1/*
2 * This file is part of the MicroPython project, http://micropython.org/
3 *
4 * The MIT License (MIT)
5 *
6 * Copyright (c) 2013, 2014 Damien P. George
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
21 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 */
26
27#include "py/builtin.h"
28
29#if MICROPY_PY_BUILTINS_FLOAT && MICROPY_PY_BUILTINS_COMPLEX && MICROPY_PY_CMATH
30
31#include <math.h>
32
33// phase(z): returns the phase of the number z in the range (-pi, +pi]
34STATIC mp_obj_t mp_cmath_phase(mp_obj_t z_obj) {
35 mp_float_t real, imag;
36 mp_obj_get_complex(z_obj, &real, &imag);
37 return mp_obj_new_float(MICROPY_FLOAT_C_FUN(atan2)(imag, real));
38}
39STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_phase_obj, mp_cmath_phase);
40
41// polar(z): returns the polar form of z as a tuple
42STATIC mp_obj_t mp_cmath_polar(mp_obj_t z_obj) {
43 mp_float_t real, imag;
44 mp_obj_get_complex(z_obj, &real, &imag);
45 mp_obj_t tuple[2] = {
46 mp_obj_new_float(MICROPY_FLOAT_C_FUN(sqrt)(real * real + imag * imag)),
47 mp_obj_new_float(MICROPY_FLOAT_C_FUN(atan2)(imag, real)),
48 };
49 return mp_obj_new_tuple(2, tuple);
50}
51STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_polar_obj, mp_cmath_polar);
52
53// rect(r, phi): returns the complex number with modulus r and phase phi
54STATIC mp_obj_t mp_cmath_rect(mp_obj_t r_obj, mp_obj_t phi_obj) {
55 mp_float_t r = mp_obj_get_float(r_obj);
56 mp_float_t phi = mp_obj_get_float(phi_obj);
57 return mp_obj_new_complex(r * MICROPY_FLOAT_C_FUN(cos)(phi), r * MICROPY_FLOAT_C_FUN(sin)(phi));
58}
59STATIC MP_DEFINE_CONST_FUN_OBJ_2(mp_cmath_rect_obj, mp_cmath_rect);
60
61// exp(z): return the exponential of z
62STATIC mp_obj_t mp_cmath_exp(mp_obj_t z_obj) {
63 mp_float_t real, imag;
64 mp_obj_get_complex(z_obj, &real, &imag);
65 mp_float_t exp_real = MICROPY_FLOAT_C_FUN(exp)(real);
66 return mp_obj_new_complex(exp_real * MICROPY_FLOAT_C_FUN(cos)(imag), exp_real * MICROPY_FLOAT_C_FUN(sin)(imag));
67}
68STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_exp_obj, mp_cmath_exp);
69
70// log(z): return the natural logarithm of z, with branch cut along the negative real axis
71// TODO can take second argument, being the base
72STATIC mp_obj_t mp_cmath_log(mp_obj_t z_obj) {
73 mp_float_t real, imag;
74 mp_obj_get_complex(z_obj, &real, &imag);
75 return mp_obj_new_complex(MICROPY_FLOAT_CONST(0.5) * MICROPY_FLOAT_C_FUN(log)(real * real + imag * imag), MICROPY_FLOAT_C_FUN(atan2)(imag, real));
76}
77STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_log_obj, mp_cmath_log);
78
79#if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
80// log10(z): return the base-10 logarithm of z, with branch cut along the negative real axis
81STATIC mp_obj_t mp_cmath_log10(mp_obj_t z_obj) {
82 mp_float_t real, imag;
83 mp_obj_get_complex(z_obj, &real, &imag);
84 return mp_obj_new_complex(MICROPY_FLOAT_CONST(0.5) * MICROPY_FLOAT_C_FUN(log10)(real * real + imag * imag), MICROPY_FLOAT_CONST(0.4342944819032518) * MICROPY_FLOAT_C_FUN(atan2)(imag, real));
85}
86STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_log10_obj, mp_cmath_log10);
87#endif
88
89// sqrt(z): return the square-root of z
90STATIC mp_obj_t mp_cmath_sqrt(mp_obj_t z_obj) {
91 mp_float_t real, imag;
92 mp_obj_get_complex(z_obj, &real, &imag);
93 mp_float_t sqrt_abs = MICROPY_FLOAT_C_FUN(pow)(real * real + imag * imag, MICROPY_FLOAT_CONST(0.25));
94 mp_float_t theta = MICROPY_FLOAT_CONST(0.5) * MICROPY_FLOAT_C_FUN(atan2)(imag, real);
95 return mp_obj_new_complex(sqrt_abs * MICROPY_FLOAT_C_FUN(cos)(theta), sqrt_abs * MICROPY_FLOAT_C_FUN(sin)(theta));
96}
97STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_sqrt_obj, mp_cmath_sqrt);
98
99// cos(z): return the cosine of z
100STATIC mp_obj_t mp_cmath_cos(mp_obj_t z_obj) {
101 mp_float_t real, imag;
102 mp_obj_get_complex(z_obj, &real, &imag);
103 return mp_obj_new_complex(MICROPY_FLOAT_C_FUN(cos)(real) * MICROPY_FLOAT_C_FUN(cosh)(imag), -MICROPY_FLOAT_C_FUN(sin)(real) * MICROPY_FLOAT_C_FUN(sinh)(imag));
104}
105STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_cos_obj, mp_cmath_cos);
106
107// sin(z): return the sine of z
108STATIC mp_obj_t mp_cmath_sin(mp_obj_t z_obj) {
109 mp_float_t real, imag;
110 mp_obj_get_complex(z_obj, &real, &imag);
111 return mp_obj_new_complex(MICROPY_FLOAT_C_FUN(sin)(real) * MICROPY_FLOAT_C_FUN(cosh)(imag), MICROPY_FLOAT_C_FUN(cos)(real) * MICROPY_FLOAT_C_FUN(sinh)(imag));
112}
113STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_sin_obj, mp_cmath_sin);
114
115STATIC const mp_rom_map_elem_t mp_module_cmath_globals_table[] = {
116 { MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_cmath) },
117 { MP_ROM_QSTR(MP_QSTR_e), mp_const_float_e },
118 { MP_ROM_QSTR(MP_QSTR_pi), mp_const_float_pi },
119 { MP_ROM_QSTR(MP_QSTR_phase), MP_ROM_PTR(&mp_cmath_phase_obj) },
120 { MP_ROM_QSTR(MP_QSTR_polar), MP_ROM_PTR(&mp_cmath_polar_obj) },
121 { MP_ROM_QSTR(MP_QSTR_rect), MP_ROM_PTR(&mp_cmath_rect_obj) },
122 { MP_ROM_QSTR(MP_QSTR_exp), MP_ROM_PTR(&mp_cmath_exp_obj) },
123 { MP_ROM_QSTR(MP_QSTR_log), MP_ROM_PTR(&mp_cmath_log_obj) },
124 #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
125 { MP_ROM_QSTR(MP_QSTR_log10), MP_ROM_PTR(&mp_cmath_log10_obj) },
126 #endif
127 { MP_ROM_QSTR(MP_QSTR_sqrt), MP_ROM_PTR(&mp_cmath_sqrt_obj) },
128 // { MP_ROM_QSTR(MP_QSTR_acos), MP_ROM_PTR(&mp_cmath_acos_obj) },
129 // { MP_ROM_QSTR(MP_QSTR_asin), MP_ROM_PTR(&mp_cmath_asin_obj) },
130 // { MP_ROM_QSTR(MP_QSTR_atan), MP_ROM_PTR(&mp_cmath_atan_obj) },
131 { MP_ROM_QSTR(MP_QSTR_cos), MP_ROM_PTR(&mp_cmath_cos_obj) },
132 { MP_ROM_QSTR(MP_QSTR_sin), MP_ROM_PTR(&mp_cmath_sin_obj) },
133 // { MP_ROM_QSTR(MP_QSTR_tan), MP_ROM_PTR(&mp_cmath_tan_obj) },
134 // { MP_ROM_QSTR(MP_QSTR_acosh), MP_ROM_PTR(&mp_cmath_acosh_obj) },
135 // { MP_ROM_QSTR(MP_QSTR_asinh), MP_ROM_PTR(&mp_cmath_asinh_obj) },
136 // { MP_ROM_QSTR(MP_QSTR_atanh), MP_ROM_PTR(&mp_cmath_atanh_obj) },
137 // { MP_ROM_QSTR(MP_QSTR_cosh), MP_ROM_PTR(&mp_cmath_cosh_obj) },
138 // { MP_ROM_QSTR(MP_QSTR_sinh), MP_ROM_PTR(&mp_cmath_sinh_obj) },
139 // { MP_ROM_QSTR(MP_QSTR_tanh), MP_ROM_PTR(&mp_cmath_tanh_obj) },
140 // { MP_ROM_QSTR(MP_QSTR_isfinite), MP_ROM_PTR(&mp_cmath_isfinite_obj) },
141 // { MP_ROM_QSTR(MP_QSTR_isinf), MP_ROM_PTR(&mp_cmath_isinf_obj) },
142 // { MP_ROM_QSTR(MP_QSTR_isnan), MP_ROM_PTR(&mp_cmath_isnan_obj) },
143};
144
145STATIC MP_DEFINE_CONST_DICT(mp_module_cmath_globals, mp_module_cmath_globals_table);
146
147const mp_obj_module_t mp_module_cmath = {
148 .base = { &mp_type_module },
149 .globals = (mp_obj_dict_t *)&mp_module_cmath_globals,
150};
151
152#endif // MICROPY_PY_BUILTINS_FLOAT && MICROPY_PY_CMATH
153