1 | /* |
2 | * This file is part of the MicroPython project, http://micropython.org/ |
3 | * |
4 | * The MIT License (MIT) |
5 | * |
6 | * Copyright (c) 2013, 2014 Damien P. George |
7 | * Copyright (c) 2014 Paul Sokolovsky |
8 | * |
9 | * Permission is hereby granted, free of charge, to any person obtaining a copy |
10 | * of this software and associated documentation files (the "Software"), to deal |
11 | * in the Software without restriction, including without limitation the rights |
12 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
13 | * copies of the Software, and to permit persons to whom the Software is |
14 | * furnished to do so, subject to the following conditions: |
15 | * |
16 | * The above copyright notice and this permission notice shall be included in |
17 | * all copies or substantial portions of the Software. |
18 | * |
19 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
20 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
21 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
22 | * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
23 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
24 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
25 | * THE SOFTWARE. |
26 | */ |
27 | |
28 | #include <assert.h> |
29 | #include <stdio.h> |
30 | #include <string.h> |
31 | |
32 | #include "py/gc.h" |
33 | #include "py/runtime.h" |
34 | |
35 | #if MICROPY_ENABLE_GC |
36 | |
37 | #if MICROPY_DEBUG_VERBOSE // print debugging info |
38 | #define DEBUG_PRINT (1) |
39 | #define DEBUG_printf DEBUG_printf |
40 | #else // don't print debugging info |
41 | #define DEBUG_PRINT (0) |
42 | #define DEBUG_printf(...) (void)0 |
43 | #endif |
44 | |
45 | // make this 1 to dump the heap each time it changes |
46 | #define EXTENSIVE_HEAP_PROFILING (0) |
47 | |
48 | // make this 1 to zero out swept memory to more eagerly |
49 | // detect untraced object still in use |
50 | #define CLEAR_ON_SWEEP (0) |
51 | |
52 | #define WORDS_PER_BLOCK ((MICROPY_BYTES_PER_GC_BLOCK) / MP_BYTES_PER_OBJ_WORD) |
53 | #define BYTES_PER_BLOCK (MICROPY_BYTES_PER_GC_BLOCK) |
54 | |
55 | // ATB = allocation table byte |
56 | // 0b00 = FREE -- free block |
57 | // 0b01 = HEAD -- head of a chain of blocks |
58 | // 0b10 = TAIL -- in the tail of a chain of blocks |
59 | // 0b11 = MARK -- marked head block |
60 | |
61 | #define AT_FREE (0) |
62 | #define AT_HEAD (1) |
63 | #define AT_TAIL (2) |
64 | #define AT_MARK (3) |
65 | |
66 | #define BLOCKS_PER_ATB (4) |
67 | #define ATB_MASK_0 (0x03) |
68 | #define ATB_MASK_1 (0x0c) |
69 | #define ATB_MASK_2 (0x30) |
70 | #define ATB_MASK_3 (0xc0) |
71 | |
72 | #define ATB_0_IS_FREE(a) (((a) & ATB_MASK_0) == 0) |
73 | #define ATB_1_IS_FREE(a) (((a) & ATB_MASK_1) == 0) |
74 | #define ATB_2_IS_FREE(a) (((a) & ATB_MASK_2) == 0) |
75 | #define ATB_3_IS_FREE(a) (((a) & ATB_MASK_3) == 0) |
76 | |
77 | #define BLOCK_SHIFT(block) (2 * ((block) & (BLOCKS_PER_ATB - 1))) |
78 | #define ATB_GET_KIND(block) ((MP_STATE_MEM(gc_alloc_table_start)[(block) / BLOCKS_PER_ATB] >> BLOCK_SHIFT(block)) & 3) |
79 | #define ATB_ANY_TO_FREE(block) do { MP_STATE_MEM(gc_alloc_table_start)[(block) / BLOCKS_PER_ATB] &= (~(AT_MARK << BLOCK_SHIFT(block))); } while (0) |
80 | #define ATB_FREE_TO_HEAD(block) do { MP_STATE_MEM(gc_alloc_table_start)[(block) / BLOCKS_PER_ATB] |= (AT_HEAD << BLOCK_SHIFT(block)); } while (0) |
81 | #define ATB_FREE_TO_TAIL(block) do { MP_STATE_MEM(gc_alloc_table_start)[(block) / BLOCKS_PER_ATB] |= (AT_TAIL << BLOCK_SHIFT(block)); } while (0) |
82 | #define ATB_HEAD_TO_MARK(block) do { MP_STATE_MEM(gc_alloc_table_start)[(block) / BLOCKS_PER_ATB] |= (AT_MARK << BLOCK_SHIFT(block)); } while (0) |
83 | #define ATB_MARK_TO_HEAD(block) do { MP_STATE_MEM(gc_alloc_table_start)[(block) / BLOCKS_PER_ATB] &= (~(AT_TAIL << BLOCK_SHIFT(block))); } while (0) |
84 | |
85 | #define BLOCK_FROM_PTR(ptr) (((byte *)(ptr) - MP_STATE_MEM(gc_pool_start)) / BYTES_PER_BLOCK) |
86 | #define PTR_FROM_BLOCK(block) (((block) * BYTES_PER_BLOCK + (uintptr_t)MP_STATE_MEM(gc_pool_start))) |
87 | #define ATB_FROM_BLOCK(bl) ((bl) / BLOCKS_PER_ATB) |
88 | |
89 | #if MICROPY_ENABLE_FINALISER |
90 | // FTB = finaliser table byte |
91 | // if set, then the corresponding block may have a finaliser |
92 | |
93 | #define BLOCKS_PER_FTB (8) |
94 | |
95 | #define FTB_GET(block) ((MP_STATE_MEM(gc_finaliser_table_start)[(block) / BLOCKS_PER_FTB] >> ((block) & 7)) & 1) |
96 | #define FTB_SET(block) do { MP_STATE_MEM(gc_finaliser_table_start)[(block) / BLOCKS_PER_FTB] |= (1 << ((block) & 7)); } while (0) |
97 | #define FTB_CLEAR(block) do { MP_STATE_MEM(gc_finaliser_table_start)[(block) / BLOCKS_PER_FTB] &= (~(1 << ((block) & 7))); } while (0) |
98 | #endif |
99 | |
100 | #if MICROPY_PY_THREAD && !MICROPY_PY_THREAD_GIL |
101 | #define GC_ENTER() mp_thread_mutex_lock(&MP_STATE_MEM(gc_mutex), 1) |
102 | #define GC_EXIT() mp_thread_mutex_unlock(&MP_STATE_MEM(gc_mutex)) |
103 | #else |
104 | #define GC_ENTER() |
105 | #define GC_EXIT() |
106 | #endif |
107 | |
108 | // TODO waste less memory; currently requires that all entries in alloc_table have a corresponding block in pool |
109 | void gc_init(void *start, void *end) { |
110 | // align end pointer on block boundary |
111 | end = (void *)((uintptr_t)end & (~(BYTES_PER_BLOCK - 1))); |
112 | DEBUG_printf("Initializing GC heap: %p..%p = " UINT_FMT " bytes\n" , start, end, (byte *)end - (byte *)start); |
113 | |
114 | // calculate parameters for GC (T=total, A=alloc table, F=finaliser table, P=pool; all in bytes): |
115 | // T = A + F + P |
116 | // F = A * BLOCKS_PER_ATB / BLOCKS_PER_FTB |
117 | // P = A * BLOCKS_PER_ATB * BYTES_PER_BLOCK |
118 | // => T = A * (1 + BLOCKS_PER_ATB / BLOCKS_PER_FTB + BLOCKS_PER_ATB * BYTES_PER_BLOCK) |
119 | size_t total_byte_len = (byte *)end - (byte *)start; |
120 | #if MICROPY_ENABLE_FINALISER |
121 | MP_STATE_MEM(gc_alloc_table_byte_len) = total_byte_len * MP_BITS_PER_BYTE / (MP_BITS_PER_BYTE + MP_BITS_PER_BYTE * BLOCKS_PER_ATB / BLOCKS_PER_FTB + MP_BITS_PER_BYTE * BLOCKS_PER_ATB * BYTES_PER_BLOCK); |
122 | #else |
123 | MP_STATE_MEM(gc_alloc_table_byte_len) = total_byte_len / (1 + MP_BITS_PER_BYTE / 2 * BYTES_PER_BLOCK); |
124 | #endif |
125 | |
126 | MP_STATE_MEM(gc_alloc_table_start) = (byte *)start; |
127 | |
128 | #if MICROPY_ENABLE_FINALISER |
129 | size_t gc_finaliser_table_byte_len = (MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB + BLOCKS_PER_FTB - 1) / BLOCKS_PER_FTB; |
130 | MP_STATE_MEM(gc_finaliser_table_start) = MP_STATE_MEM(gc_alloc_table_start) + MP_STATE_MEM(gc_alloc_table_byte_len); |
131 | #endif |
132 | |
133 | size_t gc_pool_block_len = MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB; |
134 | MP_STATE_MEM(gc_pool_start) = (byte *)end - gc_pool_block_len * BYTES_PER_BLOCK; |
135 | MP_STATE_MEM(gc_pool_end) = end; |
136 | |
137 | #if MICROPY_ENABLE_FINALISER |
138 | assert(MP_STATE_MEM(gc_pool_start) >= MP_STATE_MEM(gc_finaliser_table_start) + gc_finaliser_table_byte_len); |
139 | #endif |
140 | |
141 | // clear ATBs |
142 | memset(MP_STATE_MEM(gc_alloc_table_start), 0, MP_STATE_MEM(gc_alloc_table_byte_len)); |
143 | |
144 | #if MICROPY_ENABLE_FINALISER |
145 | // clear FTBs |
146 | memset(MP_STATE_MEM(gc_finaliser_table_start), 0, gc_finaliser_table_byte_len); |
147 | #endif |
148 | |
149 | // set last free ATB index to start of heap |
150 | MP_STATE_MEM(gc_last_free_atb_index) = 0; |
151 | |
152 | // unlock the GC |
153 | MP_STATE_MEM(gc_lock_depth) = 0; |
154 | |
155 | // allow auto collection |
156 | MP_STATE_MEM(gc_auto_collect_enabled) = 1; |
157 | |
158 | #if MICROPY_GC_ALLOC_THRESHOLD |
159 | // by default, maxuint for gc threshold, effectively turning gc-by-threshold off |
160 | MP_STATE_MEM(gc_alloc_threshold) = (size_t)-1; |
161 | MP_STATE_MEM(gc_alloc_amount) = 0; |
162 | #endif |
163 | |
164 | #if MICROPY_PY_THREAD && !MICROPY_PY_THREAD_GIL |
165 | mp_thread_mutex_init(&MP_STATE_MEM(gc_mutex)); |
166 | #endif |
167 | |
168 | DEBUG_printf("GC layout:\n" ); |
169 | DEBUG_printf(" alloc table at %p, length " UINT_FMT " bytes, " UINT_FMT " blocks\n" , MP_STATE_MEM(gc_alloc_table_start), MP_STATE_MEM(gc_alloc_table_byte_len), MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB); |
170 | #if MICROPY_ENABLE_FINALISER |
171 | DEBUG_printf(" finaliser table at %p, length " UINT_FMT " bytes, " UINT_FMT " blocks\n" , MP_STATE_MEM(gc_finaliser_table_start), gc_finaliser_table_byte_len, gc_finaliser_table_byte_len * BLOCKS_PER_FTB); |
172 | #endif |
173 | DEBUG_printf(" pool at %p, length " UINT_FMT " bytes, " UINT_FMT " blocks\n" , MP_STATE_MEM(gc_pool_start), gc_pool_block_len * BYTES_PER_BLOCK, gc_pool_block_len); |
174 | } |
175 | |
176 | void gc_lock(void) { |
177 | GC_ENTER(); |
178 | MP_STATE_MEM(gc_lock_depth)++; |
179 | GC_EXIT(); |
180 | } |
181 | |
182 | void gc_unlock(void) { |
183 | GC_ENTER(); |
184 | MP_STATE_MEM(gc_lock_depth)--; |
185 | GC_EXIT(); |
186 | } |
187 | |
188 | bool gc_is_locked(void) { |
189 | return MP_STATE_MEM(gc_lock_depth) != 0; |
190 | } |
191 | |
192 | // ptr should be of type void* |
193 | #define VERIFY_PTR(ptr) ( \ |
194 | ((uintptr_t)(ptr) & (BYTES_PER_BLOCK - 1)) == 0 /* must be aligned on a block */ \ |
195 | && ptr >= (void *)MP_STATE_MEM(gc_pool_start) /* must be above start of pool */ \ |
196 | && ptr < (void *)MP_STATE_MEM(gc_pool_end) /* must be below end of pool */ \ |
197 | ) |
198 | |
199 | #ifndef TRACE_MARK |
200 | #if DEBUG_PRINT |
201 | #define TRACE_MARK(block, ptr) DEBUG_printf("gc_mark(%p)\n", ptr) |
202 | #else |
203 | #define TRACE_MARK(block, ptr) |
204 | #endif |
205 | #endif |
206 | |
207 | // Take the given block as the topmost block on the stack. Check all it's |
208 | // children: mark the unmarked child blocks and put those newly marked |
209 | // blocks on the stack. When all children have been checked, pop off the |
210 | // topmost block on the stack and repeat with that one. |
211 | STATIC void gc_mark_subtree(size_t block) { |
212 | // Start with the block passed in the argument. |
213 | size_t sp = 0; |
214 | for (;;) { |
215 | // work out number of consecutive blocks in the chain starting with this one |
216 | size_t n_blocks = 0; |
217 | do { |
218 | n_blocks += 1; |
219 | } while (ATB_GET_KIND(block + n_blocks) == AT_TAIL); |
220 | |
221 | // check this block's children |
222 | void **ptrs = (void **)PTR_FROM_BLOCK(block); |
223 | for (size_t i = n_blocks * BYTES_PER_BLOCK / sizeof(void *); i > 0; i--, ptrs++) { |
224 | void *ptr = *ptrs; |
225 | if (VERIFY_PTR(ptr)) { |
226 | // Mark and push this pointer |
227 | size_t childblock = BLOCK_FROM_PTR(ptr); |
228 | if (ATB_GET_KIND(childblock) == AT_HEAD) { |
229 | // an unmarked head, mark it, and push it on gc stack |
230 | TRACE_MARK(childblock, ptr); |
231 | ATB_HEAD_TO_MARK(childblock); |
232 | if (sp < MICROPY_ALLOC_GC_STACK_SIZE) { |
233 | MP_STATE_MEM(gc_stack)[sp++] = childblock; |
234 | } else { |
235 | MP_STATE_MEM(gc_stack_overflow) = 1; |
236 | } |
237 | } |
238 | } |
239 | } |
240 | |
241 | // Are there any blocks on the stack? |
242 | if (sp == 0) { |
243 | break; // No, stack is empty, we're done. |
244 | } |
245 | |
246 | // pop the next block off the stack |
247 | block = MP_STATE_MEM(gc_stack)[--sp]; |
248 | } |
249 | } |
250 | |
251 | STATIC void gc_deal_with_stack_overflow(void) { |
252 | while (MP_STATE_MEM(gc_stack_overflow)) { |
253 | MP_STATE_MEM(gc_stack_overflow) = 0; |
254 | |
255 | // scan entire memory looking for blocks which have been marked but not their children |
256 | for (size_t block = 0; block < MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB; block++) { |
257 | // trace (again) if mark bit set |
258 | if (ATB_GET_KIND(block) == AT_MARK) { |
259 | gc_mark_subtree(block); |
260 | } |
261 | } |
262 | } |
263 | } |
264 | |
265 | STATIC void gc_sweep(void) { |
266 | #if MICROPY_PY_GC_COLLECT_RETVAL |
267 | MP_STATE_MEM(gc_collected) = 0; |
268 | #endif |
269 | // free unmarked heads and their tails |
270 | int free_tail = 0; |
271 | for (size_t block = 0; block < MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB; block++) { |
272 | switch (ATB_GET_KIND(block)) { |
273 | case AT_HEAD: |
274 | #if MICROPY_ENABLE_FINALISER |
275 | if (FTB_GET(block)) { |
276 | mp_obj_base_t *obj = (mp_obj_base_t *)PTR_FROM_BLOCK(block); |
277 | if (obj->type != NULL) { |
278 | // if the object has a type then see if it has a __del__ method |
279 | mp_obj_t dest[2]; |
280 | mp_load_method_maybe(MP_OBJ_FROM_PTR(obj), MP_QSTR___del__, dest); |
281 | if (dest[0] != MP_OBJ_NULL) { |
282 | // load_method returned a method, execute it in a protected environment |
283 | #if MICROPY_ENABLE_SCHEDULER |
284 | mp_sched_lock(); |
285 | #endif |
286 | mp_call_function_1_protected(dest[0], dest[1]); |
287 | #if MICROPY_ENABLE_SCHEDULER |
288 | mp_sched_unlock(); |
289 | #endif |
290 | } |
291 | } |
292 | // clear finaliser flag |
293 | FTB_CLEAR(block); |
294 | } |
295 | #endif |
296 | free_tail = 1; |
297 | DEBUG_printf("gc_sweep(%p)\n" , (void *)PTR_FROM_BLOCK(block)); |
298 | #if MICROPY_PY_GC_COLLECT_RETVAL |
299 | MP_STATE_MEM(gc_collected)++; |
300 | #endif |
301 | // fall through to free the head |
302 | MP_FALLTHROUGH |
303 | |
304 | case AT_TAIL: |
305 | if (free_tail) { |
306 | ATB_ANY_TO_FREE(block); |
307 | #if CLEAR_ON_SWEEP |
308 | memset((void *)PTR_FROM_BLOCK(block), 0, BYTES_PER_BLOCK); |
309 | #endif |
310 | } |
311 | break; |
312 | |
313 | case AT_MARK: |
314 | ATB_MARK_TO_HEAD(block); |
315 | free_tail = 0; |
316 | break; |
317 | } |
318 | } |
319 | } |
320 | |
321 | void gc_collect_start(void) { |
322 | GC_ENTER(); |
323 | MP_STATE_MEM(gc_lock_depth)++; |
324 | #if MICROPY_GC_ALLOC_THRESHOLD |
325 | MP_STATE_MEM(gc_alloc_amount) = 0; |
326 | #endif |
327 | MP_STATE_MEM(gc_stack_overflow) = 0; |
328 | |
329 | // Trace root pointers. This relies on the root pointers being organised |
330 | // correctly in the mp_state_ctx structure. We scan nlr_top, dict_locals, |
331 | // dict_globals, then the root pointer section of mp_state_vm. |
332 | void **ptrs = (void **)(void *)&mp_state_ctx; |
333 | size_t root_start = offsetof(mp_state_ctx_t, thread.dict_locals); |
334 | size_t root_end = offsetof(mp_state_ctx_t, vm.qstr_last_chunk); |
335 | gc_collect_root(ptrs + root_start / sizeof(void *), (root_end - root_start) / sizeof(void *)); |
336 | |
337 | #if MICROPY_ENABLE_PYSTACK |
338 | // Trace root pointers from the Python stack. |
339 | ptrs = (void **)(void *)MP_STATE_THREAD(pystack_start); |
340 | gc_collect_root(ptrs, (MP_STATE_THREAD(pystack_cur) - MP_STATE_THREAD(pystack_start)) / sizeof(void *)); |
341 | #endif |
342 | } |
343 | |
344 | void gc_collect_root(void **ptrs, size_t len) { |
345 | for (size_t i = 0; i < len; i++) { |
346 | void *ptr = ptrs[i]; |
347 | if (VERIFY_PTR(ptr)) { |
348 | size_t block = BLOCK_FROM_PTR(ptr); |
349 | if (ATB_GET_KIND(block) == AT_HEAD) { |
350 | // An unmarked head: mark it, and mark all its children |
351 | TRACE_MARK(block, ptr); |
352 | ATB_HEAD_TO_MARK(block); |
353 | gc_mark_subtree(block); |
354 | } |
355 | } |
356 | } |
357 | } |
358 | |
359 | void gc_collect_end(void) { |
360 | gc_deal_with_stack_overflow(); |
361 | gc_sweep(); |
362 | MP_STATE_MEM(gc_last_free_atb_index) = 0; |
363 | MP_STATE_MEM(gc_lock_depth)--; |
364 | GC_EXIT(); |
365 | } |
366 | |
367 | void gc_sweep_all(void) { |
368 | GC_ENTER(); |
369 | MP_STATE_MEM(gc_lock_depth)++; |
370 | MP_STATE_MEM(gc_stack_overflow) = 0; |
371 | gc_collect_end(); |
372 | } |
373 | |
374 | void gc_info(gc_info_t *info) { |
375 | GC_ENTER(); |
376 | info->total = MP_STATE_MEM(gc_pool_end) - MP_STATE_MEM(gc_pool_start); |
377 | info->used = 0; |
378 | info->free = 0; |
379 | info->max_free = 0; |
380 | info->num_1block = 0; |
381 | info->num_2block = 0; |
382 | info->max_block = 0; |
383 | bool finish = false; |
384 | for (size_t block = 0, len = 0, len_free = 0; !finish;) { |
385 | size_t kind = ATB_GET_KIND(block); |
386 | switch (kind) { |
387 | case AT_FREE: |
388 | info->free += 1; |
389 | len_free += 1; |
390 | len = 0; |
391 | break; |
392 | |
393 | case AT_HEAD: |
394 | info->used += 1; |
395 | len = 1; |
396 | break; |
397 | |
398 | case AT_TAIL: |
399 | info->used += 1; |
400 | len += 1; |
401 | break; |
402 | |
403 | case AT_MARK: |
404 | // shouldn't happen |
405 | break; |
406 | } |
407 | |
408 | block++; |
409 | finish = (block == MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB); |
410 | // Get next block type if possible |
411 | if (!finish) { |
412 | kind = ATB_GET_KIND(block); |
413 | } |
414 | |
415 | if (finish || kind == AT_FREE || kind == AT_HEAD) { |
416 | if (len == 1) { |
417 | info->num_1block += 1; |
418 | } else if (len == 2) { |
419 | info->num_2block += 1; |
420 | } |
421 | if (len > info->max_block) { |
422 | info->max_block = len; |
423 | } |
424 | if (finish || kind == AT_HEAD) { |
425 | if (len_free > info->max_free) { |
426 | info->max_free = len_free; |
427 | } |
428 | len_free = 0; |
429 | } |
430 | } |
431 | } |
432 | |
433 | info->used *= BYTES_PER_BLOCK; |
434 | info->free *= BYTES_PER_BLOCK; |
435 | GC_EXIT(); |
436 | } |
437 | |
438 | void *gc_alloc(size_t n_bytes, unsigned int alloc_flags) { |
439 | bool has_finaliser = alloc_flags & GC_ALLOC_FLAG_HAS_FINALISER; |
440 | size_t n_blocks = ((n_bytes + BYTES_PER_BLOCK - 1) & (~(BYTES_PER_BLOCK - 1))) / BYTES_PER_BLOCK; |
441 | DEBUG_printf("gc_alloc(" UINT_FMT " bytes -> " UINT_FMT " blocks)\n" , n_bytes, n_blocks); |
442 | |
443 | // check for 0 allocation |
444 | if (n_blocks == 0) { |
445 | return NULL; |
446 | } |
447 | |
448 | GC_ENTER(); |
449 | |
450 | // check if GC is locked |
451 | if (MP_STATE_MEM(gc_lock_depth) > 0) { |
452 | GC_EXIT(); |
453 | return NULL; |
454 | } |
455 | |
456 | size_t i; |
457 | size_t end_block; |
458 | size_t start_block; |
459 | size_t n_free; |
460 | int collected = !MP_STATE_MEM(gc_auto_collect_enabled); |
461 | |
462 | #if MICROPY_GC_ALLOC_THRESHOLD |
463 | if (!collected && MP_STATE_MEM(gc_alloc_amount) >= MP_STATE_MEM(gc_alloc_threshold)) { |
464 | GC_EXIT(); |
465 | gc_collect(); |
466 | collected = 1; |
467 | GC_ENTER(); |
468 | } |
469 | #endif |
470 | |
471 | for (;;) { |
472 | |
473 | // look for a run of n_blocks available blocks |
474 | n_free = 0; |
475 | for (i = MP_STATE_MEM(gc_last_free_atb_index); i < MP_STATE_MEM(gc_alloc_table_byte_len); i++) { |
476 | byte a = MP_STATE_MEM(gc_alloc_table_start)[i]; |
477 | // *FORMAT-OFF* |
478 | if (ATB_0_IS_FREE(a)) { if (++n_free >= n_blocks) { i = i * BLOCKS_PER_ATB + 0; goto found; } } else { n_free = 0; } |
479 | if (ATB_1_IS_FREE(a)) { if (++n_free >= n_blocks) { i = i * BLOCKS_PER_ATB + 1; goto found; } } else { n_free = 0; } |
480 | if (ATB_2_IS_FREE(a)) { if (++n_free >= n_blocks) { i = i * BLOCKS_PER_ATB + 2; goto found; } } else { n_free = 0; } |
481 | if (ATB_3_IS_FREE(a)) { if (++n_free >= n_blocks) { i = i * BLOCKS_PER_ATB + 3; goto found; } } else { n_free = 0; } |
482 | // *FORMAT-ON* |
483 | } |
484 | |
485 | GC_EXIT(); |
486 | // nothing found! |
487 | if (collected) { |
488 | return NULL; |
489 | } |
490 | DEBUG_printf("gc_alloc(" UINT_FMT "): no free mem, triggering GC\n" , n_bytes); |
491 | gc_collect(); |
492 | collected = 1; |
493 | GC_ENTER(); |
494 | } |
495 | |
496 | // found, ending at block i inclusive |
497 | found: |
498 | // get starting and end blocks, both inclusive |
499 | end_block = i; |
500 | start_block = i - n_free + 1; |
501 | |
502 | // Set last free ATB index to block after last block we found, for start of |
503 | // next scan. To reduce fragmentation, we only do this if we were looking |
504 | // for a single free block, which guarantees that there are no free blocks |
505 | // before this one. Also, whenever we free or shink a block we must check |
506 | // if this index needs adjusting (see gc_realloc and gc_free). |
507 | if (n_free == 1) { |
508 | MP_STATE_MEM(gc_last_free_atb_index) = (i + 1) / BLOCKS_PER_ATB; |
509 | } |
510 | |
511 | // mark first block as used head |
512 | ATB_FREE_TO_HEAD(start_block); |
513 | |
514 | // mark rest of blocks as used tail |
515 | // TODO for a run of many blocks can make this more efficient |
516 | for (size_t bl = start_block + 1; bl <= end_block; bl++) { |
517 | ATB_FREE_TO_TAIL(bl); |
518 | } |
519 | |
520 | // get pointer to first block |
521 | // we must create this pointer before unlocking the GC so a collection can find it |
522 | void *ret_ptr = (void *)(MP_STATE_MEM(gc_pool_start) + start_block * BYTES_PER_BLOCK); |
523 | DEBUG_printf("gc_alloc(%p)\n" , ret_ptr); |
524 | |
525 | #if MICROPY_GC_ALLOC_THRESHOLD |
526 | MP_STATE_MEM(gc_alloc_amount) += n_blocks; |
527 | #endif |
528 | |
529 | GC_EXIT(); |
530 | |
531 | #if MICROPY_GC_CONSERVATIVE_CLEAR |
532 | // be conservative and zero out all the newly allocated blocks |
533 | memset((byte *)ret_ptr, 0, (end_block - start_block + 1) * BYTES_PER_BLOCK); |
534 | #else |
535 | // zero out the additional bytes of the newly allocated blocks |
536 | // This is needed because the blocks may have previously held pointers |
537 | // to the heap and will not be set to something else if the caller |
538 | // doesn't actually use the entire block. As such they will continue |
539 | // to point to the heap and may prevent other blocks from being reclaimed. |
540 | memset((byte *)ret_ptr + n_bytes, 0, (end_block - start_block + 1) * BYTES_PER_BLOCK - n_bytes); |
541 | #endif |
542 | |
543 | #if MICROPY_ENABLE_FINALISER |
544 | if (has_finaliser) { |
545 | // clear type pointer in case it is never set |
546 | ((mp_obj_base_t *)ret_ptr)->type = NULL; |
547 | // set mp_obj flag only if it has a finaliser |
548 | GC_ENTER(); |
549 | FTB_SET(start_block); |
550 | GC_EXIT(); |
551 | } |
552 | #else |
553 | (void)has_finaliser; |
554 | #endif |
555 | |
556 | #if EXTENSIVE_HEAP_PROFILING |
557 | gc_dump_alloc_table(); |
558 | #endif |
559 | |
560 | return ret_ptr; |
561 | } |
562 | |
563 | /* |
564 | void *gc_alloc(mp_uint_t n_bytes) { |
565 | return _gc_alloc(n_bytes, false); |
566 | } |
567 | |
568 | void *gc_alloc_with_finaliser(mp_uint_t n_bytes) { |
569 | return _gc_alloc(n_bytes, true); |
570 | } |
571 | */ |
572 | |
573 | // force the freeing of a piece of memory |
574 | // TODO: freeing here does not call finaliser |
575 | void gc_free(void *ptr) { |
576 | GC_ENTER(); |
577 | if (MP_STATE_MEM(gc_lock_depth) > 0) { |
578 | // TODO how to deal with this error? |
579 | GC_EXIT(); |
580 | return; |
581 | } |
582 | |
583 | DEBUG_printf("gc_free(%p)\n" , ptr); |
584 | |
585 | if (ptr == NULL) { |
586 | GC_EXIT(); |
587 | } else { |
588 | // get the GC block number corresponding to this pointer |
589 | assert(VERIFY_PTR(ptr)); |
590 | size_t block = BLOCK_FROM_PTR(ptr); |
591 | assert(ATB_GET_KIND(block) == AT_HEAD); |
592 | |
593 | #if MICROPY_ENABLE_FINALISER |
594 | FTB_CLEAR(block); |
595 | #endif |
596 | |
597 | // set the last_free pointer to this block if it's earlier in the heap |
598 | if (block / BLOCKS_PER_ATB < MP_STATE_MEM(gc_last_free_atb_index)) { |
599 | MP_STATE_MEM(gc_last_free_atb_index) = block / BLOCKS_PER_ATB; |
600 | } |
601 | |
602 | // free head and all of its tail blocks |
603 | do { |
604 | ATB_ANY_TO_FREE(block); |
605 | block += 1; |
606 | } while (ATB_GET_KIND(block) == AT_TAIL); |
607 | |
608 | GC_EXIT(); |
609 | |
610 | #if EXTENSIVE_HEAP_PROFILING |
611 | gc_dump_alloc_table(); |
612 | #endif |
613 | } |
614 | } |
615 | |
616 | size_t gc_nbytes(const void *ptr) { |
617 | GC_ENTER(); |
618 | if (VERIFY_PTR(ptr)) { |
619 | size_t block = BLOCK_FROM_PTR(ptr); |
620 | if (ATB_GET_KIND(block) == AT_HEAD) { |
621 | // work out number of consecutive blocks in the chain starting with this on |
622 | size_t n_blocks = 0; |
623 | do { |
624 | n_blocks += 1; |
625 | } while (ATB_GET_KIND(block + n_blocks) == AT_TAIL); |
626 | GC_EXIT(); |
627 | return n_blocks * BYTES_PER_BLOCK; |
628 | } |
629 | } |
630 | |
631 | // invalid pointer |
632 | GC_EXIT(); |
633 | return 0; |
634 | } |
635 | |
636 | #if 0 |
637 | // old, simple realloc that didn't expand memory in place |
638 | void *gc_realloc(void *ptr, mp_uint_t n_bytes) { |
639 | mp_uint_t n_existing = gc_nbytes(ptr); |
640 | if (n_bytes <= n_existing) { |
641 | return ptr; |
642 | } else { |
643 | bool has_finaliser; |
644 | if (ptr == NULL) { |
645 | has_finaliser = false; |
646 | } else { |
647 | #if MICROPY_ENABLE_FINALISER |
648 | has_finaliser = FTB_GET(BLOCK_FROM_PTR((mp_uint_t)ptr)); |
649 | #else |
650 | has_finaliser = false; |
651 | #endif |
652 | } |
653 | void *ptr2 = gc_alloc(n_bytes, has_finaliser); |
654 | if (ptr2 == NULL) { |
655 | return ptr2; |
656 | } |
657 | memcpy(ptr2, ptr, n_existing); |
658 | gc_free(ptr); |
659 | return ptr2; |
660 | } |
661 | } |
662 | |
663 | #else // Alternative gc_realloc impl |
664 | |
665 | void *gc_realloc(void *ptr_in, size_t n_bytes, bool allow_move) { |
666 | // check for pure allocation |
667 | if (ptr_in == NULL) { |
668 | return gc_alloc(n_bytes, false); |
669 | } |
670 | |
671 | // check for pure free |
672 | if (n_bytes == 0) { |
673 | gc_free(ptr_in); |
674 | return NULL; |
675 | } |
676 | |
677 | void *ptr = ptr_in; |
678 | |
679 | GC_ENTER(); |
680 | |
681 | if (MP_STATE_MEM(gc_lock_depth) > 0) { |
682 | GC_EXIT(); |
683 | return NULL; |
684 | } |
685 | |
686 | // get the GC block number corresponding to this pointer |
687 | assert(VERIFY_PTR(ptr)); |
688 | size_t block = BLOCK_FROM_PTR(ptr); |
689 | assert(ATB_GET_KIND(block) == AT_HEAD); |
690 | |
691 | // compute number of new blocks that are requested |
692 | size_t new_blocks = (n_bytes + BYTES_PER_BLOCK - 1) / BYTES_PER_BLOCK; |
693 | |
694 | // Get the total number of consecutive blocks that are already allocated to |
695 | // this chunk of memory, and then count the number of free blocks following |
696 | // it. Stop if we reach the end of the heap, or if we find enough extra |
697 | // free blocks to satisfy the realloc. Note that we need to compute the |
698 | // total size of the existing memory chunk so we can correctly and |
699 | // efficiently shrink it (see below for shrinking code). |
700 | size_t n_free = 0; |
701 | size_t n_blocks = 1; // counting HEAD block |
702 | size_t max_block = MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB; |
703 | for (size_t bl = block + n_blocks; bl < max_block; bl++) { |
704 | byte block_type = ATB_GET_KIND(bl); |
705 | if (block_type == AT_TAIL) { |
706 | n_blocks++; |
707 | continue; |
708 | } |
709 | if (block_type == AT_FREE) { |
710 | n_free++; |
711 | if (n_blocks + n_free >= new_blocks) { |
712 | // stop as soon as we find enough blocks for n_bytes |
713 | break; |
714 | } |
715 | continue; |
716 | } |
717 | break; |
718 | } |
719 | |
720 | // return original ptr if it already has the requested number of blocks |
721 | if (new_blocks == n_blocks) { |
722 | GC_EXIT(); |
723 | return ptr_in; |
724 | } |
725 | |
726 | // check if we can shrink the allocated area |
727 | if (new_blocks < n_blocks) { |
728 | // free unneeded tail blocks |
729 | for (size_t bl = block + new_blocks, count = n_blocks - new_blocks; count > 0; bl++, count--) { |
730 | ATB_ANY_TO_FREE(bl); |
731 | } |
732 | |
733 | // set the last_free pointer to end of this block if it's earlier in the heap |
734 | if ((block + new_blocks) / BLOCKS_PER_ATB < MP_STATE_MEM(gc_last_free_atb_index)) { |
735 | MP_STATE_MEM(gc_last_free_atb_index) = (block + new_blocks) / BLOCKS_PER_ATB; |
736 | } |
737 | |
738 | GC_EXIT(); |
739 | |
740 | #if EXTENSIVE_HEAP_PROFILING |
741 | gc_dump_alloc_table(); |
742 | #endif |
743 | |
744 | return ptr_in; |
745 | } |
746 | |
747 | // check if we can expand in place |
748 | if (new_blocks <= n_blocks + n_free) { |
749 | // mark few more blocks as used tail |
750 | for (size_t bl = block + n_blocks; bl < block + new_blocks; bl++) { |
751 | assert(ATB_GET_KIND(bl) == AT_FREE); |
752 | ATB_FREE_TO_TAIL(bl); |
753 | } |
754 | |
755 | GC_EXIT(); |
756 | |
757 | #if MICROPY_GC_CONSERVATIVE_CLEAR |
758 | // be conservative and zero out all the newly allocated blocks |
759 | memset((byte *)ptr_in + n_blocks * BYTES_PER_BLOCK, 0, (new_blocks - n_blocks) * BYTES_PER_BLOCK); |
760 | #else |
761 | // zero out the additional bytes of the newly allocated blocks (see comment above in gc_alloc) |
762 | memset((byte *)ptr_in + n_bytes, 0, new_blocks * BYTES_PER_BLOCK - n_bytes); |
763 | #endif |
764 | |
765 | #if EXTENSIVE_HEAP_PROFILING |
766 | gc_dump_alloc_table(); |
767 | #endif |
768 | |
769 | return ptr_in; |
770 | } |
771 | |
772 | #if MICROPY_ENABLE_FINALISER |
773 | bool ftb_state = FTB_GET(block); |
774 | #else |
775 | bool ftb_state = false; |
776 | #endif |
777 | |
778 | GC_EXIT(); |
779 | |
780 | if (!allow_move) { |
781 | // not allowed to move memory block so return failure |
782 | return NULL; |
783 | } |
784 | |
785 | // can't resize inplace; try to find a new contiguous chain |
786 | void *ptr_out = gc_alloc(n_bytes, ftb_state); |
787 | |
788 | // check that the alloc succeeded |
789 | if (ptr_out == NULL) { |
790 | return NULL; |
791 | } |
792 | |
793 | DEBUG_printf("gc_realloc(%p -> %p)\n" , ptr_in, ptr_out); |
794 | memcpy(ptr_out, ptr_in, n_blocks * BYTES_PER_BLOCK); |
795 | gc_free(ptr_in); |
796 | return ptr_out; |
797 | } |
798 | #endif // Alternative gc_realloc impl |
799 | |
800 | void gc_dump_info(void) { |
801 | gc_info_t info; |
802 | gc_info(&info); |
803 | mp_printf(&mp_plat_print, "GC: total: %u, used: %u, free: %u\n" , |
804 | (uint)info.total, (uint)info.used, (uint)info.free); |
805 | mp_printf(&mp_plat_print, " No. of 1-blocks: %u, 2-blocks: %u, max blk sz: %u, max free sz: %u\n" , |
806 | (uint)info.num_1block, (uint)info.num_2block, (uint)info.max_block, (uint)info.max_free); |
807 | } |
808 | |
809 | void gc_dump_alloc_table(void) { |
810 | GC_ENTER(); |
811 | static const size_t DUMP_BYTES_PER_LINE = 64; |
812 | #if !EXTENSIVE_HEAP_PROFILING |
813 | // When comparing heap output we don't want to print the starting |
814 | // pointer of the heap because it changes from run to run. |
815 | mp_printf(&mp_plat_print, "GC memory layout; from %p:" , MP_STATE_MEM(gc_pool_start)); |
816 | #endif |
817 | for (size_t bl = 0; bl < MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB; bl++) { |
818 | if (bl % DUMP_BYTES_PER_LINE == 0) { |
819 | // a new line of blocks |
820 | { |
821 | // check if this line contains only free blocks |
822 | size_t bl2 = bl; |
823 | while (bl2 < MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB && ATB_GET_KIND(bl2) == AT_FREE) { |
824 | bl2++; |
825 | } |
826 | if (bl2 - bl >= 2 * DUMP_BYTES_PER_LINE) { |
827 | // there are at least 2 lines containing only free blocks, so abbreviate their printing |
828 | mp_printf(&mp_plat_print, "\n (%u lines all free)" , (uint)(bl2 - bl) / DUMP_BYTES_PER_LINE); |
829 | bl = bl2 & (~(DUMP_BYTES_PER_LINE - 1)); |
830 | if (bl >= MP_STATE_MEM(gc_alloc_table_byte_len) * BLOCKS_PER_ATB) { |
831 | // got to end of heap |
832 | break; |
833 | } |
834 | } |
835 | } |
836 | // print header for new line of blocks |
837 | // (the cast to uint32_t is for 16-bit ports) |
838 | // mp_printf(&mp_plat_print, "\n%05x: ", (uint)(PTR_FROM_BLOCK(bl) & (uint32_t)0xfffff)); |
839 | mp_printf(&mp_plat_print, "\n%05x: " , (uint)((bl * BYTES_PER_BLOCK) & (uint32_t)0xfffff)); |
840 | } |
841 | int c = ' '; |
842 | switch (ATB_GET_KIND(bl)) { |
843 | case AT_FREE: |
844 | c = '.'; |
845 | break; |
846 | /* this prints out if the object is reachable from BSS or STACK (for unix only) |
847 | case AT_HEAD: { |
848 | c = 'h'; |
849 | void **ptrs = (void**)(void*)&mp_state_ctx; |
850 | mp_uint_t len = offsetof(mp_state_ctx_t, vm.stack_top) / sizeof(mp_uint_t); |
851 | for (mp_uint_t i = 0; i < len; i++) { |
852 | mp_uint_t ptr = (mp_uint_t)ptrs[i]; |
853 | if (VERIFY_PTR(ptr) && BLOCK_FROM_PTR(ptr) == bl) { |
854 | c = 'B'; |
855 | break; |
856 | } |
857 | } |
858 | if (c == 'h') { |
859 | ptrs = (void**)&c; |
860 | len = ((mp_uint_t)MP_STATE_THREAD(stack_top) - (mp_uint_t)&c) / sizeof(mp_uint_t); |
861 | for (mp_uint_t i = 0; i < len; i++) { |
862 | mp_uint_t ptr = (mp_uint_t)ptrs[i]; |
863 | if (VERIFY_PTR(ptr) && BLOCK_FROM_PTR(ptr) == bl) { |
864 | c = 'S'; |
865 | break; |
866 | } |
867 | } |
868 | } |
869 | break; |
870 | } |
871 | */ |
872 | /* this prints the uPy object type of the head block */ |
873 | case AT_HEAD: { |
874 | void **ptr = (void **)(MP_STATE_MEM(gc_pool_start) + bl * BYTES_PER_BLOCK); |
875 | if (*ptr == &mp_type_tuple) { |
876 | c = 'T'; |
877 | } else if (*ptr == &mp_type_list) { |
878 | c = 'L'; |
879 | } else if (*ptr == &mp_type_dict) { |
880 | c = 'D'; |
881 | } else if (*ptr == &mp_type_str || *ptr == &mp_type_bytes) { |
882 | c = 'S'; |
883 | } |
884 | #if MICROPY_PY_BUILTINS_BYTEARRAY |
885 | else if (*ptr == &mp_type_bytearray) { |
886 | c = 'A'; |
887 | } |
888 | #endif |
889 | #if MICROPY_PY_ARRAY |
890 | else if (*ptr == &mp_type_array) { |
891 | c = 'A'; |
892 | } |
893 | #endif |
894 | #if MICROPY_PY_BUILTINS_FLOAT |
895 | else if (*ptr == &mp_type_float) { |
896 | c = 'F'; |
897 | } |
898 | #endif |
899 | else if (*ptr == &mp_type_fun_bc) { |
900 | c = 'B'; |
901 | } else if (*ptr == &mp_type_module) { |
902 | c = 'M'; |
903 | } else { |
904 | c = 'h'; |
905 | #if 0 |
906 | // This code prints "Q" for qstr-pool data, and "q" for qstr-str |
907 | // data. It can be useful to see how qstrs are being allocated, |
908 | // but is disabled by default because it is very slow. |
909 | for (qstr_pool_t *pool = MP_STATE_VM(last_pool); c == 'h' && pool != NULL; pool = pool->prev) { |
910 | if ((qstr_pool_t *)ptr == pool) { |
911 | c = 'Q'; |
912 | break; |
913 | } |
914 | for (const byte **q = pool->qstrs, **q_top = pool->qstrs + pool->len; q < q_top; q++) { |
915 | if ((const byte *)ptr == *q) { |
916 | c = 'q'; |
917 | break; |
918 | } |
919 | } |
920 | } |
921 | #endif |
922 | } |
923 | break; |
924 | } |
925 | case AT_TAIL: |
926 | c = '='; |
927 | break; |
928 | case AT_MARK: |
929 | c = 'm'; |
930 | break; |
931 | } |
932 | mp_printf(&mp_plat_print, "%c" , c); |
933 | } |
934 | mp_print_str(&mp_plat_print, "\n" ); |
935 | GC_EXIT(); |
936 | } |
937 | |
938 | #if 0 |
939 | // For testing the GC functions |
940 | void gc_test(void) { |
941 | mp_uint_t len = 500; |
942 | mp_uint_t *heap = malloc(len); |
943 | gc_init(heap, heap + len / sizeof(mp_uint_t)); |
944 | void *ptrs[100]; |
945 | { |
946 | mp_uint_t **p = gc_alloc(16, false); |
947 | p[0] = gc_alloc(64, false); |
948 | p[1] = gc_alloc(1, false); |
949 | p[2] = gc_alloc(1, false); |
950 | p[3] = gc_alloc(1, false); |
951 | mp_uint_t ***p2 = gc_alloc(16, false); |
952 | p2[0] = p; |
953 | p2[1] = p; |
954 | ptrs[0] = p2; |
955 | } |
956 | for (int i = 0; i < 25; i += 2) { |
957 | mp_uint_t *p = gc_alloc(i, false); |
958 | printf("p=%p\n" , p); |
959 | if (i & 3) { |
960 | // ptrs[i] = p; |
961 | } |
962 | } |
963 | |
964 | printf("Before GC:\n" ); |
965 | gc_dump_alloc_table(); |
966 | printf("Starting GC...\n" ); |
967 | gc_collect_start(); |
968 | gc_collect_root(ptrs, sizeof(ptrs) / sizeof(void *)); |
969 | gc_collect_end(); |
970 | printf("After GC:\n" ); |
971 | gc_dump_alloc_table(); |
972 | } |
973 | #endif |
974 | |
975 | #endif // MICROPY_ENABLE_GC |
976 | |