1 | /* |
2 | * This file is part of the MicroPython project, http://micropython.org/ |
3 | * |
4 | * The MIT License (MIT) |
5 | * |
6 | * Copyright (c) 2017-2018 Paul Sokolovsky |
7 | * Copyright (c) 2018 Yonatan Goldschmidt |
8 | * |
9 | * Permission is hereby granted, free of charge, to any person obtaining a copy |
10 | * of this software and associated documentation files (the "Software"), to deal |
11 | * in the Software without restriction, including without limitation the rights |
12 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
13 | * copies of the Software, and to permit persons to whom the Software is |
14 | * furnished to do so, subject to the following conditions: |
15 | * |
16 | * The above copyright notice and this permission notice shall be included in |
17 | * all copies or substantial portions of the Software. |
18 | * |
19 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
20 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
21 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
22 | * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
23 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
24 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
25 | * THE SOFTWARE. |
26 | */ |
27 | |
28 | #include "py/mpconfig.h" |
29 | |
30 | #if MICROPY_PY_UCRYPTOLIB |
31 | |
32 | #include <assert.h> |
33 | #include <string.h> |
34 | |
35 | #include "py/runtime.h" |
36 | |
37 | // This module implements crypto ciphers API, roughly following |
38 | // https://www.python.org/dev/peps/pep-0272/ . Exact implementation |
39 | // of PEP 272 can be made with a simple wrapper which adds all the |
40 | // needed boilerplate. |
41 | |
42 | // values follow PEP 272 |
43 | enum { |
44 | UCRYPTOLIB_MODE_ECB = 1, |
45 | UCRYPTOLIB_MODE_CBC = 2, |
46 | UCRYPTOLIB_MODE_CTR = 6, |
47 | }; |
48 | |
49 | struct ctr_params { |
50 | // counter is the IV of the AES context. |
51 | |
52 | size_t offset; // in encrypted_counter |
53 | // encrypted counter |
54 | uint8_t encrypted_counter[16]; |
55 | }; |
56 | |
57 | #if MICROPY_SSL_AXTLS |
58 | #include "lib/axtls/crypto/crypto.h" |
59 | |
60 | #define AES_CTX_IMPL AES_CTX |
61 | #endif |
62 | |
63 | #if MICROPY_SSL_MBEDTLS |
64 | #include <mbedtls/aes.h> |
65 | |
66 | // we can't run mbedtls AES key schedule until we know whether we're used for encrypt or decrypt. |
67 | // therefore, we store the key & keysize and on the first call to encrypt/decrypt we override them |
68 | // with the mbedtls_aes_context, as they are not longer required. (this is done to save space) |
69 | struct mbedtls_aes_ctx_with_key { |
70 | union { |
71 | mbedtls_aes_context mbedtls_ctx; |
72 | struct { |
73 | uint8_t key[32]; |
74 | uint8_t keysize; |
75 | } init_data; |
76 | } u; |
77 | unsigned char iv[16]; |
78 | }; |
79 | #define AES_CTX_IMPL struct mbedtls_aes_ctx_with_key |
80 | #endif |
81 | |
82 | typedef struct _mp_obj_aes_t { |
83 | mp_obj_base_t base; |
84 | AES_CTX_IMPL ctx; |
85 | uint8_t block_mode : 6; |
86 | #define AES_KEYTYPE_NONE 0 |
87 | #define AES_KEYTYPE_ENC 1 |
88 | #define AES_KEYTYPE_DEC 2 |
89 | uint8_t key_type : 2; |
90 | } mp_obj_aes_t; |
91 | |
92 | static inline bool is_ctr_mode(int block_mode) { |
93 | #if MICROPY_PY_UCRYPTOLIB_CTR |
94 | return block_mode == UCRYPTOLIB_MODE_CTR; |
95 | #else |
96 | return false; |
97 | #endif |
98 | } |
99 | |
100 | static inline struct ctr_params *ctr_params_from_aes(mp_obj_aes_t *o) { |
101 | // ctr_params follows aes object struct |
102 | return (struct ctr_params *)&o[1]; |
103 | } |
104 | |
105 | #if MICROPY_SSL_AXTLS |
106 | STATIC void aes_initial_set_key_impl(AES_CTX_IMPL *ctx, const uint8_t *key, size_t keysize, const uint8_t iv[16]) { |
107 | assert(16 == keysize || 32 == keysize); |
108 | AES_set_key(ctx, key, iv, (16 == keysize) ? AES_MODE_128 : AES_MODE_256); |
109 | } |
110 | |
111 | STATIC void aes_final_set_key_impl(AES_CTX_IMPL *ctx, bool encrypt) { |
112 | if (!encrypt) { |
113 | AES_convert_key(ctx); |
114 | } |
115 | } |
116 | |
117 | STATIC void aes_process_ecb_impl(AES_CTX_IMPL *ctx, const uint8_t in[16], uint8_t out[16], bool encrypt) { |
118 | memcpy(out, in, 16); |
119 | // We assume that out (vstr.buf or given output buffer) is uint32_t aligned |
120 | uint32_t *p = (uint32_t *)out; |
121 | // axTLS likes it weird and complicated with byteswaps |
122 | for (int i = 0; i < 4; i++) { |
123 | p[i] = MP_HTOBE32(p[i]); |
124 | } |
125 | if (encrypt) { |
126 | AES_encrypt(ctx, p); |
127 | } else { |
128 | AES_decrypt(ctx, p); |
129 | } |
130 | for (int i = 0; i < 4; i++) { |
131 | p[i] = MP_BE32TOH(p[i]); |
132 | } |
133 | } |
134 | |
135 | STATIC void aes_process_cbc_impl(AES_CTX_IMPL *ctx, const uint8_t *in, uint8_t *out, size_t in_len, bool encrypt) { |
136 | if (encrypt) { |
137 | AES_cbc_encrypt(ctx, in, out, in_len); |
138 | } else { |
139 | AES_cbc_decrypt(ctx, in, out, in_len); |
140 | } |
141 | } |
142 | |
143 | #if MICROPY_PY_UCRYPTOLIB_CTR |
144 | // axTLS doesn't have CTR support out of the box. This implements the counter part using the ECB primitive. |
145 | STATIC void aes_process_ctr_impl(AES_CTX_IMPL *ctx, const uint8_t *in, uint8_t *out, size_t in_len, struct ctr_params *ctr_params) { |
146 | size_t n = ctr_params->offset; |
147 | uint8_t *const counter = ctx->iv; |
148 | |
149 | while (in_len--) { |
150 | if (n == 0) { |
151 | aes_process_ecb_impl(ctx, counter, ctr_params->encrypted_counter, true); |
152 | |
153 | // increment the 128-bit counter |
154 | for (int i = 15; i >= 0; --i) { |
155 | if (++counter[i] != 0) { |
156 | break; |
157 | } |
158 | } |
159 | } |
160 | |
161 | *out++ = *in++ ^ ctr_params->encrypted_counter[n]; |
162 | n = (n + 1) & 0xf; |
163 | } |
164 | |
165 | ctr_params->offset = n; |
166 | } |
167 | #endif |
168 | |
169 | #endif |
170 | |
171 | #if MICROPY_SSL_MBEDTLS |
172 | STATIC void aes_initial_set_key_impl(AES_CTX_IMPL *ctx, const uint8_t *key, size_t keysize, const uint8_t iv[16]) { |
173 | ctx->u.init_data.keysize = keysize; |
174 | memcpy(ctx->u.init_data.key, key, keysize); |
175 | |
176 | if (NULL != iv) { |
177 | memcpy(ctx->iv, iv, sizeof(ctx->iv)); |
178 | } |
179 | } |
180 | |
181 | STATIC void aes_final_set_key_impl(AES_CTX_IMPL *ctx, bool encrypt) { |
182 | // first, copy key aside |
183 | uint8_t key[32]; |
184 | uint8_t keysize = ctx->u.init_data.keysize; |
185 | memcpy(key, ctx->u.init_data.key, keysize); |
186 | // now, override key with the mbedtls context object |
187 | mbedtls_aes_init(&ctx->u.mbedtls_ctx); |
188 | |
189 | // setkey call will succeed, we've already checked the keysize earlier. |
190 | assert(16 == keysize || 32 == keysize); |
191 | if (encrypt) { |
192 | mbedtls_aes_setkey_enc(&ctx->u.mbedtls_ctx, key, keysize * 8); |
193 | } else { |
194 | mbedtls_aes_setkey_dec(&ctx->u.mbedtls_ctx, key, keysize * 8); |
195 | } |
196 | } |
197 | |
198 | STATIC void aes_process_ecb_impl(AES_CTX_IMPL *ctx, const uint8_t in[16], uint8_t out[16], bool encrypt) { |
199 | mbedtls_aes_crypt_ecb(&ctx->u.mbedtls_ctx, encrypt ? MBEDTLS_AES_ENCRYPT : MBEDTLS_AES_DECRYPT, in, out); |
200 | } |
201 | |
202 | STATIC void aes_process_cbc_impl(AES_CTX_IMPL *ctx, const uint8_t *in, uint8_t *out, size_t in_len, bool encrypt) { |
203 | mbedtls_aes_crypt_cbc(&ctx->u.mbedtls_ctx, encrypt ? MBEDTLS_AES_ENCRYPT : MBEDTLS_AES_DECRYPT, in_len, ctx->iv, in, out); |
204 | } |
205 | |
206 | #if MICROPY_PY_UCRYPTOLIB_CTR |
207 | STATIC void aes_process_ctr_impl(AES_CTX_IMPL *ctx, const uint8_t *in, uint8_t *out, size_t in_len, struct ctr_params *ctr_params) { |
208 | mbedtls_aes_crypt_ctr(&ctx->u.mbedtls_ctx, in_len, &ctr_params->offset, ctx->iv, ctr_params->encrypted_counter, in, out); |
209 | } |
210 | #endif |
211 | |
212 | #endif |
213 | |
214 | STATIC mp_obj_t ucryptolib_aes_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { |
215 | mp_arg_check_num(n_args, n_kw, 2, 3, false); |
216 | |
217 | const mp_int_t block_mode = mp_obj_get_int(args[1]); |
218 | |
219 | switch (block_mode) { |
220 | case UCRYPTOLIB_MODE_ECB: |
221 | case UCRYPTOLIB_MODE_CBC: |
222 | #if MICROPY_PY_UCRYPTOLIB_CTR |
223 | case UCRYPTOLIB_MODE_CTR: |
224 | #endif |
225 | break; |
226 | |
227 | default: |
228 | mp_raise_ValueError(MP_ERROR_TEXT("mode" )); |
229 | } |
230 | |
231 | mp_obj_aes_t *o = m_new_obj_var(mp_obj_aes_t, struct ctr_params, !!is_ctr_mode(block_mode)); |
232 | o->base.type = type; |
233 | |
234 | o->block_mode = block_mode; |
235 | o->key_type = AES_KEYTYPE_NONE; |
236 | |
237 | mp_buffer_info_t keyinfo; |
238 | mp_get_buffer_raise(args[0], &keyinfo, MP_BUFFER_READ); |
239 | if (32 != keyinfo.len && 16 != keyinfo.len) { |
240 | mp_raise_ValueError(MP_ERROR_TEXT("key" )); |
241 | } |
242 | |
243 | mp_buffer_info_t ivinfo; |
244 | ivinfo.buf = NULL; |
245 | if (n_args > 2 && args[2] != mp_const_none) { |
246 | mp_get_buffer_raise(args[2], &ivinfo, MP_BUFFER_READ); |
247 | |
248 | if (16 != ivinfo.len) { |
249 | mp_raise_ValueError(MP_ERROR_TEXT("IV" )); |
250 | } |
251 | } else if (o->block_mode == UCRYPTOLIB_MODE_CBC || is_ctr_mode(o->block_mode)) { |
252 | mp_raise_ValueError(MP_ERROR_TEXT("IV" )); |
253 | } |
254 | |
255 | if (is_ctr_mode(block_mode)) { |
256 | ctr_params_from_aes(o)->offset = 0; |
257 | } |
258 | |
259 | aes_initial_set_key_impl(&o->ctx, keyinfo.buf, keyinfo.len, ivinfo.buf); |
260 | |
261 | return MP_OBJ_FROM_PTR(o); |
262 | } |
263 | |
264 | STATIC mp_obj_t aes_process(size_t n_args, const mp_obj_t *args, bool encrypt) { |
265 | mp_obj_aes_t *self = MP_OBJ_TO_PTR(args[0]); |
266 | |
267 | mp_obj_t in_buf = args[1]; |
268 | mp_obj_t out_buf = MP_OBJ_NULL; |
269 | if (n_args > 2) { |
270 | out_buf = args[2]; |
271 | } |
272 | |
273 | mp_buffer_info_t in_bufinfo; |
274 | mp_get_buffer_raise(in_buf, &in_bufinfo, MP_BUFFER_READ); |
275 | |
276 | if (!is_ctr_mode(self->block_mode) && in_bufinfo.len % 16 != 0) { |
277 | mp_raise_ValueError(MP_ERROR_TEXT("blksize % 16" )); |
278 | } |
279 | |
280 | vstr_t vstr; |
281 | mp_buffer_info_t out_bufinfo; |
282 | uint8_t *out_buf_ptr; |
283 | |
284 | if (out_buf != MP_OBJ_NULL) { |
285 | mp_get_buffer_raise(out_buf, &out_bufinfo, MP_BUFFER_WRITE); |
286 | if (out_bufinfo.len < in_bufinfo.len) { |
287 | mp_raise_ValueError(MP_ERROR_TEXT("output too small" )); |
288 | } |
289 | out_buf_ptr = out_bufinfo.buf; |
290 | } else { |
291 | vstr_init_len(&vstr, in_bufinfo.len); |
292 | out_buf_ptr = (uint8_t *)vstr.buf; |
293 | } |
294 | |
295 | if (AES_KEYTYPE_NONE == self->key_type) { |
296 | // always set key for encryption if CTR mode. |
297 | const bool encrypt_mode = encrypt || is_ctr_mode(self->block_mode); |
298 | aes_final_set_key_impl(&self->ctx, encrypt_mode); |
299 | self->key_type = encrypt ? AES_KEYTYPE_ENC : AES_KEYTYPE_DEC; |
300 | } else { |
301 | if ((encrypt && self->key_type == AES_KEYTYPE_DEC) || |
302 | (!encrypt && self->key_type == AES_KEYTYPE_ENC)) { |
303 | |
304 | mp_raise_ValueError(MP_ERROR_TEXT("can't encrypt & decrypt" )); |
305 | } |
306 | } |
307 | |
308 | switch (self->block_mode) { |
309 | case UCRYPTOLIB_MODE_ECB: { |
310 | uint8_t *in = in_bufinfo.buf, *out = out_buf_ptr; |
311 | uint8_t *top = in + in_bufinfo.len; |
312 | for (; in < top; in += 16, out += 16) { |
313 | aes_process_ecb_impl(&self->ctx, in, out, encrypt); |
314 | } |
315 | break; |
316 | } |
317 | |
318 | case UCRYPTOLIB_MODE_CBC: |
319 | aes_process_cbc_impl(&self->ctx, in_bufinfo.buf, out_buf_ptr, in_bufinfo.len, encrypt); |
320 | break; |
321 | |
322 | #if MICROPY_PY_UCRYPTOLIB_CTR |
323 | case UCRYPTOLIB_MODE_CTR: |
324 | aes_process_ctr_impl(&self->ctx, in_bufinfo.buf, out_buf_ptr, in_bufinfo.len, |
325 | ctr_params_from_aes(self)); |
326 | break; |
327 | #endif |
328 | } |
329 | |
330 | if (out_buf != MP_OBJ_NULL) { |
331 | return out_buf; |
332 | } |
333 | return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr); |
334 | } |
335 | |
336 | STATIC mp_obj_t ucryptolib_aes_encrypt(size_t n_args, const mp_obj_t *args) { |
337 | return aes_process(n_args, args, true); |
338 | } |
339 | STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(ucryptolib_aes_encrypt_obj, 2, 3, ucryptolib_aes_encrypt); |
340 | |
341 | STATIC mp_obj_t ucryptolib_aes_decrypt(size_t n_args, const mp_obj_t *args) { |
342 | return aes_process(n_args, args, false); |
343 | } |
344 | STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(ucryptolib_aes_decrypt_obj, 2, 3, ucryptolib_aes_decrypt); |
345 | |
346 | STATIC const mp_rom_map_elem_t ucryptolib_aes_locals_dict_table[] = { |
347 | { MP_ROM_QSTR(MP_QSTR_encrypt), MP_ROM_PTR(&ucryptolib_aes_encrypt_obj) }, |
348 | { MP_ROM_QSTR(MP_QSTR_decrypt), MP_ROM_PTR(&ucryptolib_aes_decrypt_obj) }, |
349 | }; |
350 | STATIC MP_DEFINE_CONST_DICT(ucryptolib_aes_locals_dict, ucryptolib_aes_locals_dict_table); |
351 | |
352 | STATIC const mp_obj_type_t ucryptolib_aes_type = { |
353 | { &mp_type_type }, |
354 | .name = MP_QSTR_aes, |
355 | .make_new = ucryptolib_aes_make_new, |
356 | .locals_dict = (void *)&ucryptolib_aes_locals_dict, |
357 | }; |
358 | |
359 | STATIC const mp_rom_map_elem_t mp_module_ucryptolib_globals_table[] = { |
360 | { MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_ucryptolib) }, |
361 | { MP_ROM_QSTR(MP_QSTR_aes), MP_ROM_PTR(&ucryptolib_aes_type) }, |
362 | #if MICROPY_PY_UCRYPTOLIB_CONSTS |
363 | { MP_ROM_QSTR(MP_QSTR_MODE_ECB), MP_ROM_INT(UCRYPTOLIB_MODE_ECB) }, |
364 | { MP_ROM_QSTR(MP_QSTR_MODE_CBC), MP_ROM_INT(UCRYPTOLIB_MODE_CBC) }, |
365 | #if MICROPY_PY_UCRYPTOLIB_CTR |
366 | { MP_ROM_QSTR(MP_QSTR_MODE_CTR), MP_ROM_INT(UCRYPTOLIB_MODE_CTR) }, |
367 | #endif |
368 | #endif |
369 | }; |
370 | |
371 | STATIC MP_DEFINE_CONST_DICT(mp_module_ucryptolib_globals, mp_module_ucryptolib_globals_table); |
372 | |
373 | const mp_obj_module_t mp_module_ucryptolib = { |
374 | .base = { &mp_type_module }, |
375 | .globals = (mp_obj_dict_t *)&mp_module_ucryptolib_globals, |
376 | }; |
377 | |
378 | #endif // MICROPY_PY_UCRYPTOLIB |
379 | |