| 1 | /* |
| 2 | * This file is part of the MicroPython project, http://micropython.org/ |
| 3 | * |
| 4 | * The MIT License (MIT) |
| 5 | * |
| 6 | * Copyright (c) 2013, 2014 Damien P. George |
| 7 | * Copyright (c) 2014 Paul Sokolovsky |
| 8 | * |
| 9 | * Permission is hereby granted, free of charge, to any person obtaining a copy |
| 10 | * of this software and associated documentation files (the "Software"), to deal |
| 11 | * in the Software without restriction, including without limitation the rights |
| 12 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| 13 | * copies of the Software, and to permit persons to whom the Software is |
| 14 | * furnished to do so, subject to the following conditions: |
| 15 | * |
| 16 | * The above copyright notice and this permission notice shall be included in |
| 17 | * all copies or substantial portions of the Software. |
| 18 | * |
| 19 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 20 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 21 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 22 | * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 23 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 24 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| 25 | * THE SOFTWARE. |
| 26 | */ |
| 27 | |
| 28 | #include <assert.h> |
| 29 | #include <stdio.h> |
| 30 | #include <string.h> |
| 31 | |
| 32 | #include "py/gc.h" |
| 33 | #include "py/runtime.h" |
| 34 | |
| 35 | #if MICROPY_ENABLE_GC |
| 36 | |
| 37 | #if MICROPY_DEBUG_VERBOSE // print debugging info |
| 38 | #define DEBUG_PRINT (1) |
| 39 | #define DEBUG_printf DEBUG_printf |
| 40 | #else // don't print debugging info |
| 41 | #define DEBUG_PRINT (0) |
| 42 | #define DEBUG_printf(...) (void)0 |
| 43 | #endif |
| 44 | |
| 45 | // make this 1 to dump the heap each time it changes |
| 46 | #define EXTENSIVE_HEAP_PROFILING (0) |
| 47 | |
| 48 | // make this 1 to zero out swept memory to more eagerly |
| 49 | // detect untraced object still in use |
| 50 | #define CLEAR_ON_SWEEP (0) |
| 51 | |
| 52 | #define WORDS_PER_BLOCK ((MICROPY_BYTES_PER_GC_BLOCK) / MP_BYTES_PER_OBJ_WORD) |
| 53 | #define BYTES_PER_BLOCK (MICROPY_BYTES_PER_GC_BLOCK) |
| 54 | |
| 55 | // ATB = allocation table byte |
| 56 | // 0b00 = FREE -- free block |
| 57 | // 0b01 = HEAD -- head of a chain of blocks |
| 58 | // 0b10 = TAIL -- in the tail of a chain of blocks |
| 59 | // 0b11 = MARK -- marked head block |
| 60 | |
| 61 | #define AT_FREE (0) |
| 62 | #define AT_HEAD (1) |
| 63 | #define AT_TAIL (2) |
| 64 | #define AT_MARK (3) |
| 65 | |
| 66 | #define BLOCKS_PER_ATB (4) |
| 67 | #define ATB_MASK_0 (0x03) |
| 68 | #define ATB_MASK_1 (0x0c) |
| 69 | #define ATB_MASK_2 (0x30) |
| 70 | #define ATB_MASK_3 (0xc0) |
| 71 | |
| 72 | #define ATB_0_IS_FREE(a) (((a) & ATB_MASK_0) == 0) |
| 73 | #define ATB_1_IS_FREE(a) (((a) & ATB_MASK_1) == 0) |
| 74 | #define ATB_2_IS_FREE(a) (((a) & ATB_MASK_2) == 0) |
| 75 | #define ATB_3_IS_FREE(a) (((a) & ATB_MASK_3) == 0) |
| 76 | |
| 77 | #define BLOCK_SHIFT(block) (2 * ((block) & (BLOCKS_PER_ATB - 1))) |
| 78 | #define ATB_GET_KIND(block) ((MP_STATE_MEM(gc_alloc_table_start)[(block) / BLOCKS_PER_ATB] >> BLOCK_SHIFT(block)) & 3) |
| 79 | #define ATB_ANY_TO_FREE(block) do { MP_STATE_MEM(gc_alloc_table_start)[(block) / BLOCKS_PER_ATB] &= (~(AT_MARK << BLOCK_SHIFT(block))); } while (0) |
| 80 | #define ATB_FREE_TO_HEAD(block) do { MP_STATE_MEM(gc_alloc_table_start)[(block) / BLOCKS_PER_ATB] |= (AT_HEAD << BLOCK_SHIFT(block)); } while (0) |
| 81 | #define ATB_FREE_TO_TAIL(block) do { MP_STATE_MEM(gc_alloc_table_start)[(block) / BLOCKS_PER_ATB] |= (AT_TAIL << BLOCK_SHIFT(block)); } while (0) |
| 82 | #define ATB_HEAD_TO_MARK(block) do { MP_STATE_MEM(gc_alloc_table_start)[(block) / BLOCKS_PER_ATB] |= (AT_MARK << BLOCK_SHIFT(block)); } while (0) |
| 83 | #define ATB_MARK_TO_HEAD(block) do { MP_STATE_MEM(gc_alloc_table_start)[(block) / BLOCKS_PER_ATB] &= (~(AT_TAIL << BLOCK_SHIFT(block))); } while (0) |
| 84 | |
| 85 | #define BLOCK_FROM_PTR(ptr) (((byte *)(ptr) - MP_STATE_MEM(gc_pool_start)) / BYTES_PER_BLOCK) |
| 86 | #define PTR_FROM_BLOCK(block) (((block) * BYTES_PER_BLOCK + (uintptr_t)MP_STATE_MEM(gc_pool_start))) |
| 87 | #define ATB_FROM_BLOCK(bl) ((bl) / BLOCKS_PER_ATB) |
| 88 | |
| 89 | #if MICROPY_ENABLE_FINALISER |
| 90 | // FTB = finaliser table byte |
| 91 | // if set, then the corresponding block may have a finaliser |
| 92 | |
| 93 | #define BLOCKS_PER_FTB (8) |
| 94 | |
| 95 | #define FTB_GET(block) ((MP_STATE_MEM(gc_finaliser_table_start)[(block) / BLOCKS_PER_FTB] >> ((block) & 7)) & 1) |
| 96 | #define FTB_SET(block) do { MP_STATE_MEM(gc_finaliser_table_start)[(block) / BLOCKS_PER_FTB] |= (1 << ((block) & 7)); } while (0) |
| 97 | #define FTB_CLEAR(block) do { MP_STATE_MEM(gc_finaliser_table_start)[(block) / BLOCKS_PER_FTB] &= (~(1 << ((block) & 7))); } while (0) |
| 98 | #endif |
| 99 | |
| 100 | #if MICROPY_PY_THREAD && !MICROPY_PY_THREAD_GIL |
| 101 | #define GC_ENTER() mp_thread_mutex_lock(&MP_STATE_MEM(gc_mutex), 1) |
| 102 | #define GC_EXIT() mp_thread_mutex_unlock(&MP_STATE_MEM(gc_mutex)) |
| 103 | #else |
| 104 | #define GC_ENTER() |
| 105 | #define GC_EXIT() |
| 106 | #endif |
| 107 | |
| 108 | // TODO waste less memory; currently requires that all entries in alloc_table have a corresponding block in pool |
| 109 | void gc_init(void *start, void *end) { |
| 110 | // align end pointer on block boundary |
| 111 | end = (void *)((uintptr_t)end & (~(BYTES_PER_BLOCK - 1))); |
| 112 | DEBUG_printf("Initializing GC heap: %p..%p = " UINT_FMT " bytes\n" , start, end, (byte *)end - (byte *)start); |
| 113 | |
| 114 | // calculate parameters for GC (T=total, A=alloc table, F=finaliser table, P=pool; all in bytes): |
| 115 | // T = A + F + P |
| 116 | // F = A * BLOCKS_PER_ATB / BLOCKS_PER_FTB |
| 117 | // P = A * BLOCKS_PER_ATB * BYTES_PER_BLOCK |
| 118 | // => T = A * (1 + BLOCKS_PER_ATB / BLOCKS_PER_FTB + BLOCKS_PER_ATB * BYTES_PER_BLOCK) |
| 119 | size_t total_byte_len = (byte *)end - (byte *)start; |
| 120 | #if MICROPY_ENABLE_FINALISER |
| 121 | MP_STATE_MEM(gc_alloc_table_byte_len) = total_byte_len * MP_BITS_PER_BYTE / (MP_BITS_PER_BYTE + MP_BITS_PER_BYTE * BLOCKS_PER_ATB / BLOCKS_PER_FTB + MP_BITS_PER_BYTE * BLOCKS_PER_ATB * BYTES_PER_BLOCK); |
| 122 | #else |
| 123 | MP_STATE_MEM(gc_alloc_table_byte_len) = total_byte_len / (1 + MP_BITS_PER_BYTE / 2 * BYTES_PER_BLOCK); |
| 124 | #endif |
| 125 | |
| 126 | MP_STATE_MEM(gc_alloc_table_start) = (byte *)start; |
| 127 | |
| 128 | #if MICROPY_ENABLE_FINALISER |
| 129 | size_t gc_finaliser_table_byte_len = (MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB + BLOCKS_PER_FTB - 1) / BLOCKS_PER_FTB; |
| 130 | MP_STATE_MEM(gc_finaliser_table_start) = MP_STATE_MEM(gc_alloc_table_start) + MP_STATE_MEM(gc_alloc_table_byte_len); |
| 131 | #endif |
| 132 | |
| 133 | size_t gc_pool_block_len = MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB; |
| 134 | MP_STATE_MEM(gc_pool_start) = (byte *)end - gc_pool_block_len * BYTES_PER_BLOCK; |
| 135 | MP_STATE_MEM(gc_pool_end) = end; |
| 136 | |
| 137 | #if MICROPY_ENABLE_FINALISER |
| 138 | assert(MP_STATE_MEM(gc_pool_start) >= MP_STATE_MEM(gc_finaliser_table_start) + gc_finaliser_table_byte_len); |
| 139 | #endif |
| 140 | |
| 141 | // clear ATBs |
| 142 | memset(MP_STATE_MEM(gc_alloc_table_start), 0, MP_STATE_MEM(gc_alloc_table_byte_len)); |
| 143 | |
| 144 | #if MICROPY_ENABLE_FINALISER |
| 145 | // clear FTBs |
| 146 | memset(MP_STATE_MEM(gc_finaliser_table_start), 0, gc_finaliser_table_byte_len); |
| 147 | #endif |
| 148 | |
| 149 | // set last free ATB index to start of heap |
| 150 | MP_STATE_MEM(gc_last_free_atb_index) = 0; |
| 151 | |
| 152 | // unlock the GC |
| 153 | MP_STATE_MEM(gc_lock_depth) = 0; |
| 154 | |
| 155 | // allow auto collection |
| 156 | MP_STATE_MEM(gc_auto_collect_enabled) = 1; |
| 157 | |
| 158 | #if MICROPY_GC_ALLOC_THRESHOLD |
| 159 | // by default, maxuint for gc threshold, effectively turning gc-by-threshold off |
| 160 | MP_STATE_MEM(gc_alloc_threshold) = (size_t)-1; |
| 161 | MP_STATE_MEM(gc_alloc_amount) = 0; |
| 162 | #endif |
| 163 | |
| 164 | #if MICROPY_PY_THREAD && !MICROPY_PY_THREAD_GIL |
| 165 | mp_thread_mutex_init(&MP_STATE_MEM(gc_mutex)); |
| 166 | #endif |
| 167 | |
| 168 | DEBUG_printf("GC layout:\n" ); |
| 169 | DEBUG_printf(" alloc table at %p, length " UINT_FMT " bytes, " UINT_FMT " blocks\n" , MP_STATE_MEM(gc_alloc_table_start), MP_STATE_MEM(gc_alloc_table_byte_len), MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB); |
| 170 | #if MICROPY_ENABLE_FINALISER |
| 171 | DEBUG_printf(" finaliser table at %p, length " UINT_FMT " bytes, " UINT_FMT " blocks\n" , MP_STATE_MEM(gc_finaliser_table_start), gc_finaliser_table_byte_len, gc_finaliser_table_byte_len * BLOCKS_PER_FTB); |
| 172 | #endif |
| 173 | DEBUG_printf(" pool at %p, length " UINT_FMT " bytes, " UINT_FMT " blocks\n" , MP_STATE_MEM(gc_pool_start), gc_pool_block_len * BYTES_PER_BLOCK, gc_pool_block_len); |
| 174 | } |
| 175 | |
| 176 | void gc_lock(void) { |
| 177 | GC_ENTER(); |
| 178 | MP_STATE_MEM(gc_lock_depth)++; |
| 179 | GC_EXIT(); |
| 180 | } |
| 181 | |
| 182 | void gc_unlock(void) { |
| 183 | GC_ENTER(); |
| 184 | MP_STATE_MEM(gc_lock_depth)--; |
| 185 | GC_EXIT(); |
| 186 | } |
| 187 | |
| 188 | bool gc_is_locked(void) { |
| 189 | return MP_STATE_MEM(gc_lock_depth) != 0; |
| 190 | } |
| 191 | |
| 192 | // ptr should be of type void* |
| 193 | #define VERIFY_PTR(ptr) ( \ |
| 194 | ((uintptr_t)(ptr) & (BYTES_PER_BLOCK - 1)) == 0 /* must be aligned on a block */ \ |
| 195 | && ptr >= (void *)MP_STATE_MEM(gc_pool_start) /* must be above start of pool */ \ |
| 196 | && ptr < (void *)MP_STATE_MEM(gc_pool_end) /* must be below end of pool */ \ |
| 197 | ) |
| 198 | |
| 199 | #ifndef TRACE_MARK |
| 200 | #if DEBUG_PRINT |
| 201 | #define TRACE_MARK(block, ptr) DEBUG_printf("gc_mark(%p)\n", ptr) |
| 202 | #else |
| 203 | #define TRACE_MARK(block, ptr) |
| 204 | #endif |
| 205 | #endif |
| 206 | |
| 207 | // Take the given block as the topmost block on the stack. Check all it's |
| 208 | // children: mark the unmarked child blocks and put those newly marked |
| 209 | // blocks on the stack. When all children have been checked, pop off the |
| 210 | // topmost block on the stack and repeat with that one. |
| 211 | STATIC void gc_mark_subtree(size_t block) { |
| 212 | // Start with the block passed in the argument. |
| 213 | size_t sp = 0; |
| 214 | for (;;) { |
| 215 | // work out number of consecutive blocks in the chain starting with this one |
| 216 | size_t n_blocks = 0; |
| 217 | do { |
| 218 | n_blocks += 1; |
| 219 | } while (ATB_GET_KIND(block + n_blocks) == AT_TAIL); |
| 220 | |
| 221 | // check this block's children |
| 222 | void **ptrs = (void **)PTR_FROM_BLOCK(block); |
| 223 | for (size_t i = n_blocks * BYTES_PER_BLOCK / sizeof(void *); i > 0; i--, ptrs++) { |
| 224 | void *ptr = *ptrs; |
| 225 | if (VERIFY_PTR(ptr)) { |
| 226 | // Mark and push this pointer |
| 227 | size_t childblock = BLOCK_FROM_PTR(ptr); |
| 228 | if (ATB_GET_KIND(childblock) == AT_HEAD) { |
| 229 | // an unmarked head, mark it, and push it on gc stack |
| 230 | TRACE_MARK(childblock, ptr); |
| 231 | ATB_HEAD_TO_MARK(childblock); |
| 232 | if (sp < MICROPY_ALLOC_GC_STACK_SIZE) { |
| 233 | MP_STATE_MEM(gc_stack)[sp++] = childblock; |
| 234 | } else { |
| 235 | MP_STATE_MEM(gc_stack_overflow) = 1; |
| 236 | } |
| 237 | } |
| 238 | } |
| 239 | } |
| 240 | |
| 241 | // Are there any blocks on the stack? |
| 242 | if (sp == 0) { |
| 243 | break; // No, stack is empty, we're done. |
| 244 | } |
| 245 | |
| 246 | // pop the next block off the stack |
| 247 | block = MP_STATE_MEM(gc_stack)[--sp]; |
| 248 | } |
| 249 | } |
| 250 | |
| 251 | STATIC void gc_deal_with_stack_overflow(void) { |
| 252 | while (MP_STATE_MEM(gc_stack_overflow)) { |
| 253 | MP_STATE_MEM(gc_stack_overflow) = 0; |
| 254 | |
| 255 | // scan entire memory looking for blocks which have been marked but not their children |
| 256 | for (size_t block = 0; block < MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB; block++) { |
| 257 | // trace (again) if mark bit set |
| 258 | if (ATB_GET_KIND(block) == AT_MARK) { |
| 259 | gc_mark_subtree(block); |
| 260 | } |
| 261 | } |
| 262 | } |
| 263 | } |
| 264 | |
| 265 | STATIC void gc_sweep(void) { |
| 266 | #if MICROPY_PY_GC_COLLECT_RETVAL |
| 267 | MP_STATE_MEM(gc_collected) = 0; |
| 268 | #endif |
| 269 | // free unmarked heads and their tails |
| 270 | int free_tail = 0; |
| 271 | for (size_t block = 0; block < MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB; block++) { |
| 272 | switch (ATB_GET_KIND(block)) { |
| 273 | case AT_HEAD: |
| 274 | #if MICROPY_ENABLE_FINALISER |
| 275 | if (FTB_GET(block)) { |
| 276 | mp_obj_base_t *obj = (mp_obj_base_t *)PTR_FROM_BLOCK(block); |
| 277 | if (obj->type != NULL) { |
| 278 | // if the object has a type then see if it has a __del__ method |
| 279 | mp_obj_t dest[2]; |
| 280 | mp_load_method_maybe(MP_OBJ_FROM_PTR(obj), MP_QSTR___del__, dest); |
| 281 | if (dest[0] != MP_OBJ_NULL) { |
| 282 | // load_method returned a method, execute it in a protected environment |
| 283 | #if MICROPY_ENABLE_SCHEDULER |
| 284 | mp_sched_lock(); |
| 285 | #endif |
| 286 | mp_call_function_1_protected(dest[0], dest[1]); |
| 287 | #if MICROPY_ENABLE_SCHEDULER |
| 288 | mp_sched_unlock(); |
| 289 | #endif |
| 290 | } |
| 291 | } |
| 292 | // clear finaliser flag |
| 293 | FTB_CLEAR(block); |
| 294 | } |
| 295 | #endif |
| 296 | free_tail = 1; |
| 297 | DEBUG_printf("gc_sweep(%p)\n" , (void *)PTR_FROM_BLOCK(block)); |
| 298 | #if MICROPY_PY_GC_COLLECT_RETVAL |
| 299 | MP_STATE_MEM(gc_collected)++; |
| 300 | #endif |
| 301 | // fall through to free the head |
| 302 | MP_FALLTHROUGH |
| 303 | |
| 304 | case AT_TAIL: |
| 305 | if (free_tail) { |
| 306 | ATB_ANY_TO_FREE(block); |
| 307 | #if CLEAR_ON_SWEEP |
| 308 | memset((void *)PTR_FROM_BLOCK(block), 0, BYTES_PER_BLOCK); |
| 309 | #endif |
| 310 | } |
| 311 | break; |
| 312 | |
| 313 | case AT_MARK: |
| 314 | ATB_MARK_TO_HEAD(block); |
| 315 | free_tail = 0; |
| 316 | break; |
| 317 | } |
| 318 | } |
| 319 | } |
| 320 | |
| 321 | void gc_collect_start(void) { |
| 322 | GC_ENTER(); |
| 323 | MP_STATE_MEM(gc_lock_depth)++; |
| 324 | #if MICROPY_GC_ALLOC_THRESHOLD |
| 325 | MP_STATE_MEM(gc_alloc_amount) = 0; |
| 326 | #endif |
| 327 | MP_STATE_MEM(gc_stack_overflow) = 0; |
| 328 | |
| 329 | // Trace root pointers. This relies on the root pointers being organised |
| 330 | // correctly in the mp_state_ctx structure. We scan nlr_top, dict_locals, |
| 331 | // dict_globals, then the root pointer section of mp_state_vm. |
| 332 | void **ptrs = (void **)(void *)&mp_state_ctx; |
| 333 | size_t root_start = offsetof(mp_state_ctx_t, thread.dict_locals); |
| 334 | size_t root_end = offsetof(mp_state_ctx_t, vm.qstr_last_chunk); |
| 335 | gc_collect_root(ptrs + root_start / sizeof(void *), (root_end - root_start) / sizeof(void *)); |
| 336 | |
| 337 | #if MICROPY_ENABLE_PYSTACK |
| 338 | // Trace root pointers from the Python stack. |
| 339 | ptrs = (void **)(void *)MP_STATE_THREAD(pystack_start); |
| 340 | gc_collect_root(ptrs, (MP_STATE_THREAD(pystack_cur) - MP_STATE_THREAD(pystack_start)) / sizeof(void *)); |
| 341 | #endif |
| 342 | } |
| 343 | |
| 344 | void gc_collect_root(void **ptrs, size_t len) { |
| 345 | for (size_t i = 0; i < len; i++) { |
| 346 | void *ptr = ptrs[i]; |
| 347 | if (VERIFY_PTR(ptr)) { |
| 348 | size_t block = BLOCK_FROM_PTR(ptr); |
| 349 | if (ATB_GET_KIND(block) == AT_HEAD) { |
| 350 | // An unmarked head: mark it, and mark all its children |
| 351 | TRACE_MARK(block, ptr); |
| 352 | ATB_HEAD_TO_MARK(block); |
| 353 | gc_mark_subtree(block); |
| 354 | } |
| 355 | } |
| 356 | } |
| 357 | } |
| 358 | |
| 359 | void gc_collect_end(void) { |
| 360 | gc_deal_with_stack_overflow(); |
| 361 | gc_sweep(); |
| 362 | MP_STATE_MEM(gc_last_free_atb_index) = 0; |
| 363 | MP_STATE_MEM(gc_lock_depth)--; |
| 364 | GC_EXIT(); |
| 365 | } |
| 366 | |
| 367 | void gc_sweep_all(void) { |
| 368 | GC_ENTER(); |
| 369 | MP_STATE_MEM(gc_lock_depth)++; |
| 370 | MP_STATE_MEM(gc_stack_overflow) = 0; |
| 371 | gc_collect_end(); |
| 372 | } |
| 373 | |
| 374 | void gc_info(gc_info_t *info) { |
| 375 | GC_ENTER(); |
| 376 | info->total = MP_STATE_MEM(gc_pool_end) - MP_STATE_MEM(gc_pool_start); |
| 377 | info->used = 0; |
| 378 | info->free = 0; |
| 379 | info->max_free = 0; |
| 380 | info->num_1block = 0; |
| 381 | info->num_2block = 0; |
| 382 | info->max_block = 0; |
| 383 | bool finish = false; |
| 384 | for (size_t block = 0, len = 0, len_free = 0; !finish;) { |
| 385 | size_t kind = ATB_GET_KIND(block); |
| 386 | switch (kind) { |
| 387 | case AT_FREE: |
| 388 | info->free += 1; |
| 389 | len_free += 1; |
| 390 | len = 0; |
| 391 | break; |
| 392 | |
| 393 | case AT_HEAD: |
| 394 | info->used += 1; |
| 395 | len = 1; |
| 396 | break; |
| 397 | |
| 398 | case AT_TAIL: |
| 399 | info->used += 1; |
| 400 | len += 1; |
| 401 | break; |
| 402 | |
| 403 | case AT_MARK: |
| 404 | // shouldn't happen |
| 405 | break; |
| 406 | } |
| 407 | |
| 408 | block++; |
| 409 | finish = (block == MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB); |
| 410 | // Get next block type if possible |
| 411 | if (!finish) { |
| 412 | kind = ATB_GET_KIND(block); |
| 413 | } |
| 414 | |
| 415 | if (finish || kind == AT_FREE || kind == AT_HEAD) { |
| 416 | if (len == 1) { |
| 417 | info->num_1block += 1; |
| 418 | } else if (len == 2) { |
| 419 | info->num_2block += 1; |
| 420 | } |
| 421 | if (len > info->max_block) { |
| 422 | info->max_block = len; |
| 423 | } |
| 424 | if (finish || kind == AT_HEAD) { |
| 425 | if (len_free > info->max_free) { |
| 426 | info->max_free = len_free; |
| 427 | } |
| 428 | len_free = 0; |
| 429 | } |
| 430 | } |
| 431 | } |
| 432 | |
| 433 | info->used *= BYTES_PER_BLOCK; |
| 434 | info->free *= BYTES_PER_BLOCK; |
| 435 | GC_EXIT(); |
| 436 | } |
| 437 | |
| 438 | void *gc_alloc(size_t n_bytes, unsigned int alloc_flags) { |
| 439 | bool has_finaliser = alloc_flags & GC_ALLOC_FLAG_HAS_FINALISER; |
| 440 | size_t n_blocks = ((n_bytes + BYTES_PER_BLOCK - 1) & (~(BYTES_PER_BLOCK - 1))) / BYTES_PER_BLOCK; |
| 441 | DEBUG_printf("gc_alloc(" UINT_FMT " bytes -> " UINT_FMT " blocks)\n" , n_bytes, n_blocks); |
| 442 | |
| 443 | // check for 0 allocation |
| 444 | if (n_blocks == 0) { |
| 445 | return NULL; |
| 446 | } |
| 447 | |
| 448 | GC_ENTER(); |
| 449 | |
| 450 | // check if GC is locked |
| 451 | if (MP_STATE_MEM(gc_lock_depth) > 0) { |
| 452 | GC_EXIT(); |
| 453 | return NULL; |
| 454 | } |
| 455 | |
| 456 | size_t i; |
| 457 | size_t end_block; |
| 458 | size_t start_block; |
| 459 | size_t n_free; |
| 460 | int collected = !MP_STATE_MEM(gc_auto_collect_enabled); |
| 461 | |
| 462 | #if MICROPY_GC_ALLOC_THRESHOLD |
| 463 | if (!collected && MP_STATE_MEM(gc_alloc_amount) >= MP_STATE_MEM(gc_alloc_threshold)) { |
| 464 | GC_EXIT(); |
| 465 | gc_collect(); |
| 466 | collected = 1; |
| 467 | GC_ENTER(); |
| 468 | } |
| 469 | #endif |
| 470 | |
| 471 | for (;;) { |
| 472 | |
| 473 | // look for a run of n_blocks available blocks |
| 474 | n_free = 0; |
| 475 | for (i = MP_STATE_MEM(gc_last_free_atb_index); i < MP_STATE_MEM(gc_alloc_table_byte_len); i++) { |
| 476 | byte a = MP_STATE_MEM(gc_alloc_table_start)[i]; |
| 477 | // *FORMAT-OFF* |
| 478 | if (ATB_0_IS_FREE(a)) { if (++n_free >= n_blocks) { i = i * BLOCKS_PER_ATB + 0; goto found; } } else { n_free = 0; } |
| 479 | if (ATB_1_IS_FREE(a)) { if (++n_free >= n_blocks) { i = i * BLOCKS_PER_ATB + 1; goto found; } } else { n_free = 0; } |
| 480 | if (ATB_2_IS_FREE(a)) { if (++n_free >= n_blocks) { i = i * BLOCKS_PER_ATB + 2; goto found; } } else { n_free = 0; } |
| 481 | if (ATB_3_IS_FREE(a)) { if (++n_free >= n_blocks) { i = i * BLOCKS_PER_ATB + 3; goto found; } } else { n_free = 0; } |
| 482 | // *FORMAT-ON* |
| 483 | } |
| 484 | |
| 485 | GC_EXIT(); |
| 486 | // nothing found! |
| 487 | if (collected) { |
| 488 | return NULL; |
| 489 | } |
| 490 | DEBUG_printf("gc_alloc(" UINT_FMT "): no free mem, triggering GC\n" , n_bytes); |
| 491 | gc_collect(); |
| 492 | collected = 1; |
| 493 | GC_ENTER(); |
| 494 | } |
| 495 | |
| 496 | // found, ending at block i inclusive |
| 497 | found: |
| 498 | // get starting and end blocks, both inclusive |
| 499 | end_block = i; |
| 500 | start_block = i - n_free + 1; |
| 501 | |
| 502 | // Set last free ATB index to block after last block we found, for start of |
| 503 | // next scan. To reduce fragmentation, we only do this if we were looking |
| 504 | // for a single free block, which guarantees that there are no free blocks |
| 505 | // before this one. Also, whenever we free or shink a block we must check |
| 506 | // if this index needs adjusting (see gc_realloc and gc_free). |
| 507 | if (n_free == 1) { |
| 508 | MP_STATE_MEM(gc_last_free_atb_index) = (i + 1) / BLOCKS_PER_ATB; |
| 509 | } |
| 510 | |
| 511 | // mark first block as used head |
| 512 | ATB_FREE_TO_HEAD(start_block); |
| 513 | |
| 514 | // mark rest of blocks as used tail |
| 515 | // TODO for a run of many blocks can make this more efficient |
| 516 | for (size_t bl = start_block + 1; bl <= end_block; bl++) { |
| 517 | ATB_FREE_TO_TAIL(bl); |
| 518 | } |
| 519 | |
| 520 | // get pointer to first block |
| 521 | // we must create this pointer before unlocking the GC so a collection can find it |
| 522 | void *ret_ptr = (void *)(MP_STATE_MEM(gc_pool_start) + start_block * BYTES_PER_BLOCK); |
| 523 | DEBUG_printf("gc_alloc(%p)\n" , ret_ptr); |
| 524 | |
| 525 | #if MICROPY_GC_ALLOC_THRESHOLD |
| 526 | MP_STATE_MEM(gc_alloc_amount) += n_blocks; |
| 527 | #endif |
| 528 | |
| 529 | GC_EXIT(); |
| 530 | |
| 531 | #if MICROPY_GC_CONSERVATIVE_CLEAR |
| 532 | // be conservative and zero out all the newly allocated blocks |
| 533 | memset((byte *)ret_ptr, 0, (end_block - start_block + 1) * BYTES_PER_BLOCK); |
| 534 | #else |
| 535 | // zero out the additional bytes of the newly allocated blocks |
| 536 | // This is needed because the blocks may have previously held pointers |
| 537 | // to the heap and will not be set to something else if the caller |
| 538 | // doesn't actually use the entire block. As such they will continue |
| 539 | // to point to the heap and may prevent other blocks from being reclaimed. |
| 540 | memset((byte *)ret_ptr + n_bytes, 0, (end_block - start_block + 1) * BYTES_PER_BLOCK - n_bytes); |
| 541 | #endif |
| 542 | |
| 543 | #if MICROPY_ENABLE_FINALISER |
| 544 | if (has_finaliser) { |
| 545 | // clear type pointer in case it is never set |
| 546 | ((mp_obj_base_t *)ret_ptr)->type = NULL; |
| 547 | // set mp_obj flag only if it has a finaliser |
| 548 | GC_ENTER(); |
| 549 | FTB_SET(start_block); |
| 550 | GC_EXIT(); |
| 551 | } |
| 552 | #else |
| 553 | (void)has_finaliser; |
| 554 | #endif |
| 555 | |
| 556 | #if EXTENSIVE_HEAP_PROFILING |
| 557 | gc_dump_alloc_table(); |
| 558 | #endif |
| 559 | |
| 560 | return ret_ptr; |
| 561 | } |
| 562 | |
| 563 | /* |
| 564 | void *gc_alloc(mp_uint_t n_bytes) { |
| 565 | return _gc_alloc(n_bytes, false); |
| 566 | } |
| 567 | |
| 568 | void *gc_alloc_with_finaliser(mp_uint_t n_bytes) { |
| 569 | return _gc_alloc(n_bytes, true); |
| 570 | } |
| 571 | */ |
| 572 | |
| 573 | // force the freeing of a piece of memory |
| 574 | // TODO: freeing here does not call finaliser |
| 575 | void gc_free(void *ptr) { |
| 576 | GC_ENTER(); |
| 577 | if (MP_STATE_MEM(gc_lock_depth) > 0) { |
| 578 | // TODO how to deal with this error? |
| 579 | GC_EXIT(); |
| 580 | return; |
| 581 | } |
| 582 | |
| 583 | DEBUG_printf("gc_free(%p)\n" , ptr); |
| 584 | |
| 585 | if (ptr == NULL) { |
| 586 | GC_EXIT(); |
| 587 | } else { |
| 588 | // get the GC block number corresponding to this pointer |
| 589 | assert(VERIFY_PTR(ptr)); |
| 590 | size_t block = BLOCK_FROM_PTR(ptr); |
| 591 | assert(ATB_GET_KIND(block) == AT_HEAD); |
| 592 | |
| 593 | #if MICROPY_ENABLE_FINALISER |
| 594 | FTB_CLEAR(block); |
| 595 | #endif |
| 596 | |
| 597 | // set the last_free pointer to this block if it's earlier in the heap |
| 598 | if (block / BLOCKS_PER_ATB < MP_STATE_MEM(gc_last_free_atb_index)) { |
| 599 | MP_STATE_MEM(gc_last_free_atb_index) = block / BLOCKS_PER_ATB; |
| 600 | } |
| 601 | |
| 602 | // free head and all of its tail blocks |
| 603 | do { |
| 604 | ATB_ANY_TO_FREE(block); |
| 605 | block += 1; |
| 606 | } while (ATB_GET_KIND(block) == AT_TAIL); |
| 607 | |
| 608 | GC_EXIT(); |
| 609 | |
| 610 | #if EXTENSIVE_HEAP_PROFILING |
| 611 | gc_dump_alloc_table(); |
| 612 | #endif |
| 613 | } |
| 614 | } |
| 615 | |
| 616 | size_t gc_nbytes(const void *ptr) { |
| 617 | GC_ENTER(); |
| 618 | if (VERIFY_PTR(ptr)) { |
| 619 | size_t block = BLOCK_FROM_PTR(ptr); |
| 620 | if (ATB_GET_KIND(block) == AT_HEAD) { |
| 621 | // work out number of consecutive blocks in the chain starting with this on |
| 622 | size_t n_blocks = 0; |
| 623 | do { |
| 624 | n_blocks += 1; |
| 625 | } while (ATB_GET_KIND(block + n_blocks) == AT_TAIL); |
| 626 | GC_EXIT(); |
| 627 | return n_blocks * BYTES_PER_BLOCK; |
| 628 | } |
| 629 | } |
| 630 | |
| 631 | // invalid pointer |
| 632 | GC_EXIT(); |
| 633 | return 0; |
| 634 | } |
| 635 | |
| 636 | #if 0 |
| 637 | // old, simple realloc that didn't expand memory in place |
| 638 | void *gc_realloc(void *ptr, mp_uint_t n_bytes) { |
| 639 | mp_uint_t n_existing = gc_nbytes(ptr); |
| 640 | if (n_bytes <= n_existing) { |
| 641 | return ptr; |
| 642 | } else { |
| 643 | bool has_finaliser; |
| 644 | if (ptr == NULL) { |
| 645 | has_finaliser = false; |
| 646 | } else { |
| 647 | #if MICROPY_ENABLE_FINALISER |
| 648 | has_finaliser = FTB_GET(BLOCK_FROM_PTR((mp_uint_t)ptr)); |
| 649 | #else |
| 650 | has_finaliser = false; |
| 651 | #endif |
| 652 | } |
| 653 | void *ptr2 = gc_alloc(n_bytes, has_finaliser); |
| 654 | if (ptr2 == NULL) { |
| 655 | return ptr2; |
| 656 | } |
| 657 | memcpy(ptr2, ptr, n_existing); |
| 658 | gc_free(ptr); |
| 659 | return ptr2; |
| 660 | } |
| 661 | } |
| 662 | |
| 663 | #else // Alternative gc_realloc impl |
| 664 | |
| 665 | void *gc_realloc(void *ptr_in, size_t n_bytes, bool allow_move) { |
| 666 | // check for pure allocation |
| 667 | if (ptr_in == NULL) { |
| 668 | return gc_alloc(n_bytes, false); |
| 669 | } |
| 670 | |
| 671 | // check for pure free |
| 672 | if (n_bytes == 0) { |
| 673 | gc_free(ptr_in); |
| 674 | return NULL; |
| 675 | } |
| 676 | |
| 677 | void *ptr = ptr_in; |
| 678 | |
| 679 | GC_ENTER(); |
| 680 | |
| 681 | if (MP_STATE_MEM(gc_lock_depth) > 0) { |
| 682 | GC_EXIT(); |
| 683 | return NULL; |
| 684 | } |
| 685 | |
| 686 | // get the GC block number corresponding to this pointer |
| 687 | assert(VERIFY_PTR(ptr)); |
| 688 | size_t block = BLOCK_FROM_PTR(ptr); |
| 689 | assert(ATB_GET_KIND(block) == AT_HEAD); |
| 690 | |
| 691 | // compute number of new blocks that are requested |
| 692 | size_t new_blocks = (n_bytes + BYTES_PER_BLOCK - 1) / BYTES_PER_BLOCK; |
| 693 | |
| 694 | // Get the total number of consecutive blocks that are already allocated to |
| 695 | // this chunk of memory, and then count the number of free blocks following |
| 696 | // it. Stop if we reach the end of the heap, or if we find enough extra |
| 697 | // free blocks to satisfy the realloc. Note that we need to compute the |
| 698 | // total size of the existing memory chunk so we can correctly and |
| 699 | // efficiently shrink it (see below for shrinking code). |
| 700 | size_t n_free = 0; |
| 701 | size_t n_blocks = 1; // counting HEAD block |
| 702 | size_t max_block = MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB; |
| 703 | for (size_t bl = block + n_blocks; bl < max_block; bl++) { |
| 704 | byte block_type = ATB_GET_KIND(bl); |
| 705 | if (block_type == AT_TAIL) { |
| 706 | n_blocks++; |
| 707 | continue; |
| 708 | } |
| 709 | if (block_type == AT_FREE) { |
| 710 | n_free++; |
| 711 | if (n_blocks + n_free >= new_blocks) { |
| 712 | // stop as soon as we find enough blocks for n_bytes |
| 713 | break; |
| 714 | } |
| 715 | continue; |
| 716 | } |
| 717 | break; |
| 718 | } |
| 719 | |
| 720 | // return original ptr if it already has the requested number of blocks |
| 721 | if (new_blocks == n_blocks) { |
| 722 | GC_EXIT(); |
| 723 | return ptr_in; |
| 724 | } |
| 725 | |
| 726 | // check if we can shrink the allocated area |
| 727 | if (new_blocks < n_blocks) { |
| 728 | // free unneeded tail blocks |
| 729 | for (size_t bl = block + new_blocks, count = n_blocks - new_blocks; count > 0; bl++, count--) { |
| 730 | ATB_ANY_TO_FREE(bl); |
| 731 | } |
| 732 | |
| 733 | // set the last_free pointer to end of this block if it's earlier in the heap |
| 734 | if ((block + new_blocks) / BLOCKS_PER_ATB < MP_STATE_MEM(gc_last_free_atb_index)) { |
| 735 | MP_STATE_MEM(gc_last_free_atb_index) = (block + new_blocks) / BLOCKS_PER_ATB; |
| 736 | } |
| 737 | |
| 738 | GC_EXIT(); |
| 739 | |
| 740 | #if EXTENSIVE_HEAP_PROFILING |
| 741 | gc_dump_alloc_table(); |
| 742 | #endif |
| 743 | |
| 744 | return ptr_in; |
| 745 | } |
| 746 | |
| 747 | // check if we can expand in place |
| 748 | if (new_blocks <= n_blocks + n_free) { |
| 749 | // mark few more blocks as used tail |
| 750 | for (size_t bl = block + n_blocks; bl < block + new_blocks; bl++) { |
| 751 | assert(ATB_GET_KIND(bl) == AT_FREE); |
| 752 | ATB_FREE_TO_TAIL(bl); |
| 753 | } |
| 754 | |
| 755 | GC_EXIT(); |
| 756 | |
| 757 | #if MICROPY_GC_CONSERVATIVE_CLEAR |
| 758 | // be conservative and zero out all the newly allocated blocks |
| 759 | memset((byte *)ptr_in + n_blocks * BYTES_PER_BLOCK, 0, (new_blocks - n_blocks) * BYTES_PER_BLOCK); |
| 760 | #else |
| 761 | // zero out the additional bytes of the newly allocated blocks (see comment above in gc_alloc) |
| 762 | memset((byte *)ptr_in + n_bytes, 0, new_blocks * BYTES_PER_BLOCK - n_bytes); |
| 763 | #endif |
| 764 | |
| 765 | #if EXTENSIVE_HEAP_PROFILING |
| 766 | gc_dump_alloc_table(); |
| 767 | #endif |
| 768 | |
| 769 | return ptr_in; |
| 770 | } |
| 771 | |
| 772 | #if MICROPY_ENABLE_FINALISER |
| 773 | bool ftb_state = FTB_GET(block); |
| 774 | #else |
| 775 | bool ftb_state = false; |
| 776 | #endif |
| 777 | |
| 778 | GC_EXIT(); |
| 779 | |
| 780 | if (!allow_move) { |
| 781 | // not allowed to move memory block so return failure |
| 782 | return NULL; |
| 783 | } |
| 784 | |
| 785 | // can't resize inplace; try to find a new contiguous chain |
| 786 | void *ptr_out = gc_alloc(n_bytes, ftb_state); |
| 787 | |
| 788 | // check that the alloc succeeded |
| 789 | if (ptr_out == NULL) { |
| 790 | return NULL; |
| 791 | } |
| 792 | |
| 793 | DEBUG_printf("gc_realloc(%p -> %p)\n" , ptr_in, ptr_out); |
| 794 | memcpy(ptr_out, ptr_in, n_blocks * BYTES_PER_BLOCK); |
| 795 | gc_free(ptr_in); |
| 796 | return ptr_out; |
| 797 | } |
| 798 | #endif // Alternative gc_realloc impl |
| 799 | |
| 800 | void gc_dump_info(void) { |
| 801 | gc_info_t info; |
| 802 | gc_info(&info); |
| 803 | mp_printf(&mp_plat_print, "GC: total: %u, used: %u, free: %u\n" , |
| 804 | (uint)info.total, (uint)info.used, (uint)info.free); |
| 805 | mp_printf(&mp_plat_print, " No. of 1-blocks: %u, 2-blocks: %u, max blk sz: %u, max free sz: %u\n" , |
| 806 | (uint)info.num_1block, (uint)info.num_2block, (uint)info.max_block, (uint)info.max_free); |
| 807 | } |
| 808 | |
| 809 | void gc_dump_alloc_table(void) { |
| 810 | GC_ENTER(); |
| 811 | static const size_t DUMP_BYTES_PER_LINE = 64; |
| 812 | #if !EXTENSIVE_HEAP_PROFILING |
| 813 | // When comparing heap output we don't want to print the starting |
| 814 | // pointer of the heap because it changes from run to run. |
| 815 | mp_printf(&mp_plat_print, "GC memory layout; from %p:" , MP_STATE_MEM(gc_pool_start)); |
| 816 | #endif |
| 817 | for (size_t bl = 0; bl < MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB; bl++) { |
| 818 | if (bl % DUMP_BYTES_PER_LINE == 0) { |
| 819 | // a new line of blocks |
| 820 | { |
| 821 | // check if this line contains only free blocks |
| 822 | size_t bl2 = bl; |
| 823 | while (bl2 < MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB && ATB_GET_KIND(bl2) == AT_FREE) { |
| 824 | bl2++; |
| 825 | } |
| 826 | if (bl2 - bl >= 2 * DUMP_BYTES_PER_LINE) { |
| 827 | // there are at least 2 lines containing only free blocks, so abbreviate their printing |
| 828 | mp_printf(&mp_plat_print, "\n (%u lines all free)" , (uint)(bl2 - bl) / DUMP_BYTES_PER_LINE); |
| 829 | bl = bl2 & (~(DUMP_BYTES_PER_LINE - 1)); |
| 830 | if (bl >= MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB) { |
| 831 | // got to end of heap |
| 832 | break; |
| 833 | } |
| 834 | } |
| 835 | } |
| 836 | // print header for new line of blocks |
| 837 | // (the cast to uint32_t is for 16-bit ports) |
| 838 | // mp_printf(&mp_plat_print, "\n%05x: ", (uint)(PTR_FROM_BLOCK(bl) & (uint32_t)0xfffff)); |
| 839 | mp_printf(&mp_plat_print, "\n%05x: " , (uint)((bl * BYTES_PER_BLOCK) & (uint32_t)0xfffff)); |
| 840 | } |
| 841 | int c = ' '; |
| 842 | switch (ATB_GET_KIND(bl)) { |
| 843 | case AT_FREE: |
| 844 | c = '.'; |
| 845 | break; |
| 846 | /* this prints out if the object is reachable from BSS or STACK (for unix only) |
| 847 | case AT_HEAD: { |
| 848 | c = 'h'; |
| 849 | void **ptrs = (void**)(void*)&mp_state_ctx; |
| 850 | mp_uint_t len = offsetof(mp_state_ctx_t, vm.stack_top) / sizeof(mp_uint_t); |
| 851 | for (mp_uint_t i = 0; i < len; i++) { |
| 852 | mp_uint_t ptr = (mp_uint_t)ptrs[i]; |
| 853 | if (VERIFY_PTR(ptr) && BLOCK_FROM_PTR(ptr) == bl) { |
| 854 | c = 'B'; |
| 855 | break; |
| 856 | } |
| 857 | } |
| 858 | if (c == 'h') { |
| 859 | ptrs = (void**)&c; |
| 860 | len = ((mp_uint_t)MP_STATE_THREAD(stack_top) - (mp_uint_t)&c) / sizeof(mp_uint_t); |
| 861 | for (mp_uint_t i = 0; i < len; i++) { |
| 862 | mp_uint_t ptr = (mp_uint_t)ptrs[i]; |
| 863 | if (VERIFY_PTR(ptr) && BLOCK_FROM_PTR(ptr) == bl) { |
| 864 | c = 'S'; |
| 865 | break; |
| 866 | } |
| 867 | } |
| 868 | } |
| 869 | break; |
| 870 | } |
| 871 | */ |
| 872 | /* this prints the uPy object type of the head block */ |
| 873 | case AT_HEAD: { |
| 874 | void **ptr = (void **)(MP_STATE_MEM(gc_pool_start) + bl * BYTES_PER_BLOCK); |
| 875 | if (*ptr == &mp_type_tuple) { |
| 876 | c = 'T'; |
| 877 | } else if (*ptr == &mp_type_list) { |
| 878 | c = 'L'; |
| 879 | } else if (*ptr == &mp_type_dict) { |
| 880 | c = 'D'; |
| 881 | } else if (*ptr == &mp_type_str || *ptr == &mp_type_bytes) { |
| 882 | c = 'S'; |
| 883 | } |
| 884 | #if MICROPY_PY_BUILTINS_BYTEARRAY |
| 885 | else if (*ptr == &mp_type_bytearray) { |
| 886 | c = 'A'; |
| 887 | } |
| 888 | #endif |
| 889 | #if MICROPY_PY_ARRAY |
| 890 | else if (*ptr == &mp_type_array) { |
| 891 | c = 'A'; |
| 892 | } |
| 893 | #endif |
| 894 | #if MICROPY_PY_BUILTINS_FLOAT |
| 895 | else if (*ptr == &mp_type_float) { |
| 896 | c = 'F'; |
| 897 | } |
| 898 | #endif |
| 899 | else if (*ptr == &mp_type_fun_bc) { |
| 900 | c = 'B'; |
| 901 | } else if (*ptr == &mp_type_module) { |
| 902 | c = 'M'; |
| 903 | } else { |
| 904 | c = 'h'; |
| 905 | #if 0 |
| 906 | // This code prints "Q" for qstr-pool data, and "q" for qstr-str |
| 907 | // data. It can be useful to see how qstrs are being allocated, |
| 908 | // but is disabled by default because it is very slow. |
| 909 | for (qstr_pool_t *pool = MP_STATE_VM(last_pool); c == 'h' && pool != NULL; pool = pool->prev) { |
| 910 | if ((qstr_pool_t *)ptr == pool) { |
| 911 | c = 'Q'; |
| 912 | break; |
| 913 | } |
| 914 | for (const byte **q = pool->qstrs, **q_top = pool->qstrs + pool->len; q < q_top; q++) { |
| 915 | if ((const byte *)ptr == *q) { |
| 916 | c = 'q'; |
| 917 | break; |
| 918 | } |
| 919 | } |
| 920 | } |
| 921 | #endif |
| 922 | } |
| 923 | break; |
| 924 | } |
| 925 | case AT_TAIL: |
| 926 | c = '='; |
| 927 | break; |
| 928 | case AT_MARK: |
| 929 | c = 'm'; |
| 930 | break; |
| 931 | } |
| 932 | mp_printf(&mp_plat_print, "%c" , c); |
| 933 | } |
| 934 | mp_print_str(&mp_plat_print, "\n" ); |
| 935 | GC_EXIT(); |
| 936 | } |
| 937 | |
| 938 | #if 0 |
| 939 | // For testing the GC functions |
| 940 | void gc_test(void) { |
| 941 | mp_uint_t len = 500; |
| 942 | mp_uint_t *heap = malloc(len); |
| 943 | gc_init(heap, heap + len / sizeof(mp_uint_t)); |
| 944 | void *ptrs[100]; |
| 945 | { |
| 946 | mp_uint_t **p = gc_alloc(16, false); |
| 947 | p[0] = gc_alloc(64, false); |
| 948 | p[1] = gc_alloc(1, false); |
| 949 | p[2] = gc_alloc(1, false); |
| 950 | p[3] = gc_alloc(1, false); |
| 951 | mp_uint_t ***p2 = gc_alloc(16, false); |
| 952 | p2[0] = p; |
| 953 | p2[1] = p; |
| 954 | ptrs[0] = p2; |
| 955 | } |
| 956 | for (int i = 0; i < 25; i += 2) { |
| 957 | mp_uint_t *p = gc_alloc(i, false); |
| 958 | printf("p=%p\n" , p); |
| 959 | if (i & 3) { |
| 960 | // ptrs[i] = p; |
| 961 | } |
| 962 | } |
| 963 | |
| 964 | printf("Before GC:\n" ); |
| 965 | gc_dump_alloc_table(); |
| 966 | printf("Starting GC...\n" ); |
| 967 | gc_collect_start(); |
| 968 | gc_collect_root(ptrs, sizeof(ptrs) / sizeof(void *)); |
| 969 | gc_collect_end(); |
| 970 | printf("After GC:\n" ); |
| 971 | gc_dump_alloc_table(); |
| 972 | } |
| 973 | #endif |
| 974 | |
| 975 | #endif // MICROPY_ENABLE_GC |
| 976 | |