1 | /* |
2 | * This file is part of the MicroPython project, http://micropython.org/ |
3 | * |
4 | * The MIT License (MIT) |
5 | * |
6 | * Copyright (c) 2013, 2014 Damien P. George |
7 | * |
8 | * Permission is hereby granted, free of charge, to any person obtaining a copy |
9 | * of this software and associated documentation files (the "Software"), to deal |
10 | * in the Software without restriction, including without limitation the rights |
11 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
12 | * copies of the Software, and to permit persons to whom the Software is |
13 | * furnished to do so, subject to the following conditions: |
14 | * |
15 | * The above copyright notice and this permission notice shall be included in |
16 | * all copies or substantial portions of the Software. |
17 | * |
18 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
19 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
20 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
21 | * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
22 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
23 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
24 | * THE SOFTWARE. |
25 | */ |
26 | |
27 | #include "py/builtin.h" |
28 | |
29 | #if MICROPY_PY_BUILTINS_FLOAT && MICROPY_PY_BUILTINS_COMPLEX && MICROPY_PY_CMATH |
30 | |
31 | #include <math.h> |
32 | |
33 | // phase(z): returns the phase of the number z in the range (-pi, +pi] |
34 | STATIC mp_obj_t mp_cmath_phase(mp_obj_t z_obj) { |
35 | mp_float_t real, imag; |
36 | mp_obj_get_complex(z_obj, &real, &imag); |
37 | return mp_obj_new_float(MICROPY_FLOAT_C_FUN(atan2)(imag, real)); |
38 | } |
39 | STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_phase_obj, mp_cmath_phase); |
40 | |
41 | // polar(z): returns the polar form of z as a tuple |
42 | STATIC mp_obj_t mp_cmath_polar(mp_obj_t z_obj) { |
43 | mp_float_t real, imag; |
44 | mp_obj_get_complex(z_obj, &real, &imag); |
45 | mp_obj_t tuple[2] = { |
46 | mp_obj_new_float(MICROPY_FLOAT_C_FUN(sqrt)(real * real + imag * imag)), |
47 | mp_obj_new_float(MICROPY_FLOAT_C_FUN(atan2)(imag, real)), |
48 | }; |
49 | return mp_obj_new_tuple(2, tuple); |
50 | } |
51 | STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_polar_obj, mp_cmath_polar); |
52 | |
53 | // rect(r, phi): returns the complex number with modulus r and phase phi |
54 | STATIC mp_obj_t mp_cmath_rect(mp_obj_t r_obj, mp_obj_t phi_obj) { |
55 | mp_float_t r = mp_obj_get_float(r_obj); |
56 | mp_float_t phi = mp_obj_get_float(phi_obj); |
57 | return mp_obj_new_complex(r * MICROPY_FLOAT_C_FUN(cos)(phi), r * MICROPY_FLOAT_C_FUN(sin)(phi)); |
58 | } |
59 | STATIC MP_DEFINE_CONST_FUN_OBJ_2(mp_cmath_rect_obj, mp_cmath_rect); |
60 | |
61 | // exp(z): return the exponential of z |
62 | STATIC mp_obj_t mp_cmath_exp(mp_obj_t z_obj) { |
63 | mp_float_t real, imag; |
64 | mp_obj_get_complex(z_obj, &real, &imag); |
65 | mp_float_t exp_real = MICROPY_FLOAT_C_FUN(exp)(real); |
66 | return mp_obj_new_complex(exp_real * MICROPY_FLOAT_C_FUN(cos)(imag), exp_real * MICROPY_FLOAT_C_FUN(sin)(imag)); |
67 | } |
68 | STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_exp_obj, mp_cmath_exp); |
69 | |
70 | // log(z): return the natural logarithm of z, with branch cut along the negative real axis |
71 | // TODO can take second argument, being the base |
72 | STATIC mp_obj_t mp_cmath_log(mp_obj_t z_obj) { |
73 | mp_float_t real, imag; |
74 | mp_obj_get_complex(z_obj, &real, &imag); |
75 | return mp_obj_new_complex(MICROPY_FLOAT_CONST(0.5) * MICROPY_FLOAT_C_FUN(log)(real * real + imag * imag), MICROPY_FLOAT_C_FUN(atan2)(imag, real)); |
76 | } |
77 | STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_log_obj, mp_cmath_log); |
78 | |
79 | #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS |
80 | // log10(z): return the base-10 logarithm of z, with branch cut along the negative real axis |
81 | STATIC mp_obj_t mp_cmath_log10(mp_obj_t z_obj) { |
82 | mp_float_t real, imag; |
83 | mp_obj_get_complex(z_obj, &real, &imag); |
84 | return mp_obj_new_complex(MICROPY_FLOAT_CONST(0.5) * MICROPY_FLOAT_C_FUN(log10)(real * real + imag * imag), MICROPY_FLOAT_CONST(0.4342944819032518) * MICROPY_FLOAT_C_FUN(atan2)(imag, real)); |
85 | } |
86 | STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_log10_obj, mp_cmath_log10); |
87 | #endif |
88 | |
89 | // sqrt(z): return the square-root of z |
90 | STATIC mp_obj_t mp_cmath_sqrt(mp_obj_t z_obj) { |
91 | mp_float_t real, imag; |
92 | mp_obj_get_complex(z_obj, &real, &imag); |
93 | mp_float_t sqrt_abs = MICROPY_FLOAT_C_FUN(pow)(real * real + imag * imag, MICROPY_FLOAT_CONST(0.25)); |
94 | mp_float_t theta = MICROPY_FLOAT_CONST(0.5) * MICROPY_FLOAT_C_FUN(atan2)(imag, real); |
95 | return mp_obj_new_complex(sqrt_abs * MICROPY_FLOAT_C_FUN(cos)(theta), sqrt_abs * MICROPY_FLOAT_C_FUN(sin)(theta)); |
96 | } |
97 | STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_sqrt_obj, mp_cmath_sqrt); |
98 | |
99 | // cos(z): return the cosine of z |
100 | STATIC mp_obj_t mp_cmath_cos(mp_obj_t z_obj) { |
101 | mp_float_t real, imag; |
102 | mp_obj_get_complex(z_obj, &real, &imag); |
103 | return mp_obj_new_complex(MICROPY_FLOAT_C_FUN(cos)(real) * MICROPY_FLOAT_C_FUN(cosh)(imag), -MICROPY_FLOAT_C_FUN(sin)(real) * MICROPY_FLOAT_C_FUN(sinh)(imag)); |
104 | } |
105 | STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_cos_obj, mp_cmath_cos); |
106 | |
107 | // sin(z): return the sine of z |
108 | STATIC mp_obj_t mp_cmath_sin(mp_obj_t z_obj) { |
109 | mp_float_t real, imag; |
110 | mp_obj_get_complex(z_obj, &real, &imag); |
111 | return mp_obj_new_complex(MICROPY_FLOAT_C_FUN(sin)(real) * MICROPY_FLOAT_C_FUN(cosh)(imag), MICROPY_FLOAT_C_FUN(cos)(real) * MICROPY_FLOAT_C_FUN(sinh)(imag)); |
112 | } |
113 | STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_cmath_sin_obj, mp_cmath_sin); |
114 | |
115 | STATIC const mp_rom_map_elem_t mp_module_cmath_globals_table[] = { |
116 | { MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_cmath) }, |
117 | { MP_ROM_QSTR(MP_QSTR_e), mp_const_float_e }, |
118 | { MP_ROM_QSTR(MP_QSTR_pi), mp_const_float_pi }, |
119 | { MP_ROM_QSTR(MP_QSTR_phase), MP_ROM_PTR(&mp_cmath_phase_obj) }, |
120 | { MP_ROM_QSTR(MP_QSTR_polar), MP_ROM_PTR(&mp_cmath_polar_obj) }, |
121 | { MP_ROM_QSTR(MP_QSTR_rect), MP_ROM_PTR(&mp_cmath_rect_obj) }, |
122 | { MP_ROM_QSTR(MP_QSTR_exp), MP_ROM_PTR(&mp_cmath_exp_obj) }, |
123 | { MP_ROM_QSTR(MP_QSTR_log), MP_ROM_PTR(&mp_cmath_log_obj) }, |
124 | #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS |
125 | { MP_ROM_QSTR(MP_QSTR_log10), MP_ROM_PTR(&mp_cmath_log10_obj) }, |
126 | #endif |
127 | { MP_ROM_QSTR(MP_QSTR_sqrt), MP_ROM_PTR(&mp_cmath_sqrt_obj) }, |
128 | // { MP_ROM_QSTR(MP_QSTR_acos), MP_ROM_PTR(&mp_cmath_acos_obj) }, |
129 | // { MP_ROM_QSTR(MP_QSTR_asin), MP_ROM_PTR(&mp_cmath_asin_obj) }, |
130 | // { MP_ROM_QSTR(MP_QSTR_atan), MP_ROM_PTR(&mp_cmath_atan_obj) }, |
131 | { MP_ROM_QSTR(MP_QSTR_cos), MP_ROM_PTR(&mp_cmath_cos_obj) }, |
132 | { MP_ROM_QSTR(MP_QSTR_sin), MP_ROM_PTR(&mp_cmath_sin_obj) }, |
133 | // { MP_ROM_QSTR(MP_QSTR_tan), MP_ROM_PTR(&mp_cmath_tan_obj) }, |
134 | // { MP_ROM_QSTR(MP_QSTR_acosh), MP_ROM_PTR(&mp_cmath_acosh_obj) }, |
135 | // { MP_ROM_QSTR(MP_QSTR_asinh), MP_ROM_PTR(&mp_cmath_asinh_obj) }, |
136 | // { MP_ROM_QSTR(MP_QSTR_atanh), MP_ROM_PTR(&mp_cmath_atanh_obj) }, |
137 | // { MP_ROM_QSTR(MP_QSTR_cosh), MP_ROM_PTR(&mp_cmath_cosh_obj) }, |
138 | // { MP_ROM_QSTR(MP_QSTR_sinh), MP_ROM_PTR(&mp_cmath_sinh_obj) }, |
139 | // { MP_ROM_QSTR(MP_QSTR_tanh), MP_ROM_PTR(&mp_cmath_tanh_obj) }, |
140 | // { MP_ROM_QSTR(MP_QSTR_isfinite), MP_ROM_PTR(&mp_cmath_isfinite_obj) }, |
141 | // { MP_ROM_QSTR(MP_QSTR_isinf), MP_ROM_PTR(&mp_cmath_isinf_obj) }, |
142 | // { MP_ROM_QSTR(MP_QSTR_isnan), MP_ROM_PTR(&mp_cmath_isnan_obj) }, |
143 | }; |
144 | |
145 | STATIC MP_DEFINE_CONST_DICT(mp_module_cmath_globals, mp_module_cmath_globals_table); |
146 | |
147 | const mp_obj_module_t mp_module_cmath = { |
148 | .base = { &mp_type_module }, |
149 | .globals = (mp_obj_dict_t *)&mp_module_cmath_globals, |
150 | }; |
151 | |
152 | #endif // MICROPY_PY_BUILTINS_FLOAT && MICROPY_PY_CMATH |
153 | |