| 1 | /* |
| 2 | * This file is part of the MicroPython project, http://micropython.org/ |
| 3 | * |
| 4 | * The MIT License (MIT) |
| 5 | * |
| 6 | * Copyright (c) 2017-2018 Paul Sokolovsky |
| 7 | * Copyright (c) 2018 Yonatan Goldschmidt |
| 8 | * |
| 9 | * Permission is hereby granted, free of charge, to any person obtaining a copy |
| 10 | * of this software and associated documentation files (the "Software"), to deal |
| 11 | * in the Software without restriction, including without limitation the rights |
| 12 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| 13 | * copies of the Software, and to permit persons to whom the Software is |
| 14 | * furnished to do so, subject to the following conditions: |
| 15 | * |
| 16 | * The above copyright notice and this permission notice shall be included in |
| 17 | * all copies or substantial portions of the Software. |
| 18 | * |
| 19 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 20 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 21 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 22 | * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 23 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 24 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| 25 | * THE SOFTWARE. |
| 26 | */ |
| 27 | |
| 28 | #include "py/mpconfig.h" |
| 29 | |
| 30 | #if MICROPY_PY_UCRYPTOLIB |
| 31 | |
| 32 | #include <assert.h> |
| 33 | #include <string.h> |
| 34 | |
| 35 | #include "py/runtime.h" |
| 36 | |
| 37 | // This module implements crypto ciphers API, roughly following |
| 38 | // https://www.python.org/dev/peps/pep-0272/ . Exact implementation |
| 39 | // of PEP 272 can be made with a simple wrapper which adds all the |
| 40 | // needed boilerplate. |
| 41 | |
| 42 | // values follow PEP 272 |
| 43 | enum { |
| 44 | UCRYPTOLIB_MODE_ECB = 1, |
| 45 | UCRYPTOLIB_MODE_CBC = 2, |
| 46 | UCRYPTOLIB_MODE_CTR = 6, |
| 47 | }; |
| 48 | |
| 49 | struct ctr_params { |
| 50 | // counter is the IV of the AES context. |
| 51 | |
| 52 | size_t offset; // in encrypted_counter |
| 53 | // encrypted counter |
| 54 | uint8_t encrypted_counter[16]; |
| 55 | }; |
| 56 | |
| 57 | #if MICROPY_SSL_AXTLS |
| 58 | #include "lib/axtls/crypto/crypto.h" |
| 59 | |
| 60 | #define AES_CTX_IMPL AES_CTX |
| 61 | #endif |
| 62 | |
| 63 | #if MICROPY_SSL_MBEDTLS |
| 64 | #include <mbedtls/aes.h> |
| 65 | |
| 66 | // we can't run mbedtls AES key schedule until we know whether we're used for encrypt or decrypt. |
| 67 | // therefore, we store the key & keysize and on the first call to encrypt/decrypt we override them |
| 68 | // with the mbedtls_aes_context, as they are not longer required. (this is done to save space) |
| 69 | struct mbedtls_aes_ctx_with_key { |
| 70 | union { |
| 71 | mbedtls_aes_context mbedtls_ctx; |
| 72 | struct { |
| 73 | uint8_t key[32]; |
| 74 | uint8_t keysize; |
| 75 | } init_data; |
| 76 | } u; |
| 77 | unsigned char iv[16]; |
| 78 | }; |
| 79 | #define AES_CTX_IMPL struct mbedtls_aes_ctx_with_key |
| 80 | #endif |
| 81 | |
| 82 | typedef struct _mp_obj_aes_t { |
| 83 | mp_obj_base_t base; |
| 84 | AES_CTX_IMPL ctx; |
| 85 | uint8_t block_mode : 6; |
| 86 | #define AES_KEYTYPE_NONE 0 |
| 87 | #define AES_KEYTYPE_ENC 1 |
| 88 | #define AES_KEYTYPE_DEC 2 |
| 89 | uint8_t key_type : 2; |
| 90 | } mp_obj_aes_t; |
| 91 | |
| 92 | static inline bool is_ctr_mode(int block_mode) { |
| 93 | #if MICROPY_PY_UCRYPTOLIB_CTR |
| 94 | return block_mode == UCRYPTOLIB_MODE_CTR; |
| 95 | #else |
| 96 | return false; |
| 97 | #endif |
| 98 | } |
| 99 | |
| 100 | static inline struct ctr_params *ctr_params_from_aes(mp_obj_aes_t *o) { |
| 101 | // ctr_params follows aes object struct |
| 102 | return (struct ctr_params *)&o[1]; |
| 103 | } |
| 104 | |
| 105 | #if MICROPY_SSL_AXTLS |
| 106 | STATIC void aes_initial_set_key_impl(AES_CTX_IMPL *ctx, const uint8_t *key, size_t keysize, const uint8_t iv[16]) { |
| 107 | assert(16 == keysize || 32 == keysize); |
| 108 | AES_set_key(ctx, key, iv, (16 == keysize) ? AES_MODE_128 : AES_MODE_256); |
| 109 | } |
| 110 | |
| 111 | STATIC void aes_final_set_key_impl(AES_CTX_IMPL *ctx, bool encrypt) { |
| 112 | if (!encrypt) { |
| 113 | AES_convert_key(ctx); |
| 114 | } |
| 115 | } |
| 116 | |
| 117 | STATIC void aes_process_ecb_impl(AES_CTX_IMPL *ctx, const uint8_t in[16], uint8_t out[16], bool encrypt) { |
| 118 | memcpy(out, in, 16); |
| 119 | // We assume that out (vstr.buf or given output buffer) is uint32_t aligned |
| 120 | uint32_t *p = (uint32_t *)out; |
| 121 | // axTLS likes it weird and complicated with byteswaps |
| 122 | for (int i = 0; i < 4; i++) { |
| 123 | p[i] = MP_HTOBE32(p[i]); |
| 124 | } |
| 125 | if (encrypt) { |
| 126 | AES_encrypt(ctx, p); |
| 127 | } else { |
| 128 | AES_decrypt(ctx, p); |
| 129 | } |
| 130 | for (int i = 0; i < 4; i++) { |
| 131 | p[i] = MP_BE32TOH(p[i]); |
| 132 | } |
| 133 | } |
| 134 | |
| 135 | STATIC void aes_process_cbc_impl(AES_CTX_IMPL *ctx, const uint8_t *in, uint8_t *out, size_t in_len, bool encrypt) { |
| 136 | if (encrypt) { |
| 137 | AES_cbc_encrypt(ctx, in, out, in_len); |
| 138 | } else { |
| 139 | AES_cbc_decrypt(ctx, in, out, in_len); |
| 140 | } |
| 141 | } |
| 142 | |
| 143 | #if MICROPY_PY_UCRYPTOLIB_CTR |
| 144 | // axTLS doesn't have CTR support out of the box. This implements the counter part using the ECB primitive. |
| 145 | STATIC void aes_process_ctr_impl(AES_CTX_IMPL *ctx, const uint8_t *in, uint8_t *out, size_t in_len, struct ctr_params *ctr_params) { |
| 146 | size_t n = ctr_params->offset; |
| 147 | uint8_t *const counter = ctx->iv; |
| 148 | |
| 149 | while (in_len--) { |
| 150 | if (n == 0) { |
| 151 | aes_process_ecb_impl(ctx, counter, ctr_params->encrypted_counter, true); |
| 152 | |
| 153 | // increment the 128-bit counter |
| 154 | for (int i = 15; i >= 0; --i) { |
| 155 | if (++counter[i] != 0) { |
| 156 | break; |
| 157 | } |
| 158 | } |
| 159 | } |
| 160 | |
| 161 | *out++ = *in++ ^ ctr_params->encrypted_counter[n]; |
| 162 | n = (n + 1) & 0xf; |
| 163 | } |
| 164 | |
| 165 | ctr_params->offset = n; |
| 166 | } |
| 167 | #endif |
| 168 | |
| 169 | #endif |
| 170 | |
| 171 | #if MICROPY_SSL_MBEDTLS |
| 172 | STATIC void aes_initial_set_key_impl(AES_CTX_IMPL *ctx, const uint8_t *key, size_t keysize, const uint8_t iv[16]) { |
| 173 | ctx->u.init_data.keysize = keysize; |
| 174 | memcpy(ctx->u.init_data.key, key, keysize); |
| 175 | |
| 176 | if (NULL != iv) { |
| 177 | memcpy(ctx->iv, iv, sizeof(ctx->iv)); |
| 178 | } |
| 179 | } |
| 180 | |
| 181 | STATIC void aes_final_set_key_impl(AES_CTX_IMPL *ctx, bool encrypt) { |
| 182 | // first, copy key aside |
| 183 | uint8_t key[32]; |
| 184 | uint8_t keysize = ctx->u.init_data.keysize; |
| 185 | memcpy(key, ctx->u.init_data.key, keysize); |
| 186 | // now, override key with the mbedtls context object |
| 187 | mbedtls_aes_init(&ctx->u.mbedtls_ctx); |
| 188 | |
| 189 | // setkey call will succeed, we've already checked the keysize earlier. |
| 190 | assert(16 == keysize || 32 == keysize); |
| 191 | if (encrypt) { |
| 192 | mbedtls_aes_setkey_enc(&ctx->u.mbedtls_ctx, key, keysize * 8); |
| 193 | } else { |
| 194 | mbedtls_aes_setkey_dec(&ctx->u.mbedtls_ctx, key, keysize * 8); |
| 195 | } |
| 196 | } |
| 197 | |
| 198 | STATIC void aes_process_ecb_impl(AES_CTX_IMPL *ctx, const uint8_t in[16], uint8_t out[16], bool encrypt) { |
| 199 | mbedtls_aes_crypt_ecb(&ctx->u.mbedtls_ctx, encrypt ? MBEDTLS_AES_ENCRYPT : MBEDTLS_AES_DECRYPT, in, out); |
| 200 | } |
| 201 | |
| 202 | STATIC void aes_process_cbc_impl(AES_CTX_IMPL *ctx, const uint8_t *in, uint8_t *out, size_t in_len, bool encrypt) { |
| 203 | mbedtls_aes_crypt_cbc(&ctx->u.mbedtls_ctx, encrypt ? MBEDTLS_AES_ENCRYPT : MBEDTLS_AES_DECRYPT, in_len, ctx->iv, in, out); |
| 204 | } |
| 205 | |
| 206 | #if MICROPY_PY_UCRYPTOLIB_CTR |
| 207 | STATIC void aes_process_ctr_impl(AES_CTX_IMPL *ctx, const uint8_t *in, uint8_t *out, size_t in_len, struct ctr_params *ctr_params) { |
| 208 | mbedtls_aes_crypt_ctr(&ctx->u.mbedtls_ctx, in_len, &ctr_params->offset, ctx->iv, ctr_params->encrypted_counter, in, out); |
| 209 | } |
| 210 | #endif |
| 211 | |
| 212 | #endif |
| 213 | |
| 214 | STATIC mp_obj_t ucryptolib_aes_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { |
| 215 | mp_arg_check_num(n_args, n_kw, 2, 3, false); |
| 216 | |
| 217 | const mp_int_t block_mode = mp_obj_get_int(args[1]); |
| 218 | |
| 219 | switch (block_mode) { |
| 220 | case UCRYPTOLIB_MODE_ECB: |
| 221 | case UCRYPTOLIB_MODE_CBC: |
| 222 | #if MICROPY_PY_UCRYPTOLIB_CTR |
| 223 | case UCRYPTOLIB_MODE_CTR: |
| 224 | #endif |
| 225 | break; |
| 226 | |
| 227 | default: |
| 228 | mp_raise_ValueError(MP_ERROR_TEXT("mode" )); |
| 229 | } |
| 230 | |
| 231 | mp_obj_aes_t *o = m_new_obj_var(mp_obj_aes_t, struct ctr_params, !!is_ctr_mode(block_mode)); |
| 232 | o->base.type = type; |
| 233 | |
| 234 | o->block_mode = block_mode; |
| 235 | o->key_type = AES_KEYTYPE_NONE; |
| 236 | |
| 237 | mp_buffer_info_t keyinfo; |
| 238 | mp_get_buffer_raise(args[0], &keyinfo, MP_BUFFER_READ); |
| 239 | if (32 != keyinfo.len && 16 != keyinfo.len) { |
| 240 | mp_raise_ValueError(MP_ERROR_TEXT("key" )); |
| 241 | } |
| 242 | |
| 243 | mp_buffer_info_t ivinfo; |
| 244 | ivinfo.buf = NULL; |
| 245 | if (n_args > 2 && args[2] != mp_const_none) { |
| 246 | mp_get_buffer_raise(args[2], &ivinfo, MP_BUFFER_READ); |
| 247 | |
| 248 | if (16 != ivinfo.len) { |
| 249 | mp_raise_ValueError(MP_ERROR_TEXT("IV" )); |
| 250 | } |
| 251 | } else if (o->block_mode == UCRYPTOLIB_MODE_CBC || is_ctr_mode(o->block_mode)) { |
| 252 | mp_raise_ValueError(MP_ERROR_TEXT("IV" )); |
| 253 | } |
| 254 | |
| 255 | if (is_ctr_mode(block_mode)) { |
| 256 | ctr_params_from_aes(o)->offset = 0; |
| 257 | } |
| 258 | |
| 259 | aes_initial_set_key_impl(&o->ctx, keyinfo.buf, keyinfo.len, ivinfo.buf); |
| 260 | |
| 261 | return MP_OBJ_FROM_PTR(o); |
| 262 | } |
| 263 | |
| 264 | STATIC mp_obj_t aes_process(size_t n_args, const mp_obj_t *args, bool encrypt) { |
| 265 | mp_obj_aes_t *self = MP_OBJ_TO_PTR(args[0]); |
| 266 | |
| 267 | mp_obj_t in_buf = args[1]; |
| 268 | mp_obj_t out_buf = MP_OBJ_NULL; |
| 269 | if (n_args > 2) { |
| 270 | out_buf = args[2]; |
| 271 | } |
| 272 | |
| 273 | mp_buffer_info_t in_bufinfo; |
| 274 | mp_get_buffer_raise(in_buf, &in_bufinfo, MP_BUFFER_READ); |
| 275 | |
| 276 | if (!is_ctr_mode(self->block_mode) && in_bufinfo.len % 16 != 0) { |
| 277 | mp_raise_ValueError(MP_ERROR_TEXT("blksize % 16" )); |
| 278 | } |
| 279 | |
| 280 | vstr_t vstr; |
| 281 | mp_buffer_info_t out_bufinfo; |
| 282 | uint8_t *out_buf_ptr; |
| 283 | |
| 284 | if (out_buf != MP_OBJ_NULL) { |
| 285 | mp_get_buffer_raise(out_buf, &out_bufinfo, MP_BUFFER_WRITE); |
| 286 | if (out_bufinfo.len < in_bufinfo.len) { |
| 287 | mp_raise_ValueError(MP_ERROR_TEXT("output too small" )); |
| 288 | } |
| 289 | out_buf_ptr = out_bufinfo.buf; |
| 290 | } else { |
| 291 | vstr_init_len(&vstr, in_bufinfo.len); |
| 292 | out_buf_ptr = (uint8_t *)vstr.buf; |
| 293 | } |
| 294 | |
| 295 | if (AES_KEYTYPE_NONE == self->key_type) { |
| 296 | // always set key for encryption if CTR mode. |
| 297 | const bool encrypt_mode = encrypt || is_ctr_mode(self->block_mode); |
| 298 | aes_final_set_key_impl(&self->ctx, encrypt_mode); |
| 299 | self->key_type = encrypt ? AES_KEYTYPE_ENC : AES_KEYTYPE_DEC; |
| 300 | } else { |
| 301 | if ((encrypt && self->key_type == AES_KEYTYPE_DEC) || |
| 302 | (!encrypt && self->key_type == AES_KEYTYPE_ENC)) { |
| 303 | |
| 304 | mp_raise_ValueError(MP_ERROR_TEXT("can't encrypt & decrypt" )); |
| 305 | } |
| 306 | } |
| 307 | |
| 308 | switch (self->block_mode) { |
| 309 | case UCRYPTOLIB_MODE_ECB: { |
| 310 | uint8_t *in = in_bufinfo.buf, *out = out_buf_ptr; |
| 311 | uint8_t *top = in + in_bufinfo.len; |
| 312 | for (; in < top; in += 16, out += 16) { |
| 313 | aes_process_ecb_impl(&self->ctx, in, out, encrypt); |
| 314 | } |
| 315 | break; |
| 316 | } |
| 317 | |
| 318 | case UCRYPTOLIB_MODE_CBC: |
| 319 | aes_process_cbc_impl(&self->ctx, in_bufinfo.buf, out_buf_ptr, in_bufinfo.len, encrypt); |
| 320 | break; |
| 321 | |
| 322 | #if MICROPY_PY_UCRYPTOLIB_CTR |
| 323 | case UCRYPTOLIB_MODE_CTR: |
| 324 | aes_process_ctr_impl(&self->ctx, in_bufinfo.buf, out_buf_ptr, in_bufinfo.len, |
| 325 | ctr_params_from_aes(self)); |
| 326 | break; |
| 327 | #endif |
| 328 | } |
| 329 | |
| 330 | if (out_buf != MP_OBJ_NULL) { |
| 331 | return out_buf; |
| 332 | } |
| 333 | return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr); |
| 334 | } |
| 335 | |
| 336 | STATIC mp_obj_t ucryptolib_aes_encrypt(size_t n_args, const mp_obj_t *args) { |
| 337 | return aes_process(n_args, args, true); |
| 338 | } |
| 339 | STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(ucryptolib_aes_encrypt_obj, 2, 3, ucryptolib_aes_encrypt); |
| 340 | |
| 341 | STATIC mp_obj_t ucryptolib_aes_decrypt(size_t n_args, const mp_obj_t *args) { |
| 342 | return aes_process(n_args, args, false); |
| 343 | } |
| 344 | STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(ucryptolib_aes_decrypt_obj, 2, 3, ucryptolib_aes_decrypt); |
| 345 | |
| 346 | STATIC const mp_rom_map_elem_t ucryptolib_aes_locals_dict_table[] = { |
| 347 | { MP_ROM_QSTR(MP_QSTR_encrypt), MP_ROM_PTR(&ucryptolib_aes_encrypt_obj) }, |
| 348 | { MP_ROM_QSTR(MP_QSTR_decrypt), MP_ROM_PTR(&ucryptolib_aes_decrypt_obj) }, |
| 349 | }; |
| 350 | STATIC MP_DEFINE_CONST_DICT(ucryptolib_aes_locals_dict, ucryptolib_aes_locals_dict_table); |
| 351 | |
| 352 | STATIC const mp_obj_type_t ucryptolib_aes_type = { |
| 353 | { &mp_type_type }, |
| 354 | .name = MP_QSTR_aes, |
| 355 | .make_new = ucryptolib_aes_make_new, |
| 356 | .locals_dict = (void *)&ucryptolib_aes_locals_dict, |
| 357 | }; |
| 358 | |
| 359 | STATIC const mp_rom_map_elem_t mp_module_ucryptolib_globals_table[] = { |
| 360 | { MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_ucryptolib) }, |
| 361 | { MP_ROM_QSTR(MP_QSTR_aes), MP_ROM_PTR(&ucryptolib_aes_type) }, |
| 362 | #if MICROPY_PY_UCRYPTOLIB_CONSTS |
| 363 | { MP_ROM_QSTR(MP_QSTR_MODE_ECB), MP_ROM_INT(UCRYPTOLIB_MODE_ECB) }, |
| 364 | { MP_ROM_QSTR(MP_QSTR_MODE_CBC), MP_ROM_INT(UCRYPTOLIB_MODE_CBC) }, |
| 365 | #if MICROPY_PY_UCRYPTOLIB_CTR |
| 366 | { MP_ROM_QSTR(MP_QSTR_MODE_CTR), MP_ROM_INT(UCRYPTOLIB_MODE_CTR) }, |
| 367 | #endif |
| 368 | #endif |
| 369 | }; |
| 370 | |
| 371 | STATIC MP_DEFINE_CONST_DICT(mp_module_ucryptolib_globals, mp_module_ucryptolib_globals_table); |
| 372 | |
| 373 | const mp_obj_module_t mp_module_ucryptolib = { |
| 374 | .base = { &mp_type_module }, |
| 375 | .globals = (mp_obj_dict_t *)&mp_module_ucryptolib_globals, |
| 376 | }; |
| 377 | |
| 378 | #endif // MICROPY_PY_UCRYPTOLIB |
| 379 | |