1 | /* |
2 | * Copyright (c) 2007-2014, Cameron Rich |
3 | * |
4 | * All rights reserved. |
5 | * |
6 | * Redistribution and use in source and binary forms, with or without |
7 | * modification, are permitted provided that the following conditions are met: |
8 | * |
9 | * * Redistributions of source code must retain the above copyright notice, |
10 | * this list of conditions and the following disclaimer. |
11 | * * Redistributions in binary form must reproduce the above copyright notice, |
12 | * this list of conditions and the following disclaimer in the documentation |
13 | * and/or other materials provided with the distribution. |
14 | * * Neither the name of the axTLS project nor the names of its contributors |
15 | * may be used to endorse or promote products derived from this software |
16 | * without specific prior written permission. |
17 | * |
18 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
19 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
20 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
21 | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR |
22 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
23 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
24 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
25 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
26 | * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
27 | * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
28 | * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
29 | */ |
30 | |
31 | /** |
32 | * Implements the RSA public encryption algorithm. Uses the bigint library to |
33 | * perform its calculations. |
34 | */ |
35 | |
36 | #include <stdio.h> |
37 | #include <string.h> |
38 | #include <time.h> |
39 | #include <stdlib.h> |
40 | #include "os_port.h" |
41 | #include "crypto.h" |
42 | |
43 | void RSA_priv_key_new(RSA_CTX **ctx, |
44 | const uint8_t *modulus, int mod_len, |
45 | const uint8_t *pub_exp, int pub_len, |
46 | const uint8_t *priv_exp, int priv_len |
47 | #if CONFIG_BIGINT_CRT |
48 | , const uint8_t *p, int p_len, |
49 | const uint8_t *q, int q_len, |
50 | const uint8_t *dP, int dP_len, |
51 | const uint8_t *dQ, int dQ_len, |
52 | const uint8_t *qInv, int qInv_len |
53 | #endif |
54 | ) |
55 | { |
56 | RSA_CTX *rsa_ctx; |
57 | BI_CTX *bi_ctx; |
58 | RSA_pub_key_new(ctx, modulus, mod_len, pub_exp, pub_len); |
59 | rsa_ctx = *ctx; |
60 | bi_ctx = rsa_ctx->bi_ctx; |
61 | rsa_ctx->d = bi_import(bi_ctx, priv_exp, priv_len); |
62 | bi_permanent(rsa_ctx->d); |
63 | |
64 | #ifdef CONFIG_BIGINT_CRT |
65 | rsa_ctx->p = bi_import(bi_ctx, p, p_len); |
66 | rsa_ctx->q = bi_import(bi_ctx, q, q_len); |
67 | rsa_ctx->dP = bi_import(bi_ctx, dP, dP_len); |
68 | rsa_ctx->dQ = bi_import(bi_ctx, dQ, dQ_len); |
69 | rsa_ctx->qInv = bi_import(bi_ctx, qInv, qInv_len); |
70 | bi_permanent(rsa_ctx->dP); |
71 | bi_permanent(rsa_ctx->dQ); |
72 | bi_permanent(rsa_ctx->qInv); |
73 | bi_set_mod(bi_ctx, rsa_ctx->p, BIGINT_P_OFFSET); |
74 | bi_set_mod(bi_ctx, rsa_ctx->q, BIGINT_Q_OFFSET); |
75 | #endif |
76 | } |
77 | |
78 | void RSA_pub_key_new(RSA_CTX **ctx, |
79 | const uint8_t *modulus, int mod_len, |
80 | const uint8_t *pub_exp, int pub_len) |
81 | { |
82 | RSA_CTX *rsa_ctx; |
83 | BI_CTX *bi_ctx; |
84 | |
85 | if (*ctx) /* if we load multiple certs, dump the old one */ |
86 | RSA_free(*ctx); |
87 | |
88 | bi_ctx = bi_initialize(); |
89 | *ctx = (RSA_CTX *)calloc(1, sizeof(RSA_CTX)); |
90 | rsa_ctx = *ctx; |
91 | rsa_ctx->bi_ctx = bi_ctx; |
92 | rsa_ctx->num_octets = mod_len; |
93 | rsa_ctx->m = bi_import(bi_ctx, modulus, mod_len); |
94 | bi_set_mod(bi_ctx, rsa_ctx->m, BIGINT_M_OFFSET); |
95 | rsa_ctx->e = bi_import(bi_ctx, pub_exp, pub_len); |
96 | bi_permanent(rsa_ctx->e); |
97 | } |
98 | |
99 | /** |
100 | * Free up any RSA context resources. |
101 | */ |
102 | void RSA_free(RSA_CTX *rsa_ctx) |
103 | { |
104 | BI_CTX *bi_ctx; |
105 | if (rsa_ctx == NULL) /* deal with ptrs that are null */ |
106 | return; |
107 | |
108 | bi_ctx = rsa_ctx->bi_ctx; |
109 | |
110 | bi_depermanent(rsa_ctx->e); |
111 | bi_free(bi_ctx, rsa_ctx->e); |
112 | bi_free_mod(rsa_ctx->bi_ctx, BIGINT_M_OFFSET); |
113 | |
114 | if (rsa_ctx->d) |
115 | { |
116 | bi_depermanent(rsa_ctx->d); |
117 | bi_free(bi_ctx, rsa_ctx->d); |
118 | #ifdef CONFIG_BIGINT_CRT |
119 | bi_depermanent(rsa_ctx->dP); |
120 | bi_depermanent(rsa_ctx->dQ); |
121 | bi_depermanent(rsa_ctx->qInv); |
122 | bi_free(bi_ctx, rsa_ctx->dP); |
123 | bi_free(bi_ctx, rsa_ctx->dQ); |
124 | bi_free(bi_ctx, rsa_ctx->qInv); |
125 | bi_free_mod(rsa_ctx->bi_ctx, BIGINT_P_OFFSET); |
126 | bi_free_mod(rsa_ctx->bi_ctx, BIGINT_Q_OFFSET); |
127 | #endif |
128 | } |
129 | |
130 | bi_terminate(bi_ctx); |
131 | free(rsa_ctx); |
132 | } |
133 | |
134 | /** |
135 | * @brief Use PKCS1.5 for decryption/verification. |
136 | * @param ctx [in] The context |
137 | * @param in_data [in] The data to decrypt (must be < modulus size-11) |
138 | * @param out_data [out] The decrypted data. |
139 | * @param out_len [int] The size of the decrypted buffer in bytes |
140 | * @param is_decryption [in] Decryption or verify operation. |
141 | * @return The number of bytes that were originally encrypted. -1 on error. |
142 | * @see http://www.rsasecurity.com/rsalabs/node.asp?id=2125 |
143 | */ |
144 | int RSA_decrypt(const RSA_CTX *ctx, const uint8_t *in_data, |
145 | uint8_t *out_data, int out_len, int is_decryption) |
146 | { |
147 | const int byte_size = ctx->num_octets; |
148 | int i = 0, size; |
149 | bigint *decrypted_bi, *dat_bi; |
150 | uint8_t *block = (uint8_t *)alloca(byte_size); |
151 | int pad_count = 0; |
152 | |
153 | if (out_len < byte_size) /* check output has enough size */ |
154 | return -1; |
155 | |
156 | memset(out_data, 0, out_len); /* initialise */ |
157 | |
158 | /* decrypt */ |
159 | dat_bi = bi_import(ctx->bi_ctx, in_data, byte_size); |
160 | #ifdef CONFIG_SSL_CERT_VERIFICATION |
161 | decrypted_bi = is_decryption ? /* decrypt or verify? */ |
162 | RSA_private(ctx, dat_bi) : RSA_public(ctx, dat_bi); |
163 | #else /* always a decryption */ |
164 | decrypted_bi = RSA_private(ctx, dat_bi); |
165 | #endif |
166 | |
167 | /* convert to a normal block */ |
168 | bi_export(ctx->bi_ctx, decrypted_bi, block, byte_size); |
169 | |
170 | if (block[i++] != 0) /* leading 0? */ |
171 | return -1; |
172 | |
173 | #ifdef CONFIG_SSL_CERT_VERIFICATION |
174 | if (is_decryption == 0) /* PKCS1.5 signing pads with "0xff"s */ |
175 | { |
176 | if (block[i++] != 0x01) /* BT correct? */ |
177 | return -1; |
178 | |
179 | while (block[i++] == 0xff && i < byte_size) |
180 | pad_count++; |
181 | } |
182 | else /* PKCS1.5 encryption padding is random */ |
183 | #endif |
184 | { |
185 | if (block[i++] != 0x02) /* BT correct? */ |
186 | return -1; |
187 | |
188 | while (block[i++] && i < byte_size) |
189 | pad_count++; |
190 | } |
191 | |
192 | /* check separator byte 0x00 - and padding must be 8 or more bytes */ |
193 | if (i == byte_size || pad_count < 8) |
194 | return -1; |
195 | |
196 | size = byte_size - i; |
197 | |
198 | /* get only the bit we want */ |
199 | memcpy(out_data, &block[i], size); |
200 | return size; |
201 | } |
202 | |
203 | /** |
204 | * Performs m = c^d mod n |
205 | */ |
206 | bigint *RSA_private(const RSA_CTX *c, bigint *bi_msg) |
207 | { |
208 | #ifdef CONFIG_BIGINT_CRT |
209 | return bi_crt(c->bi_ctx, bi_msg, c->dP, c->dQ, c->p, c->q, c->qInv); |
210 | #else |
211 | BI_CTX *ctx = c->bi_ctx; |
212 | ctx->mod_offset = BIGINT_M_OFFSET; |
213 | return bi_mod_power(ctx, bi_msg, c->d); |
214 | #endif |
215 | } |
216 | |
217 | #ifdef CONFIG_SSL_FULL_MODE |
218 | /** |
219 | * Used for diagnostics. |
220 | */ |
221 | void RSA_print(const RSA_CTX *rsa_ctx) |
222 | { |
223 | if (rsa_ctx == NULL) |
224 | return; |
225 | |
226 | printf("----------------- RSA DEBUG ----------------\n" ); |
227 | printf("Size:\t%d\n" , rsa_ctx->num_octets); |
228 | bi_print("Modulus" , rsa_ctx->m); |
229 | bi_print("Public Key" , rsa_ctx->e); |
230 | bi_print("Private Key" , rsa_ctx->d); |
231 | } |
232 | #endif |
233 | |
234 | #if defined(CONFIG_SSL_CERT_VERIFICATION) || defined(CONFIG_SSL_GENERATE_X509_CERT) || (CONFIG_SSL_ENABLE_CLIENT) |
235 | /** |
236 | * Performs c = m^e mod n |
237 | */ |
238 | bigint *RSA_public(const RSA_CTX * c, bigint *bi_msg) |
239 | { |
240 | c->bi_ctx->mod_offset = BIGINT_M_OFFSET; |
241 | return bi_mod_power(c->bi_ctx, bi_msg, c->e); |
242 | } |
243 | |
244 | /** |
245 | * Use PKCS1.5 for encryption/signing. |
246 | * see http://www.rsasecurity.com/rsalabs/node.asp?id=2125 |
247 | */ |
248 | int RSA_encrypt(const RSA_CTX *ctx, const uint8_t *in_data, uint16_t in_len, |
249 | uint8_t *out_data, int is_signing) |
250 | { |
251 | int byte_size = ctx->num_octets; |
252 | int num_pads_needed = byte_size-in_len-3; |
253 | bigint *dat_bi, *encrypt_bi; |
254 | |
255 | /* note: in_len+11 must be > byte_size */ |
256 | out_data[0] = 0; /* ensure encryption block is < modulus */ |
257 | |
258 | if (is_signing) |
259 | { |
260 | out_data[1] = 1; /* PKCS1.5 signing pads with "0xff"'s */ |
261 | memset(&out_data[2], 0xff, num_pads_needed); |
262 | } |
263 | else /* randomize the encryption padding with non-zero bytes */ |
264 | { |
265 | out_data[1] = 2; |
266 | if (get_random_NZ(num_pads_needed, &out_data[2]) < 0) |
267 | return -1; |
268 | } |
269 | |
270 | out_data[2+num_pads_needed] = 0; |
271 | memcpy(&out_data[3+num_pads_needed], in_data, in_len); |
272 | |
273 | /* now encrypt it */ |
274 | dat_bi = bi_import(ctx->bi_ctx, out_data, byte_size); |
275 | encrypt_bi = is_signing ? RSA_private(ctx, dat_bi) : |
276 | RSA_public(ctx, dat_bi); |
277 | bi_export(ctx->bi_ctx, encrypt_bi, out_data, byte_size); |
278 | |
279 | /* save a few bytes of memory */ |
280 | bi_clear_cache(ctx->bi_ctx); |
281 | return byte_size; |
282 | } |
283 | |
284 | #endif /* CONFIG_SSL_CERT_VERIFICATION */ |
285 | |