |
2063 | typedef std::basic_istream<_CharT, _Traits> __istream_type; |
2064 | typedef typename __istream_type::ios_base __ios_base; |
2065 | |
2066 | const typename __ios_base::fmtflags __flags = __is.flags(); |
2067 | __is.flags(__ios_base::dec | __ios_base::skipws); |
2068 | |
2069 | _RealType __n; |
2070 | __is >> __n >> __x._M_gd; |
2071 | __x.param(typename chi_squared_distribution<_RealType>:: |
2072 | param_type(__n)); |
2073 | |
2074 | __is.flags(__flags); |
2075 | return __is; |
2076 | } |
2077 | |
2078 | |
2079 | template<typename _RealType> |
2080 | template<typename _UniformRandomNumberGenerator> |
2081 | typename cauchy_distribution<_RealType>::result_type |
2082 | cauchy_distribution<_RealType>:: |
2083 | operator()(_UniformRandomNumberGenerator& __urng, |
2084 | const param_type& __p) |
2085 | { |
2086 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
2087 | __aurng(__urng); |
2088 | _RealType __u; |
2089 | do |
2090 | __u = __aurng(); |
2091 | while (__u == 0.5); |
2092 | |
2093 | const _RealType __pi = 3.1415926535897932384626433832795029L; |
2094 | return __p.a() + __p.b() * std::tan(__pi * __u); |
2095 | } |
2096 | |
2097 | template<typename _RealType> |
2098 | template<typename _ForwardIterator, |
2099 | typename _UniformRandomNumberGenerator> |
2100 | void |
2101 | cauchy_distribution<_RealType>:: |
2102 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
2103 | _UniformRandomNumberGenerator& __urng, |
2104 | const param_type& __p) |
2105 | { |
2106 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
2107 | const _RealType __pi = 3.1415926535897932384626433832795029L; |
2108 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
2109 | __aurng(__urng); |
2110 | while (__f != __t) |
2111 | { |
2112 | _RealType __u; |
2113 | do |
2114 | __u = __aurng(); |
2115 | while (__u == 0.5); |
2116 | |
2117 | *__f++ = __p.a() + __p.b() * std::tan(__pi * __u); |
2118 | } |
2119 | } |
2120 | |
2121 | template<typename _RealType, typename _CharT, typename _Traits> |
2122 | std::basic_ostream<_CharT, _Traits>& |
2123 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
2124 | const cauchy_distribution<_RealType>& __x) |
2125 | { |
2126 | typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
2127 | typedef typename __ostream_type::ios_base __ios_base; |
2128 | |
2129 | const typename __ios_base::fmtflags __flags = __os.flags(); |
2130 | const _CharT __fill = __os.fill(); |
2131 | const std::streamsize __precision = __os.precision(); |
2132 | const _CharT __space = __os.widen(' '); |
2133 | __os.flags(__ios_base::scientific | __ios_base::left); |
2134 | __os.fill(__space); |
2135 | __os.precision(std::numeric_limits<_RealType>::max_digits10); |
2136 | |
2137 | __os << __x.a() << __space << __x.b(); |
2138 | |
2139 | __os.flags(__flags); |
2140 | __os.fill(__fill); |
2141 | __os.precision(__precision); |
2142 | return __os; |
2143 | } |
2144 | |
2145 | template<typename _RealType, typename _CharT, typename _Traits> |
2146 | std::basic_istream<_CharT, _Traits>& |
2147 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
2148 | cauchy_distribution<_RealType>& __x) |
2149 | { |
2150 | typedef std::basic_istream<_CharT, _Traits> __istream_type; |
2151 | typedef typename __istream_type::ios_base __ios_base; |
2152 | |
2153 | const typename __ios_base::fmtflags __flags = __is.flags(); |
2154 | __is.flags(__ios_base::dec | __ios_base::skipws); |
2155 | |
2156 | _RealType __a, __b; |
2157 | __is >> __a >> __b; |
2158 | __x.param(typename cauchy_distribution<_RealType>:: |
2159 | param_type(__a, __b)); |
2160 | |
2161 | __is.flags(__flags); |
2162 | return __is; |
2163 | } |
2164 | |
2165 | |
2166 | template<typename _RealType> |
2167 | template<typename _ForwardIterator, |
2168 | typename _UniformRandomNumberGenerator> |
2169 | void |
2170 | std::fisher_f_distribution<_RealType>:: |
2171 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
2172 | _UniformRandomNumberGenerator& __urng) |
2173 | { |
2174 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
2175 | while (__f != __t) |
2176 | *__f++ = ((_M_gd_x(__urng) * n()) / (_M_gd_y(__urng) * m())); |
2177 | } |
2178 | |
2179 | template<typename _RealType> |
2180 | template<typename _ForwardIterator, |
2181 | typename _UniformRandomNumberGenerator> |
2182 | void |
2183 | std::fisher_f_distribution<_RealType>:: |
2184 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
2185 | _UniformRandomNumberGenerator& __urng, |
2186 | const param_type& __p) |
2187 | { |
2188 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
2189 | typedef typename std::gamma_distribution<result_type>::param_type |
2190 | param_type; |
2191 | param_type __p1(__p.m() / 2); |
2192 | param_type __p2(__p.n() / 2); |
2193 | while (__f != __t) |
2194 | *__f++ = ((_M_gd_x(__urng, __p1) * n()) |
2195 | / (_M_gd_y(__urng, __p2) * m())); |
2196 | } |
2197 | |
2198 | template<typename _RealType, typename _CharT, typename _Traits> |
2199 | std::basic_ostream<_CharT, _Traits>& |
2200 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
2201 | const fisher_f_distribution<_RealType>& __x) |
2202 | { |
2203 | typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
2204 | typedef typename __ostream_type::ios_base __ios_base; |
2205 | |
2206 | const typename __ios_base::fmtflags __flags = __os.flags(); |
2207 | const _CharT __fill = __os.fill(); |
2208 | const std::streamsize __precision = __os.precision(); |
2209 | const _CharT __space = __os.widen(' '); |
2210 | __os.flags(__ios_base::scientific | __ios_base::left); |
2211 | __os.fill(__space); |
2212 | __os.precision(std::numeric_limits<_RealType>::max_digits10); |
2213 | |
2214 | __os << __x.m() << __space << __x.n() |
2215 | << __space << __x._M_gd_x << __space << __x._M_gd_y; |
2216 | |
2217 | __os.flags(__flags); |
2218 | __os.fill(__fill); |
2219 | __os.precision(__precision); |
2220 | return __os; |
2221 | } |
2222 | |
2223 | template<typename _RealType, typename _CharT, typename _Traits> |
2224 | std::basic_istream<_CharT, _Traits>& |
2225 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
2226 | fisher_f_distribution<_RealType>& __x) |
2227 | { |
2228 | typedef std::basic_istream<_CharT, _Traits> __istream_type; |
2229 | typedef typename __istream_type::ios_base __ios_base; |
2230 | |
2231 | const typename __ios_base::fmtflags __flags = __is.flags(); |
2232 | __is.flags(__ios_base::dec | __ios_base::skipws); |
2233 | |
2234 | _RealType __m, __n; |
2235 | __is >> __m >> __n >> __x._M_gd_x >> __x._M_gd_y; |
2236 | __x.param(typename fisher_f_distribution<_RealType>:: |
2237 | param_type(__m, __n)); |
2238 | |
2239 | __is.flags(__flags); |
2240 | return __is; |
2241 | } |
2242 | |
2243 | |
2244 | template<typename _RealType> |
2245 | template<typename _ForwardIterator, |
2246 | typename _UniformRandomNumberGenerator> |
2247 | void |
2248 | std::student_t_distribution<_RealType>:: |
2249 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
2250 | _UniformRandomNumberGenerator& __urng) |
2251 | { |
2252 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
2253 | while (__f != __t) |
2254 | *__f++ = _M_nd(__urng) * std::sqrt(n() / _M_gd(__urng)); |
2255 | } |
2256 | |
2257 | template<typename _RealType> |
2258 | template<typename _ForwardIterator, |
2259 | typename _UniformRandomNumberGenerator> |
2260 | void |
2261 | std::student_t_distribution<_RealType>:: |
2262 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
2263 | _UniformRandomNumberGenerator& __urng, |
2264 | const param_type& __p) |
2265 | { |
2266 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
2267 | typename std::gamma_distribution<result_type>::param_type |
2268 | __p2(__p.n() / 2, 2); |
2269 | while (__f != __t) |
2270 | *__f++ = _M_nd(__urng) * std::sqrt(__p.n() / _M_gd(__urng, __p2)); |
2271 | } |
2272 | |
2273 | template<typename _RealType, typename _CharT, typename _Traits> |
2274 | std::basic_ostream<_CharT, _Traits>& |
2275 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
2276 | const student_t_distribution<_RealType>& __x) |
2277 | { |
2278 | typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
2279 | typedef typename __ostream_type::ios_base __ios_base; |
2280 | |
2281 | const typename __ios_base::fmtflags __flags = __os.flags(); |
2282 | const _CharT __fill = __os.fill(); |
2283 | const std::streamsize __precision = __os.precision(); |
2284 | const _CharT __space = __os.widen(' '); |
2285 | __os.flags(__ios_base::scientific | __ios_base::left); |
2286 | __os.fill(__space); |
2287 | __os.precision(std::numeric_limits<_RealType>::max_digits10); |
2288 | |
2289 | __os << __x.n() << __space << __x._M_nd << __space << __x._M_gd; |
2290 | |
2291 | __os.flags(__flags); |
2292 | __os.fill(__fill); |
2293 | __os.precision(__precision); |
2294 | return __os; |
2295 | } |
2296 | |
2297 | template<typename _RealType, typename _CharT, typename _Traits> |
2298 | std::basic_istream<_CharT, _Traits>& |
2299 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
2300 | student_t_distribution<_RealType>& __x) |
2301 | { |
2302 | typedef std::basic_istream<_CharT, _Traits> __istream_type; |
2303 | typedef typename __istream_type::ios_base __ios_base; |
2304 | |
2305 | const typename __ios_base::fmtflags __flags = __is.flags(); |
2306 | __is.flags(__ios_base::dec | __ios_base::skipws); |
2307 | |
2308 | _RealType __n; |
2309 | __is >> __n >> __x._M_nd >> __x._M_gd; |
2310 | __x.param(typename student_t_distribution<_RealType>::param_type(__n)); |
2311 | |
2312 | __is.flags(__flags); |
2313 | return __is; |
2314 | } |
2315 | |
2316 | |
2317 | template<typename _RealType> |
2318 | void |
2319 | gamma_distribution<_RealType>::param_type:: |
2320 | _M_initialize() |
2321 | { |
2322 | _M_malpha = _M_alpha < 1.0 ? _M_alpha + _RealType(1.0) : _M_alpha; |
2323 | |
2324 | const _RealType __a1 = _M_malpha - _RealType(1.0) / _RealType(3.0); |
2325 | _M_a2 = _RealType(1.0) / std::sqrt(_RealType(9.0) * __a1); |
2326 | } |
2327 | |
2328 | /** |
2329 | * Marsaglia, G. and Tsang, W. W. |
2330 | * "A Simple Method for Generating Gamma Variables" |
2331 | * ACM Transactions on Mathematical Software, 26, 3, 363-372, 2000. |
2332 | */ |
2333 | template<typename _RealType> |
2334 | template<typename _UniformRandomNumberGenerator> |
2335 | typename gamma_distribution<_RealType>::result_type |
2336 | gamma_distribution<_RealType>:: |
2337 | operator()(_UniformRandomNumberGenerator& __urng, |
2338 | const param_type& __param) |
2339 | { |
2340 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
2341 | __aurng(__urng); |
2342 | |
2343 | result_type __u, __v, __n; |
2344 | const result_type __a1 = (__param._M_malpha |
2345 | - _RealType(1.0) / _RealType(3.0)); |
2346 | |
2347 | do |
2348 | { |
2349 | do |
2350 | { |
2351 | __n = _M_nd(__urng); |
2352 | __v = result_type(1.0) + __param._M_a2 * __n; |
2353 | } |
2354 | while (__v <= 0.0); |
2355 | |
2356 | __v = __v * __v * __v; |
2357 | __u = __aurng(); |
2358 | } |
2359 | while (__u > result_type(1.0) - 0.331 * __n * __n * __n * __n |
2360 | && (std::log(__u) > (0.5 * __n * __n + __a1 |
2361 | * (1.0 - __v + std::log(__v))))); |
2362 | |
2363 | if (__param.alpha() == __param._M_malpha) |
2364 | return __a1 * __v * __param.beta(); |
2365 | else |
2366 | { |
2367 | do |
2368 | __u = __aurng(); |
2369 | while (__u == 0.0); |
2370 | |
2371 | return (std::pow(__u, result_type(1.0) / __param.alpha()) |
2372 | * __a1 * __v * __param.beta()); |
2373 | } |
2374 | } |
2375 | |
2376 | template<typename _RealType> |
2377 | template<typename _ForwardIterator, |
2378 | typename _UniformRandomNumberGenerator> |
2379 | void |
2380 | gamma_distribution<_RealType>:: |
2381 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
2382 | _UniformRandomNumberGenerator& __urng, |
2383 | const param_type& __param) |
2384 | { |
2385 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
2386 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
2387 | __aurng(__urng); |
2388 | |
2389 | result_type __u, __v, __n; |
2390 | const result_type __a1 = (__param._M_malpha |
2391 | - _RealType(1.0) / _RealType(3.0)); |
2392 | |
2393 | if (__param.alpha() == __param._M_malpha) |
2394 | while (__f != __t) |
2395 | { |
2396 | do |
2397 | { |
2398 | do |
2399 | { |
2400 | __n = _M_nd(__urng); |
2401 | __v = result_type(1.0) + __param._M_a2 * __n; |
2402 | } |
2403 | while (__v <= 0.0); |
2404 | |
2405 | __v = __v * __v * __v; |
2406 | __u = __aurng(); |
2407 | } |
2408 | while (__u > result_type(1.0) - 0.331 * __n * __n * __n * __n |
2409 | && (std::log(__u) > (0.5 * __n * __n + __a1 |
2410 | * (1.0 - __v + std::log(__v))))); |
2411 | |
2412 | *__f++ = __a1 * __v * __param.beta(); |
2413 | } |
2414 | else |
2415 | while (__f != __t) |
2416 | { |
2417 | do |
2418 | { |
2419 | do |
2420 | { |
2421 | __n = _M_nd(__urng); |
2422 | __v = result_type(1.0) + __param._M_a2 * __n; |
2423 | } |
2424 | while (__v <= 0.0); |
2425 | |
2426 | __v = __v * __v * __v; |
2427 | __u = __aurng(); |
2428 | } |
2429 | while (__u > result_type(1.0) - 0.331 * __n * __n * __n * __n |
2430 | && (std::log(__u) > (0.5 * __n * __n + __a1 |
2431 | * (1.0 - __v + std::log(__v))))); |
2432 | |
2433 | do |
2434 | __u = __aurng(); |
2435 | while (__u == 0.0); |
2436 | |
2437 | *__f++ = (std::pow(__u, result_type(1.0) / __param.alpha()) |
2438 | * __a1 * __v * __param.beta()); |
2439 | } |
2440 | } |
2441 | |
2442 | template<typename _RealType, typename _CharT, typename _Traits> |
2443 | std::basic_ostream<_CharT, _Traits>& |
2444 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
2445 | const gamma_distribution<_RealType>& __x) |
2446 | { |
2447 | typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
2448 | typedef typename __ostream_type::ios_base __ios_base; |
2449 | |
2450 | const typename __ios_base::fmtflags __flags = __os.flags(); |
2451 | const _CharT __fill = __os.fill(); |
2452 | const std::streamsize __precision = __os.precision(); |
2453 | const _CharT __space = __os.widen(' '); |
2454 | __os.flags(__ios_base::scientific | __ios_base::left); |
2455 | __os.fill(__space); |
2456 | __os.precision(std::numeric_limits<_RealType>::max_digits10); |
2457 | |
2458 | __os << __x.alpha() << __space << __x.beta() |
2459 | << __space << __x._M_nd; |
2460 | |
2461 | __os.flags(__flags); |
2462 | __os.fill(__fill); |
2463 | __os.precision(__precision); |
2464 | return __os; |
2465 | } |
2466 | |
2467 | template<typename _RealType, typename _CharT, typename _Traits> |
2468 | std::basic_istream<_CharT, _Traits>& |
2469 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
2470 | gamma_distribution<_RealType>& __x) |
2471 | { |
2472 | typedef std::basic_istream<_CharT, _Traits> __istream_type; |
2473 | typedef typename __istream_type::ios_base __ios_base; |
2474 | |
2475 | const typename __ios_base::fmtflags __flags = __is.flags(); |
2476 | __is.flags(__ios_base::dec | __ios_base::skipws); |
2477 | |
2478 | _RealType __alpha_val, __beta_val; |
2479 | __is >> __alpha_val >> __beta_val >> __x._M_nd; |
2480 | __x.param(typename gamma_distribution<_RealType>:: |
2481 | param_type(__alpha_val, __beta_val)); |
2482 | |
2483 | __is.flags(__flags); |
2484 | return __is; |
2485 | } |
2486 | |
2487 | |
2488 | template<typename _RealType> |
2489 | template<typename _UniformRandomNumberGenerator> |
2490 | typename weibull_distribution<_RealType>::result_type |
2491 | weibull_distribution<_RealType>:: |
2492 | operator()(_UniformRandomNumberGenerator& __urng, |
2493 | const param_type& __p) |
2494 | { |
2495 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
2496 | __aurng(__urng); |
2497 | return __p.b() * std::pow(-std::log(result_type(1) - __aurng()), |
2498 | result_type(1) / __p.a()); |
2499 | } |
2500 | |
2501 | template<typename _RealType> |
2502 | template<typename _ForwardIterator, |
2503 | typename _UniformRandomNumberGenerator> |
2504 | void |
2505 | weibull_distribution<_RealType>:: |
2506 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
2507 | _UniformRandomNumberGenerator& __urng, |
2508 | const param_type& __p) |
2509 | { |
2510 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
2511 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
2512 | __aurng(__urng); |
2513 | auto __inv_a = result_type(1) / __p.a(); |
2514 | |
2515 | while (__f != __t) |
2516 | *__f++ = __p.b() * std::pow(-std::log(result_type(1) - __aurng()), |
2517 | __inv_a); |
2518 | } |
2519 | |
2520 | template<typename _RealType, typename _CharT, typename _Traits> |
2521 | std::basic_ostream<_CharT, _Traits>& |
2522 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
2523 | const weibull_distribution<_RealType>& __x) |
2524 | { |
2525 | typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
2526 | typedef typename __ostream_type::ios_base __ios_base; |
2527 | |
2528 | const typename __ios_base::fmtflags __flags = __os.flags(); |
2529 | const _CharT __fill = __os.fill(); |
2530 | const std::streamsize __precision = __os.precision(); |
2531 | const _CharT __space = __os.widen(' '); |
2532 | __os.flags(__ios_base::scientific | __ios_base::left); |
2533 | __os.fill(__space); |
2534 | __os.precision(std::numeric_limits<_RealType>::max_digits10); |
2535 | |
2536 | __os << __x.a() << __space << __x.b(); |
2537 | |
2538 | __os.flags(__flags); |
2539 | __os.fill(__fill); |
2540 | __os.precision(__precision); |
2541 | return __os; |
2542 | } |
2543 | |
2544 | template<typename _RealType, typename _CharT, typename _Traits> |
2545 | std::basic_istream<_CharT, _Traits>& |
2546 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
2547 | weibull_distribution<_RealType>& __x) |
2548 | { |
2549 | typedef std::basic_istream<_CharT, _Traits> __istream_type; |
2550 | typedef typename __istream_type::ios_base __ios_base; |
2551 | |
2552 | const typename __ios_base::fmtflags __flags = __is.flags(); |
2553 | __is.flags(__ios_base::dec | __ios_base::skipws); |
2554 | |
2555 | _RealType __a, __b; |
2556 | __is >> __a >> __b; |
2557 | __x.param(typename weibull_distribution<_RealType>:: |
2558 | param_type(__a, __b)); |
2559 | |
2560 | __is.flags(__flags); |
2561 | return __is; |
2562 | } |
2563 | |
2564 | |
2565 | template<typename _RealType> |
2566 | template<typename _UniformRandomNumberGenerator> |
2567 | typename extreme_value_distribution<_RealType>::result_type |
2568 | extreme_value_distribution<_RealType>:: |
2569 | operator()(_UniformRandomNumberGenerator& __urng, |
2570 | const param_type& __p) |
2571 | { |
2572 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
2573 | __aurng(__urng); |
2574 | return __p.a() - __p.b() * std::log(-std::log(result_type(1) |
2575 | - __aurng())); |
2576 | } |
2577 | |
2578 | template<typename _RealType> |
2579 | template<typename _ForwardIterator, |
2580 | typename _UniformRandomNumberGenerator> |
2581 | void |
2582 | extreme_value_distribution<_RealType>:: |
2583 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
2584 | _UniformRandomNumberGenerator& __urng, |
2585 | const param_type& __p) |
2586 | { |
2587 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
2588 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
2589 | __aurng(__urng); |
2590 | |
2591 | while (__f != __t) |
2592 | *__f++ = __p.a() - __p.b() * std::log(-std::log(result_type(1) |
2593 | - __aurng())); |
2594 | } |
2595 | |
2596 | template<typename _RealType, typename _CharT, typename _Traits> |
2597 | std::basic_ostream<_CharT, _Traits>& |
2598 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
2599 | const extreme_value_distribution<_RealType>& __x) |
2600 | { |
2601 | typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
2602 | typedef typename __ostream_type::ios_base __ios_base; |
2603 | |
2604 | const typename __ios_base::fmtflags __flags = __os.flags(); |
2605 | const _CharT __fill = __os.fill(); |
2606 | const std::streamsize __precision = __os.precision(); |
2607 | const _CharT __space = __os.widen(' '); |
2608 | __os.flags(__ios_base::scientific | __ios_base::left); |
2609 | __os.fill(__space); |
2610 | __os.precision(std::numeric_limits<_RealType>::max_digits10); |
2611 | |
2612 | __os << __x.a() << __space << __x.b(); |
2613 | |
2614 | __os.flags(__flags); |
2615 | __os.fill(__fill); |
2616 | __os.precision(__precision); |
2617 | return __os; |
2618 | } |
2619 | |
2620 | template<typename _RealType, typename _CharT, typename _Traits> |
2621 | std::basic_istream<_CharT, _Traits>& |
2622 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
2623 | extreme_value_distribution<_RealType>& __x) |
2624 | { |
2625 | typedef std::basic_istream<_CharT, _Traits> __istream_type; |
2626 | typedef typename __istream_type::ios_base __ios_base; |
2627 | |
2628 | const typename __ios_base::fmtflags __flags = __is.flags(); |
2629 | __is.flags(__ios_base::dec | __ios_base::skipws); |
2630 | |
2631 | _RealType __a, __b; |
2632 | __is >> __a >> __b; |
2633 | __x.param(typename extreme_value_distribution<_RealType>:: |
2634 | param_type(__a, __b)); |
2635 | |
2636 | __is.flags(__flags); |
2637 | return __is; |
2638 | } |
2639 | |
2640 | |
2641 | template<typename _IntType> |
2642 | void |
2643 | discrete_distribution<_IntType>::param_type:: |
2644 | _M_initialize() |
2645 | { |
2646 | if (_M_prob.size() < 2) |
2647 | { |
2648 | _M_prob.clear(); |
2649 | return; |
2650 | } |
2651 | |
2652 | const double __sum = std::accumulate(_M_prob.begin(), |
2653 | _M_prob.end(), 0.0); |
2654 | // Now normalize the probabilites. |
2655 | __detail::__normalize(_M_prob.begin(), _M_prob.end(), _M_prob.begin(), |
2656 | __sum); |
2657 | // Accumulate partial sums. |
2658 | _M_cp.reserve(_M_prob.size()); |
2659 | std::partial_sum(_M_prob.begin(), _M_prob.end(), |
2660 | std::back_inserter(_M_cp)); |
2661 | // Make sure the last cumulative probability is one. |
2662 | _M_cp[_M_cp.size() - 1] = 1.0; |
2663 | } |
2664 | |
2665 | template<typename _IntType> |
2666 | template<typename _Func> |
2667 | discrete_distribution<_IntType>::param_type:: |
2668 | param_type(size_t __nw, double __xmin, double __xmax, _Func __fw) |
2669 | : _M_prob(), _M_cp() |
2670 | { |
2671 | const size_t __n = __nw == 0 ? 1 : __nw; |
2672 | const double __delta = (__xmax - __xmin) / __n; |
2673 | |
2674 | _M_prob.reserve(__n); |
2675 | for (size_t __k = 0; __k < __nw; ++__k) |
2676 | _M_prob.push_back(__fw(__xmin + __k * __delta + 0.5 * __delta)); |
2677 | |
2678 | _M_initialize(); |
2679 | } |
2680 | |
2681 | template<typename _IntType> |
2682 | template<typename _UniformRandomNumberGenerator> |
2683 | typename discrete_distribution<_IntType>::result_type |
2684 | discrete_distribution<_IntType>:: |
2685 | operator()(_UniformRandomNumberGenerator& __urng, |
2686 | const param_type& __param) |
2687 | { |
2688 | if (__param._M_cp.empty()) |
2689 | return result_type(0); |
2690 | |
2691 | __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
2692 | __aurng(__urng); |
2693 | |
2694 | const double __p = __aurng(); |
2695 | auto __pos = std::lower_bound(__param._M_cp.begin(), |
2696 | __param._M_cp.end(), __p); |
2697 | |
2698 | return __pos - __param._M_cp.begin(); |
2699 | } |
2700 | |
2701 | template<typename _IntType> |
2702 | template<typename _ForwardIterator, |
2703 | typename _UniformRandomNumberGenerator> |
2704 | void |
2705 | discrete_distribution<_IntType>:: |
2706 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
2707 | _UniformRandomNumberGenerator& __urng, |
2708 | const param_type& __param) |
2709 | { |
2710 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
2711 | |
2712 | if (__param._M_cp.empty()) |
2713 | { |
2714 | while (__f != __t) |
2715 | *__f++ = result_type(0); |
2716 | return; |
2717 | } |
2718 | |
2719 | __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
2720 | __aurng(__urng); |
2721 | |
2722 | while (__f != __t) |
2723 | { |
2724 | const double __p = __aurng(); |
2725 | auto __pos = std::lower_bound(__param._M_cp.begin(), |
2726 | __param._M_cp.end(), __p); |
2727 | |
2728 | *__f++ = __pos - __param._M_cp.begin(); |
2729 | } |
2730 | } |
2731 | |
2732 | template<typename _IntType, typename _CharT, typename _Traits> |
2733 | std::basic_ostream<_CharT, _Traits>& |
2734 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
2735 | const discrete_distribution<_IntType>& __x) |
2736 | { |
2737 | typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
2738 | typedef typename __ostream_type::ios_base __ios_base; |
2739 | |
2740 | const typename __ios_base::fmtflags __flags = __os.flags(); |
2741 | const _CharT __fill = __os.fill(); |
2742 | const std::streamsize __precision = __os.precision(); |
2743 | const _CharT __space = __os.widen(' '); |
2744 | __os.flags(__ios_base::scientific | __ios_base::left); |
2745 | __os.fill(__space); |
2746 | __os.precision(std::numeric_limits<double>::max_digits10); |
2747 | |
2748 | std::vector<double> __prob = __x.probabilities(); |
2749 | __os << __prob.size(); |
2750 | for (auto __dit = __prob.begin(); __dit != __prob.end(); ++__dit) |
2751 | __os << __space << *__dit; |
2752 | |
2753 | __os.flags(__flags); |
2754 | __os.fill(__fill); |
2755 | __os.precision(__precision); |
2756 | return __os; |
2757 | } |
2758 | |
2759 | template<typename _IntType, typename _CharT, typename _Traits> |
2760 | std::basic_istream<_CharT, _Traits>& |
2761 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
2762 | discrete_distribution<_IntType>& __x) |
2763 | { |
2764 | typedef std::basic_istream<_CharT, _Traits> __istream_type; |
2765 | typedef typename __istream_type::ios_base __ios_base; |
2766 | |
2767 | const typename __ios_base::fmtflags __flags = __is.flags(); |
2768 | __is.flags(__ios_base::dec | __ios_base::skipws); |
2769 | |
2770 | size_t __n; |
2771 | __is >> __n; |
2772 | |
2773 | std::vector<double> __prob_vec; |
2774 | __prob_vec.reserve(__n); |
2775 | for (; __n != 0; --__n) |
2776 | { |
2777 | double __prob; |
2778 | __is >> __prob; |
2779 | __prob_vec.push_back(__prob); |
2780 | } |
2781 | |
2782 | __x.param(typename discrete_distribution<_IntType>:: |
2783 | param_type(__prob_vec.begin(), __prob_vec.end())); |
2784 | |
2785 | __is.flags(__flags); |
2786 | return __is; |
2787 | } |
2788 | |
2789 | |
2790 | template<typename _RealType> |
2791 | void |
2792 | piecewise_constant_distribution<_RealType>::param_type:: |
2793 | _M_initialize() |
2794 | { |
2795 | if (_M_int.size() < 2 |
2796 | || (_M_int.size() == 2 |
2797 | && _M_int[0] == _RealType(0) |
2798 | && _M_int[1] == _RealType(1))) |
2799 | { |
2800 | _M_int.clear(); |
2801 | _M_den.clear(); |
2802 | return; |
2803 | } |
2804 | |
2805 | const double __sum = std::accumulate(_M_den.begin(), |
2806 | _M_den.end(), 0.0); |
2807 | |
2808 | __detail::__normalize(_M_den.begin(), _M_den.end(), _M_den.begin(), |
2809 | __sum); |
2810 | |
2811 | _M_cp.reserve(_M_den.size()); |
2812 | std::partial_sum(_M_den.begin(), _M_den.end(), |
2813 | std::back_inserter(_M_cp)); |
2814 | |
2815 | // Make sure the last cumulative probability is one. |
2816 | _M_cp[_M_cp.size() - 1] = 1.0; |
2817 | |
2818 | for (size_t __k = 0; __k < _M_den.size(); ++__k) |
2819 | _M_den[__k] /= _M_int[__k + 1] - _M_int[__k]; |
2820 | } |
2821 | |
2822 | template<typename _RealType> |
2823 | template<typename _InputIteratorB, typename _InputIteratorW> |
2824 | piecewise_constant_distribution<_RealType>::param_type:: |
2825 | param_type(_InputIteratorB __bbegin, |
2826 | _InputIteratorB __bend, |
2827 | _InputIteratorW __wbegin) |
2828 | : _M_int(), _M_den(), _M_cp() |
2829 | { |
2830 | if (__bbegin != __bend) |
2831 | { |
2832 | for (;;) |
2833 | { |
2834 | _M_int.push_back(*__bbegin); |
2835 | ++__bbegin; |
2836 | if (__bbegin == __bend) |
2837 | break; |
2838 | |
2839 | _M_den.push_back(*__wbegin); |
2840 | ++__wbegin; |
2841 | } |
2842 | } |
2843 | |
2844 | _M_initialize(); |
2845 | } |
2846 | |
2847 | template<typename _RealType> |
2848 | template<typename _Func> |
2849 | piecewise_constant_distribution<_RealType>::param_type:: |
2850 | param_type(initializer_list<_RealType> __bl, _Func __fw) |
2851 | : _M_int(), _M_den(), _M_cp() |
2852 | { |
2853 | _M_int.reserve(__bl.size()); |
2854 | for (auto __biter = __bl.begin(); __biter != __bl.end(); ++__biter) |
2855 | _M_int.push_back(*__biter); |
2856 | |
2857 | _M_den.reserve(_M_int.size() - 1); |
2858 | for (size_t __k = 0; __k < _M_int.size() - 1; ++__k) |
2859 | _M_den.push_back(__fw(0.5 * (_M_int[__k + 1] + _M_int[__k]))); |
2860 | |
2861 | _M_initialize(); |
2862 | } |
2863 | |
2864 | template<typename _RealType> |
2865 | template<typename _Func> |
2866 | piecewise_constant_distribution<_RealType>::param_type:: |
2867 | param_type(size_t __nw, _RealType __xmin, _RealType __xmax, _Func __fw) |
2868 | : _M_int(), _M_den(), _M_cp() |
2869 | { |
2870 | const size_t __n = __nw == 0 ? 1 : __nw; |
2871 | const _RealType __delta = (__xmax - __xmin) / __n; |
2872 | |
2873 | _M_int.reserve(__n + 1); |
2874 | for (size_t __k = 0; __k <= __nw; ++__k) |
2875 | _M_int.push_back(__xmin + __k * __delta); |
2876 | |
2877 | _M_den.reserve(__n); |
2878 | for (size_t __k = 0; __k < __nw; ++__k) |
2879 | _M_den.push_back(__fw(_M_int[__k] + 0.5 * __delta)); |
2880 | |
2881 | _M_initialize(); |
2882 | } |
2883 | |
2884 | template<typename _RealType> |
2885 | template<typename _UniformRandomNumberGenerator> |
2886 | typename piecewise_constant_distribution<_RealType>::result_type |
2887 | piecewise_constant_distribution<_RealType>:: |
2888 | operator()(_UniformRandomNumberGenerator& __urng, |
2889 | const param_type& __param) |
2890 | { |
2891 | __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
2892 | __aurng(__urng); |
2893 | |
2894 | const double __p = __aurng(); |
2895 | if (__param._M_cp.empty()) |
2896 | return __p; |
2897 | |
2898 | auto __pos = std::lower_bound(__param._M_cp.begin(), |
2899 | __param._M_cp.end(), __p); |
2900 | const size_t __i = __pos - __param._M_cp.begin(); |
2901 | |
2902 | const double __pref = __i > 0 ? __param._M_cp[__i - 1] : 0.0; |
2903 | |
2904 | return __param._M_int[__i] + (__p - __pref) / __param._M_den[__i]; |
2905 | } |
2906 | |
2907 | template<typename _RealType> |
2908 | template<typename _ForwardIterator, |
2909 | typename _UniformRandomNumberGenerator> |
2910 | void |
2911 | piecewise_constant_distribution<_RealType>:: |
2912 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
2913 | _UniformRandomNumberGenerator& __urng, |
2914 | const param_type& __param) |
2915 | { |
2916 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
2917 | __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
2918 | __aurng(__urng); |
2919 | |
2920 | if (__param._M_cp.empty()) |
2921 | { |
2922 | while (__f != __t) |
2923 | *__f++ = __aurng(); |
2924 | return; |
2925 | } |
2926 | |
2927 | while (__f != __t) |
2928 | { |
2929 | const double __p = __aurng(); |
2930 | |
2931 | auto __pos = std::lower_bound(__param._M_cp.begin(), |
2932 | __param._M_cp.end(), __p); |
2933 | const size_t __i = __pos - __param._M_cp.begin(); |
2934 | |
2935 | const double __pref = __i > 0 ? __param._M_cp[__i - 1] : 0.0; |
2936 | |
2937 | *__f++ = (__param._M_int[__i] |
2938 | + (__p - __pref) / __param._M_den[__i]); |
2939 | } |
2940 | } |
2941 | |
2942 | template<typename _RealType, typename _CharT, typename _Traits> |
2943 | std::basic_ostream<_CharT, _Traits>& |
2944 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
2945 | const piecewise_constant_distribution<_RealType>& __x) |
2946 | { |
2947 | typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
2948 | typedef typename __ostream_type::ios_base __ios_base; |
2949 | |
2950 | const typename __ios_base::fmtflags __flags = __os.flags(); |
2951 | const _CharT __fill = __os.fill(); |
2952 | const std::streamsize __precision = __os.precision(); |
2953 | const _CharT __space = __os.widen(' '); |
2954 | __os.flags(__ios_base::scientific | __ios_base::left); |
2955 | __os.fill(__space); |
2956 | __os.precision(std::numeric_limits<_RealType>::max_digits10); |
2957 | |
2958 | std::vector<_RealType> __int = __x.intervals(); |
2959 | __os << __int.size() - 1; |
2960 | |
2961 | for (auto __xit = __int.begin(); __xit != __int.end(); ++__xit) |
2962 | __os << __space << *__xit; |
2963 | |
2964 | std::vector<double> __den = __x.densities(); |
2965 | for (auto __dit = __den.begin(); __dit != __den.end(); ++__dit) |
2966 | __os << __space << *__dit; |
2967 | |
2968 | __os.flags(__flags); |
2969 | __os.fill(__fill); |
2970 | __os.precision(__precision); |
2971 | return __os; |
2972 | } |
2973 | |
2974 | template<typename _RealType, typename _CharT, typename _Traits> |
2975 | std::basic_istream<_CharT, _Traits>& |
2976 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
2977 | piecewise_constant_distribution<_RealType>& __x) |
2978 | { |
2979 | typedef std::basic_istream<_CharT, _Traits> __istream_type; |
2980 | typedef typename __istream_type::ios_base __ios_base; |
2981 | |
2982 | const typename __ios_base::fmtflags __flags = __is.flags(); |
2983 | __is.flags(__ios_base::dec | __ios_base::skipws); |
2984 | |
2985 | size_t __n; |
2986 | __is >> __n; |
2987 | |
2988 | std::vector<_RealType> __int_vec; |
2989 | __int_vec.reserve(__n + 1); |
2990 | for (size_t __i = 0; __i <= __n; ++__i) |
2991 | { |
2992 | _RealType __int; |
2993 | __is >> __int; |
2994 | __int_vec.push_back(__int); |
2995 | } |
2996 | |
2997 | std::vector<double> __den_vec; |
2998 | __den_vec.reserve(__n); |
2999 | for (size_t __i = 0; __i < __n; ++__i) |
3000 | { |
3001 | double __den; |
3002 | __is >> __den; |
3003 | __den_vec.push_back(__den); |
3004 | } |
3005 | |
3006 | __x.param(typename piecewise_constant_distribution<_RealType>:: |
3007 | param_type(__int_vec.begin(), __int_vec.end(), __den_vec.begin())); |
3008 | |
3009 | __is.flags(__flags); |
3010 | return __is; |
3011 | } |
3012 | |
3013 | |
3014 | template<typename _RealType> |
3015 | void |
3016 | piecewise_linear_distribution<_RealType>::param_type:: |
3017 | _M_initialize() |
3018 | { |
3019 | if (_M_int.size() < 2 |
3020 | || (_M_int.size() == 2 |
3021 | && _M_int[0] == _RealType(0) |
3022 | && _M_int[1] == _RealType(1) |
3023 | && _M_den[0] == _M_den[1])) |
3024 | { |
3025 | _M_int.clear(); |
3026 | _M_den.clear(); |
3027 | return; |
3028 | } |
3029 | |
3030 | double __sum = 0.0; |
3031 | _M_cp.reserve(_M_int.size() - 1); |
3032 | _M_m.reserve(_M_int.size() - 1); |
3033 | for (size_t __k = 0; __k < _M_int.size() - 1; ++__k) |
3034 | { |
3035 | const _RealType __delta = _M_int[__k + 1] - _M_int[__k]; |
3036 | __sum += 0.5 * (_M_den[__k + 1] + _M_den[__k]) * __delta; |
3037 | _M_cp.push_back(__sum); |
3038 | _M_m.push_back((_M_den[__k + 1] - _M_den[__k]) / __delta); |
3039 | } |
3040 | |
3041 | // Now normalize the densities... |
3042 | __detail::__normalize(_M_den.begin(), _M_den.end(), _M_den.begin(), |
3043 | __sum); |
3044 | // ... and partial sums... |
3045 | __detail::__normalize(_M_cp.begin(), _M_cp.end(), _M_cp.begin(), __sum); |
3046 | // ... and slopes. |
3047 | __detail::__normalize(_M_m.begin(), _M_m.end(), _M_m.begin(), __sum); |
3048 | |
3049 | // Make sure the last cumulative probablility is one. |
3050 | _M_cp[_M_cp.size() - 1] = 1.0; |
3051 | } |
3052 | |
3053 | template<typename _RealType> |
3054 | template<typename _InputIteratorB, typename _InputIteratorW> |
3055 | piecewise_linear_distribution<_RealType>::param_type:: |
3056 | param_type(_InputIteratorB __bbegin, |
3057 | _InputIteratorB __bend, |
3058 | _InputIteratorW __wbegin) |
3059 | : _M_int(), _M_den(), _M_cp(), _M_m() |
3060 | { |
3061 | for (; __bbegin != __bend; ++__bbegin, ++__wbegin) |
3062 | { |
3063 | _M_int.push_back(*__bbegin); |
3064 | _M_den.push_back(*__wbegin); |
3065 | } |
3066 | |
3067 | _M_initialize(); |
3068 | } |
3069 | |
3070 | template<typename _RealType> |
3071 | template<typename _Func> |
3072 | piecewise_linear_distribution<_RealType>::param_type:: |
3073 | param_type(initializer_list<_RealType> __bl, _Func __fw) |
3074 | : _M_int(), _M_den(), _M_cp(), _M_m() |
3075 | { |
3076 | _M_int.reserve(__bl.size()); |
3077 | _M_den.reserve(__bl.size()); |
3078 | for (auto __biter = __bl.begin(); __biter != __bl.end(); ++__biter) |
3079 | { |
3080 | _M_int.push_back(*__biter); |
3081 | _M_den.push_back(__fw(*__biter)); |
3082 | } |
3083 | |
3084 | _M_initialize(); |
3085 | } |
3086 | |
3087 | template<typename _RealType> |
3088 | template<typename _Func> |
3089 | piecewise_linear_distribution<_RealType>::param_type:: |
3090 | param_type(size_t __nw, _RealType __xmin, _RealType __xmax, _Func __fw) |
3091 | : _M_int(), _M_den(), _M_cp(), _M_m() |
3092 | { |
3093 | const size_t __n = __nw == 0 ? 1 : __nw; |
3094 | const _RealType __delta = (__xmax - __xmin) / __n; |
3095 | |
3096 | _M_int.reserve(__n + 1); |
3097 | _M_den.reserve(__n + 1); |
3098 | for (size_t __k = 0; __k <= __nw; ++__k) |
3099 | { |
3100 | _M_int.push_back(__xmin + __k * __delta); |
3101 | _M_den.push_back(__fw(_M_int[__k] + __delta)); |
3102 | } |
3103 | |
3104 | _M_initialize(); |
3105 | } |
3106 | |
3107 | template<typename _RealType> |
3108 | template<typename _UniformRandomNumberGenerator> |
3109 | typename piecewise_linear_distribution<_RealType>::result_type |
3110 | piecewise_linear_distribution<_RealType>:: |
3111 | operator()(_UniformRandomNumberGenerator& __urng, |
3112 | const param_type& __param) |
3113 | { |
3114 | __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
3115 | __aurng(__urng); |
3116 | |
3117 | const double __p = __aurng(); |
3118 | if (__param._M_cp.empty()) |
3119 | return __p; |
3120 | |
3121 | auto __pos = std::lower_bound(__param._M_cp.begin(), |
3122 | __param._M_cp.end(), __p); |
3123 | const size_t __i = __pos - __param._M_cp.begin(); |
3124 | |
3125 | const double __pref = __i > 0 ? __param._M_cp[__i - 1] : 0.0; |
3126 | |
3127 | const double __a = 0.5 * __param._M_m[__i]; |
3128 | const double __b = __param._M_den[__i]; |
3129 | const double __cm = __p - __pref; |
3130 | |
3131 | _RealType __x = __param._M_int[__i]; |
3132 | if (__a == 0) |
3133 | __x += __cm / __b; |
3134 | else |
3135 | { |
3136 | const double __d = __b * __b + 4.0 * __a * __cm; |
3137 | __x += 0.5 * (std::sqrt(__d) - __b) / __a; |
3138 | } |
3139 | |
3140 | return __x; |
3141 | } |
3142 | |
3143 | template<typename _RealType> |
3144 | template<typename _ForwardIterator, |
3145 | typename _UniformRandomNumberGenerator> |
3146 | void |
3147 | piecewise_linear_distribution<_RealType>:: |
3148 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
3149 | _UniformRandomNumberGenerator& __urng, |
3150 | const param_type& __param) |
3151 | { |
3152 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
3153 | // We could duplicate everything from operator()... |
3154 | while (__f != __t) |
3155 | *__f++ = this->operator()(__urng, __param); |
3156 | } |
3157 | |
3158 | template<typename _RealType, typename _CharT, typename _Traits> |
3159 | std::basic_ostream<_CharT, _Traits>& |
3160 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
3161 | const piecewise_linear_distribution<_RealType>& __x) |
3162 | { |
3163 | typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
3164 | typedef typename __ostream_type::ios_base __ios_base; |
3165 | |
3166 | const typename __ios_base::fmtflags __flags = __os.flags(); |
3167 | const _CharT __fill = __os.fill(); |
3168 | const std::streamsize __precision = __os.precision(); |
3169 | const _CharT __space = __os.widen(' '); |
3170 | __os.flags(__ios_base::scientific | __ios_base::left); |
3171 | __os.fill(__space); |
3172 | __os.precision(std::numeric_limits<_RealType>::max_digits10); |
3173 | |
3174 | std::vector<_RealType> __int = __x.intervals(); |
3175 | __os << __int.size() - 1; |
3176 | |
3177 | for (auto __xit = __int.begin(); __xit != __int.end(); ++__xit) |
3178 | __os << __space << *__xit; |
3179 | |
3180 | std::vector<double> __den = __x.densities(); |
3181 | for (auto __dit = __den.begin(); __dit != __den.end(); ++__dit) |
3182 | __os << __space << *__dit; |
3183 | |
3184 | __os.flags(__flags); |
3185 | __os.fill(__fill); |
3186 | __os.precision(__precision); |
3187 | return __os; |
3188 | } |
3189 | |
3190 | template<typename _RealType, typename _CharT, typename _Traits> |
3191 | std::basic_istream<_CharT, _Traits>& |
3192 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
3193 | piecewise_linear_distribution<_RealType>& __x) |
3194 | { |
3195 | typedef std::basic_istream<_CharT, _Traits> __istream_type; |
3196 | typedef typename __istream_type::ios_base __ios_base; |
3197 | |
3198 | const typename __ios_base::fmtflags __flags = __is.flags(); |
3199 | __is.flags(__ios_base::dec | __ios_base::skipws); |
3200 | |
3201 | size_t __n; |
3202 | __is >> __n; |
3203 | |
3204 | std::vector<_RealType> __int_vec; |
3205 | __int_vec.reserve(__n + 1); |
3206 | for (size_t __i = 0; __i <= __n; ++__i) |
3207 | { |
3208 | _RealType __int; |
3209 | __is >> __int; |
3210 | __int_vec.push_back(__int); |
3211 | } |
3212 | |
3213 | std::vector<double> __den_vec; |
3214 | __den_vec.reserve(__n + 1); |
3215 | for (size_t __i = 0; __i <= __n; ++__i) |
3216 | { |
3217 | double __den; |
3218 | __is >> __den; |
3219 | __den_vec.push_back(__den); |
3220 | } |
3221 | |
3222 | __x.param(typename piecewise_linear_distribution<_RealType>:: |
3223 | param_type(__int_vec.begin(), __int_vec.end(), __den_vec.begin())); |
3224 | |
3225 | __is.flags(__flags); |
3226 | return __is; |
3227 | } |
3228 | |
3229 | |
3230 | template<typename _IntType> |
3231 | seed_seq::seed_seq(std::initializer_list<_IntType> __il) |
3232 | { |
3233 | for (auto __iter = __il.begin(); __iter != __il.end(); ++__iter) |
3234 | _M_v.push_back(__detail::__mod<result_type, |
3235 | __detail::_Shift<result_type, 32>::__value>(*__iter)); |
3236 | } |
3237 | |
3238 | template<typename _InputIterator> |
3239 | seed_seq::seed_seq(_InputIterator __begin, _InputIterator __end) |
3240 | { |
3241 | for (_InputIterator __iter = __begin; __iter != __end; ++__iter) |
3242 | _M_v.push_back(__detail::__mod<result_type, |
3243 | __detail::_Shift<result_type, 32>::__value>(*__iter)); |
3244 | } |
3245 | |
3246 | template<typename _RandomAccessIterator> |
3247 | void |
3248 | seed_seq::generate(_RandomAccessIterator __begin, |
3249 | _RandomAccessIterator __end) |
3250 | { |
3251 | typedef typename iterator_traits<_RandomAccessIterator>::value_type |
3252 | _Type; |
3253 | |
3254 | if (__begin == __end) |
3255 | return; |
3256 | |
3257 | std::fill(__begin, __end, _Type(0x8b8b8b8bu)); |
3258 | |
3259 | const size_t __n = __end - __begin; |
3260 | const size_t __s = _M_v.size(); |
3261 | const size_t __t = (__n >= 623) ? 11 |
3262 | : (__n >= 68) ? 7 |
3263 | : (__n >= 39) ? 5 |
3264 | : (__n >= 7) ? 3 |
3265 | : (__n - 1) / 2; |
3266 | const size_t __p = (__n - __t) / 2; |
3267 | const size_t __q = __p + __t; |
3268 | const size_t __m = std::max(size_t(__s + 1), __n); |
3269 | |
3270 | for (size_t __k = 0; __k < __m; ++__k) |
3271 | { |
3272 | _Type __arg = (__begin[__k % __n] |
3273 | ^ __begin[(__k + __p) % __n] |
3274 | ^ __begin[(__k - 1) % __n]); |
3275 | _Type __r1 = __arg ^ (__arg >> 27); |
3276 | __r1 = __detail::__mod<_Type, |
3277 | __detail::_Shift<_Type, 32>::__value>(1664525u * __r1); |
3278 | _Type __r2 = __r1; |
3279 | if (__k == 0) |
3280 | __r2 += __s; |
3281 | else if (__k <= __s) |
3282 | __r2 += __k % __n + _M_v[__k - 1]; |
3283 | else |
3284 | __r2 += __k % __n; |
3285 | __r2 = __detail::__mod<_Type, |
3286 | __detail::_Shift<_Type, 32>::__value>(__r2); |
3287 | __begin[(__k + __p) % __n] += __r1; |
3288 | __begin[(__k + __q) % __n] += __r2; |
3289 | __begin[__k % __n] = __r2; |
3290 | } |
3291 | |
3292 | for (size_t __k = __m; __k < __m + __n; ++__k) |
3293 | { |
3294 | _Type __arg = (__begin[__k % __n] |
3295 | + __begin[(__k + __p) % __n] |
3296 | + __begin[(__k - 1) % __n]); |
3297 | _Type __r3 = __arg ^ (__arg >> 27); |
3298 | __r3 = __detail::__mod<_Type, |
3299 | __detail::_Shift<_Type, 32>::__value>(1566083941u * __r3); |
3300 | _Type __r4 = __r3 - __k % __n; |
3301 | __r4 = __detail::__mod<_Type, |
3302 | __detail::_Shift<_Type, 32>::__value>(__r4); |
3303 | __begin[(__k + __p) % __n] ^= __r3; |
3304 | __begin[(__k + __q) % __n] ^= __r4; |
3305 | __begin[__k % __n] = __r4; |
3306 | } |
3307 | } |
3308 | |
3309 | template<typename _RealType, size_t __bits, |
3310 | typename _UniformRandomNumberGenerator> |
3311 | _RealType |
3312 | generate_canonical(_UniformRandomNumberGenerator& __urng) |
3313 | { |
3314 | static_assert(std::is_floating_point<_RealType>::value, |
3315 | "template argument must be a floating point type" ); |
3316 | |
3317 | const size_t __b |
3318 | = std::min(static_cast<size_t>(std::numeric_limits<_RealType>::digits), |
3319 | __bits); |
3320 | const long double __r = static_cast<long double>(__urng.max()) |
3321 | - static_cast<long double>(__urng.min()) + 1.0L; |
3322 | const size_t __log2r = std::log(__r) / std::log(2.0L); |
3323 | const size_t __m = std::max<size_t>(1UL, |
3324 | (__b + __log2r - 1UL) / __log2r); |
3325 | _RealType __ret; |
3326 | _RealType __sum = _RealType(0); |
3327 | _RealType __tmp = _RealType(1); |
3328 | for (size_t __k = __m; __k != 0; --__k) |
3329 | { |
3330 | __sum += _RealType(__urng() - __urng.min()) * __tmp; |
3331 | __tmp *= __r; |
3332 | } |
3333 | __ret = __sum / __tmp; |
3334 | if (__builtin_expect(__ret >= _RealType(1), 0)) |
3335 | { |
3336 | #if _GLIBCXX_USE_C99_MATH_TR1 |
3337 | __ret = std::nextafter(_RealType(1), _RealType(0)); |
3338 | #else |
3339 | __ret = _RealType(1) |
3340 | - std::numeric_limits<_RealType>::epsilon() / _RealType(2); |
3341 | #endif |
3342 | } |
3343 | return __ret; |
3344 | } |
3345 | |
3346 | _GLIBCXX_END_NAMESPACE_VERSION |
3347 | } // namespace |
3348 | |
3349 | #endif |
3350 | |