1 | /* |
2 | * This file is part of the MicroPython project, http://micropython.org/ |
3 | * |
4 | * The MIT License (MIT) |
5 | * |
6 | * Copyright (c) 2014 Damien P. George |
7 | * Copyright (c) 2016-2017 Paul Sokolovsky |
8 | * |
9 | * Permission is hereby granted, free of charge, to any person obtaining a copy |
10 | * of this software and associated documentation files (the "Software"), to deal |
11 | * in the Software without restriction, including without limitation the rights |
12 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
13 | * copies of the Software, and to permit persons to whom the Software is |
14 | * furnished to do so, subject to the following conditions: |
15 | * |
16 | * The above copyright notice and this permission notice shall be included in |
17 | * all copies or substantial portions of the Software. |
18 | * |
19 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
20 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
21 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
22 | * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
23 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
24 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
25 | * THE SOFTWARE. |
26 | */ |
27 | |
28 | #include <string.h> |
29 | |
30 | #include "py/objlist.h" |
31 | #include "py/runtime.h" |
32 | #include "py/smallint.h" |
33 | |
34 | #if MICROPY_PY_UTIMEQ |
35 | |
36 | #define MODULO MICROPY_PY_UTIME_TICKS_PERIOD |
37 | |
38 | #define DEBUG 0 |
39 | |
40 | // the algorithm here is modelled on CPython's heapq.py |
41 | |
42 | struct qentry { |
43 | mp_uint_t time; |
44 | mp_uint_t id; |
45 | mp_obj_t callback; |
46 | mp_obj_t args; |
47 | }; |
48 | |
49 | typedef struct _mp_obj_utimeq_t { |
50 | mp_obj_base_t base; |
51 | mp_uint_t alloc; |
52 | mp_uint_t len; |
53 | struct qentry items[]; |
54 | } mp_obj_utimeq_t; |
55 | |
56 | STATIC mp_uint_t utimeq_id; |
57 | |
58 | STATIC mp_obj_utimeq_t *utimeq_get_heap(mp_obj_t heap_in) { |
59 | return MP_OBJ_TO_PTR(heap_in); |
60 | } |
61 | |
62 | STATIC bool time_less_than(struct qentry *item, struct qentry *parent) { |
63 | mp_uint_t item_tm = item->time; |
64 | mp_uint_t parent_tm = parent->time; |
65 | mp_uint_t res = parent_tm - item_tm; |
66 | if (res == 0) { |
67 | // TODO: This actually should use the same "ring" logic |
68 | // as for time, to avoid artifacts when id's overflow. |
69 | return item->id < parent->id; |
70 | } |
71 | if ((mp_int_t)res < 0) { |
72 | res += MODULO; |
73 | } |
74 | return res && res < (MODULO / 2); |
75 | } |
76 | |
77 | STATIC mp_obj_t utimeq_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { |
78 | mp_arg_check_num(n_args, n_kw, 1, 1, false); |
79 | mp_uint_t alloc = mp_obj_get_int(args[0]); |
80 | mp_obj_utimeq_t *o = m_new_obj_var(mp_obj_utimeq_t, struct qentry, alloc); |
81 | o->base.type = type; |
82 | memset(o->items, 0, sizeof(*o->items) * alloc); |
83 | o->alloc = alloc; |
84 | o->len = 0; |
85 | return MP_OBJ_FROM_PTR(o); |
86 | } |
87 | |
88 | STATIC void utimeq_heap_siftdown(mp_obj_utimeq_t *heap, mp_uint_t start_pos, mp_uint_t pos) { |
89 | struct qentry item = heap->items[pos]; |
90 | while (pos > start_pos) { |
91 | mp_uint_t parent_pos = (pos - 1) >> 1; |
92 | struct qentry *parent = &heap->items[parent_pos]; |
93 | bool lessthan = time_less_than(&item, parent); |
94 | if (lessthan) { |
95 | heap->items[pos] = *parent; |
96 | pos = parent_pos; |
97 | } else { |
98 | break; |
99 | } |
100 | } |
101 | heap->items[pos] = item; |
102 | } |
103 | |
104 | STATIC void utimeq_heap_siftup(mp_obj_utimeq_t *heap, mp_uint_t pos) { |
105 | mp_uint_t start_pos = pos; |
106 | mp_uint_t end_pos = heap->len; |
107 | struct qentry item = heap->items[pos]; |
108 | for (mp_uint_t child_pos = 2 * pos + 1; child_pos < end_pos; child_pos = 2 * pos + 1) { |
109 | // choose right child if it's <= left child |
110 | if (child_pos + 1 < end_pos) { |
111 | bool lessthan = time_less_than(&heap->items[child_pos], &heap->items[child_pos + 1]); |
112 | if (!lessthan) { |
113 | child_pos += 1; |
114 | } |
115 | } |
116 | // bubble up the smaller child |
117 | heap->items[pos] = heap->items[child_pos]; |
118 | pos = child_pos; |
119 | } |
120 | heap->items[pos] = item; |
121 | utimeq_heap_siftdown(heap, start_pos, pos); |
122 | } |
123 | |
124 | STATIC mp_obj_t mod_utimeq_heappush(size_t n_args, const mp_obj_t *args) { |
125 | (void)n_args; |
126 | mp_obj_t heap_in = args[0]; |
127 | mp_obj_utimeq_t *heap = utimeq_get_heap(heap_in); |
128 | if (heap->len == heap->alloc) { |
129 | mp_raise_msg(&mp_type_IndexError, MP_ERROR_TEXT("queue overflow" )); |
130 | } |
131 | mp_uint_t l = heap->len; |
132 | heap->items[l].time = MP_OBJ_SMALL_INT_VALUE(args[1]); |
133 | heap->items[l].id = utimeq_id++; |
134 | heap->items[l].callback = args[2]; |
135 | heap->items[l].args = args[3]; |
136 | utimeq_heap_siftdown(heap, 0, heap->len); |
137 | heap->len++; |
138 | return mp_const_none; |
139 | } |
140 | STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(mod_utimeq_heappush_obj, 4, 4, mod_utimeq_heappush); |
141 | |
142 | STATIC mp_obj_t mod_utimeq_heappop(mp_obj_t heap_in, mp_obj_t list_ref) { |
143 | mp_obj_utimeq_t *heap = utimeq_get_heap(heap_in); |
144 | if (heap->len == 0) { |
145 | mp_raise_msg(&mp_type_IndexError, MP_ERROR_TEXT("empty heap" )); |
146 | } |
147 | mp_obj_list_t *ret = MP_OBJ_TO_PTR(list_ref); |
148 | if (!mp_obj_is_type(list_ref, &mp_type_list) || ret->len < 3) { |
149 | mp_raise_TypeError(NULL); |
150 | } |
151 | |
152 | struct qentry *item = &heap->items[0]; |
153 | ret->items[0] = MP_OBJ_NEW_SMALL_INT(item->time); |
154 | ret->items[1] = item->callback; |
155 | ret->items[2] = item->args; |
156 | heap->len -= 1; |
157 | heap->items[0] = heap->items[heap->len]; |
158 | heap->items[heap->len].callback = MP_OBJ_NULL; // so we don't retain a pointer |
159 | heap->items[heap->len].args = MP_OBJ_NULL; |
160 | if (heap->len) { |
161 | utimeq_heap_siftup(heap, 0); |
162 | } |
163 | return mp_const_none; |
164 | } |
165 | STATIC MP_DEFINE_CONST_FUN_OBJ_2(mod_utimeq_heappop_obj, mod_utimeq_heappop); |
166 | |
167 | STATIC mp_obj_t mod_utimeq_peektime(mp_obj_t heap_in) { |
168 | mp_obj_utimeq_t *heap = utimeq_get_heap(heap_in); |
169 | if (heap->len == 0) { |
170 | mp_raise_msg(&mp_type_IndexError, MP_ERROR_TEXT("empty heap" )); |
171 | } |
172 | |
173 | struct qentry *item = &heap->items[0]; |
174 | return MP_OBJ_NEW_SMALL_INT(item->time); |
175 | } |
176 | STATIC MP_DEFINE_CONST_FUN_OBJ_1(mod_utimeq_peektime_obj, mod_utimeq_peektime); |
177 | |
178 | #if DEBUG |
179 | STATIC mp_obj_t mod_utimeq_dump(mp_obj_t heap_in) { |
180 | mp_obj_utimeq_t *heap = utimeq_get_heap(heap_in); |
181 | for (int i = 0; i < heap->len; i++) { |
182 | printf(UINT_FMT "\t%p\t%p\n" , heap->items[i].time, |
183 | MP_OBJ_TO_PTR(heap->items[i].callback), MP_OBJ_TO_PTR(heap->items[i].args)); |
184 | } |
185 | return mp_const_none; |
186 | } |
187 | STATIC MP_DEFINE_CONST_FUN_OBJ_1(mod_utimeq_dump_obj, mod_utimeq_dump); |
188 | #endif |
189 | |
190 | STATIC mp_obj_t utimeq_unary_op(mp_unary_op_t op, mp_obj_t self_in) { |
191 | mp_obj_utimeq_t *self = MP_OBJ_TO_PTR(self_in); |
192 | switch (op) { |
193 | case MP_UNARY_OP_BOOL: |
194 | return mp_obj_new_bool(self->len != 0); |
195 | case MP_UNARY_OP_LEN: |
196 | return MP_OBJ_NEW_SMALL_INT(self->len); |
197 | default: |
198 | return MP_OBJ_NULL; // op not supported |
199 | } |
200 | } |
201 | |
202 | STATIC const mp_rom_map_elem_t utimeq_locals_dict_table[] = { |
203 | { MP_ROM_QSTR(MP_QSTR_push), MP_ROM_PTR(&mod_utimeq_heappush_obj) }, |
204 | { MP_ROM_QSTR(MP_QSTR_pop), MP_ROM_PTR(&mod_utimeq_heappop_obj) }, |
205 | { MP_ROM_QSTR(MP_QSTR_peektime), MP_ROM_PTR(&mod_utimeq_peektime_obj) }, |
206 | #if DEBUG |
207 | { MP_ROM_QSTR(MP_QSTR_dump), MP_ROM_PTR(&mod_utimeq_dump_obj) }, |
208 | #endif |
209 | }; |
210 | |
211 | STATIC MP_DEFINE_CONST_DICT(utimeq_locals_dict, utimeq_locals_dict_table); |
212 | |
213 | STATIC const mp_obj_type_t utimeq_type = { |
214 | { &mp_type_type }, |
215 | .name = MP_QSTR_utimeq, |
216 | .make_new = utimeq_make_new, |
217 | .unary_op = utimeq_unary_op, |
218 | .locals_dict = (void *)&utimeq_locals_dict, |
219 | }; |
220 | |
221 | STATIC const mp_rom_map_elem_t mp_module_utimeq_globals_table[] = { |
222 | { MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_utimeq) }, |
223 | { MP_ROM_QSTR(MP_QSTR_utimeq), MP_ROM_PTR(&utimeq_type) }, |
224 | }; |
225 | |
226 | STATIC MP_DEFINE_CONST_DICT(mp_module_utimeq_globals, mp_module_utimeq_globals_table); |
227 | |
228 | const mp_obj_module_t mp_module_utimeq = { |
229 | .base = { &mp_type_module }, |
230 | .globals = (mp_obj_dict_t *)&mp_module_utimeq_globals, |
231 | }; |
232 | |
233 | #endif // MICROPY_PY_UTIMEQ |
234 | |