1 | /*- |
2 | * Copyright (c) 1991, 1993, 1994 |
3 | * The Regents of the University of California. All rights reserved. |
4 | * |
5 | * This code is derived from software contributed to Berkeley by |
6 | * Mike Olson. |
7 | * |
8 | * Redistribution and use in source and binary forms, with or without |
9 | * modification, are permitted provided that the following conditions |
10 | * are met: |
11 | * 1. Redistributions of source code must retain the above copyright |
12 | * notice, this list of conditions and the following disclaimer. |
13 | * 2. Redistributions in binary form must reproduce the above copyright |
14 | * notice, this list of conditions and the following disclaimer in the |
15 | * documentation and/or other materials provided with the distribution. |
16 | * 3. All advertising materials mentioning features or use of this software |
17 | * must display the following acknowledgement: |
18 | * This product includes software developed by the University of |
19 | * California, Berkeley and its contributors. |
20 | * 4. Neither the name of the University nor the names of its contributors |
21 | * may be used to endorse or promote products derived from this software |
22 | * without specific prior written permission. |
23 | * |
24 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND |
25 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
26 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
27 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE |
28 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
29 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
30 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
31 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
32 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
33 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
34 | * SUCH DAMAGE. |
35 | * |
36 | * @(#)btree.h 8.11 (Berkeley) 8/17/94 |
37 | */ |
38 | |
39 | /* Macros to set/clear/test flags. */ |
40 | #define F_SET(p, f) (p)->flags |= (f) |
41 | #define F_CLR(p, f) (p)->flags &= ~(f) |
42 | #define F_ISSET(p, f) ((p)->flags & (f)) |
43 | |
44 | #include <mpool.h> |
45 | |
46 | #define DEFMINKEYPAGE (2) /* Minimum keys per page */ |
47 | #ifndef MINCACHE |
48 | #define MINCACHE (5) /* Minimum cached pages */ |
49 | #endif |
50 | #define MINPSIZE (512) /* Minimum page size */ |
51 | #ifndef DEFPSIZE |
52 | #define DEFPSIZE (4096) /* Default page size */ |
53 | #endif |
54 | |
55 | /* |
56 | * Page 0 of a btree file contains a copy of the meta-data. This page is also |
57 | * used as an out-of-band page, i.e. page pointers that point to nowhere point |
58 | * to page 0. Page 1 is the root of the btree. |
59 | */ |
60 | #define P_INVALID 0 /* Invalid tree page number. */ |
61 | #define P_META 0 /* Tree metadata page number. */ |
62 | #define P_ROOT 1 /* Tree root page number. */ |
63 | |
64 | /* |
65 | * There are five page layouts in the btree: btree internal pages (BINTERNAL), |
66 | * btree leaf pages (BLEAF), recno internal pages (RINTERNAL), recno leaf pages |
67 | * (RLEAF) and overflow pages. All five page types have a page header (PAGE). |
68 | * This implementation requires that values within structures NOT be padded. |
69 | * (ANSI C permits random padding.) If your compiler pads randomly you'll have |
70 | * to do some work to get this package to run. |
71 | */ |
72 | typedef struct _page { |
73 | pgno_t pgno; /* this page's page number */ |
74 | pgno_t prevpg; /* left sibling */ |
75 | pgno_t nextpg; /* right sibling */ |
76 | |
77 | #define P_BINTERNAL 0x01 /* btree internal page */ |
78 | #define P_BLEAF 0x02 /* leaf page */ |
79 | #define P_OVERFLOW 0x04 /* overflow page */ |
80 | #define P_RINTERNAL 0x08 /* recno internal page */ |
81 | #define P_RLEAF 0x10 /* leaf page */ |
82 | #define P_TYPE 0x1f /* type mask */ |
83 | #define P_PRESERVE 0x20 /* never delete this chain of pages */ |
84 | u_int32_t flags; |
85 | |
86 | indx_t lower; /* lower bound of free space on page */ |
87 | indx_t upper; /* upper bound of free space on page */ |
88 | indx_t linp[1]; /* indx_t-aligned VAR. LENGTH DATA */ |
89 | } PAGE; |
90 | |
91 | /* First and next index. */ |
92 | #define BTDATAOFF \ |
93 | (sizeof(pgno_t) + sizeof(pgno_t) + sizeof(pgno_t) + \ |
94 | sizeof(u_int32_t) + sizeof(indx_t) + sizeof(indx_t)) |
95 | #define NEXTINDEX(p) (((p)->lower - BTDATAOFF) / sizeof(indx_t)) |
96 | |
97 | /* |
98 | * For pages other than overflow pages, there is an array of offsets into the |
99 | * rest of the page immediately following the page header. Each offset is to |
100 | * an item which is unique to the type of page. The h_lower offset is just |
101 | * past the last filled-in index. The h_upper offset is the first item on the |
102 | * page. Offsets are from the beginning of the page. |
103 | * |
104 | * If an item is too big to store on a single page, a flag is set and the item |
105 | * is a { page, size } pair such that the page is the first page of an overflow |
106 | * chain with size bytes of item. Overflow pages are simply bytes without any |
107 | * external structure. |
108 | * |
109 | * The page number and size fields in the items are pgno_t-aligned so they can |
110 | * be manipulated without copying. (This presumes that 32 bit items can be |
111 | * manipulated on this system.) |
112 | */ |
113 | #define LALIGN(n) (((n) + sizeof(pgno_t) - 1) & ~(sizeof(pgno_t) - 1)) |
114 | #define NOVFLSIZE (sizeof(pgno_t) + sizeof(u_int32_t)) |
115 | |
116 | /* |
117 | * For the btree internal pages, the item is a key. BINTERNALs are {key, pgno} |
118 | * pairs, such that the key compares less than or equal to all of the records |
119 | * on that page. For a tree without duplicate keys, an internal page with two |
120 | * consecutive keys, a and b, will have all records greater than or equal to a |
121 | * and less than b stored on the page associated with a. Duplicate keys are |
122 | * somewhat special and can cause duplicate internal and leaf page records and |
123 | * some minor modifications of the above rule. |
124 | */ |
125 | typedef struct _binternal { |
126 | u_int32_t ksize; /* key size */ |
127 | pgno_t pgno; /* page number stored on */ |
128 | #define P_BIGDATA 0x01 /* overflow data */ |
129 | #define P_BIGKEY 0x02 /* overflow key */ |
130 | u_char flags; |
131 | char bytes[1]; /* data */ |
132 | } BINTERNAL; |
133 | |
134 | /* Get the page's BINTERNAL structure at index indx. */ |
135 | #define GETBINTERNAL(pg, indx) \ |
136 | ((BINTERNAL *)((char *)(pg) + (pg)->linp[indx])) |
137 | |
138 | /* Get the number of bytes in the entry. */ |
139 | #define NBINTERNAL(len) \ |
140 | LALIGN(sizeof(u_int32_t) + sizeof(pgno_t) + sizeof(u_char) + (len)) |
141 | |
142 | /* Copy a BINTERNAL entry to the page. */ |
143 | #define WR_BINTERNAL(p, size, pgno, flags) { \ |
144 | *(u_int32_t *)p = size; \ |
145 | p += sizeof(u_int32_t); \ |
146 | *(pgno_t *)p = pgno; \ |
147 | p += sizeof(pgno_t); \ |
148 | *(u_char *)p = flags; \ |
149 | p += sizeof(u_char); \ |
150 | } |
151 | |
152 | /* |
153 | * For the recno internal pages, the item is a page number with the number of |
154 | * keys found on that page and below. |
155 | */ |
156 | typedef struct _rinternal { |
157 | recno_t nrecs; /* number of records */ |
158 | pgno_t pgno; /* page number stored below */ |
159 | } RINTERNAL; |
160 | |
161 | /* Get the page's RINTERNAL structure at index indx. */ |
162 | #define GETRINTERNAL(pg, indx) \ |
163 | ((RINTERNAL *)((char *)(pg) + (pg)->linp[indx])) |
164 | |
165 | /* Get the number of bytes in the entry. */ |
166 | #define NRINTERNAL \ |
167 | LALIGN(sizeof(recno_t) + sizeof(pgno_t)) |
168 | |
169 | /* Copy a RINTERAL entry to the page. */ |
170 | #define WR_RINTERNAL(p, nrecs, pgno) { \ |
171 | *(recno_t *)p = nrecs; \ |
172 | p += sizeof(recno_t); \ |
173 | *(pgno_t *)p = pgno; \ |
174 | } |
175 | |
176 | /* For the btree leaf pages, the item is a key and data pair. */ |
177 | typedef struct _bleaf { |
178 | u_int32_t ksize; /* size of key */ |
179 | u_int32_t dsize; /* size of data */ |
180 | u_char flags; /* P_BIGDATA, P_BIGKEY */ |
181 | char bytes[1]; /* data */ |
182 | } BLEAF; |
183 | |
184 | /* Get the page's BLEAF structure at index indx. */ |
185 | #define GETBLEAF(pg, indx) \ |
186 | ((BLEAF *)((char *)(pg) + (pg)->linp[indx])) |
187 | |
188 | /* Get the number of bytes in the entry. */ |
189 | #define NBLEAF(p) NBLEAFDBT((p)->ksize, (p)->dsize) |
190 | |
191 | /* Get the number of bytes in the user's key/data pair. */ |
192 | #define NBLEAFDBT(ksize, dsize) \ |
193 | LALIGN(sizeof(u_int32_t) + sizeof(u_int32_t) + sizeof(u_char) + \ |
194 | (ksize) + (dsize)) |
195 | |
196 | /* Copy a BLEAF entry to the page. */ |
197 | #define WR_BLEAF(p, key, data, flags) { \ |
198 | *(u_int32_t *)p = key->size; \ |
199 | p += sizeof(u_int32_t); \ |
200 | *(u_int32_t *)p = data->size; \ |
201 | p += sizeof(u_int32_t); \ |
202 | *(u_char *)p = flags; \ |
203 | p += sizeof(u_char); \ |
204 | memmove(p, key->data, key->size); \ |
205 | p += key->size; \ |
206 | memmove(p, data->data, data->size); \ |
207 | } |
208 | |
209 | /* For the recno leaf pages, the item is a data entry. */ |
210 | typedef struct _rleaf { |
211 | u_int32_t dsize; /* size of data */ |
212 | u_char flags; /* P_BIGDATA */ |
213 | char bytes[1]; |
214 | } RLEAF; |
215 | |
216 | /* Get the page's RLEAF structure at index indx. */ |
217 | #define GETRLEAF(pg, indx) \ |
218 | ((RLEAF *)((char *)(pg) + (pg)->linp[indx])) |
219 | |
220 | /* Get the number of bytes in the entry. */ |
221 | #define NRLEAF(p) NRLEAFDBT((p)->dsize) |
222 | |
223 | /* Get the number of bytes from the user's data. */ |
224 | #define NRLEAFDBT(dsize) \ |
225 | LALIGN(sizeof(u_int32_t) + sizeof(u_char) + (dsize)) |
226 | |
227 | /* Copy a RLEAF entry to the page. */ |
228 | #define WR_RLEAF(p, data, flags) { \ |
229 | *(u_int32_t *)p = data->size; \ |
230 | p += sizeof(u_int32_t); \ |
231 | *(u_char *)p = flags; \ |
232 | p += sizeof(u_char); \ |
233 | memmove(p, data->data, data->size); \ |
234 | } |
235 | |
236 | /* |
237 | * A record in the tree is either a pointer to a page and an index in the page |
238 | * or a page number and an index. These structures are used as a cursor, stack |
239 | * entry and search returns as well as to pass records to other routines. |
240 | * |
241 | * One comment about searches. Internal page searches must find the largest |
242 | * record less than key in the tree so that descents work. Leaf page searches |
243 | * must find the smallest record greater than key so that the returned index |
244 | * is the record's correct position for insertion. |
245 | */ |
246 | typedef struct _epgno { |
247 | pgno_t pgno; /* the page number */ |
248 | indx_t index; /* the index on the page */ |
249 | } EPGNO; |
250 | |
251 | typedef struct _epg { |
252 | PAGE *page; /* the (pinned) page */ |
253 | indx_t index; /* the index on the page */ |
254 | } EPG; |
255 | |
256 | /* |
257 | * About cursors. The cursor (and the page that contained the key/data pair |
258 | * that it referenced) can be deleted, which makes things a bit tricky. If |
259 | * there are no duplicates of the cursor key in the tree (i.e. B_NODUPS is set |
260 | * or there simply aren't any duplicates of the key) we copy the key that it |
261 | * referenced when it's deleted, and reacquire a new cursor key if the cursor |
262 | * is used again. If there are duplicates keys, we move to the next/previous |
263 | * key, and set a flag so that we know what happened. NOTE: if duplicate (to |
264 | * the cursor) keys are added to the tree during this process, it is undefined |
265 | * if they will be returned or not in a cursor scan. |
266 | * |
267 | * The flags determine the possible states of the cursor: |
268 | * |
269 | * CURS_INIT The cursor references *something*. |
270 | * CURS_ACQUIRE The cursor was deleted, and a key has been saved so that |
271 | * we can reacquire the right position in the tree. |
272 | * CURS_AFTER, CURS_BEFORE |
273 | * The cursor was deleted, and now references a key/data pair |
274 | * that has not yet been returned, either before or after the |
275 | * deleted key/data pair. |
276 | * XXX |
277 | * This structure is broken out so that we can eventually offer multiple |
278 | * cursors as part of the DB interface. |
279 | */ |
280 | typedef struct _cursor { |
281 | EPGNO pg; /* B: Saved tree reference. */ |
282 | DBT key; /* B: Saved key, or key.data == NULL. */ |
283 | recno_t rcursor; /* R: recno cursor (1-based) */ |
284 | |
285 | #define CURS_ACQUIRE 0x01 /* B: Cursor needs to be reacquired. */ |
286 | #define CURS_AFTER 0x02 /* B: Unreturned cursor after key. */ |
287 | #define CURS_BEFORE 0x04 /* B: Unreturned cursor before key. */ |
288 | #define CURS_INIT 0x08 /* RB: Cursor initialized. */ |
289 | u_int8_t flags; |
290 | } CURSOR; |
291 | |
292 | /* |
293 | * The metadata of the tree. The nrecs field is used only by the RECNO code. |
294 | * This is because the btree doesn't really need it and it requires that every |
295 | * put or delete call modify the metadata. |
296 | */ |
297 | typedef struct _btmeta { |
298 | u_int32_t magic; /* magic number */ |
299 | u_int32_t version; /* version */ |
300 | u_int32_t psize; /* page size */ |
301 | u_int32_t free; /* page number of first free page */ |
302 | u_int32_t nrecs; /* R: number of records */ |
303 | |
304 | #define SAVEMETA (B_NODUPS | R_RECNO) |
305 | u_int32_t flags; /* bt_flags & SAVEMETA */ |
306 | } BTMETA; |
307 | |
308 | /* The in-memory btree/recno data structure. */ |
309 | typedef struct _btree { |
310 | MPOOL *bt_mp; /* memory pool cookie */ |
311 | |
312 | DB *bt_dbp; /* pointer to enclosing DB */ |
313 | |
314 | EPG bt_cur; /* current (pinned) page */ |
315 | PAGE *bt_pinned; /* page pinned across calls */ |
316 | |
317 | CURSOR bt_cursor; /* cursor */ |
318 | |
319 | #define BT_PUSH(t, p, i) { \ |
320 | t->bt_sp->pgno = p; \ |
321 | t->bt_sp->index = i; \ |
322 | ++t->bt_sp; \ |
323 | } |
324 | #define BT_POP(t) (t->bt_sp == t->bt_stack ? NULL : --t->bt_sp) |
325 | #define BT_CLR(t) (t->bt_sp = t->bt_stack) |
326 | EPGNO bt_stack[50]; /* stack of parent pages */ |
327 | EPGNO *bt_sp; /* current stack pointer */ |
328 | |
329 | DBT bt_rkey; /* returned key */ |
330 | DBT bt_rdata; /* returned data */ |
331 | |
332 | virt_fd_t bt_fd; /* tree virtual file descriptor */ |
333 | |
334 | pgno_t bt_free; /* next free page */ |
335 | u_int32_t bt_psize; /* page size */ |
336 | indx_t bt_ovflsize; /* cut-off for key/data overflow */ |
337 | int bt_lorder; /* byte order */ |
338 | /* sorted order */ |
339 | enum { NOT, BACK, FORWARD } bt_order; |
340 | EPGNO bt_last; /* last insert */ |
341 | |
342 | /* B: key comparison function */ |
343 | int (*bt_cmp) __P((const DBT *, const DBT *)); |
344 | /* B: prefix comparison function */ |
345 | size_t (*bt_pfx) __P((const DBT *, const DBT *)); |
346 | /* R: recno input function */ |
347 | int (*bt_irec) __P((struct _btree *, recno_t)); |
348 | |
349 | FILE *bt_rfp; /* R: record FILE pointer */ |
350 | int bt_rfd; /* R: record file descriptor */ |
351 | |
352 | caddr_t bt_cmap; /* R: current point in mapped space */ |
353 | caddr_t bt_smap; /* R: start of mapped space */ |
354 | caddr_t bt_emap; /* R: end of mapped space */ |
355 | size_t bt_msize; /* R: size of mapped region. */ |
356 | |
357 | recno_t bt_nrecs; /* R: number of records */ |
358 | size_t bt_reclen; /* R: fixed record length */ |
359 | u_char bt_bval; /* R: delimiting byte/pad character */ |
360 | |
361 | /* |
362 | * NB: |
363 | * B_NODUPS and R_RECNO are stored on disk, and may not be changed. |
364 | */ |
365 | #define B_INMEM 0x00001 /* in-memory tree */ |
366 | #define B_METADIRTY 0x00002 /* need to write metadata */ |
367 | #define B_MODIFIED 0x00004 /* tree modified */ |
368 | #define B_NEEDSWAP 0x00008 /* if byte order requires swapping */ |
369 | #define B_RDONLY 0x00010 /* read-only tree */ |
370 | |
371 | #define B_NODUPS 0x00020 /* no duplicate keys permitted */ |
372 | #define R_RECNO 0x00080 /* record oriented tree */ |
373 | |
374 | #define R_CLOSEFP 0x00040 /* opened a file pointer */ |
375 | #define R_EOF 0x00100 /* end of input file reached. */ |
376 | #define R_FIXLEN 0x00200 /* fixed length records */ |
377 | #define R_MEMMAPPED 0x00400 /* memory mapped file. */ |
378 | #define R_INMEM 0x00800 /* in-memory file */ |
379 | #define R_MODIFIED 0x01000 /* modified file */ |
380 | #define R_RDONLY 0x02000 /* read-only file */ |
381 | |
382 | #define B_DB_LOCK 0x04000 /* DB_LOCK specified. */ |
383 | #define B_DB_SHMEM 0x08000 /* DB_SHMEM specified. */ |
384 | #define B_DB_TXN 0x10000 /* DB_TXN specified. */ |
385 | u_int32_t flags; |
386 | } BTREE; |
387 | |
388 | #include "extern.h" |
389 | |