1/*
2 * This file is part of the MicroPython project, http://micropython.org/
3 *
4 * The MIT License (MIT)
5 *
6 * Copyright (c) 2013-2017 Damien P. George
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
21 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 */
26
27#include "py/builtin.h"
28#include "py/runtime.h"
29
30#if MICROPY_PY_BUILTINS_FLOAT && MICROPY_PY_MATH
31
32#include <math.h>
33
34// M_PI is not part of the math.h standard and may not be defined
35// And by defining our own we can ensure it uses the correct const format.
36#define MP_PI MICROPY_FLOAT_CONST(3.14159265358979323846)
37#define MP_PI_4 MICROPY_FLOAT_CONST(0.78539816339744830962)
38#define MP_3_PI_4 MICROPY_FLOAT_CONST(2.35619449019234492885)
39
40STATIC NORETURN void math_error(void) {
41 mp_raise_ValueError(MP_ERROR_TEXT("math domain error"));
42}
43
44STATIC mp_obj_t math_generic_1(mp_obj_t x_obj, mp_float_t (*f)(mp_float_t)) {
45 mp_float_t x = mp_obj_get_float(x_obj);
46 mp_float_t ans = f(x);
47 if ((isnan(ans) && !isnan(x)) || (isinf(ans) && !isinf(x))) {
48 math_error();
49 }
50 return mp_obj_new_float(ans);
51}
52
53STATIC mp_obj_t math_generic_2(mp_obj_t x_obj, mp_obj_t y_obj, mp_float_t (*f)(mp_float_t, mp_float_t)) {
54 mp_float_t x = mp_obj_get_float(x_obj);
55 mp_float_t y = mp_obj_get_float(y_obj);
56 mp_float_t ans = f(x, y);
57 if ((isnan(ans) && !isnan(x) && !isnan(y)) || (isinf(ans) && !isinf(x))) {
58 math_error();
59 }
60 return mp_obj_new_float(ans);
61}
62
63#define MATH_FUN_1(py_name, c_name) \
64 STATIC mp_obj_t mp_math_##py_name(mp_obj_t x_obj) { \
65 return math_generic_1(x_obj, MICROPY_FLOAT_C_FUN(c_name)); \
66 } \
67 STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_##py_name##_obj, mp_math_##py_name);
68
69#define MATH_FUN_1_TO_BOOL(py_name, c_name) \
70 STATIC mp_obj_t mp_math_##py_name(mp_obj_t x_obj) { return mp_obj_new_bool(c_name(mp_obj_get_float(x_obj))); } \
71 STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_##py_name##_obj, mp_math_##py_name);
72
73#define MATH_FUN_1_TO_INT(py_name, c_name) \
74 STATIC mp_obj_t mp_math_##py_name(mp_obj_t x_obj) { return mp_obj_new_int_from_float(MICROPY_FLOAT_C_FUN(c_name)(mp_obj_get_float(x_obj))); } \
75 STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_##py_name##_obj, mp_math_##py_name);
76
77#define MATH_FUN_2(py_name, c_name) \
78 STATIC mp_obj_t mp_math_##py_name(mp_obj_t x_obj, mp_obj_t y_obj) { \
79 return math_generic_2(x_obj, y_obj, MICROPY_FLOAT_C_FUN(c_name)); \
80 } \
81 STATIC MP_DEFINE_CONST_FUN_OBJ_2(mp_math_##py_name##_obj, mp_math_##py_name);
82
83#define MATH_FUN_2_FLT_INT(py_name, c_name) \
84 STATIC mp_obj_t mp_math_##py_name(mp_obj_t x_obj, mp_obj_t y_obj) { \
85 return mp_obj_new_float(MICROPY_FLOAT_C_FUN(c_name)(mp_obj_get_float(x_obj), mp_obj_get_int(y_obj))); \
86 } \
87 STATIC MP_DEFINE_CONST_FUN_OBJ_2(mp_math_##py_name##_obj, mp_math_##py_name);
88
89#if MP_NEED_LOG2
90#undef log2
91#undef log2f
92// 1.442695040888963407354163704 is 1/_M_LN2
93mp_float_t MICROPY_FLOAT_C_FUN(log2)(mp_float_t x) {
94 return MICROPY_FLOAT_C_FUN(log)(x) * MICROPY_FLOAT_CONST(1.442695040888963407354163704);
95}
96#endif
97
98// sqrt(x): returns the square root of x
99MATH_FUN_1(sqrt, sqrt)
100// pow(x, y): returns x to the power of y
101#if MICROPY_PY_MATH_POW_FIX_NAN
102mp_float_t pow_func(mp_float_t x, mp_float_t y) {
103 // pow(base, 0) returns 1 for any base, even when base is NaN
104 // pow(+1, exponent) returns 1 for any exponent, even when exponent is NaN
105 if (x == MICROPY_FLOAT_CONST(1.0) || y == MICROPY_FLOAT_CONST(0.0)) {
106 return MICROPY_FLOAT_CONST(1.0);
107 }
108 return MICROPY_FLOAT_C_FUN(pow)(x, y);
109}
110MATH_FUN_2(pow, pow_func)
111#else
112MATH_FUN_2(pow, pow)
113#endif
114// exp(x)
115MATH_FUN_1(exp, exp)
116#if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
117// expm1(x)
118MATH_FUN_1(expm1, expm1)
119// log2(x)
120MATH_FUN_1(log2, log2)
121// log10(x)
122MATH_FUN_1(log10, log10)
123// cosh(x)
124MATH_FUN_1(cosh, cosh)
125// sinh(x)
126MATH_FUN_1(sinh, sinh)
127// tanh(x)
128MATH_FUN_1(tanh, tanh)
129// acosh(x)
130MATH_FUN_1(acosh, acosh)
131// asinh(x)
132MATH_FUN_1(asinh, asinh)
133// atanh(x)
134MATH_FUN_1(atanh, atanh)
135#endif
136// cos(x)
137MATH_FUN_1(cos, cos)
138// sin(x)
139MATH_FUN_1(sin, sin)
140// tan(x)
141MATH_FUN_1(tan, tan)
142// acos(x)
143MATH_FUN_1(acos, acos)
144// asin(x)
145MATH_FUN_1(asin, asin)
146// atan(x)
147MATH_FUN_1(atan, atan)
148// atan2(y, x)
149#if MICROPY_PY_MATH_ATAN2_FIX_INFNAN
150mp_float_t atan2_func(mp_float_t x, mp_float_t y) {
151 if (isinf(x) && isinf(y)) {
152 return copysign(y < 0 ? MP_3_PI_4 : MP_PI_4, x);
153 }
154 return atan2(x, y);
155}
156MATH_FUN_2(atan2, atan2_func)
157#else
158MATH_FUN_2(atan2, atan2)
159#endif
160// ceil(x)
161MATH_FUN_1_TO_INT(ceil, ceil)
162// copysign(x, y)
163STATIC mp_float_t MICROPY_FLOAT_C_FUN(copysign_func)(mp_float_t x, mp_float_t y) {
164 return MICROPY_FLOAT_C_FUN(copysign)(x, y);
165}
166MATH_FUN_2(copysign, copysign_func)
167// fabs(x)
168STATIC mp_float_t MICROPY_FLOAT_C_FUN(fabs_func)(mp_float_t x) {
169 return MICROPY_FLOAT_C_FUN(fabs)(x);
170}
171MATH_FUN_1(fabs, fabs_func)
172// floor(x)
173MATH_FUN_1_TO_INT(floor, floor) // TODO: delegate to x.__floor__() if x is not a float
174// fmod(x, y)
175#if MICROPY_PY_MATH_FMOD_FIX_INFNAN
176mp_float_t fmod_func(mp_float_t x, mp_float_t y) {
177 return (!isinf(x) && isinf(y)) ? x : fmod(x, y);
178}
179MATH_FUN_2(fmod, fmod_func)
180#else
181MATH_FUN_2(fmod, fmod)
182#endif
183// isfinite(x)
184MATH_FUN_1_TO_BOOL(isfinite, isfinite)
185// isinf(x)
186MATH_FUN_1_TO_BOOL(isinf, isinf)
187// isnan(x)
188MATH_FUN_1_TO_BOOL(isnan, isnan)
189// trunc(x)
190MATH_FUN_1_TO_INT(trunc, trunc)
191// ldexp(x, exp)
192MATH_FUN_2_FLT_INT(ldexp, ldexp)
193#if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
194// erf(x): return the error function of x
195MATH_FUN_1(erf, erf)
196// erfc(x): return the complementary error function of x
197MATH_FUN_1(erfc, erfc)
198// gamma(x): return the gamma function of x
199MATH_FUN_1(gamma, tgamma)
200// lgamma(x): return the natural logarithm of the gamma function of x
201MATH_FUN_1(lgamma, lgamma)
202#endif
203// TODO: fsum
204
205#if MICROPY_PY_MATH_ISCLOSE
206STATIC mp_obj_t mp_math_isclose(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
207 enum { ARG_rel_tol, ARG_abs_tol };
208 static const mp_arg_t allowed_args[] = {
209 {MP_QSTR_rel_tol, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL}},
210 {MP_QSTR_abs_tol, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NEW_SMALL_INT(0)}},
211 };
212 mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
213 mp_arg_parse_all(n_args - 2, pos_args + 2, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
214 const mp_float_t a = mp_obj_get_float(pos_args[0]);
215 const mp_float_t b = mp_obj_get_float(pos_args[1]);
216 const mp_float_t rel_tol = args[ARG_rel_tol].u_obj == MP_OBJ_NULL
217 ? (mp_float_t)1e-9 : mp_obj_get_float(args[ARG_rel_tol].u_obj);
218 const mp_float_t abs_tol = mp_obj_get_float(args[ARG_abs_tol].u_obj);
219 if (rel_tol < (mp_float_t)0.0 || abs_tol < (mp_float_t)0.0) {
220 math_error();
221 }
222 if (a == b) {
223 return mp_const_true;
224 }
225 const mp_float_t difference = MICROPY_FLOAT_C_FUN(fabs)(a - b);
226 if (isinf(difference)) { // Either a or b is inf
227 return mp_const_false;
228 }
229 if ((difference <= abs_tol) ||
230 (difference <= MICROPY_FLOAT_C_FUN(fabs)(rel_tol * a)) ||
231 (difference <= MICROPY_FLOAT_C_FUN(fabs)(rel_tol * b))) {
232 return mp_const_true;
233 }
234 return mp_const_false;
235}
236MP_DEFINE_CONST_FUN_OBJ_KW(mp_math_isclose_obj, 2, mp_math_isclose);
237#endif
238
239// Function that takes a variable number of arguments
240
241// log(x[, base])
242STATIC mp_obj_t mp_math_log(size_t n_args, const mp_obj_t *args) {
243 mp_float_t x = mp_obj_get_float(args[0]);
244 if (x <= (mp_float_t)0.0) {
245 math_error();
246 }
247 mp_float_t l = MICROPY_FLOAT_C_FUN(log)(x);
248 if (n_args == 1) {
249 return mp_obj_new_float(l);
250 } else {
251 mp_float_t base = mp_obj_get_float(args[1]);
252 if (base <= (mp_float_t)0.0) {
253 math_error();
254 } else if (base == (mp_float_t)1.0) {
255 mp_raise_msg(&mp_type_ZeroDivisionError, MP_ERROR_TEXT("divide by zero"));
256 }
257 return mp_obj_new_float(l / MICROPY_FLOAT_C_FUN(log)(base));
258 }
259}
260STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(mp_math_log_obj, 1, 2, mp_math_log);
261
262// Functions that return a tuple
263
264// frexp(x): converts a floating-point number to fractional and integral components
265STATIC mp_obj_t mp_math_frexp(mp_obj_t x_obj) {
266 int int_exponent = 0;
267 mp_float_t significand = MICROPY_FLOAT_C_FUN(frexp)(mp_obj_get_float(x_obj), &int_exponent);
268 mp_obj_t tuple[2];
269 tuple[0] = mp_obj_new_float(significand);
270 tuple[1] = mp_obj_new_int(int_exponent);
271 return mp_obj_new_tuple(2, tuple);
272}
273STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_frexp_obj, mp_math_frexp);
274
275// modf(x)
276STATIC mp_obj_t mp_math_modf(mp_obj_t x_obj) {
277 mp_float_t int_part = 0.0;
278 mp_float_t x = mp_obj_get_float(x_obj);
279 mp_float_t fractional_part = MICROPY_FLOAT_C_FUN(modf)(x, &int_part);
280 #if MICROPY_PY_MATH_MODF_FIX_NEGZERO
281 if (fractional_part == MICROPY_FLOAT_CONST(0.0)) {
282 fractional_part = copysign(fractional_part, x);
283 }
284 #endif
285 mp_obj_t tuple[2];
286 tuple[0] = mp_obj_new_float(fractional_part);
287 tuple[1] = mp_obj_new_float(int_part);
288 return mp_obj_new_tuple(2, tuple);
289}
290STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_modf_obj, mp_math_modf);
291
292// Angular conversions
293
294// radians(x)
295STATIC mp_obj_t mp_math_radians(mp_obj_t x_obj) {
296 return mp_obj_new_float(mp_obj_get_float(x_obj) * (MP_PI / MICROPY_FLOAT_CONST(180.0)));
297}
298STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_radians_obj, mp_math_radians);
299
300// degrees(x)
301STATIC mp_obj_t mp_math_degrees(mp_obj_t x_obj) {
302 return mp_obj_new_float(mp_obj_get_float(x_obj) * (MICROPY_FLOAT_CONST(180.0) / MP_PI));
303}
304STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_degrees_obj, mp_math_degrees);
305
306#if MICROPY_PY_MATH_FACTORIAL
307
308#if MICROPY_OPT_MATH_FACTORIAL
309
310// factorial(x): slightly efficient recursive implementation
311STATIC mp_obj_t mp_math_factorial_inner(mp_uint_t start, mp_uint_t end) {
312 if (start == end) {
313 return mp_obj_new_int(start);
314 } else if (end - start == 1) {
315 return mp_binary_op(MP_BINARY_OP_MULTIPLY, MP_OBJ_NEW_SMALL_INT(start), MP_OBJ_NEW_SMALL_INT(end));
316 } else if (end - start == 2) {
317 mp_obj_t left = MP_OBJ_NEW_SMALL_INT(start);
318 mp_obj_t middle = MP_OBJ_NEW_SMALL_INT(start + 1);
319 mp_obj_t right = MP_OBJ_NEW_SMALL_INT(end);
320 mp_obj_t tmp = mp_binary_op(MP_BINARY_OP_MULTIPLY, left, middle);
321 return mp_binary_op(MP_BINARY_OP_MULTIPLY, tmp, right);
322 } else {
323 mp_uint_t middle = start + ((end - start) >> 1);
324 mp_obj_t left = mp_math_factorial_inner(start, middle);
325 mp_obj_t right = mp_math_factorial_inner(middle + 1, end);
326 return mp_binary_op(MP_BINARY_OP_MULTIPLY, left, right);
327 }
328}
329STATIC mp_obj_t mp_math_factorial(mp_obj_t x_obj) {
330 mp_int_t max = mp_obj_get_int(x_obj);
331 if (max < 0) {
332 mp_raise_ValueError(MP_ERROR_TEXT("negative factorial"));
333 } else if (max == 0) {
334 return MP_OBJ_NEW_SMALL_INT(1);
335 }
336 return mp_math_factorial_inner(1, max);
337}
338
339#else
340
341// factorial(x): squared difference implementation
342// based on http://www.luschny.de/math/factorial/index.html
343STATIC mp_obj_t mp_math_factorial(mp_obj_t x_obj) {
344 mp_int_t max = mp_obj_get_int(x_obj);
345 if (max < 0) {
346 mp_raise_ValueError(MP_ERROR_TEXT("negative factorial"));
347 } else if (max <= 1) {
348 return MP_OBJ_NEW_SMALL_INT(1);
349 }
350 mp_int_t h = max >> 1;
351 mp_int_t q = h * h;
352 mp_int_t r = q << 1;
353 if (max & 1) {
354 r *= max;
355 }
356 mp_obj_t prod = MP_OBJ_NEW_SMALL_INT(r);
357 for (mp_int_t num = 1; num < max - 2; num += 2) {
358 q -= num;
359 prod = mp_binary_op(MP_BINARY_OP_MULTIPLY, prod, MP_OBJ_NEW_SMALL_INT(q));
360 }
361 return prod;
362}
363
364#endif
365
366STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_factorial_obj, mp_math_factorial);
367
368#endif
369
370STATIC const mp_rom_map_elem_t mp_module_math_globals_table[] = {
371 { MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_math) },
372 { MP_ROM_QSTR(MP_QSTR_e), mp_const_float_e },
373 { MP_ROM_QSTR(MP_QSTR_pi), mp_const_float_pi },
374 { MP_ROM_QSTR(MP_QSTR_sqrt), MP_ROM_PTR(&mp_math_sqrt_obj) },
375 { MP_ROM_QSTR(MP_QSTR_pow), MP_ROM_PTR(&mp_math_pow_obj) },
376 { MP_ROM_QSTR(MP_QSTR_exp), MP_ROM_PTR(&mp_math_exp_obj) },
377 #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
378 { MP_ROM_QSTR(MP_QSTR_expm1), MP_ROM_PTR(&mp_math_expm1_obj) },
379 #endif
380 { MP_ROM_QSTR(MP_QSTR_log), MP_ROM_PTR(&mp_math_log_obj) },
381 #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
382 { MP_ROM_QSTR(MP_QSTR_log2), MP_ROM_PTR(&mp_math_log2_obj) },
383 { MP_ROM_QSTR(MP_QSTR_log10), MP_ROM_PTR(&mp_math_log10_obj) },
384 { MP_ROM_QSTR(MP_QSTR_cosh), MP_ROM_PTR(&mp_math_cosh_obj) },
385 { MP_ROM_QSTR(MP_QSTR_sinh), MP_ROM_PTR(&mp_math_sinh_obj) },
386 { MP_ROM_QSTR(MP_QSTR_tanh), MP_ROM_PTR(&mp_math_tanh_obj) },
387 { MP_ROM_QSTR(MP_QSTR_acosh), MP_ROM_PTR(&mp_math_acosh_obj) },
388 { MP_ROM_QSTR(MP_QSTR_asinh), MP_ROM_PTR(&mp_math_asinh_obj) },
389 { MP_ROM_QSTR(MP_QSTR_atanh), MP_ROM_PTR(&mp_math_atanh_obj) },
390 #endif
391 { MP_ROM_QSTR(MP_QSTR_cos), MP_ROM_PTR(&mp_math_cos_obj) },
392 { MP_ROM_QSTR(MP_QSTR_sin), MP_ROM_PTR(&mp_math_sin_obj) },
393 { MP_ROM_QSTR(MP_QSTR_tan), MP_ROM_PTR(&mp_math_tan_obj) },
394 { MP_ROM_QSTR(MP_QSTR_acos), MP_ROM_PTR(&mp_math_acos_obj) },
395 { MP_ROM_QSTR(MP_QSTR_asin), MP_ROM_PTR(&mp_math_asin_obj) },
396 { MP_ROM_QSTR(MP_QSTR_atan), MP_ROM_PTR(&mp_math_atan_obj) },
397 { MP_ROM_QSTR(MP_QSTR_atan2), MP_ROM_PTR(&mp_math_atan2_obj) },
398 { MP_ROM_QSTR(MP_QSTR_ceil), MP_ROM_PTR(&mp_math_ceil_obj) },
399 { MP_ROM_QSTR(MP_QSTR_copysign), MP_ROM_PTR(&mp_math_copysign_obj) },
400 { MP_ROM_QSTR(MP_QSTR_fabs), MP_ROM_PTR(&mp_math_fabs_obj) },
401 { MP_ROM_QSTR(MP_QSTR_floor), MP_ROM_PTR(&mp_math_floor_obj) },
402 { MP_ROM_QSTR(MP_QSTR_fmod), MP_ROM_PTR(&mp_math_fmod_obj) },
403 { MP_ROM_QSTR(MP_QSTR_frexp), MP_ROM_PTR(&mp_math_frexp_obj) },
404 { MP_ROM_QSTR(MP_QSTR_ldexp), MP_ROM_PTR(&mp_math_ldexp_obj) },
405 { MP_ROM_QSTR(MP_QSTR_modf), MP_ROM_PTR(&mp_math_modf_obj) },
406 { MP_ROM_QSTR(MP_QSTR_isfinite), MP_ROM_PTR(&mp_math_isfinite_obj) },
407 { MP_ROM_QSTR(MP_QSTR_isinf), MP_ROM_PTR(&mp_math_isinf_obj) },
408 { MP_ROM_QSTR(MP_QSTR_isnan), MP_ROM_PTR(&mp_math_isnan_obj) },
409 #if MICROPY_PY_MATH_ISCLOSE
410 { MP_ROM_QSTR(MP_QSTR_isclose), MP_ROM_PTR(&mp_math_isclose_obj) },
411 #endif
412 { MP_ROM_QSTR(MP_QSTR_trunc), MP_ROM_PTR(&mp_math_trunc_obj) },
413 { MP_ROM_QSTR(MP_QSTR_radians), MP_ROM_PTR(&mp_math_radians_obj) },
414 { MP_ROM_QSTR(MP_QSTR_degrees), MP_ROM_PTR(&mp_math_degrees_obj) },
415 #if MICROPY_PY_MATH_FACTORIAL
416 { MP_ROM_QSTR(MP_QSTR_factorial), MP_ROM_PTR(&mp_math_factorial_obj) },
417 #endif
418 #if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
419 { MP_ROM_QSTR(MP_QSTR_erf), MP_ROM_PTR(&mp_math_erf_obj) },
420 { MP_ROM_QSTR(MP_QSTR_erfc), MP_ROM_PTR(&mp_math_erfc_obj) },
421 { MP_ROM_QSTR(MP_QSTR_gamma), MP_ROM_PTR(&mp_math_gamma_obj) },
422 { MP_ROM_QSTR(MP_QSTR_lgamma), MP_ROM_PTR(&mp_math_lgamma_obj) },
423 #endif
424};
425
426STATIC MP_DEFINE_CONST_DICT(mp_module_math_globals, mp_module_math_globals_table);
427
428const mp_obj_module_t mp_module_math = {
429 .base = { &mp_type_module },
430 .globals = (mp_obj_dict_t *)&mp_module_math_globals,
431};
432
433#endif // MICROPY_PY_BUILTINS_FLOAT && MICROPY_PY_MATH
434