1 | /* |
2 | * This file is part of the MicroPython project, http://micropython.org/ |
3 | * |
4 | * The MIT License (MIT) |
5 | * |
6 | * Copyright (c) 2013, 2014 Damien P. George |
7 | * |
8 | * Permission is hereby granted, free of charge, to any person obtaining a copy |
9 | * of this software and associated documentation files (the "Software"), to deal |
10 | * in the Software without restriction, including without limitation the rights |
11 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
12 | * copies of the Software, and to permit persons to whom the Software is |
13 | * furnished to do so, subject to the following conditions: |
14 | * |
15 | * The above copyright notice and this permission notice shall be included in |
16 | * all copies or substantial portions of the Software. |
17 | * |
18 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
19 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
20 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
21 | * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
22 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
23 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
24 | * THE SOFTWARE. |
25 | */ |
26 | |
27 | #include <stdlib.h> |
28 | #include <stdio.h> |
29 | #include <assert.h> |
30 | |
31 | #include "py/parsenum.h" |
32 | #include "py/runtime.h" |
33 | |
34 | #if MICROPY_PY_BUILTINS_COMPLEX |
35 | |
36 | #include <math.h> |
37 | #include "py/formatfloat.h" |
38 | |
39 | typedef struct _mp_obj_complex_t { |
40 | mp_obj_base_t base; |
41 | mp_float_t real; |
42 | mp_float_t imag; |
43 | } mp_obj_complex_t; |
44 | |
45 | STATIC void complex_print(const mp_print_t *print, mp_obj_t o_in, mp_print_kind_t kind) { |
46 | (void)kind; |
47 | mp_obj_complex_t *o = MP_OBJ_TO_PTR(o_in); |
48 | #if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT |
49 | char buf[16]; |
50 | #if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_C |
51 | const int precision = 6; |
52 | #else |
53 | const int precision = 7; |
54 | #endif |
55 | #else |
56 | char buf[32]; |
57 | const int precision = 16; |
58 | #endif |
59 | if (o->real == 0) { |
60 | mp_format_float(o->imag, buf, sizeof(buf), 'g', precision, '\0'); |
61 | mp_printf(print, "%sj" , buf); |
62 | } else { |
63 | mp_format_float(o->real, buf, sizeof(buf), 'g', precision, '\0'); |
64 | mp_printf(print, "(%s" , buf); |
65 | if (o->imag >= 0 || isnan(o->imag)) { |
66 | mp_print_str(print, "+" ); |
67 | } |
68 | mp_format_float(o->imag, buf, sizeof(buf), 'g', precision, '\0'); |
69 | mp_printf(print, "%sj)" , buf); |
70 | } |
71 | } |
72 | |
73 | STATIC mp_obj_t complex_make_new(const mp_obj_type_t *type_in, size_t n_args, size_t n_kw, const mp_obj_t *args) { |
74 | (void)type_in; |
75 | mp_arg_check_num(n_args, n_kw, 0, 2, false); |
76 | |
77 | switch (n_args) { |
78 | case 0: |
79 | return mp_obj_new_complex(0, 0); |
80 | |
81 | case 1: |
82 | if (mp_obj_is_str(args[0])) { |
83 | // a string, parse it |
84 | size_t l; |
85 | const char *s = mp_obj_str_get_data(args[0], &l); |
86 | return mp_parse_num_decimal(s, l, true, true, NULL); |
87 | } else if (mp_obj_is_type(args[0], &mp_type_complex)) { |
88 | // a complex, just return it |
89 | return args[0]; |
90 | } else { |
91 | // something else, try to cast it to a complex |
92 | return mp_obj_new_complex(mp_obj_get_float(args[0]), 0); |
93 | } |
94 | |
95 | case 2: |
96 | default: { |
97 | mp_float_t real, imag; |
98 | if (mp_obj_is_type(args[0], &mp_type_complex)) { |
99 | mp_obj_complex_get(args[0], &real, &imag); |
100 | } else { |
101 | real = mp_obj_get_float(args[0]); |
102 | imag = 0; |
103 | } |
104 | if (mp_obj_is_type(args[1], &mp_type_complex)) { |
105 | mp_float_t real2, imag2; |
106 | mp_obj_complex_get(args[1], &real2, &imag2); |
107 | real -= imag2; |
108 | imag += real2; |
109 | } else { |
110 | imag += mp_obj_get_float(args[1]); |
111 | } |
112 | return mp_obj_new_complex(real, imag); |
113 | } |
114 | } |
115 | } |
116 | |
117 | STATIC mp_obj_t complex_unary_op(mp_unary_op_t op, mp_obj_t o_in) { |
118 | mp_obj_complex_t *o = MP_OBJ_TO_PTR(o_in); |
119 | switch (op) { |
120 | case MP_UNARY_OP_BOOL: |
121 | return mp_obj_new_bool(o->real != 0 || o->imag != 0); |
122 | case MP_UNARY_OP_HASH: |
123 | return MP_OBJ_NEW_SMALL_INT(mp_float_hash(o->real) ^ mp_float_hash(o->imag)); |
124 | case MP_UNARY_OP_POSITIVE: |
125 | return o_in; |
126 | case MP_UNARY_OP_NEGATIVE: |
127 | return mp_obj_new_complex(-o->real, -o->imag); |
128 | case MP_UNARY_OP_ABS: |
129 | return mp_obj_new_float(MICROPY_FLOAT_C_FUN(sqrt)(o->real * o->real + o->imag * o->imag)); |
130 | default: |
131 | return MP_OBJ_NULL; // op not supported |
132 | } |
133 | } |
134 | |
135 | STATIC mp_obj_t complex_binary_op(mp_binary_op_t op, mp_obj_t lhs_in, mp_obj_t rhs_in) { |
136 | mp_obj_complex_t *lhs = MP_OBJ_TO_PTR(lhs_in); |
137 | return mp_obj_complex_binary_op(op, lhs->real, lhs->imag, rhs_in); |
138 | } |
139 | |
140 | STATIC void complex_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) { |
141 | if (dest[0] != MP_OBJ_NULL) { |
142 | // not load attribute |
143 | return; |
144 | } |
145 | mp_obj_complex_t *self = MP_OBJ_TO_PTR(self_in); |
146 | if (attr == MP_QSTR_real) { |
147 | dest[0] = mp_obj_new_float(self->real); |
148 | } else if (attr == MP_QSTR_imag) { |
149 | dest[0] = mp_obj_new_float(self->imag); |
150 | } |
151 | } |
152 | |
153 | const mp_obj_type_t mp_type_complex = { |
154 | { &mp_type_type }, |
155 | .flags = MP_TYPE_FLAG_EQ_NOT_REFLEXIVE | MP_TYPE_FLAG_EQ_CHECKS_OTHER_TYPE, |
156 | .name = MP_QSTR_complex, |
157 | .print = complex_print, |
158 | .make_new = complex_make_new, |
159 | .unary_op = complex_unary_op, |
160 | .binary_op = complex_binary_op, |
161 | .attr = complex_attr, |
162 | }; |
163 | |
164 | mp_obj_t mp_obj_new_complex(mp_float_t real, mp_float_t imag) { |
165 | mp_obj_complex_t *o = m_new_obj(mp_obj_complex_t); |
166 | o->base.type = &mp_type_complex; |
167 | o->real = real; |
168 | o->imag = imag; |
169 | return MP_OBJ_FROM_PTR(o); |
170 | } |
171 | |
172 | void mp_obj_complex_get(mp_obj_t self_in, mp_float_t *real, mp_float_t *imag) { |
173 | assert(mp_obj_is_type(self_in, &mp_type_complex)); |
174 | mp_obj_complex_t *self = MP_OBJ_TO_PTR(self_in); |
175 | *real = self->real; |
176 | *imag = self->imag; |
177 | } |
178 | |
179 | mp_obj_t mp_obj_complex_binary_op(mp_binary_op_t op, mp_float_t lhs_real, mp_float_t lhs_imag, mp_obj_t rhs_in) { |
180 | mp_float_t rhs_real, rhs_imag; |
181 | if (!mp_obj_get_complex_maybe(rhs_in, &rhs_real, &rhs_imag)) { |
182 | return MP_OBJ_NULL; // op not supported |
183 | } |
184 | |
185 | switch (op) { |
186 | case MP_BINARY_OP_ADD: |
187 | case MP_BINARY_OP_INPLACE_ADD: |
188 | lhs_real += rhs_real; |
189 | lhs_imag += rhs_imag; |
190 | break; |
191 | case MP_BINARY_OP_SUBTRACT: |
192 | case MP_BINARY_OP_INPLACE_SUBTRACT: |
193 | lhs_real -= rhs_real; |
194 | lhs_imag -= rhs_imag; |
195 | break; |
196 | case MP_BINARY_OP_MULTIPLY: |
197 | case MP_BINARY_OP_INPLACE_MULTIPLY: { |
198 | mp_float_t real; |
199 | multiply: |
200 | real = lhs_real * rhs_real - lhs_imag * rhs_imag; |
201 | lhs_imag = lhs_real * rhs_imag + lhs_imag * rhs_real; |
202 | lhs_real = real; |
203 | break; |
204 | } |
205 | case MP_BINARY_OP_FLOOR_DIVIDE: |
206 | case MP_BINARY_OP_INPLACE_FLOOR_DIVIDE: |
207 | mp_raise_TypeError(MP_ERROR_TEXT("can't truncate-divide a complex number" )); |
208 | |
209 | case MP_BINARY_OP_TRUE_DIVIDE: |
210 | case MP_BINARY_OP_INPLACE_TRUE_DIVIDE: |
211 | if (rhs_imag == 0) { |
212 | if (rhs_real == 0) { |
213 | mp_raise_msg(&mp_type_ZeroDivisionError, MP_ERROR_TEXT("complex divide by zero" )); |
214 | } |
215 | lhs_real /= rhs_real; |
216 | lhs_imag /= rhs_real; |
217 | } else if (rhs_real == 0) { |
218 | mp_float_t real = lhs_imag / rhs_imag; |
219 | lhs_imag = -lhs_real / rhs_imag; |
220 | lhs_real = real; |
221 | } else { |
222 | mp_float_t rhs_len_sq = rhs_real * rhs_real + rhs_imag * rhs_imag; |
223 | rhs_real /= rhs_len_sq; |
224 | rhs_imag /= -rhs_len_sq; |
225 | goto multiply; |
226 | } |
227 | break; |
228 | |
229 | case MP_BINARY_OP_POWER: |
230 | case MP_BINARY_OP_INPLACE_POWER: { |
231 | // z1**z2 = exp(z2*ln(z1)) |
232 | // = exp(z2*(ln(|z1|)+i*arg(z1))) |
233 | // = exp( (x2*ln1 - y2*arg1) + i*(y2*ln1 + x2*arg1) ) |
234 | // = exp(x3 + i*y3) |
235 | // = exp(x3)*(cos(y3) + i*sin(y3)) |
236 | mp_float_t abs1 = MICROPY_FLOAT_C_FUN(sqrt)(lhs_real * lhs_real + lhs_imag * lhs_imag); |
237 | if (abs1 == 0) { |
238 | if (rhs_imag == 0 && rhs_real >= 0) { |
239 | lhs_real = (rhs_real == 0); |
240 | } else { |
241 | mp_raise_msg(&mp_type_ZeroDivisionError, MP_ERROR_TEXT("0.0 to a complex power" )); |
242 | } |
243 | } else { |
244 | mp_float_t ln1 = MICROPY_FLOAT_C_FUN(log)(abs1); |
245 | mp_float_t arg1 = MICROPY_FLOAT_C_FUN(atan2)(lhs_imag, lhs_real); |
246 | mp_float_t x3 = rhs_real * ln1 - rhs_imag * arg1; |
247 | mp_float_t y3 = rhs_imag * ln1 + rhs_real * arg1; |
248 | mp_float_t exp_x3 = MICROPY_FLOAT_C_FUN(exp)(x3); |
249 | lhs_real = exp_x3 * MICROPY_FLOAT_C_FUN(cos)(y3); |
250 | lhs_imag = exp_x3 * MICROPY_FLOAT_C_FUN(sin)(y3); |
251 | } |
252 | break; |
253 | } |
254 | |
255 | case MP_BINARY_OP_EQUAL: |
256 | return mp_obj_new_bool(lhs_real == rhs_real && lhs_imag == rhs_imag); |
257 | |
258 | default: |
259 | return MP_OBJ_NULL; // op not supported |
260 | } |
261 | return mp_obj_new_complex(lhs_real, lhs_imag); |
262 | } |
263 | |
264 | #endif |
265 | |