1 | /* |
2 | * This file is part of the MicroPython project, http://micropython.org/ |
3 | * |
4 | * The MIT License (MIT) |
5 | * |
6 | * Copyright (c) 2013, 2014 Damien P. George |
7 | * |
8 | * Permission is hereby granted, free of charge, to any person obtaining a copy |
9 | * of this software and associated documentation files (the "Software"), to deal |
10 | * in the Software without restriction, including without limitation the rights |
11 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
12 | * copies of the Software, and to permit persons to whom the Software is |
13 | * furnished to do so, subject to the following conditions: |
14 | * |
15 | * The above copyright notice and this permission notice shall be included in |
16 | * all copies or substantial portions of the Software. |
17 | * |
18 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
19 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
20 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
21 | * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
22 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
23 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
24 | * THE SOFTWARE. |
25 | */ |
26 | |
27 | #include <stdlib.h> |
28 | #include <assert.h> |
29 | #include <string.h> |
30 | |
31 | #include "py/parsenum.h" |
32 | #include "py/smallint.h" |
33 | #include "py/objint.h" |
34 | #include "py/objstr.h" |
35 | #include "py/runtime.h" |
36 | #include "py/binary.h" |
37 | |
38 | #if MICROPY_PY_BUILTINS_FLOAT |
39 | #include <math.h> |
40 | #endif |
41 | |
42 | // This dispatcher function is expected to be independent of the implementation of long int |
43 | STATIC mp_obj_t mp_obj_int_make_new(const mp_obj_type_t *type_in, size_t n_args, size_t n_kw, const mp_obj_t *args) { |
44 | (void)type_in; |
45 | mp_arg_check_num(n_args, n_kw, 0, 2, false); |
46 | |
47 | switch (n_args) { |
48 | case 0: |
49 | return MP_OBJ_NEW_SMALL_INT(0); |
50 | |
51 | case 1: |
52 | if (mp_obj_is_int(args[0])) { |
53 | // already an int (small or long), just return it |
54 | return args[0]; |
55 | } else if (mp_obj_is_str_or_bytes(args[0])) { |
56 | // a string, parse it |
57 | size_t l; |
58 | const char *s = mp_obj_str_get_data(args[0], &l); |
59 | return mp_parse_num_integer(s, l, 0, NULL); |
60 | #if MICROPY_PY_BUILTINS_FLOAT |
61 | } else if (mp_obj_is_float(args[0])) { |
62 | return mp_obj_new_int_from_float(mp_obj_float_get(args[0])); |
63 | #endif |
64 | } else { |
65 | return mp_unary_op(MP_UNARY_OP_INT, args[0]); |
66 | } |
67 | |
68 | case 2: |
69 | default: { |
70 | // should be a string, parse it |
71 | size_t l; |
72 | const char *s = mp_obj_str_get_data(args[0], &l); |
73 | return mp_parse_num_integer(s, l, mp_obj_get_int(args[1]), NULL); |
74 | } |
75 | } |
76 | } |
77 | |
78 | #if MICROPY_PY_BUILTINS_FLOAT |
79 | |
80 | typedef enum { |
81 | MP_FP_CLASS_FIT_SMALLINT, |
82 | MP_FP_CLASS_FIT_LONGINT, |
83 | MP_FP_CLASS_OVERFLOW |
84 | } mp_fp_as_int_class_t; |
85 | |
86 | STATIC mp_fp_as_int_class_t mp_classify_fp_as_int(mp_float_t val) { |
87 | union { |
88 | mp_float_t f; |
89 | #if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT |
90 | uint32_t i; |
91 | #elif MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE |
92 | uint32_t i[2]; |
93 | #endif |
94 | } u = {val}; |
95 | |
96 | uint32_t e; |
97 | #if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT |
98 | e = u.i; |
99 | #elif MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE |
100 | e = u.i[MP_ENDIANNESS_LITTLE]; |
101 | #endif |
102 | #define MP_FLOAT_SIGN_SHIFT_I32 ((MP_FLOAT_FRAC_BITS + MP_FLOAT_EXP_BITS) % 32) |
103 | #define MP_FLOAT_EXP_SHIFT_I32 (MP_FLOAT_FRAC_BITS % 32) |
104 | |
105 | if (e & (1U << MP_FLOAT_SIGN_SHIFT_I32)) { |
106 | #if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_DOUBLE |
107 | e |= u.i[MP_ENDIANNESS_BIG] != 0; |
108 | #endif |
109 | if ((e & ~(1 << MP_FLOAT_SIGN_SHIFT_I32)) == 0) { |
110 | // handle case of -0 (when sign is set but rest of bits are zero) |
111 | e = 0; |
112 | } else { |
113 | e += ((1 << MP_FLOAT_EXP_BITS) - 1) << MP_FLOAT_EXP_SHIFT_I32; |
114 | } |
115 | } else { |
116 | e &= ~((1 << MP_FLOAT_EXP_SHIFT_I32) - 1); |
117 | } |
118 | // 8 * sizeof(uintptr_t) counts the number of bits for a small int |
119 | // TODO provide a way to configure this properly |
120 | if (e <= ((8 * sizeof(uintptr_t) + MP_FLOAT_EXP_BIAS - 3) << MP_FLOAT_EXP_SHIFT_I32)) { |
121 | return MP_FP_CLASS_FIT_SMALLINT; |
122 | } |
123 | #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_LONGLONG |
124 | if (e <= (((sizeof(long long) * MP_BITS_PER_BYTE) + MP_FLOAT_EXP_BIAS - 2) << MP_FLOAT_EXP_SHIFT_I32)) { |
125 | return MP_FP_CLASS_FIT_LONGINT; |
126 | } |
127 | #endif |
128 | #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_MPZ |
129 | return MP_FP_CLASS_FIT_LONGINT; |
130 | #else |
131 | return MP_FP_CLASS_OVERFLOW; |
132 | #endif |
133 | } |
134 | #undef MP_FLOAT_SIGN_SHIFT_I32 |
135 | #undef MP_FLOAT_EXP_SHIFT_I32 |
136 | |
137 | mp_obj_t mp_obj_new_int_from_float(mp_float_t val) { |
138 | mp_float_union_t u = {val}; |
139 | // IEEE-754: if biased exponent is all 1 bits... |
140 | if (u.p.exp == ((1 << MP_FLOAT_EXP_BITS) - 1)) { |
141 | // ...then number is Inf (positive or negative) if fraction is 0, else NaN. |
142 | if (u.p.frc == 0) { |
143 | mp_raise_msg(&mp_type_OverflowError, MP_ERROR_TEXT("can't convert inf to int" )); |
144 | } else { |
145 | mp_raise_ValueError(MP_ERROR_TEXT("can't convert NaN to int" )); |
146 | } |
147 | } else { |
148 | mp_fp_as_int_class_t icl = mp_classify_fp_as_int(val); |
149 | if (icl == MP_FP_CLASS_FIT_SMALLINT) { |
150 | return MP_OBJ_NEW_SMALL_INT((mp_int_t)val); |
151 | #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_MPZ |
152 | } else { |
153 | mp_obj_int_t *o = mp_obj_int_new_mpz(); |
154 | mpz_set_from_float(&o->mpz, val); |
155 | return MP_OBJ_FROM_PTR(o); |
156 | } |
157 | #else |
158 | #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_LONGLONG |
159 | } else if (icl == MP_FP_CLASS_FIT_LONGINT) { |
160 | return mp_obj_new_int_from_ll((long long)val); |
161 | #endif |
162 | } else { |
163 | mp_raise_ValueError(MP_ERROR_TEXT("float too big" )); |
164 | } |
165 | #endif |
166 | } |
167 | } |
168 | |
169 | #endif |
170 | |
171 | #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_LONGLONG |
172 | typedef mp_longint_impl_t fmt_int_t; |
173 | typedef unsigned long long fmt_uint_t; |
174 | #else |
175 | typedef mp_int_t fmt_int_t; |
176 | typedef mp_uint_t fmt_uint_t; |
177 | #endif |
178 | |
179 | void mp_obj_int_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) { |
180 | (void)kind; |
181 | // The size of this buffer is rather arbitrary. If it's not large |
182 | // enough, a dynamic one will be allocated. |
183 | char stack_buf[sizeof(fmt_int_t) * 4]; |
184 | char *buf = stack_buf; |
185 | size_t buf_size = sizeof(stack_buf); |
186 | size_t fmt_size; |
187 | |
188 | char *str = mp_obj_int_formatted(&buf, &buf_size, &fmt_size, self_in, 10, NULL, '\0', '\0'); |
189 | mp_print_str(print, str); |
190 | |
191 | if (buf != stack_buf) { |
192 | m_del(char, buf, buf_size); |
193 | } |
194 | } |
195 | |
196 | STATIC const uint8_t log_base2_floor[] = { |
197 | 0, 1, 1, 2, |
198 | 2, 2, 2, 3, |
199 | 3, 3, 3, 3, |
200 | 3, 3, 3, 4, |
201 | /* if needed, these are the values for higher bases |
202 | 4, 4, 4, 4, |
203 | 4, 4, 4, 4, |
204 | 4, 4, 4, 4, |
205 | 4, 4, 4, 5 |
206 | */ |
207 | }; |
208 | |
209 | size_t mp_int_format_size(size_t num_bits, int base, const char *prefix, char comma) { |
210 | assert(2 <= base && base <= 16); |
211 | size_t num_digits = num_bits / log_base2_floor[base - 1] + 1; |
212 | size_t num_commas = comma ? num_digits / 3 : 0; |
213 | size_t prefix_len = prefix ? strlen(prefix) : 0; |
214 | return num_digits + num_commas + prefix_len + 2; // +1 for sign, +1 for null byte |
215 | } |
216 | |
217 | // This routine expects you to pass in a buffer and size (in *buf and *buf_size). |
218 | // If, for some reason, this buffer is too small, then it will allocate a |
219 | // buffer and return the allocated buffer and size in *buf and *buf_size. It |
220 | // is the callers responsibility to free this allocated buffer. |
221 | // |
222 | // The resulting formatted string will be returned from this function and the |
223 | // formatted size will be in *fmt_size. |
224 | char *mp_obj_int_formatted(char **buf, size_t *buf_size, size_t *fmt_size, mp_const_obj_t self_in, |
225 | int base, const char *prefix, char base_char, char comma) { |
226 | fmt_int_t num; |
227 | #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_NONE |
228 | // Only have small ints; get the integer value to format. |
229 | num = MP_OBJ_SMALL_INT_VALUE(self_in); |
230 | #else |
231 | if (mp_obj_is_small_int(self_in)) { |
232 | // A small int; get the integer value to format. |
233 | num = MP_OBJ_SMALL_INT_VALUE(self_in); |
234 | } else { |
235 | assert(mp_obj_is_type(self_in, &mp_type_int)); |
236 | // Not a small int. |
237 | #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_LONGLONG |
238 | const mp_obj_int_t *self = self_in; |
239 | // Get the value to format; mp_obj_get_int truncates to mp_int_t. |
240 | num = self->val; |
241 | #else |
242 | // Delegate to the implementation for the long int. |
243 | return mp_obj_int_formatted_impl(buf, buf_size, fmt_size, self_in, base, prefix, base_char, comma); |
244 | #endif |
245 | } |
246 | #endif |
247 | |
248 | char sign = '\0'; |
249 | if (num < 0) { |
250 | num = -num; |
251 | sign = '-'; |
252 | } |
253 | |
254 | size_t needed_size = mp_int_format_size(sizeof(fmt_int_t) * 8, base, prefix, comma); |
255 | if (needed_size > *buf_size) { |
256 | *buf = m_new(char, needed_size); |
257 | *buf_size = needed_size; |
258 | } |
259 | char *str = *buf; |
260 | |
261 | char *b = str + needed_size; |
262 | *(--b) = '\0'; |
263 | char *last_comma = b; |
264 | |
265 | if (num == 0) { |
266 | *(--b) = '0'; |
267 | } else { |
268 | do { |
269 | // The cast to fmt_uint_t is because num is positive and we want unsigned arithmetic |
270 | int c = (fmt_uint_t)num % base; |
271 | num = (fmt_uint_t)num / base; |
272 | if (c >= 10) { |
273 | c += base_char - 10; |
274 | } else { |
275 | c += '0'; |
276 | } |
277 | *(--b) = c; |
278 | if (comma && num != 0 && b > str && (last_comma - b) == 3) { |
279 | *(--b) = comma; |
280 | last_comma = b; |
281 | } |
282 | } |
283 | while (b > str && num != 0); |
284 | } |
285 | if (prefix) { |
286 | size_t prefix_len = strlen(prefix); |
287 | char *p = b - prefix_len; |
288 | if (p > str) { |
289 | b = p; |
290 | while (*prefix) { |
291 | *p++ = *prefix++; |
292 | } |
293 | } |
294 | } |
295 | if (sign && b > str) { |
296 | *(--b) = sign; |
297 | } |
298 | *fmt_size = *buf + needed_size - b - 1; |
299 | |
300 | return b; |
301 | } |
302 | |
303 | #if MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_NONE |
304 | |
305 | int mp_obj_int_sign(mp_obj_t self_in) { |
306 | mp_int_t val = mp_obj_get_int(self_in); |
307 | if (val < 0) { |
308 | return -1; |
309 | } else if (val > 0) { |
310 | return 1; |
311 | } else { |
312 | return 0; |
313 | } |
314 | } |
315 | |
316 | // This is called for operations on SMALL_INT that are not handled by mp_unary_op |
317 | mp_obj_t mp_obj_int_unary_op(mp_unary_op_t op, mp_obj_t o_in) { |
318 | return MP_OBJ_NULL; // op not supported |
319 | } |
320 | |
321 | // This is called for operations on SMALL_INT that are not handled by mp_binary_op |
322 | mp_obj_t mp_obj_int_binary_op(mp_binary_op_t op, mp_obj_t lhs_in, mp_obj_t rhs_in) { |
323 | return mp_obj_int_binary_op_extra_cases(op, lhs_in, rhs_in); |
324 | } |
325 | |
326 | // This is called only with strings whose value doesn't fit in SMALL_INT |
327 | mp_obj_t mp_obj_new_int_from_str_len(const char **str, size_t len, bool neg, unsigned int base) { |
328 | mp_raise_msg(&mp_type_OverflowError, MP_ERROR_TEXT("long int not supported in this build" )); |
329 | return mp_const_none; |
330 | } |
331 | |
332 | // This is called when an integer larger than a SMALL_INT is needed (although val might still fit in a SMALL_INT) |
333 | mp_obj_t mp_obj_new_int_from_ll(long long val) { |
334 | mp_raise_msg(&mp_type_OverflowError, MP_ERROR_TEXT("small int overflow" )); |
335 | return mp_const_none; |
336 | } |
337 | |
338 | // This is called when an integer larger than a SMALL_INT is needed (although val might still fit in a SMALL_INT) |
339 | mp_obj_t mp_obj_new_int_from_ull(unsigned long long val) { |
340 | mp_raise_msg(&mp_type_OverflowError, MP_ERROR_TEXT("small int overflow" )); |
341 | return mp_const_none; |
342 | } |
343 | |
344 | mp_obj_t mp_obj_new_int_from_uint(mp_uint_t value) { |
345 | // SMALL_INT accepts only signed numbers, so make sure the input |
346 | // value fits completely in the small-int positive range. |
347 | if ((value & ~MP_SMALL_INT_POSITIVE_MASK) == 0) { |
348 | return MP_OBJ_NEW_SMALL_INT(value); |
349 | } |
350 | mp_raise_msg(&mp_type_OverflowError, MP_ERROR_TEXT("small int overflow" )); |
351 | return mp_const_none; |
352 | } |
353 | |
354 | mp_obj_t mp_obj_new_int(mp_int_t value) { |
355 | if (MP_SMALL_INT_FITS(value)) { |
356 | return MP_OBJ_NEW_SMALL_INT(value); |
357 | } |
358 | mp_raise_msg(&mp_type_OverflowError, MP_ERROR_TEXT("small int overflow" )); |
359 | return mp_const_none; |
360 | } |
361 | |
362 | mp_int_t mp_obj_int_get_truncated(mp_const_obj_t self_in) { |
363 | return MP_OBJ_SMALL_INT_VALUE(self_in); |
364 | } |
365 | |
366 | mp_int_t mp_obj_int_get_checked(mp_const_obj_t self_in) { |
367 | return MP_OBJ_SMALL_INT_VALUE(self_in); |
368 | } |
369 | |
370 | #endif // MICROPY_LONGINT_IMPL == MICROPY_LONGINT_IMPL_NONE |
371 | |
372 | // This dispatcher function is expected to be independent of the implementation of long int |
373 | // It handles the extra cases for integer-like arithmetic |
374 | mp_obj_t (mp_binary_op_t op, mp_obj_t lhs_in, mp_obj_t rhs_in) { |
375 | if (rhs_in == mp_const_false) { |
376 | // false acts as 0 |
377 | return mp_binary_op(op, lhs_in, MP_OBJ_NEW_SMALL_INT(0)); |
378 | } else if (rhs_in == mp_const_true) { |
379 | // true acts as 0 |
380 | return mp_binary_op(op, lhs_in, MP_OBJ_NEW_SMALL_INT(1)); |
381 | } else if (op == MP_BINARY_OP_MULTIPLY) { |
382 | if (mp_obj_is_str_or_bytes(rhs_in) || mp_obj_is_type(rhs_in, &mp_type_tuple) || mp_obj_is_type(rhs_in, &mp_type_list)) { |
383 | // multiply is commutative for these types, so delegate to them |
384 | return mp_binary_op(op, rhs_in, lhs_in); |
385 | } |
386 | } |
387 | return MP_OBJ_NULL; // op not supported |
388 | } |
389 | |
390 | // this is a classmethod |
391 | STATIC mp_obj_t int_from_bytes(size_t n_args, const mp_obj_t *args) { |
392 | // TODO: Support signed param (assumes signed=False at the moment) |
393 | (void)n_args; |
394 | |
395 | // get the buffer info |
396 | mp_buffer_info_t bufinfo; |
397 | mp_get_buffer_raise(args[1], &bufinfo, MP_BUFFER_READ); |
398 | |
399 | const byte *buf = (const byte *)bufinfo.buf; |
400 | int delta = 1; |
401 | if (args[2] == MP_OBJ_NEW_QSTR(MP_QSTR_little)) { |
402 | buf += bufinfo.len - 1; |
403 | delta = -1; |
404 | } |
405 | |
406 | mp_uint_t value = 0; |
407 | size_t len = bufinfo.len; |
408 | for (; len--; buf += delta) { |
409 | #if MICROPY_LONGINT_IMPL != MICROPY_LONGINT_IMPL_NONE |
410 | if (value > (MP_SMALL_INT_MAX >> 8)) { |
411 | // Result will overflow a small-int so construct a big-int |
412 | return mp_obj_int_from_bytes_impl(args[2] != MP_OBJ_NEW_QSTR(MP_QSTR_little), bufinfo.len, bufinfo.buf); |
413 | } |
414 | #endif |
415 | value = (value << 8) | *buf; |
416 | } |
417 | return mp_obj_new_int_from_uint(value); |
418 | } |
419 | |
420 | STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(int_from_bytes_fun_obj, 3, 4, int_from_bytes); |
421 | STATIC MP_DEFINE_CONST_CLASSMETHOD_OBJ(int_from_bytes_obj, MP_ROM_PTR(&int_from_bytes_fun_obj)); |
422 | |
423 | STATIC mp_obj_t int_to_bytes(size_t n_args, const mp_obj_t *args) { |
424 | // TODO: Support signed param (assumes signed=False) |
425 | (void)n_args; |
426 | |
427 | mp_int_t len = mp_obj_get_int(args[1]); |
428 | if (len < 0) { |
429 | mp_raise_ValueError(NULL); |
430 | } |
431 | bool big_endian = args[2] != MP_OBJ_NEW_QSTR(MP_QSTR_little); |
432 | |
433 | vstr_t vstr; |
434 | vstr_init_len(&vstr, len); |
435 | byte *data = (byte *)vstr.buf; |
436 | memset(data, 0, len); |
437 | |
438 | #if MICROPY_LONGINT_IMPL != MICROPY_LONGINT_IMPL_NONE |
439 | if (!mp_obj_is_small_int(args[0])) { |
440 | mp_obj_int_to_bytes_impl(args[0], big_endian, len, data); |
441 | } else |
442 | #endif |
443 | { |
444 | mp_int_t val = MP_OBJ_SMALL_INT_VALUE(args[0]); |
445 | size_t l = MIN((size_t)len, sizeof(val)); |
446 | mp_binary_set_int(l, big_endian, data + (big_endian ? (len - l) : 0), val); |
447 | } |
448 | |
449 | return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr); |
450 | } |
451 | STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(int_to_bytes_obj, 3, 4, int_to_bytes); |
452 | |
453 | STATIC const mp_rom_map_elem_t int_locals_dict_table[] = { |
454 | { MP_ROM_QSTR(MP_QSTR_from_bytes), MP_ROM_PTR(&int_from_bytes_obj) }, |
455 | { MP_ROM_QSTR(MP_QSTR_to_bytes), MP_ROM_PTR(&int_to_bytes_obj) }, |
456 | }; |
457 | |
458 | STATIC MP_DEFINE_CONST_DICT(int_locals_dict, int_locals_dict_table); |
459 | |
460 | const mp_obj_type_t mp_type_int = { |
461 | { &mp_type_type }, |
462 | .name = MP_QSTR_int, |
463 | .print = mp_obj_int_print, |
464 | .make_new = mp_obj_int_make_new, |
465 | .unary_op = mp_obj_int_unary_op, |
466 | .binary_op = mp_obj_int_binary_op, |
467 | .locals_dict = (mp_obj_dict_t *)&int_locals_dict, |
468 | }; |
469 | |